KR101796058B1 - 광학체 - Google Patents

광학체 Download PDF

Info

Publication number
KR101796058B1
KR101796058B1 KR1020127011665A KR20127011665A KR101796058B1 KR 101796058 B1 KR101796058 B1 KR 101796058B1 KR 1020127011665 A KR1020127011665 A KR 1020127011665A KR 20127011665 A KR20127011665 A KR 20127011665A KR 101796058 B1 KR101796058 B1 KR 101796058B1
Authority
KR
South Korea
Prior art keywords
layer
refractive index
optical
light
optical body
Prior art date
Application number
KR1020127011665A
Other languages
English (en)
Other versions
KR20120091186A (ko
Inventor
미쓰테루 이노우에
다이치 고토
다카시 야마구치
Original Assignee
고꾸리쯔 다이가꾸 호우징 도요하시 기쥬쯔 가가꾸 다이가꾸
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고꾸리쯔 다이가꾸 호우징 도요하시 기쥬쯔 가가꾸 다이가꾸 filed Critical 고꾸리쯔 다이가꾸 호우징 도요하시 기쥬쯔 가가꾸 다이가꾸
Publication of KR20120091186A publication Critical patent/KR20120091186A/ko
Application granted granted Critical
Publication of KR101796058B1 publication Critical patent/KR101796058B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/213Fabry-Perot type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/15Function characteristic involving resonance effects, e.g. resonantly enhanced interaction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/50Phase-only modulation

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

입사광의 광학특성을 임의로 또한 신속하게 제어할 수 있는 광학체를 제공한다.
제1반사층(3)과 제2반사층(5) 사이에 PLZT 등으로 이루어지는 굴절률 가변층(8)과 가넷 등으로 이루어지는 자기광학재료층(9)을 병존시킨다. 직선편광광이 제1반사층(3)측으로 입사되면, 입사광은 자기광학재료층(9)과 간섭해서 우원편광광과 좌원편광광으로 변환된다. 양 빛에는 약간의 위상차가 있지만, 한쌍의 반사층(3, 5) 사이를 다중으로 반사할 때에 위상차가 증폭되고 또한 굴절률 가변층(8)의 제어된 굴절률에 따라 제어된다.
이렇게 그 위상차가 제어증폭 된 좌, 우원편광광을 자기광학재료층(9)에 다시 간섭시켜서 직선편광광으로 되돌리면, 그 위상차에 따라 편광면이 회전한다.

Description

광학체{OPTICAL BODY}
본 발명은 광학체(光學體)의 개량에 관한 것이다.
제1층과 제2층 사이에 광기능층(光機能層)을 삽입시키는 구성의 광학체가 특허문헌1에 개시되어 있다. 광기능층으로서, 인가(印加)한 전계(電界)에 의하여 굴절률을 제어 가능한 PLZT 등의 전기광학재료(電氣光學材料)가 사용되고 있다. 제1층과 제2층은 각각 반사층(反射層)이며, 양자에 의하여 공진기(共振器)가 구성된다. 즉 제1반사층으로 입사된 빛은 이 제1반사층과 제2반사층 사이에서 다중으로 반사되어 제1반사층으로부터 출사된다. 이 공진기의 공진파장은 광기능층의 굴절률을 변화시킴으로써 제어된다. 따라서 광기능층에 인가하는 전계를 제어하고, 따라서 광기능층의 굴절률을 변화시킴으로써 제1반사층측으로 입사된 빛의 반사량, 즉 제1반사층으로부터 출사되는 빛의 세기가 제어 가능하게 된다(특허문헌1의 도4 참조).
일본국 공개특허 특개2006-201472호 공보
특허문헌1에 기재되어 있는 광학체는 전기광학재료에 인가하는 전계를 제어함으로써 입사광에 대한 반사율을 제어하는 것이다. 이에 따라 입사광에 대한 출사광의 강도를 변조 가능하게 된다.
입사광에 대한 변조의 요청은, 그 강도변조 뿐만 아니라 그 위상이나 직선편광광의 경우는 그 편광면의 회전각의 변조도 주목받고 있다.
그러나 편광광(偏光光)의 위상을 단시간에 임의로 변조하는 광학체는 아직 제안되어 있지 않다.
또한 직선편광광(直線偏光光)의 편광면의 각도에 관해서도, 이것을 단시간에 임의의 각도로 변조 가능한 광학체는 아직 제안되어 있지 않다.
예를 들면 한쌍의 반사층간에 자기광학효과(磁氣光學效果)(패러데이 효과(Faraday's 效果))를 구비하는 자성체 재료(磁性體材料)로 이루어지는 광기능층을 삽입시켜 일방의 반사층으로부터 직선편광광을 입사하면, 광기능층의 자기광학효과에 따라 직선편광광의 편광면의 각도가 변조된다. 그러나 편광면의 변조각도는 광기능층의 자기광학효과의 크기에 의존하기 때문에 일반적으로 변조각도는 고정되어 있고, 변조각도도 작은 것으로 한정된다. 광기능층에 인가하는 자장방향을 전환함으로써 광기능층을 구성하는 재료의 자화방향을 변경하고, 따라서 편광면의 경사각도에 변화를 주는 것이 가능하다. 그러나 자장의 방향의 전환을 리니어(linear)로 하는 것은 곤란하다.
본 발명은 상기 과제의 적어도 1개를 해결하는 것을 목적으로 한다.
본 발명의 제1국면은 다음과 같이 규정된다.
반사층으로 이루어지는 제1층 및 제2층, 및 광기능층을 구비하고, 상기 제1층으로 입사한 빛을 변조해서 상기 제1층으로부터 출사하는 광학체로서,
상기 광기능층으로서 굴절률 가변층과 자기광학재료층을 포함하고,
상기 굴절률 가변층은 상기 제1층과 상기 제2층 사이에 위치하고,
상기 자기광학재료층은 패러데이 효과를 발생하고, 상기 굴절률 가변층으로부터 보아서 상기 제2층과 반대측에 위치하는 광학체.
이와 같이 규정되는 광학체에 의하면, 하나의 디바이스 중에 자기광학재료층과 굴절률 가변층이 공존하기 때문에 직선편광광을 입사광으로서 제1층측으로 입사시키면, 직선편광광은 자기광학재료층과 간섭하여 타원편광광(우회전의 「우원편광광(右圓偏光光)」 및 좌회전의 「좌원편광광(左圓偏光光)」)으로 변환된다. 이 우원편광광과 좌원편광광 사이에는 위상차가 있다. 굴절률 가변층의 위상차를 제어함으로써 이 위상차를 변경 가능하게 된다.
여기에서, 굴절률 가변층을 광기능층으로 하고, 제1층과 제2층의 사이에 배치하고(제2국면), 우원편광광과 좌원편광광을 제1층과 제2층 사이에서 다중으로 반사시키면 당해 위상차가 증폭된다. 따라서 자기광학재료층의 자기광학효과에 의하여 발생한 우원편광광과 좌원편광광의 위상차가 아주 작더라도 제1층으로부터 출사하는 때에는 당해 위상차는 유의(有意)한 크기가 된다. 이렇게 증폭된 우원편광광과 좌원편광광의 위상차는 자기광학재료 출사시에 직선편광광으로 되돌아가고, 그 편광면의 각도는 당해 위상차에 따라 회전한다. 따라서 입사광에 대하여 출사광은 편광면의 회전각도가 변조된 것이 된다.
여기에서, 굴절률 가변층의 굴절률을 제어하면, 입사광에 대한 출사광의 편광면의 회전각도변조를 큰 범위에 있어서 임의로 제어 가능하게 된다.
더 구체적으로는, 직선편광광을 입사광으로 했을 때에는 굴절률 가변층의 굴절률을 제어함으로써 입사광의 진폭을 유지한 상태에서, 방사광(직선편광광)의 편광면의 각도를 ±180도의 범위에서 변조 가능하다.
마찬가지로, 이 광학체에 타원편광광이 입사하면 굴절률 가변층에 의하여 출사광의 위상이 유의하게 변경된다. 이 때에, 출사광의 출력강도는 실질적으로 일정하게 유지할 수 있다.
도1은, 본 발명의 실시형태의 광학체의 구조를 나타내는 모식도다. 본 명세서에 있어서, 이하, 각 도면에 있어서 동일한 작용을 발휘하는 요소에는 동일한 부호를 붙여서 그 설명을 생략하는 경우가 있다.
도2는, 다른 실시형태의 광학체의 구조를 나타내는 모식도다.
도3은, 다른 실시형태의 광학체의 구조를 나타내는 모식도다.
도4는, 다른 실시형태의 광학체의 구조를 나타내는 모식도다.
도5는, 다른 실시형태의 광학체의 구조를 나타내는 모식도다.
도6은, 실시형태의 광변조장치의 구조를 나타내는 모식도다.
도7은, 다른 실시형태의 광변조장치의 구조를 나타내는 모식도다.
도8은, 실시예의 광학체의 구조를 나타내는 모식도다.
도9는, 도8의 실시예의 광학체의 광학특성(파장-회전각)을 나타내는 그래프다.
도10은, 도8의 실시예의 광학체의 다른 광학특성(파장-반사율)을 나타내는 그래프다.
도11은, 도8의 실시예의 광학체의 다른 광학특성(전압-회전각, 전압-위상)을 나타내는 그래프다.
도12는, 도8의 실시예의 광학체의 다른 광학특성(전압-반사율)을 나타내는 그래프다.
도13은, 다른 실시예의 광학체의 구조를 나타내는 모식도다.
도14는, 도13의 실시예의 광학체의 광학특성(전압-회전각)을 나타내는 그래프다.
도15는 도13의 실시예의 광학체의 다른 광학특성(전압-반사율)을 나타내는 그래프다.
도16은, 다른 실시예의 광학체의 구조를 나타내는 모식도다.
도17은, 도16의 실시예의 광학체의 광학특성(전압-위상차)을 나타내는 그래프다.
도18은, 도16의 실시예의 광학체의 다른 광학특성(전압-반사율)을 나타내는 그래프다.
상기에 있어서 제1층과 제2층은 반사층으로 하는 것이 바람직하다. 제1층과 제2층 사이에서 빛을 다중으로 반사시킴으로써 빛의 변조를 증폭시킬 수 있기 때문이다.
빛을 입출사(入出射)하는 제1층은 하프미러층(제1반사층)으로 하고, 대향하는 제2층은 전반사층(全反射層)(제2반사층)으로 하는 것이 바람직하지만, 제2반사층은 반드시 전반사층으로 한정되는 것은 아니다.
제1반사층 및 제2반사층은 금속층(金屬層) 또는 유전체 다층막층(誘電體多層膜層)(블랙미러층)으로 할 수 있다.
반사층을 구성하는 금속층으로서는, 알루미늄, 백금, 금, 은 및 이들 합금의 단층막(單層膜) 또는 복층막(複層膜)을 들 수 있다.
반사층으로서 블랙미러층을 채용하는 경우에, 유전체 다층막층의 반복단위를 구성하는 유전체층의 페어의 재질 및 막두께는 브랙(Bragg)의 반사조건(d = λ/4: 여기에서, λ은 각 층의 광학파장, d는 각 층의 막두께)을 만족시키는 것을 조건으로 하여, 입사광의 파장이나 용도에 따라 임의로 선택할 수 있다. 구체적으로는, 유전체층의 페어로서 산화 실리콘(SiO2)과 산화 탄탈(Ta2O5)의 조합, 산화 실리콘(SiO2)과 실리콘(Si), 산화 실리콘(SiO2)과 산화 알루미늄(Al2O3) 등을 들 수 있다.
유전체층 페어의 반복수(反復數)도 임의로 선택 가능하지만, 제1반사층과 제2반사층에 같은 유전체 페어를 채용할 때에는, 제1반사층의 반복수보다 제2반사층의 반복수가 큰 것으로 한다. 유전체층의 페어로서 산화 실리콘(SiO2)과 산화 탄탈(Ta2O5)의 조합을 채용했을 때에는, 제1반사층은 3페어 이상, 제2반사층은 5페어 이상으로 하는 것이 바람직하다. 더 바람직하게는, 제1반사층은 5페어 이상, 제2반사층은 7페어 이상으로 한다.
제1층과 제2층의 간격은, m x λ/2(여기에서 m은 자연수, λ는 제1층과 제2층 사이의 광학파장)로 한다. 이에 따라 제1층과 제2층의 간격이 광학파장의 노드(node)의 폭과 일치한다.
여기에 광학파장은 λ0/n으로 규정된다. λ0은 진공에 있어서의 입사광의 파장, n은 실효 굴절률이다. 제1층과 제2층 사이에 1종류의 재료층 만이 삽입될 때에, 실효 굴절률(n)은 당해 재료의 굴절률과 동일하다. 제1층과 제2층 사이에 복수의 재료층이 삽입될 때에는, 복수의 서로 다른 재료가 연속하는 층을 하나의 재료의 하나의 층으로 간주했을 때의 굴절률이다. 예를 들면 연속하는 2층의 일방의 굴절률과 막두께를 n1, d1이라고 하고, 타방을 n2, d2이라고 했을 때에, (n1 x d1 + n2 x d2)/(d1 + d2)가 연속하는 2층의 실효 굴절률이 된다.
설계 용이성의 관점에서는, 제1층과 제2층 사이에 복수의 층이 삽입되는 경우에는, 각 층의 두께를 각 층의 광학파장/2의 자연수배(自然數倍)로 하는 것이 바람직하다. 예를 들면 제1층과 제2층 사이에 층(A) 및 층(B)가 삽입될 경우에, 층(A) 및 층(B)의 두께를 각각 m1 x λA/2, m2 x λB/2으로 한다. 여기에서, λA는 층(A)의 광학파장, λB는 층(B)의 광학파장이다. 이렇게 설계하면, 제1층과 제2층 사이에 복수의 층이 삽입될 경우에 있어서도, 제1층과 제2층의 간격은 m x λ/2(여기에서, m은 자연수, λ은 제1층과 제2층간의 광학파장)의 관계가 항상 유지된다.
제1층과 제2층 사이에 투광성 전극층을 삽입시키는 경우에는, 당해 투광성 전극층도 상기한 관계를 유지하는 것으로 하는 것이 바람직하다.
상기에 있어서, 제1층과 제2층의 간격을 규정할 때 및 제1층과 제2층 사이에 삽입되는 복수의 층에 있어서 각 층의 두께를 규정할 때에 광학파장(λ)이 사용되고 있다. 이 광학파장(λ)은 다소의 마진(margin)을 구비할 수 있다. 각 층의 두께를 nm 단위로 정확하게 제어하는 것은 매우 곤란하기 때문이다. 또한 다소의 마진(바람직하게는 ±10%이내, 더 바람직하게는 ±5%이내)이 있어도, 목적에 맞는 변조가 가능하기 때문이다.
제1층 및 제2층은 반사층으로 하는 것이 바람직한 것은 이미 설명했지만, 제1층 및 제2층의 적어도 일방을 유전체 다중층(블랙미러층)으로 했을 때에, 다중층을 구성하는 유전체층의 일부 또는 전부를 광학자성체 재료나 전기광학재료 등의 굴절률 가변층으로 형성하면, 이들 층도 빛의 변조기능에 기여하는 경우가 있다.
굴절률 가변층은 이것을 통과하는 빛에 대하여, 광통과 방향으로 그 굴절률을 변화시킨다.
굴절률 가변층은 제1층과 제2층 사이의 실질적인 전체를 점유하더라도 또한 그 일부 만이더라도 좋다.
이러한 굴절률 가변층을 형성하는 재료로서, 전기광학재료, 음향광학재료, 열광학재료 등을 들 수 있다.
전기광학재료는 전계의 인가에 의하여 굴절률이 변화되는 재료로서, PZT(PbZr0.52Ti0.48O3), PLZT, PLHT, SBN, LT, LN, KDP, DKDP, BNN, KTN, BTO 등을 들 수 있다.
굴절률 가변층을 전기광학재료에 의하여 형성했을 경우에, 당해 굴절률 가변층에 인가하는 전계를 제어함으로써 그 굴절률을 변화·제어 가능하다. 굴절률 가변층에 전계를 인가하기 위해서, 특허문헌1에도 기재되어 있는 바와 같이, 당해 굴절률 가변층을 투광성 전극으로 에워싸는 구성을 채용할 수 있다. 물론, 광학체의 외부로부터 전계를 인가하더라도 좋다. 이 경우에, 전계의 인가의 방향은 굴절률 가변층의 면내방향에 대하여 수직으로 한정되지 않고 경사져 있어도 좋다.
음향광학재료는 응력의 인가·왜곡에 의하여 굴절률 변화가 발생하는 재료로서, PZT(PbZr0.52Ti0.48O3), LT, LN, Al2O3, Y3Al5O12, Si, SiO2 등을 들 수 있다.
굴절률 가변층을 음향광학재료에 의하여 형성했을 경우에, 당해 굴절률 가변층에 인가하는 응력을 제어하여 그 굴절률을 변화시킴으로써 제어 가능하다. 굴절률 가변층에 응력을 인가하기 위해서는, 굴절률 가변층을 광투과성의 압전소자에 의하여 에워싸는 것이 생각된다.
열광학재료는 온도에 의하여 굴절률이 변화되는 재료로서 액정이 해당한다.
굴절률 가변층을 열광학재료에 의하여 형성했을 경우에, 당해 굴절률 가변층에 인가하는 열을 제어하여 그 굴절률을 변화시킴으로써 제어 가능하다. 굴절률 가변층의 온도를 제어하기 위해서는, 예를 들면 히터를 구비하면 좋다.
굴절률 가변층은 단층 또는 복수층으로 할 수 있다. 복수층으로 하였을 경우에, 이 복수층을 구성하는 각 층은 동일한 재료이어도 다른 재료이더라도 좋다.
자기광학재료는 자기광학효과(패러데이 효과, 커효과)를 구비하고, 직선편광광이 간섭하면 이것을 우회전의 타원편광광(우원편광광)과 좌회전의 타원편광광(좌원편광광)으로 변환한다. 이 때에, 우원편광광과 좌원편광광에는 위상차가 발생하고 있다. 또한 이 자성체 재료는 비상반성(非相反性)을 구비하기 때문에, 위상차가 발생한 우원편광광과 좌원편광광을 다시 자기광학재료에 간섭시켜서 직선편광광으로 재변환했을 때에, 그 위상차가 유지되어서 직선편광광의 편광면의 회전(각도의 변화)으로서 나타난다.
이러한 자기광학효과를 얻을 수 있는 자성체 재료에는, 강자성체 재료(强磁性體材料), 반강자성체 재료(半磁性體材料), 페리 자성체 재료(ferri 磁性體材料), 상자성체 재료(常磁性體材料)를 들 수 있다.
패러데이 효과를 발휘하는 투광성의 강자성체 재료로서, CdCo와 같은 자성 기억매체용 재료(磁性記憶媒體用 材料), CoFe2O4와 같은 스피넬 페라이트(spinel ferrite), PbFe12O19와 같은 헥사고날 페라이트(hexagonal ferrite), CdCr2S4와 같은 칼코게나이드(chalcogenide), 페라이트, CrCl3과 같은 크롬화 트리 할라이드(chromium trihalide), Y3Fe5O12(BiY)3Fe5O12와 같은 가넷(garnet; 석류석(石榴石)), (LaSr)MoO3과 같은 망간 산화합물, EuO와 같은 유로퓸 화합물(europium compound), Fe 및 그 합금으로 이루어지는 금속박막, Co 및 그 합금으로 이루어지는 박막, Mn 및 그 합금으로 이루어지는 박막, 기타 Fe2O4 등이나 폴리에틸렌 등의 유기재료를 들 수 있다.
패러데이 효과를 발휘하는 투광성의 반강자성체 재료로서는, 산화 망간 등을 들 수 있다.
상자성체 재료는, 외부로부터 자계를 인가함으로써 자기광학효과를 얻을 수 있다.
패러데이 효과를 발휘하는 투광성의 상자성체 재료로서, Tb3AlO12, GGG(Gd3Ga5O12) 등의 희토류 Al 치환 가넷, 산소 등의 기체, 물 등의 액체, 염화칼륨 등의 고체, GGG(Gd3Ga5O12), GGS 등의 크라운 등의 글라스를 들 수 있다.
청색광과 같은 단파장을 변조대상으로 하는 때에는, TAG, TGG을 채용하는 것이 바람직하다. 단파장을 거의 흡수하지 않기 때문이다.
자성체 재료층은 단층 또는 복수층으로 할 수 있다. 복수층으로 하였을 경우에, 이 복수층을 구성하는 각 층은 동일한 재료이어도 다른 재료이더라도 좋다.
본 명세서에 있어서, 「투광성」이라 함은 입사광(변조대상광)을 투과하는 특성을 가리키는 것으로서, 소위 투명성(가시광에 관한 투광성)으로 한정되는 것은 아니다. 또한 굴절률 가변층은 필연적으로 투광성을 구비하는 것으로 한다.
커효과를 구비하는 재료로서는 R3Fe5O12(R = 희토류 원소, 예를 들면 Bi, Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu)와 같은 가넷, MFe2O4(M = Mn, Fe, Co, Ni, Cu, Mg, Li0.55Fe0.5)과 같은 스피넬 페라이트, MFe12O19(M = Ba, Pb, Sr, Ca, Ni0.5Fe0.55, Ag0.50La0.5)와 같은 육방정 페라이트(六方晶 ferrite), MnBi, PtCo, EuO, PtMnSb으로 이루어지는 다결정막, Gd-Co, Gd-Fe, Dy-Fe, Tb-Fe, Gd-Tb-Fe, Gd-Dy-Fe, Tb-Fe-Co, Gd-Tb-Fe-Co, (Gd-Fe)-Bi, (Gd-Fe)-Sn, Nd-Dy-Fe-Co와 같은 희토류-전이금속 박막(希土類-轉移金屬 薄膜) 및 상기 재료로 이루어지는 박막으로 형성되는 복합막 등을 들 수 있다.
자성체 재료층을 광투과성으로 했을 때에, 자성체 재료층과 굴절률 가변층의 적층체를 반복해서 이루어지는 다층구조를 채용할 수도 있다. 이 다층구조를 채용하는 경우에 각 자성체 재료층은 동일한 재료에 의하여 형성하는 것이 바람직하지만, 또한 다른 재료에 의하여 형성하는 것을 제외하는 것은 아니다. 마찬가지로 각 굴절률 가변층도 동일한 재료에 의하여 형성하는 것이 바람직하지만, 다른 재료에 의하여 형성하더라도 좋다.
본 발명의 광학체는, 상기한 바와 같이 직선편광광의 편광면의 회전각도를 임의로 제어할 수 있고, 또한 타원편광광의 위상을 임의로 제어할 수 있다. 이 점에 있어서 광변조 소자로서 기능한다.
또한 직선편광광의 편광면의 회전각도 및 타원편광광의 위상의 변화는 모두 유의하게 (크게) 얻어지므로, 이것을 광메모리 소자로서 사용할 수도 있다.
도1은 본 발명의 제3국면의 구조를 나타내는 모식도다.
제1층(3)은 하프미러층이며, 제2층(5)은 전반사층이다. 제1층(3)과 제2층(5) 사이(본 명세서에서 「캐비티(7)」라고 하는 경우가 있다)에, 굴절률 가변층(8)과 자기광학재료층(9)이 삽입된다.
이렇게 구성된 광학체(1)에 의하면, 굴절률 가변층(8)과 자기광학재료층(9)이 제1층(3)과 제2층(5) 사이에 삽입되므로, 양 층(3-5) 사이로 변조대상광이 다중으로 반사할 때에, 굴절률 가변층(8)과 자기광학재료층(9)의 양 층의 영향을 받으므로 변조효율이 향상된다.
자기광학재료층(9)은 투광성을 구비하는(패러데이 효과를 구비한다) 것으로 할 수 있고(제4국면), 그 경우에는 자기광학효과층(9)을 굴절률 가변층(8)보다 제1층(3)측에 배치하는 것이 바람직하다. 직선편광광을 입출사광으로 할 때에, 광학체와 외부의 인터페이스부에 있어서 직선편광광과 타원편광광 사이의 변환이 필요하게 되기 때문이다.
자기광학재료로서 커효과를 구비하는(특히, 비투광성의) 것을 채용하는 경우에는, 자기광학재료층은 제2층(5)측에 배치한다.
도2에 이 예의 광학체(11)의 모식도를 나타낸다. 여기에서 도1과 동일한 작용을 발휘하는 요소에는 동일한 부호를 붙여서 그 설명을 생략한다. 이 커효과발현층(Kerr 效果 發現層)(15)은 제2반사층(5)의 표면에 형성된다. 이 커효과발현층(15) 자체가 충분한, 바람직하게는 실질적으로 100%의 반사율을 구비하면, 커효과발현층(15) 자체를 제2반사층으로 할 수 있다.
커효과발현층(15)에 의하여 변환된 빛의 위상차가 굴절률 가변층(18)에 있어서 증폭된다.
도3은 다른 태양의 광학체(21)를 나타낸다. 여기에서, 도1과 동일한 작용을 발휘하는 요소에는 동일한 부호를 붙여서 그 설명을 생략한다.
이 광학체(21)에서는, 자성체 재료층(9)을 캐비티(7)의 외측, 즉 제1층(3)의 입사광 대향면측에 배치하였다.
이렇게 구성된 광학체(21)에 의하면, 직선편광광을 입사광으로 했을 때에 당해 직선편광광은 자성체 재료층(9)에 의하여 약간 위상차를 가진 우원편광광과 좌원편광광으로 변환되어, 양 타원편광의 위상차는 캐비티(7)에 있어서 증폭된다.
자성체 재료층(9)으로서 가넷의 벌크(bulk)의 기판에 제1층, 굴절률 가변층 및 제2층을 순차적으로 적층해서 이루어지는 광학체를 사용할 수 있다.
마찬가지로, 굴절률 가변층(8)으로서 PLZT 등의 벌크의 기판을 사용하고, 그 양면에 제1층과 제2층을 적층하고 또한 제1층에 자기광학재료층(9)을 적층하는 구성을 채용할 수 있다.
도4는 다른 광학체(31)를 나타낸다. 여기에서, 도3과 동일한 작용을 발휘하는 요소에는 동일한 부호를 붙여서 그 설명을 생략한다.
이 광학체(31)에서는 자기광학재료층(9)의 표면에 제3층(6)이 형성되어 있다. 이 제3층(6)과 제1층(3)을 모두 반사층으로 함으로써 양자 사이에서 변조대상광을 다중으로 반사시켜 자기광학재료층(9)의 자기광학효과를 증폭한다.
이 제3층(6)도 제1층(3) 및 제2층(5)과 마찬가지로 형성할 수 있다. 제3층(6)과 제1층(3)의 간격도 m x λ/2로 하는 것이 바람직하다. 여기에서, m : 자연수, λ : 제2층(6)과 제1층(3) 사이의 광학파장이다.
도5에 다른 형태의 광학체(41)의 구성을 나타낸다. 여기에서, 도1과 동일한 요소에는 동일한 부호를 붙여서 그 설명을 부분적으로 생략한다. 이 광학체(41)에서는 굴절률 가변층(8)이 전기광학재료에 의하여 형성되어 있다. 이 굴절률 가변층(8)은 광투과성의 한쌍의 전극층(42, 43)으로 에워싸고 있고, 전극층(42, 43)에 인가하는 전압을 제어함으로써 굴절률 가변층(8)에 인가되는 전계를 제어하고, 따라서 굴절률 가변층(8)의 굴절률을 제어한다.
굴절률 제어수단으로서의 투광성 전극(42, 43)에 인가하는 전압의 제어회로는 광학체(21)에 일체적으로 조립하는 것이 장치 구성의 간소화의 관점으로부터 바람직하다.
전압제어회로는 범용적인 반도체 집적회로 기술에 의하여 제1반사층(3) 또는 제2반사층(5)의 일방에 형성할 수 있다.
제1반사층(3)측으로 빛이 입사되는 것을 고려하면, 전압제어회로를 당해 제1반사층(3)에 배치하는 것은 바람직하지 못하다. 입사광 및 출사광을 가로막는 것이 되기 때문이다.
따라서 전압제어회로는 제2반사층(5)의 표면에 형성하는 것이 바람직하다.
도6은 전압제어회로를 구비하는 반도체 기능층(53)을 구비한 광변조장치(51)를 나타낸다. 여기에서, 도5와 동일한 작용을 발휘하는 요소에는 동일한 부호를 붙여서 그 설명을 생략한다.
도면에서 부호 54는 반도체 기능층(53)으로부터 투광성 전극(42, 43)에 대한 전원선(電源線)을 나타낸다. 반도체 기능층(53)은 이 전원선(54)을 통하여, 제어된 전압을 투광성 전극(42, 43) 사이에 인가한다.
제2층(5)측에 반도체 기능층(53)을 형성한 결과, 기판(57)은 제1층(3)측의 배치가 된다.
이 기판(57)의 형성재료는 투광성을 구비하는 SiO2나 SGGG(예를 들면, Gd2.68Ca0.32Ga4.04Mg0.32Zr0.64O12) 등을 사용할 수 있다.
도7에 나타내는 광변조 시스템(61)은, 도6에 나타내는 광변조장치(51)에 광입사 디바이스(63)와 출사광 처리 디바이스(65)를 기판(57)과 대향하도록 배치한 것이다.
광입사 디바이스(63)는 광원, 광파이버 및 편광판 등으로 구성되고, 광학체에 원하는 편광광을 입사한다.
출사광 처리 디바이스(65)는, 기판(57)을 통과하여 온 광학체의 출사광을 처리한다. 위상변조된 출사광을 입사광과 간섭시켜서 간섭계 등에 이용할 수 있다.
(실시예)
이하, 본 발명의 실시예에 대해서 설명한다.
도8은 실시예의 광학체(81)의 구성을 나타낸다.
실시예의 광학체(81)는, SGGG(예를 들면, Gd2.68Ca0.32Ga4.04Mg0.32Zr0.64O12)의 기판(87)(두께 : 0.7mm)상에 산화 탄탈(막두께 : 90nm)과 산화 실리콘(막두께 : 134nm)으로 이루어지는 적층체를 단위 페어로 하여 총 9페어로 이루어지는 제1반사층(83)을 적층한다.
또한 막두께 712nm인 Bi : YIG(Bi1Y2Fe5O12, 광학파장(λ) : 780nm)를 광학자성체 재료층(89)으로서 적층한다. 이 광학자성체 재료층(89)의 위에는 막두께 174nm로 이루어지는 PLZT(구체적 조성 PbAA0.91La0.09Zr0.65Ti0.35O3, 광학파장(λ) : 780nm)를 굴절률 가변층(88)으로서 적층한다. 또, PLZT층(88)은 전기광학재료이므로 이 PLZT층(88)의 양면에 ITO 등으로 이루어지는 투광성 전극층을 형성하는 것이 되지만, 이 실시예에서는 당해 한쌍의 투광성 전극은 극히 얇게 형성하는 것으로서 그 막두께를 무시하는 것으로 했다(그 결과, 도8에 투광성 전극은 나타나 있지 않다). 또, 도8의 구성에 있어서, 제1층(83)과 제2층(85)의 간격(자기광학재료층(89)과 굴절률 가변층(88)의 합계 두께)은 λ/2의 5배다.
PLZT층(88)의 위에는 제1층(83)과 같은 단위 페어를 구비하고, 그 페어의 반복수를 18로 한 제2반사층(85)이 형성되어 있다.
각 층은 스퍼터법에 의하여 형성된다.
각 층의 형성방법은 스퍼터법에 한정되는 것이 아니라, 증착법, 이온 플레이팅법, 스프레이법, 이온빔 조사법(ion beam 照射法) 등의 범용적인 박막제조기술을 적용 가능하다.
도8에 나타낸 구성의 광학체(81)의 광학특성을 매트릭스 어프로치(matrix approach)법을 따라 시뮬레이션 하였다. 이 시뮬레이션에 관해서는 M.Inoue, T.Fujii, "A theoretical analysis of magneto-optical Faraday effect of YIG films with random multilayer structure", Appl. Phys. 81,317(1997).를 참조할 수 있다.
결과를 도9∼도12에 나타낸다.
실시예의 광학체(81)에 780nm의 파장(적색)인 직선편광광을 입사한 바, 출사광의 편광면의 회전각(입사광의 편광면의 각도와의 차이)은 도9에 나타나는 것이 되었다.
반사율(입사광에 대한 출사광의 강도)은 도10에 나타나 있는 바와 같이 거의 100%다. 여기에서 도10(B)는 도10(A)에 있어서의 파장 780.4nm 전후의 부분 확대도다.
도9 및 도10의 결과로부터, 실시예의 광학체(81)에 의하면 파장 및 그 강도를 유지하여 입사광의 편광면을 임의의 각도로 변경할 수 있는 것을 알 수 있다.
도11은, 편광면에 있어서 출사광의 회전각(입사광의 편광면의 각도와의 차이) 및 출사광의 위상(입사광의 위상과의 차이)과 도면에 나타나 있지 않은 투광성 전극에 인가하는 전압의 관계를 나타낸다. 실시예에서 사용하는 시뮬레이션에서는 투광성 전극은 두께를 가지지 않고 또한 그 재료는 완전한 투광성이며 또한 전기저항을 가지지 않는 것으로 가정하고 있다.
도11에 의하여, 0.0∼0.2V라고 하는 작은 전압범위에 있어서 출사광의 회전각과 위상을 제어 가능한 것을 알 수 있다. 또, 실시예의 광학체에서는, 전압변화에 대하여 편광면의 각도변화는 동기하고 있어, 양자 사이에 실질적인 시간지연은 없다.
도12는 인가전압과 반사율(입사광에 대한 출사광의 강도)에 관해서도 0.0∼0.2V의 인가전압범위에 있어서 거의 전반사의 상태를 유지할 수 있다. 여기에서, 도12(B)는 도12(A)에 있어서의 0.1V 전후의 부분 확대도다.
도13에는 다른 실시예의 광학체(101)를 나타낸다. 여기에서, 도8과 동일한 작용을 발휘하는 요소에는 동일한 부호를 붙여서 그 설명을 생략한다.
이 실시예에서는 자기광학재료층(109)로서 TAG(Tb3Al5O12)를 채용하고 있다. 이 실시예에서는 TAG로 이루어지는 자기광학재료층(109)의 두께를 840.71nm, PLZT로 이루어지는 굴절률 가변층(108)의 두께를 100.00nm로 하고 있다. 이에 따라 제1층(83)과 제2층(85)의 간격(자기광학재료층(109)과 굴절률 가변층(108)의 합계 두께)은 λ/2의 9배다.
또, TAG는 상자성체 재료이므로, 외부로부터 빛의 입사방향인 막면 수직방향으로 자장을 인가하고 있는 것으로 한다.
도13의 광학체(101)에 대해서도 앞의 실시예와 마찬가지로 하여 그 특성을 시뮬레이션 하였다. 입사광은 파장이 405nm(청색)인 직선편광광이다. 결과를 도14, 도15에 나타낸다.
도14는, 인가전압과 회전각(입사광의 편광면과 출사광의 편광면의 회전각도 차이)의 관계를 나타낸다. 도15는 인가전압과 반사율(입사광에 대한 출사광의 강도)의 관계를 나타낸다.
도14 및 도15에 의하여, TAG를 자기광학재료로 채용하면, 입사광에 단파장을 채용하여도 광학체에 있어서 손실은 거의 일어나지 않고, 거의 100%의 반사율을 확보할 수 있다. 또한 전압변화에 대하여 편광면의 각도변화가 동기하고 있어, 양자 사이에 실질적인 시간지연은 없다.
도16은 다른 실시예의 광학체(111)를 나타낸다. 여기에서, 도13과 동일한 작용을 발휘하는 요소에는 동일한 부호를 붙여서 그 설명을 부분적으로 생략한다.
이 실시예의 광학체는, 도8의 광학체(81)에서부터 자기광학재료층(89)을 생략한 것이다. 또, 도16의 예에서는, 제1층(83)과 제2층(85) 사이에 m x λ/2(m : 자연수, λ : 광학파장)의 관계를 확보하기 위해서, PLZT로 이루어지는 굴절률 가변층(118)의 두께를 4847nm로 하고 있다(m=28).
도16의 광학체(111)에 대해서도 앞의 실시예와 마찬가지로 하여 그 특성을 시뮬레이션 하였다. 입사광은 파장이 780nm(적색)인 직선편광광이다. 결과를 도17, 도18에 나타낸다.
도17은 인가전압과 위상(입사광의 위상과 출사광의 위상의 차이)의 관계를 나타낸다. 도18은 인가전압과 반사율(입사광에 대한 출사광의 강도)의 관계를 나타낸다.
도17 및 도18에서 0.0∼2.0V 정도의 작은 전압범위에 의하여 전범위(±180도)에 걸쳐 위상제어를 할 수 있는 것을 알 수 있다. 또한 반사율(입사광에 대한 출사광의 세기)에 관해서도 거의 60% 이상 확보할 수 있다. 전압변화에 대하여 위상변화가 동기하고 있어, 양자 사이에 실질적인 시간 지연은 없다.
본 발명은, 상기 발명의 실시형태 및 실시예의 설명에 어떤 한정이 되는 아니다. 특허청구범위의 기재를 일탈하지 않고, 당업자가 용이하게 착상할 수 있는 범위에서 다양한 변형태양도 본 발명에 포함된다.
1, 21, 41, 51, 61, 81, 101, 111 : 광학체
3 : 하프미러층
5 : 전반사층
7 : 캐비티
8, 18 : 굴절률 가변층
9 : 자기광학재료층
15 : 커효과발현층
42, 43 : 투광성 전극
53 : 반도체 기능층
54 : 전원선
57 : 기판
63 : 광입사 디바이스
65 : 출사광 처리 디바이스

Claims (16)

  1. 반사층(反射層)으로 이루어지는 제1층 및 제2층, 및 광기능층(光機能層)을 구비하고, 상기 각 층은 적층체로서 상기 광기능층의 양단에 상기 제1층 및 제2층을 적층하여 이루어지고, 상기 제1층으로 입사(入射)한 빛을 변조해서 그 강도를 유지한 상태에서 상기 제1층으로부터 출사(出射)하는 광학체(光學體)로서,
    상기 광기능층으로서 굴절률 가변층(屈折率可變層)과 자기광학재료층(磁氣光學材料層)을 포함하고,
    상기 굴절률 가변층은 상기 제1층과 상기 제2층 사이에 위치하고,
    상기 자기광학재료층은 패러데이 효과(Faraday's 效果)를 발생시키고, 상기 굴절률 가변층으로부터 보아서 상기 제2층과 반대측에 위치하고,
    상기 자기광학재료층도 상기 제1층과 상기 제2층의 사이에 배치되
    것을 특징으로 하는 광학체.
  2. 삭제
  3. 제1항에 있어서,
    상기 자기광학재료층은 상기 제1층의 광입사면(光入射面)측에 배치되는
    것을 특징으로 하는 광학체.
  4. 제1항에 있어서,
    상기 굴절률 가변층의 굴절률을 제어하는 굴절률 제어수단이 더 구비되는
    것을 특징으로 하는 광학체.
  5. 제4항에 있어서,
    상기 굴절률 가변층은 전계(電界)에 의하여 그 굴절률이 변화되는 전기광학재료(電氣光學材料)로 이루어지고, 상기 굴절률 제어수단은 상기 굴절률 가변층에 부여하는 전계를 제어하는
    것을 특징으로 하는 광학체.
  6. 제5항에 있어서,
    상기 굴절률 제어수단은 상기 굴절률 가변층을 에워싸는 한쌍의 투광성 전극(透光性 電極)으로 이루어지는
    것을 특징으로 하는 광학체.
  7. 제1항, 제3항 내지 제6항 중의 어느 한 항에 있어서,
    상기 자기광학재료층은 강자성체 재료(强磁性體材料)로 이루어지는
    것을 특징으로 하는 광학체.
  8. 제1항, 제3항 내지 제6항 중의 어느 한 항에 있어서,
    상기 자기광학재료층은 TAG 또는 TGG인
    것을 특징으로 하는 광학체.
  9. 제1항에 있어서,
    상기 자기광학재료층은 상기 제1층과 대향하고, 상기 굴절률 가변층은 상기 제2층과 대향하고, 상기 자기광학재료층과 상기 굴절률 가변층 사이 및 상기 굴절률 가변층과 상기 제2층 사이에 투광성 전극층이 삽입되고, 상기 굴절률 가변층은 전계에 의하여 그 굴절률이 변화되는 재료로 이루어지는
    것을 특징으로 하는 광학체.
  10. 제9항에 있어서,
    상기 제1층이 투광성의 기판의 일면(一面)에 적층되는
    것을 특징으로 하는 광학체.
  11. 제10항의 광학체와,
    상기 제2층의 위에 적층되고, 상기 한쌍의 투광성 전극에 인가하는 전위를 제어하는 반도체 기능층(半導體機能層)을
    구비하는 것을 특징으로 하는 광변조장치(光變調裝置).
  12. 제11항에 있어서,
    상기 광학체의 기판과 대향하는 광입사 디바이스출사광 처리 디바이스가 구비되는 것을 특징으로 하는 광변조장치.
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
KR1020127011665A 2009-10-07 2010-10-04 광학체 KR101796058B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009233123 2009-10-07
JPJP-P-2009-233123 2009-10-07
PCT/JP2010/067393 WO2011043309A1 (ja) 2009-10-07 2010-10-04 光学体

Publications (2)

Publication Number Publication Date
KR20120091186A KR20120091186A (ko) 2012-08-17
KR101796058B1 true KR101796058B1 (ko) 2017-11-10

Family

ID=43856762

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127011665A KR101796058B1 (ko) 2009-10-07 2010-10-04 광학체

Country Status (6)

Country Link
US (1) US9841619B2 (ko)
EP (1) EP2487525B1 (ko)
JP (1) JP5700687B2 (ko)
KR (1) KR101796058B1 (ko)
TW (1) TWI542921B (ko)
WO (1) WO2011043309A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788727B (zh) * 2009-12-14 2011-11-09 深圳大学 基于磁光腔耦合的光子晶体四端口环行器
JP6108398B2 (ja) * 2011-06-20 2017-04-05 国立大学法人豊橋技術科学大学 光変調システムの制御方法、光変調システム及びそれに用いる光学体
EP3282305B1 (en) * 2016-08-10 2020-05-06 Samsung Electronics Co., Ltd. Optical modulator using phase change material and device including the same
KR102384230B1 (ko) * 2017-10-12 2022-04-07 삼성전자주식회사 가변 레이저 소자

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311402A (ja) * 2001-04-11 2002-10-23 Minebea Co Ltd ファラデー回転子
US20040008397A1 (en) * 2002-05-10 2004-01-15 Corporation For National Research Initiatives Electro-optic phase-only spatial light modulator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3392353A (en) * 1964-06-11 1968-07-09 Bell Telephone Labor Inc Maser intracavity phase modulator
JP3829548B2 (ja) * 1999-09-24 2006-10-04 ソニー株式会社 機能性材料および機能素子
FR2811139B1 (fr) * 2000-06-29 2003-10-17 Centre Nat Rech Scient Dispositif optoelectronique a filtrage de longueur d'onde integre
JP2005003806A (ja) * 2003-06-10 2005-01-06 Sun Tec Kk 光学素子、波長可変光フィルタおよび光アドドロップモジュール
JP2006201472A (ja) 2005-01-20 2006-08-03 Rohm Co Ltd 光制御装置
EP1840632A4 (en) * 2005-01-20 2009-01-28 Rohm Co Ltd OPTICAL CONTROL DEVICE WITH LIGHT MODULATION FILM
JP5147050B2 (ja) 2007-10-30 2013-02-20 Fdk株式会社 磁気光学素子
US8351117B2 (en) * 2008-12-08 2013-01-08 Gao Peiliang Optical isolator, shutter, variable optical attenuator and modulator device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311402A (ja) * 2001-04-11 2002-10-23 Minebea Co Ltd ファラデー回転子
US20040008397A1 (en) * 2002-05-10 2004-01-15 Corporation For National Research Initiatives Electro-optic phase-only spatial light modulator

Also Published As

Publication number Publication date
TW201140192A (en) 2011-11-16
US9841619B2 (en) 2017-12-12
US20120218619A1 (en) 2012-08-30
JP5700687B2 (ja) 2015-04-15
EP2487525A1 (en) 2012-08-15
EP2487525B1 (en) 2019-09-18
JPWO2011043309A1 (ja) 2013-03-04
EP2487525A4 (en) 2015-08-19
KR20120091186A (ko) 2012-08-17
TWI542921B (zh) 2016-07-21
WO2011043309A1 (ja) 2011-04-14

Similar Documents

Publication Publication Date Title
KR101796058B1 (ko) 광학체
Kharratian et al. RGB magnetophotonic crystals for high-contrast magnetooptical spatial light modulators
JP5001807B2 (ja) 空間光変調器
Inoue et al. Magnetophotonic crystals: Experimental realization and applications
JP3781553B2 (ja) 光シャッター
JP6108398B2 (ja) 光変調システムの制御方法、光変調システム及びそれに用いる光学体
Dzyaloshinskii et al. Nonreciprocal optical rotation in antiferromagnets
JP7002225B2 (ja) 光変調素子、空間光変調器、および空間光変調システム
RU173568U1 (ru) Оптический изолятор на основе магнитофотонного микрорезонатора
Goto et al. Para-magneto-and electro-optic microcavities for blue wavelength modulation
JP5054639B2 (ja) 光変調素子および空間光変調器
JP4764397B2 (ja) 空間光変調素子
JP5147050B2 (ja) 磁気光学素子
RU161388U1 (ru) Магнитооптический модулятор интенсивности света
JP3751441B2 (ja) 光学素子
Zamani High-performance blue-green-red magneto-optical spatial light modulators based on thin film multilayers
Takagi et al. Magneto-optic spatial light modulators with magnetophotonic crystals driven by PZT films
WO2023153286A1 (ja) 空間光位相変調器及び光演算装置
JP3672211B2 (ja) 偏光スイッチング素子及び光シャッタ
JP5054640B2 (ja) 光変調素子、光変調器、表示装置、ホログラフィ装置及びホログラム記録装置
Didosyan et al. Light diffraction by a single domain wall
Behjooi et al. High performance electrically-derived single-pixel magnetophotonic spatial light modulator
Dadoenkova et al. Temperature dependence of voltage-controlled polarization plane rotation in a magnetic and electro-optic heterostructure
JP2017067965A (ja) 光変調素子および空間光変調器
Da et al. Manipulating nematic liquid crystals-based magnetophotonic crystals

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant