WO2011040081A1 - 基板モジュールおよびその製造方法 - Google Patents

基板モジュールおよびその製造方法 Download PDF

Info

Publication number
WO2011040081A1
WO2011040081A1 PCT/JP2010/058016 JP2010058016W WO2011040081A1 WO 2011040081 A1 WO2011040081 A1 WO 2011040081A1 JP 2010058016 W JP2010058016 W JP 2010058016W WO 2011040081 A1 WO2011040081 A1 WO 2011040081A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
anisotropic conductive
acf
glass substrate
electronic component
Prior art date
Application number
PCT/JP2010/058016
Other languages
English (en)
French (fr)
Inventor
元 長岡
飛田 泰宏
弘規 宮崎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to EP20100820201 priority Critical patent/EP2466631A1/en
Priority to US13/498,761 priority patent/US9007777B2/en
Priority to JP2011534107A priority patent/JP5410538B2/ja
Publication of WO2011040081A1 publication Critical patent/WO2011040081A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.

Definitions

  • the present invention relates to a board module and a manufacturing method thereof, and more particularly to a board module including an electronic component such as a chip capacitor mounted on a glass substrate using an anisotropic conductive adhesive and a manufacturing method thereof.
  • an anisotropic conductive film (hereinafter referred to as “ACF”) may be used.
  • This ACF is often in the form of a single sheet or tape, and is used in the form of an anisotropic conductive adhesive placed on a resin sheet or resin tape called a separator (or base film). Often done.
  • This anisotropic conductive adhesive is usually used by removing only the separator after thermocompression bonding of the ACF to the substrate surface (the method of transferring and transferring in this way is called a laminate method).
  • the ACF is usually attached to the entire surface of the substrate, but may be attached to each electronic component (see, for example, Japanese Patent Application Laid-Open No. 2004-6793).
  • this example will be described with reference to FIG.
  • FIG. 8 is a schematic plan view of a conventional liquid crystal module 600 mounted on a mobile phone or the like.
  • the liquid crystal module 600 includes two glass substrates 610 and 615, an LSI chip 630, an FPC substrate 640, and a plurality of individual electronic components 650 such as capacitors, which are arranged to face each other.
  • the liquid crystal module in this specification includes electronic components such as two glass substrates disposed opposite to each other, an LSI chip mounted on the glass substrate, an FPC substrate, and a capacitor.
  • a board module that does not include
  • the space between the two glass substrates 610 and 615 forms a display portion 620 in which liquid crystal (not shown) is sealed with a sealing material (not shown).
  • the overhanging portion 611 of the glass substrate 610 includes a large-scale integrated circuit (Large Scale Integration: hereinafter referred to as “LSI”) chip 630 having a driver function necessary for driving the display portion 620, and an external electronic device.
  • LSI Large-scale integrated circuit
  • a plurality of individual electronic components 650 such as a capacitor necessary for the operation of the LSI chip 630 and a flexible printed wiring (Flexible Printed Circuit: hereinafter referred to as “FPC”) substrate 640 are mounted.
  • FPC Flexible Printed Circuit
  • the LSI chip 630 and the FPC board 640 were mounted on the overhanging portion 611 using the chip ACF 630a and the FPC ACF 640a, respectively.
  • the plurality of individual electronic components 650 are mounted on the overhanging portion 611 using component ACFs 650a that are attached to each group of adjacent individual electronic components 650. Therefore, in order to mount the individual electronic component 650 on the overhang portion 611, a plurality of component ACFs 650a are required.
  • the chip ACF 630a and the component ACF 650a can be shared, a large ACF is attached to the overhanging portion so as to include them, and an LSI chip and a plurality of individual electronic components are stretched using this ACF.
  • the FPC board is mounted on the overhanging portion using the ACF 640a for FPC from above the ACF (see, for example, Japanese Patent Laid-Open No. 2006-235295).
  • the glass substrate is harder than the FPC substrate and the ACF is also harder than the solder paste. Therefore, when mounting a component on the glass substrate via the ACF, the repulsive force when the component is pressed and released by the mounter is large. This is caused by the fact that the adhesive force (tack force) cannot withstand this repulsive force.
  • connection reliability decreases as the tack force increases.
  • an ACF having a large tack force generally has a soft (small hardness) property, and when a component is mounted on a glass substrate, a hard (high hardness) ACF increases connection reliability. Can often. Therefore, if an ACF having a large tack force is used, high-speed mounting can be achieved, but connection reliability often tends to be lowered.
  • connection reliability is often improved with a hard (higher hardness) ACF in relation to the solder paste. . For this reason, if an ACF having a large tack force is used, it can be mounted at a high speed, but the connection reliability often tends to decrease.
  • an object of the present invention is to provide a substrate module having an anisotropic conductive film capable of performing high-speed mounting of electronic components while ensuring connection reliability, and a method for manufacturing the same.
  • a first aspect of the present invention is a substrate module in which a plurality of electronic components are mounted on a substrate by an anisotropic conductive film, A substrate on which a plurality of wirings are formed; A first anisotropic conductive film affixed on the substrate; Either a second anisotropic conductive film or a non-conductive film attached on the first anisotropic conductive film; By placing and pressure-bonding on either the second anisotropic conductive film or the non-conductive film, at least conductive particles contained in the first anisotropic conductive film are formed on the wiring.
  • the first anisotropic conductive film has higher connection reliability than the second anisotropic conductive film or the non-conductive film
  • the second anisotropic conductive film or the nonconductive film has a surface tack force larger than that of the first anisotropic conductive film.
  • the first anisotropic conductive film has high connection reliability to such an extent that the electronic component can be satisfactorily connected to the wiring on the substrate,
  • the second anisotropic conductive film or the non-conductive film has a surface tack force that is large enough to mount the electronic component at a predetermined speed by the mounter.
  • the first anisotropic conductive film is melted at a temperature higher than the melt viscosity of the second anisotropic conductive film or the non-conductive film at a temperature during thermocompression bonding for connecting the electronic component to the wiring. It has a viscosity.
  • the first anisotropic conductive film has a thickness larger than that of the second anisotropic conductive film or the non-conductive film.
  • the first anisotropic conductive film has a surface tack of less than 185 KPa at room temperature
  • the second anisotropic conductive film or the non-conductive film has a surface tack force of 185 KPa or more at room temperature.
  • a flexible printed circuit board in the first aspect of the present invention, A flexible printed circuit board; And further comprising a third anisotropic conductive film attached to the flexible printed wiring board, The flexible printed wiring board is connected to the wiring by conductive particles contained in at least the first and third anisotropic conductive films.
  • the substrate includes a display unit that displays an image;
  • the electronic component includes a drive element that drives the display unit based on a signal given from the outside.
  • the first anisotropic conductive film and the second anisotropic conductive film or the non-conductive film are attached to an entire surface of a predetermined region including the plurality of wirings.
  • a ninth aspect of the present invention is a method for manufacturing a board module in which an electronic component is mounted on a board with an anisotropic conductive film,
  • the substrate on which a plurality of wirings are formed, a predetermined first anisotropic conductive film, and a second anisotropic having lower connection reliability and higher surface tack than the first anisotropic conductive film Preparing a conductive film or a non-conductive film;
  • the conductive material contained in at least the first anisotropic conductive film is placed on either the second anisotropic conductive film or the non-conductive film prepared in the preparation step and is pressure-bonded.
  • a mounting step of connecting the electronic component to the wiring with particles Preparing a conductive film or a
  • a tenth aspect of the present invention is a method for manufacturing a board module in which an electronic component is mounted on a board with an anisotropic conductive film,
  • the substrate on which a plurality of wirings are formed, a predetermined first anisotropic conductive film, and a second anisotropic having lower connection reliability and higher surface tack than the first anisotropic conductive film A preparation step of preparing a conductive film; An anisotropic conductive film bonded by attaching either the second anisotropic conductive film or the non-conductive film prepared in the preparation step to the first anisotropic conductive film.
  • Paste preparation process to create An attaching step of attaching the bonded anisotropic conductive film created in the attaching preparation step on the substrate by pressure bonding;
  • a mounting step of connecting the electronic component to the wiring by the bonded anisotropic conductive film A tenth aspect of the present invention.
  • the first anisotropic conductive film has higher connection reliability than the second anisotropic conductive film or the non-conductive film.
  • the connection reliability can be sufficiently secured, and the second anisotropic conductive film or non-conductive film has a higher surface tack force than the first anisotropic conductive film, so that high-speed mounting of electronic components is possible. It can be performed. In this way, it is possible to ensure high-speed mounting of electronic components while ensuring connection reliability.
  • connection reliability is ensured by the first anisotropic conductive film having high connection reliability that allows the electronic component to be well connected to the wiring on the substrate.
  • the melt viscosity of the first anisotropic conductive film is larger than the melt viscosity of the second anisotropic conductive film or non-conductive film, so When the pressure bonding is performed, the second anisotropic conductive film or the non-conductive film easily flows out from between the wiring and the outside. For this reason, the second anisotropic conductive film or non-conductive film is less likely to remain in the connection portion, and it is possible to remove an adverse effect that hinders connection reliability.
  • the connection reliability is high.
  • the one anisotropic conductive film greatly contributes to the formation of the conductive path, and connection reliability can be improved.
  • the first anisotropic conductive film has a surface tack force of less than 185 KPa at room temperature, and the second anisotropic conductive film or the non-conductive film is at room temperature. Therefore, the first anisotropic conductive film can ensure high connection reliability, and even if high-speed mounting of electronic components by the mounter is not possible, the above-described surface tack force is 185 KPa or more. In addition, the second anisotropic conductive film having a large surface tack force can sufficiently secure the high-speed mounting property of the electronic component.
  • the flexible printed wiring board can be suitably crimped by using the third anisotropic conductive film that is typically suitable for crimping the flexible printed wiring board.
  • the third anisotropic conductive film that is typically suitable for crimping the flexible printed wiring board.
  • the electronic component since the electronic component includes a driving element (for example, an LSI chip) that drives the display unit based on a signal given from the outside, in the display substrate module such as a liquid crystal module.
  • a driving element for example, an LSI chip
  • the display substrate module such as a liquid crystal module
  • the first anisotropic conductive film and the second anisotropic conductive film or the non-conductive film are attached to the entire surface of the predetermined region, so that a fine attaching accuracy is required.
