WO2011043158A1 - 希土類磁石材およびその製造方法 - Google Patents

希土類磁石材およびその製造方法 Download PDF

Info

Publication number
WO2011043158A1
WO2011043158A1 PCT/JP2010/065660 JP2010065660W WO2011043158A1 WO 2011043158 A1 WO2011043158 A1 WO 2011043158A1 JP 2010065660 W JP2010065660 W JP 2010065660W WO 2011043158 A1 WO2011043158 A1 WO 2011043158A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
powder
magnet
magnet material
fluoride
Prior art date
Application number
PCT/JP2010/065660
Other languages
English (en)
French (fr)
Inventor
金子 裕治
幸生 高田
Original Assignee
株式会社豊田中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田中央研究所 filed Critical 株式会社豊田中央研究所
Priority to CN201080040932.9A priority Critical patent/CN102667978B/zh
Priority to US13/384,901 priority patent/US9242296B2/en
Publication of WO2011043158A1 publication Critical patent/WO2011043158A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Definitions

  • the present invention relates to a rare earth magnet material from which various rare earth permanent magnets having excellent magnetic properties and corrosion resistance can be obtained, and a method for producing the same.
  • Rare earth magnets particularly permanent magnets typified by Nd—Fe—B magnets exhibit very high magnetic properties. Use of this rare earth magnet makes it possible to reduce the size, increase the output, increase the density, and reduce the environmental load of electromagnetic devices and electric motors. Yes. However, for that purpose, the excellent magnetic properties of rare earth magnets are required to be stably demonstrated over a long period even in a severe environment. Therefore, research and development are being actively conducted to increase the corrosion resistance (reduction resistance) and coercive force while maintaining or improving the high residual magnetic flux density of rare earth magnets. Descriptions related to these are disclosed in the following documents, for example.
  • an Nd—B—Fe-based rare earth sintered magnet is subjected to a fluorination treatment and a heat treatment at 400 to 500 ° C., and a surface layer of about 5 to 10 ⁇ m made of an NdF 3 compound and / or an NdOF compound.
  • a fluorination treatment and a heat treatment at 400 to 500 ° C.
  • a surface layer of about 5 to 10 ⁇ m made of an NdF 3 compound and / or an NdOF compound There is a description that the corrosion resistance of the rare earth sintered magnet can be improved by forming the compound layer. However, the improvement in the corrosion resistance is limited to the surface portion of the rare earth sintered magnet on which the NdF 3 compound and / or the NdOF compound is formed.
  • DyF 3 dysprosium fluoride
  • Dy dysprosium
  • an object of the present invention is to provide a rare earth magnet material and a method for manufacturing the same, which can efficiently improve at least the coercive force due to diffusion of Dy or the like as compared with conventional rare earth magnets.
  • the present inventor has found that when a diffusing element that can improve the coercive force of a rare earth magnet is diffused inside, oxygen present as an oxide or the like in the rare earth magnet. It has been found that (O) reacts with a diffusing element to inhibit diffusion of the diffusing element into the interior.
  • neodymium oxyfluoride neodymium oxyfluoride formed by combining O present in the rare earth magnet with neodymium (Nd) and fluorine (F) is represented by another rare earth element (hereinafter “R”). It was also found to be much more stable than the oxides of). And when this neodymium oxyfluoride was formed in the inside, it newly discovered that a diffusing element fully diffused to the inside of a rare earth magnet. By developing these results, the present invention as described below has been completed.
  • R1 a first rare earth element that is one or more of rare earth elements, boron (B), the balance being iron (Fe), and inevitable.
  • a magnet powder which is a magnetic alloy powder composed of impurities and / or modifying elements
  • a fluoride powder which is a fluoride powder
  • at least one of the magnet powder or the fluoride powder is neodymium (Nd And a neodymium which is a reaction product of oxygen (O) or oxide present in the vicinity of the particles of the magnet powder and the fluoride
  • a rare dysprosium (Dy) or terbium (Tb) or other diffusing element that is effective in improving the coercive force is diffused without waste to efficiently increase the coercive force.
  • a rare earth magnet material can be obtained. If this rare earth magnet material is used, various rare earth magnets having a very high coercive force can be efficiently obtained.
  • the reason and mechanism for obtaining such an excellent rare earth magnet material are not necessarily clear, but at present, it is considered as follows.
  • the fluoride powder in the heating step of heating the mixed powder of fluoride powder and magnet powder, the fluoride powder reacts with oxides and the like existing in the vicinity of the magnet powder particles. Neodymium oxyfluoride is produced. This neodymium oxyfluoride is much more stable than other existing or new oxides. For this reason, the existing oxide existing in the vicinity of the particle surface of the magnet powder tends to be reduced to neodymium oxyfluoride and the newly generated oxide tends to be neodymium oxyfluoride.
  • the fluoride powder captures O mixed in the preparation process, molding process and heating process as an oxygen getter and makes it difficult for oxides other than neodymium oxyfluoride to be generated near the grain boundaries of the magnet powder particles.
  • O present in the vicinity of the grain boundary of the magnet powder particles is fixed as neodymium oxyfluoride.
  • the fluoride powder is almost uniformly dispersed in the mixed powder, according to the present invention, a rare earth magnet material is obtained in which the above-mentioned action covers the whole including the inside.
  • the diffusing element is remarkably suppressed from being trapped by O present at the grain boundaries of the magnet alloy particles, the diffusion efficiency, which is the degree of improvement in coercive force with respect to the diffusion amount of the diffusing element, can be remarkably increased. it can.
  • neodymium oxyfluoride is very stable as described above, and maintains a state where O is reliably trapped. For this reason, at least in the vicinity where neodymium oxyfluoride exists, new reactions such as oxidation and hydroxylation of the magnet alloy particles are difficult to proceed, and the corrosion resistance of the rare earth magnet material can be improved. Moreover, in the case of the rare earth magnet material according to the present invention, neodymium oxyfluoride is distributed as a whole, so that the corrosion resistance is exhibited as a whole of the rare earth magnet material, and a demagnetization resistant rare earth magnet superior to the conventional one is obtained. Is possible.
  • the present invention is to sinter a molded body made of a mixed powder of magnet powder (NdFeB-based powder) whose main component of R1 is Nd and neodymium fluoride powder, another mixed powder was used. It has also been clarified that a rare-earth magnet material with a higher density can be obtained. The reason and mechanism of this are not necessarily clear, but at present, it is considered as follows. That is, the sintering of the NdFeB-based powder proceeds by melting the Nd-rich phase existing in the grain boundary phase. At this time, generally, the adsorbed oxygen and oxide on the surface of the magnet alloy particles (or crystal grains) are sintered while being reduced by Nd existing in the grain boundary phase. For this reason, Nd that originally promotes sintering is consumed in the production of oxides and the like, and Nd that promotes sintering decreases accordingly, and the sinterability of the NdFeB-based powder can be reduced.
  • NdFeB-based powder whose main
  • NdFeB-based powder when neodymium fluoride powder is present in the NdFeB-based powder, as described above, the O atoms present in the NdFeB-based powder are trapped as neodymium oxyfluoride and are necessary for the production of the neodymium oxyfluoride. Nd is supplied from neodymium fluoride powder. For this reason, it is suppressed that Nd effective for sintering promotion is consumed wastefully for the production
  • R1 and B which are one or more rare earth elements, and the magnetic alloy particles composed of Fe and unavoidable impurities and / or modifying elements in the balance are combined or in close contact with each other.
  • a rare earth characterized by comprising a massive magnet body and dispersed particles made of neodymium oxyfluoride, which is a compound of Nd, O, and F, and dispersed throughout the entire surface including the inside of the magnet body It is also grasped as a magnet material.
  • the “concentration part” may be formed on the outer periphery of the magnet alloy particles constituting the magnet powder, or may be formed on the outer periphery of the crystal grains constituting the magnet alloy particles.
  • the improvement in coercive force due to grain boundary diffusion is considered to occur by repairing the reverse magnetic domain formed at the crystal grain interface, but the “interface” of the particles constituting the magnet powder constitutes the particles. This is because it is also a crystal grain “interface” and it is difficult to strictly distinguish the two. Therefore, the term “grain boundary” or “interface” in this specification means “grain boundary” or “interface” of particles constituting the magnet powder and “grain boundary” of crystal grains constituting the magnet alloy particles unless otherwise specified. ”And“ interface ”.
  • the magnet alloy particles are NdFeB-based particles whose main component of R1 is Nd, it is possible to obtain a rare-earth sintered magnet having a higher density than before.
  • the rare earth element (R) referred to in this specification includes scandium (Sc), yttrium (Y), and lanthanoid.
  • Lanthanoids include lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium ( Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu).
  • Pr, Nd, Sm, Gd, Tb, Dy and the like are preferable as R.
  • the first rare earth element (R1), the second rare earth element (R2), or the third rare earth element (R3) referred to in this specification is a rare earth element arbitrarily selected from the above-described R, and if only one kind of rare earth element is used. It may be a rare earth element group consisting of two or more.
  • the main R1 is preferably Nd, Dy, Tb and the like effective for improving the coercive force may be contained together with Nd as R1.
  • R1, R2 and R3 may be the same rare earth element or different from each other. However, R3 which is a diffusing element is often different from R1 which is a main component constituting magnet powder (magnet alloy particles).
  • the modifying element referred to in this specification includes cobalt (Co), lanthanum (La), gallium (Ga), and niobium, which are effective for improving magnetic properties such as coercive force, which improve the heat resistance of rare earth magnet materials.
  • Nb aluminum (Al), silicon (Si), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), germanium (Ge), zirconium
  • Zr molybdenum
  • Mo indium
  • In tin
  • Sn hafnium
  • Ta tantalum
  • Pb lead
  • the combination of the modifying elements is arbitrary.
  • the content thereof is usually a very small amount, for example, preferably about 0.01 to 10% by mass.
  • inevitable impurities are impurities originally contained in the magnet powder and fluoride powder, impurities mixed in at each step, etc., and are elements that are difficult to remove due to cost or technical reasons.
  • inevitable impurities include oxygen (O), nitrogen (N), carbon (C), hydrogen (H), calcium (Ca), sodium (Na), potassium (K), and argon (Ar). is there.
  • oxygen (O) nitrogen
  • N nitrogen
  • C carbon
  • H hydrogen
  • Ca calcium
  • Na sodium
  • K potassium
  • Ar argon
  • modification elements and inevitable impurities also apply to the raw materials that serve as the supply source of the diffusion elements in addition to the fluoride powder.
  • the “rare earth magnet material” as used in the present invention includes a rare earth magnet material, a rare earth magnet member, and the like, and the form thereof is not limited. Specifically, the rare earth magnet material may be a bulk material before molding or processing, or a rare earth magnet close to or in the shape of the final product. The rare earth magnet material is not limited to a sintered magnet material. The rare earth magnet material does not need to be in a block shape, and may be in a thin film shape, for example.
  • x to y in this specification includes the lower limit value x and the upper limit value y.
  • various lower limit values or upper limit values described in the present specification can be arbitrarily combined to constitute a range such as “ab”.
  • any numerical value included in the range described in the present specification can be used as an upper limit value or a lower limit value for setting the numerical value range.
  • the EPMA image of each element of the rare earth sintered magnet obtained by mixing the NdF 3 powder from the surface side is a photograph showing in sequence.
  • the EPMA image of each element of the rare earth sintered magnet obtained by mixing the DyF 3 powder from the surface side is a photograph showing in sequence.
  • the EPMA image of each element of the rare earth sintered magnet obtained by mixing TbF 3 powder from the surface side is a photograph showing in sequence. It is the photograph which showed the EPMA image of each element of the rare earth sintered magnet which did not mix fluoride powder in order from the surface side. It is the photograph which expanded and showed the EPMA image of Dy of the rare earth sintered magnet which did not mix fluoride powder.
  • the present invention will be described in more detail with reference to embodiments of the invention.
  • the content demonstrated by this specification including the following embodiment is suitably applied not only to the manufacturing method based on this invention but to rare earth magnet materials.
  • One or two or more configurations arbitrarily selected from the configurations shown below can be added to the configuration of the present invention described above.
  • the configuration related to the manufacturing method can be a configuration related to the rare earth magnet material if understood as a product-by-process. Which embodiment is the best depends on the target, required performance, and the like.
  • the preparation step is a step of mixing a magnet powder that is a magnetic alloy powder and a fluoride powder that is a fluoride powder, and preparing a mixed powder containing Nd in at least one of them.
  • the two powders may be mixed using a ball mill, a V-type mixer, a Henschel mixer, a lycra machine, a Spartan-Luzer (high-speed stirrer), or the like until the whole becomes uniform in an antioxidant atmosphere.
  • By mixing uniformly it is easy to obtain a rare earth magnet material in which the diffusing element diffuses uniformly.
  • it is also effective to prepare by mixing fluoride powder and finely pulverizing both powders before manufacturing the magnet alloy powder.
  • Magnet powder Magnet powder is a powder of a magnet alloy composed of R1 and B, which are one or more rare earth elements, and the balance being Fe and inevitable impurities and / or modifying elements.
  • the magnet alloy is typically an R1-Fe—B alloy that can constitute R1 2 Fe 14 B as a main phase.
  • the magnet alloy has a composition in which an R1 rich phase and the like effective for improving the coercive force and sinterability of the rare earth magnet material are formed rather than the theoretical composition based on R1 2 Fe 14 B. Therefore, it is preferable that the R1-Fe—B based magnet alloy is composed of 10 to 30 atomic% R1, 1 to 20 atomic% B, and the balance Fe when the total is 100 atomic%.
  • the magnetic properties may be deteriorated due to the volume ratio of the main phase R1 2 Fe 14 B 1 phase (2-14-1 phase), or the sinterability may be lowered. obtain.
  • the lower limit or upper limit of R1 or B can be arbitrarily selected and set within the above range. However, particularly when a rare earth sintered magnet is obtained, if R1 is 12 to 16 atomic% and B is 5 to 12 atomic%, it is easy to obtain a high density rare earth magnet having excellent magnetic properties. Further, Fe is basically the main balance, but it is preferable that Fe is 72 to 83 atomic%.
  • the remaining Fe other than R1 and B may vary depending on the presence ratio of elements (modifying elements) and inevitable impurities effective in improving various characteristics of the rare earth magnet.
  • Carbon (C) can also be used as an alternative to B, and in that case, it is preferable to prepare such that B + C: 5 to 12 atomic%.
  • the magnet powder or rare earth magnet material when expressed as 100% by mass as a whole, has 27 to 35% by mass of Nd and 0.8 to 1. It is good to be comprised by the NdFeB type particle
  • the manufacturing method and form of the magnet powder are not limited.
  • the magnet powder may be mechanically pulverized or hydrogen pulverized cast magnet alloy having a desired composition. Magnet powder can be super-cooled, whether it is a thin plate-shaped slab that has been rapidly solidified by strip casting or the like, or that has been produced through a hydrogen treatment such as HDDR (hydrogenation-decomposition / dehydrogenation-recombination method). Ribbon grains formed by sputtering or the like may be used. Further, each particle (magnet alloy particle) of the magnet powder may not be composed of clear crystal grains, that is, may be amorphous.
  • the particle diameter of the magnet powder is not limited, but the average particle diameter (particle diameter or median diameter when the cumulative mass is 50%) is preferably about 1 to 20 ⁇ m, more preferably about 3 to 10 ⁇ m. If the average particle size is too small, the cost is high, and if the average particle size is too large, the diffusibility of the diffusing element into the inside is excellent, but the density and magnetic properties of the rare earth magnet material are lowered, which is not preferable.
  • the magnet powder need not be composed of a single type of powder or composition as described above, and may be a mixture of a plurality of types of powders having different forms such as alloy composition, particle shape, or particle size.
  • Fluoride powder is sufficient if it is a fluoride that reacts with O present in the vicinity of the particles of the magnet powder to produce neodymium oxyfluoride. Therefore, regardless of the type of the fluoride, powders made of various fluorides can be used.
  • neodymium oxyfluoride is represented by NdOxFy (x and y are real numbers)
  • a particularly stable neodymium oxyfluoride is preferably NdOF.
  • Nd in neodymium oxyfluoride is not necessarily contained in the fluoride. That is, it is sufficient if it is contained in at least one of fluoride powder and magnet powder. Of course, Nd may be contained in both the magnet powder and the fluoride powder.
  • Fluoride constituting the fluoride powder according to the present invention for example, LiF, MgF 2, CaF 2 , ScF 3, VF 2, VF 3, CrF 2, CrF 3, MnF 2, MnF 3, FeF 2, FeF 3 , CoF 2, CoF 3, NiF 2, ZnF 2, AlF 3, GaF 3, SrF 2, YF 3, ZrF 3, NbF 5, AgF, InF 3, SnF 2, SnF 4, BaF 2, LaF 2, LaF 3 , CeF 2, CeF 3, PrF 2, PrF 3, NdF 2, NdF 3, SmF 2, SmF 3, EuF 2, EuF 3, GdF 3, TbF 3, TbF 4, DyF 2, DyF 3, HoF 2, HoF 3 , ErF 2 , ErF 3 , TmF 2 , TmF 3 , YbF 3 , YbF 2 , LuF 2 , LuF 3 , PbF 2 , B It consists of one or more of iF 3 , LaF 2 , La
  • the metal element that combines with F in the fluoride generally remains in the rare earth magnet material.
  • a metal element is preferably an element that does not degrade the magnetic properties of the rare earth magnet finally obtained as much as possible, and further an element that can further improve the magnetic properties.
  • the fluoride powder of the present invention is a rare earth fluoride powder made of a compound of F and a second rare earth element (R2) that is one or more of rare earth elements such as La, Ce, Pr, Nd, Dy, or Tb. And preferred.
  • R2 is Dy or Tb because the coercivity of the rare earth magnet material can be improved at the same time.
  • the particle diameter of the fluoride powder is not limited, but the finer the particle, the better the dispersibility. Therefore, the average particle diameter (particle diameter or median diameter when the cumulative mass is 50%) as primary particles is preferably about 0.01 to 20 ⁇ m, more preferably about 0.1 to 10 ⁇ m. However, commercially available powders may be agglomerated. In this case, the average particle size (particle size or median size when the cumulative mass is 50%) as the secondary particles is preferably about 1 to 100 ⁇ m, more preferably about 1 to 10 ⁇ m. If the average particle size is too small, the cost is high, and if the average particle size is too large, the dispersibility in the mixed powder is lowered, leading to a decrease in the diffusibility of the diffusing element.
  • the fluoride powder may be used in the form of a slurry. Further, the fluoride powder may be nanoparticles prepared and prepared by chemical synthesis, and the average particle diameter is preferably 1 to 200 nm, more preferably 1 to 50 nm. The fluoride powder made of nanoparticles is used as a paste, for example.
  • the blending amount of the fluoride powder is prepared in accordance with the amount of O atoms included in the mixed powder (or molded product) subjected to the heating step. That is, it is good to mix
  • Nd 2 O 3 formed on the surface or inside of the magnet alloy particles is changed to NdOF using NdF 3 powder, Nd 2 O 3 + NdF 3 ⁇ 3NdOF, so NdF 3 powder is Nd 2 O 3 and sufficient if formulated to be about the same number of moles.
  • the blending ratio of the fluoride powder to the magnet powder is 0.1 to 10 atom%, further 0.1 to 0.1% when the whole mixed powder is 100 atom%. It is preferably 5 atomic%, in other words 0.05 to 5% by mass.
  • Heating step reacts O present in the vicinity of the magnet powder particles with fluoride to produce neodymium oxyfluoride, and the neodymium oxyfluoride includes not only the surface portion but also the entire interior. This is a step of obtaining a massive rare earth magnet material distributed in the area.
  • the heating mode, heating temperature, and the like are arbitrarily adjusted within a range in which the above neodymium oxyfluoride is generated in the mixed powder mixed almost uniformly and O present at the grain boundaries is captured.
  • the heating temperature cannot be specified unconditionally because it depends on the composition of the magnet powder or fluoride powder, but if rare earth fluoride powder is used, it is 300 to 1200 ° C., more preferably 800 to 1100 ° C. Good. If the heating temperature is too low, neodymium oxyfluoride is hardly formed, and if it is too high, it is not preferable in terms of heating efficiency and magnetic properties.
  • the heating step may be a sintering step for obtaining a sintered body obtained by sintering a compact formed with a mixed powder, and the sintering temperature at this time is 700 to 1150 ° C. Is preferably 900 to 1100 ° C. If the sintering temperature is too low, the sintering efficiency is lowered. If the sintering temperature is too high, problems such as melting occur, and the heating efficiency and magnetic properties are not preferable.
  • the diffusion process is a process of diffusing a diffusing element into the rare earth magnet material after the heating process (or sintering process).
  • This diffusing element is preferably composed of a third rare earth element (R3) which is one or more of the rare earth elements.
  • R3 is one or more of the rare earth elements.
  • Dy, Tb, and the like that improve the coercive force of the rare earth magnet material are preferable.
  • the diffusion includes grain boundary diffusion that diffuses to the grain boundaries of the magnet powder particles or crystal grains, and internal diffusion (body diffusion) that diffuses by dissolving them in the solid solution. Grain boundary diffusion is preferable in order to efficiently improve magnetic properties such as coercive force while reducing the amount of rare diffusion elements used.
  • the grain boundary diffusion is performed very efficiently. That is, the diffusion efficiency calculated by ⁇ (coercivity after diffusion of diffusion element) ⁇ (coercivity before diffusion of diffusion element) ⁇ / (diffusion amount of diffusion element) is very high.
  • the diffusion efficiency is 20 to 60 (kOe / mass%) or 1590 to 4770 (kAm ⁇ 1 / mass%).
  • the method of the diffusion process is not limited.
  • a vapor deposition method in which sputtering is performed using a diffusion material such as metal Dy as a target, and a rare earth magnet material and a diffusion material disposed in the vicinity thereof are heated in a heating furnace to directly place the rare earth magnet material in the vapor of the diffusion element.
  • the diffusion step is performed by an exposure steam method, a coating method in which fluoride powder is applied to the surface of the rare earth magnet material and heating, a method in which fluoride slurry is applied and heated, as disclosed in Patent Document 2, and the like.
  • NdOF neodymium oxyfluoride
  • Nd 2 O 3 , NdO x An oxide (Nd 2 O 3 , NdO x ) or the like made of an Nd-rich phase or mixed O may exist at the grain boundary of the rare earth magnet material composed of the NdFeB-based powder.
  • (R2) F3 powder particles are present in the vicinity of the grain boundary, NdOF is generated by the following reaction, and R2 is liberated.
  • (R2) F 3 powder was liberated when no other than NdF 3 powder R2 (Dy, Tb, etc.), R1 (Nd) 2 Fe 14 coercivity of a rare earth magnet material by solid solution in the main phase of the B It contributes to the improvement.
  • Dy which is a kind of diffusing element
  • Dy diffuses into a rare earth magnet material made of NdFeB-based powder.
  • Dy is an oxide (Nd 2 O 3 , NdO x ) or the like present at the grain boundary as follows: react. 2Dy + Nd 2 O 3 ⁇ Dy 2 O 3 + 2Nd (Scheme 3)
  • the diffusion element (Dy) introduced into the corner also changes to an oxide in the course of diffusion and is captured at the grain boundary triple point, etc., and does not contribute to the suppression of domain wall movement and reverse domain formation at the interface.
  • the coercive force cannot be effectively improved. That is, the diffusing element is wasted, and in particular, the coercive force inside the rare earth magnet material cannot be improved. This state is schematically shown in FIG. 1A.
  • Dy smoothly diffuses from the grain boundary phase of the magnet alloy particles or crystal grains so as to wrap around the main phase interface, and the starting point that causes a decrease in coercive force is remarkably reduced. In this way, a rare earth magnet material having a significantly improved coercive force can be obtained efficiently.
  • the fluoride powder according to the present invention is made of a fluoride of a diffusing element (for example, DyF 3 , TbF 3, etc.), as shown in the above reaction formula 1, in the heating step, the diffusing element (for example, Dy, Tb) Etc.) can be liberated.
  • the diffusing element for example, Dy, Tb
  • Etc. the diffusing element
  • This liberated diffusing element can be dissolved in the magnet alloy particles prior to the diffusing step.
  • the diffusion element introduced separately in the subsequent diffusion step is no longer easily dissolved in the magnet alloy particles, and the grain boundary diffusion is more likely to proceed preferentially. That is, the coercive force of the rare earth magnet material can be increased more efficiently while suppressing the amount of diffusion element used.
  • the rare earth magnet material of the present invention may be a raw material as described above, or a final product or a rare earth magnet close thereto. The use and form of this rare earth magnet do not matter.
  • the rare earth magnet material of the present invention is used in, for example, various electromagnetic devices such as a rotor or stator of an electric motor, a magnetic recording medium such as a magnetic disk, a linear actuator, a linear motor, a servo motor, a speaker, and a generator.
  • Test Example 1 Relationship between coercive force and amount of diffusing elements >> (1) The relationship between the coercive force of the rare earth sintered magnet (rare earth magnet material) and the diffusion amount of the diffusing element (R3) was examined in advance.
  • This magnet powder was molded into a 20 ⁇ 15 ⁇ 10 mm rectangular parallelepiped shape in a magnetic field (molding step).
  • the applied magnetic field is 2T.
  • the molded body thus obtained was heated at 1050 ° C. ⁇ 4 Hr in a vacuum atmosphere of ⁇ 10 ⁇ 3 Pa to obtain a sintered body (sintering step). After the surface of this sintered body was polished, Dy diffusion treatment was performed on the polished surface (diffusion process).
  • This diffusion treatment is performed by heating a sintered body and a Dy simple substance (metal Dy) arranged approximately 10 mm apart in a container (heating furnace) in a vacuum atmosphere of 10 ⁇ 4 Pa at 750 to 850 ° C. for 16 to 128 hours. went. The amount of Dy diffused was adjusted by adjusting the heating temperature or heating time. Further, the sintered body after the diffusion treatment was heated at 480 ° C. for 1 hour in a vacuum atmosphere of 10 ⁇ 2 Pa (homogenization treatment, aging treatment).
  • Various fluoride powders were mixed into magnet powder (Fe-31.5% Nd-1% B-1% Co-0.2% Cu) having the same composition as in Test Example 1 (preparation step).
  • the prepared fluoride powders are all rare earth fluoride powders, and are NdF 3 powder, DyF 3 powder, and TbF 3 powder.
  • the compounding quantity of fluoride powder was 1.5 mass% with respect to the whole mixed powder (100 mass%).
  • the measurement results thus obtained are also shown in Table 1.
  • the diffusion efficiency in Table 1 is calculated by ⁇ (coercivity after Dy diffusion) ⁇ (coercivity before Dy diffusion) ⁇ / (Dy diffusion amount).
  • the results of Table 1 are shown in a dispersion diagram of FIGS. 3A and 3B (both are referred to as “FIG. 3” as appropriate).
  • indicates the case where the fluoride powder is mixed with the magnet powder
  • X indicates the case where the fluoride powder is not mixed.
  • Test Example 3 Effect of Fluoride Powder on Diffusion Form >> (1) Each sample was prepared by changing the blending amount of the fluoride powder shown in Test Example 2 from 0.9% by mass to 3% by mass, and the EPMA image was observed. The results are shown in FIGS. Further, FIG. 7 shows an EPMA image of a sample in which the fluoride powder is not blended with the magnet powder, and FIG. 8 shows an enlarged image of Dy at 300 ⁇ m from the surface in the EPMA image.
  • the EPMA images of Nd and O are approximated as shown in FIG. 7, and the neodymium oxide (Nd 2 O 3 or the like) has a grain boundary (particularly 3 It can be seen that they are agglomerated in the vicinity of the emphasis.
  • such agglomeration of neodymium oxide is not observed when the fluoride powder is mixed with the magnet powder. That is, regardless of the type of fluoride powder, neodymium oxide (Nd 2 O 3 or the like) or the like becomes neodymium oxyfluoride (NdOF) and is stably distributed in the rare earth sintered magnet. 6
  • Test Example 4 Influence on sinterability of fluoride powder >> (1) Magnet powder (Fe-31.5% Nd-1% B) manufactured in the same manner as in Test Example 1 except that only the alloy composition was changed was prepared. Also, as the fluoride powder, LaF 3 powder, CeF 3 powder, PrF 3 powder, NdF 3 powder, DyF 3 powder and TbF 3 powder, all of which are rare earth fluoride powders, were prepared. The mixed powder was prepared by mixing any of the fluoride powders with the magnet powder with the total mixed powder being 100% by mass (preparation step).
  • the density of the various sintered bodies obtained was measured by the Archimedes method. The results are shown in Table 2. The density of the sintered body in which the LaF 3 powder, the DyF 3 powder, and the TbF 3 powder were mixed was lower than the density of the sintered body in which the fluoride powder was not mixed. The density of the sintered body in which CeF 3 powder and PrF 3 powder were mixed was not significantly different from the density of the sintered body in which fluoride powder was not mixed.
  • the density of the sintered body in which the NdF 3 powder was mixed increased as compared with any other sintered body. Therefore, it is clear that the use of NdF 3 powder as the fluoride powder not only promotes the internal diffusion of Dy as described above, but also improves the sinterability of the rare earth sintered magnet to increase the density. became.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

 Dy等を内部まで効率的に拡散させることができる希土類磁石材の製造方法を提供する。 本発明の希土類磁石材の製造方法は、ネオジムを含む希土類元素の一種以上とホウ素と残部が鉄からなる磁石粉末とネオジムフッ化物粉末とを混合した混合粉末を調製する調製工程と、この混合粉末を加熱して磁石粉末の粒子近傍に存在する酸素とフッ化物粉末とを反応させてネオジム酸フッ化物を表面部のみならず内部を含む全体に生成分布させた塊状の希土類磁石材を得る加熱工程と、を備えることを特徴とする。フッ化物粉末が混合粉末中に内包する酸素を捕捉して安定なNdOFとして固定する。この希土類磁石材へDyを拡散させると、Dyは粒界などで酸化されることなく内部へスムーズに進行する。その結果、稀少なDyを無駄にすることなく、希土類磁石材全体の保磁力を効率的に増加させ得る。

Description

希土類磁石材およびその製造方法
 本発明は、磁気特性や耐食性に優れた各種の希土類永久磁石が得られる希土類磁石材およびその製造方法に関する。
 Nd-Fe-B系磁石を代表とする希土類磁石(特に永久磁石)は、非常に高い磁気特性を示す。この希土類磁石を用いると、電磁機器や電動機の小型化、高出力化、高密度化さらには環境負荷の低減化等を図ることが可能となるため、幅広い分野で希土類磁石の利用が検討されている。もっともそのためには、希土類磁石の優れた磁気特性が厳しい環境下でも長期的に安定して発揮されることが求められる。そこで希土類磁石の高い残留磁束密度を維持または向上させつつ、耐食性(耐減性)や保磁力などを高める研究開発が盛んに行われている。これらに関連する記載が例えば下記のような文献に開示されている。
特開平6-244011号公報 国際公開公報WO2006/043348
日本応用磁気学会第147回研究会資料:中村元:13~18頁(2006)
 上記の特許文献1には、Nd-B-Fe系の希土類焼結磁石にフッ素化処理および400~500℃の熱処理を施し、その表層にNdF化合物および/またはNdOF化合物からなる5~10μm程度の化合物層を形成することにより、希土類焼結磁石の耐食性を向上させ得る旨の記載がある。もっとも、その耐食性の向上は、NdF化合物および/またはNdOF化合物が形成される希土類焼結磁石の表面部分に限られる。
 特許文献2および非特許文献1は、希土類焼結磁石の保磁力の向上に有効なジスプロシウム(Dy)を粒界拡散させるために、ジスプロシウムフッ化物(DyF)を希土類焼結磁石の表面に存在させた状態で加熱処理する方法を提案している。しかし本発明者が調査研究したところ、そのような方法は、Dyを希土類焼結磁石の外表面近傍から拡散させるため、表面から内部に向かって保磁力が傾斜したり、最表面の組織が破壊されたり、過剰のDyが固溶するため、保磁力の向上幅が小さく効率的な方法ではなかった。
 本発明はこのような事情に鑑みて為されたものである。すなわち、従来の希土類磁石よりも、少なくともDyなどの拡散による保磁力の向上を効率的に図れる希土類磁石材およびその製造方法を提供することを目的とする。
 本発明者はこの課題を解決すべく鋭意研究し試行錯誤を重ねた結果、希土類磁石の保磁力を向上させ得る拡散元素を内部へ拡散させる場合、その希土類磁石内に酸化物などとして存在する酸素(O)が拡散元素と反応して、拡散元素の内部への拡散が阻害されることを見出した。一方、その希土類磁石内に存在するOがネオジム(Nd)およびフッ素(F)と結合してできたネオジム酸フッ化物(ネオジムオキシフロライド)は、他の希土類元素(以下「R」と表す。)の酸化物などよりも遙かに安定していることも見出した。そして、このネオジム酸フッ化物が内部に形成されると、拡散元素が希土類磁石の内部まで十分に拡散することを新たに知見した。これらの成果を発展させることにより、以降に述べるような本発明を完成するに至った。
《希土類磁石材の製造方法》
(1)すなわち、本発明の希土類磁石材の製造方法は、希土類元素の一種以上である第1希土類元素(以下「R1」と表す。)とホウ素(B)と残部が鉄(Fe)および不可避不純物および/または改質元素とからなる磁石合金の粉末である磁石粉末とフッ化物の粉末であるフッ化物粉末とを混合してなり、該磁石粉末または該フッ化物粉末の少なくとも一方がネオジム(Nd)を含む混合粉末を調製する調製工程と、該混合粉末の成形体を加熱して、前記磁石粉末の粒子近傍に存在する酸素(O)または酸化物と前記フッ化物との反応物であるネオジム酸フッ化物を表面部のみならず内部を含む全体に分布させた塊状の希土類磁石材を得る加熱工程と、を備えることを特徴とする。
(2)本発明の製造方法によれば、保磁力の向上に有効で稀少なジスプロシウム(Dy)やテルビウム(Tb)等の拡散元素を内部まで無駄なく拡散させて、保磁力を効率的に高めることができる希土類磁石材が得られる。そしてこの希土類磁石材を用いれば、保磁力が非常に高い種々の希土類磁石を効率的に得ることが可能となる。
 このように優れた希土類磁石材が得られる理由やメカニズムは必ずしも定かではないが、現状では次のように考えられる。
 本発明の希土類磁石材の製造方法によれば、フッ化物粉末と磁石粉末との混合粉末を加熱する加熱工程で、そのフッ化物粉末が磁石粉末の粒子近傍に存在する酸化物等と反応してネオジム酸フッ化物が生成される。このネオジム酸フッ化物は、既存または新成の他の酸化物よりも遙かに安定である。このため、磁石粉末の粒子表面近傍に存在する既存の酸化物は還元等されてネオジム酸フッ化物に変化し易くなり、また新たに生成される酸化物はネオジム酸フッ化物となり易い。こうしてフッ化物粉末は、調製工程、成形工程や加熱工程で混入するOを酸素ゲッターとして捕捉し、磁石粉末粒子の粒界近傍にネオジム酸フッ化物以外の酸化物が生成され難くする。言い換えるなら、磁石粉末粒子の粒界近傍に存在するOはネオジム酸フッ化物として固定される。しかもフッ化物粉末は混合粉末中にほぼ均一に分散しているので、本発明によれば、上記作用が内部を含む全体に及ぶ希土類磁石材が得られることになる。
 このようにネオジム酸フッ化物が表面部のみならず内部を含む全体に分布した塊状の希土類磁石材へ保磁力を向上させ得る拡散元素を拡散させると、安定なネオジム酸フッ化物の存在により、拡散元素は、拡散途中に存在するOによって酸化等されることなく、磁石合金粒子の粒界を通じて内部まで円滑に進行し易くなる。その結果、希土類磁石材の表面近傍のみならず内部に存在する磁石合金粒子も、拡散元素によって被包され易くなり、希土類磁石材の保磁力を全体的に一層向上させることが可能となる。しかも拡散元素は、磁石合金粒子の粒界などに存在するOによって無駄に捕捉されることが著しく抑止されるので、拡散元素の拡散量に対する保磁力の向上度合である拡散効率を著しく高めることができる。
(3)また、ネオジム酸フッ化物は前述したように非常に安定であり、Oを確実に捕捉した状態を維持する。このため、少なくともネオジム酸フッ化物が存在する周囲では、磁石合金粒子の酸化や水酸化などの新たな反応が進行し難い状況となり、希土類磁石材の耐食性が向上し得る。しかも本発明に係る希土類磁石材の場合、ネオジム酸フッ化物は全体的に分布しているので、その耐食性は希土類磁石材全体として発揮され、従来よりも優れた耐減磁性の希土類磁石を得ることが可能となる。
(4)さらに本発明がR1の主成分がNdである磁石粉末(NdFeB系粉末)とネオジムフッ化物粉末との混合粉末からなる成形体を焼結するものである場合、他の混合粉末を用いた場合より高密度の希土類磁石材が得られるも明らかとなっている。この理由やメカニズムも必ずしも定かではないが、現状では次のように考えられる。
 すなわち、NdFeB系粉末の焼結は、粒界相に存在するNdリッチ相が溶融して進行する。この際、一般的に、磁石合金粒子(または結晶粒)の表面にある吸着酸素や酸化物は、その粒界相に存在するNdによって還元されつつ焼結が進行する。このため、本来は焼結を促進させるNdが、酸化物などの生成に消費され、その分、焼結を促進させるNdが減少し、NdFeB系粉末の焼結性が低下し得る。
 ここで、NdFeB系粉末中にネオジムフッ化物粉末が存在すると、前述したようにNdFeB系粉末中に存在するO原子はネオジム酸フッ化物となって捕捉され、しかも、そのネオジム酸フッ化物の生成に必要なNdはネオジムフッ化物粉末から供給されることになる。このため、焼結促進に有効なNdが酸化物の生成などに無駄に消費されることが抑止される。こうして、NdFeB系粉末中にネオジムフッ化物粉末を混合した混合粉末の成形体を焼結すると、ネオジムフッ化物粉末を含まない成形体やNd以外の希土類元素のフッ化物粉末などを混合した成形体を焼結する場合に比べて、粒界相にあるNdが焼結の促進により有効に作用し易くなり、焼結性が向上して高密度な希土類焼結磁石が得られたと考えられる。
《希土類磁石材》
 本発明は上述した製造方法としてのみならず、その製造方法により得られた希土類磁石材としても把握される。
(1)より具体的にいえば、本発明は、希土類元素の一種以上であるR1とBと残部がFeおよび不可避不純物および/または改質元素とからなる磁石合金粒子が結合または密接してなる塊状の磁石体と、NdとOとFとの化合物であるネオジム酸フッ化物からなり該磁石体の表面部のみならず内部を含む全体に散在する分散粒子と、を有することを特徴とする希土類磁石材としても把握される。
(2)この希土類磁石材中へその主たるR1と異なるDyやTbなどの拡散元素が拡散されると、磁石合金粒子の外郭の少なくとも一部にそれらの拡散元素が濃化した濃化部が形成され得る。この濃化部は希土類磁石材の内部にも形成されるので、希土類磁石材の保磁力は全体的に向上し得る。
 ここで「濃化部」は、磁石粉末を構成する磁石合金粒子の外郭に形成されているものでもよいし、さらにその磁石合金粒子を構成する結晶粒の外郭に形成されているものでもよい。粒界拡散などによる保磁力の向上は、結晶粒界面にできる逆磁区などが補修されることにより生じると考えられているが、磁石粉末を構成する粒子の「界面」は、その粒子を構成する結晶粒「界面」でもあるので、両者を厳密に区別することは困難だからである。従って本明細書でいう「粒界」や「界面」は、特に断らない限り、磁石粉末を構成する粒子の「粒界」や「界面」およびその磁石合金粒子を構成する結晶粒の「粒界」や「界面」の両方を含むものとする。
(3)さらに、上記磁石合金粒子がR1の主成分がNdであるNdFeB系粒子の場合、従来よりも高密度な希土類焼結磁石を得ることも可能である。
《その他》
(1)本明細書でいう希土類元素(R)には、スカンジウム(Sc)、イットリウム(Y)、ランタノイドを含む。ランタノイドは、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)およびルテチウム(Lu)などがある。なかでも、RとしてPr、Nd、Sm、Gd、Tb、Dyなどが好ましい。
 本明細書でいう第1希土類元素(R1)、第2希土類元素(R2)または第3希土類元素(R3)は、上述したRから任意に選択した希土類元素であり、1種の希土類元素のみならず、2種以上からなる希土類元素群であってもよい。例えば主たるR1はNdであると好ましいが、さらにR1として保磁力向上に有効なDyやTbなどをNdと共に含有していてもよい。
 またR1、R2またはR3は、それぞれ同じ希土類元素でもよいし、異なっていてもよい。もっとも、拡散元素であるR3は、磁石粉末(磁石合金粒子)を構成する主成分たるR1と異なっていることが多い。
(2)本明細書でいう改質元素には、希土類磁石材の耐熱性を向上させるコバルト(Co)、ランタン(La)、保磁力などの磁気特性の向上に有効なガリウム(Ga)、ニオブ(Nb)、アルミニウム(Al)、ケイ素(Si)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、ニッケル(Ni)、銅(Cu)、ゲルマニウム(Ge)、ジルコニウム(Zr)、モリブデン(Mo)、インジウム(In)、スズ(Sn)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)または鉛(Pb)の少なくとも1種以上がある。改質元素の組合せは任意である。また、その含有量は通常微量であり、例えば、0.01~10質量%%程度であると好ましい。
 また不可避不純物は、磁石粉末やフッ化物粉末にもともと含まれる不純物や各工程時に混入等する不純物などであって、コスト的または技術的な理由等により除去することが困難な元素である。このような不可避不純物として、例えば、酸素(O)、窒素(N)、炭素(C)、水素(H)、カルシウム(Ca)、ナトリウム(Na)、カリウム(K)、アルゴン(Ar)等がある。なお、上述した改質元素および不可避不純物に関することは、フッ化物粉末の他、拡散元素の供給源となる原料などについても適宜該当する。
(3)本発明でいう「希土類磁石材」は、希土類磁石素材や希土類磁石部材などを含み、その形態を問わない。具体的には、希土類磁石材は成形前または加工前のバルク材であってもよいし、最終的な製品の形状またはそれに近い希土類磁石であってもよい。そして希土類磁石材は焼結磁石材に限定されるものでもない。また希土類磁石材は、ブロック状である必要はなく、例えば、薄膜状であってもよい。
(4)特に断らない限り、本明細書でいう「x~y」は、下限値xおよび上限値yを含む。また、本明細書に記載した種々の下限値または上限値は、任意に組合わされて「a~b」のような範囲を構成し得る。さらに、本明細書に記載した範囲内に含まれる任意の数値を、数値範囲を設定するための上限値または下限値とすることができる。
NdFeB系磁石内をDyが拡散する様子を模式的に示す図であって、フッ化物粉末を含まない従来の場合を示す。 NdFeB系磁石内をDyが拡散する様子を模式的に示す図であって、フッ化物粉末を含む本発明の場合を示す。 希土類磁石へ拡散させるDy濃度とその保磁力との相関を示すグラフである。 各種の希土類焼結磁石に関するDy・Tbの拡散量の影響を示す分散図であって、Dy・Tb拡散量と保磁力の相関を示す。 各種の希土類焼結磁石に関するDy・Tbの拡散量の影響を示す分散図であって、Dy・Tb拡散量と拡散効率の相関を示す。 NdF粉末を混合した希土類焼結磁石の各元素のEPMA像を表面側から順に示した写真である。 DyF粉末を混合した希土類焼結磁石の各元素のEPMA像を表面側から順に示した写真である。 TbF粉末を混合した希土類焼結磁石の各元素のEPMA像を表面側から順に示した写真である。 フッ化物粉末を混合しなかった希土類焼結磁石の各元素のEPMA像を表面側から順に示した写真である。 フッ化物粉末を混合しなかった希土類焼結磁石のDyのEPMA像を拡大して示した写真である。
 発明の実施形態を挙げて本発明をより詳しく説明する。なお、以下の実施形態を含め、本明細書で説明する内容は、本発明に係る製造方法のみならず希土類磁石材にも適宜適用される。上述した本発明の構成に、以下に示す構成中から任意に選択した一つまたは二つ以上の構成を付加することができる。製造方法に関する構成は、プロダクトバイプロセスとして理解すれば希土類磁石材に関する構成ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。
《希土類磁石材の製造方法》
(1)調製工程
 調製工程は、磁石合金の粉末である磁石粉末とフッ化物の粉末であるフッ化物粉末とを混合し、それらの少なくとも一方にNdが含まれる混合粉末を調製する工程である。両粉末の混合はボールミル、V型混合機、ヘンシェルミキサー、ライカイ機、スパルタンリューザ(高速攪拌装置)などを用いて、酸化防止雰囲気中で全体が均一になるまで混合するとよい。均一に混合することにより、拡散元素が均一に拡散する希土類磁石材が得られ易い。
また、磁石合金粉末の製作前にフッ化物粉末を混合し、両粉末を同時に微粉砕して調製することも有効である。
(2)磁石粉末
 磁石粉末は、希土類元素の一種以上であるR1とBと残部がFeおよび不可避不純物および/または改質元素とからなる磁石合金の粉末である。磁石合金は、主相となるR1Fe14Bを構成し得るR1-Fe-B系合金が代表的である。もっとも磁石合金は、R1Fe14Bに基づく理論組成よりも、希土類磁石材の保磁力や焼結性の向上に有効なR1リッチ相などが形成される組成とすると好ましい。そこでR1-Fe-B系の磁石合金は、全体を100原子%としたときに10~30原子%のR1と、1~20原子%のBと、残部であるFeとからなると好ましい。いずれの元素も過少または過多では、主相であるR1Fe14相(2-14-1相)の体積率に影響して磁気特性が悪化したり、焼結性が低下したりし得る。R1またはBの下限値または上限値は、上記範囲内で任意に選択し設定し得る。もっとも、特に希土類焼結磁石を得る場合、R1は12~16原子%、Bは5~12原子%であると磁気特性に優れる高密度な希土類磁石が得られ易い。さらに、Feは基本的に主たる残部であるが、あえていえばFeは72~83原子%であると好ましい。ただし、R1やB以外の残部であるFeは、希土類磁石の種々の特性の改善に有効な元素(改質元素)や不可避不純物の存在割合によって変化し得る。なお、Bの代替として炭素(C)を用いることもでき、その場合はB+C:5~12原子%となるように調製すると好ましい。
 特に、R1の主成分がNdである希土類焼結磁石を得る場合、磁石粉末または希土類磁石材は、全体を100質量%で表したとき、27~35質量%のNdと0.8~1.5質量%のBを含むNdFeB系粒子によって構成されるとよい。
 磁石粉末は、その製造方法や形態を問わない。磁石粉末は、所望組成の鋳造磁石合金を機械粉砕したものでも水素粉砕したものでもよい。また磁石粉末は、ストリップキャスト等により急冷凝固させた薄板状の鋳片でも、HDDR(水素化-分解・脱水素-再結合法)のような水素処理を経て製造されたものでも、超急冷されたリボン粒でも、スパッタ等により成膜したものでもよい。さらに磁石粉末の各粒子(磁石合金粒子)は、明確な結晶粒によって構成されたものでなくても、すなわち、アモルファス状でもよい。
 磁石粉末の粒子径も問わないが、平均粒径(累積質量が50%となるときの粒子径またはメジアン径)が1~20μmさらには3~10μm程度であると好ましい。その平均粒径が過小ではコスト高となり、平均粒径が過大では拡散元素の内部への拡散性には優れるものの、希土類磁石材の密度や磁気特性の低下を招き、好ましくない。
 磁石粉末は、上述した組成や形態が一種類の粉末からなる必要はなく、合金組成、粒形または粒径などの形態が異なる複数種の粉末が混合されたものでもよい。
(3)フッ化物粉末
 フッ化物粉末は、磁石粉末の粒子近傍に存在するOと反応してネオジム酸フッ化物を生成するフッ化物であれば足る。従って、そのフッ化物の種類は問わず、様々なフッ化物からなる粉末を用いることができる。なお、ネオジム酸フッ化物はNdOxFy(x、yは実数)で表されるが、特に安定なネオジム酸フッ化物はNdOFであると好ましい。ネオジム酸フッ化物中のNdは、フッ化物中に必ずしも含まれている必要はない。つまり、フッ化物粉末か磁石粉末のいずれか一方に少なくとも含まれていれば足る。勿論、磁石粉末とフッ化物粉末の両方にNdが含まれていてもよい。
 本発明に係るフッ化物粉末を構成するフッ化物は、例えば、LiF、MgF、CaF、ScF、VF、VF、CrF、CrF、MnF、MnF、FeF、FeF、CoF、CoF、NiF、ZnF、AlF、GaF、SrF、YF、ZrF、NbF、AgF、InF、SnF、SnF、BaF、LaF、LaF、CeF、CeF、PrF、PrF、NdF、NdF、SmF、SmF、EuF、EuF、GdF、TbF、TbF、DyF、DyF、HoF、HoF、ErF、ErF、TmF、TmF、YbF、YbF、LuF、LuF、PbF、BiF、LaF、LaF、CeF、CeF、GdFなどの一種以上からなる。またそのフッ化物は、これら一種以上のフッ化物に酸素が結合した酸フッ素化合物でもよい。そしてフッ化物粉末は、単種のフッ化物粉末でも、それら二種以上の混合フッ化物粉末でもよい。
 もっとも、フッ化物中のFと結合する金属元素は、一般的に希土類磁石材中に残存することになる。そのような金属元素は、最終的に得られる希土類磁石の磁気特性をできるだけ劣化させない元素、さらにはその磁気特性をより向上させ得る元素が好ましい。そこで、本発明のフッ化物粉末は、La、Ce、Pr、Nd、DyまたはTbなどの希土類元素の一種以上である第2希土類元素(R2)とFとの化合物からなる希土類フッ化物粉末であると好ましい。特にR2がDyやTbであると、希土類磁石材の保磁力の向上も同時に図れるので好ましい。
 フッ化物粉末の粒子径は問わないが、微細であればある程分散性に優れる。そこで一次粒子としての平均粒径(累積質量が50%となるときの粒子径またはメジアン径)は0.01~20μmさらには0.1~10μm程度であると好ましい。もっとも、市販されている粉末は凝集していることもある。この場合、二次粒子としての平均粒径(累積質量が50%となるときの粒子径またはメジアン径)は1~100μmさらには1~10μm程度であると好ましい。その平均粒径が過小ではコスト高となり、平均粒径が過大では混合粉末中における分散性が低下して拡散元素の拡散性の低下を招き好ましくない。なお、フッ化物粉末はスラリー状で用いられてもよい。
 さらにフッ化物粉末は、化学合成で作製・調製したナノ粒子でもよく、その平均粒径は1~200nmさらには1~50nmであると好ましい。ナノ粒子からなるフッ化物粉末は、例えば、ペーストにして用いられる。
 また、混合粉末全体に対してフッ化物粉末が過少ではフッ化物粉末によるOの捕捉が不十分となり、フッ化物粉末が過多では希土類磁石材の磁気特性の低下を招き好ましくない。従って、調製工程では、加熱工程に供された混合粉末(または成形体)中に内包されるO原子の混入量に応じて、フッ化物粉末の配合量が調製されると好ましい。つまり、混入したOを安定なネオジム酸フッ化物として捕捉できる分のフッ化物を配合するとよい。例えば、磁石合金粒子の表面または内部に形成されたNdを、NdF粉末を用いてNdOFへ変化させる場合であれば、 Nd+NdF→3NdOF となるから、NdF粉末はNdと同モル数程度になるように配合されればよい。通常混入し得るO量を考慮すると、磁石粉末に対するフッ化物粉末の配合割合は、混合粉末全体を100原子%としたときに、フッ化物粉末は0.1~10原子%さらには0.1~5原子%、換言すれば0.05~5質量%であると好ましい。
(4)加熱工程
 加熱工程は、磁石粉末の粒子近傍に存在するOとフッ化物とを反応させてネオジム酸フッ化物を生成させ、そのネオジム酸フッ化物が、表面部のみならず内部を含む全体に分布した塊状の希土類磁石材を得る工程である。
 加熱形態や加熱温度などは、ほぼ均一に混合された混合粉末中で上記のネオジム酸フッ化物が生成されて粒界などに存在するOが捕捉される範囲で任意に調整される。例えば、加熱温度は、磁石粉末やフッ化物粉末の組成等にも依るため一概には特定できないが、希土類フッ化物粉末を用いる場合であれば、300~1200℃さらには800~1100℃であるとよい。加熱温度が過小ではネオジム酸フッ化物が形成され難く、過大では加熱効率や磁気特性の点で好ましくない。
 希土類焼結磁石を製造する場合なら、加熱工程は混合粉末を成形した成形体を焼結させた焼結体を得る焼結工程とすればよく、このときの焼結温度は700~1150℃さらには900~1100℃であると好ましい。焼結温度が過小では焼結効率が低下し、焼結温度が過大では、溶融などの障害を生じ、また加熱効率や磁気特性の点でも好ましくない。
(5)拡散工程
 拡散工程は、上記の加熱工程(または焼結工程)後の希土類磁石材内へ拡散元素を拡散させる工程である。この拡散元素は、希土類元素の一種以上である第3希土類元素(R3)からなると好ましい。具体的には、希土類磁石材の保磁力を向上させるDyやTbなどが好ましい。
 なお、拡散には磁石粉末粒子または結晶粒の粒界へ拡散させる粒界拡散と、それらの内部に固溶等させて拡散させる内部拡散(体拡散)がある。稀少な拡散元素の使用量を減少させつつ、保磁力などの磁気特性を効率的に向上させるには粒界拡散が好ましい。本発明に係る拡散工程では、その粒界拡散が非常に効率的になされる。つまり、{(拡散元素の拡散後の保磁力)-(拡散元素の拡散前の保磁力)}/(拡散元素の拡散量)により算出される拡散効率が非常に高い。
具体的には本発明に係る希土類磁石材の場合、その拡散効率が20~60(kOe/質量%)または1590~4770(kAm-1/質量%)にもなる。
 拡散工程の方法は問わない。例えば、金属Dyなどの拡散素材をターゲットにしてスパッタリング等を行う蒸着法、希土類磁石材とその近傍に配置した拡散素材とを加熱炉内で加熱して拡散元素の蒸気中に希土類磁石材を直接曝す蒸気法、特許文献2などにあるように希土類磁石材の表面にフッ化物粉末を塗布して加熱する塗布法やフッ化物スラリーを塗布加熱する方法などにより、拡散工程がなされる。
《メカニズム》
(1)ネオジム酸フッ化物の生成メカニズム
 上述したことを踏まえて、ネオジム酸フッ化物(NdOF)が形成されるメカニズムを、NdFeB系粉末(磁石粉末)と(R2)F粉末(フッ化物粉末)との混合粉末を用いて希土類磁石材を製造する場合を例にとり説明する。
 NdFeB系粉末により構成される希土類磁石材の粒界にはNdリッチ相や混入したOによりできた酸化物(Nd、NdO)などが存在し得る。この粒界近傍に(R2)F3粉末粒子が存在すると、次のような反応によりNdOFが生成され、R2が遊離される。
  (R2)F +Nd+Nd → 3NdOF+R2  (反応式1)
 この(R2)F粉末がNdF粉末(つまりR2=Nd)の場合、R2=Ndが遊離することなく、つまり粒界にあるNdリッチ相からNdが消費されることなく、次のような反応をしてNdOFが生成される。
  NdF3 +Nd    → 3NdOF     (反応式2)
 ここで磁石粉末を焼結させる場合を考えると、通常であれば、粒界に存在する吸着酸素や酸化物などが粒界相にあるNdによって還元されつつ、焼結が進行する。従ってOの混在する分、粒界相に存在するNdが消費されて、焼結性に機能するNdが減少し得る。
 しかし、磁石粉末中に(R2)F粉末が存在すると、OはFによってトラップされNdOFとして固定化される。特に(R2)F粉末がNdF粉末の場合、NdOFの生成に粒界相のNdが消費されることがない。
 この結果、フッ化物粉末にNdF粉末を用いた場合、焼結性が大幅に改善されることになり、比較的低い焼結温度でも十分に高密度な希土類焼結磁石が得られるようになる。
 ちなみに、(R2)F粉末がNdF粉末以外でない場合に遊離したR2(Dy、Tbなど)も、R1(Nd)Fe14Bの主相中に固溶して希土類磁石材の保磁力の向上に寄与する。
(2)拡散メカニズム
 拡散元素の一種であるDyがNdFeB系粉末からなる希土類磁石材へ拡散する場合を例にとり、拡散メカニズムを説明する。
 先ず、フッ化物粉末を含まない磁石粉末からなる従来の希土類磁石材へ拡散処理を行うと、例えば、Dyは粒界に存在する酸化物(Nd、NdO)等と次のような反応する。
  2Dy+Nd  → Dy+2Nd    (反応式3)
 このため、折角導入された拡散元素(Dy)も、拡散途中で酸化物に変化して粒界三重点などで捕捉され、界面における磁壁移動や逆磁区生成の抑制に寄与せず、希土類磁石材の保磁力を有効に向上させることはできない。つまり、拡散元素が浪費され、特に希土類磁石材の内部における保磁力の向上が図れない。この様子を図1Aに模式的に示した。
 一方、本発明の場合、Dyなどよりも安定なNdOFにより、希土類磁石材中のOが予めトラップされているため、Dyが拡散途中の粒界三重点などでトラップされることが抑止され、希土類磁石材内へスムーズに拡散し得る。この様子を図1Bに模式的に示した。
 こうして本発明によれば、Dyが磁石合金粒子またはその結晶粒の粒界相から主相界面を包むようにスムーズに粒界拡散し、保磁力の低下を招来する起点を著しく減少させる。こうして、保磁力が大幅に向上した希土類磁石材を効率的に得られる。
 ちなみに、本発明に係るフッ化物粉末が拡散元素のフッ化物(例えば、DyF、TbFなど)からなる場合、上記の反応式1に示すように、加熱工程で拡散元素(例えば、Dy、Tbなど)が遊離し得る。この遊離した拡散元素は、拡散工程に先行して磁石合金粒子中へ固溶し得る。このため、その後の拡散工程で別途導入された拡散元素は、もはや磁石合金粒子へ固溶し難く、粒界拡散がより優先的に進行し易くなる。つまり、拡散元素の使用量を抑制しつつ、希土類磁石材の保磁力をより効率的に高め得る。
《希土類磁石材の用途》
 本発明の希土類磁石材は、前述したように素材であっても最終製品またはそれに近い希土類磁石であってもよい。この希土類磁石の用途や形態は問わない。本発明の希土類磁石材は、例えば、電動機のロータまたはステータなどの各種電磁機器、磁気ディスクなどの磁気記録媒体、リニアアクチュエータ、リニアモータ、サーボモータ、スピーカー、発電機等に用いられる。
 実施例を挙げて本発明をより具体的に説明する。
《試験例1:保磁力と拡散元素量の関係》
(1)希土類焼結磁石(希土類磁石材)の保磁力と拡散元素(R3)の拡散量との関係を事前に調べた。このために用いた試料は次のようして製作した。
 先ず、Fe-31.5%Nd-1%B-1%Co-0.2%Cu(単位は質量%)の磁石合金を鋳造した。この磁石合金を水素粉砕した後、さらにジェットミルで粉砕することにより、平均粒径D50(メジアン径)=6μmの磁石粉末を得た。ジェットミルによる粉砕は窒素雰囲気で行った。
 この磁石粉末を20x15x10mmの直方体状に磁場中成形した(成形工程)。印加した磁界は2Tである。こうして得た成形体を~10-3Paの真空雰囲気中で1050℃x4Hr加熱して焼結体を得た(焼結工程)。この焼結体の表面を研磨した後、その研磨面に対してDyの拡散処理を行った(拡散工程)。
 この拡散処理は、容器(加熱炉)内で約10mm離して配置した焼結体とDy単体(金属Dy)を、10-4Paの真空雰囲気中で750~850℃x16~128時間加熱して行った。この加熱温度または加熱時間の調整によりDyの拡散量を調整した。
 さらにこの拡散処理後の焼結体に対して、10-2Paの真空雰囲気で480℃x1時間の加熱を行った(均質化処理、時効処理)。
(2)得られた各種試料について、パルス励磁型磁気特性測定装置を用いて保磁力を測定した。また、それら各試料中に拡散したDy量を電子線マイクロアナライザー(EPMA)および高周波誘導結合プラズマ質量分析(ICP)により測定した。こうして得られた測定結果を図2にまとめて示した。なお、図2中に示した波線部分は、Dyを当初から含有させた鋳造合金を用いた従来の場合である。
(3)図2の結果から、Dy濃度の増加により保磁力が向上するが、特に粒界拡散によって保磁力が急増することがわかる。また、その粒界拡散による保磁力の増加が飽和すると、Dyが磁石合金粒子内へ固溶等して拡散する体拡散へ移行することもわかった。さらに、その場合の保磁力の向上は、Dyを合金化した場合の保磁力の向上とほぼ同様に緩やかに増加することもわかった。
《試験例2:フッ化物粉末の保磁力への影響》
(1)磁石粉末中へフッ化物粉末を混合した混合粉末を用意した。この混合粉末の成形体を焼結させた希土類焼結磁石(希土類磁石材)へ拡散処理を施したときの保磁力を調べた。具体的にはつぎのような試料を作成して評価した。
 試験例1と同組成の磁石粉末(Fe-31.5%Nd-1%B-1%Co-0.2%Cu)へ、種々のフッ化物粉末を混合した(調製工程)。用意したフッ化物粉末は、いずれも希土類フッ化物粉末であり、NdF粉末、DyF粉末およびTbF粉末である。フッ化物粉末の配合量は、混合粉末全体(100質量%)に対して1.5質量%とした。各フッ化物粉末の平均粒径は、いずれもD50(メジアン径)=10μmであった。
 これらの各種の混合粉末を用いて、試験例1と同条件で磁場中成形および焼結を行った(加熱工程、焼結工程)。こうして得た焼結体へ、さらに試験例1と同様な拡散処理および均質化処理を施した。各試料の拡散処理による加熱温度および加熱時間は表1に示した。
(2)こうして得られた各種試料(希土類磁石材)について、前述した場合と同様な方法で、保磁力およびDy拡散量を測定した(試料No.A11~A15)。
 また、比較試料として、フッ化物粉末を混合せずに製作した希土類焼結磁石を用意した。その内の一つの試料については、先ず拡散処理前の保磁力を測定した(試料No.A41)。別の試料については、上述した拡散処理後の保磁力およびDy拡散量を測定した(試料No.A21~A26)。
 さらに、フッ化物粉末を混合せずに製作した希土類焼結磁石の研磨面にDyF粉末またはTbF粉末を塗布して、DyまたはTbを拡散させたときの保磁力およびDy拡散量を測定した(試料No.A31~A34および試料No.A35~A37)。この塗布法による拡散処理(塗布拡散)は、10μmのDyF粉末またはTbF粉末をアルコールに分散させたスラリーを希土類焼結磁石へ塗布し、この希土類焼結磁石を10-4Paの真空中で加熱することにより行った。その際の塗布割合は、希土類焼結磁石100質量部に対して0.2質量部とした。また、その加熱温度および加熱時間は表1に示した。
 こうして得られた測定結果を表1に併せて示した。表1中の拡散効率は、{(Dy拡散後の保磁力)-(Dy拡散前の保磁力)}/(Dy拡散量)により算出したものである。また表1の結果を図3Aおよび図3B(両者を併せて適宜「図3」という。)の分散図に示した。図3中、■は磁石粉末へフッ化物粉末を混合した場合であり、Xはフッ化物粉末を混合しなかった場合である。
(3)表1および図3から明らかなように、拡散処理条件が同程度なら、フッ化物粉末を混合しない場合に対して、磁石粉末中にフッ化物粉末を混合した場合は、Dy・Tbの拡散量がほぼ2~3倍に増加した。そしてその増加量にほぼ比例して保磁力も増加した。
 一方、磁石粉末中にフッ化物粉末を混合しない場合、Dy・Tbの拡散量が増加しても、保磁力はあまり向上していない。この傾向は、蒸気法によりDyを拡散させた場合でも(試料No.A21~A26)、DyF粉末やTbF粉末の塗布によりDyやTbを拡散させた場合でも(試料No.A31~A37)、同じであった。これは、磁石粉末中へフッ化物粉末を混合しない場合、DyやTbの拡散が希土類焼結磁石の表面部分に限られるためと考えられる。これらのことは、表1および図3Bに示した拡散効率からも明らかである。
《試験例3:フッ化物粉末の拡散形態への影響》
(1)試験例2で示したフッ化物粉末の配合量を0.9質量%から3質量%へ変更した各試料を製作し、そのEPMA像を観察した。この結果を図4~図6に示す。また、フッ化物粉末を磁石粉末へ配合しない試料のEPMA像を図7に、さらにそのEPMA像の内で表面から300μmにおけるDyに関する拡大像を図8に示した。
(2)これらからフッ化物粉末を磁石粉末中に混合した場合、フッ化物粉末の種類に拘わらず、拡散元素であるDyが希土類焼結磁石の内部まで十分に拡散していることがわかる。さらにそれらのNd、FおよびOに関するEPMA像上から、NdOFが内部を含む全体にほぼ均一に分散していることがわかる。
 これらに対して、フッ化物粉末を磁石粉末へ混合しなかった場合、Dyは希土類焼結磁石の表面近傍に集中的に分布し、内部まで拡散していないことが図7からわかる。この原因は、希土類焼結磁石の表面近傍に存在する磁石合金粒子の粒界(特に3重点近傍)にDyが凝集しているためと図8から考えられる。また、図7のEPMA像中のFの分布からも分かるように、Fは希土類焼結磁石の表面部分にしか検出されず、内部では検出されなかった。従って、フッ化物粉末を磁石粉末へ混合しなかった希土類焼結磁石の場合、NdOFが内部に存在することはない。
 またフッ化物粉末を磁石粉末へ混合しない場合、図7に示すようにNdとOのEPMA像が近似しており、ネオジム酸化物(Nd等)が磁石合金粒子の粒界(特に3重点近傍)に凝集している様子がわかる。これに対して、図4~6のいずれからも明らかなように、フッ化物粉末を磁石粉末へ混合した場合、そのようなネオジム酸化物の凝集はみられない。つまり、フッ化物粉末の種類に拘わらず、ネオジム酸化物(Nd等) などがネオジム酸フッ化物(NdOF)となり、希土類焼結磁石内に安定的に分布していることが図4~6よりわかる。
《試験例4:フッ化物粉末の焼結性への影響》
(1)試験例1に対して合金組成のみ変更して他は同様に製造した磁石粉末(Fe-31.5%Nd-1%B)を用意した。またフッ化物粉末には、いずれも希土類フッ化物粉末であるLaF粉末、CeF粉末、PrF粉末、NdF粉末、DyF粉末およびTbF粉末を用意した。混合粉末全体を100質量%として、このいずれかのフッ化物粉末を前記磁石粉末へ混合して混合粉末を調製した(調製工程)。
 各種の混合粉末を2T x 50MPaで磁場中成形して、20x15x10mmの直方体状の成形体を得た。これら成形体を真空雰囲気中で1030℃x3Hr加熱して焼結体を得た(試料No.B1~B6)。
 なお比較試料として、フッ化物粉末を混合しない磁石粉末を用いて同様な焼結体を製作した(試料No.B7)。
(2)得られた各種の焼結体の密度をアルキメデス法により測定した。その結果を表2に示した。
 LaF粉末、DyF粉末およびTbF粉末を混合した焼結体の密度は、フッ化物粉末を混合しなかった焼結体の密度より低下した。CeF粉末およびPrF粉末を混合した焼結体の密度は、フッ化物粉末を混合しなかった焼結体の密度と大差なかった。
 これらに対して、NdF粉末を混合した焼結体の密度は、他のいずれの焼結体よりも増加した。従って、フッ化物粉末としてNdF粉末を用いると、前述したようなDyなどの内部拡散を促進するのみならず、希土類焼結磁石の焼結性を向上させて高密度化を図れることが明らかとなった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (15)

  1.  希土類元素の一種以上である第1希土類元素(以下「R1」と表す。)とホウ素(B)と残部が鉄(Fe)および不可避不純物および/または改質元素とからなる磁石合金の粉末である磁石粉末とフッ化物の粉末であるフッ化物粉末とを混合してなり、該磁石粉末または該フッ化物粉末の少なくとも一方がネオジム(Nd)を含む混合粉末を調製する調製工程と、
     該混合粉末を加熱して、前記磁石粉末の粒子近傍に存在する酸素(O)または酸化物と前記フッ化物との反応物であるネオジム酸フッ化物を表面部のみならず内部を含む全体に分布させた塊状の希土類磁石材を得る加熱工程と、
     を備えることを特徴とする希土類磁石材の製造方法。
  2.  前記R1はNdである請求項1に記載の希土類磁石材の製造方法。
  3.  前記フッ化物粉末は、希土類元素の一種以上である第2希土類元素(以下「R2」と表す。)とフッ素(F)とからなる希土類フッ化物の粉末である請求項1に記載の希土類磁石材の製造方法。
  4.  前記R2はNdである請求項3に記載の希土類磁石材の製造方法。
  5.  さらに、前記希土類磁石材内へ希土類元素の一種以上である第3希土類元素(以下「R3」と表す。)からなる拡散元素を拡散させる拡散工程を備える請求項1に記載の希土類磁石材の製造方法。
  6.  前記拡散元素は、ジスプロシウム(Dy)またはテルビウム(Tb)である請求項5に
    記載の希土類磁石材の製造方法。
  7.  前記調製工程は、前記混合粉末に対する前記フッ化物粉末の配合量を前記希土類磁石材中に含有され得る酸素原子の混入量に応じて調製する工程である請求項1に記載の希土類磁石材の製造方法。
  8.  前記加熱工程は、前記混合粉末を成形した成形体を焼結させた焼結体を得る焼結工程である請求項1に記載の希土類磁石材の製造方法。
  9.  前記磁石粉末は、全体を100質量%(以下「%」と表す。)としたときに27~35%のNdと0.8~1.5%のBを含むNdFeB系合金からなるNdFeB系粉末であり、
     前記フッ化物粉末は、ネオジムフッ化物からなるネオジムフッ化物粉末である請求項1に記載の希土類磁石材の製造方法。
  10.  請求項1に記載の製造方法により得られたことを特徴とする希土類磁石材。
  11.  焼結体からなる請求項10に記載の希土類磁石材。
  12.  希土類元素の一種以上であるR1とBと残部がFeおよび不可避不純物および/または改質元素とからなる磁石合金粒子が結合または密接してなる塊状の磁石体と、
     NdとOとFとの化合物であるネオジム酸フッ化物からなり該磁石体の表面部のみならず内部を含む全体に散在する分散粒子と、
     を有することを特徴とする希土類磁石材。
  13.  さらに、前記R1とは異なる希土類元素の一種以上であるR3が前記磁石合金粒子の外郭の少なくとも一部に濃化してなる濃化部を有する請求項12に記載の希土類磁石材。
  14.  前記R3はDyまたはTbである請求項13に記載の希土類磁石材。
  15.  前記磁石合金粒子は、全体を100%としたときに27~35%のNdと0.8~1.5%のBを含むNdFeB系粒子であり、
     前記磁石体は、前記磁石合金粒子が焼結した焼結体である請求項12に記載の希土類磁石材。
PCT/JP2010/065660 2009-10-10 2010-09-10 希土類磁石材およびその製造方法 WO2011043158A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080040932.9A CN102667978B (zh) 2009-10-10 2010-09-10 稀土磁铁材料及其制造方法
US13/384,901 US9242296B2 (en) 2009-10-10 2010-09-10 Rare earth magnet material and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009235800A JP5218368B2 (ja) 2009-10-10 2009-10-10 希土類磁石材およびその製造方法
JP2009-235800 2009-10-10

Publications (1)

Publication Number Publication Date
WO2011043158A1 true WO2011043158A1 (ja) 2011-04-14

Family

ID=43856636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065660 WO2011043158A1 (ja) 2009-10-10 2010-09-10 希土類磁石材およびその製造方法

Country Status (3)

Country Link
US (1) US9242296B2 (ja)
JP (1) JP5218368B2 (ja)
WO (1) WO2011043158A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140314611A1 (en) * 2013-04-23 2014-10-23 GM Global Technology Operations LLC Method of making non-rectangular magnets
WO2014196605A1 (ja) * 2013-06-05 2014-12-11 トヨタ自動車株式会社 希土類磁石とその製造方法
US9859055B2 (en) 2012-10-18 2018-01-02 Toyota Jidosha Kabushiki Kaisha Manufacturing method for rare-earth magnet
US10056177B2 (en) 2014-02-12 2018-08-21 Toyota Jidosha Kabushiki Kaisha Method for producing rare-earth magnet

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5870522B2 (ja) * 2010-07-14 2016-03-01 トヨタ自動車株式会社 永久磁石の製造方法
JP2012222386A (ja) 2011-04-04 2012-11-12 Sony Corp 表示制御装置および方法、並びにプログラム
PH12013000103B1 (en) 2012-04-11 2015-09-07 Shinetsu Chemical Co Rare earth sintered magnet and making method
WO2014148353A1 (ja) * 2013-03-18 2014-09-25 インターメタリックス株式会社 RFeB系磁石製造方法、RFeB系磁石及び粒界拡散処理用塗布物
CN104167831B (zh) * 2013-05-16 2019-03-08 纳普拉有限公司 电能和机械能转换装置及使用该装置的产业机械
CN103258634B (zh) * 2013-05-30 2015-11-25 烟台正海磁性材料股份有限公司 一种制备高性能R-Fe-B系烧结磁体方法
JP6142794B2 (ja) * 2013-12-20 2017-06-07 Tdk株式会社 希土類磁石
JP6142793B2 (ja) * 2013-12-20 2017-06-07 Tdk株式会社 希土類磁石
JP6142792B2 (ja) * 2013-12-20 2017-06-07 Tdk株式会社 希土類磁石
KR101548684B1 (ko) * 2014-04-18 2015-09-11 고려대학교 산학협력단 희토류계 소결 자석의 제조방법
CN105469973B (zh) * 2014-12-19 2017-07-18 北京中科三环高技术股份有限公司 一种r‑t‑b永磁体的制备方法
US20180025819A1 (en) * 2015-02-18 2018-01-25 Hitachi Metals, Ltd. Method for producing r-t-b system sintered magnet
CN105845301B (zh) * 2015-08-13 2019-01-25 北京中科三环高技术股份有限公司 稀土永磁体及稀土永磁体的制备方法
JP6600693B2 (ja) * 2015-11-02 2019-10-30 日産自動車株式会社 Nd−Fe−B系磁石の粒界改質方法、および当該方法により処理された粒界改質体
JP2017157625A (ja) * 2016-02-29 2017-09-07 Tdk株式会社 希土類焼結磁石
WO2017156725A1 (en) * 2016-03-16 2017-09-21 GE Lighting Solutions, LLC Led apparatus employing neodymium based materials with variable content of fluorine and oxygen
CN107275024B (zh) * 2016-04-08 2018-11-23 沈阳中北通磁科技股份有限公司 一种含有氮化物相的高性能钕铁硼永磁铁及制造方法
CN107275025B (zh) * 2016-04-08 2019-04-02 沈阳中北通磁科技股份有限公司 一种含铈钕铁硼磁钢及制造方法
KR102100759B1 (ko) 2016-11-08 2020-04-14 주식회사 엘지화학 금속 분말의 제조 방법 및 금속 분말
JP6717231B2 (ja) * 2017-02-28 2020-07-01 日立金属株式会社 R−t−b系焼結磁石の製造方法
JP6717230B2 (ja) * 2017-02-28 2020-07-01 日立金属株式会社 R−t−b系焼結磁石の製造方法
KR102412473B1 (ko) 2018-08-24 2022-06-22 주식회사 엘지화학 자석 분말의 제조 방법 및 자석 분말
KR102398932B1 (ko) 2018-08-31 2022-05-16 주식회사 엘지화학 자석 분말의 제조 방법 및 자석 분말
JP7196514B2 (ja) 2018-10-04 2022-12-27 信越化学工業株式会社 希土類焼結磁石
JP2020107888A (ja) * 2018-12-25 2020-07-09 日立金属株式会社 R−t−b系焼結磁石の製造方法
CN114420437A (zh) * 2020-01-13 2022-04-29 桂林电子科技大学 一种利用Dy制备的钕铁硼永磁材料及其制备方法
US20230377783A1 (en) 2020-10-29 2023-11-23 Mitsubishi Electric Corporation Rare earth sintered magnet, method of manufacturing rare earth sintered magnet, rotor, and rotating machine
CN113744985B (zh) * 2021-08-02 2024-02-23 安徽省瀚海新材料股份有限公司 一种提升钕铁硼矫顽力的方法
WO2024122736A1 (ko) * 2022-12-06 2024-06-13 연세대학교 산학협력단 Re-fe-b계 경희토류 불화물 입계확산 자석의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282312A (ja) * 2002-03-22 2003-10-03 Inter Metallics Kk 着磁性が改善されたR−Fe−(B,C)系焼結磁石およびその製造方法
JP2006066853A (ja) * 2004-06-25 2006-03-09 Hitachi Ltd 希土類磁石及びその製造方法、並びに磁石モータ
JP2007116142A (ja) * 2005-09-26 2007-05-10 Hitachi Ltd 磁性材料,磁石及び回転機
JP2009153356A (ja) * 2007-12-25 2009-07-09 Hitachi Ltd 自己始動式永久磁石同期電動機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3471876B2 (ja) 1992-12-26 2003-12-02 住友特殊金属株式会社 耐食性のすぐれた希土類磁石及びその製造方法
WO2006043348A1 (ja) 2004-10-19 2006-04-27 Shin-Etsu Chemical Co., Ltd. 希土類永久磁石材料の製造方法
JP2007116088A (ja) 2005-09-26 2007-05-10 Hitachi Ltd 磁性材料,磁石及び回転機
CN100565720C (zh) 2005-09-26 2009-12-02 株式会社日立制作所 磁性材料、磁铁及旋转机
JP4867632B2 (ja) 2005-12-22 2012-02-01 株式会社日立製作所 低損失磁石とそれを用いた磁気回路
CN103227022B (zh) * 2006-03-03 2017-04-12 日立金属株式会社 R‑Fe‑B系稀土类烧结磁铁
CN101331566B (zh) 2006-03-03 2013-12-25 日立金属株式会社 R-Fe-B系稀土类烧结磁铁及其制造方法
JP4840606B2 (ja) 2006-11-17 2011-12-21 信越化学工業株式会社 希土類永久磁石の製造方法
JP4564993B2 (ja) 2007-03-29 2010-10-20 株式会社日立製作所 希土類磁石及びその製造方法
JP4672030B2 (ja) 2008-01-31 2011-04-20 日立オートモティブシステムズ株式会社 焼結磁石及びそれを用いた回転機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282312A (ja) * 2002-03-22 2003-10-03 Inter Metallics Kk 着磁性が改善されたR−Fe−(B,C)系焼結磁石およびその製造方法
JP2006066853A (ja) * 2004-06-25 2006-03-09 Hitachi Ltd 希土類磁石及びその製造方法、並びに磁石モータ
JP2007116142A (ja) * 2005-09-26 2007-05-10 Hitachi Ltd 磁性材料,磁石及び回転機
JP2009153356A (ja) * 2007-12-25 2009-07-09 Hitachi Ltd 自己始動式永久磁石同期電動機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9859055B2 (en) 2012-10-18 2018-01-02 Toyota Jidosha Kabushiki Kaisha Manufacturing method for rare-earth magnet
US20140314611A1 (en) * 2013-04-23 2014-10-23 GM Global Technology Operations LLC Method of making non-rectangular magnets
US9870862B2 (en) * 2013-04-23 2018-01-16 GM Global Technology Operations LLC Method of making non-rectangular magnets
WO2014196605A1 (ja) * 2013-06-05 2014-12-11 トヨタ自動車株式会社 希土類磁石とその製造方法
US10468165B2 (en) 2013-06-05 2019-11-05 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for manufacturing same
US10748684B2 (en) 2013-06-05 2020-08-18 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for manufacturing same
US10056177B2 (en) 2014-02-12 2018-08-21 Toyota Jidosha Kabushiki Kaisha Method for producing rare-earth magnet

Also Published As

Publication number Publication date
JP5218368B2 (ja) 2013-06-26
JP2011082467A (ja) 2011-04-21
US9242296B2 (en) 2016-01-26
CN102667978A (zh) 2012-09-12
US20120114515A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP5218368B2 (ja) 希土類磁石材およびその製造方法
JP5589667B2 (ja) 希土類焼結磁石およびその製造方法
JP5767788B2 (ja) R−t−b系希土類永久磁石、モーター、自動車、発電機、風力発電装置
JP5561170B2 (ja) R−t−b系焼結磁石の製造方法
JP5325975B2 (ja) 焼結磁石及びそれを用いた回転電機
WO2012002059A1 (ja) R-t-b系希土類永久磁石、モーター、自動車、発電機、風力発電装置
EP2979279B1 (en) Permanent magnet, and motor and generator using the same
JP6319808B2 (ja) 磁性化合物及びその製造方法
JP2017157833A (ja) R−t−b系永久磁石
JP2007116088A (ja) 磁性材料,磁石及び回転機
JP2011216716A (ja) 永久磁石およびそれを用いたモータおよび発電機
JP2022115921A (ja) R-t-b系永久磁石
JP4700578B2 (ja) 高抵抗希土類系永久磁石の製造方法
JP2007088108A (ja) 磁石,磁石用磁性材料,コート膜形成処理液及び回転機
JP2007116142A (ja) 磁性材料,磁石及び回転機
JP2010123722A (ja) 永久磁石とそれを用いた永久磁石モータおよび発電機
JP2019102708A (ja) R−t−b系永久磁石
JP2019102707A (ja) R−t−b系永久磁石
WO2018101239A1 (ja) R-Fe-B系焼結磁石及びその製造方法
JP4951703B2 (ja) R−t−b系希土類永久磁石用合金材料、r−t−b系希土類永久磁石の製造方法およびモーター
US10825589B2 (en) R-T-B based rare earth magnet
WO2015122422A1 (ja) 希土類含有合金鋳片、その製造法及び焼結磁石
WO2012111611A1 (ja) 希土類磁石およびその製造方法
CN102667978B (zh) 稀土磁铁材料及其制造方法
JP2018093201A (ja) R−t−b系永久磁石

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040932.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821829

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13384901

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10821829

Country of ref document: EP

Kind code of ref document: A1