WO2011043309A1 - 光学体 - Google Patents

光学体 Download PDF

Info

Publication number
WO2011043309A1
WO2011043309A1 PCT/JP2010/067393 JP2010067393W WO2011043309A1 WO 2011043309 A1 WO2011043309 A1 WO 2011043309A1 JP 2010067393 W JP2010067393 W JP 2010067393W WO 2011043309 A1 WO2011043309 A1 WO 2011043309A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
optical
optical body
index variable
Prior art date
Application number
PCT/JP2010/067393
Other languages
English (en)
French (fr)
Inventor
井上 光輝
太一 後藤
山口 貴志
Original Assignee
国立大学法人豊橋技術科学大学
株式会社テルヤ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人豊橋技術科学大学, 株式会社テルヤ filed Critical 国立大学法人豊橋技術科学大学
Priority to KR1020127011665A priority Critical patent/KR101796058B1/ko
Priority to US13/500,873 priority patent/US9841619B2/en
Priority to JP2011535387A priority patent/JP5700687B2/ja
Priority to EP10821979.1A priority patent/EP2487525B1/en
Priority to TW099134231A priority patent/TWI542921B/zh
Publication of WO2011043309A1 publication Critical patent/WO2011043309A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/213Fabry-Perot type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/15Function characteristic involving resonance effects, e.g. resonantly enhanced interaction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/50Phase-only modulation

Definitions

  • the present invention relates to an improvement of an optical body.
  • An optical body having a configuration in which an optical functional layer is interposed between a first layer and a second layer is disclosed in Patent Document 1.
  • an electro-optical material such as PLZT whose refractive index can be controlled by an applied electric field is used.
  • Each of the first layer and the second layer is a reflective layer, and both form a resonator. That is, the light incident from the first reflective layer is multiple-reflected between the first reflective layer and the second reflective layer, and is emitted from the first reflective layer.
  • the resonance wavelength of this resonator is controlled by changing the refractive index of the optical functional layer.
  • the optical body described in Patent Document 1 controls the reflectance with respect to incident light by controlling the electric field applied to the electro-optic material. As a result, the intensity of the outgoing light with respect to the incident light can be modulated. Not only the intensity modulation but also the phase, and in the case of linearly polarized light, the modulation of the rotation angle of the polarization plane is attracting attention as a request for modulation of incident light.
  • an optical body that arbitrarily modulates the phase of polarized light in a short time has not yet been proposed. Also, no optical body has yet been proposed that can modulate the polarization plane of linearly polarized light into an arbitrary angle in a short time.
  • an optical functional layer made of a magnetic material having a magneto-optical effect (Faraday effect) is interposed between a pair of reflective layers, and linearly polarized light is incident from one reflective layer, a straight line is generated according to the magneto-optical effect of the optical functional layer.
  • the angle of the polarization plane of the polarized light is modulated.
  • the modulation angle of the polarization plane depends on the magnitude of the magneto-optical effect of the optical functional layer, the modulation angle is generally fixed and limited to a small modulation angle.
  • An object of the present invention is to solve at least one of the above problems.
  • the first aspect of the present invention is defined as follows.
  • An optical body that includes a first layer and a second layer made of a reflective layer, and an optical functional layer, modulates light incident from the first layer, and emits the light from the first layer
  • the optical functional layer includes a refractive index variable layer and a magneto-optical material layer,
  • the refractive index variable layer is located between the first layer and the second layer,
  • the magneto-optical material layer generates an Faraday effect, and is located on the opposite side of the second layer from the refractive index variable layer.
  • the magneto-optical material layer and the refractive index variable layer coexist in one device, when linearly polarized light is incident as incident light from the first layer side, linearly polarized light is present. Interferes with the magneto-optical material layer and is converted into elliptically polarized light (clockwise “right circularly polarized light” and counterclockwise “left circularly polarized light”). There is a phase difference between the right circularly polarized light and the left circularly polarized light. By controlling the phase difference of the refractive index variable layer, this phase difference can be changed.
  • the refractive index variable layer is used as an optical functional layer, and is disposed between the first layer and the second layer (second aspect), and the right circularly polarized light and the left circularly polarized light are combined with the first layer.
  • the phase difference is amplified. Therefore, even when the phase difference between the right circularly polarized light and the left circularly polarized light generated by the magneto-optical effect of the magneto-optical material layer is slight, the phase difference is significant when emitted from the first layer. It becomes a big size.
  • the phase difference between the right circularly polarized light and the left circularly polarized light thus amplified returns to linearly polarized light when exiting the magneto-optical material, and the angle of the plane of polarization rotates according to the phase difference. Therefore, the rotation angle of the polarization plane of the outgoing light is modulated with respect to the incoming light.
  • the refractive index of the refractive index variable layer is controlled, the rotation angle modulation of the polarization plane of the outgoing light with respect to the incident light can be arbitrarily controlled within a large range.
  • the angle of the polarization plane of the emitted light (linearly polarized light) is maintained while maintaining the amplitude of the incident light by controlling the refractive index of the refractive index variable layer. Can be modulated within a range of ⁇ 180 degrees.
  • the phase of the emitted light is significantly changed by the refractive index variable layer. At this time, the output intensity of the emitted light can be maintained substantially constant.
  • FIG. 1 is a schematic diagram showing the structure of an optical body according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of an optical body according to another embodiment.
  • FIG. 3 is a schematic diagram showing the structure of an optical body according to another embodiment.
  • FIG. 4 is a schematic view showing the structure of an optical body according to another embodiment.
  • FIG. 5 is a schematic diagram showing the structure of an optical body according to another embodiment.
  • FIG. 6 is a schematic diagram illustrating the structure of the light modulation device according to the embodiment.
  • FIG. 7 is a schematic diagram showing the structure of a light modulation device according to another embodiment.
  • FIG. 8 is a schematic diagram showing the structure of the optical body of the example.
  • FIG. 9 is a graph showing optical characteristics (wavelength-rotation angle) of the optical body of the example of FIG.
  • FIG. 10 is a graph showing other optical characteristics (wavelength-reflectance) of the optical body of the embodiment of FIG.
  • FIG. 11 is a graph showing other optical characteristics (voltage-rotation angle, voltage-phase) of the optical body of the embodiment of FIG.
  • FIG. 12 is a graph showing other optical characteristics (voltage-reflectance) of the optical body of the embodiment of FIG.
  • FIG. 13 is a schematic view showing the structure of an optical body of another embodiment.
  • FIG. 14 is a graph showing optical characteristics (voltage-rotation angle) of the optical body of the example of FIG. FIG.
  • FIG. 15 is a graph showing other optical characteristics (voltage-reflectance) of the optical body of the embodiment of FIG.
  • FIG. 16 is a schematic diagram showing the structure of an optical body according to another embodiment.
  • FIG. 17 is a graph showing optical characteristics (voltage-phase difference) of the optical body of the example of FIG.
  • FIG. 18 is a graph showing other optical characteristics (voltage-reflectance) of the optical body of the embodiment of FIG.
  • the first layer and the second layer are preferably reflective layers. This is because light modulation can be amplified by multiple reflection of light between the first layer and the second layer.
  • the first layer for entering and exiting light is preferably a half mirror layer (first reflective layer), and the second layer facing is preferably a total reflective layer (second reflective layer).
  • the layer is not necessarily limited to a total reflection layer.
  • the first reflective layer and the second reflective layer can be metal layers or dielectric multilayer layers (Bragg mirror layers). Examples of the metal layer constituting the reflective layer include short layer films or multilayer films of aluminum, platinum, gold, silver, and alloys thereof.
  • the optical wavelength, d is the thickness of each layer) and can be arbitrarily selected according to the wavelength of the incident light and the application.
  • a pair of dielectric layers a combination of silicon oxide (SiO 2 ) and tantalum oxide (Ta 2 O 5 ), silicon oxide (SiO 2 ) and silicon (Si), silicon oxide (SiO 2 ) and oxide aluminum (Al 2 O 3), and the like.
  • the number of repetitions of the dielectric layer pair can be arbitrarily selected.
  • the second number of repetitions is determined by the number of repetitions of the first reflection layer. It is assumed that the number of repetitions of the reflective layer is large.
  • the first reflective layer is 3 pairs or more, and the second reflective layer is 5 pairs or more. It is preferable to do. More preferably, the first reflective layer is 5 pairs or more, and the second reflective layer is 7 pairs or more.
  • the distance between the first layer and the second layer is m ⁇ ⁇ / 2 (where m is a natural number and ⁇ is an optical wavelength between the first layer and the second layer).
  • interval of a 1st layer and a 2nd layer corresponds with the width
  • the optical wavelength is defined by ⁇ 0 / n.
  • ⁇ 0 is the wavelength of incident light in vacuum
  • n is the effective refractive index.
  • the effective refractive index n is equal to the refractive index of the material.
  • a refractive index when a layer in which a plurality of different materials are continuous is regarded as one layer of one material.
  • the refractive index and film thickness of one of two consecutive layers are n 1 and d 1 and the other is n 2 and d 2
  • (n 1 ⁇ d 1 + n 2 ⁇ d 2 ) / (d 1 + D 2 ) is the effective refractive index of two consecutive layers.
  • the thickness of each layer is preferably a natural number times the optical wavelength / 2 of each layer.
  • the thicknesses of the layer A and the layer B are set to m 1 ⁇ ⁇ A / 2 and m 2 ⁇ ⁇ B /, respectively.
  • ⁇ A is the optical wavelength of layer A
  • ⁇ B is the optical wavelength of layer B.
  • the distance between the first layer and the second layer is m ⁇ ⁇ / 2 (
  • m is a natural number
  • is an optical wavelength between the first layer and the second layer).
  • optical wavelength ⁇ when defining the distance between the first layer and the second layer, and when defining the thickness of each layer in the plurality of layers interposed between the first layer and the second layer An optical wavelength ⁇ is used.
  • This optical wavelength ⁇ can have some margin. This is because it is extremely difficult to accurately control the thickness of each layer on the order of nm. Further, even if there is a slight margin (preferably within ⁇ 10%, more preferably within ⁇ 5%), modulation suitable for the purpose can be performed.
  • the first layer and the second layer are preferably reflective layers, but when at least one of the first layer and the second layer is a dielectric multilayer (Bragg mirror layer), If some or all of the dielectric layers constituting the multilayer are formed of a refractive index variable layer such as an optical magnetic material or an electro-optic material, these layers may also contribute to the light modulation function.
  • a dielectric multilayer Bragg mirror layer
  • the refractive index variable layer changes the refractive index in the light passing direction with respect to the light passing therethrough.
  • the refractive index variable layer may occupy substantially the entire portion between the first layer and the second layer, or may be only a part thereof.
  • Examples of a material for forming such a refractive index variable layer include an electro-optic material, an acousto-optic material, a thermo-optic material, and the like.
  • the electro-optic material is a material whose refractive index changes when an electric field is applied. Examples thereof include PZT (PbZr 0.52 Ti 0.48 O 3 ), PLZT, PLHT, SBN, LT, LN, KDP, DKDP, BNN, KTN, BTO, and the like.
  • the refractive index variable layer is formed of an electro-optic material
  • the refractive index can be changed and controlled by controlling the electric field applied to the refractive index variable layer.
  • an electric field to the refractive index variable layer, as described in Patent Document 1, a configuration in which the refractive index variable layer is sandwiched between translucent electrodes can be employed.
  • an electric field may be applied from the outside of the optical body.
  • the direction of application of the electric field is not limited to being perpendicular to the in-plane direction of the refractive index variable layer, but may be inclined.
  • the acousto-optic material is a material in which a refractive index change is caused by application of stress and strain.
  • PZT PbZr 0.52 Ti 0.48 O 3
  • LT LN
  • Al 2 O 3 Y 3 Al 5 O 12
  • Si SiO 2 Etc.
  • the refractive index variable layer is formed of an acousto-optic material, it can be controlled by changing the refractive index by controlling the stress applied to the variable refractive index layer. In order to apply stress to the refractive index variable layer, it is conceivable to sandwich the refractive index variable layer with a light-transmitting piezoelectric element.
  • thermo-optic material is a material whose refractive index changes with temperature, and corresponds to a liquid crystal.
  • the refractive index variable layer is formed of a thermo-optic material, it can be controlled by changing the refractive index by controlling the heat applied to the variable refractive index layer.
  • a heater may be provided in order to control the temperature of the refractive index variable layer.
  • the refractive index variable layer can be a single layer or a plurality of layers.
  • the layers constituting the plurality of layers may be the same material or different materials.
  • Magneto-optical materials have a magneto-optical effect (Faraday effect, Kerr effect).
  • Faraday effect Kerr effect
  • the magnetic material having such a magneto-optical effect examples include a ferromagnetic material, an antiferromagnetic material, a ferrimagnetic material, and a paramagnetic material.
  • a translucent ferromagnetic material exhibiting a Faraday effect a material for magnetic storage media such as CdCo, spinel ferrite such as CoFe 2 O 4 , hexagonal ferrite such as PbFe 12 O 19 , and CdCr 2 S 4 Chalcogenides, ferrites, chromated trihalides such as CrCl 3 , garnets such as Y 3 Fe 5 O 12 (BiY) 3 Fe 5 O 12 , manganic acid compounds such as (LaSr) MoO 3 , europium compounds such as EuO , Fe and its metal thin film, Co and its alloy thin film, Mn and its alloy thin film, and other organic materials such as Fe 2 O 4 and polyethylene.
  • Examples of the light-transmitting antiferromagnetic material exhibiting the Faraday effect include manganese oxide.
  • Paramagnetic materials exhibit a magneto-optical effect by applying a magnetic field from the outside.
  • a translucent paramagnetic material exhibiting a Faraday effect rare earth Al-substituted garnet such as Tb 3 AlO 12 and GGG (Gd 3 Ga 5 O 12 ), gas such as oxygen, liquid such as water, solid such as potassium chloride , GGG (Gd 3 Ga 5 O 12 ), and glass such as GGS.
  • TAG or TGG When a short wavelength such as blue light is to be modulated, it is preferable to employ TAG or TGG. This is because the short wavelength is hardly absorbed.
  • the magnetic material layer can be a single layer or a plurality of layers. In the case of a plurality of layers, the layers constituting the plurality of layers may be the same material or different materials.
  • translucency refers to a property of transmitting incident light (modulation target light), and is not limited to so-called transparency (translucency for visible light).
  • the refractive index variable layer necessarily has translucency.
  • each magnetic material layer is preferably formed of the same material, but it does not exclude the formation of different magnetic materials.
  • each refractive index variable layer is preferably formed of the same material, but may be formed of different materials.
  • the optical body of the present invention can arbitrarily control the rotation angle of the polarization plane of linearly polarized light, and can arbitrarily control the phase of elliptically polarized light. In this respect, it functions as a light modulation element. In addition, since both the rotation angle of the polarization plane of the linearly polarized light and the change in the phase of the elliptically polarized light can be significantly (larger), it can be used as an optical memory element.
  • FIG. 1 is a schematic diagram showing the structure of the third aspect of the present invention.
  • the first layer 3 is a half mirror layer
  • the second layer 5 is a total reflection layer.
  • the refractive index variable layer 8 and the magneto-optical material layer 9 are interposed.
  • the refractive index variable layer 8 and the magneto-optical material layer 9 are interposed between the first layer 3 and the second layer 5, so both layers 3-5
  • the modulation efficiency is improved because it is affected by both the refractive index variable layer 8 and the magneto-optical material layer 9.
  • the magneto-optical material layer 9 can be translucent (has a Faraday effect) (fourth aspect).
  • the magneto-optical effect layer 9 is formed by the first layer 3 from the refractive index variable layer 8. It is preferable to arrange on the side. This is because when linearly polarized light is used as incident / exited light, conversion between linearly polarized light and elliptically polarized light is required at the interface between the optical body and the outside.
  • FIG. 2 shows a schematic diagram of the optical body 11 of this example. Note that elements having the same functions as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
  • the Kerr effect expression layer 15 is formed on the surface of the second reflective layer 5. If the Kerr effect developing layer 15 itself has a sufficient reflectance, preferably substantially 100%, the Kerr effect developing layer 15 itself can be used as the second reflecting layer. The phase difference of the light converted in the Kerr effect expression layer 15 is amplified in the refractive index variable layer 18.
  • FIG. 3 shows an optical body 21 of another embodiment. Note that elements having the same functions as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
  • the magnetic material layer 9 is disposed outside the cavity 7, that is, on the incident light facing surface side of the first layer 3. According to the optical body 21 configured as described above, when linearly polarized light is incident light, the linearly polarized light is a right circularly polarized light and a left circularly polarized light having a slight phase difference in the magnetic material layer 9. And the phase difference between the two elliptically polarized lights is amplified in the cavity 7.
  • an optical body in which a first layer, a refractive index variable layer, and a second layer are sequentially laminated on a garnet bulk substrate can be used.
  • a structure in which a bulk substrate such as PLZT is used as the refractive index variable layer 8, the first layer and the second layer are stacked on both sides, and the magneto-optical material layer 9 is stacked on the first layer is also configured. Can be adopted.
  • FIG. 4 shows another optical body 31.
  • symbol is attached
  • the third layer 6 is formed on the surface of the magneto-optical material layer 9.
  • the third layer 6 can also be formed in the same manner as the first layer 3 and the second layer 5.
  • the distance between the third layer 6 and the first layer 3 is also preferably m ⁇ ⁇ / 2.
  • m is a natural number
  • and ⁇ is an optical wavelength between the second layer 6 and the first layer 3.
  • FIG. 5 shows the configuration of another form of optical body 41.
  • the refractive index variable layer 8 is formed of an electro-optic material.
  • the refractive index variable layer 8 is sandwiched between a pair of light transmissive electrode layers 42 and 43, and an electric field applied to the refractive index variable layer 8 is controlled by controlling a voltage applied to the electrode layers 42 and 43.
  • the refractive index of the refractive index variable layer 8 is controlled.
  • the control circuit for the voltage applied to the translucent electrodes 42 and 43 as the refractive index control means is preferably assembled integrally with the optical body 21 from the viewpoint of simplifying the device configuration.
  • the voltage control circuit can be formed on one of the first reflective layer 3 and the second reflective layer 5 by general-purpose semiconductor integrated circuit technology. Considering that light is incident from the first reflective layer 3 side, it is not preferable to dispose the voltage control circuit on the first reflective layer 3. This is because the incident light and the outgoing light are blocked.
  • FIG. 6 shows an optical modulation device 51 including a semiconductor functional layer 53 having a voltage control circuit.
  • symbol is attached
  • Reference numeral 54 in the figure indicates a power supply line from the semiconductor functional layer 53 to the translucent electrodes 42 and 43.
  • the semiconductor functional layer 53 applies a controlled voltage between the translucent electrodes 42 and 43 via the power supply line 54.
  • the substrate 57 is arranged on the first three side.
  • As a material for forming the substrate 57 light-transmitting SiO 2 or SGGG (for example, Gd 2.68 Ca 0.32 Ga 4.04 Mg 0.32 Zr 0.64 O 12 ) or the like can be used.
  • a light modulation system 61 shown in FIG. 7 has a light modulation device 51 shown in FIG. 6 and a light incident device 63 and an emitted light processing device 65 arranged opposite to a substrate 57.
  • the light incident device 63 includes a light source, an optical fiber, a polarizing plate, and the like, and makes desired polarized light incident on the optical body.
  • the outgoing light processing device 65 processes the outgoing light of the optical body that has passed through the substrate 57.
  • the phase-modulated outgoing light can be interfered with the incident light and used in an interferometer or the like.
  • FIG. 8 shows a configuration of the optical body 81 of the embodiment.
  • the optical body 81 of the example is oxidized on a substrate 87 (thickness: 0.7 mm) of SGGG (for example, Gd 2.68 Ca 0.32 Ga 4.04 Mg 0.32 Zr 0.64 O 12 ).
  • a first reflective layer 93 consisting of a total of 9 pairs is laminated with a laminated body of tantalum (film thickness: 90 nm) and silicon oxide (film thickness: 134 nm) as a unit pair.
  • Bi: YIG (Bi 1 Y 2 Fe 5 O 12 , optical wavelength ⁇ : 780 nm) having a film thickness of 712 nm is laminated as the optical magnetic material layer 89.
  • PLZT specific composition Pb 0.91 La 0.09 Zr 0.65 Ti 0.35 O 3 , optical wavelength ⁇ : 780 nm
  • the layers 88 are stacked. Since the PLZT layer 88 is an electro-optic material, a light-transmitting electrode layer made of ITO or the like is formed on both surfaces of the PLZT layer 88. In this embodiment, the pair of light-transmitting electrodes are very thin.
  • the translucent electrode is not shown in FIG. 8.
  • the distance between the first layer 83 and the second layer 85 is five times ⁇ / 2.
  • a second reflective layer 85 having the same unit pair as the first layer 83 and having the number of repetitions of the pair as 18 is formed.
  • Each layer is formed by sputtering.
  • the method for forming each layer is not limited to the sputtering method, and general-purpose thin film manufacturing techniques such as a vapor deposition method, an ion plating method, a spray method, and an ion beam irradiation method can be applied.
  • the optical characteristics of the optical body 81 having the configuration shown in FIG. 8 were simulated according to the matrix approach method. For this simulation, see M. Inoue, T. Fujii, “A theoretical analysis of magneto-optical Faraday effect of YIG films random multilayer structure”, Appl. Phys. 81, 317 (1997). The results are shown in FIGS.
  • linearly polarized light having a wavelength of 780 nm (red) is incident on the optical body 81 of the embodiment
  • the rotation angle of the polarization plane of the outgoing light difference from the polarization plane angle of the incident light
  • the reflectance (the intensity of the outgoing light with respect to the incident light) is almost 100% as shown in FIG. FIG.
  • 10B is a partially enlarged view of the wavelength around 780.4 nm in FIG. From the results of FIGS. 9 and 10, it can be seen that according to the optical body 81 of the embodiment, the polarization plane of incident light can be changed to an arbitrary angle while maintaining the wavelength and its intensity.
  • FIG. 11 shows the rotation angle of the polarization plane of the outgoing light (difference from the angle of the polarization plane of incident light), the phase of the outgoing light (difference from the phase of the incident light), and the voltage applied to the translucent electrode (not shown). The relationship is shown.
  • the simulation used in the examples assumes that the translucent electrode does not have a thickness and that the material is completely translucent and has no electrical resistance.
  • FIG. 11 shows that the rotation angle and phase of the emitted light can be controlled in a small voltage range of 0.0 to 0.2V.
  • the change in the angle of the polarization plane is synchronized with the change in voltage, and there is no substantial time between them.
  • the applied voltage and the reflectance intensity of outgoing light with respect to incident light
  • FIG. 12B is a partially enlarged view of around 0.1 V in FIG.
  • FIG. 13 shows an optical body 101 of another embodiment.
  • symbol is attached
  • TAG Tb 3 Al 5 O 12
  • the thickness of the magneto-optical material layer 109 made of TAG is 840.71 nm
  • the thickness of the refractive index variable layer 108 made of PLZT is 100.00 nm.
  • the distance between the first layer 83 and the second layer 85 is 9 times ⁇ / 2. Since TAG is a paramagnetic material, it is assumed that a magnetic field is applied from the outside in the direction perpendicular to the film surface, which is the incident direction of light.
  • FIG. 14 shows the relationship between the applied voltage and the rotation angle (the difference in rotation angle between the polarization plane of incident light and the polarization plane of outgoing light).
  • FIG. 15 shows the relationship between the applied voltage and the reflectance (intensity of outgoing light with respect to incident light). 14 and 15, if TAG is adopted as a magneto-optical material, even if a short wavelength is adopted as incident light, almost no loss occurs in the optical body, and a reflectance of almost 100% can be ensured. Moreover, the angle change of the polarization plane is synchronized with the voltage change, and there is no substantial time between the two.
  • FIG. 16 shows an optical body 111 of another embodiment. Note that elements having the same functions as those in FIG. 13 are denoted by the same reference numerals and description thereof is partially omitted.
  • the magneto-optical material layer 89 is omitted from the optical body 81 of FIG.
  • the refractive index made of PLZT in order to ensure the relationship of m ⁇ ⁇ / 2 (m: natural number, ⁇ : optical wavelength) between the first layer 83 and the second layer 85, the refractive index made of PLZT.
  • the characteristics of the optical body 111 in FIG. 16 were simulated in the same manner as in the previous example.
  • the incident light is linearly polarized light having a wavelength of 780 nm (red).
  • FIGS. show the relationship between applied voltage and phase (difference between incident light phase and outgoing light phase).
  • FIG. 18 shows the relationship between applied voltage and reflectance (intensity of outgoing light with respect to incident light). 17 and 18 that the phase can be controlled over the entire range ( ⁇ 180 degrees) with a small voltage range of about 0.0 to 2.0V.
  • the reflectance the intensity of the outgoing light with respect to the incident light
  • the phase change is synchronized with the voltage change, and there is no substantial time delay between the two.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

入射光の光学特性を任意にかつ迅速に制御できる光学体を提供する。 第一の反射層3と第二の反射層5との間にPLZT等からなる屈折率可変層8とガーネット等からなる磁気光学材料層9とを併存させる。直線偏光光を第一の反射層3側から入射させると、入射光は磁気光学材料層9と干渉して右円偏光光と左円偏光光とに変換される。両光には僅かな位相差があるが、一対の反射層3,5間を多重反射する際に位相差が増幅され、かつ屈折率可変層8の制御された屈折率に応じて制御される。このようにその位相差が制御増幅された左右円偏光光を磁気光学材料層9へ再度干渉させて直線偏光光へ戻すと、その位相差に応じて偏光面が回転する。 

Description

光学体
 本発明は光学体の改良に関する。
 第一の層と第二の層との間に光機能層を介在させる構成の光学体が特許文献1に開示されている。光機能層として、印加した電界により屈折率を制御可能なPLZT等の電気光学材料が用いられている。第一の層と第二の層はそれぞれ反射層であり、両者で共振器が構成される。即ち、第一の反射層から入射された光はこの第一の反射層と第二の反射層との間で多重反射され、第一の反射層から出射される。この共振器の共振波長は光機能層の屈折率を変化させることで制御される。従って、光機能層へ印加する電界を制御し、もって光機能層の屈折率を変化させることにより、第一の反射層側から入射された光の反射量、即ち第一の反射層から出射される光の強さが制御可能となる(特許文献1の図4参照)。
特開2006-201472号公報
 特許文献1に記載の光学体は電気光学材料へ印加する電界を制御することにより、入射光に対する反射率を制御するものである。これにより、入射光に対する出射光の強度を変調可能となる。
 入射光に対する変調の要請は、その強度変調ばかりでなく、その位相や、直線偏光光の場合はその偏光面の回転角の変調も注目されている。
 しかしながら、偏光光の位相を、短時間で、任意に変調する光学体はいまだ提案されていない。
 また、直線偏光光の偏光面の角度についても、これを短時間で任意の角度に変調可能な光学体はいまだ提案されていない。
 例えば一対の反射層間に磁気光学効果(ファラディ効果)を有する磁性体材料からなる光機能層を介在させ、一方の反射層から直線偏光光を入射すると、光機能層の磁気光学効果に応じて直線偏光光の偏光面の角度が変調される。しかしながら、偏光面の変調角度は光機能層の磁気光学効果の大きさに依存するので、一般的に変調角度は固定されており、変調角度も小さなものに限定される。光機能層へ印加する磁場方向を切り換えることで光機能層を構成する材料の磁化方向を変更し、もって偏光面の傾斜角度に変化を与えることが可能である。しかし、磁場の方向の切換えをリニアに行うことは困難である。
 この発明は上記課題の少なくとも一つを解決することを目的とする。
 この発明の第一の局面は次のように規定される。
 反射層からなる第一の層及び第二の層、並びに光機能層を備え、前記第一の層から入射した光を変調して前記第一の層から出射する光学体であって、
 前記光機能層として屈折率可変層と磁気光学材料層とを含み、
 前記屈折率可変層は前記第一の層と前記第二の層との間に位置し、
 前記磁気光学材料層はファラディ効果を生じ、前記屈折率可変層からみて前記第二の層と反対側に位置する、光学体。
 このように規定される光学体よれば、一つのデバイス中に磁気光学材料層と屈折率可変層とが共存するので、直線偏光光を入射光として第一の層側から入射すると、直線偏光光は磁気光学材料層と干渉して楕円偏光光(右回り「右円偏光光」及び左回り「左円偏光光」)に変換される。この右円偏光光と左円偏光光とには位相差がある。屈折率可変層の位相差を制御することによりこの位相差を変更可能となる。
 ここに、屈折率可変層を光機能層として、第一の層と第二の層の間に配置し(第二の局面)、右円偏光光と左円偏光光とを第一の層と第二の層の間で多重反射させると当該位相差が増幅される。したがって、磁気光学材料層の磁気光学効果により生じた右円偏光光と左円偏光光との位相差が僅かなものであっても、第一の層から出射する際には当該位相差は有意な大きさとなる。このように増幅された右円偏光光と左円偏光光との位相差は磁気光学材料出射時に直線偏光光に戻り、その偏光面の角度は当該位相差に応じて回転する。したがって、入射光に対して出射光は偏光面の回転角度が変調されたこととなる。
 ここにおいて、屈折率可変層の屈折率を制御すれば、入射光に対する出射光の偏光面の回転角度変調を大きな範囲において、任意に制御可能となる。
 より具体的には、直線偏光光を入射光としたときには屈折率可変層の屈折率を制御することにより、入射光の振幅を維持した状態で、放射光(直線偏光光)の偏光面の角度を±180度の範囲で変調可能である。
 同様に、この光学体へ楕円偏光光を入射すると屈折率可変層により出射光の位相が有意に変えられる。このとき、出射光の出力強度は実質的に一定に維持できる。
図1はこの発明の実施の形態の光学体の構造を示す模式図である。この明細書において、以下、各図において同一の作用を奏する要素には同一の符号を付してその説明を省略することがある。 図2は他の実施の形態の光学体の構造を示す模式図である。 図3は他の実施の形態の光学体の構造を示す模式図である。 図4は他の実施の形態の光学体の構造を示す模式図である。 図5は他の実施の形態の光学体の構造を示す模式図である。 図6は実施の形態の光変調装置の構造を示す模式図である。 図7は他の実施の形態の光変調装置の構造を示す模式図である。 図8は実施例の光学体の構造を示す模式図である。 図9は図8の実施例の光学体の光学特性(波長-回転角)を示すグラフである。 図10は図8の実施例の光学体の他の光学特性(波長-反射率)を示すグラフである。 図11は図8の実施例の光学体の他の光学特性(電圧-回転角、電圧-位相)を示すグラフである。 図12は図8の実施例の光学体の他の光学特性(電圧-反射率)を示すグラフである。 図13は他の実施例の光学体の構造を示す模式図である。 図14は図13の実施例の光学体の光学特性(電圧-回転角)を示すグラフである。 図15は図13の実施例の光学体の他の光学特性(電圧-反射率)を示すグラフである。 図16は他の実施例の光学体の構造を示す模式図である。 図17は図16の実施例の光学体の光学特性(電圧-位相差)を示すグラフである。 図18は図16の実施例の光学体の他の光学特性(電圧-反射率)を示すグラフである。
 上記において第一の層と第二の層は反射層とすることが好ましい。第一の層と第二の層との間で光を多重反射させることにより光の変調を増幅できるからである。
 光を入出射する第一の層はハーフミラー層(第一の反射層)とし、対向する第二の層は全反射層(第二の反射層)とすることが好ましいが、第二の反射層は必ずしも全反射層に限定されるものではない。
 第一の反射層及び第二の反射層は金属層若しくは誘電体多層膜層(ブラッグミラー層)とすることができる。
 反射層を構成する金属層としては、アルミニウム、白金、金、銀及びこれらの合金の短層膜若しくは複層膜を挙げることができる。
 反射層としてブラッグミラー層を採用する場合、誘電体他多層膜の繰り返し単位を構成する誘電体層のペアの材質及び膜厚はブラッグの反射条件(d=λ/4:ここに、λは各層の光学波長、dは各層の膜厚)を満足することを条件に、入射光の波長や用途に応じて任意に選択できる。具体的には、誘電体層のペアとして酸化シリコン(SiO)と酸化タンタル(Ta)との組合せ、酸化シリコン(SiO2)とシリコン(Si)、酸化シリコン(SiO)と酸化アルミニウム(Al)等が挙げられる。
 誘電体層ペアの繰返し数も任意に選択可能であるが、第一の反射層と第二の反射層とで同じ誘電体ペアを採用するときは、第一の反射層の繰返し数より第二の反射層の繰返し数が大きいものとする。誘電体層のペアとして酸化シリコン(SiO)と酸化タンタル(Ta)との組合せを採用したときは、第一の反射層は3ペア以上、第二の反射層は5ペア以上とすることが好ましい。更に好ましくは、第一の反射層は5ペア以上、第二の反射層は7ペア以上とする。
 第一の層と第二の層との間隔は、m×λ/2(ここに、mは自然数、λは第一の層と第二の層との間の光学波長)とする。これにより、第一の層と第二の層との間隔が光学波長の節の幅と一致する。
 ここに光学波長はλ/nで規定される。λは真空における入射光の波長、nは実効屈折率である。第一の層と第二の層との間に1種類の材料層のみが介在されるとき、実効屈折率nは当該材料の屈折率に等しい。第一の層と第二の層との間に複数の材料層が介在するときは、複数の異なる材料が連続する層を1つの材料の1つの層と見なしたときの屈折率である。例えば、連続する2層の片方の屈折率と膜厚をn、dとし、もう片方をn、dとしたとき、(n×d+n×d)/(d+d)が連続する2層の実行屈折率となる。
 設計容易性の観点からは、第一の層と第二の層の間に複数の層が介在される場合は、各層の厚さを各層の光学波長/2の自然数倍とすることが好ましい。例えば、第一の層と第二の層との間に層A及び層Bが介在される場合、層A及び層Bの厚さをそれぞれm×λ/2、m×λ/2とする。ここに、λは層Aの光学波長、λは層Bの光学波長である。このように設計すれば、第一の層と第二の層との間に複数の層が介在される場合においても、第一の層と第二の層との間隔はm×λ/2(ここに、mは自然数、λは第一の層と第二の層間の光学波長)の関係が常に維持される。
 第一の層と第二の層との間に透光性電極層を介在させる場合には、当該透光性電極層も上記の関係を保持するものとすることが好ましい。
 上記において、第一の層と第二の層との間隔を規定するとき、及び第一の層と第二の層との間に介在される複数の層における各層の厚さを規定するときに光学波長λが用いられている。この光学波長λは多少のマージンを有することができる。各層の厚さをnmオーダーで正確に制御することは極めて困難だからである。また、多少のマージン(好ましくは±10%以内、更に好ましくは±5%以内)があっても、目的にかなった変調ができるからである。
 第一の層及び第二の層は反射層とすることが好ましいことは既述したが、第一の層及び第二の層の少なくとも一方を誘電体多重層(ブラッグミラー層)としたとき、多重層を構成する誘電体層の一部又は全部を光学磁性体材料や電気光学材料などの屈折率可変層で形成すると、これらの層も光の変調機能に寄与する場合がある。
 屈折率可変層はこれを通過する光に対して、光通過方向にその屈折率を変化させる。
 屈折率可変層は第一の層と第二の層との間の実質的な全体を占有しても、また、その一部のみであってもよい。
 かかる屈折率可変層を形成する材料として電気光学材料、音響光学材料、熱光学材料等を挙げることができる。
 電気光学材料は電界の印加によって屈折率が変化する材料であって、PZT(PbZr0.52Ti0.483)、PLZT、PLHT、SBN、LT、LN、KDP、DKDP、BNN、KTN、BTO等を挙げることができる。
 屈折率可変層を電気光学材料で形成した場合、当該屈折率可変層へ印加する電界を制御することにより、その屈折率を変化・制御可能である。屈折率可変層へ電界を印加するために、特許文献1にも記載してある通り、当該屈折率可変層を透光性電極でサンドイッチする構成を採用できる。勿論、光学体の外部から電界を印加してもよい。この場合、電界の印加の方向は屈折率可変層の面内方向に対して垂直に限らず、傾斜していてもよい。
 音響光学材料は応力の印加・歪によって屈折率変化が生じる材料であって、PZT(PbZr0.52Ti0.483)、LT、LN、Al、YAl12、Si、SiO等を挙げることができる。
 屈折率可変層を音響光学材料で形成した場合、当該屈折率可変層へ印加する応力を制御することにより、その屈折率を変化させることにより制御可能である。屈折率可変層へ応力を印加するためには、屈折率可変層を光透過性の圧電素子で挟むことが考えられる。
 熱光学材料は温度により屈折率が変化する材料であって、液晶が該当する。
 屈折率可変層を熱光学材料で形成した場合、当該屈折率可変層へ印加する熱を制御することにより、その屈折率を変化させることにより制御可能である。屈折率可変層の温度を制御するには、例えばヒーターを具備すればよい。
 屈折率可変層は単層若しくは複数層とすることができる。複数層とした場合、この複数層を構成する各層は同一の材料であっても異なる材料であってもよい。
 磁気光学材料は磁気光学効果(ファラディ効果、カー効果)を有し、直線偏光光が干渉するとこれを右回りの楕円偏光光(右円偏光光)と左回りの楕円偏光光(左円偏光光)とに変換する。このとき、右円偏光光と左円偏光光とには位相差が生じている。またこの磁性体材料は非相反性を有するので、位相差の生じた右円偏光光と左円偏光光を再度磁気光学材料へ干渉させて直線偏光光へ再変換したとき、その位相差が維持されて直線偏光光の偏光面の回転(角度の変化)としてあらわれる。
 このような磁気光学効果を奏する磁性体材料には強磁性体材料、反強磁性体材料、フェリ磁性体材料、常磁性体材料を挙げられる。
 ファラディ効果を奏する透光性の強磁性体材料としてCdCo、のような磁性記憶媒体用材料、CoFe24のようなスピネルフェライト、PbFe1219のようなヘキサゴナルフェライト、CdCr24のようなカルコゲナイド、フェライト、CrCl3のようなクロム化トリハライド、Y3Fe512(BiY)Fe12のようなガーネット、(LaSr)MoO3のようマンガン酸化合物、EuOのようなユウロビウム化合物、Fe及びその合金からなる金属薄膜、Co及びその合金からなる薄膜、Mn及びその合金からなる薄膜、その他Fe24等やポリエチレン等の有機材料を挙げることができる。
 ファラディ効果を奏する透光性の反強磁性体材料としては、酸化マンガン等を挙げることができる。
 常磁性体材料は外部から磁界を印加することにより磁気光学効果を奏する。
 ファラディ効果を奏する透光性の常磁性体材料として、Tb3AlO12、GGG(Gd3Ga512)等の希土類Al置換ガーネット、酸素等の気体、水等の液体、塩化カリウム等の固体、GGG(Gd3Ga512)、GGS等のクラウン等のガラスを挙げることができる。
 青色光のような短波長を変調対象とする際には、TAG、TGGを採用することが好ましい。短波長を殆ど吸収しないからである。
 磁性体材料層は単層若しくは複数層とすることができる。複数層とした場合、この複数層を構成する各層は同一の材料であっても異なる材料であってもよい。
 この明細書において「透光性」とは入射光(変調対象光)を透過する特性を指し、いわゆる透明性(可視光についての透光性)に限られるものではない。また、屈折率可変層は必然的に透光性を有するものとする。
 カー効果を有する材料としてはRFe12(R=希土類元素、例えばBi、Y、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)のようなガーネット、MFe24(M=Mn、Fe、Co、Ni、Cu、Mg、Li0.5Fe0.5)のようなスピネルフェライト、MFe1219(M=Ba、Pb、Sr、Ca、Ni0.5Fe0.5、Ag0.5La0.5)のような六方晶フェライト、MnBi、PtCo、EuO、PtMnSbからなる多結晶膜、Gd-Co、Gd-Fe、Dy-Fe、Tb-Fe、Gd-Tb-Fe、Gd-Dy-Fe、Tb-Fe-Co、Gd-Tb-Fe-Co、(Gd-Fe)-Bi、(Gd-Fe)-Sn、Nd-Dy-Fe-Coのような希土類-遷移金属薄膜、及び前記材料からなる薄膜からなる複合膜等を挙げることができる。
 磁性体材料層を光透過性としたとき、磁性体材料層と屈折率可変層との積層体を繰返してなる多層構造を採用することもできる。この多層構造を採用する場合、各磁性体材料層は同一の材料で形成することが好ましいが、また異なる材料で形成することを除外するものではない。同様に、各屈折率可変層も同一の材料で形成することが好ましいが、異なる材料で形成してもよい。
 この発明の光学体は、既述のように直線偏光光の偏光面の回転角度を任意に制御でき、また、楕円偏光光の位相を任意に制御できる。この点において、光変調素子として機能する。
 また、直線偏光光の偏光面の回転角度及び楕円偏光光の位相の変化はともに有意に(大きく)とれるので、これを光メモリ素子として用いることもできる。
 図1はこの発明の第3の局面の構造を示す模式図である。
 第一の層3はハーフミラー層であり、第二の層5は全反射層である。第一の層3と第二の層5の間(この明細書で「キャビティ7」ということがある)に、屈折率可変層8と磁気光学材料層9とが介在される。
 このように構成された光学体1によれば、屈折率可変層8と磁気光学材料層9が第一の層3と第二の層5との間に介在されるので、両層3-5間で変調対象光が多重反射する際に、屈折率可変層8と磁気光学材料層9の両層の影響を受けるので、変調効率が向上する。
 磁気光学材料層9は透光性を有する(ファラディ効果を有する)ものとすることができ(第4の局面)、その場合は磁気光学効果層9を屈折率可変層8より第一の層3側に配置することが好ましい。直線偏光光を入出射光とするとき、光学体と外部とのインターフェース部において直線偏光光と楕円偏光光との間の変換が必要になるからである。
 磁気光学材料としてカー効果を有する(特に、非透光性の)ものを採用する場合には、磁気光学材料層は第二の層5側に配置する。
 図2にこの例の光学体11の模式図を示す。なお、図1と同一の作用を奏する要素には同一の符号を付してその説明を省略する。このカー効果発現層15は第二の反射層5の表面に形成される。このカー効果発現層15自体が十分な、好ましくは実質的に100%の反射率を備えれば、カー効果発現層15自体を第二の反射層とすることができる。
 カー効果発現層15で変換された光の位相差が屈折率可変層18において増幅される。
 図3は他の態様の光学体21を示す。なお、図1と同一の作用を奏する要素には同一の符号を付してその説明を省略する。
 この光学体21では、磁性体材料層9をキャビティ7の外側、即ち第一の層3の入射光対向面側に配置した。
 このように構成された光学体21によれば、直線偏光光を入射光としたとき、当該直線偏光光は磁性体材料層9で僅かに位相差をもった右円偏光光と左円偏光光に変換され、両楕円偏光の位相差はキャビティ7において増幅される。
 磁性体材料層9としてガーネットのバルクの基板へ第一の層、屈折率可変層及び第二の層を順次積層してなる光学体を用いることができる。
 同様に、屈折率可変層8としてPLZT等のバルクの基板を用い、その両面へ第一の層と第二の層を積層し、更に第一の層へ磁気光学材料層9を積層する構成を採用できる。
 図4は他の光学体31を示す。なお、図3と同一の作用を奏する要素には同一の符号を付してその説明を省略する。
 この光学体31では磁気光学材料層9の表面に第三の層6が形成されている。この第三の層6と第一の層3とをともに反射層とすることにより、両者の間で変調対象光を多重反射させ磁気光学材料層9の磁気光学効果を増幅する。
 この第三の層6も第一層の3及び第二の層5と同様に形成することができる。第三の層6と第一の層3との間隔もm×λ/2とすることが好ましい。ここに、m:自然数、λ:第二の層6と第一の層3との間の光学波長である。
 図5に他の形態の光学体41の構成を示す。なお、図1と同一の要素には同一の符号を付してその説明を部分的に省略する。この光学体41では屈折率可変層8が電気光学材料で形成されている。この屈折率可変層8は光透過性の一対の電極層42、43で挟まれており、電極層42、43へ印加する電圧を制御することにより、屈折率可変層8へ印加される電界を制御し、もって屈折率可変層8の屈折率を制御する。
 屈折率制御手段としての透光性電極42、43へ印加する電圧の制御回路は光学体21へ一体的に組みつけることが装置構成の簡素化の見地から好ましい。
 電圧制御回路は汎用的な半導体集積回路技術により、第一の反射層3若しくは第二の反射層5の一方へ形成することができる。
 第一の反射層3側から光を入射させることを考慮すれば、電圧制御回路を当該第一の反射層3へ配置することは好ましくない。入射光及び出射光を遮ることとなるからである。
 したがって、電圧制御回路は第二の反射層5の表面へ形成することが好ましい。
 図6は電圧制御回路を有する半導体機能層53を備えた光変調装置51を示す。なお、図5と同一の作用を奏する要素には同一の符号を付してその説明を省略する。
 図中の符号54は半導体機能層53から透光性電極42、43への電源線を示す。半導体機能層53はこの電源線54を介して制御された電圧を透光性電極42、43間へ印加する。
 第二の層5側へ半導体機能層53を形成した結果、基板57は第一の3側の配置となる。
 この基板57の形成材料は透光性を有するSiOやSGGG(例えば、Gd2.68Ca0.32Ga4.04Mg0.32Zr0.6412)等を用いることができる。
 図7に示す光変調システム61は、図6に示す光変調装置51へ光入射デバイス63と出射光処理デバイス65とを、基板57に対向配置したものである。
 光入射デバイス63は光源、光ファイバ及び偏光板等から構成され、光学体へ所望の偏光光を入射する。
 出射光処理デバイス65は、基板57を通過してきた光学体の出射光を処理する。位相変調された出射光を入射光と干渉させて干渉計等に利用できる。
 以下、この発明の実施例について説明する。
 図8は実施例の光学体81の構成を示す。
実施例の光学体81はSGGG(例えば、Gd2.68Ca0.32Ga4.04Mg0.32Zr0.6412)の基板87(厚さ:0.7mm)の上へ、酸化タンタル(膜厚:90nm)と酸化シリコン(膜厚:134nm)なる積層体を単位ペアとして、計9ペアからなる第一の反射層93を積層する。
 更に、膜厚712nmのBi:YIG(BiFe12、光学波長λ:780nm)を光学磁性体材料層89として積層する。この光学磁性体材料層89の上には膜厚174nmからなるPLZT(具体的組成Pb0.91La0.09Zr0.65Ti0.35、光学波長λ:780nm)を屈折率可変層88として積層する。なお、PLZT層88は電気光学材料であるのでこのPLZT層88の両面へITO等からなる透光性電極層を形成することとなるが、この実施例では当該一対の透光性電極はごく薄く形成するものとしてその膜厚を無視することとした(その結果、図8に透光性電極は示されていない)。なお、図8の構成において、第一の層83と第二の層85との間隔(磁気光学材料層89と屈折率可変層88との合計厚さ)はλ/2の5倍である。
 PLZT層88の上には第一の層83と同じ単位ペアを有し、そのペアの繰返し数を18とした第二の反射層85が形成されている。
 各層はスパッタ法により形成される。
 各層の形成方法はスパッタ法に限定されるものではなく、蒸着法、イオンプレーティング法、スプレー法、イオンビーム照射法等の汎用的な薄膜製造技術を適用可能である。
 図8に示した構成の光学体81の光学特性をマトリックスアプローチ法に従いシミュレートした。このシミュレーションについてはM. Inoue, T. Fujii, “A theoretical analysis of magneto-optical Faraday effect of YIG films w ith random multilayer structure”,Appl. Phys. 81, 317 (1997).を参照されたい。
 結果を図9~図12に示す。
 実施例の光学体81へ780nmの波長(赤色)の直線偏光光を入射したところ、出射光の偏光面の回転角(入射光の偏光面の角度との差)は図9に示すものとなった。
 反射率(入射光に対する出射光の強度)は図10に示すように、ほぼ100%である。なお、図10(B)は図10(A)における波長780.4nm前後の部分拡大図である。
 図9及び図10の結果から、実施例の光学体81によれば波長及びその強度を維持して、入射光の偏光面を任意の角度に変更できることがわかる。
 図11は、出射光の偏光面の回転角(入射光の偏光面の角度との差)及び出射光の位相(入射光の位相との差)と図示しない透光性電極へ印加する電圧との関係を示す。実施例で用いてシミュレーションでは透光性電極は厚さを持たず、かつその材料は完全な透光性であり、かつ電気抵抗を持たないものと仮定している。
 図11より、0.0~0.2Vという小さな電圧範囲において出射光の回転角と位相とを制御可能なことがわかる。なお、実施例の光学体では、電圧変化に対して偏光面の角度変化は同期しており、両者の間に実質的な時間おくれはない。
 図12は印加電圧と反射率(入射光に対する出射光の強度)についても0.0~0.2Vの印加電圧範囲において殆ど全反射の状態を維持できる。なお、図12(B)は図12(A)における0.1V前後の部分拡大図である。
 図13には他の実施例の光学体101を示す。なお、図8と同一の作用を奏する要素には同一の符号を付してその説明を省略する。
 この実施例では磁気光学材料層109としてTAG(Tb3Al512)を採用している。この実施例ではTAGからなる磁気光学材料層109の厚さを840.71nm、PLZTからなる屈折率可変層108の厚さを100.00nmとしている。これにより、第一の層83と第二の層85との間隔(磁気光学材料層109と屈折率可変層108との合計厚さ)はλ/2の9倍である。
 なお、TAGは常磁性体材料であるので、外部より光の入射方向である膜面垂直方向に磁場を印加しているものとする。
 図13の光学体101についても前の実施例と同様にしてその特性をシミュレートした。入射光は波長405nm(青色)の直線偏光光である。結果を図14、図15に示す。
 図14は印加電圧と回転角(入射光の偏光面と出射光の偏光面との回転角度差)との関係を示す。図15は印加電圧と反射率(入射光に対する出射光の強度)との関係を示す。
 図14及び図15より、TAGを磁気光学材料に採用すれば、入射光に短波長を採用しても光学体において殆ど損失は起こらず、ほぼ100%の反射率を確保することができる。また、電圧変化に対して偏光面の角度変化は同期しており、両者の間に実質的な時間おくれはない。
 図16は他の実施例の光学体111を示す。なお、図13と同一の作用を奏する要素には同一の符号を付してその説明を部分的に省略する。
 この実施例の光学体は、図8の光学体81から磁気光学材料層89を省略したものである。なお、図16の例では、第一の層83と第二の層85との間にm×λ/2(m:自然数、λ:光学波長)の関係を確保するため、PLZTからなる屈折率可変層118の厚さを4847nmとしている(m=28)。
 図16の光学体111についても前の実施例と同様にしてその特性をシミュレートした。入射光は波長780nm(赤色)の直線偏光光である。結果を図17、図18に示す。
 図17は印加電圧と位相(入射光の位相と出射光の位相との差)との関係を示す。図18は印加電圧と反射率(入射光に対する出射光の強度)との関係を示す。
 図17及び図18より0.0~2.0V程度の小さな電圧範囲により全範囲(±180度)にわたり位相制御できることがわかる。また、反射率(入射光に対する出射光の強さ)についてもほぼ60%以上確保できている。電圧変化に対して位相変化は同期しており、両者の間に実質的な時間遅れはない。
 本発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様も本発明に含まれる。
1,21,41,51,61,81,101,111 光学体
3 ハーフミラー層
5 全反射層
7 キャビティ
8,18 屈折率可変層
9 磁気光学材料層
15 カー効果発現層
42,43 透光性電極
53 半導体機能層
54 電源線
57 基板
63 光入射デバイス
65 出射光処理デバイス

Claims (16)

  1.  反射層からなる第一の層及び第二の層、並びに光機能層を備え、前記第一の層から入射した光を変調して前記第一の層から出射する光学体であって、
     前記光機能層として屈折率可変層と磁気光学材料層とを含み、
     前記屈折率可変層は前記第一の層と前記第二の層との間に位置し、
     前記磁気光学材料層はファラディ効果を生じ、前記屈折率可変層からみて前記第二の層と反対側に位置する、光学体。
  2.  前記磁気光学材料層も前記第一の層と前記第二の層の間に配置される、請求項1に記載の光学体。
  3.  前記磁気光学材料層は前記第一の層の光入射面側に配置される、請求項1に記載の光学体。
  4.  前記屈折率可変層の屈折率を制御する屈折率制御手段が更に備えられる、請求項1~3のいずれかに記載の光学体。
  5.  前記屈折率可変層は電界によりその屈折率が変化される電気光学材料からなり、前記屈折率制御手段は前記屈折率可変層へ与える電界を制御する、請求項4に記載の光学体。
  6.  前記屈折制御整手段は前記屈折率可変層を挟む一対の透光性電極からなる、請求項5に記載の光学体。
  7.  前記磁性体材料層は強磁性体材料からなる、請求項1~6のいずれかに記載の光学体。
  8.  前記磁性体材料層はTAG若しくはTGGである、請求項1~7のいずれかに記載の光学体。
  9.  前記磁性体材料層は前記第一の層に対向し、前記屈折率可変層は前記第二の層に対向し、前記磁性体材料層と前記屈折率可変層との間及び該屈折率可変層と前記第二の層との間に透光性電極層が介在され、
     前記屈折率可変層は電界によりその屈折率が変化する材料からなる、請求項1に記載の光学体。
  10.  前記第一の層が透光性の基板の一面に積層される、請求項9に記載の光学体。
  11.  前記第一及び第二の層はブラッグミラー層からなる、請求項9に記載の光学体。
  12.  請求項10又は11に記載の光学体と、
     前記第二の層の上に積層され、前記一対の透光性電極へ印加する電位を制御する半導体機能層と、
     を備える、光変調装置。
  13.  前記光学体の基板に対向する光導入部及び放射光処理部が備えられる、請求項12に記載の光変調装置。
  14.  第一の反射層と第二の反射層との間に光機能層を備え、前記第一の反射層から入射した光を変調して前記第一の反射層から出射する光学体であって、
     前記第一の反射層と前記第二の反射層はブラッグミラー層からなり、
     前記光機能層は電界によりその屈折率が変化可能な屈折率可変層を含み、該屈折率可変層を挟む一対の透光性電極が更に備えられ、
     前記第一の反射層と前記第二の反射層と間隔がm×λ/2 であり(ここに、mは自然数、λは光学波長)、
     前記第一の反射層側から入射された直線偏光光及び楕円偏光光は、その強度を実質的に一定にして、その位相が変調されて、前記第一の反射層側から出射される、光学体。
  15.  第一の反射層と第二の反射層との間に光機能層を備え、前記第一の反射層から入射した光を変調して前記第一の反射層から出射する光学体において、
     前記第一の反射層と前記第二の反射層はブラッグミラー層からなり、
     前記光機能層は電界によりその屈折率が変化可能な屈折率可変層を含み、該屈折率可変層を挟む一対の透光性電極が更に備えられ、
     前記第一の反射層と前記第二の反射層と間隔がm×λ/2 (ここに、mは自然数、λは光学波長)である光学体の制御方法であって、
     前記第一の反射層側から直線偏光光又は楕円偏光光を入射し、前記透光性電極へ印加する電圧を制御し、前記第一の反射層側から出射する前記直線偏光光又は楕円偏光光の強度を実質的に一定にして、その位相を変調する、光学体の制御方法。
  16.  反射層からなる第一の層及び第二の層、並びに光機能層を備え、前記第一の層から入射した光を変調して前記第一の層から出射する光学体であって、
     前記光機能層として屈折率可変層を含み、
     前記屈折率可変層は該第一の層と第二の層との間に位置し、
     前記第二の層の表面がカー効果を有する、光学体。
PCT/JP2010/067393 2009-10-07 2010-10-04 光学体 WO2011043309A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127011665A KR101796058B1 (ko) 2009-10-07 2010-10-04 광학체
US13/500,873 US9841619B2 (en) 2009-10-07 2010-10-04 Optical body
JP2011535387A JP5700687B2 (ja) 2009-10-07 2010-10-04 光学体
EP10821979.1A EP2487525B1 (en) 2009-10-07 2010-10-04 Optical body
TW099134231A TWI542921B (zh) 2009-10-07 2010-10-07 光學體與其控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009233123 2009-10-07
JP2009-233123 2009-10-07

Publications (1)

Publication Number Publication Date
WO2011043309A1 true WO2011043309A1 (ja) 2011-04-14

Family

ID=43856762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067393 WO2011043309A1 (ja) 2009-10-07 2010-10-04 光学体

Country Status (6)

Country Link
US (1) US9841619B2 (ja)
EP (1) EP2487525B1 (ja)
JP (1) JP5700687B2 (ja)
KR (1) KR101796058B1 (ja)
TW (1) TWI542921B (ja)
WO (1) WO2011043309A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176807A1 (ja) * 2011-06-20 2012-12-27 国立大学法人豊橋技術科学大学 光変調システムの制御方法、光変調システム及びそれに用いる光学体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788727B (zh) * 2009-12-14 2011-11-09 深圳大学 基于磁光腔耦合的光子晶体四端口环行器
EP3282305B1 (en) * 2016-08-10 2020-05-06 Samsung Electronics Co., Ltd. Optical modulator using phase change material and device including the same
KR102384230B1 (ko) * 2017-10-12 2022-04-07 삼성전자주식회사 가변 레이저 소자

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091911A (ja) * 1999-09-24 2001-04-06 Sony Corp 機能性材料および機能素子
JP2002311402A (ja) * 2001-04-11 2002-10-23 Minebea Co Ltd ファラデー回転子
US20040008397A1 (en) * 2002-05-10 2004-01-15 Corporation For National Research Initiatives Electro-optic phase-only spatial light modulator
JP2004517344A (ja) * 2000-06-29 2004-06-10 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク 波長ろ過を内蔵する光電子装置
WO2006077932A1 (ja) * 2005-01-20 2006-07-27 Rohm Co., Ltd 光変調膜を有する光制御装置
JP2006201472A (ja) 2005-01-20 2006-08-03 Rohm Co Ltd 光制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3392353A (en) * 1964-06-11 1968-07-09 Bell Telephone Labor Inc Maser intracavity phase modulator
JP2005003806A (ja) * 2003-06-10 2005-01-06 Sun Tec Kk 光学素子、波長可変光フィルタおよび光アドドロップモジュール
JP5147050B2 (ja) 2007-10-30 2013-02-20 Fdk株式会社 磁気光学素子
US8351117B2 (en) * 2008-12-08 2013-01-08 Gao Peiliang Optical isolator, shutter, variable optical attenuator and modulator device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091911A (ja) * 1999-09-24 2001-04-06 Sony Corp 機能性材料および機能素子
JP2004517344A (ja) * 2000-06-29 2004-06-10 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク 波長ろ過を内蔵する光電子装置
JP2002311402A (ja) * 2001-04-11 2002-10-23 Minebea Co Ltd ファラデー回転子
US20040008397A1 (en) * 2002-05-10 2004-01-15 Corporation For National Research Initiatives Electro-optic phase-only spatial light modulator
WO2006077932A1 (ja) * 2005-01-20 2006-07-27 Rohm Co., Ltd 光変調膜を有する光制御装置
JP2006201472A (ja) 2005-01-20 2006-08-03 Rohm Co Ltd 光制御装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
M. INOUE; T. FUJII: "A theoretical analysis of magneto-optical Faraday effect of YIG films with random multilayer structure", APPL. PHYS., vol. 81, 1997, pages 317
TAKASHI YAMAGUCHI ET AL.: "Fabrication of PLZT thick films formed by aerosol deposition method and application for electro-optic spatial light modulator", IEICE TECHNICAL REPORT, vol. 109, no. 89, 12 June 2009 (2009-06-12), pages 11 - 16, XP008156447 *
TAKENORI KATO: "Study on light reflection layers for magneto-optic spatial light modulator driven by piezoelectric effect", IEICE TECHNICAL REPORT, vol. 109, no. 89, 12 June 2009 (2009-06-12), pages 17 - 21, XP008156446 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176807A1 (ja) * 2011-06-20 2012-12-27 国立大学法人豊橋技術科学大学 光変調システムの制御方法、光変調システム及びそれに用いる光学体
JPWO2012176807A1 (ja) * 2011-06-20 2015-02-23 国立大学法人豊橋技術科学大学 光変調システムの制御方法、光変調システム及びそれに用いる光学体

Also Published As

Publication number Publication date
TW201140192A (en) 2011-11-16
US9841619B2 (en) 2017-12-12
EP2487525A4 (en) 2015-08-19
JP5700687B2 (ja) 2015-04-15
EP2487525B1 (en) 2019-09-18
JPWO2011043309A1 (ja) 2013-03-04
EP2487525A1 (en) 2012-08-15
US20120218619A1 (en) 2012-08-30
KR101796058B1 (ko) 2017-11-10
KR20120091186A (ko) 2012-08-17
TWI542921B (zh) 2016-07-21

Similar Documents

Publication Publication Date Title
US8068387B2 (en) Magneto-optical device
JP5700687B2 (ja) 光学体
JP5001807B2 (ja) 空間光変調器
JP2013045091A (ja) 空間光変調器
JP6108398B2 (ja) 光変調システムの制御方法、光変調システム及びそれに用いる光学体
JP3781553B2 (ja) 光シャッター
JP7002225B2 (ja) 光変調素子、空間光変調器、および空間光変調システム
JP4764397B2 (ja) 空間光変調素子
Takagi et al. Magneto-optic spatial light modulators with magnetophotonic crystals driven by PZT films
Umegaki et al. Optical bistability using a magneto‐optic modulator
WO2023153286A1 (ja) 空間光位相変調器及び光演算装置
KH et al. Characteristics of magneto-photonic crystals based magneto-optic SLMs for spatial light phase modulators
JP5238616B2 (ja) 光変調素子
JP3672211B2 (ja) 偏光スイッチング素子及び光シャッタ
JP2001343619A (ja) 空間光変調器
Zamani High-performance blue-green-red magneto-optical spatial light modulators based on thin film multilayers
Takahashi et al. Figures of merit of magneto‐optic spatial light modulators with magnetophotonic crystals
Dadoenkova et al. Temperature dependence of voltage-controlled polarization plane rotation in a magnetic and electro-optic heterostructure
JP5054640B2 (ja) 光変調素子、光変調器、表示装置、ホログラフィ装置及びホログラム記録装置
JP2017067965A (ja) 光変調素子および空間光変調器
JP2015138098A (ja) 磁気抵抗効果素子及び空間光変調器
JPS60254101A (ja) 偏光素子
JP4930933B2 (ja) 磁気光学素子
JP2004012997A (ja) 磁気光学体
JP2001311925A (ja) 磁気光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821979

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011535387

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127011665

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010821979

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13500873

Country of ref document: US