  • a first attaching step for attaching the first anisotropic conductive film by pressure bonding onto the substrate, and a second anisotropic conductive film or non-conductive film A substrate module having an effect similar to that of the first aspect of the present invention by including a second attaching step of attaching any of the above on the first anisotropic conductive film and a mounting step of the electronic component This manufacturing method can be realized.
  • the anisotropic conductive film bonded by bonding either the second anisotropic conductive film or the non-conductive film to the first anisotropic conductive film.
  • the present invention includes a step of preparing a bonding for forming a film, a step of bonding by bonding the bonded anisotropic conductive film on a substrate, and a step of mounting an electronic component.
  • the manufacturing method of the board module which has the effect similar to 1 aspect is realizable.
  • FIG. 2 is a cross-sectional view showing a cross section of the liquid crystal module along the line AA shown in FIG. 1 in the embodiment.
  • FIG. 2 is a cross-sectional view showing a cross section of the liquid crystal module along the line BB shown in FIG. 1 in the embodiment.
  • FIG. 6 is a schematic plan view showing a configuration of a liquid crystal module according to a second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a cross section of the liquid crystal module along the line AA shown in FIG. 5 in the embodiment.
  • FIG. 6 is a cross-sectional view showing a cross section of the liquid crystal module along the line BB shown in FIG. 5 in the embodiment. It is a model top view of the conventional liquid crystal module.
  • FIG. 1 is a schematic plan view showing a configuration of a liquid crystal module 100 as a liquid crystal display device according to the first embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the liquid crystal module 100 taken along line AA in FIG.
  • FIG. 3 is a cross-sectional view showing a cross section of the liquid crystal module 100 along the line BB in FIG.
  • these drawings show a configuration in a state in which components and the like are temporarily fixed (mounted) in order to explain the structure including the ACF.
  • the liquid crystal module 100 includes two glass substrates 110 and 115, an LSI chip 130, an FPC board 140, and an electronic component 150 such as a stabilization capacitor or a boost capacitor that are arranged to face each other. And.
  • a liquid crystal (not shown) is sealed with a sealing material 125, whereby the display unit 120 is formed.
  • the overhanging portion 111 of the glass substrate 110 includes an LSI chip 130 having a driver function necessary for driving a liquid crystal, an FPC board 140 that supplies a video signal, a clock signal, and the like from an external electronic device to the LSI chip 130, and An electronic component 150 such as a stabilization capacitor or a boost capacitor necessary for stabilizing the voltage generated in the LSI chip 130 is mounted.
  • circuit patterns of a gate driver, a source driver, and a DC / DC converter are formed on the surface of a silicon substrate using a fine processing technique, and the circuit patterns are used as connection terminals for connecting the circuit patterns to the outside.
  • It is a bare chip (chip before packaging) on which bump electrodes are formed.
  • the height of the bump electrode is, for example, about 15 ⁇ m.
  • the configuration in which the LSI chip 130 that is a bare chip is face-down bonded to the overhanging portion 111 is an example.
  • an LSI device in which the LSI chip 130 is packaged in a surface-mount package is mounted on the glass substrate 110. Also good.
  • the FPC board 140 is a board in which a plurality of wiring layers 171 made of copper foil having a thickness of 8 to 50 ⁇ m are formed on one surface of a flexible insulating film 141 having a thickness of 12 to 50 ⁇ m, for example, and can be bent freely.
  • the wiring layer 171 may be formed not only on one side of the insulating film 141 but also on both sides.
  • the electronic component 150 is, for example, a ceramic chip capacitor having a size of 1.0 mm ⁇ 0.5 mm, and a voltage stabilizing capacitor generated in the LSI chip 130 or a booster circuit (charge pump circuit built in the LSI chip 130).
  • the electronic component 150 may be other passive components such as a chip resistor functioning as a resistance voltage dividing circuit other than a chip capacitor, a chip coil, a light emitting diode (LED), a rectifying diode, It may be an active component such as a transistor or an LSI chip. That is, the electronic component in the present specification refers to various electronic components including an LSI chip that can be mounted by a mounter or the like and does not include substrates such as the FPC substrate 140.
  • a display wiring 175 that connects the terminals of the LSI chip 130 and the display unit 120, a chip component wiring 173 that connects the terminals of the electronic component 150 and the terminals of the LSI chip 130, and the electronic component 150
  • a ground line 172 that grounds the other terminal and an FPC wiring 174 that connects the wiring layer 171 formed on the FPC board 140 and the terminal of the LSI chip 130 are formed. Since these wirings 172 to 175 are formed simultaneously with the internal line in the display portion 120, they are formed of a material containing aluminum (Al) or tantalum (Ta).
  • the LSI chip 130 has two layers on one end of the display wiring 175, one end of the chip component wiring 173, and one end of the FPC wiring 174 by the bump electrode 135 with the surface of the LSI chip 130 facing the glass substrate side.
  • the first ACF 150a and the second ACF 150b are connected to each other.
  • the terminal of the electronic component 150 is also connected to the other end of the chip component wiring 173 or the ground line 172 using the first ACF 150a and the second ACF 150b that form two layers.
  • the wiring layer 171 of the FPC board 140 is connected to the other end of the FPC wiring 174 using the first ACF 150a and the second ACF 150b that form two layers.
  • first ACF 150a and the second ACF 150b are shared by the LSI chip 130, the electronic component 150, and the FPC board 140.
  • the film thickness of the first ACF 150a and the second ACF 150b is, for example, about 10 to 25 ⁇ m.
  • the first ACF 150a and the second ACF 150b have a two-layer structure laminated in the vertical direction, and have different functions. This will be described in detail below.
  • the glass substrate 110 on which the display wiring 175, the chip component wiring 173, the ground line 172, and the FPC wiring 174 are formed in the overhang portion 111 is prepared.
  • a rectangular ACF to be the first ACF 150a having almost the same size as the overhanging portion 111 including the area where the LSI chip 130 and the electronic component 150 are mounted hereinafter, this ACF is also referred to as the first ACF 150a.
  • the conditions for attaching the first ACF 150a are, for example, a temperature of 60 to 100 ° C., a time of 1 to 5 seconds, and a pressure of 0.5 to 2 MPa.
  • the first ACF 150a (and the second ACF 150b to be described later) is configured to be affixed to a size corresponding to almost the entire surface of the overhanging portion 111, but is predetermined for each component that needs to be connected.
  • the configuration may be such that each region is affixed individually.
  • the above-described configuration in which one ACF is pasted over almost the entire surface of the overhang portion 111 is less likely to cause a problem even if the pasting accuracy is low. Therefore, it is preferable in that it can be applied easily and at high speed.
  • the first ACF 150a and the second ACF 150b which will be described later, are in the form of a single sheet or tape, and are formed of an anisotropic conductive adhesive placed on a separator that is a resin sheet or a resin tape. Used in. In the following, it is assumed that a laminate type anisotropic conductive adhesive is used in which only the separator is removed after the ACF is thermocompression bonded to the substrate surface. Further, in the following, attaching ACF to the substrate surface by thermocompression bonding and providing the ACF to the substrate surface by removing the separator is simply expressed as “attaching”.
  • the first ACF 150a has a high hardness in order to improve the connection reliability with the glass substrate.
  • the hardness of the ACF is too large, a difference in interface stress between the glass substrate 110 to be bonded and the LSI chip 130 that is, for example, a bare chip cannot be absorbed, and connection reliability may be reduced. That is, the interfacial stress difference due to temperature change is proportional to the difference in thermal expansion coefficient, and the thermal expansion coefficient of glass and bare chip is approximately equal (for example, 3 ppm / ° C), whereas the thermal expansion coefficient of ACF (for example, 100 ppm / ° C). ) Is much larger than these.
  • the hardness of the ACF may become too large.
  • a flexible component such as rubber may be added.
  • the hardness is reduced. Therefore, in this case, the smaller the hardness is, the higher the connection reliability is. Therefore, it cannot be said that the higher the hardness is, the higher the connection reliability is.
  • the structure of the first ACF 150a may be a two-layer structure in which a conductive particle layer is provided on the substrate side and an adhesive layer is provided on the chip or component side.
  • the structure in which only the particle layer is provided may be used.
  • a second ACF 150b having the same shape as the first ACF 150a is pasted on the first ACF 150a (thermal transfer or lamination).
  • the hardness of the second ACF 150b will be described later.
  • the conditions for attaching the second ACF 150b may be the same as the conditions for attaching the first ACF 150a, or may be conditions suitable for attaching the ACFs together.
  • the LSI chip 130 with the surface down is temporarily fixed (mounted) on the second ACF 150b.
  • alignment is performed so that the bump electrode 135 of the LSI chip 130 is connected to one end of the display wiring 175, one end of the chip component wiring 173, and one end of the FPC wiring 174.
  • the LSI chip 130 temporarily fixed (mounted) on the second ACF 150b is subjected to main compression bonding (thermocompression bonding).
  • the conditions for the final pressure bonding of the LSI chip 130 are, for example, a temperature of 180 to 220 ° C., a time of 5 to 15 seconds, and a pressure of 60 to 80 MPa.
  • the first ACF 150a is attached under the second ACF 150b, when the LSI chip 130 is thermocompression bonded, excess adhesive or the like contained in these ACFs causes the bump electrode 135 and the display wiring 175. And a predetermined number of conductive particles are trapped between them and contribute to electrical connection.
  • the electronic component 150 is temporarily fixed (mounted) on the second ACF 150b pasted using a high-speed mounter. At this time, one terminal of the electronic component 150 is connected to the other end of the chip component wiring 173 and the other terminal is connected to the ground line 172, or both terminals of the other electronic component 150 are different from each other. Positioning is performed so as to be connected to the other end.
  • the temporary fixing (mounting) conditions are, for example, a time of 0.05 to 0.3 seconds and a pressure of 1.0 to 4.0 MPa, and the first and second ACFs 150a and 150b are not heated (that is, at room temperature). ).
  • the temporary fixing may not be sufficiently performed with a general high-speed mounter.
  • the larger the timer value the lower the mounting speed.
  • the timer value is 0 seconds (specifically less than 0.05 seconds) and 0.2 seconds
  • the material of the second ACF 150b is changed so that the surface tack force is different, and the Measure the mountability of parts.
  • FIG. 4 is a diagram showing the results of measuring the mountability of components on a plurality of ACF glass substrates having different surface tack forces.
  • a commercially available general high-speed mounter is used, and whether or not a 1005 size chip capacitor can be temporarily fixed (mounted) on a glass substrate is checked to determine whether components can be mounted. .
  • ACF A to E five types of ACF A to E (hereinafter, these ACFs are described as “A” to “E”) are used. It indicates that there is no chip splash or misalignment, and indicates that it is good. ⁇ indicates that there is a chip splash or large misalignment during mounting, and that the mark is poor, while ⁇ indicates slight misalignment during mounting. Indicates that it cannot be said.
  • the surface tack force of each ACF was measured with a tack force measuring device (TACKINES TESTER TAC-II, RHESCA) at a test probe diameter of 5 mm, a measurement temperature of 22 ° C., a probe descending speed of 30 mm / min, and a preload of 1922 mN for 1 second. This was performed under the condition that the probe ascending speed was 120 mm / min.
  • TACKINES TESTER TAC-II, RHESCA tack force measuring device
  • the timer value is set to 0.2 seconds, even a “B” ACF having a relatively small surface tack force shows good mountability. Will fall. Therefore, for the fastest mounting, it is preferable to set the timer value to 0 seconds, and in that case, it is preferable to use the “C” ACF whose surface tack force is 114 KPa. However, it is preferable to use at least “D” ACF having a surface tack force of 185 KPa, or using “E” ACF having a surface tack force of 268 KPa. As described above, in order to realize high-speed component mounting and good mountability, the second ACF 150b preferably has a surface tack force of 185 KPa or more at room temperature.
  • the second ACF 150b may be able to be satisfactorily mounted on a glass substrate without necessarily having a surface tack force of 185 KPa or more. Even in that case, the tack force of the first and second ACFs 150a and 150b must satisfy the following two conditions.
  • the tack force of the second ACF 150b must be large enough to achieve good mountability when electronic components are mounted at a predetermined speed by a high-speed mounter. Further, the tack force of the first ACF 150a must be small enough that the mountability becomes poor if only this is used to mount the electronic component by the high-speed mounter at the above speed. Thus, if the tack force of the first ACF 150a is not small, it is not necessary to ensure high-speed mounting of electronic components by the second ACF 150b having a large surface tack force while securing the connection reliability by the first ACF 150a. Because.
  • the electronic component 150 temporarily fixed on the second ACF 150 b is press-bonded to the overhanging portion 111.
  • the conditions for the main pressure bonding are, for example, a temperature of 180 to 200 ° C., a time of 10 to 20 seconds, and a pressure of 1.0 to 4.0 MPa. Even if the heights of the electronic components 150 are different, it is possible to apply substantially equal pressure simultaneously to the electronic components 150 by applying pressure to the upper surface of the electronic components 150 using an elastic body head such as rubber. it can.
  • the FPC board 140 is temporarily fixed on the overhanging portion 111 with the surface including the wiring layer 142 facing down. At this time, alignment is performed so that the wiring layer 142 of the FPC board 140 is connected to the other end of the FPC wiring 174.
  • the temporarily fixed FPC board 140 is pressure bonded.
  • the conditions for the final pressure bonding of the FPC board 140 are, for example, a temperature of 160 to 190 ° C., a time of 10 to 20 seconds, and a pressure of 1.5 to 3.0 MPa.
  • the LSI chip 130, the electronic component 150, and the FPC board 140 are all or two of them (typically, the LSI chip 130 and the electronic component 150) are subjected to the main pressure bonding simultaneously or in a series of processes. Also good.
  • the ACF is heated for a predetermined time as described above. While applying pressure to the LSI chip, etc. from above. At this time, pressure is applied to the two-layer ACF sandwiched between each terminal such as an LSI chip and the wiring formed in the overhanging portion. In the ACF to which pressure is applied, dispersed conductive particles overlap while contacting to form a conductive path, and the LSI chip and the terminals of the individual electronic components are formed on the glass substrate by the formed conductive path Connected to each.
  • ACF contains a thermosetting resin
  • the formed conductive path does not disappear even if the pressure is stopped. At this time, since no pressure is applied in the surface direction, a conductive path is not formed in the surface direction, and the insulation in the surface direction of the ACF is maintained.
  • the formation of the conductive path as described above is preferably performed mainly by the first ACF 150a.
  • the first ACF 150a that can improve the connection reliability is used, it is desirable that the first ACF 150a is mainly formed with a conductive path. Therefore, it can be said that the second ACF 150b for improving the mountability of components does not need to make a significant contribution in order to improve the connection reliability. Therefore, the second ACF 150b is preferably thinner (thickness is smaller) than the first ACF 150a, and further, the second ACF 150b has a thickness that can exert a surface tack force when mounting a component, and is as thin as possible (thickness). More preferably).
  • the melt viscosity (at the temperature at the time of the main pressure bonding) of the second ACF 150b is higher than the melt viscosity of the first ACF 150a. It is also preferable to use a material having such a low melt viscosity that it is set to a small value, that is, flows out to some extent during the main press bonding. Then, the second ACF 150b flows out from between the terminals such as the LSI chip and the wiring formed in the overhanging portion during the main press bonding, so that the second ACF 150b hardly remains in the connection portion, resulting in the adverse effect described above. Can be removed. If the second ACF 150b has a low melt viscosity as described above and is configured as thin as described above, it is preferable that the above adverse effects can be further eliminated.
  • the first ACF 150a having high connection reliability (small surface tack force) and the second ACF 150b having high component mounting property due to the large surface tack force Since the electronic component 150 and the like are respectively mounted on the glass substrate 110, it is possible to provide a liquid crystal module having an ACF that can perform high-speed mounting of the electronic component while ensuring connection reliability, and a method for manufacturing the same.
  • FIG. 5 is a schematic plan view showing a configuration of a liquid crystal module 200 as a liquid crystal display device according to the second embodiment of the present invention
  • FIG. 6 is a cross-sectional view of the liquid crystal module 200 taken along line AA in FIG.
  • FIG. 7 is a cross-sectional view showing a cross section of the liquid crystal module 200 along the line BB in FIG.
  • these figures have shown the structure in the state which temporarily fixed components etc., in order to demonstrate the structure containing ACF.
  • the liquid crystal module 200 according to the present embodiment shown in FIG. 5 has substantially the same components as the liquid crystal module 100 according to the first embodiment shown in FIG. 1, but the FPC board 140 has the first and first components. Not only the second ACF 150a and 150b but also the third ACF 150c is connected. Since other components and their functions are the same as those of the first embodiment, the same components are denoted by the same reference numerals and the description thereof is omitted. Therefore, in the following, the manufacturing process of the liquid crystal module 200 will be described focusing on the process of mounting the FPC board 140 on the glass substrate 110.
  • the LSI chip 130 and the electronic component 150 are temporarily fixed (mounted) on the glass substrate 110 via the first and second ACFs 150a and 150b, and then finally crimped. Thereafter, in a separate step (not shown), an FPC ACF 150c having the same size as the region on the overhanging portion 111 on which the FPC board 140 is mounted is attached to the FPC board 140 (thermal transfer).
  • the ACF 150c for FPC is made of a known material (having surface tack force, hardness, etc.) that is particularly suitable for crimping the FPC board 140.
  • the conditions for attaching the APC 150a for FPC are, for example, a temperature of 60 to 100 ° C., a time of 1 to 5 seconds, and a pressure of 0.5 to 2 MPa.
  • the FPC board 140 with the FPC ACF 150c attached thereto is temporarily fixed on the overhanging portion 111 with the FPC ACF 150c facing down.
  • alignment is performed so that the wiring layer 142 of the FPC board 140 is connected to the other end of the FPC wiring 174.
  • the temporarily fixed FPC board 140 is pressure bonded.
  • the conditions for the final pressure bonding of the FPC board 140 are, for example, a temperature of 160 to 190 ° C., a time of 10 to 20 seconds, and a pressure of 1.5 to 3.0 MPa.
  • the LSI chip 130, the electronic component 150, and the FPC board 140 are all or two of them (typically, the LSI chip 130 and the electronic component 150). May be performed simultaneously or in a series of processes.
  • the liquid crystal module 200 on which the FPC board 140 connected by the ACF 150c is mounted can be manufactured.
  • the first ACF 150a and the second ACF 150b can perform high-speed mounting of electronic components while ensuring connection reliability, as in the first embodiment.
  • the APC 150c for FPC it is possible to provide a liquid crystal module having an ACF capable of suitably pressing the FPC board 140 and a manufacturing method thereof.
  • the FPC board 140 is connected to the glass substrate 110 via the first and second ACFs 150a and 150b.
  • the LSI chip 130 on the glass substrate 110 has a configuration other than the FPC board.
  • the FPC board can be omitted.
  • the first and second ACFs 150a and 150b are attached to the glass substrate 110 in order, and then the electronic component 150 and the like are temporarily fixed (mounted) and finally pressure-bonded.
  • one bonded ACF having a layer structure is manufactured by bonding the first and second ACFs 150a and 150b to each other, and this bonded ACF is made of glass. The structure may be affixed to the substrate 110.
  • the ACF is usually manufactured in a process different from the process of manufacturing the liquid crystal module (typically by an ACF manufacturer), in this separate process, for example, the sheet-like first and first sheets are manufactured.
  • Two ACFs 150a and 150b may be laminated (bonded), wound around a reel while being slit to a predetermined width, and manufactured in the form of one ACF tape.
  • first ACF 150a and the second ACF 150b are prepared separately (typically purchased from an ACF manufacturer) in a process different from the above process.
  • the ACF may be laminated (bonded) while being pulled out from the reel, and the bonded (one) first and second ACFs 150 a and 150 b may be bonded to the glass substrate 110.
  • the second ACF 150b may be NCF. If manufactured in this way, when affixing to the glass substrate 110, a step of cutting and affixing the first and second ACFs 150a and 150b individually according to the size of the overhanging portion 111 of the glass substrate 110. Can be omitted.
  • the present invention is not limited to the liquid crystal display device, but an organic or inorganic EL (Electro Luminescence) display using a glass substrate, a plasma display panel (PDP), a field emission display.
  • the present invention can be similarly applied to a substrate module used in various display devices such as (Field Emission Display; FED).
  • an example in which an electronic component or the like is mounted on the glass substrate 110 has been described.
  • a hard substrate of other materials may be used, or a hard portion such as a solder portion may be used. It may be a soft substrate such as an FPC substrate.
  • the electronic component 150 or the like is attached to the substrate. When each is mounted, electronic components can be mounted at high speed while ensuring connection reliability.
  • connection reliability and high component mountability are not compatible in the ACF.
  • the tack force may be reduced as the additive is added more (that is, the connection reliability is higher).
  • the electronic component 150 or the like is mounted on the substrate by the first ACF 150a having high connection reliability and the second ACF 150b having high component mounting property due to the large surface tack force.
  • high-speed mounting of electronic components can be performed while ensuring connection reliability. Therefore, when the high connection reliability and the high component mounting property are in a trade-off relationship, the present invention can be widely applied to a board module including any (hardness) board. .
  • the liquid crystal module in which the LSI chip 130, the FPC board 140, and the electronic component 150 are mounted on the glass substrate 110 has been described.
  • the present invention is not limited to a display device such as a liquid crystal module, and at least one electronic component such as the LSI chip 130 or the electronic component 150 is mounted, and the electronic component of the electronic component can be secured while ensuring the connection reliability as described above.
  • the present invention can be widely applied to substrate modules connected to these by ACF capable of high-speed mounting.
  • the present invention is applied to a substrate module such as a liquid crystal panel and a method for manufacturing the same, and more specifically, an electronic device such as a chip capacitor mounted on a glass substrate using an anisotropic conductive adhesive. It is suitable for a substrate module including components and a manufacturing method thereof.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Wire Bonding (AREA)
  • Liquid Crystal (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

 液晶モジュール(100)を構成するガラス基板(110)の張出部(111)に、表面タック力は小さいが高い接続信頼性を有する第1のACF(150a)と、表面タック力が大きいことにより高い部品搭載性を有する第2のACF(150b)とを貼り付ける。これらを介して、LSI(130)および電子部品(150)などがガラス基板(110)に対してそれぞれ実装されるので、接続信頼性を確保しつつ電子部品の高速実装が可能となっている。

Description

基板モジュールおよびその製造方法
 本発明は、基板モジュールおよびその製造方法に関し、より詳しくは、異方性導電接着材を用いてガラス基板上に実装されたチップコンデンサなどの電子部品を含む基板モジュールおよびその製造方法に関する。
 従来より、ガラス基板などに電子部品を実装する場合、異方性導電膜(Anisotropic Conductive Film:以下「ACF」という)を用いることがある。このACFは、1枚のシートないしテープ状の形状をしているものが多く、セパレータ(またはベースフィルム)と呼ばれる樹脂シートまたは樹脂テープ上に載置された異方性導電接着材の形で使用されることが多い。この異方性導電接着材は、通常、基板面に対してACFを熱圧着させた後にセパレータのみを取り外すことにより使用される(このように転着させる方式はラミネート方式と呼ばれる)。このようにしてACFは、通常基板の全面に貼り付けられるが、電子部品毎に貼り付けられる場合もある(例えば日本特開2004-6793号公報を参照)。以下、この例を図8を参照して説明する。
 図8は、携帯電話などに搭載される従来の液晶モジュール600の模式平面図である。図8に示すように、液晶モジュール600は、対向して配置された2枚のガラス基板610、615と、LSIチップ630と、FPC基板640と、コンデンサなどの複数の個別電子部品650とを備えている。以下、本明細書において液晶モジュールとは、対向して配置された2枚のガラス基板、ガラス基板に実装されたLSIチップ、FPC基板およびコンデンサなどの電子部品を含み、バックっsライトや偏光板などは含まない基板モジュールをいう。
 2枚のガラス基板610、615に挟まれた空間は、シール材(図示しない)によって液晶(図示しない)が封止された表示部620を形成する。また、ガラス基板610の張出部611には、表示部620を駆動するために必要なドライバ機能を有する大規模集積回路(Large Scale Integration:以下「LSI」という)チップ630、外部の電子機器に接続されるフレキシブルプリント配線(Flexible Printed Circuit:以下、「FPC」という)基板640、および、LSIチップ630の動作に必要なコンデンサなどの複数の個別電子部品650が実装されている。外部からFPC基板640を介してLSIチップ630に映像信号、制御信号および電源電圧が与えられると、映像が表示部620に表示される。
 LSIチップ630およびFPC基板640は、それぞれチップ用ACF630aおよびFPC用ACF640aを用いて張出部611に実装されていた。また、複数の個別電子部品650は、それぞれ近接する個別電子部品650のグループごとに貼り付けられる部品用ACF650aを用いて張出部611に実装されていた。したがって、個別電子部品650を張出部611に実装するために、複数枚の部品用ACF650aが必要であった。このような複数枚の部品用ACF650aは連続して張出部611に貼り付けられるので、部品用ACF650aの貼り付け時に、隣接して貼り付けられる部品用ACF650a同士が互いに接触したり、部品用ACF650aが先に実装されたLSIチップ630やFPC基板640に接触したりして、貼り付けられた部品用ACF650aの位置が本来貼り付けたい位置からずれてしまうことがあった。
 このようなずれが生じることを防止するため、隣接する部品用ACF650aの貼り付け位置の間隔を十分に確保する必要があった。しかし、隣接する部品用ACF650aの貼り付け位置の間隔を十分に確保すれば、張出部611の面積が大きくなるので、液晶モジュール600を狭額縁化することができないという問題があった。
 そこで、チップ用ACF630aと部品用ACF650aとを共通化できることに着目し、これらを含むよう張出部に1枚の大きなACFを貼り付け、このACFを用いてLSIチップおよび複数の個別電子部品を張出部に実装するとともに、このACFの上からさらにFPC用ACF640aを用いてFPC基板を張出部に実装する構成がある(例えば日本特開2006-235295号公報を参照)。
日本特開2004-6793号公報 日本特開2006-235295号公報
 しかし、チップ用ACF630aと部品用ACF650aとを共通化し1枚のACFとする上記従来例の構成では、部品を取り付ける際のタック力が不足しがちとなる。このことにより、これらの個別電子部品を一般的なマウンタを使用して上記張出部上に高速に(例えば0.1秒程度で)実装しようとすると、張出部上に保持されずに外れてしまうことがある。
 これは、FPC基板よりもガラス基板が硬く、またACFも半田ペーストより硬いため、ガラス基板にACFを介して部品を実装する場合、マウンタで部品を押しつけて離したときの反発力が大きく、ACFの粘着力(タック力)がこの反発力に耐えられないことにより生じる。
 この点、タック力の大きいACFを使用すれば高速実装することができるようにも思われる。しかし、一般的なACFでは、そのタック力が大きいほど接続信頼性が低くなるというトレードオフの関係が生じる場合がある。例えば、タック力の大きいACFは、一般的に柔らかい(硬度が小さい)性質を有することが多く、ガラス基板に部品を実装する場合、硬い(硬度の大きい)ACFの方が接続信頼性を高めることができることが多い。そのため、タック力の大きいACFを使用すれば、高速実装することができる反面、接続信頼性が低下しやすくなることが多い。
 また、ガラス基板などの硬質基板でないFPC基板上に半田ペーストが使用されている場合にも、半田ペーストとの関係では硬い(硬度の大きい)ACFの方が接続信頼性を高めることができることが多い。そのため、同様にタック力の大きいACFを使用すれば、高速実装することができる反面、接続信頼性が低下しやすくなることが多い。
 そこで、本発明は、接続信頼性を確保しつつ電子部品の高速実装を行うことができる異方性導電膜を有する基板モジュール、およびその製造方法を提供することを目的とする。
 本発明の第1の局面は、複数の電子部品が異方性導電膜によって基板上に実装された基板モジュールであって、
 複数の配線が形成された基板と、
 前記基板上に貼り付けられる第1の異方性導電膜と、
 前記第1の異方性導電膜上に貼り付けられる第2の異方性導電膜または非導電性膜のいずれか一方と、
 前記第2の異方性導電膜または前記非導電性膜のいずれか一方の上に載置され圧着されることによって、少なくとも前記第1の異方性導電膜に含まれる導電粒子で前記配線に接続される電子部品と
を備え、
 前記第1の異方性導電膜は、前記第2の異方性導電膜または前記非導電性膜よりも接続信頼性が高く、
 前記第2の異方性導電膜または前記非導電性膜は、前記第1の異方性導電膜よりも表面タック力が大きいことを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記第1の異方性導電膜は、前記電子部品を前記基板上の配線と良好に接続可能な程度に高い接続信頼性を有し、
 前記第2の異方性導電膜または前記非導電性膜は、前記マウンタによって前記電子部品を所定の速度で良好に搭載可能な程度に大きい表面タック力を有することを特徴とする。
 本発明の第3の局面は、本発明の第1の局面において、
 前記第1の異方性導電膜は、前記電子部品を前記配線と接続するための熱圧着時の温度における前記第2の異方性導電膜または前記非導電性膜の溶融粘度よりも大きい溶融粘度を有することを特徴とする。
 本発明の第4の局面は、本発明の第1の局面において、
 前記第1の異方性導電膜は、前記第2の異方性導電膜または前記非導電性膜の厚さよりも大きい厚さを有することを特徴とする。
 本発明の第5の局面は、本発明の第1の局面において、
 前記第1の異方性導電膜は、常温で185KPa未満の表面タック力を有し、
 前記第2の異方性導電膜または前記非導電性膜は、常温で185KPa以上の表面タック力を有することを特徴とする。
 本発明の第6の局面は、本発明の第1の局面において、
 フレキシブルプリント配線基板と、
 前記フレキシブルプリント配線基板に貼り付けられる第3の異方性導電膜と
をさらに備え、
 前記フレキシブルプリント配線基板は、前記第1および第3の異方性導電膜に少なくとも含まれる導電粒子によって前記配線に接続されることを特徴とする。
 本発明の第7の局面は、本発明の第1の局面において、
 前記基板は、画像を表示する表示部を含み、
 前記電子部品は、外部から与えられる信号に基づいて前記表示部を駆動する駆動素子を含む。
 本発明の第8の局面は、本発明の第1の局面において、
 前記第1の異方性導電膜と、前記第2の異方性導電膜または前記非導電膜とは、前記複数の配線を含む所定領域全面に貼り付けられることを特徴とする。
 本発明の第9の局面は、電子部品が異方性導電膜によって基板上に実装された基板モジュールの製造方法であって、
 複数の配線が形成された前記基板と、所定の第1の異方性導電膜と、前記第1の異方性導電膜よりも接続信頼性が低くかつ表面タック力が大きい第2の異方性導電膜または非導電性膜とを準備する準備工程と、
 前記第1の異方性導電膜を前記基板上に圧着することにより貼り付ける第1の貼り付け工程と、
 前記準備工程により準備された前記第2の異方性導電膜または前記非導電性膜のいずれかを前記第1の異方性導電膜上に貼り付ける第2の貼り付け工程と、
 前記準備工程により準備された前記第2の異方性導電膜または前記非導電性膜のいずれかの上に載置し圧着することによって、少なくとも前記第1の異方性導電膜に含まれる導電粒子で前記電子部品を前記配線に接続する実装工程と
を備えることを特徴とする。
 本発明の第10の局面は、電子部品が異方性導電膜によって基板上に実装された基板モジュールの製造方法であって、
 複数の配線が形成された前記基板と、所定の第1の異方性導電膜と、前記第1の異方性導電膜よりも接続信頼性が低くかつ表面タック力が大きい第2の異方性導電膜とを準備する準備工程と、
 前記第1の異方性導電膜に、前記準備工程により準備された前記第2の異方性導電膜または非導電性膜のいずれかを貼り付けることにより貼り合わせられた異方性導電膜を作成する貼り付け準備工程と、
 前記貼り付け準備工程において作成される前記貼り合わせられた異方性導電膜を前記基板上に圧着することにより貼り付ける貼り付け工程と、
 前記貼り合わせられた異方性導電膜により前記電子部品を前記配線に接続する実装工程と
を備えることを特徴とする。
 本発明の第1の局面によれば、第1の異方性導電膜は、第2の異方性導電膜または非導電性膜よりも接続信頼性が高いので、これにより基板の配線との接続信頼性を十分に確保することができ、かつ第2の異方性導電膜または非導電性膜は、第1の異方性導電膜よりも表面タック力が大きいので、電子部品の高速実装を行うことができる。このように接続信頼性を確保しつつ、電子部品の高速実装性を併せて確保することができる。
 本発明の第2の局面によれば、電子部品を基板上の配線と良好に接続可能な程度に高い接続信頼性を有する第1の異方性導電膜により十分な接続信頼性を確保しつつ、マウンタによって電子部品を所定の速度で良好に搭載可能な程度に大きい表面タック力を有する第2の異方性導電膜または非導電性膜により、電子部品の高速実装性を併せて確保することができる。
 本発明の第3の局面によれば、第1の異方性導電膜の溶融粘度が第2の異方性導電膜または非導電性膜の溶融粘度よりも大きいので、電子部品を圧着(本圧着)する際に第2の異方性導電膜または非導電性膜の方が配線との間から外へ流れ出て行きやすくなる。そのため、接続部分に第2の異方性導電膜または非導電性膜が残りにくくなり、これらによって接続信頼性が阻害されるような悪影響を取り除くことができる。
 本発明の第4の局面によれば、第1の異方性導電膜の厚さは、第2の異方性導電膜または非導電性膜の厚さよりも大きいので、接続信頼性の高い第1の異方性導電膜が導電経路の形成に大きく寄与することになり、接続信頼性を高めることができる。
 本発明の第5の局面によれば、第1の異方性導電膜は、常温で185KPa未満の表面タック力を有し、第2の異方性導電膜または前記非導電性膜は、常温で185KPa以上の表面タック力を有するので、第1の異方性導電膜によって高い接続信頼性を確保することができ、またこれによってはマウンタによる電子部品の高速実装ができないとしても、上記のように表面タック力の大きい第2の異方性導電膜によって電子部品の高速実装性を十分に確保することができる。
 本発明の第6の局面によれば、典型的にはフレキシブルプリント配線基板の圧着に適した第3の異方性導電膜を使用することにより、フレキシブルプリント配線基板を好適に圧着することができ、かつ接続信頼性を確保しつつ、電子部品の高速実装性を併せて確保することができる。
 本発明の第7の局面によれば、電子部品は、外部から与えられる信号に基づいて表示部を駆動する(例えばLSIチップなどの)駆動素子を含むので、液晶モジュールなどの表示用基板モジュールにおいて、接続信頼性を確保しつつ、電子部品の高速実装性を併せて確保することができる。
 本発明の第8の局面によれば、第1の異方性導電膜と第2の異方性導電膜または非導電膜とが所定領域全面に貼り付けられるので、細かい貼り付け精度を要することなく、簡単に接続信頼性を確保しつつ、電子部品の高速実装性を併せて確保した基板モジュールを実現することができる。
 本発明の第9の局面によれば、第1の異方性導電膜を基板上に圧着することにより貼り付ける第1の貼り付け工程と、第2の異方性導電膜または非導電性膜のいずれかを第1の異方性導電膜上に貼り付ける第2の貼り付け工程と、電子部品の実装工程とを備えることにより、本発明の第1の局面と同様の効果を有する基板モジュールの製造方法を実現することができる。
 本発明の第10の局面によれば、第1の異方性導電膜に、第2の異方性導電膜または非導電性膜のいずれかを貼り付けることにより貼り合わせられた異方性導電膜を作成する貼り付け準備工程と、この貼り合わせられた異方性導電膜を基板上に圧着することにより貼り付ける貼り付け工程と、電子部品の実装工程とを備えることにより、本発明の第1の局面と同様の効果を有する基板モジュールの製造方法を実現することができる。
本発明の第1の実施形態に係る液晶モジュールの構成を示す模式平面図である。 上記実施形態において、図1に示すA-A線に沿った液晶モジュールの断面を示す断面図である。 上記実施形態において、図1に示すB-B線に沿った液晶モジュールの断面を示す断面図である。 上記実施形態において、タック力が異なる複数のACFのガラス基板に対する部品の搭載性を測定した結果を示す図である。 本発明の第2の実施形態に係るは液晶モジュールの構成を示す模式平面図である。 上記実施形態において、図5に示すA-A線に沿った液晶モジュールの断面を示す断面図である。 上記実施形態において、図5に示すB-B線に沿った液晶モジュールの断面を示す断面図である。 従来の液晶モジュールの模式平面図である。
 以下、添付図面を参照しつつ本発明の一実施形態について説明する。
<1. 第1の実施形態>
<1.1 液晶モジュールの構成>
 図1は、本発明の第1の実施形態に係る液晶表示装置としての液晶モジュール100の構成を示す模式平面図であり、図2は図1におけるA-A線に沿った液晶モジュール100の断面を示す断面図であり、図3は図1におけるB-B線に沿った液晶モジュール100の断面を示す断面図である。なお、これらの図はACFを含む構造を説明するために、部品等を仮固定(搭載)した状態での構成を示している。
 図1に示すように、この液晶モジュール100は、対向して配置された2枚のガラス基板110、115と、LSIチップ130と、FPC基板140と、安定化コンデンサや昇圧コンデンサなどの電子部品150とを備えている。
 2枚のガラス基板110、115に挟まれた空間には、シール材125によって液晶(図示しない)が封止されており、これにより表示部120が形成されている。ガラス基板110の張出部111には、液晶を駆動するために必要なドライバ機能などを有するLSIチップ130、外部の電子機器から映像信号やクロック信号などをLSIチップ130に与えるFPC基板140、および、LSIチップ130内で生成した電圧の安定化に必要な安定化コンデンサや昇圧コンデンサなどの電子部品150が実装されている。
 LSIチップ130は、ゲートドライバ、ソースドライバおよびDC/DCコンバータの回路パターンが微細加工技術を用いてシリコン基板の表面に形成されるとともに、それらの回路パターンを外部に接続するための接続端子としてのバンプ電極が形成されたベアチップ(パッケージングを行う前のチップ)である。なおバンプ電極の高さは、例えば約15μmである。また、ベアチップであるLSIチップ130を張出部111にフェイスダウンボンディングする構成は一例であって、例えばLSIチップ130を表面実装型のパッケージにパッケージングしたLSIデバイスをガラス基板110上に実装してもよい。
 FPC基板140は、例えば厚み12~50μmの可撓性の絶縁性フィルム141の片面に厚み8~50μmの銅箔からなる複数本の配線層171が形成された基板であり、自由に折り曲げられる。なお、配線層171は、絶縁性フィルム141の片面だけでなく、両面に形成されていてもよい。また、電子部品150は、例えばサイズ1.0mm×0.5mmのセラミックチップコンデンサであり、LSIチップ130内で生成した電圧の安定化コンデンサや、LSIチップ130に内蔵された昇圧回路(チャージポンプ回路)とともに電圧を昇圧させるために用いられる昇圧コンデンサ、LSIチップ130に供給する電源のバイパスコンデンサなどとして機能する。なお、この電子部品150は、チップコンデンサ以外の例えば抵抗分圧回路として機能するチップ抵抗器や、チップコイルなどの他の受動部品であってもよいし、発光ダイオード(LED)、整流用ダイオード、トランジスタ、LSIチップなどの能動部品であってもよい。すなわち、本明細書での電子部品とは、マウンタなどで搭載可能なLSIチップを含む各種電子部品を指し、FPC基板140などの基板類を含まないものを指すものとする。
 ガラス基板110上には、LSIチップ130の端子と表示部120とを接続する表示用配線175、電子部品150の端子とLSIチップ130の端子とを接続するチップ部品用配線173、電子部品150の他方の端子を接地する接地線172、およびFPC基板140に形成された配線層171とLSIチップ130の端子とを接続するFPC用配線174が形成されている。これらの配線172~175は、表示部120内の内線と同時形成されるので、アルミニウム(Al)またはタンタル(Ta)を含む材料によって形成されている。
 LSIチップ130は、LSIチップ130の表面をガラス基板側に向けた状態で、バンプ電極135によって、表示用配線175の一端、チップ部品用配線173の一端およびFPC用配線174の一端に2層を成す第1のACF150aおよび第2のACF150bを用いてそれぞれ接続されている。また電子部品150の端子も、2層を成す第1のACF150aおよび第2のACF150bを用いてチップ部品用配線173の他端または接地線172に接続されている。さらにFPC基板140の配線層171は、2層を成す第1のACF150aおよび第2のACF150bを用いてFPC用配線174の他端に接続されている。このように第1のACF150aおよび第2のACF150bは、LSIチップ130と電子部品150とFPC基板140とに兼用されている。なお、これら第1のACF150aおよび第2のACF150bの膜厚は、例えば10~25μm程度である。
 このとき、図2および図3に示すように、第1のACF150aおよび第2のACF150bは垂直方向に積層された2層構造をなしており、それぞれ異なる機能を有している。以下、詳しく説明する。
<1.2 液晶モジュールの製造方法>
 まず、張出部111に、表示用配線175、チップ部品用配線173、接地線172およびFPC用配線174が形成されたガラス基板110を準備する。そして、LSIチップ130および電子部品150が実装される領域を含む張出部111とほぼ同じ大きさの第1のACF150aとなるべき矩形のACF(以下では、このACFも第1のACF150aと呼ぶ)を張出部111上に貼り付ける(熱転写またはラミネートする)。第1のACF150aの貼り付けの条件は、例えば、温度60~100℃、時間1~5秒、圧力0.5~2MPaである。
 なお、上記のように第1のACF150a(および後述する第2のACF150b)は、張出部111のほぼ全面に相当する大きさで貼り付けられる構成であるが、接続が必要な部品毎の所定領域毎に個別に貼り付けられる構成であってもよい。もっとも、張出部111のほぼ全面に渡って1枚のACFを貼り付ける上記構成は、貼り付け精度が低くても問題が生じにくい。よって、簡単かつ高速に貼り付けることができる点で好適である。
 この第1のACF150aおよび後述する第2のACF150bは、1枚のシートないしテープ状の形状をしており、樹脂シートまたは樹脂テープであるセパレータ上に載置された異方性導電接着材の形で使用される。なお、以下では、基板面に対してACFを熱圧着させた後にセパレータのみを取り外すラミネート方式の異方性導電接着材が使用されるものとする。また以下では、このように熱圧着によって基板面に対してACFを貼り付け、セパレータを取り外すことにより基板面に対してACFを設けることを単に「貼り付ける」と表現する。
 なお、この第1のACF150aは、ガラス基板との接続信頼性を向上させるため、硬度の大きいものが使用されている。もっとも、ACFの硬度が大きすぎれば、接着対象であるガラス基板110と、例えばベアチップであるLSIチップ130との界面応力差を吸収できなくなり接続信頼性が低下することがある。すなわち、温度変化による界面応力差は熱膨張係数差に比例しており、ガラスおよびベアチップの熱膨張係数がほぼ等しいのに対して(例えば3ppm/℃)、ACFの熱膨張係数(例えば100ppm/℃)はこれらよりもはるかに大きい。そこでACFの熱膨張係数を下げるためにエポキシ樹脂の分子配合等に工夫を加えるとACFの硬度が大きくなりすぎることがあり、その硬度を下げるためにゴムなどの可撓性成分をさらに添加して硬度を小さくすることが一般的に行われている。したがって、この場合には硬度が小さいほど接続信頼性が高くなるため、硬度が大きいほど接続信頼性が高くなるとは必ずしも言えない。
 また、上記第1のACF150aの構造は、その基板側に導電粒子層が、チップまたは部品側に接着剤層が設けられる2層構成であってもよいし、例えば接着剤を含む1層の導電粒子層のみが設けられる構成であってもよい。
 次に、第1のACF150aと同形状の第2のACF150bを第1のACF150a上に貼り付ける(熱転写またはラミネートする)。なお、第2のACF150bの硬度等については後述する。また、第2のACF150bの貼り付けの条件は、第1のACF150aの貼り付け条件と同じであってもよいし、ACF同士を貼り合わせるのに適した条件であってもよい。
 続いて、表面を下にしたLSIチップ130を第2のACF150b上に仮固定(搭載)する。このとき、LSIチップ130のバンプ電極135が表示用配線175の一端、チップ部品用配線173の一端およびFPC用配線174の一端とそれぞれ接続されるように位置合わせを行う。そして、第2のACF150b上に仮固定(搭載)されたLSIチップ130を本圧着(熱圧着)する。LSIチップ130の本圧着の条件は、例えば、温度180~220℃、時間5~15秒、圧力60~80MPaである。
 そして、第2のACF150bの下には第1のACF150aが貼り付けられているので、LSIチップ130を熱圧着すると、これらのACFに含まれる余分な接着剤等がバンプ電極135と表示用配線175との間から流れ出るとともに、これらの間に所定数の導電粒子が捕捉されて電気的接続に寄与することになる。
 また高速マウンタを用いて、電子部品150を、貼り付けられた第2のACF150b上に仮固定(搭載)する。このとき、電子部品150の一方の端子がチップ部品用配線173の他端に、他方の端子を接地線172にそれぞれ接続され、または他の電子部品150の両端子がそれぞれ異なるチップ部品用配線173の他端に接続されるように位置合わせを行う。この仮固定(搭載)の条件は、例えば、時間0.05~0.3秒、圧力1.0~4.0MPaであり、第1および第2のACF150a,150bは加熱されない(すなわち常温である)。
 ここで、前述したように、接続信頼性を高めるために第2のACF150bにタック力の小さい材質が使用される場合(なお層構造を有する場合にはその表面にタック力の小さい材質が使用される場合)、一般的な高速マウンタでは上記仮固定が十分にできないことがある。この点、一般的な高速マウンタは、チップマウンタのヘッドが下降してから上昇するまでの時間をタイマ設定することが可能となっており、このタイマ値を大きくするほど部品の固定性(搭載性)を高めることができる。もっともタイマ値を大きくするほど当然実装速度が低下することになる。そこで、このタイマ値が0秒(具体的には0.05秒未満)と0.2秒である場合、第2のACF150bの材質をその表面タック力がそれぞれ異なるように変更し、ガラス基板に対する部品の搭載性を測定する。以下、図4を参照して説明する。
 図4は、表面タック力が異なる複数のACFのガラス基板に対する部品の搭載性を測定した結果を示す図である。なお、ここでは市販の一般的な高速マウンタを使用し、1005サイズのチップコンデンサをガラス基板上に仮固定(搭載)することができたかどうかを検査することにより部品の搭載性の良否判定を行う。
 なお図4において、ACFはA~Eの5種類(以下ではこれらのACFを「A」~「E」のように記載する)を使用し、搭載性の良否判定結果である○印はマウント時にチップ跳ねやズレなどがなく良好であることを示し、×印はマウント時にチップ跳ねや大きなズレなどがあり不良であることを示し、△印はマウント時にわずかなズレがあり完全に良好であるとは言えないことを示している。
 また、各ACFの表面タック力は、タック力測定機(TACKINESS TESTER TAC-II、RHESCA社)にて、テストプローブ直径5mm、測定温度22℃、プローブ下降速度30mm/分、プリロード1922mNで1秒間、プローブ上昇速度120mm/分の条件で行った。
 この図4を参照すればわかるように、タイマ値を0.2秒に設定すれば表面タック力の比較的小さい「B」のACFであっても良好な搭載性を示すが、部品の搭載速度が低下してしまう。そこで最も高速な搭載を行うためには、タイマ値を0秒に設定することが好適であり、その場合には表面タック力が114KPaである「C」のACFを使用することは好適であるとは言えず、少なくとも表面タック力が185KPaである「D」のACFを使用するか、または表面タック力が268KPaである「E」のACFを使用することが好適である。このように、部品の高速実装と良好な搭載性を実現するため、第2のACF150bは、常温で185KPa以上の表面タック力を有することが好ましい。
 なお、温度条件やタイマ値などの各種条件が異なる場合、第2のACF150bは、必ずしも185KPa以上の表面タック力を有していなくてもガラス基板上に良好に搭載可能である場合があるが、その場合であっても、第1および第2のACF150a,150bのタック力は以下の2つの条件を満たす必要がある。
 まず、第2のACF150bのタック力は、高速マウンタによる所定の速度での電子部品の搭載を行う場合に良好な搭載性を実現できる程度に大きくなければならない。また第1のACF150aのタック力は、もしこれのみを使用して上記速度で高速マウンタによる電子部品の搭載を行えば搭載性が不良となる程度に小さくなければならない。このように第1のACF150aのタック力が小さくなければ、第1のACF150aにより接続信頼性を確保しつつ、表面タック力が大きい第2のACF150bにより電子部品の高速実装性を確保する必要がないからである。
 そして、第2のACF150b上に仮固定された電子部品150を張出部111に本圧着する。本圧着の条件は、例えば、温度180~200℃、時間10~20秒、圧力1.0~4.0MPaである。なお、電子部品150の高さが異なっていても、ゴムなどの弾性体ヘッドを用いて電子部品150の上面に圧力を加えることにより、ほぼ等しい大きさの圧力を電子部品150に同時に加えることができる。
 その後、FPC基板140を、その配線層142が含まれる面を下にして張出部111上に仮固定する。このとき、FPC基板140の配線層142がFPC用配線174の他端と接続されるように位置合わせを行う。
 そして、仮固定されたFPC基板140を本圧着する。FPC基板140の本圧着の条件は、例えば、温度160~190℃、時間10~20秒、圧力1.5~3.0MPaである。なお、LSIチップ130、電子部品150、およびFPC基板140の全てまたはこれらのうちの2つ(典型的にはLSIチップ130および電子部品150)の本圧着は、同時または一連の処理で行われてもよい。
 このように貼り付けた第1および第2のACF150a,150bを用いてLSIチップ、個別電子部品、およびFPC基板の各端子と配線とを接続する場合、上述したように所定の時間、ACFを加熱しながらLSIチップなどに上から圧力を加える。このとき、LSIチップなどの各端子と張出部に形成された配線とに挟まれた上記2層のACFに圧力が加わる。圧力が加えられたACF内では、分散されていた導電性粒子が接触しながら重なって導電経路を形成し、形成された導電経路によってLSIチップおよび個別電子部品の端子がガラス基板に形成された配線にそれぞれ接続される。ACFには熱硬化性樹脂が含まれているので、圧力を加えるのをやめても、形成された導電経路が消滅することはない。このとき、面方向には圧力が加わらないので、面方向に導電経路が形成されることはなく、ACFの面方向の絶縁性は保持されている。
 ここで、上記のような導電経路の形成は、主として第1のACF150aにより行われることが好ましい。前述したように、第1のACF150aは、接続信頼性を高めることができるものが使用されているため、これを主として導電経路が形成されることが望ましく、また本圧着時には当然表面タック力は問題とならないので、部品の搭載性を高めるための第2のACF150bは、接続信頼性を高めるために大きく寄与する必要はないとも言える。したがって、この第2のACF150bは、第1のACF150aよりも薄い(厚さが小さい)ことが好ましく、さらには部品実装時に表面タック力が発揮できる程度の厚さであって、かつできるだけ薄く(厚さが小さく)なるよう構成されていることがより好ましい。
 また、本圧着時に第2のACF150bによって接続信頼性が阻害されるような悪影響を取り除くために、この第2のACF150bの(本圧着時の温度における)溶融粘度を第1のACF150aの溶融粘度よりも小さく設定する、すなわち本圧着時に或る程度流れ出てしまう程度に溶融粘度の小さい素材を使用する構成であることも好ましい。そうすれば、本圧着時に第2のACF150bがLSIチップなどの各端子と張出部に形成された配線との間から外へ流れ出ていくため、接続部分に残りにくくなり、結果的に上記悪影響を取り除くことができる。なお、第2のACF150bは、上記のように溶融粘度が小さく、かつ上記のように薄く構成されていれば、さらに上記悪影響を取り除くことができ好適である。
 以上のようにして、ガラス基板110の張出部111に、第1および第2のACF150a,150bによって接続されたLSIチップ130、電子部品150、およびFPC基板140がそれぞれ実装された液晶モジュール100を製造することができる。
<1.3 効果>
 上記実施形態に係る液晶モジュール100によれば、(表面タック力が小さく)高い接続信頼性を有する第1のACF150aと、表面タック力が大きいことにより高い部品搭載性を有する第2のACF150bとによって、電子部品150などをガラス基板110に対してそれぞれ実装するので、接続信頼性を確保しつつ電子部品の高速実装を行うことができるACFを有する液晶モジュールおよびその製造方法を提供することができる。
<2. 第2の実施形態>
<2.1 液晶モジュールの構成>
 図5は、本発明の第2の実施形態に係る液晶表示装置としての液晶モジュール200の構成を示す模式平面図であり、図6は図5におけるA-A線に沿った液晶モジュール200の断面を示す断面図であり、図7は図5におけるB-B線に沿った液晶モジュール200の断面を示す断面図である。なお、これらの図はACFを含む構造を説明するために、部品等を仮固定した状態での構成を示している。
 図5に示される本実施形態に係る液晶モジュール200は、図1に示す第1の実施形態に係る液晶モジュール100とほぼ同様の構成要素を有しているが、FPC基板140が第1および第2のACF150a,150bだけでなく、第3のACF150cによって接続される点が異なる。その他の構成要素およびその機能については、第1の実施形態と同一であるので、同一の構成要素には同一の符号を付してその説明を省略する。したがって、以下ではFPC基板140をガラス基板110上に実装する工程に着目して、液晶モジュール200の製造過程について説明する。
<2.2 液晶モジュールの製造方法>
 この第2の実施形態では、第1の実施形態と同様に第1および第2のACF150a,150bを介してガラス基板110上にLSIチップ130および電子部品150を仮固定(搭載)し本圧着した後、別工程(図示しない)で、FPC基板140が実装される張出部111上の領域とほぼ同じ大きさのFPC用ACF150cをFPC基板140に貼り付ける(熱転写する)。このFPC用ACF150cは、FPC基板140を圧着するのに特に適した(表面タック力や硬度などを有する)周知の材質からなる。このFPC用ACF150aの貼り付けの条件は、例えば、温度60~100℃、時間1~5秒、圧力0.5~2MPaである。
 その後、FPC用ACF150cが貼り付けられたFPC基板140を、FPC用ACF150cを下にして張出部111上に仮固定する。このとき、FPC基板140の配線層142がFPC用配線174の他端と接続されるように位置合わせを行う。そして、仮固定されたFPC基板140を本圧着する。FPC基板140の本圧着の条件は、例えば、温度160~190℃、時間10~20秒、圧力1.5~3.0MPaである。なお、第1の実施形態の場合と同様に、LSIチップ130、電子部品150、およびFPC基板140の全てまたはこれらのうちの2つ(典型的にはLSIチップ130および電子部品150)の本圧着は、同時または一連の処理で行われてもよい。
 以上のようにして、ガラス基板110の張出部111に、第1および第2のACF150a,150bによって接続されたLSIチップ130および電子部品150と、第1および第2のACF150a,150bとFPC用ACF150cとによって接続されたFPC基板140とがそれぞれ実装された液晶モジュール200を製造することができる。
<2.3 効果>
 上記実施形態に係る液晶モジュール200によれば、第1の実施形態と同様に第1のACF150aおよび第2のACF150bによって、接続信頼性を確保しつつ電子部品の高速実装を行うことができ、かつFPC用ACF150cによって、FPC基板140を好適に圧着することができるACFを有する液晶モジュールおよびその製造方法を提供することができる。
<3. 変形例>
<3.1 主たる変形例>
 第1の実施形態では、第1および第2のACF150a,150bを介してガラス基板110にFPC基板140を接続する構成であるが、ガラス基板110上のLSIチップ130に対してFPC基板以外の構成要素(例えば光通信ユニットなど)を介して信号を与える場合にはFPC基板を省略することができる。また、ガラス基板110に対してFPC基板140をACF以外の接続方式(例えばコネクタなど)で接続することも可能である。したがって、FPC基板140は液晶モジュール100の必要的な構成要素とは言えず、省略されてもよい。
 また、上記第1および第2の実施形態では、第1および第2のACF150a,150bをガラス基板110に対して順番に貼り付けた後、電子部品150等を仮固定(搭載)し本圧着する構成であるが、この構成に代えて、第1および第2のACF150a,150bを互いに貼り合わせることにより層構造を有する1枚の貼り合わせられたACFを製造し、この貼り合わせられたACFをガラス基板110に対して貼り付ける構成であってもよい
 ここでACFは液晶モジュールを製造する工程とは別の工程において(典型的にはACF製造メーカで)製造されるのが通常であるため、この別の工程において、例えばシート状の第1および第2のACF150a,150bをラミネートし(貼り合わせ)、所定幅にスリットしながらリールに巻き付け、1つのACFテープの形で製造されてもよい。
 また、上記工程とは別の工程で、(リール化された)テープ状の第1のACF150aと、第2のACF150bとをそれぞれ用意し(典型的にはACF製造メーカから購入し)、これらのACFをリールからそれぞれ引き出しながらラミネートし(貼り合わせ)、貼り合わせられた(1つの)第1および第2のACF150a,150bをガラス基板110に対して貼り付ける構成であってもよい。なお、この第2のACF150bがNCFであってもよいことは、前述したとおりである。このように製造すれば、ガラス基板110に貼り付ける際に、当該ガラス基板110における張出部111の大きさに合わせて第1および第2のACF150a,150bをそれぞれ個別に切り取って貼り付ける工程を省略することができる。
<3.2 その他の変形例>
 上記実施形態では液晶表示装置について説明したが、液晶表示装置に限定されず、ガラス基板を使用した有機または無機のEL(Electro Luminescence)ディスプレイ、プラズマディスプレイパネル(Plasma Display Panel;PDP)、電界放出ディスプレイ(Field Emission Display;FED)などの各種表示装置に使用される基板モジュールにも同様に適用することができる。
 上記実施形態では、ガラス基板110上に電子部品等を実装する例で説明したが、ガラス基板110に代えて、それ以外の材質の硬質基板であってもよいし、半田部分などの硬質部分を含むFPC基板などの軟質基板であってもよい。このような基板に対しても高い接続信頼性を有する第1のACF150aと、表面タック力が大きいことにより高い部品搭載性を有する第2のACF150bとによって、電子部品150などを上記基板に対してそれぞれ実装する場合には、同様に接続信頼性を確保しつつ電子部品の高速実装を行うことができる。
 また、基板の硬度とは無関係に、ACFにおいて高い接続信頼性と高い部品搭載性とが両立しない状況も考えられる。例えば、基板とACFとの密着力を確保するために添加物を加える場合、この添加物を多く加えるほど(すなわち接続信頼性が高くなるほど)タック力が小さくなることも考えられる。このような場合にも、高い接続信頼性を有する第1のACF150aと、表面タック力が大きいことにより高い部品搭載性を有する第2のACF150bとによって、電子部品150などを基板に対してそれぞれ実装する場合、接続信頼性を確保しつつ電子部品の高速実装を行うことができる。したがって、このように高い接続信頼性と高い部品搭載性とがトレードオフの関係にある場合、どのような(硬度の)基板を含む基板モジュールに対しても、本発明を広く適用することができる。
 上記実施形態では、LSIチップ130、FPC基板140および電子部品150をガラス基板110に実装した液晶モジュールについて説明した。しかし、本発明は液晶モジュールなどの表示装置に限定されず、LSIチップ130や電子部品150などの少なくとも1つの電子部品が実装されており、上述したような接続信頼性を確保しつつ電子部品の高速実装を行うことができるACFによりこれらと接続される基板モジュールに対して広く適用可能である。
 本発明は、例えば液晶パネルのような基板モジュールおよびその製造方法に適用されるものであって、より詳しくは、異方性導電接着材を用いてガラス基板上に実装されたチップコンデンサなどの電子部品を含む基板モジュールおよびその製造方法に適している。
 100、200…液晶モジュール
 110、115…ガラス基板
 111…張出部
 115…セパレータ
 120…表示部
 130…LSIチップ
 140…FPC基板
 150…電子部品
 150a…第1のACF
 150b…第2のACF
 150c…FPC用ACF

Claims (10)

  1.  複数の電子部品が異方性導電膜によって基板上に実装された基板モジュールであって、
     複数の配線が形成されたガラス基板と、
     前記ガラス基板上に貼り付けられる第1の異方性導電膜と、
     前記第1の異方性導電膜上に貼り付けられる第2の異方性導電膜または非導電性膜のいずれか一方と、
     前記第2の異方性導電膜または前記非導電性膜のいずれか一方の上に載置され圧着されることによって、少なくとも前記第1の異方性導電膜に含まれる導電粒子で前記配線に接続される電子部品と
    を備え、
     前記第1の異方性導電膜は、前記第2の異方性導電膜または前記非導電性膜よりも接続信頼性が高く、
     前記第2の異方性導電膜または前記非導電性膜は、前記第1の異方性導電膜よりも表面タック力が大きいことを特徴とする、基板モジュール。
  2.  前記第1の異方性導電膜は、前記電子部品を前記ガラス基板上の配線と良好に接続可能な程度に高い接続信頼性を有し、
     前記第2の異方性導電膜または前記非導電性膜は、前記マウンタによって前記電子部品を所定の速度で良好に搭載可能な程度に大きい表面タック力を有することを特徴とする、請求項1に記載の基板モジュール。
  3.  前記第1の異方性導電膜は、前記電子部品を前記配線と接続するための熱圧着時の温度における前記第2の異方性導電膜または前記非導電性膜の溶融粘度よりも大きい溶融粘度を有することを特徴とする、請求項1に記載の基板モジュール。
  4.  前記第1の異方性導電膜は、前記第2の異方性導電膜または前記非導電性膜の厚さよりも大きい厚さを有することを特徴とする、請求項1に記載の基板モジュール。
  5.  前記第1の異方性導電膜は、常温で185KPa未満の表面タック力を有し、
     前記第2の異方性導電膜または前記非導電性膜は、常温で185KPa以上の表面タック力を有することを特徴とする、請求項1に記載の基板モジュール。
  6.  フレキシブルプリント配線基板と、
     前記フレキシブルプリント配線基板に貼り付けられる第3の異方性導電膜と
    をさらに備え、
     前記フレキシブルプリント配線基板は、前記第1および第3の異方性導電膜に少なくとも含まれる導電粒子によって前記配線に接続されることを特徴とする、請求項1に記載の基板モジュール。
  7.  前記ガラス基板は、画像を表示する表示部を含み、
     前記電子部品は、外部から与えられる信号に基づいて前記表示部を駆動する駆動素子を含む、請求項1に記載の基板モジュール。
  8.  前記第1の異方性導電膜と、前記第2の異方性導電膜または前記非導電膜とは、前記複数の配線を含む所定領域全面に貼り付けられることを特徴とする、請求項1に記載の基板モジュール。
  9.  電子部品が異方性導電膜によってガラス基板上に実装された基板モジュールの製造方法であって、
     複数の配線が形成された前記ガラス基板と、所定の第1の異方性導電膜と、前記第1の異方性導電膜よりも接続信頼性が低くかつ表面タック力が大きい第2の異方性導電膜または非導電性膜とを準備する準備工程と、
     前記第1の異方性導電膜を前記ガラス基板上に圧着することにより貼り付ける第1の貼り付け工程と、
     前記準備工程により準備された前記第2の異方性導電膜または前記非導電性膜のいずれかを前記第1の異方性導電膜上に貼り付ける第2の貼り付け工程と、
     前記準備工程により準備された前記第2の異方性導電膜または前記非導電性膜のいずれかの上に載置し圧着することによって、少なくとも前記第1の異方性導電膜に含まれる導電粒子で前記電子部品を前記配線に接続する実装工程と
    を備えることを特徴とする、基板モジュールの製造方法。
  10.  電子部品が異方性導電膜によってガラス基板上に実装された基板モジュールの製造方法であって、
     複数の配線が形成された前記ガラス基板と、所定の第1の異方性導電膜と、前記第1の異方性導電膜よりも接続信頼性が低くかつ表面タック力が大きい第2の異方性導電膜とを準備する準備工程と、
     前記第1の異方性導電膜に、前記準備工程により準備された前記第2の異方性導電膜または非導電性膜のいずれかを貼り付けることにより貼り合わせられた異方性導電膜を作成する貼り付け準備工程と、
     前記貼り付け準備工程において作成される前記貼り合わせられた異方性導電膜を前記ガラス基板上に圧着することにより貼り付ける貼り付け工程と、
     前記貼り合わせられた異方性導電膜により前記電子部品を前記配線に接続する実装工程と
    を備えることを特徴とする、基板モジュールの製造方法。
PCT/JP2010/058016 2009-09-30 2010-05-12 基板モジュールおよびその製造方法 WO2011040081A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20100820201 EP2466631A1 (en) 2009-09-30 2010-05-12 Substrate module and manufacturing method thereof
US13/498,761 US9007777B2 (en) 2009-09-30 2010-05-12 Board module and fabrication method thereof
JP2011534107A JP5410538B2 (ja) 2009-09-30 2010-05-12 基板モジュールおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-225738 2009-09-30
JP2009225738 2009-09-30

Publications (1)

Publication Number Publication Date
WO2011040081A1 true WO2011040081A1 (ja) 2011-04-07

Family

ID=43825916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058016 WO2011040081A1 (ja) 2009-09-30 2010-05-12 基板モジュールおよびその製造方法

Country Status (4)

Country Link
US (1) US9007777B2 (ja)
EP (1) EP2466631A1 (ja)
JP (1) JP5410538B2 (ja)
WO (1) WO2011040081A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140031110A (ko) * 2012-09-03 2014-03-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 그 제작 방법
JP2022551619A (ja) * 2019-10-07 2022-12-12 エイエムエス-オスラム インターナショナル ゲーエムベーハー 表示デバイスおよび表示ユニット

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5008767B2 (ja) * 2008-09-29 2012-08-22 シャープ株式会社 基板モジュールおよびその製造方法
WO2017176223A1 (en) 2016-04-05 2017-10-12 Solen Cikolata Gida Sanayi Ve Ticaret Anonim Sirketi A packaging method for figured egg-shaped chocolate food product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286298A (ja) * 1999-01-29 2000-10-13 Matsushita Electric Ind Co Ltd 電子部品の実装方法及びその装置
JP2004006793A (ja) 2003-04-07 2004-01-08 Sony Chem Corp 異方性導電接着材
JP2005268590A (ja) * 2004-03-19 2005-09-29 Sharp Corp 異方性導電膜、それを用いた実装構造および表示装置
JP2006235295A (ja) 2005-02-25 2006-09-07 Citizen Watch Co Ltd 液晶表示パネル

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1156520A4 (en) 1999-01-29 2004-08-25 Matsushita Electric Ind Co Ltd METHOD AND DEVICE FOR MOUNTING ELECTRONIC PARTS
JP3665579B2 (ja) * 2001-02-26 2005-06-29 ソニーケミカル株式会社 電気装置製造方法
JP4196377B2 (ja) * 2003-09-09 2008-12-17 ソニーケミカル&インフォメーションデバイス株式会社 電子部品の実装方法
CN101574022B (zh) * 2007-02-22 2011-04-20 夏普株式会社 电子电路装置及其制造方法以及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286298A (ja) * 1999-01-29 2000-10-13 Matsushita Electric Ind Co Ltd 電子部品の実装方法及びその装置
JP2004006793A (ja) 2003-04-07 2004-01-08 Sony Chem Corp 異方性導電接着材
JP2005268590A (ja) * 2004-03-19 2005-09-29 Sharp Corp 異方性導電膜、それを用いた実装構造および表示装置
JP2006235295A (ja) 2005-02-25 2006-09-07 Citizen Watch Co Ltd 液晶表示パネル

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140031110A (ko) * 2012-09-03 2014-03-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 그 제작 방법
JP2017199002A (ja) * 2012-09-03 2017-11-02 株式会社半導体エネルギー研究所 表示装置
KR102128119B1 (ko) * 2012-09-03 2020-06-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 그 제작 방법
US11074025B2 (en) 2012-09-03 2021-07-27 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
JP2022551619A (ja) * 2019-10-07 2022-12-12 エイエムエス-オスラム インターナショナル ゲーエムベーハー 表示デバイスおよび表示ユニット
JP7392129B2 (ja) 2019-10-07 2023-12-05 エイエムエス-オスラム インターナショナル ゲーエムベーハー 表示デバイスおよび表示ユニット

Also Published As

Publication number Publication date
US20120182697A1 (en) 2012-07-19
US9007777B2 (en) 2015-04-14
EP2466631A1 (en) 2012-06-20
JPWO2011040081A1 (ja) 2013-02-21
JP5410538B2 (ja) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5008767B2 (ja) 基板モジュールおよびその製造方法
US6952250B2 (en) Pressure-welded structure of flexible circuit boards
WO2010010743A1 (ja) 電子回路装置、その製造方法及び表示装置
US20100321908A1 (en) Electronic circuit device, production method thereof, and display device
US20110169791A1 (en) Display device
JP5410538B2 (ja) 基板モジュールおよびその製造方法
JP6216877B2 (ja) 軟性印刷回路基板の構造体
TW540256B (en) Circuit board and method of manufacturing the same, and display apparatus
JP2005310905A (ja) 電子部品の接続構造
KR100868616B1 (ko) 반도체(플립 칩) 실장 부품과 그 제조 방법
JP2006235295A (ja) 液晶表示パネル
TW200426962A (en) Method of manufacturing semiconductor device, flexible substrate, and semiconductor device
JP2010212338A (ja) 基板モジュールおよびその製造方法
JP2016528726A (ja) 軟性印刷回路基板の構造体
JP3404446B2 (ja) テープキャリアパッケージ及びそのテープキャリアパッケージを備えた液晶表示装置
WO2012073739A1 (ja) 基板モジュール
JP2004134645A (ja) バンプ付き半導体素子の実装方法、バンプ付き半導体素子の実装構造、及び電気光学装置、並びに電子機器
JP4626952B2 (ja) 接着シート
KR100646068B1 (ko) 이방성 도전 필름
JP5485510B2 (ja) 電子デバイス、電子機器、及び電子デバイスの製造方法
JP2006154621A (ja) 基板の接着方法
JP2006278413A (ja) 半導体基板実装構造、表示装置、接着シートおよび基板実装方法
JP2016524305A (ja) 有機発光素子
JP2006278637A (ja) 基板実装構造および表示装置
JP2008140925A (ja) 半導体装置、その製造方法及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820201

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011534107

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010820201

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13498761

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE