JP5238616B2 - 光変調素子 - Google Patents

光変調素子 Download PDF

Info

Publication number
JP5238616B2
JP5238616B2 JP2009135508A JP2009135508A JP5238616B2 JP 5238616 B2 JP5238616 B2 JP 5238616B2 JP 2009135508 A JP2009135508 A JP 2009135508A JP 2009135508 A JP2009135508 A JP 2009135508A JP 5238616 B2 JP5238616 B2 JP 5238616B2
Authority
JP
Japan
Prior art keywords
layer
magnetization
magnetic
modulation element
free layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009135508A
Other languages
English (en)
Other versions
JP2010282030A (ja
Inventor
淳 久我
賢一 青島
信彦 船橋
賢司 町田
直樹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2009135508A priority Critical patent/JP5238616B2/ja
Publication of JP2010282030A publication Critical patent/JP2010282030A/ja
Application granted granted Critical
Publication of JP5238616B2 publication Critical patent/JP5238616B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Projection Apparatus (AREA)

Description

本発明は、入射した光を磁気光学効果により光の位相や振幅等を空間的に変調して出射する空間光変調器に用いる光変調素子に関する。
空間光変調器は、画素として光学素子(光変調素子)を用い、これを2次元アレイ状に配列して光の位相や振幅等を空間的に変調するものであって、ホログラフィー装置等の露光装置、ディスプレイ技術、記録技術等の分野で広く利用されている。また、2次元で並列に光情報を処理することができることから光情報処理技術への応用も研究されている。空間光変調器として、従来より液晶やDMD(Digital Micro-Mirror Device)が用いられ(例えば、非特許文献1,2)、表示装置として広く利用されているが、ホログラフィーや光情報処理用としては、応答速度や画素の高精細性が不十分であるため、近年では、高速処理かつ画素の微細化の可能性が期待される磁気光学材料を用いた磁気光学式空間光変調器の開発が進められている。
磁気光学式空間光変調器(以下、空間光変調器)においては、磁気光学材料すなわち磁性体に入射した光が透過または反射する際にその偏光の向きを変化(旋光)させて出射する、ファラデー効果(反射の場合はカー効果(磁気光学カー効果))を利用している。すなわち、選択された画素(選択画素)における光変調素子の磁化方向とそれ以外の画素(非選択画素)における光変調素子の磁化方向を異なるものとして、選択画素から出射した光と非選択画素から出射した光で、その偏光の回転角(旋光角)に差を生じさせる。このような光変調素子の磁化方向を変化させる方法として、光変調素子に磁界を印加する磁界印加方式の他に、近年では光変調素子に電流を供給することでスピンを注入するスピン注入方式(例えば、特許文献1)がある。
スピン注入方式の光変調素子は、具体的には、TMR(Tunnel MagnetoResistance:トンネル磁気抵抗効果)素子やCPP−GMR(Current Perpendicular to the Plane Giant MagnetoResistance:垂直通電型巨大磁気抵抗効果)素子等の、磁気ランダムアクセスメモリ(MRAM)にも適用されるスピン注入磁化反転素子を適用することができ、その上下に一対の電極を接続して膜面に垂直に電流を供給することによりスピンが注入される。このようなスピン注入磁化反転素子を適用した光変調素子は、磁界を発生させるために各光変調素子の外周に沿って電極(配線)を備える磁界印加方式よりもいっそうの微細化を可能とする。
また、これらのスピン注入磁化反転素子について、従来は膜面方向の磁化を示す磁性材料について研究されていたが、最近では、MRAMの、よりいっそうの大容量化および省電力化のために、さらなる微細化が可能で、かつ磁化反転に要する電流を低減できる、膜面に垂直方向の磁化を示す(垂直磁気異方性を有する)磁性材料が研究されている(例えば、特許文献2)。光変調素子においても、垂直磁気異方性を有するスピン注入磁化反転素子は、画素の微細化、高速応答、および省電力化を可能とし、さらに膜面にほぼ垂直に光を入射することにより、極カー効果で旋光角が大きくなり、光変調度を大きくすることができるのでより好ましい。さらに、光変調素子として旋光角の大きい、すなわちファラデー効果やカー効果(以下、適宜両者をまとめて磁気光学効果と称する)の大きい磁性材料が研究され、磁気光学効果の大きい垂直磁気異方性材料として、GdFe系合金が知られている(非特許文献3)。
特開2008−83686号公報 特開2008−283207号公報
H.Kawai, M.Miyasaka, A.Miyazaki, S.Nebashi, T.Shimada, "Flexible Active-Matrix Electrophoretic Displays for Electronic Paper Applications", Proc. IDW2005, pp.883-886 (2005) J.Grimmett and J. Huffman, "Advancements in DLP Technology: The New 10.6μm Pixel and Beyond", Proc. IDW2005, pp.1879-1882 (2005) K.Aoshima et. al, "Magneto-optical and spin-transfer switching properties of current-perpendicular-to plane spin valves with perpendicular magnetic anisotropy.", IEEE Transactions on Magnetics, Vol.44, No.11, pp.2491-2495 (2008)
しかしながら、GdFe系合金は保磁力が比較的小さいため、スピン注入磁化反転素子に適用した場合に安定した磁化反転動作を示さなかったり、供給電流による発熱等で磁化方向が不安定になる虞がある。また、その他の垂直磁気異方性材料においても、十分な大きさ旋光角が得られないため、改良の余地がある。
本発明は前記問題点に鑑み創案されたもので、空間光変調器の画素に用いるための高精細かつ高速応答の可能なスピン注入磁化反転素子による光変調度を向上させた光変調素子を提供することを目的とする。
前記課題を解決するために、本発明者らは、磁気光学効果は大きいが保磁力が不十分なGdFe系合金に、他の垂直磁気異方性材料を組み合わせて一体の磁性体とすることで、スピン注入磁化反転素子の磁化自由層として、大きな磁気光学効果を活かしつつ安定した磁化反転動作が得られることに至った。
すなわち、本発明に係る光変調素子は、垂直磁異方性を有する磁化固定層、中間層、および垂直磁異方性を有する磁化自由層の順に積層したスピン注入磁化反転素子構造を備え、上下に接続された電極から電流を供給されることにより前記磁化自由層の磁化方向を変化させて、入射した光をその偏光方向を変化させて出射する光変調素子であって、前記磁化自由層2以上の磁性層を積層してなる。そして、本発明に係る光変調素子は、前記磁化自由層において最上層に積層された磁性層が、GdおよびFeを含有する合金、Coを含有する合金、Mnを含有する合金のいずれかの磁性材料、または、2種以上の異なる材料からなる膜を交互に積層した多層膜であってCo,Niから選択された1種以上を含有するものであり、他の磁性層よりも磁気光学効果が大きいことを特徴とする。
かかる構成により、光変調素子は、垂直磁異方性を有する磁化固定層および磁化自由層を備えることで極カー効果により光変調素子の光変調度を向上させることができる。さらに光変調素子は、磁化自由層の最上層に磁気光学効果の大きい磁性層を備えることで、カー回転角またはファラデー回転角を大きくして光変調素子の光変調度をいっそう向上させることができ、この磁性層は中間層との間に異なる磁性層を挟んで積層されていることで、磁化自由層の全体の保磁力を十分に大きくして、動作の安定した光変調素子とすることができる。
また、本発明に係る光変調素子は、前記磁化自由層において、最上層に積層された磁性層が他の磁性層よりも磁気光学効果が大きく、前記他の磁性層の少なくとも1つが、Co,Niから選択された1種以上を含有する金属または合金からなることを特徴とする
かかる構成により、光変調素子は、磁化自由層において、磁気光学効果大きい磁性層と共に保磁力大きい磁性層を備えて、磁化自由層の全体の保磁力を大きくして、動作の安定した光変調素子とすることができる。
また、本発明に係る光変調素子は、前記磁化自由層において、前記他の磁性層の少なくとも1つが、2種以上の異なる磁性材料からなる膜を交互に積層した多層膜であってもよく、特にCoを含む磁性材料からなる膜とNiを含む磁性材料からなる膜とを交互に積層した多層膜であることが好ましい。
かかる構成により、光変調素子は、前記磁化自由層において、特に保磁力の大きい磁性層を磁気光学効果の大きい磁性層と共に備えて、磁化自由層の全体の保磁力を十分に大きくして、動作の安定した光変調素子とすることができる。
本発明に係る光変調素子によれば、高精細と高速応答とを同時に可能とするスピン注入磁化反転素子を適用し、さらに安定した動作を保持しつつ選択性に優れた空間光変調器の画素とすることができる。
本発明の一実施形態に係る光変調素子の構成を模式的に示す断面図である。 本発明に係る光変調素子の動作を模式的に説明する断面図である。 (a)、(b)は、本発明の別の実施形態に係る光変調素子の構成を模式的に示す断面図である。 本発明に係る光変調素子を用いた空間光変調器の構成を模式的に示す平面図である。 図4に示す空間光変調器を用いた表示装置の模式図で、図4のA−A断面図に対応する図である。
以下、本発明に係る光変調素子を実現するための形態について図を参照して説明する。
[光変調素子]
本発明の一実施形態に係る光変調素子1は、図1に示すように、磁化固定層11、中間層12、磁化自由層13、保護層14の順に積層された構成であり、一対の電極である上部電極2と下部電極3に上下で接続されて、膜面に垂直に電流を供給される。光変調素子1は、磁化が一方向に固定された磁化固定層11および磁化の方向が回転可能な磁化自由層13を、非磁性または絶縁体である中間層12を挟んで備えたCPP−GMR(Current Perpendicular to the Plane Giant MagnetoResistance:垂直通電型巨大磁気抵抗効果)素子やTMR(Tunnel MagnetoResistance:トンネル磁気抵抗効果)素子等のスピン注入磁化反転素子であり、製造工程におけるダメージからこれらの層を保護するために、最上層に保護層14が設けられている。光変調素子1を構成する各層は、例えばスパッタリング法や分子線エピタキシー(MBE)法等の公知の方法で連続的に成膜されて積層され、電子線リソグラフィおよびイオンビームミリング法等で所望の平面視形状に加工される。
ここで、光変調素子1の磁化反転の動作を、図2を参照して説明する。なお、図2において保護層14は図示を省略する。スピン注入磁化反転素子である光変調素子1は、逆方向のスピンを持つ電子を注入することにより、すなわち電流を反対向きに供給することにより、磁化自由層13の磁化方向を反転(スピン注入磁化反転、以下、適宜磁化反転という)させて、磁化固定層11の磁化方向と同じ方向または180°異なる方向にする。具体的には、図2(a)に示すように、上部電極2を「+」、下部電極3を「−」にして、磁化自由層13側から磁化固定層11へ電流を供給すると、磁化自由層13の磁化は磁化固定層11の磁化方向と同じ方向になる。以下、この状態を光変調素子1の磁化が平行である(P:Parallel)という。反対に、図2(b)に示すように、上部電極2を「−」、下部電極3を「+」にして、磁化固定層11側から磁化自由層13へ電流を供給すると、磁化自由層13の磁化は磁化固定層11の磁化方向と逆方向になる。以下、この状態を光変調素子1の磁化が反平行である(AP:Anti-Parallel)という。
光変調素子1の磁化が平行、反平行いずれかの磁化を示しているとき、その磁化を反転させる電流が供給されるまでは当該磁化の状態が保持される、すなわち電流の供給が停止された状態でも磁化自由層13の磁化方向が一定に保持されるように、磁化自由層13はある程度の大きさの保磁力が必要である。また、連続電流を供給されると、光変調素子1がジュール熱で加熱されて磁化反転動作に影響する虞があるので、パルス電流のように磁化方向を反転させる電流値に一時的に到達する電流を用いることができるようにするためである。ただし、磁化自由層13の保磁力が大きくなって磁化固定層11の保磁力に近付くと、磁化反転に要する電流(磁化反転電流)が大きくなり、さらに磁化固定層11の保磁力以上になると、電流供給による磁化反転動作ができなくなる。したがって、光変調素子1は、磁化自由層13の保磁力が磁化固定層11の保磁力よりは小さく、かつ安定した磁化反転動作を得られる大きさ、好ましくは磁化固定層11の保磁力が1000Oe以上、磁化自由層13の保磁力が200〜1000Oeの範囲となるように、後記のように構成する。
光変調素子1に入射した光が磁性体である磁化自由層13や磁化固定層11に反射または透過すると、磁気光学効果により、光はその偏光の向きが変化(旋光)して出射する。さらに、磁性体の磁化方向が180°異なると、当該磁性体の磁気光学効果による旋光の向きは反転する。したがって、図2(a)、(b)にそれぞれ示す、磁化が平行、反平行である、すなわち磁化自由層13の磁化方向が互いに180°異なる光変調素子1における旋光角は、互いに異なる角度(向きも含める)となり、それぞれθp,θap(θp≠θap)と表すことができる。そして、これらの旋光角の差|θp−θap|は、磁化自由層13のカー回転角θkまたはファラデー回転角θFの大きさに依存する(以下、「θk」、「θF」は向きを示さず大きさのみを示す。)。詳しくは、光変調素子1に入射した光が磁化自由層13で反射した場合は、θp=+θk、θap=−θkとなり、旋光角の差|θp−θap|は2θkとなる。あるいは、光変調素子1に入射した光が、磁化自由層13、中間層12、磁化固定層11を透過し、下部電極3の上面で反射して、再び磁化固定層11、中間層12、磁化自由層13を透過して出射した場合は、磁化固定層11の磁化方向は一定で、出射光は磁化自由層13を2回透過しているので、旋光角の差|θp−θap|は4θFとなる。
光変調素子1は、その出射光の偏光の向きを、供給される電流の向きに応じて変化させることで後記の空間光変調器等の画素として機能するため、偏光の向きの変化すなわち旋光角の差|θp−θap|が大きいことが光変調度が大きいとして望まれる。したがって、光変調素子1は、磁化自由層13のカー回転角θkやファラデー回転角θFが大きく(磁気光学効果が大きく)なるように、後記のように構成する。
磁気光学効果の大きさは、入射光の波数ベクトルと磁性体の磁化ベクトルとのスカラー積に比例する。すなわち磁化自由層13のカー回転角θkおよびファラデー回転角θFは、光の入射角が磁化自由層13の磁化方向に平行に近いほど大きくなる。ここで、磁化自由層13(および磁化固定層11)が、膜面方向の磁化を有する(面内磁気異方性)と、光変調素子1の構造上、磁化方向に平行に近付けて光を入射させることが困難である。一方、磁化自由層13が膜面に垂直な方向の磁化を有する、すなわち垂直磁気異方性であれば、容易に磁化方向に平行に光を入射することができ、極カー効果により、大きなカー回転角θkが得られる。本実施形態に係る光変調素子1は、垂直磁気異方性を有する磁化固定層11および磁化自由層13を備えることで、大きなカー回転角θkまたはファラデー回転角θFとするものである。そして、さらに磁化自由層13に磁気光学効果の大きい材料を含むことで、いっそう大きなカー回転角θkやファラデー回転角θFとする。以下、図1を参照して光変調素子1を構成する各層の詳細を説明する。
磁化固定層11は、垂直磁気異方性を有するCPP−GMR素子やTMR素子等の磁化固定層として公知の磁性材料にて構成することができ、その厚さは8〜30nmとすることが好ましい。具体的にはFe,Co,Niのような遷移金属およびそれらを含む合金、例えばTbFe系、TbFeCo系、CoCr系、CoPt系、CoPd系、FePt系の合金が挙げられる。また、磁化固定層11は、これらの遷移金属の膜と非磁性金属の膜とを交互に積層した多層膜で構成してもよく、Co/Pt,Fe/Pt,Co/Pd等の多層膜が挙げられる。これらの材料で構成することで、強い垂直磁気異方性を有し、また磁化自由層13より大きな保磁力を有する磁化固定層11とすることができる。
磁化自由層13は、図1に示すように、中間層12上の第2磁性層132と、さらにその上の、他の磁性層(第2磁性層132)よりも磁気光学効果が大きい磁性材料からなる第1磁性層131とを積層されて備える。磁性層131,132は共に垂直磁気異方性を有し、一体の磁性体すなわち磁化自由層13として同時に磁化反転する。磁性層131,132の合計の厚さすなわち磁化自由層13の厚さは4〜20nmとすることが好ましい。
第1磁性層131は、磁気光学効果の比較的大きいすなわちカー回転角およびファラデー回転角の大きい材料で構成され、その厚さは2〜15nmとすることが好ましく、厚くするほど磁気光学効果が大きくなる。このような材料として、Gd,Feを含有する合金、CoPt系合金やCoPd系合金のようなCoを含有する合金、およびMn含有磁性合金等が挙げられ、特にGdおよびFeを含有するGdFe系合金が好ましい。
一方、第2磁性層132は、磁気光学効果で第1磁性層131に劣るため、その厚さは2〜5nmとすることが好ましいが、このような薄い層であって第1磁性層131の保磁力を補って磁化自由層13全体としての保磁力を十分なものとできる材料で構成される。このような材料として、Co,Niのような遷移金属およびそれらを含む合金が好ましく、合金としてはCoCr系合金、NiFe系合金が挙げられる。あるいは図3(a)に示すように2種以上の異なる磁性材料からなる膜を交互に積層した多層膜で構成してもよい。具体的には、Co/Ni多層膜、CoCr/Ni多層膜、またはCoCr/NiFe多層膜が挙げられ、特にCo/Ni多層膜が好ましく、さらに前記GdFe系合金からなる第1磁性層131と組み合わせることがより好ましい。このようなCo/Ni多層膜で構成された第2磁性層132Aにおいては、Co膜単層(1層)の膜厚は0.1〜2nmの範囲とすることが好ましく、Ni膜単層の膜厚は0.2〜3nmの範囲とすることが好ましい。第2磁性層132が第1磁性層131と中間層12との間、すなわち中間層12に接触して積層されることで、第1磁性層131の磁化方向が微小な電流等で変化することなく、磁化自由層13全体として保磁力を大きくすることができる。また、磁気光学効果の大きい第1磁性層131は、より多くの光が入射する上方に配置されることで、より光変調度を大きくすることができる。
また、別の実施形態として、図3(b)に示すように第1磁性層131Aを多層膜で構成してもよく、具体的には、Co/Pt多層膜、Co/Pd多層膜、Ni/Pt多層膜、またはNi/Cu多層膜のようなCoやNiを含むものが挙げられる。これらの多層膜も磁気光学効果が大きく、光変調度の大きな光変調素子1Bとなる。さらに、第1磁性層131Aおよび第2磁性層132Aのように種類の異なる多層膜を組み合わせて磁化自由層を構成してもよい(図示せず)。
本実施形態においては、磁化自由層13を第1、第2磁性層の2層で構成したが、3層以上で構成してもよい。この場合も、磁気光学効果の比較的大きい磁性層(第1磁性層131,131A)は、最上層すなわち光の入射方向から最も近い位置に積層する。
中間層12は、磁化固定層11と磁化自由層13との間に設けられ、その厚さは0.5〜10nmとすることが好ましい。光変調素子1がCPP−GMR素子であれば、中間層12は、Cu,Alのような非磁性金属からなり、光変調素子1がTMR素子であれば、中間層12は、MgO,Al23のような絶縁体からなる。
保護層14は、Ta,Ru,Cuの単層、または、Cu/Ta,Cu/Ruの2層等から構成される。なお、前記の2層構造とする場合は、いずれもCuを内側(下層)とする。保護層14の厚さは、1nm未満であると連続した膜を形成し難く、一方、10nmを超えて厚くすると、光変調素子1の上方からの入射光の透過光量を減衰させるため、1〜10nmとすることが好ましい。
以上のように、本発明に係る光変調素子によれば、高精細かつ高速応答とすることが可能な垂直磁気異方性を有するスピン注入磁化反転素子に磁気光学効果の大きい材料を用いて、光変調度を向上させた光変調素子とすることができる。
[空間光変調器]
次に、前記の本発明に係る光変調素子を画素に備える空間光変調器について、その実施形態を説明する。なお、本明細書における画素とは、空間光変調器による表示の最小単位での情報(明/暗)を表示する手段を指す。
本発明の一実施形態に係る空間光変調器10は、基板5(図5参照)上に、図4に示すように2次元アレイ状に配列された画素4からなる画素アレイ40と、画素アレイ40から1つ以上の画素4を選択して駆動する制御部80を備える。なお、本明細書における平面(上面)は空間光変調器10の光の入射面であり、空間光変調器10は画素4(画素アレイ40)に上方から入射した光を反射してその光を変調して上方へ出射する反射型の空間光変調器である。
図4に示すように、画素アレイ40は、平面視でストライプ状の複数の上部電極2,2,…と、同じくストライプ状で、平面視で上部電極2と直交する複数の下部電極3,3,…と、を備え、上部電極2と下部電極3との交点毎に1つの画素4を設ける。したがって、画素4は、空間光変調器10の光の入射面に、2次元アレイ状に配列されて画素アレイ40を構成する。本実施形態では、画素アレイ40は、4行×4列の16個の画素4からなる構成で例示される。なお、上部電極2と下部電極3は、適宜、両者をまとめて電極2,3と称する。そして、図4および図5に示すように、画素4は、当該画素4における一対の電極としての上部電極2および下部電極3と、これらの電極2,3に上下から挟まれた光変調素子1を備える。また、図5において、光変調素子1の保護層14(図1参照)は図示を省略する。また、隣り合う上部電極2,2間、光変調素子1,1間、および下部電極3,3間には、絶縁部材6が形成されている。
図4に示すように、制御部80は、上部電極2を選択する上部電極選択部82と、下部電極3を選択する下部電極選択部83と、これらの電極選択部82,83を制御する画素選択部84と、電極2,3に電流を供給する電源81と、を備える。これらはそれぞれ公知のものでよく、光変調素子1を磁化反転させるために適正な電圧・電流を供給するものとする。
上部電極選択部82は上部電極2の1つ以上を選択し、下部電極選択部83は下部電極3の1つ以上を選択するために、それぞれ複数のスイッチング素子から構成され、選択した電極2,3に電源81から所定の電流を供給させる。画素選択部84は、例えば図示しない外部からの信号に基づいて画素アレイ40の特定の1つ以上の画素4を選択し、選択した画素4に接続する電極2,3を電極選択部82,83に選択させる。電源81は、選択した画素4に備えられる光変調素子1を磁化反転させるために適正な電圧・電流を供給するもので、電圧を正負反転可能なパルス電流を供給することができる。このような構成により、特定の画素4が選択され、この画素4の光変調素子1に、所定の向きのパルス電流が供給されて磁化反転させる。
空間光変調器10の画素4の構成の詳細を図4および図5を参照して説明する。上部電極2は、図5に示すように光変調素子1の上に配され、図4に示すように横方向に帯状に延設される。1つの上部電極2は、横1行に配置された複数の画素4,4,…のそれぞれの光変調素子1に電流を供給する。一方、下部電極3は、光変調素子1の下に配され、縦方向に帯状に延設される。1つの下部電極3は、縦1列に配置された複数の画素4,4,…のそれぞれの光変調素子1に電流を供給する。上部電極2は、光変調素子1の入射光および出射光を遮らないように透明電極材料で構成される。一方、下部電極3は導電性の優れた電極用金属材料で構成される。
光変調素子1は、図4に示すように、平面視で上部電極2と下部電極3の重なる部分に配され、この電極2,3に上下から挟まれて接続されている。光変調素子1の平面視形状は、本実施形態においては正方形であるが、これに限定されるものではない。また、1個の画素4につき1個の光変調素子1が配されているが、例えば1つの画素4に面方向で(1×3)個、(2×2)個等の複数の光変調素子1を備えてもよい。また、光変調素子1は別の実施形態に係る光変調素子1A,1B(図3(a)、(b)参照)を同様に適用できる。
上部電極2は、光が透過するように透明電極材料で構成される。透明電極材料は、例えば、インジウム亜鉛酸化物(Indium Zinc Oxide:IZO)、インジウム−スズ酸化物(Indium Tin Oxide:ITO)、酸化スズ(SnO2)、酸化アンチモン−酸化スズ系(ATO)、酸化亜鉛(ZnO)、フッ素ドープ酸化スズ(FTO)、酸化インジウム(In23)等の公知の透明電極材料からなる。これらの透明電極材料は、スパッタリング法、真空蒸着法、塗布法等の公知の方法により成膜され、成形加工される。
下部電極3は、例えばCu,Al,Au,Pt等の金属やその合金のような一般的な電極用金属材料からなる。そして、スパッタリング法等の公知の方法により成膜、フォトリソグラフィ、およびエッチングまたはリフトオフ法等によりストライプ状に加工される。
基板5は、例えば表面を熱酸化したSi基板等の公知の基板が適用できる。絶縁部材6は、隣り合う上部電極2,2間(図5不図示)、光変調素子1,1間、および下部電極3,3間に配され、例えば、SiO2やAl23等からなる。
(空間光変調器の画素選択の動作)
次に、空間光変調器10の画素選択の動作を、この空間光変調器10を用いた表示装置として、図5を参照して説明する。電極2,3は、前記の通り、制御部80に接続される。また、図5に示すように、本実施形態に係る空間光変調器10の画素4(画素アレイ40)の上方には、画素アレイ40に向けて光を照射する光源93と、光源93から照射された光を画素アレイ40に入射する前に偏光とする入射偏光フィルタ91と、画素アレイ40で反射して出射した光から特定の向きの偏光のみを透過する出射偏光フィルタ92と、出射偏光フィルタ92を透過した光を検出する検出器94とが配置される。
光源93から照射された光(レーザー光等)は様々な偏光成分を含んでいるので、これを画素アレイ40の手前の入射偏光フィルタ91を透過させて、1つの偏光成分の光とする。以下、1つの偏光成分の光を偏光と称する。この偏光(入射偏光)は、画素アレイ40のすべての画素4に所定の入射角で入射する。それぞれの画素4において、入射偏光は、上部電極2を透過して光変調素子1に入射し、光変調素子1の磁化自由層13で反射して出射偏光として出射し、再び上部電極2を透過して画素4から出射する。あるいは、光変調素子1に入射した偏光が、磁化自由層13、中間層12、磁化固定層11を透過し、下部電極3の上面で反射して、再び磁化固定層11、中間層12、磁化自由層13を透過して出射する構成であってもよい。それぞれの画素4から出射したすべての出射偏光は、出射偏光フィルタ92に到達する。出射偏光フィルタ92は、特定の偏光、ここでは入射偏光に対して角度θp旋光した偏光を遮光し、角度θap旋光した偏光が透過して検出器94に入射される。偏光フィルタ91,92はそれぞれ偏光板等であり、検出器94はスクリーン等の画像表示手段である。
図5に示すように、入射偏光に対して角度θap旋光した画素4からの出射偏光は、出射偏光フィルタ92を透過して検出器94に到達するので、この画素4は明るく(白く)検出器94に表示される。一方、角度θp旋光した画素4からの出射偏光は、出射偏光フィルタ92で遮られるので、この画素4は暗く(黒く)、検出器94に表示される。
図2(a)、(b)を参照して説明したように、光変調素子1はスピン注入磁化反転素子であり、電極2,3から供給される電流の向きに応じて磁化反転して、光変調素子1で反射した偏光を、異なる角度θp,θapに旋光させる。したがって、所望の画素4からの出射偏光を、角度θp,θapの所望の一方に旋光させた偏光とすることができる。すなわち、画素毎に明/暗(白/黒)を切り分けられ、電流の向きを切り換えれば明/暗が切り換わる。なお、空間光変調器10の初期状態としては、例えば全体が白く表示されるように、すべての画素4の光変調素子1の磁化を反平行にするべく、上部電極2のすべてを「−」、下部電極3のすべてを「+」にして、上向きの電流を供給すればよい。
ここで、磁化自由層13のカー回転角θkやファラデー回転角θFは、前記したように光の入射角が磁化自由層13の磁化方向に近いほど大きい。したがって、入射角は膜面に垂直すなわち0°とすることが旋光角の差|θp−θap|を最大にする上で望ましいが、このようにすると、出射偏光の光路が入射偏光の光路と一致する。そこで、図5に示すように、入射角を少し傾斜させて、出射偏光フィルタ92および検出部94、光源93および入射偏光フィルタ91が、それぞれ入射偏光および出射偏光の光路を遮らない配置となるようにする。具体的には、偏光の入射角は5°〜30°とすることが好ましい。または、入射角0°として、入射偏光フィルタ91と画素アレイ40との間にハーフミラーを配置して、出射偏光のみを側方へ反射させてもよい。この場合、出射偏光フィルタ92および検出器94は画素アレイ40の側方に配置する。
以上のように、本発明に係る光変調素子を画素に備える空間光変調器によれば、高精細かつ高速応答とすることが可能なスピン注入磁化反転素子を光変調素子として、画素選択性の優れた空間光変調器となる。
以上、本発明の光変調素子およびこれを用いた空間光変調器を実施するための各実施形態について述べてきたが、本発明はこれらの実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。
本発明の効果を確認するために、表1の実施例に示す本発明に係る光変調素子1A(図3(a)参照)のサンプルを作製し、そのカー回転角θkおよび保磁力を評価した。磁化自由層の第1磁性層はGdFe合金、第2磁性層はCo膜とNi膜を3回繰り返して積層したCo/Ni多層膜であり、中間層はCu、磁化固定層はTbFeCo合金からなるGMR構造とし、表1に示す膜厚の単位はnmである。下部電極はCu、上部電極はIZOを適用した。なお、反射光の偏光の測定により評価するため、フォトリソグラフィ等による加工は施さず、したがって保護層(図3(a)参照)に相当する膜は設けず、熱酸化したSi基板上に、下部電極から上部電極までをDCマグネトロンスパッタリング法で連続して成膜した。同様に、比較例として、表1に示すように前記実施例から第2磁性層を除いた構成のサンプルを作製した。
作製したサンプルに、外部から一様な磁界を印加することによって、磁化固定層および磁化自由層の磁化方向が一方向となるようにした。そして、波長780nmのレーザー光を入射角30°で入射して、サンプルからの反射光の偏光の向きを、垂直磁界マイクロKerr効果測定装置(ネオアーク株式会社製)で測定した。次に、反射光の偏光の測定を継続したまま、前記印加磁界と反対方向の磁界をその大きさを漸増させながら印加することによって、磁化自由層の磁化を反転させて、サンプルからの反射光の偏光の変化した向き(旋光角の変化)を測定した。磁化反転による旋光角の差をカー回転角の変化量2θkとして表1に示す。また、前記磁化反転したときの印加磁界の大きさから、磁化自由層の保磁力を測定し、表1に示す。
Figure 0005238616
表1に示すように、磁化自由層を膜厚10nmのGdFe合金のみで構成した光変調素子である比較例は、カー回転角は大きいが、保磁力が小さかった。この比較例に、膜厚2.25nmのCo/Ni多層膜(第2磁性層)を中間層上に積層した構成の本発明に係る光変調素子である実施例は、カー回転角の上昇幅は小さいが保磁力は大幅に向上した。このように、磁気光学効果は大きいが保磁力は小さい磁性層に他の磁性層を積層することで、スピン注入磁化反転素子として良好に動作する、光変調度の大きな光変調素子とすることができる。
10 空間光変調器
1,1A,1B 光変調素子
11 磁化固定層
12 中間層
13,13A,13B 磁化自由層
131,131A 第1磁性層(最上層に積層された磁性層)
132,132A 第2磁性層(他の磁性層)
14 保護層
2 上部電極
3 下部電極
40 画素アレイ
4 画素
5 基板
6 絶縁部材
80 制御部

Claims (5)

  1. 垂直磁異方性を有する磁化固定層、中間層、および垂直磁異方性を有する磁化自由層の順に積層したスピン注入磁化反転素子構造を備え、上下に接続された電極から電流を供給されることにより前記磁化自由層の磁化方向を変化させて、入射した光をその偏光方向を変化させて出射する光変調素子であって、
    前記磁化自由層は2以上の磁性層を積層してなり、
    前記磁化自由層において、最上層に積層された磁性層は、GdおよびFeを含有する合金、Coを含有する合金、Mnを含有する合金のいずれかであって、他の磁性層よりも磁気光学効果が大きい磁性材料からなることを特徴とする光変調素子。
  2. 垂直磁気異方性を有する磁化固定層、中間層、および垂直磁気異方性を有する磁化自由層の順に積層したスピン注入磁化反転素子構造を備え、上下に接続された電極から電流を供給されることにより前記磁化自由層の磁化方向を変化させて、入射した光をその偏光方向を変化させて出射する光変調素子であって、
    前記磁化自由層は2以上の磁性層を積層してなり、
    前記磁化自由層において、最上層に積層された磁性層は、2種以上の異なる材料からなる膜を交互に積層した多層膜であって、Co,Niから選択された1種以上を含有し、他の磁性層よりも磁気光学効果が大きいことを特徴とする光変調素子。
  3. 垂直磁気異方性を有する磁化固定層、中間層、および垂直磁気異方性を有する磁化自由層の順に積層したスピン注入磁化反転素子構造を備え、上下に接続された電極から電流を供給されることにより前記磁化自由層の磁化方向を変化させて、入射した光をその偏光方向を変化させて出射する光変調素子であって、
    前記磁化自由層は2以上の磁性層を積層してなり、
    前記磁化自由層において、最上層に積層された磁性層が他の磁性層よりも磁気光学効果が大きく、前記他の磁性層の少なくとも1つが、Co,Niから選択された1種以上を含有する金属または合金からなることを特徴とする光変調素子。
  4. 垂直磁気異方性を有する磁化固定層、中間層、および垂直磁気異方性を有する磁化自由層の順に積層したスピン注入磁化反転素子構造を備え、上下に接続された電極から電流を供給されることにより前記磁化自由層の磁化方向を変化させて、入射した光をその偏光方向を変化させて出射する光変調素子であって、
    前記磁化自由層は2以上の磁性層を積層してなり、
    前記磁化自由層において、最上層に積層された磁性層が他の磁性層よりも磁気光学効果が大きく、前記他の磁性層の少なくとも1つが、2種以上の異なる磁性材料からなる膜を交互に積層した多層膜であることを特徴とする光変調素子。
  5. 前記多層膜が、Coを含む磁性材料からなる膜とNiを含む磁性材料からなる膜とを交互に積層してなることを特徴とする請求項4に記載の光変調素子。
JP2009135508A 2009-06-04 2009-06-04 光変調素子 Expired - Fee Related JP5238616B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009135508A JP5238616B2 (ja) 2009-06-04 2009-06-04 光変調素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009135508A JP5238616B2 (ja) 2009-06-04 2009-06-04 光変調素子

Publications (2)

Publication Number Publication Date
JP2010282030A JP2010282030A (ja) 2010-12-16
JP5238616B2 true JP5238616B2 (ja) 2013-07-17

Family

ID=43538801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009135508A Expired - Fee Related JP5238616B2 (ja) 2009-06-04 2009-06-04 光変調素子

Country Status (1)

Country Link
JP (1) JP5238616B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148698A (ja) * 2012-01-19 2013-08-01 Nippon Hoso Kyokai <Nhk> スピン注入型光変調素子および空間光変調器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4384196B2 (ja) * 2007-03-26 2009-12-16 株式会社東芝 スピンfet、磁気抵抗効果素子及びスピンメモリ
JP4970113B2 (ja) * 2007-03-30 2012-07-04 株式会社東芝 磁気抵抗素子及び磁気メモリ

Also Published As

Publication number Publication date
JP2010282030A (ja) 2010-12-16

Similar Documents

Publication Publication Date Title
JP5567969B2 (ja) 光変調素子およびこれを用いた空間光変調器
JP5238619B2 (ja) 磁気光学式空間光変調器およびその製造方法
JP5852363B2 (ja) 空間光変調器
JP5507894B2 (ja) 磁気光学素子と光変調器と磁気光学制御素子及び画像表示装置
JP5238616B2 (ja) 光変調素子
JP6017165B2 (ja) 空間光変調器
JP2012230143A (ja) スピン注入型磁化反転素子、光変調素子および空間光変調器
JP5679690B2 (ja) スピン注入磁化反転素子ならびにこれを用いた磁気ランダムアクセスメモリおよび空間光変調器
JP2010232374A (ja) 磁気抵抗素子ならびにこれを用いた磁気ランダムアクセスメモリおよび空間光変調器
JP5836858B2 (ja) 光変調素子および空間光変調器
JP5054639B2 (ja) 光変調素子および空間光変調器
JP5249876B2 (ja) 反射型空間光変調器
JP2014175429A (ja) スピン注入磁化反転素子
JP2014110356A (ja) スピン注入磁化反転素子
JP5581171B2 (ja) 光変調素子およびこれを用いた空間光変調器
JP5567970B2 (ja) 光変調素子およびこれを用いた空間光変調器
JP6581454B2 (ja) 空間光変調器
JP5873363B2 (ja) 光変調素子および空間光変調器
JP6546745B2 (ja) 光変調素子および空間光変調器
JP2011180355A (ja) 光変調素子および空間光変調器
JP6329384B2 (ja) スピン注入磁化反転素子
JP5667417B2 (ja) 光変調素子および空間光変調器
JP5836857B2 (ja) 光変調素子および空間光変調器
JP6321927B2 (ja) 空間光変調器
JP2012252204A (ja) 光変調素子および空間光変調器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5238616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees