WO2011046007A1 - ジエチレントリアミン五酢酸誘導体の製造方法およびジエチレントリアミン五酢酸誘導体 - Google Patents

ジエチレントリアミン五酢酸誘導体の製造方法およびジエチレントリアミン五酢酸誘導体 Download PDF

Info

Publication number
WO2011046007A1
WO2011046007A1 PCT/JP2010/066438 JP2010066438W WO2011046007A1 WO 2011046007 A1 WO2011046007 A1 WO 2011046007A1 JP 2010066438 W JP2010066438 W JP 2010066438W WO 2011046007 A1 WO2011046007 A1 WO 2011046007A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
diethylenetriaminepentaacetic acid
compound
mmol
iii
Prior art date
Application number
PCT/JP2010/066438
Other languages
English (en)
French (fr)
Inventor
根本 尚夫
知志 河村
研治 八塚
昌樹 神谷
Original Assignee
国立大学法人徳島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人徳島大学 filed Critical 国立大学法人徳島大学
Priority to US13/499,724 priority Critical patent/US8487126B2/en
Priority to EP10823275.2A priority patent/EP2489655A4/en
Priority to JP2011536083A priority patent/JP5725561B2/ja
Priority to CN201080044556.0A priority patent/CN102548956B/zh
Publication of WO2011046007A1 publication Critical patent/WO2011046007A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/44Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members
    • C07D207/444Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5
    • C07D207/448Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide
    • C07D207/452Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide with hydrocarbon radicals, substituted by hetero atoms, directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/14Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
    • C07C227/16Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions not involving the amino or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/46Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/47Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/12Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals

Definitions

  • the present invention relates to a method for producing a diethylenetriaminepentaacetic acid derivative and a diethylenetriaminepentaacetic acid derivative.
  • MRI Magnetic Resonance Imaging
  • Magnevist registered trademark, general name: meglumine gadopentetate
  • meglumine gadopentetate meglumine gadopentetate
  • Magnevist has the following chemical structure and improves the contrast of the image, while chelating highly toxic gadolinium ions with DTPA (DiethyleneTriaminePentaacetic® Acid) to make it nontoxic.
  • DTPA DiethyleneTriaminePentaacetic® Acid
  • Magnevist quickly diffuses into the body after administration and is then discharged out of the body along with urine. Although these properties are desirable from the viewpoint of safety, longer retention in blood and specificity for specific organs are also required for diagnosis.
  • Non-patent Document 1 Non-patent Document 1
  • the number of carboxy groups having chelating ability to gadolinium ions is reduced, there is an increased risk that highly toxic gadolinium ions will flow into the body.
  • Patent Document 1 a technique has been developed in which a substituent that enhances blood retention and the like is introduced into a methylene group that is not involved in chelation to gadolinium ions, that is, between a carboxy group and an amino group.
  • Non-Patent Document 1 Non-Patent Document 1
  • Non-Patent Documents 3 to 4 for example, as shown in the following scheme, a low molecular compound having a substituent or a precursor thereof that enhances blood retention and the like And other amine compounds and carboxylic acid compounds are condensed to synthesize DTPA derivatives.
  • a target substituent is introduced into the ester of DTPA in the presence of a base.
  • the present invention provides a method for easily and efficiently producing an intermediate compound for synthesizing a gadolinium complex into which a substituent that improves blood retention and organ specificity is introduced, and is produced by the method. It is an object of the present invention to provide a synthetic intermediate.
  • the inventors of the present invention have made extensive studies to solve the above problems.
  • the Stevens rearrangement reaction which has conventionally been performed in one step, is intentionally divided into three unprecedented steps, so that a reactive substituent can be placed at a specific position of the DTPA ester very simply and efficiently.
  • the present invention was completed by finding that it could be introduced.
  • R 1 to R 5 each independently represents a C 1-6 alkyl group
  • R 1 to R 5 are as defined above; Hal represents a halogen atom]; Removing excess halogenated allyl compound (III); and reacting a reaction product of diethylenetriaminepentaacetic acid pentaester (II) and halogenated allyl compound (III) with a base in a solvent, To do.
  • the diethylenetriaminepentaacetic acid derivative according to the present invention is represented by the following formula (I).
  • R 1 to R 5 each independently represents a C 1-6 alkyl group
  • the gadolinium complex precursor according to the present invention is represented by the following formula (IV).
  • the compound can be used as an MRI contrast agent by introducing a substituent for improving blood retention and organ specificity via W and then coordinating gadolinium ions after hydrolyzing the ester group. can do.
  • R 1 to R 5 each independently represents a C 1-6 alkyl group
  • X represents — (CH 2 ) 3 — or —CH 2 —CH ⁇ CH—
  • Y represents a C 6-12 arylene group, —CH ⁇ CH— or — (CH 2 ) 2 —
  • Z represents a C 1-6 alkylene group, an amino group, an ether group, a carbonyl group, an ester group, an amide group, a urea group, or a group in which two or more of these groups are linearly linked
  • W represents —CH ⁇ CH 2 , —CH ⁇ CH, an amino group, a carboxy group, an active amide group, an active ester group, or a halogen atom.
  • the “C 1-6 alkyl group” refers to a linear or branched aliphatic hydrocarbon group having 1 to 6 carbon atoms. Examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a t-butyl group, a pentyl group, and a hexyl group. Of these, a C 1-4 alkyl group is preferable, and a C 1-2 alkyl group is more preferable.
  • halogen atom examples include fluoro, chloro, bromo and iodo, preferably chloro or bromo, more preferably bromo.
  • C 6-12 arylene group refers to a divalent aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • a phenylene group, an indenylene group, a naphthylene group, a biphenylene group, and the like can be given. Of these, a phenylene group or a naphthylene group is preferable, and a phenylene group is more preferable.
  • the “C 1-6 alkylene group” refers to a linear or branched divalent aliphatic hydrocarbon group having 1 to 6 carbon atoms. Examples include a methylene group, a dimethylene group, a trimethylene group, a methyldimethylene group, a tetramethylene group, a 1-methyltrimethylene group, a 1,1-dimethyldimethylene group, a pentamethylene group, a hexamethylene group, and the like. Of these, a C 1-4 alkylene group is preferable, and a C 1-2 alkylene group is more preferable.
  • “Amino group” in Z represents —NH—
  • “amino group” in W represents —NH 2
  • “ether group” represents —O—
  • “carbonyl group” represents —C ( ⁇ O) —
  • the amide group is —NHC ( ⁇ O) — or —C ( ⁇ O) NH—
  • the urea group is —NHC ( ⁇ O) NH—.
  • the “active amide group” and the “active ester group” in W are an amino group and a carboxy group that have increased reactivity in order to facilitate introduction of substituents for improving retention in blood and organ specificity, respectively.
  • a phthalimide group dioxoazolinyl group
  • 5-norbornene-2,3-dicarboximide group N-hydroxysuccinimide ester group
  • 4-nitrophenyl ester group 4-nitrophenyl ester group and the like can be mentioned.
  • Z and XYZ have a role as a so-called linker group, and inhibit the bulky gadolinium complex part from inhibiting the access to a desired organ to an MRI contrast agent, or synthesis of a compound.
  • the linker group has the effect of facilitating Therefore, since it is necessary to make the length of the linker group appropriate, when Z is composed of two or more groups, the number of groups is preferably 5 or less.
  • diethylenetriaminepentaacetic acid pentaester (II) and allyl halide compound (III) are reacted without using a base.
  • the halogenated allyl compound (III) reacts only with the central amino group having a slightly higher reactivity than other amino groups.
  • the reason why such a result is obtained is that the above reaction is reversible, so that even if the reaction occurs at another amino group or a plurality of allyl halide compounds (III) react, it is the most chemically stable. It is conceivable to converge to the reactant. It is surprising that the introduction position and the number of introductions of the halogenated allyl compound (III) can be controlled under such simple conditions.
  • Diethylenetriaminepentaacetic acid pentaester (II) which is a raw material compound of the method of the present invention, may be used if available, or synthesized by esterifying commercially available diethylenetriaminepentaacetic acid according to a conventional method. Also good.
  • R 1 to R 5 in diethylenetriaminepentaacetic acid pentaester (II) are preferably the same.
  • the halogenated allyl compound (III) since the halogenated allyl compound (III) has a simple structure, it can be easily synthesized by a method known to those skilled in the art, and a commercially available product may be used.
  • This step is performed in an aprotic solvent. Since the reaction according to this step is a nucleophilic reaction by the lone electron pair of the amino group of diethylenetriaminepentaacetic acid pentaester (II), an aprotic solvent in which the amino group is not solvated is used in this step. In addition, the protic solvent has a problem that the main reaction is hindered from reacting with the allyl halide compound, and the allyl halide compound as a raw material compound is wasted.
  • aprotic solvent those showing moderate solubility in the raw material compound are preferable.
  • amide aprotic solvents such as dimethylformamide and dimethylacetamide
  • ether aprotic solvents such as diethyl ether, cyclopentylmethyl ether, tetrahydrofuran and dimethoxyethane
  • sulfoxide aprotic solvents such as dimethyl sulfoxide
  • acetone and t -Ketone aprotic solvents such as butyl methyl ketone
  • nitrile aprotic solvents such as acetonitrile
  • halogenated hydrocarbons such as dichloromethane and chloroform
  • aromatic hydrocarbons such as benzene and toluene.
  • the concentration of diethylenetriaminepentaacetic acid pentaester (II) in the reaction mixture in this step may be adjusted as appropriate. However, the higher the concentration, the easier the reaction proceeds, and therefore the concentration is preferably 10 g / L or more.
  • the upper limit is not particularly limited, but is preferably about 200 g / L or less in consideration of diethylenetriaminepentaacetic acid pentaester (II) and the like.
  • the allyl halide compound (III) is preferably used in a large excess with respect to diethylenetriaminepentaacetic acid pentaester (II). This is because the reaction equilibrium is tilted toward the product side to promote the reaction. Preferably, 5 times mole or more of allyl halide compound (III) is used with respect to diethylenetriaminepentaacetic acid pentaester (II). On the other hand, since the effect is limited even if the halogenated allyl compound (III) is used in an excessively large amount, the ratio is preferably 15 times mol or less.
  • the effect is saturated when the ratio is 9 times mole or more, and therefore the ratio is preferably 7 times mole or more.
  • the ratio may be 9 times mole or more.
  • the upper limit of the ratio is not particularly limited, but is preferably 15 times mol or less, more preferably 10 times mol or less.
  • the reaction temperature may be appropriately adjusted, but is usually preferably about 20 ° C. or higher and 60 ° C. or lower, more preferably about 30 ° C. or higher and 50 ° C. or lower.
  • the reaction time may be determined by preliminary experiments or until the consumption of diethylenetriaminepentaacetic acid pentaester (II) can be confirmed by reverse layer HPLC or the like. Usually, about 1 hour or more and about 80 hours or less are preferable, and about 5 hours or more and about 60 hours or less are preferable.
  • the boiling point of the allyl halide compound (III) is 70 to 71 ° C. for allyl bromide and 102 to 103 ° C. for allyl iodide. Therefore, in order to remove the allyl halide compound (III), the reaction mixture may be concentrated under reduced pressure. At this time, the solvent may be distilled off together.
  • the removal of the halogenated allyl compound (III) is not necessarily complete. That is, it may be substantially removed so as not to cause a side reaction in the next step.
  • the allyl halide compound (III) should be removed as much as possible in order to suppress the formation of by-products into which two or more allyl groups have been introduced. Therefore, for example, an operation of concentrating the reaction mixture under reduced pressure, newly adding an appropriate amount of an aprotic solvent to dissolve the viscous liquid residue, and concentrating again under reduced pressure may be repeated 2 to 3 times.
  • an aprotic solvent may remain, but generally all or most of the aprotic solvent has been removed together with the halogenated allyl compound (III). Therefore, it is preferable to add a solvent in order to allow the reaction to proceed smoothly.
  • the solvent that can be used in this step is not particularly limited as long as it has appropriate solubility in the substrate compound and does not inhibit the reaction.
  • an aliphatic hydrocarbon solvent such as hexane
  • an ester solvent such as ethyl acetate
  • an alcohol solvent such as methanol and ethanol
  • the amount of solvent used may be adjusted as appropriate, but usually the concentration of the reaction mixture obtained in the second step is about 2 w / v% or more and 20 w / v% or less in order to allow the reaction to proceed smoothly. do it.
  • a base is added.
  • the type of base is not particularly limited.
  • alkali metal carbonates such as potassium carbonate and sodium carbonate
  • alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate
  • alkali metal hydrogen carbonates such as potassium hydrogen carbonate and sodium hydrogen carbonate Salts
  • alkaline earth metal hydrogen carbonates such as calcium hydrogen carbonate and magnesium hydrogen carbonate
  • alkali metal hydroxides such as potassium hydroxide and sodium hydroxide
  • alkali metal hydrides such as sodium hydride
  • organic such as triethylamine and pyridine Amines
  • alkali metal alkoxides such as sodium ethoxide and potassium ethoxide.
  • a strong base such as sodium hydroxide
  • hydrolysis may occur
  • a metal alkoxide is used, an alcohol exchange reaction may occur at the ester group. Therefore, it is preferable to use a weak base such as an alkali metal or alkaline earth metal carbonate or hydrogen carbonate.
  • the amount of the base used may be adjusted as appropriate. Usually, however, at least the halogen anion, which is a counter anion of the ammonium cation generated by the reaction of diethylenetriaminepentaacetic acid pentaester (II) with the allyl halide compound (III), is used. It is preferable that the amount is sufficiently larger than the amount required for the sum. Specifically, it may be used in an amount of about 0.5 to 1.2 mol of the allyl halide compound (III) used.
  • the reaction temperature may be adjusted as appropriate, but it is usually preferably about 50 ° C. or higher and 100 ° C. or lower, and the reaction may be performed under reflux conditions.
  • the reaction time may be determined by preliminary experiments or until the consumption of the reaction product of diethylenetriaminepentaacetic acid pentaester (II) and allyl halide compound (III) can be confirmed by reverse layer HPLC or the like. Usually, about 10 hours or more and 100 hours or less are preferable, and about 50 hours or more and 80 hours or less are preferable.
  • the target compound diethylenetriaminepentaacetic acid derivative (I) may be isolated and purified by a conventional method.
  • the target compound is extracted with a water-insoluble organic solvent such as ethyl acetate or chloroform, and then the extract is washed with saturated saline, dilute hydrochloric acid, water, or the like. Wash. The extract is dried over anhydrous magnesium sulfate or anhydrous potassium carbonate and then concentrated. Next, the residue may be purified by silica gel column chromatography or recrystallization.
  • the diethylenetriaminepentaacetic acid derivative (I) can be produced very efficiently.
  • the diethylenetriaminepentaacetic acid derivative (I) according to the present invention has a reactive allyl group.
  • a vinyl halide compound or a halogenated aryl compound having a reactive functional group or a protected reactive functional group can be subjected to a coupling reaction in the presence of a palladium catalyst.
  • a substituent for enhancing blood retention and organ specificity can be introduced using the aryl compound or the like as a linker group.
  • the gadolinium complex precursor (IV) according to the present invention can be produced from the diethylenetriaminepentaacetic acid derivative (I) according to the present invention.
  • halogenated compound (V) since the halogenated compound (V) is easy to synthesize, those skilled in the art can easily produce it. W may be protected with a group such as a BOC group that does not inhibit the reaction and can be easily deprotected.
  • the diethylenetriaminepentaacetic acid derivative (I) and the halogenated compound (V) may be condensed in a solvent capable of dissolving the halogenated compound (V) in the presence of a palladium catalyst or the like. Further, the ethenyl group (—CH ⁇ CH—) may be reduced by a conventional method.
  • the gadolinium complex precursor (IV) introduces a substituent for improving blood retention and organ specificity through W, and then coordinates gadolinium ions after hydrolyzing the ester group. Thus, it can be used as an MRI contrast agent. Accordingly, the diethylenetriaminepentaacetic acid derivative (I) and gadolinium complex precursor (IV) according to the present invention are very useful as intermediate compounds for producing an MRI contrast agent having retention in blood and organ specificity. is there.
  • the starting compound (diethylenetriaminepentaacetic acid pentaethyl ester, 7 g, 13.1 mmol) was dissolved in DMF (175 mL). To the solution was added allyl bromide (10.2 mL, 118.1 mmol) at room temperature. The reaction solution was stirred at 40 ° C. for 39 hours. Next, the reaction solution was concentrated under reduced pressure. DMF (175 mL) and potassium carbonate (16.3 g, 118.1 mmol) were added to the obtained residue, and the mixture was stirred at 80 ° C. for 70 hours. After the reaction solution was cooled to room temperature, a saturated aqueous sodium hydrogen carbonate solution (300 mL) was added.
  • the intermediate was dissolved in ethanol (2 mL), and Boc 2 O (99 mg, 0.46 mmol) and 20% palladium hydroxide (53 mg, 0.076 mmol) were added under an argon gas atmosphere at room temperature under a hydrogen atmosphere. Stir for 23 hours.
  • the reaction solution was filtered through Celite, and the filtrate was concentrated under reduced pressure.
  • the DTPA ester (688.1 mg, 1.20 mmol) obtained in Synthesis Example 1 was mixed with a DMF: water volume ratio 10: 1 mixed solution (3.3 mL) into the iodide obtained in Synthesis Example 7 (1).
  • Phenyl compound (858.8 mg, 1.80 mmol) and diisopropylethylamine (308.7 ⁇ L, 1.80 mmol) were added at room temperature. After heating to 60 ° C., bis (acetonitrile) dichloropalladium (35.4 mg, 0.120 mmol) was added, and the mixture was stirred at 60 ° C. for 8.5 hours.
  • a 4N lithium hydroxide aqueous solution (594 ⁇ L) was added to a THF solution (8 mL) of the DTPA ester (400.0 mg, 0.432 mmol) obtained in Synthesis Example 7 (3), and the mixture was stirred at 50 ° C. for 19 hours.
  • a 4N hydrogen chloride / ethyl acetate solution (10 mL) was added at 0 ° C., and the mixture was stirred at room temperature for 3.5 hours.
  • one aryl group can be introduced into diethylenetriaminepentaacetic acid pentaester in a position-specific and efficient manner under very simple conditions.
  • a linker structure having a reactive functional group or a protected reactive functional group can be easily introduced into the diethylenetriaminepentaacetic acid derivative obtained by the method of the present invention by a condensation reaction using a metal catalyst.
  • Substituents exhibiting blood retention and organ specificity can be further introduced through the reactive functional group in the linker structure. Therefore, the present invention is very useful as enabling industrial mass production of MRI contrast agents exhibiting blood retention and organ specificity.
  • a reactive substituent can be efficiently introduced into a specific position of the DTPA ester under surprisingly simple conditions as compared with the conventional method.
  • the DTPA derivative obtained by the method is extremely useful.
  • the present invention is very useful industrially as one that enables industrial mass production of MRI contrast agents exhibiting blood retention and organ specificity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyrrole Compounds (AREA)

Abstract

 本発明は、血中滞留性や臓器特異性を向上させる置換基が導入されたガドリニウム錯体を合成するための中間体化合物を簡便かつ効率的に製造するための方法と、当該方法で製造された合成中間体を提供することを目的とする。本発明に係るジエチレントリアミン五酢酸誘導体(I)の製造方法は、ジエチレントリアミン五酢酸ペンタエステルとハロゲン化アリル化合物を反応させる工程;過剰なハロゲン化アリル化合物を除去する工程;および、溶媒中、ジエチレントリアミン五酢酸ペンタエステルとハロゲン化アリル化合物との反応物を塩基と反応させる工程を含むことを特徴とする。[式中、R1~R5はそれぞれ独立してC1-6アルキル基を示す]

Description

ジエチレントリアミン五酢酸誘導体の製造方法およびジエチレントリアミン五酢酸誘導体
 本発明は、ジエチレントリアミン五酢酸誘導体を製造するための方法、およびジエチレントリアミン五酢酸誘導体に関するものである。 
 MRI(磁気共鳴画像診断法)は、磁気と電波を利用して人体のあらゆる部分の断面像を撮ることができることから、注目されている診断技術である。MRIでは、さらに鮮明で詳細な画像を得るために、マグネビスト(登録商標,一般名:ガドペンテト酸メグルミン)などのMRI造影剤が用いられることがある。
 マグネビストは下記化学構造を有し、画像のコントラストを向上する一方で毒性の高いガドリニウムイオンをDTPA(DiethyleneTriaminePentaacetic Acid)でキレートし、無毒化している。
Figure JPOXMLDOC01-appb-C000005
 マグネビストは、投与後、速やかに体内に拡散した後に尿と共に体外へ排出される。こうした性質は安全面から望ましいものであるが、診断のためにはより長い血中滞留性や特定臓器に対する特異性も求められる。
 かかる問題を解決するためには、DTPAのカルボキシ基を通じて、血中滞留性や臓器特異性を高めるための置換基を導入することが考えられる(非特許文献1)。しかし、ガドリニウムイオンへのキレート能を有するカルボキシ基の数が減ることになるので、毒性の高いガドリニウムイオンが体内に流出するおそれが高まる。
 そこで、ガドリニウムイオンへのキレートに関与しない位置、即ちカルボキシ基とアミノ基との間に存在するメチレン基へ、血中滞留性などを高める置換基を導入する技術が開発されている(特許文献1~4,非特許文献1~4)。
 しかし、これら従来技術では、目的の化合物を効率良く製造できなかった。
 詳しくは、特許文献3、非特許文献1および非特許文献3~4などに記載の技術では、例えば下記スキームのように、血中滞留性などを高める置換基またはその前駆体を有する低分子化合物と、その他のアミン化合物やカルボン酸化合物を縮合し、DTPA誘導体を合成している。
Figure JPOXMLDOC01-appb-C000006
 しかし、かかる合成方法は多くの工程を要する上に、ハロゲン化物イオン塩などの廃棄物が大量に生じるなど、コストや環境問題への配慮に欠けている。
 なお、特許文献4に記載の実施例では、反応性置換基が導入されたDTPA誘導体が出発原料化合物とされており、その製造方法は明示されていないが、おそらく上記と同様の方法で合成されていると考えられる。
 また、特許文献1~2および非特許文献2などの技術では、塩基の存在下、DTPAのエステルへ目的の置換基を導入している。
 しかし、かかる方法では置換基を目的の位置のみに導入することが難しく、また、置換基が複数導入されるという副反応が起こるため、目的化合物の収率が低いという問題がある。 
特開平9-31037号公報 特開平9-31078号公報 特表平10-513445号公報 特表2001-504120号公報
Pier Lucio Anelliら,ジャーナル・オブ・メディシナル・ケミストリー(Journal of Medicinal Chemistry),第47巻,第3629~3641頁(2004年) John F.W. Keanaら,ジャーナル・オブ・オーガニック・ケミストリー(Journal of Organic Chemistry),第55巻,第9号,第2868~2871頁(1990年) Matthew A. Williamsら,ジャーナル・オブ・オーガニック・ケミストリー(Journal of Organic Chemistry),第58巻,第5号,第1151~1158頁(1993年) Sophie Laurentら,ヘルヴェティカ・キミカ・アクタ(Helvetica Chimica Acta),第47巻,第1077~1089頁(2004年)
 上述したように、従来、MRI造影剤として用いるためのガドリニウム錯体であって、その血中滞留性や臓器特異性を高めるための置換基が導入されたDTPA誘導体は種々検討されていた。
 しかし、その製造のためには多段階反応を要し、全体収率が極めて低く、また、副生物が多量に生成するなど、工業的な大量生産に適する技術は無かった。
 そこで本発明は、血中滞留性や臓器特異性を向上させる置換基が導入されたガドリニウム錯体を合成するための中間体化合物を簡便かつ効率的に製造するための方法と、当該方法で製造された合成中間体を提供することを目的とする。 
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、従来、一工程で行われているStevens転移反応を、前例の無い三工程に意図的に分けて行うことにより、DTPAエステルの特定位置に反応性置換基を非常に簡便で効率的に導入できることを見出して、本発明を完成した。
 本発明に係る下記式(I)で表されるジエチレントリアミン五酢酸誘導体の製造方法は、
Figure JPOXMLDOC01-appb-C000007
[式中、R1~R5はそれぞれ独立してC1-6アルキル基を示す]
 非プロトン性溶媒中、下記式(II)で表されるジエチレントリアミン五酢酸ペンタエステルと下記式(III)で表されるハロゲン化アリル化合物を反応させる工程
Figure JPOXMLDOC01-appb-C000008
[式中、R1~R5は上記と同義を示し;Halはハロゲン原子を示す];
 過剰のハロゲン化アリル化合物(III)を除去する工程;および
 溶媒中、ジエチレントリアミン五酢酸ペンタエステル(II)とハロゲン化アリル化合物(III)との反応物を塩基と反応させる工程を含むことを特徴とする。
 本発明に係るジエチレントリアミン五酢酸誘導体は、下記式(I)で表されるものであることを特徴とする。
Figure JPOXMLDOC01-appb-C000009
[式中、R1~R5はそれぞれ独立してC1-6アルキル基を示す] 
 本発明に係るガドリニウム錯体前駆体は、下記式(IV)で表されるものであることを特徴とする。当該化合物は、Wを介して血中滞留性や臓器特異性を向上させるための置換基を導入した後、エステル基を加水分解した上でガドリニウムイオンを配位させることにより、MRI造影剤として利用することができる。
Figure JPOXMLDOC01-appb-C000010
[式中、
 R1~R5はそれぞれ独立してC1-6アルキル基を示し;
 Xは、-(CH23-または-CH2-CH=CH-を示し;
 Yは、C6-12アリーレン基、-CH=CH-または-(CH22-を示し;
 Zは、C1-6アルキレン基、アミノ基、エーテル基、カルボニル基、エステル基、アミド基、ウレア基、またはこれら2以上の基が直鎖状に連なった基を示し;
 Wは、-CH=CH2、-CH≡CH、アミノ基、カルボキシ基、活性アミド基、活性エステル基またはハロゲン原子を示す。] 
 本発明において、「C1-6アルキル基」とは、炭素数1~6の直鎖状または分枝鎖状の脂肪族炭化水素基をいう。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、ペンチル基、ヘキシル基等を挙げることができる。これらのうち、C1-4アルキル基が好ましく、C1-2アルキル基がより好ましい。
 「ハロゲン原子」としては、フルオロ、クロロ、ブロモおよびヨードを例示することができ、クロロまたはブロモが好ましく、ブロモがより好ましい。
 「C6-12アリーレン基」は、炭素数6~12の二価の芳香族炭化水素基をいう。例えば、フェニレン基、インデニレン基、ナフチレン基、ビフェニレン基等を挙げることができる。これらのうち、フェニレン基またはナフチレン基が好ましく、フェニレン基がより好ましい。
 「C1-6アルキレン基」とは、炭素数1~6の直鎖状または分枝鎖状の二価の脂肪族炭化水素基をいう。例えば、メチレン基、ジメチレン基、トリメチレン基、メチルジメチレン基、テトラメチレン基、1-メチルトリメチレン基、1,1-ジメチルジメチレン基、ペンタメチレン基、ヘキサメチレン基等を挙げることができる。これらのうち、C1-4アルキレン基が好ましく、C1-2アルキレン基がより好ましい。
 Zにおける「アミノ基」は-NH-を示し、Wにおける「アミノ基」は-NH2を示し、「エーテル基」は-O-、「カルボニル基」は-C(=O)-、エステル基は-C(=O)O-または-OC(=O)-、アミド基は-NHC(=O)-または-C(=O)NH-、ウレア基は-NHC(=O)NH-を示す。
 Wにおける「活性アミド基」と「活性エステル基」は、それぞれ血中滞留性や臓器特異性を向上させるための置換基を導入し易くするために、反応性を高められたアミノ基とカルボキシ基をいう。例えば、フタル酸イミド基(ジオキソアゾリニル基)、5-ノルボルネン-2,3-ジカルボキシイミド基、N-ヒドロキシスクシンイミドエステル基、4-ニトロフェニルエステル基等を挙げることができる。
 なお、ZやX-Y-Zは、いわゆるリンカー基としての役割を有し、バルキーなガドリニウム錯体部分が所望の臓器へのMRI造影剤への接近を阻害することを抑制したり、化合物の合成を容易にするといった作用効果を有する。よって、当該リンカー基の長さは適度なものとする必要があるため、Zが2以上の基からなる場合、基の数は5以下とすることが好ましい。 
 以下、本発明方法を実施の順番に従って説明する。
 (1) 第一工程
 本発明方法では、先ず、非プロトン性溶媒中、ジエチレントリアミン五酢酸ペンタエステル(II)とハロゲン化アリル化合物(III)を反応させる。当該工程では、以下のとおり反応が進行すると考えられる。
Figure JPOXMLDOC01-appb-C000011
 なお、従来方法のようにジエチレントリアミン五酢酸ペンタエステル(II)へ強塩基を作用させると、位置特異性がなくなって所望の位置にハロゲン化アリル化合物(III)を導入できなかったり、ハロゲン化アリル化合物(III)が複数導入されてしまう。一方、弱塩基を用いると、エステル基のα位アニオンが生じない。このように、従来方法ではハロゲン化アリル化合物(III)の導入位置や導入数を制御することはできない。
 それに対して本発明の本工程においては、塩基を用いることなくジエチレントリアミン五酢酸ペンタエステル(II)とハロゲン化アリル化合物(III)を反応させる。それにより、他のアミノ基よりもわずかに反応性の高い中央のアミノ基のみにハロゲン化アリル化合物(III)が反応する。かかる結果が得られる理由は、上記反応は可逆的であるために、たとえ他のアミノ基で反応が起こったり或いは複数のハロゲン化アリル化合物(III)が反応しても、化学的に最も安定な上記反応物へ収束することが考えられる。なお、このような簡便な条件でハロゲン化アリル化合物(III)の導入位置や導入数を制御できることは、驚くべきことである。
 本発明方法の原料化合物であるジエチレントリアミン五酢酸ペンタエステル(II)は、市販のものがあればそれを利用すればよいし、或いは市販のジエチレントリアミン五酢酸を常法に従ってエステル化することにより合成してもよい。なお、合成の容易さから、ジエチレントリアミン五酢酸ペンタエステル(II)におけるR1~R5は、同一であることが好ましい。
 また、ハロゲン化アリル化合物(III)はシンプルな構造を有することから、当業者公知の方法により容易に合成できるし、市販のものがあればそれを利用すればよい。
 本工程は、非プロトン性溶媒中で行う。本工程に係る反応は、ジエチレントリアミン五酢酸ペンタエステル(II)のアミノ基の孤立電子対による求核反応であるので、本工程では、アミノ基が溶媒和されない非プロトン性溶媒を用いる。また、プロトン性溶媒には、ハロゲン化アリル化合物と反応することから主反応が妨げられたり、原料化合物であるハロゲン化アリル化合物が浪費されるという問題がある。
 非プロトン性溶媒としては、原料化合物に対して適度な溶解性を示すものが好ましい。例えば、ジメチルホルムアミドやジメチルアセトアミドなどのアミド系非プロトン性溶媒;ジエチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、ジメトキシエタンなどのエーテル系非プロトン性溶媒;ジメチルスルホキシドなどのスルホキシド系非プロトン性溶媒;アセトンやt-ブチルメチルケトンなどのケトン系非プロトン性溶媒;アセトニトリルなどのニトリル系非プロトン性溶媒;ジクロロメタンやクロロホルムなどのハロゲン化炭化水素;ベンゼンやトルエンなどの芳香族炭化水素などを挙げることができる。
 本工程の反応混合液におけるジエチレントリアミン五酢酸ペンタエステル(II)の濃度は適宜調整すればよいが、高濃度ほど反応は進行し易いので、好適には10g/L以上とする。一方、上限は特に制限されないが、ジエチレントリアミン五酢酸ペンタエステル(II)などを考慮して200g/L以下程度とすることが好ましい。
 本工程においては、ハロゲン化アリル化合物(III)をジエチレントリアミン五酢酸ペンタエステル(II)に対して大過剰用いることが好ましい。反応平衡を生成物側に傾け、反応を促進するためである。好適には、ジエチレントリアミン五酢酸ペンタエステル(II)に対してハロゲン化アリル化合物(III)を5倍モル以上用いる。一方、ハロゲン化アリル化合物(III)をあまりに大過剰用いても効果には限りがあるので、好適には当該割合を15倍モル以下とする。本発明者らによる実験的知見によれば、当該割合が9倍モル以上である場合には効果が飽和するので、当該割合を7倍モル以上とすることが好ましい。また、ハロゲン化アリル化合物(III)を非常に安価に入手できるような場合には、当該割合を9倍モル以上としてもよい。当該割合の上限は特に制限されないが、好適には15倍モル以下、より好適には10倍モル以下とする。
 反応温度は適宜調整すればよいが、通常、20℃以上、60℃以下程度が好ましく、30℃以上、50℃以下程度がより好ましい。
 反応時間は、予備実験により決定したり、或いは逆層HPLCなどでジエチレントリアミン五酢酸ペンタエステル(II)の消費を確認できるまでとすればよい。通常、1時間以上、80時間以下程度が好ましく、5時間以上、60時間以下程度が好ましい。
 (2) 第二工程
 次に、過剰のハロゲン化アリル化合物(III)を除去する。次工程においてハロゲン化アリル化合物(III)が残留していると、ジエチレントリアミン五酢酸ペンタエステル(II)とハロゲン化アリル化合物(III)との反応物へさらに反応するおそれがあり、この反応を防ぐためである。
 ハロゲン化アリル化合物(III)の沸点は、臭化アリルで70~71℃、ヨウ化アリルで102~103℃である。よって、ハロゲン化アリル化合物(III)を除去するには、反応混合液を減圧濃縮すればよい。この際、溶媒を一緒に留去しても構わない。
 ハロゲン化アリル化合物(III)の除去は、必ずしも完全である必要はない。即ち、次工程で副反応を起こさない程度に実質的に除去すればよい。但し、アリル基が2以上導入された副生物の生成を抑制するために、ハロゲン化アリル化合物(III)は極力除去すべきである。そのため、例えば、反応混合液を減圧濃縮した後、新たに非プロトン性溶媒を適量加えて粘性液状残渣を溶解し、再び減圧濃縮するという操作を2~3回繰り返してもよい。
 (3) 第三工程
 次に、溶媒中、ジエチレントリアミン五酢酸ペンタエステル(II)とハロゲン化アリル化合物(III)との反応物を塩基と反応させる。この際、以下の転移反応が起こっていると考えられる。
Figure JPOXMLDOC01-appb-C000012
 第二工程後、非プロトン性溶媒が残留している場合もあるが、通常はハロゲン化アリル化合物(III)と共にほぼ全部または大部分が除去されてしまっている。そこで、反応を円滑に進行せしめるために、溶媒を追加することが好ましい。
 本工程で用い得る溶媒は、基質化合物に対して適度な溶解性を有し、且つ反応を阻害しないものであればよい。例えば、第二工程の説明で例示した非プロトン性溶媒の他、ヘキサンなどの脂肪族炭化水素溶媒;酢酸エチルなどのエステル系溶媒;メタノールやエタノールなどのアルコール系溶媒を挙げることができる。但しアルコール系溶媒を用いる場合には、エステル交換反応が起こり得るので、基質化合物の酢酸エステル基中のアルコールと同一のアルコールを用いることが好ましい。
 溶媒の使用量は適宜調整すればよいが、通常、反応を円滑に進行せしめるため、第二工程により得られた反応混合物の濃度で2w/v%以上、20w/v%以下程度となるようにすればよい。
 第二工程で得られた反応混合物を溶媒に溶解または分散させた後、塩基を添加する。塩基の種類は特に問わないが、例えば、炭酸カリウムや炭酸ナトリウムなどのアルカリ金属炭酸塩;炭酸カルシウムや炭酸マグネシウムなどのアルカリ土類金属炭酸塩;炭酸水素カリウムや炭酸水素ナトリウムなどのアルカリ金属炭酸水素塩;炭酸水素カルシウムや炭酸水素マグネシウムなどのアルカリ土類金属炭酸水素塩;水酸化カリウムや水酸化ナトリウムなどのアルカリ金属水酸化物;水素化ナトリウムなどのアルカリ金属水素化物;トリエチルアミンやピリジンなどの有機アミン;ナトリウムエトキシドやカリウムエトキシドなどのアルカリ金属アルコキシドなどを挙げることができる。但し、水酸化ナトリウムなどの強塩基を用いる場合には加水分解が起こるおそれがあり、また、金属アルコキシドを用いる場合にはエステル基でアルコール交換反応が起こる可能性がある。よって、アルカリ金属またはアルカリ土類金属の炭酸塩または炭酸水素塩などの弱塩基を用いることが好ましい。
 塩基の使用量は適宜調整すればよいが、通常、少なくとも、ジエチレントリアミン五酢酸ペンタエステル(II)とハロゲン化アリル化合物(III)とが反応して生成したアンモニウムカチオンのカウンターアニオンであるハロゲンアニオンの中和に必要な量より十分に過剰であることが好ましい。具体的には、使用したハロゲン化アリル化合物(III)の0.5倍モル以上、1.2倍モル以下程度用いればよい。
 反応温度は適宜調整すればよいが、通常、50℃以上、100℃以下程度が好ましく、還流条件で反応を行ってもよい。
 反応時間は、予備実験により決定したり、或いは逆層HPLCなどでジエチレントリアミン五酢酸ペンタエステル(II)とハロゲン化アリル化合物(III)との反応物の消費を確認できるまでとすればよい。通常、10時間以上、100時間以下程度が好ましく、50時間以上、80時間以下程度が好ましい。
 反応終了後は、目的化合物であるジエチレントリアミン五酢酸誘導体(I)を常法により単離精製すればよい。例えば、炭酸カリウムを用いるなど水が生じる条件で反応を行った場合には、酢酸エチルやクロロホルムなど水不溶性有機溶媒で目的化合物を抽出した後、抽出液を、飽和食塩水、希塩酸、水などにより洗浄する。当該抽出液を無水硫酸マグネシウムや無水炭酸カリウムなどで乾燥してから濃縮する。次いで、残渣をシリカゲルカラムクロマトグラフィや再結晶などにより精製すればよい。
 上述したとおり、本発明方法は工程数が少なく簡便であることから、ジエチレントリアミン五酢酸誘導体(I)を非常に効率的に製造することができる。
 本発明に係るジエチレントリアミン五酢酸誘導体(I)は、反応性を有するアリル基を有する。よって、例えば、パラジウム触媒の存在下、反応性官能基または保護された反応性官能基を有するハロゲン化ビニル化合物やハロゲン化アリール化合物をカップリング反応させることができる。さらに、当該アリール化合物などをリンカー基として、血中滞留性や臓器特異性を高めるための置換基を導入することができる。或いは、血中滞留性などを高めるための置換基を、本発明に係るジエチレントリアミン五酢酸誘導体(I)へ直接導入することも可能である。
 具体的には、例えば、下記スキームのように、本発明に係るジエチレントリアミン五酢酸誘導体(I)から、本発明に係るガドリニウム錯体前駆体(IV)を製造することができる。
Figure JPOXMLDOC01-appb-C000013
 上記式中、ハロゲン化化合物(V)は合成し易いものであることから、当業者であれば容易に製造することができる。また、Wは、BOC基など、反応を阻害せず、且つ容易に脱保護できる基で保護しておいてもよい。
 上記反応は、ジエチレントリアミン五酢酸誘導体(I)やハロゲン化化合物(V)を程度に溶解できる溶媒中、パラジウム触媒などの存在下、両者を縮合させればよい。さらに、常法により、エテニル基(-CH=CH-)を還元してもよい。
 上記ガドリニウム錯体前駆体(IV)当該化合物は、Wを介して血中滞留性や臓器特異性を向上させるための置換基を導入した後、エステル基を加水分解した上でガドリニウムイオンを配位させることにより、MRI造影剤として利用することができる。従って、本発明に係るジエチレントリアミン五酢酸誘導体(I)とガドリニウム錯体前駆体(IV)は、血中滞留性や臓器特異性を有するMRI造影剤を製造するための中間体化合物として、非常に有用である。 
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 
 合成例1 エチル 2-[N,N-ビス(2-{N’,N’-ビス[(エトキシカルボニル)メチル]アミノ}エチル)アミノ]ペント-4-エノエートの合成
Figure JPOXMLDOC01-appb-C000014
 原料化合物(ジエチレントリアミン五酢酸ペンタエチルエステル,7g,13.1mmol)をDMF(175mL)に溶解した。当該溶液に、臭化アリル(10.2mL,118.1mmol)を室温で加えた。当該反応液を40℃で39時間攪拌した。次いで、反応液を減圧濃縮した。得られた残渣にDMF(175mL)と炭酸カリウム(16.3g,118.1mmol)を加え、80℃で70時間攪拌した。当該反応液を室温まで冷却した後、飽和炭酸水素ナトリウム水溶液(300mL)を加えた。得られた混合液を酢酸エチル(300mL)で3回抽出し、抽出液を飽和食塩水(200mL)で洗浄後、無水炭酸カリウムで乾燥し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィ(溶離液:ヘキサン/酢酸エチル=1:1)で精製することにより、原料化合物を10%(0.7g,1.3mmol)回収すると共に、黄色油状の目的化合物を得た(収量:4.8g,8.3mmol,収率:63%,原料化合物の転化率ベースでの収率:70%)。
FT-IR(neat,cm-1):3628,3448,3077,2981,2366,2055,1732,1446,1370,1343,1188,1029,917,856,808,733
1H-NMR(CDCl3,400MHz):δ5.80(ddt,J=16.8,10.0,6.8Hz,1H),5.08(d,J=16.8Hz,1H),5.03(dt,J=10.0,0.4Hz,1H),4.20-4.13(m,10H),3.57(s,8H),3.50(t,J=7.6Hz,1H),2.88-2.77(m,6H),2.71-2.66(m,2H),2.51(ddd,J=14.0,7.6,6.8Hz,1H),2.35(ddd,J=14.0,7.6,6.8Hz,1H),1.285(t,J=6.8Hz,12H),1.276(t,J=6.8Hz,3H)
13C-NMR(CDCl3,100MHz):δ172.2(C),170.9(C×4),134.9(CH),116.5(CH2),63.6(CH),60.2(CH2×4),60.0(CH2),55.1(CH2×4),53.3(CH2×2),50.2(CH2×2),34.3(CH2×2),14.3(CH3),14.1(CH3×4)
EI-HRMS:m/z(M+H+) 計算値(C27H48N3O10):574.3340,実測値:574.3331
 合成例2
 (1) t-ブチル [2-(4-ヨードフェニル)エチル]カルバメートの合成
Figure JPOXMLDOC01-appb-C000015
 2-(4-ヨードフェニル)-1-エチルアミン(6.59g,26.7mmol)をTHF(50mL)に懸濁した。当該懸濁液に、トリエチルアミン(3.7mL,26.7mmol)と二炭酸ジ(t-ブチル)(5.8g,26.7mmol)を加えた。当該反応液を室温で1時間攪拌した。当該反応液を酢酸エチルと水との間で分配した。有機層を分離し、水と食塩水で順次洗浄し、炭酸カリウムで乾燥した後に濃縮した。ヘキサンを用いて残渣を再結晶し、無色針状結晶の目的化合物(9.3g)を得た。
 (2) エチル (4E)-2-[N,N-ビス[2-[N’,N’-ビス[(エトキシカルボニル)メチル]アミノ]エチル]アミノ]-5-(4-{2-[(t-ブトキシ)カルボニルアミノ]エチル}フェニル)ペント-4-エノエート
Figure JPOXMLDOC01-appb-C000016
 上記合成例1で得たエチル 2-[N,N-ビス(2-{N’,N’-ビス[(エトキシカルボニル)メチル]アミノ}エチル)アミノ]ペント-4-エノエート(100mg,0.522mmol)を、DMF/水=10/1の混合溶媒(1.1mL)に溶解した。当該溶液に、上記合成例2(1)で合成したヨードフェニル化合物(185.6mg,0.522mmol)、ジイソプロピルエチルアミン(46.7μL,0.261mmol)を室温で加え、60℃に加熱した。次いで、ビス(アセトニトリル)ジクロロパラジウム(4.52mg,0.0174mmol)を加え、60℃で11時間攪拌した。反応液をシリカゲルで濾過し、濾液を減圧乾燥した後、残渣をシリカゲルカラムクロマトグラフィ(溶離液:ヘキサン/酢酸エチル=1/1)で精製することにより、黄色油状の目的化合物を得た(二重結合における位置異性体と構造異性体を含む収率:84%,目的化合物:二重結合における位置異性体:エキソ体=79:19:2,目的化合物のみの収率:66%)。
FT-IR(neat,cm-1):3627,3393,2980,2937,2362,2056,1732,1679,1520,860,7741H-NMR(CDCl3,400MHz):δ7.26(d,J=8.0Hz,2H),7.11(d,J=8.0Hz,2H),6.40(d,J=15.6Hz,1H),6.16(dt,J=15.6,7.2Hz,1H),4.56-5.53(m,1H),4.17-4.12(m,10H),3.60-3.48(m,1H),3.55(s,8H),3.40-3.34(m,2H),2.90-2.61(m,11H),2.48(ddd,J=14.4,7.2,7.0Hz,1H),1.44(s,9H),1.264(t,J=6.8Hz,3H),1.256(t,J=6.8Hz,12H)
13C-NMR(CDCl3,100MHz):δ171.9(C),170.5(C×4),155.2(C),137.4(C),135.1(C),131.0(CH),128.3(CH×2),126.0(CH),125.6(CH×2),78.3(C),63.3(CH),59.8(CH2×4),59.6(CH2),54.8(CH2×4),52.9(CH2×2),49.8(CH2×2),41.4(CH2),35.4(CH2),33.2(CH2),27.9(CH3×3),14.0(CH3),13.8(CH3×4)
EI-HRMS:m/z(M+Na+) 計算値(C40H64N4O12Na):815.4418,実測値:815.4382
 (3) エチル 2-[N,N-ビス(2-{N’,N’-ビス[(エトキシカルボニル)メチル]アミノ}エチル)アミノ]-5-(4-{2-[(t-ブトキシ)カルボニルアミノ]エチル}フェニル)ペンタノエート
Figure JPOXMLDOC01-appb-C000017
 上記合成例2(2)で得たペント-4-エノエート化合物(4.2g,5.30mmol)をエタノール(40mL)に溶解した。アルゴンガス雰囲気下、当該溶液に10%パラジウム炭素(0.28g,0.26mmol)を加えた後、アルゴンガスを水素ガスに置換した。水素ガス雰囲気下、当該反応液を室温で11時間攪拌した。反応液をセライトで濾過し、濾液を減圧乾燥した後、残渣をシリカゲルカラムクロマトグラフィ(溶離液:ヘキサン/酢酸エチル=1/1)で精製することにより、黄色油状の目的化合物を得た(収率:97%)。
FT-IR(neat,cm-1):3627,3396,2980,2367,2054,1733,1699,1508,1164,868,810,775
1H-NMR(CDCl3,400MHz):δ7.10(s,4H),4.62-4.52(m,1H),4.18-4.11(m,10H),3.54(s,8H),3.39-3.33(m,3H),2.86-2.56(m,12H),1.80-1.56(m,4H),1.44(s,9H),1.258(t,J=7.2Hz,12H),1.250(t,J=7.2Hz,3H)
13C-NMR(CDCl3,100MHz):δ172.9(C),170.8(C×4),155.5(C),139.9(C),136.0(C),128.4(CH×2),128.2(CH×2),78.6(C),63.4(CH),60.0(CH2×4),59.7(CH2),54.9(CH2×4),53.4(CH2×2),50.0(CH2×2),41.5(CH2),35.5(CH2),34.9(CH2),29.3(CH2),28.1(CH3×3),27.9(CH2),14.1(CH3),13.9(CH3×4)
EI-HRMS:m/z(M+H+) 計算値(C40H67N4O12):795.4755,実測値:795.4746
 (4) 5-[4-(2-アミノエチル)フェニル]-2-(N,N-ビス{2-N’,N’-ビス[(カルボキシメチル)アミノ]エチル}アミノ)ペンタン酸
Figure JPOXMLDOC01-appb-C000018
 上記合成例2(3)で得た化合物(500mg,0.63mmol)を、THF/水=1/2の混合溶液(1.5mL)に溶解した。当該溶液へ30%塩酸(1mL)を室温で加え、加熱還流下で14時間撹拌した。反応液を凍結乾燥した後、高速液体カラムクロマトグラフィで精製することにより、白色粉状の目的化合物を得た(収率:43%)。
FT-IR(KBr,cm-1):3853,3420,2955,2361,1743,1647,1418,1214,899,814,667
1H-NMR(D2O,400MHz):δ7.28(d,J=7.2Hz,2H),7.26(d,J=7.2Hz,2H),3.96(s,8H),3.56-3.53(m,1H),3.43(t,J=6.8Hz,4H),3.26(t,J=6.9Hz,2H),3.19-3.09(m,4H),2.97(t,J=6.8Hz,2H),2.67(t,J=6.8Hz,2H),1.87-1.78(m,1H),1.76-1.69(m,2H),1.64-1.58(m,1H)
13C-NMR(D2O,100MHz):δ177.8(C),171.8(C×4),143.6(C),137.1(C),132.0(CH×2),131.9(CH×2),66.2(CH),58.0(CH2×4),56.0(CH2×2),49.5(CH2×2),43.5(CH2),37.1(CH2),35.2(CH2),30.5(CH2),30.2(CH2
ESI-HRMS:m/z(M-) 計算値(C25H37N4O10):553.2510,実測値:553.2520
 合成例3 エチル 2-[ビス(2-{ビス[(エトキシカルボニル)メチル]アミノ}エチル)]-5-{4-[2-(2,5-ジオキソアゾリニル)エチル]フェニル}ペンタノエート
Figure JPOXMLDOC01-appb-C000019
 上記合成例2(3)で得た化合物(270mg,0.34mmol)を4N塩酸/酢酸エチル溶液:ジクロロメタン=3:1混合溶液(2.0mL)に加え、室温で4時間撹拌した後、反応液を減圧濃縮した。残渣をジクロロメタン(1.0mL)に溶解し、トリエチルアミン(94.9μL,0.68mmol)を加え室温で5分間撹拌した後、無水マレイン酸(43.3mg,0.44mmol)を加え、さらに室温で2時間撹拌した。その後反応液を減圧濃縮し、残渣にDMF(1mL)、無水酢酸(160.5μL,1.70mmol)および酢酸ナトリウム(27.86mg,0.34mmol)を加え、100℃で18時間撹拌した。次いで、反応液に1N水酸化ナトリウム水溶液(2mL)を加えた後、酢酸エチル(20mL)で3回抽出した。得られた抽出液を飽和食塩水(20mL)で洗浄後、無水硫酸ナトリウムで乾燥し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィ(溶離液:ヘキサン/酢酸エチル=1/1)で精製することにより、黄色油状の目的化合物を得た(収率:23%)。
FT-IR(neat,cm-1):3624,3465,3095,2981,2861,2365,1713,1515,1445,1407,1368,1190,1029,828,759,721,696
1H-NMR(CDCl3,400MHz):δ7.12-7.07(dd,J=8.4,2.4Hz,4H),6.66(s,2H),4.15(q,J=7.2Hz,8H),4.14(q,J=7.2Hz,2H),3.75-3.71(m,2H),3.54(s,8H),3.38-3.35(m,1H),2.87-2.56(m,12H),1.77-1.50(m,4H),1.26(t,J=7.2Hz,12H),1.25(t,J=7.2Hz,3H)
13C-NMR(CDCl3,100MHz):δ172.9(C),170.9(C×4),170.2(C×2),140.3(C),134.8(C),133.8(CH×2),128.5(CH×2),128.3(CH×2),63.7(CH),60.2(C×4),59.9(CH2),55.1(CH2×2),53.6(CH2×2),50.2(CH2×2),39.1(CH2),35.2(CH2),34.0(CH2),29.5(CH2),28.1(CH2),14.3(CH3),14.1(CH3×4)
ESI-HRMS:m/z(M+Na+) 計算値(C39H58N4O12Na):797.3949,実測値:797.3963
 合成例4
 (1) ヨウ化物
Figure JPOXMLDOC01-appb-C000020
 原料であるアルデヒド化合物(US6,617,332に記載,2.4g,9.63mmol)とヨードホルム(7.6g,19.3mmol)をTHF(55mL)に溶解した。当該溶液を、アルゴン雰囲気下、二塩化クロム(7.1g,57.8mmol)のTHF溶液(80mL)に、室温で1分間かけて滴下した。得られた混合物を、アルゴン雰囲気下、室温で2時間撹拌した。その後、水(270mL)を加え、酢酸エチル/ヘキサン=1/1の混合液(130mL)で3回抽出した。得られた有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィ(溶離液:ヘキサン/酢酸エチル=3/1)で精製し、目的化合物と副生成物である塩化物の混合物を得た(収量:2.72g)。生成物をNMRにより分析したところ、目的化合物と副生物のモル比は7:1であった。かかる分析結果より、目的化合物の正味の収量は2.46g、6.58mmolであり、収率は68%であることが分かった。
 (2) エチル 2-[N,N-ビス(2-{N’,N’-ビス[(エトキシカルボニル)メチル]アミノ}エチル)アミノ]-12-(t-ブトキシカルボニルアミノ)ドデカノエート
Figure JPOXMLDOC01-appb-C000021
 上記合成例2(3)で得た化合物(615mg,1.07mmol)のDMF溶液(8mL)に、上記合成例4(1)で得たヨウ化物と塩化物の7:1モル比混合物(200mg,ヨウ化物は正味181mg,0.48mmol)、酢酸銀(69mg,0.69mmol)および酢酸パラジウム(24mg,0.11mmol)を加え、室温で7時間撹拌した。反応懸濁液をシリカゲルで濾過し、濾液を減圧濃縮した後、得られた残渣をシリカゲルカラムクロマトグラフィ(溶離液:ヘキサン/酢酸エチル=3/2)で粗精製し、上記中間体(311mg,0.38mmol)を得た。当該中間体をエタノール(2mL)に溶解し、アルゴンガス雰囲気下、でBoc2O(99mg,0.46mmol)と20%水酸化パラジウム(53mg,0.076mmol)を加え、水素雰囲気下、室温で23時間撹拌した。反応液をセライトで濾過し、濾液を減圧濃縮した後、得られた残渣をシリカゲルカラムクロマトグラフィ(溶離液:ヘキサン/酢酸エチル=3/2)で精製し、黄色油状の目的化合物を得た(収量:213mg,0.27mmol,収率:56%)。FT-IR(neat,cm-1):3398,2980,2929,2855,1732,1519,1465,1366,1343,1250,1183,1029,989,923,866,780,725,423
1H-NMR(CDCl3,400MHz):δ4.52-4.50(m,NH,1H),4.16(q,J=7.2Hz,8H),4.13(q,J=7.2Hz,2H),3.55(s,8H),3.31(t,J=7.2Hz,1H),3.12-3.08(m,-CH2-NHBoc,2H),2.86-2.61(m,8H),1.44(s,9H),1.20-1.28(m,33H)
13C-NMR(CDCl3,100MHz):δ173.3(C),171.2(C×4),155.9(C),78.8(C),64.0(CH),60.3(CH2×4),59.9(CH2),55.2(CH2×4),53.7(CH2×2),50.4(CH2×2),40.6(CH2),30.0(CH2×2),29.5(CH2×2),29.4(CH2×2),29.2(CH2),28.4(CH3×3),26.7(CH2),26.4(CH2),14.4(CH3),14.2(CH3×4)
ESI-HRMS:m/z(M+H+) 計算値(C39H73N4O12):789.5225,実測値:789.5186
 合成例5 2-[N,N-ビス(2-{N’,N’-ビス[(エトキシカルボニル)メチル]アミノ}エチル)アミノ]-5-{4-[2-({4-ブチン-1-イル}カルボニルアミノ)エチル]フェニル}ペンタン酸エチル
Figure JPOXMLDOC01-appb-C000022
 Chen,G.ら,Langumuir,25,pp.2860-2864(2009)に従って、1-ペンチン酸N-オキシコハク酸イミドを合成した。合成例2(3)で得られたDTPAエステル(100mg,0.126mmol)を4N塩化水素/酢酸エチル溶液:ジクロロメタンの体積比3:1混合溶液(1.3mL)に加え、室温で17時間撹拌した後、反応液を減圧乾燥した。残渣をDMF(0.6mL)に溶解し、トリエチルアミン(35.0μL,0.251mmol)を加え、室温で5分間撹拌した。さらに、1-ペンチン酸N-オキシコハク酸イミド(28.0mg,0.143mmol)を加え、室温で14時間撹拌した。次いで、反応液に飽和炭酸水素ナトリウム水溶液(1mL)を加えた後、酢酸エチル(10mL)で3回抽出した。抽出液を飽和食塩水(10mL)で洗浄後、無水硫酸ナトリウムで乾燥し、減圧乾燥した後、シリカゲルカラムクロマトグラフィ(溶離液:ヘキサン/酢酸エチル=1/2)で精製して、64.9%の収率で黄色油状の目的化合物を得た(63.2mg,0.0816mmol)を得た。
FT-IR(neat,cm-1):3300,2981,2119,1733,1653,1539,1447,1370,1195,1028,852,808,699
1H-NMR(CDCl3,400MHz):δ7.11(s,4H),5.68-5.66(m,1H),4.15(q,J=7.2Hz,8H),4.13-4.09(m,2H),3.55-3.50(m,2H),3.54(s,8H),3.39-3.36(m,1H),2.83-2.74(m,8H),2.67-2.58(m,4H),2.51(dt,J=2.8,7.2Hz,2H),2.35(t,J=7.2Hz,2H),1.95(t,J=2.8Hz,1H),1.78-1.70(m,4H),1.26(t,J=7.2Hz,12H),1.25(t,J=7.2Hz,3H)
13C-NMR(CDCl3,100MHz):δ173.1(C),171.0(C×4),170.7(C),140.3(C),136.0(C),128.52(CH×2),128.46(CH×2),82.8(C),69.1(CH),63.6(CH),60.2(CH2×4),59.9(CH2),55.1(CH2×4),53.6(CH2×2),50.2(CH2×2),40.5(CH2),35.13(CH2),35.08(CH2),35.0(CH2),29.4(CH2),28.1(CH2),14.7(CH2),14.3(CH3),14.1(CH3×4)
ESI-HRMS:m/z(M+Na+) 計算値(C40H62N4O11Na):797.4313,実測値:797.4313
 合成例6
 (1) 3-{4-[N,N-ビス(2-{N’,N’-ビス[(エトキシカルボニル)メチル]アミノ}エチル)アミノ]4-エトキシカルボニル1-ブテン-1-イル}フェニルプロピオン酸
Figure JPOXMLDOC01-appb-C000023
 合成例1で得られたDTPAエステル(200mg,0.349mmol)のDMF:水の体積比10:1溶液(1.1mL)に、3-(4-ヨード)フェニルプロピオン酸(125.1mg,0.453mmol)とジイソプロピルエチルアミン(93.3μL,0.523mmol)を室温で加えた。60℃に加熱後、ビス(アセトニトリル)ジクロロパラジウム(9.0mg,0.0349mmol)を加え、60℃で4.5時間撹拌した。反応液をシリカゲルで濾過し、濾液を減圧乾燥後、シリカゲルカラムクロマトグラフィ(溶離液:ヘキサン/酢酸エチル=1/2)で精製し、36%の収率で黄色油状の目的化合物(84mg,0.124mmol)を得た。
FT-IR(neat,cm-1):3447,2982,2937,2873,1734,1700,1653,1635,1560,1513,1465,1448,1419,1370,1345,1195,1029,970,920,853,810,733,668
1H-NMR(CDCl3,400MHz):δ7.25(d,J=8.0Hz,2H),7.12(d,J=8.0Hz,2H),6.40(d,J=16.0Hz,1H),6.15(dt,J=16.0,6.8Hz,1H),4.17-4.12(m,10H),3.55(s,8H),3.50-3.47(m,1H),2.95-2.60(m,13H),2.48(ddd,J=16.0,7.6,7.6Hz,1H),1.28-1.23(m,15H)
13C-NMR(CDCl3,100MHz):δ177.4(C),172.4(C),171.1(C×4),139.1(C),135.5(C),131.6(CH),128.2(CH×2),126.2(CH),126.1(CH×2),63.9(CH),60.3(CH2×4),60.1(CH2),55.1(CH2×4),53.3(CH2×2),50.1(CH2×2),35.4(CH2),33.5(CH2),30.3(CH2),14.3(CH3),14.1(CH3×4)
ESI-HRMS:m/z(M+H+) 計算値(C36H56N3O12):722.3864,実測値:722.3822
 (2) 3-{4-[N,N-ビス(2-{N’,N’-ビス[(エトキシカルボニル)メチル]アミノ}エチル)アミノ]4-エトキシカルボニルブタン-1-イル}フェニルプロピオン酸
Figure JPOXMLDOC01-appb-C000024
 上記合成例6(1)で得られたDTPAエステル(93mg,0.137mmol)のエタノール溶液(1mL)に、アルゴン雰囲気下、パラジウム炭素(0.0137mmol)を加え、水素雰囲気に置換後、13.5時間撹拌した。反応液をセライトで吸引濾過し、濾液を減圧乾燥後、シリカゲルカラムクロマトグラフィ(溶離液:ヘキサン/酢酸エチル=1/2)で精製し、90%の収率で黄色油状の目的化合物(89.3mg,0.123mmol)を得た。
FT-IR(neat,cm-1):3584,3446,2981,2936,2869,1732,1515,1446,1417,1372,1347,1298,1198,1097,1027
1H-NMR(CDCl3,400MHz):δ7.12(d,J=8.4Hz,2H),7.09(d,J=8.4Hz,2H),4.15(q,J=7.2Hz,8H),4.12-4.09(m,2H),3.53(s,8H),3.32-3.29(m,1H),2.92(t,J=7.6Hz,2H),2.79-2.51(m,12H),1.70-1.48(m,4H),1.26(t,J=7.2Hz,12H),1.25(t,J=7.2Hz,3H,OCH2-CH3
13C-NMR(CDCl3,100MHz):δ177.4(C),173.2(C),171.2(C×4),140.1(C),137.7(C),128.5(CH×2),128.2(CH×2),63.9(CH),60.4(CH2×4),60.0(CH2),55.2(CH2×4),53.6(CH2×2),50.2(CH2×2),35.7(CH2),35.2(CH2),30.4(CH2),29.5(CH2),28.2(CH2),14.4(CH3),14.2(CH3×4)
ESI-HRMS:m/z(M+H+) 計算値(C36H58N3O12):724.4021,実測値:724.4007
 合成例7
 (1) N,N-ジ(t-ブトキシカルボニル)-O-[3-(4-ヨード)フェニル]プロピルヒドロキシルアミン
Figure JPOXMLDOC01-appb-C000025
 3-[(4-ヨード)フェニル]プロピルブロマイド(1.63g,6.990mmol)とN,N-ジ(t-ブトキシカルボニル)ヒドロキシルアミン(2.27g,6.99mmol)のDMF溶液(10mL)に、DBU(1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン)(1.15mL,7.68mmol)を加え、13時間撹拌した。その後、氷冷下、水(5mL)を添加し、酢酸エチル(30mL)で3回抽出した。飽和食塩水(20mL)で洗浄後、無水硫酸ナトリウムで乾燥し、減圧乾燥した後、ヘキサンで再結晶することによって、72%の収率で無色針状の目的化合物(2.40g,5.03mmol)を得た。
FT-IR(KBr,cm-1):3649,3462,2978,2889,2365,2341,1913,1742,1636,1617,1558,1541,1507,1488,1456,1391,1368,1315,1281,1251,1142,1118,1026,1009,907,879,837,797,747,620,507
1H-NMR(CDCl3,400MHz):δ7.60(d,J=8.4Hz,2H),6.96(d,J=8.4Hz,2H),3.93(t,J=6.2Hz,2H),2.74-2.70(m,2H),1.96-1.89(m,2H),1.53(s,18H)
13C-NMR(CDCl3,100MHz):δ150.2(C×2),141.2(C),137.4(CH×2),130.5(CH×2),90.9(C),83.7(C×2),75.2(CH2),31.8(CH2),29.7(CH2),28.1(CH3×6)
ESI-HRMS:m/z(M+Na+) 計算値(C19H28O5Na):500.0910,実測値:500.0910
 (2) 2-[N,N-ビス(2-{N’,N’ -ビス[(エトキシカルボニル)メチル]アミノ}エチル)アミノ]-5-[4-{3-(O-t-ブトキシカルボニルアミノ)オキシプロパン-1-イル}フェニル]ペンタ-4-エン酸エチル
Figure JPOXMLDOC01-appb-C000026
 合成例1で得られたDTPAエステル(688.1mg,1.20mmol)のDMF:水の体積比10:1混合溶液(3.3mL)に、上記合成例7(1)で得られたヨウ化フェニル化合物(858.8mg,1.80mmol)とジイソプロピルエチルアミン(308.7μL,1.80mmol)を室温で加えた。60℃に加熱後、ビス(アセトニトリル)ジクロロパラジウム(35.4mg,0.120mmol)を加え、60℃で8.5時間撹拌した。反応液をシリカゲルで濾過し、濾液を減圧乾燥後、シリカゲルカラムクロマトグラフィ(溶離液:ヘキサン/酢酸エチル=1/1)で精製し、83%の収率で黄色油状の目的化合物(918.9mg,0.995mmol)を得た。
FT-IR(neat,cm-1):3735,3446,2980,2938,2368,2343,1792,1732,1541,1513,1417,1456,1393,1369,1345,1276,1250,1179,1156,1116,1092,972,917,882,851,796,754,717
1H-NMR(CDCl3,400MHz):δ7.25(d,J=8.0Hz,2H),7.12(d,J=8.0Hz,2H),6.43(d,J=15.6Hz,1H),6.16(ddd,J=15.6,7.2,7.2Hz,1H),4.17-4.12(m,10H),3.95(t,J=6.4Hz,2H),3.56(s,8H),3.53-3.50(m,1H),2.90-2.61(m,11H),2.48(ddd,J=14.4,7.2,7.2Hz,1H),1.98-1.91(m,2H),1.54(s,18H),1.25(t,J=7.2Hz,15H)
13C-NMR(CDCl3,100MHz):δ172.3(C),171.0(C×4),150.0(C×2),140.28(C),135.2(C),131.5(CH),128.3(CH×2),126.0(CH),125.9(CH×2),83.5(C×2),75.5(CH2),63.9(CH),60.3(CH2×4),60.1(CH2),55.2(CH2×4),53.4(CH2×2),50.3(CH2×2),33.6(CH2),32.0(CH2),29.8(CH2),28.0(CH3×6),14.3(CH3),14.1(CH3×4)
ESI-HRMS:m/z(M+H+) 計算値(C46H75N4O15):923.5229,実測値:923.5198
 (3) 2-[N,N-ビス(2-{N’,N’ -ビス[(エトキシカルボニル)メチル]アミノ}エチル)アミノ]-5-[4-{3-(O-(N,N-t-ブトキシカルボニル)アミノ)オキシプロパン-1-イル}フェニル]ペンタン酸エチル
Figure JPOXMLDOC01-appb-C000027
 上記合成例7(2)で得られたDTPAエステル(53.1mg,0.0575mmol)のエタノール溶液(250 μL)に、アルゴン雰囲気下、パラジウム炭素(0.00288mmol)を加え、水素雰囲気に置換後、17時間撹拌した。反応液をセライトで吸引濾過し、濾液を減圧乾燥後、シリカゲルカラムクロマトグラフィ(溶離液:ヘキサン/酢酸エチル=1/1)で精製し、80%の収率で黄色油状の目的化合物(42.7mg,0.0462mmol)を得た。
FT-IR(neat,cm-1):3630,3552,3456,2980,2373,2346,2054,1902,1792,1731,1514,1456,1417,1393,1369,1344,1249,1029,917,851,796,754
1H-NMR(CDCl3,400MHz):δ7.11(d,J=8.0Hz,2H),7.08(d,J=8.0Hz,2H),4.17-4.10(m,10H),3.95(t,J=6.4Hz,2H),3.54(s,8H),3.38(t,J=6.8Hz,1H),2.86-2.56(m,12H),1.98-1.91(m,2H),1.77-1.57(m,4H),1.54(s,18H),1.26(t,J=7.2Hz,12H),1.25(t,J=7.2Hz,3H)
13C-NMR(CDCl3,100MHz):δ173.2(C),171.1(C×4),150.2(C×2),139.8(C),138.9(C),128.3(CH×2),128.2(CH×2),83.6(C×2),75.6(CH2),63.8(CH),60.4(CH2×4),60.0(CH2),55.2(CH2×4),53.7(CH2×2),50.3(CH2×2),35.2(CH2),31.9(CH2),29.9(CH2),29.7(CH2),28.3(CH2),28.0(CH3×6),14.4(CH3),14.2(CH3×4)
ESI-HRMS:m/z(M+Na+) 計算値(C46H76N4O15Na):947.5205,実測値:947.5179
 (4) 2-[N,N-ビス(2-{N’,N’ -ビス[炭酸メチル]アミノ}エチル)アミノ]-5-[4-{3-アミノオキシプロパン-1-イル}フェニル]ペンタン酸エチル
Figure JPOXMLDOC01-appb-C000028
 上記合成例7(3)で得られたDTPAエステル(400.0mg,0.432mmol)のTHF溶液(8mL)に4N水酸化リチウム水溶液(594μL)を加え、50℃で19時間撹拌した後、さらに4N塩化水素/酢酸エチル溶液(10mL)を0℃で加え、室温で3.5時間撹拌した。次いで、反応液にアセトニトリル(4mL)を加え、生じた固体をイソプロパノール/アセトニトリルから再結晶することにより、79%の収率で無色粉状の目的化合物(258.7mg,0.342mmol)を得た。
FT-IR(KBr,cm-1):3567,3367,2950,2362,2359,2348,1991,1869,1845,1740,1653,1558,1516,1457,1419,1202,1113,1034,953,898,873,807,715,660,609,542,489,454
1H-NMR(D2O,400MHz):δ7.25(s,4H),4.07(t,J=6.4Hz,2H),4.03(s,8H),3.64-3.60(m,1H),3.44(t,J=6.0Hz,4H),3.20-3.12(m,4H),2.71(t,J=7.6Hz,2H),2.66(t,J=6.8Hz,2H),2.02-1.95(m,2H),1.87-1.82(m,1H),1.79-1.71(m,2H),1.70-1.61(m,1H)
13C-NMR(D2O,100MHz):δ177.7(C),172.5(C×4),142.7(C),141.9(C),131.7(CH×2),131.6(CH×2),77.6(CH2),66.3(CH),58.5(CH2×4),55.7(CH2×2),49.6(CH2×2),37.1(CH2),33.3(CH2),31.6(CH2),30.5(CH2),30.3(CH2
ESI-HRMS:m/z(M+H+) 計算値(C26H39N4O11):583.2615,実測値:583.2599
元素分析: 計算値(C26H44N4O11Cl4・5H2O)-C:41.23,H:6.25,N:7.40, 実測値-C:41.02,H:6.37,N:7.53
 上記実験例のとおり、本発明方法によれば、非常に簡便な条件で、ジエチレントリアミン五酢酸ペンタエステルへ、一つのアリール基を位置特異的で且つ効率的に導入することができる。また、本発明方法で得られたジエチレントリアミン五酢酸誘導体へは、反応性官能基または保護された反応性官能基を有するリンカー構造を、金属触媒を用いた縮合反応により容易に導入することができる。かかるリンカー構造中の反応性官能基を介して、血中滞留性や臓器特異性を示す置換基をさらに導入することができる。よって本発明は、血中滞留性や臓器特異性を示すMRI造影剤の工業的な大量生産を可能にするものとして非常に有用である。
 本発明方法によれば、従来方法に比して驚くほど簡便な条件で、DTPAエステルの特定位置へ反応性置換基を効率的に導入することができる。また、当該反応性置換基を介して、血中滞留性や臓器特異性を示す置換基をさらに導入することができるので、当該方法で得られるDTPA誘導体は極めて有用である。
 従って本発明は、血中滞留性や臓器特異性を示すMRI造影剤の工業的な大量生産を可能にするものとして、産業上非常に有用である。

Claims (6)

  1.  下記式(I)で表されるジエチレントリアミン五酢酸誘導体を製造するための方法であって、
    Figure JPOXMLDOC01-appb-C000001

    [式中、R1~R5はそれぞれ独立してC1-6アルキル基を示す]
     非プロトン性溶媒中、下記式(II)で表されるジエチレントリアミン五酢酸ペンタエステルと下記式(III)で表されるハロゲン化アリル化合物を反応させる工程
    Figure JPOXMLDOC01-appb-C000002

    [式中、R1~R5は上記と同義を示し;Halはハロゲン原子を示す];
     過剰のハロゲン化アリル化合物(III)を除去する工程;および
     溶媒中、ジエチレントリアミン五酢酸ペンタエステル(II)とハロゲン化アリル化合物(III)との反応物を塩基と反応させる工程;
     を含むことを特徴とする製造方法。
  2.  ジエチレントリアミン五酢酸ペンタエステル(II)に対して7倍モル以上のハロゲン化アリル化合物(III)を反応させる請求項1に記載の製造方法。
  3.  塩基として、アルカリ金属またはアルカリ土類金属の炭酸塩または炭酸水素塩を用いる請求項1または2に記載の製造方法。
  4.  非プロトン性溶媒として、ジメチルホルムアミドまたはジメチルアセトアミドを用いる請求項1~3のいずれかに記載の製造方法。
  5.  下記式(I)で表されることを特徴とするジエチレントリアミン五酢酸誘導体。
    Figure JPOXMLDOC01-appb-C000003

    [式中、R1~R5はそれぞれ独立してC1-6アルキル基を示す]
  6.  下記式(IV)で表されることを特徴とするガドリニウム錯体前駆体。
    Figure JPOXMLDOC01-appb-C000004

    [式中、
     R1~R5はそれぞれ独立してC1-6アルキル基を示し;
     Xは、-(CH23-または-CH2-CH=CH-を示し;
     Yは、C6-12アリーレン基、-CH=CH-または-(CH22-を示し;
     Zは、C1-6アルキレン基、アミノ基、エーテル基、カルボニル基、エステル基、アミド基、ウレア基、またはこれら2以上の基が直鎖状に連なった基を示し;
     Wは、-CH=CH2、-CH≡CH、アミノ基、カルボキシ基、活性アミド基、活性エステル基またはハロゲン原子を示す。]
PCT/JP2010/066438 2009-10-15 2010-09-22 ジエチレントリアミン五酢酸誘導体の製造方法およびジエチレントリアミン五酢酸誘導体 WO2011046007A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/499,724 US8487126B2 (en) 2009-10-15 2010-09-22 Process for preparation of diethylenetriaminepentaacetic acid derivative, and diethylenetriaminepentaacetic acid derivative
EP10823275.2A EP2489655A4 (en) 2009-10-15 2010-09-22 PROCESS FOR PREPARING DIETHYLENE-TRIAMIN-PENTA-ACETIC DERIVATIVES AND DIETHYLENE-TRIAMIN-PENTA-ACETIC ACID DERIVATIVES
JP2011536083A JP5725561B2 (ja) 2009-10-15 2010-09-22 ジエチレントリアミン五酢酸誘導体の製造方法およびジエチレントリアミン五酢酸誘導体
CN201080044556.0A CN102548956B (zh) 2009-10-15 2010-09-22 二乙烯三胺五醋酸衍生物的制造方法及二乙烯三胺五醋酸衍生物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009238696 2009-10-15
JP2009-238696 2009-10-15

Publications (1)

Publication Number Publication Date
WO2011046007A1 true WO2011046007A1 (ja) 2011-04-21

Family

ID=43876060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066438 WO2011046007A1 (ja) 2009-10-15 2010-09-22 ジエチレントリアミン五酢酸誘導体の製造方法およびジエチレントリアミン五酢酸誘導体

Country Status (5)

Country Link
US (1) US8487126B2 (ja)
EP (1) EP2489655A4 (ja)
JP (1) JP5725561B2 (ja)
CN (1) CN102548956B (ja)
WO (1) WO2011046007A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167540B (zh) * 2017-07-08 2019-07-30 万舒(北京)医药科技有限公司 测定人尿液生物样品中的DTPA-Zn的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931037A (ja) 1995-07-21 1997-02-04 Univ Tohoku 非エステル結合性dtpa誘導体およびその製造方法
JPH0931078A (ja) 1995-07-21 1997-02-04 Univ Tohoku カルボラン含有ガドリニウム−dtpa錯体、その中間体、およびこれらの製造方法
JPH10513445A (ja) 1995-02-01 1998-12-22 エピックス メディカル,インコーポレイテッド 延長された血液保持を有する診断画像造影剤
JPH11501012A (ja) * 1995-02-21 1999-01-26 シェーリング アクチェンゲゼルシャフト 新規な方法において置換されたdtpa誘導体、それらの金属錯体、これらの錯体を含有する医薬製剤、診断および治療におけるそれらの使用、ならびに錯体および医薬製剤の製造方法
JP2001504120A (ja) 1996-11-13 2001-03-27 マリンクロッド・インコーポレイテッド 磁気共鳴血液プール剤
US6617332B1 (en) 1998-08-27 2003-09-09 Bayer Aktiengesellschaft Tan-1057 derivatives

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1964846A1 (en) * 2007-02-27 2008-09-03 Bracco Imaging, S.P.A. Process for the preparation of contrast agents

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10513445A (ja) 1995-02-01 1998-12-22 エピックス メディカル,インコーポレイテッド 延長された血液保持を有する診断画像造影剤
JPH11501012A (ja) * 1995-02-21 1999-01-26 シェーリング アクチェンゲゼルシャフト 新規な方法において置換されたdtpa誘導体、それらの金属錯体、これらの錯体を含有する医薬製剤、診断および治療におけるそれらの使用、ならびに錯体および医薬製剤の製造方法
JPH0931037A (ja) 1995-07-21 1997-02-04 Univ Tohoku 非エステル結合性dtpa誘導体およびその製造方法
JPH0931078A (ja) 1995-07-21 1997-02-04 Univ Tohoku カルボラン含有ガドリニウム−dtpa錯体、その中間体、およびこれらの製造方法
JP2001504120A (ja) 1996-11-13 2001-03-27 マリンクロッド・インコーポレイテッド 磁気共鳴血液プール剤
US6617332B1 (en) 1998-08-27 2003-09-09 Bayer Aktiengesellschaft Tan-1057 derivatives

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN, G. ET AL., LANGUMUIR, vol. 25, 2009, pages 2860 - 2864
JOHN F.W. KEANA ET AL., JOURNAL OF ORGANIC CHEMISTRY, vol. 55, no. 9, 1990, pages 2868 - 2871
MATTHEW A. WILLIAMS ET AL., JOURNAL OF ORGANIC CHEMISTRY, vol. 58, no. 5, 1993, pages 1151 - 1158
PIER LUCIO ANELLI ET AL., JOURNAL OF MEDICINAL CHEMISTRY, vol. 47, 2004, pages 3629 - 3641
SOPHIE LAURENT ET AL., HELVETICA CHIMICA ACTA, vol. 47, 2004, pages 1077 - 1089

Also Published As

Publication number Publication date
EP2489655A4 (en) 2014-03-12
US20120203027A1 (en) 2012-08-09
JPWO2011046007A1 (ja) 2013-03-04
JP5725561B2 (ja) 2015-05-27
EP2489655A1 (en) 2012-08-22
US8487126B2 (en) 2013-07-16
CN102548956B (zh) 2014-05-14
CN102548956A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
JP6116782B1 (ja) ベンジル化合物
JP5156862B2 (ja) イオプロミドの新規な製造方法
BR112013026466A2 (pt) derivados de ácido 3-fenilpropiônico ramificados e o seu uso
ES2453951T3 (es) Derivado de cicloalquilamina
EP0287465A1 (fr) Ligands cycliques azotés, complexes métalliques formés par ces ligands, compositions de diagnostic contenant ces complexes et procédé de préparation des ligands
WO2018021508A1 (ja) ピラゾール-アミド化合物の製造方法
ES2549060T3 (es) Fabricación de un agente de contraste triyodado
JP2011513286A (ja) コンブレタスタチンの調製方法
JP5725561B2 (ja) ジエチレントリアミン五酢酸誘導体の製造方法およびジエチレントリアミン五酢酸誘導体
JP2019534299A (ja) (s)−n1−(2−アミノエチル)−3−(4−アルコキシフェニル)プロパン−1,2−ジアミン三塩酸塩の製造方法
KR100663167B1 (ko) 염산 이토프리드의 제조방법
WO2013062294A2 (ko) 미티글리나이드 칼슘염의 개선된 제조방법
WO1998057923A1 (fr) Nouveau procede de preparation
EP0365412B1 (fr) Nouveaux ligands cycliques azotés, complexes métalliques formés par ces ligands, compositions de diagnostic contenant ces complexes et procédé de préparation des ligands
JP3207018B2 (ja) ベンジルコハク酸誘導体の製造方法およびその製造中間体
JP5108888B2 (ja) 光学活性なn−(ハロプロピル)アミノ酸誘導体の製造方法
JPH05500214A (ja) ターシヤリーアルキルエステル類の新規な合成方法
KR101163864B1 (ko) 발사르탄의 제조방법 및 이에 사용되는 신규 중간체
JPH06340622A (ja) ベンジルコハク酸誘導体の製造方法およびその製造中間体
JP4463515B2 (ja) L−アンセリンの合成法
JP2002506049A (ja) 血清中で高い緩和性を有するマンガンキレート
JP4918763B2 (ja) ポリカルボン酸アミド誘導体およびキレート剤
JPS60161953A (ja) カルニチン類の製造法
JP2005220079A (ja) ピロリジン化合物の合成とその結晶
JPH0794414B2 (ja) 光学活性なn−カルボアルキル化アミノアルコ−ル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080044556.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011536083

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010823275

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13499724

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE