WO2011037212A1 - タイヤ試験装置の空気圧回路、タイヤ試験装置及びタイヤ試験方法 - Google Patents

タイヤ試験装置の空気圧回路、タイヤ試験装置及びタイヤ試験方法 Download PDF

Info

Publication number
WO2011037212A1
WO2011037212A1 PCT/JP2010/066608 JP2010066608W WO2011037212A1 WO 2011037212 A1 WO2011037212 A1 WO 2011037212A1 JP 2010066608 W JP2010066608 W JP 2010066608W WO 2011037212 A1 WO2011037212 A1 WO 2011037212A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
air
pressure
temperature
bead
Prior art date
Application number
PCT/JP2010/066608
Other languages
English (en)
French (fr)
Inventor
徹 岡田
将雄 村上
浩一 本家
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201080042253.5A priority Critical patent/CN102510999B/zh
Publication of WO2011037212A1 publication Critical patent/WO2011037212A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres

Definitions

  • the present invention relates to a pneumatic circuit used in a tire testing apparatus such as a tire uniformity machine, a tire testing apparatus including the pneumatic circuit, and a tire testing method for testing a tire using the pneumatic circuit.
  • a tire test for measuring the uniformity (uniformity) and the like to determine whether the tire is completed as a product has been performed.
  • the tire test is generally performed in the following procedure using a test apparatus disclosed in Patent Document 1.
  • the tire test apparatus of Patent Document 1 includes a pneumatic circuit that adjusts and supplies compressed air supplied from a factory air source to a tire seated on a rim, and performs tire testing after inflating the tire. Do.
  • This pneumatic circuit is provided with two systems of pipes that branch off in the middle.
  • One is a bead seat system pipe for inflating the tire in a short time and mounting the tire on the rim, and the other is a test system pipe used for testing the tire.
  • the pneumatic circuit can inflate the tire through two piping paths.
  • the tire that has flowed from the upstream of the inspection line is sandwiched between rims that are divided vertically.
  • the tire is inflated in a short time using the pipe of the bead seat system.
  • the air pressure of the compressed air supplied to the tire using the pipe of the bead seat system is generally higher (for example, about 400 kPa) than the test pressure (test air pressure) at the time of the tire test.
  • the tire is held at the bead seat pressure for about 1 second including the pressure rise time.
  • the flow path of the compressed air is switched from the bead seat system piping to the test system piping using the switching valve.
  • a pressure regulating valve is provided in the middle of the piping of this test system, and high-pressure compressed air can be reduced to a test pressure (for example, about 200 kPa). Therefore, the air pressure in the tire is adjusted to the test pressure by supplying the compressed air through the piping of the test system.
  • the tire uniformity is measured by pressing the drum against the tire held at the test pressure and measuring the repulsive force generated on the tire using a load measuring device provided on the drum.
  • a servo-type pressure regulator may be used as the pressure regulating valve described above, as shown in Patent Document 2.
  • the air pressure in the tire under test fluctuates even a little, the measurement result of uniformity greatly fluctuates. Therefore, it is important to keep the air pressure in the tire constant at the test pressure so that defective products are not put on the market and erroneous products are not mistakenly determined as defective products.
  • the air pressure may decrease or rarely increase during the test.
  • Such a change in the air pressure in the tire may be as small as about 0.5 kPa or as large as about 1 kPa.
  • the change in the air pressure in the tire greatly affects the measurement result of uniformity.
  • the uniformity inspection that measures the change in the repulsive force of the tire during one rotation of the tire, it is measured by a value obtained by adding the change in the repulsive force accompanying the change in the air pressure generated in the tire to the fluctuation characteristics of the repulsive force that the tire itself has. End up.
  • Patent Document 2 discloses a servo-type pressure regulating valve.
  • This servo-type pressure regulating valve is excellent in pressure regulating accuracy, but has low response and is expensive. Therefore, even if this servo-type pressure regulating valve can cope with a gradual and steady fluctuation in air pressure, the response is such that the air pressure in the tire can be adjusted in a timely manner within a tire test time of only about 1 second. I don't have sex.
  • an expensive member such as a servo-type pressure regulating valve is used, there is a problem that the price of the tire testing device increases. Therefore, it is not realistic to adjust the air pressure in the tire which fluctuates during the tire test with a tire test apparatus using a servo-type pressure regulating valve as in Patent Document 2.
  • the present invention has been made in view of the above-described problems, and provides a pneumatic circuit for a tire testing apparatus that can suppress fluctuations in air pressure that occurs during a tire test by adjusting the temperature of air supplied to the tire.
  • the purpose is to provide. It is another object of the present invention to provide a tire testing apparatus and a tire testing method that can measure uniformity at a low cost with high accuracy.
  • the pneumatic circuit of the tire testing device of the present invention is a pneumatic circuit of a tire testing device including an air supply source that supplies air to a tire that is mounted between a pair of rims, from the air supply source to the tire.
  • An air temperature adjustment mechanism capable of adjusting the temperature of supplied air to a predetermined temperature is provided.
  • this air temperature adjusting mechanism can be employed in the following pneumatic circuit.
  • a pressure adjusting valve that adjusts a pressure of air supplied to the tire from the air supply source to a bead air pressure for inflating the tire to be mounted between the rims or a test air pressure lower than the bead air pressure used during a tire test.
  • the air temperature adjusting mechanism is configured to be capable of cooling the temperature of the air supplied to the tire by the bead air pressure to a temperature lower than the outside air temperature.
  • the inventor's research has revealed that a decrease in air temperature in the tire is one of the causes of the pressure decrease during the tire test.
  • normal temperature compressed air flows into the tire with bead air pressure
  • the air originally present in the tire is compressed and the temperature rises due to adiabatic compression, and the air in the tire becomes high temperature.
  • the bead air pressure is changed to the test air pressure
  • the pressure in the tire decreases rapidly, and the temperature of the air in the tire decreases due to adiabatic expansion.
  • the original temperature rise is large, the final temperature of the air in the tire is higher than the temperature of the tire or rim, which is generally normal temperature.
  • air heat in the tire is transferred to the tire or rim during the tire test, and the air temperature inside the tire is lowered.
  • the test air pressure The air temperature can be close to the outside air temperature. Therefore, the temperature change of the air in the tire during the measurement time is eliminated, and the fluctuation of the air pressure generated during the tire test can be suppressed.
  • the air temperature adjusting mechanism may include a tank capable of storing air from the air supply source and a heat exchanger that cools the air in the tank.
  • a tank capable of storing air from the air supply source
  • a heat exchanger that cools the air in the tank.
  • the air temperature adjusting mechanism includes a tank capable of storing air from the air supply source at a pressure higher than the bead air pressure, and exhausts air in the tank to the outside before supplying the tire with the bead air pressure. And an exhaust means for adiabatic expansion.
  • a tank capable of storing air from the air supply source at a pressure higher than the bead air pressure, and exhausts air in the tank to the outside before supplying the tire with the bead air pressure.
  • an exhaust means for adiabatic expansion By providing the tank and the exhaust means in this manner, while holding the air higher than the bead air pressure easily in the tank, before supplying air to the tire, the air is exhausted by the exhaust means and the pressure is beaded. It can be reduced to air pressure. As a result, the temperature of the entire air in the tank can be cooled at once by the principle of adiabatic expansion, and a large amount of cooled air can be obtained with a simple structure without using a special mechanism such as a heat exchanger. it can.
  • the tire test apparatus provided with the above-described pneumatic circuit, by adjusting the temperature of the air supplied to the tire, it is possible to suppress the fluctuation of the air pressure generated during the tire test, and to reduce the tire uniformity. Accurate measurement.
  • the tire test method of the present invention is a tire test method for measuring the characteristics of the tire in a state where air is supplied to a tire mounted between a pair of rims, and the temperature of the air supplied to the tire is set to a predetermined value. It is characterized by adjusting to temperature.
  • the tire test method of the present invention includes a step of inflating the tire by supplying air adjusted to bead air pressure to the tire and mounting the tire between a pair of rims, and the tire mounted between the rims with the tire. Measuring the characteristics of the tire in a state where air adjusted to a test air pressure lower than the bead air pressure is supplied, the temperature of the air supplied to the tire at the bead air pressure, It may be characterized by cooling to a temperature below the outside air temperature.
  • the pneumatic circuit of the tire test apparatus of the present invention it is possible to suppress the fluctuation of the air pressure that occurs during the tire test by adjusting the temperature of the air supplied to the tire.
  • the tire testing apparatus and the tire testing method of the present invention it is possible to accurately test a tire while suppressing fluctuations in air pressure occurring during the tire test.
  • FIG. 1 It is a front view of the tire testing device of the present invention. It is a figure which shows the basic composition of the pneumatic circuit in the tire testing apparatus of this invention. It is a figure which shows the pneumatic circuit of 1st Embodiment. It is a figure which shows the pneumatic circuit of 2nd Embodiment.
  • a pneumatic circuit 1 according to the first embodiment and a tire testing apparatus 2 provided with the pneumatic circuit 1 will be described with reference to the drawings.
  • the tire testing apparatus 2 of the present invention performs product inspection such as a uniformity test on the tire T completed as a product.
  • a uniformity machine is used as the tire testing apparatus 2.
  • Such a tire testing apparatus 2 has a configuration as shown in FIG. 1, for example.
  • the tire testing apparatus 2 includes a frame 3 provided in a tower shape on the floor surface, a pair of upper and lower tire shafts 4 and 5 attached to the frame 3, and these Rims 6 and 7 provided on the tire shafts 4 and 5 to fix the tire T are provided. These tire shafts 4 and 5 are arranged so as to be rotatable around a vertical axis. Further, on the side of the tire T fixed by the rims 6 and 7, a drum (not shown) having a simulated road surface formed on the outer peripheral surface is provided. The drum is configured to be able to drive and rotate about the vertical axis, and to move horizontally and to contact the tire T with the simulated road surface.
  • the tire shafts 4 and 5 of the tire testing device 2 are arranged on the upper side of the frame 3 with the upper tire shaft 4, and are arranged coaxially with the upper tire shaft 4 and are provided so as to be movable up and down with a distance therebetween. And an axis 5.
  • An upper rim 6 is provided at the lower end of the upper tire shaft 4, and a lower rim 7 is provided at the upper end of the lower tire shaft 5.
  • the tire testing apparatus 2 is configured so that the tire T can be sandwiched and fixed between the upper and lower rims 6 and 7 by bringing the upper and lower tire shafts 4 and 5 closer to each other.
  • the tire shafts 4 and 5 or the drum are provided with a load measuring device for measuring the force generated in the running tire T, and the uniformity of the tire T can be measured.
  • the tire testing apparatus 2 is provided with a pneumatic circuit 1 that adjusts the air pressure in the tire T by supplying compressed air into the tire T or discharging the compressed air from the tire T.
  • the pneumatic circuit 1 includes a pipe extending from the air supply source 10 to the inside of the tire T, and includes an air flow path 8 provided so as to vertically penetrate the inside of the upper tire shaft 4.
  • the air supply port 9 opened on the lower side communicates with the inside of the tire T.
  • the pneumatic circuit 1 can circulate compressed air into the tire T through the air flow path 8 and the air supply port 9.
  • the pneumatic circuit 1 is basically configured to adjust the compressed air generated by the air supply source 10 to a predetermined air pressure and supply it to the tire T.
  • the pneumatic circuit 1 includes two routes to the tire T. One is a bead seat system 11 that inflates the tire T in a short time and presses the bead of the tire T against the rims 6 and 7, and the other is a test system 12 that is used when testing the tire T.
  • the air supply source 10 side is the upstream side of the pneumatic circuit 1
  • the tire T side is the downstream side of the pneumatic circuit 1.
  • the upstream side and the downstream side coincide with the upstream side and the downstream side in the flow of compressed air when the compressed air is supplied into the tire T (in the direction of the arrow in the figure).
  • the compressed air circulated through the bead sheet system 11 is adjusted to an air pressure (bead air pressure) of about 400 kPa.
  • the compressed air circulated through the test system 12 is adjusted to an air pressure (test air pressure) of about 200 kPa, which is lower than that of the bead seat system 11.
  • the bead seat system 11 and the test system 12 are branched on the way from the air supply source 10 to the tire T, adjusted to their respective air pressures, and then merged into one pipe again.
  • the piping path of the test system 12 includes an air supply source 10, a pressure adjustment valve 13, a supply / exhaust valve 14, a switching valve 15, a shutoff valve 16, and a pressure detection unit 17 in order from the upstream side to the downstream side.
  • the piping system path of the bead seat system 11 branches from the piping of the test system 12 on the downstream side of the air supply source 10, is adjusted to bead air pressure by the bead pressure adjusting valve 22, and then is switched by the switching valve 15 to the test system 12. To join the same pipe.
  • the air supply source 10 is a supply source of factory air pressurized by a compressor (not shown) or the like, and is equal to or higher in pressure than the air pressure (bead air pressure) when the tire T is inflated through the bead seat system 11. Compressed air is generated.
  • An air filter 18 that collects dust and the like flowing from the air supply source 10 is provided on the downstream side of the air supply source 10.
  • a pressure gauge 19 for checking the pressure of the compressed air generated by the air supply source 10 is provided on the downstream side of the air filter 18.
  • a pressure adjustment valve 13 is provided downstream of the pressure gauge 19.
  • the pressure adjustment valve (test pressure adjustment valve) 13 is a pressure regulator that adjusts the compressed air sent from the air supply source 10 to a predetermined pressure, and the piping of the test system 12 branched on the downstream side of the air supply source 10. Is provided. Further, a bead pressure adjusting valve 22 having the same configuration as the test pressure adjusting valve 13 is provided in the pipe of the bead seat system 11. The high-pressure compressed air generated by the air supply source 10 is reduced to a bead air pressure (for example, 400 kPa) by the bead pressure adjusting valve 22, and is reduced to a test air pressure (for example, 200 kPa) by the test pressure adjusting valve 13.
  • a bead air pressure for example, 400 kPa
  • test air pressure for example, 200 kPa
  • the switching valve 15 switches the air pressure in the tire T between the bead air pressure and the test air pressure by switching the flow path of the compressed air between the test system 12 side and the bead seat system 11 side.
  • the switching valve 15 of the present embodiment is in the ON state, compressed air whose pressure is adjusted to bead air pressure can be supplied from the pipe of the bead seat system 11 into the tire T.
  • the switching valve 15 is not in operation (in an OFF state)
  • compressed air whose pressure is adjusted to the test air pressure from the pipe of the test system 12 can be supplied into the tire T.
  • the shutoff valve 16 is a directional control valve provided on the downstream side of the switching valve 15. By switching the shutoff valve 16, the flow path of the compressed air is shut off, and the compressed air can be contained in the pipe that reaches the tire T on the downstream side of the shutoff valve 16.
  • the supply / discharge valve 14 is a direction control valve provided on the downstream side of the test pressure adjustment valve 13. By switching the supply / exhaust valve 14, supply to the tire T and exhaust from the tire T (release to the atmosphere) are controlled.
  • an air pressure sensor provided on the downstream side of the supply / discharge valve 14 is provided.
  • the air pressure in the tire T may slightly change during the tire test.
  • Such a change in air pressure is as small as 0.5 kPa to 1 kPa, and the pressure adjustment accuracy is ⁇ 0.1% (for example, about 1 kPa in the case of a pressure regulator rated at 1000 kPa). Depending on 13, adjustment is difficult.
  • an air temperature adjustment mechanism capable of adjusting the temperature of the air supplied from the air supply source 10 to the tire T to a predetermined temperature in order to suppress fluctuations in air pressure that occurs during the tire test. 21 is provided. Specifically, the air temperature adjusting mechanism 21 can cool the temperature of the air supplied to the tire T with bead air pressure to a temperature lower than the outside air temperature.
  • the air temperature adjustment mechanism 21 in the first embodiment is a pipe on the downstream side of the air supply source 10 and the pressure gauge 19 and on the upstream side of the branch point between the bead seat system 11 and the test system 12. Is provided.
  • the air temperature adjusting mechanism 21 includes a tank 23 disposed on the downstream side of the air supply source 10 and a heat exchanger 30 provided in the tank 23.
  • the heat exchanger 30 has a configuration in which heat is exchanged by passing a refrigerant through a tube. Specifically, a vortex tube or the like can be used as the heat exchanger 30.
  • the air supplied to the tire T is preferably cooled in advance by the air temperature adjustment mechanism 21.
  • Air supply source with tire T before inflating by supplying air (that is, before mounting on rims 6 and 7), air pressure in the pipe P1 (atmospheric pressure), air temperature T1 (normal temperature)
  • the air pressure supplied from 10 is Pa (bead air pressure), and the air temperature is Ta.
  • the air temperature T2 in the tire T when the pressure in the tire T rises up to the bead air pressure Pa in the bead seat system 11 is calculated.
  • the energy balance is expressed by equation (1).
  • Equation (1) m1 is the air mass before expansion, m2 is the air mass after expansion, u1 is the specific energy before expansion, and u2 is the specific energy after expansion.
  • M2-m1 represents the mass of air flowing in, and h represents the specific enthalpy of the air flowing in.
  • equation (3) is obtained from equation (2).
  • the air pressure supplied from the air supply source 10 is set to 400 kPa (gauge pressure), and the air temperature is set to 20 ° C. (outside air temperature) at normal temperature. Moreover, let the air in the tire T before inflating be atmospheric pressure and 20 degreeC (outside temperature).
  • P1 100 kPa (absolute pressure)
  • T1 293K (absolute temperature)
  • Ta 293K (absolute temperature)
  • 1.4
  • the temperature T2 in the tire T at the time of the bead seat rises to 107 ° C.
  • the absolute temperature T2 at the test air pressure is 86% of T1. Therefore, if the air temperature in the tire T at the bead air pressure is 107 ° C. (380 K), the air temperature in the tire T at the test air pressure is 55 ° C. The air temperature 55 ° C. in the tire T at the test air pressure is considerably higher than the outside air temperature 20 ° C. Therefore, heat transfer from the air in the tire T to the rubber and the metal rims 6 and 7 of the tire T occurs during the tire test, and the air temperature in the tire T decreases. As the temperature difference between the air in the tire T and the tire T and the rims 6 and 7 increases, the amount of heat transfer increases, and the air temperature in the tire T having a small heat capacity decreases as the pressure in the tire T decreases. Will go down.
  • the air temperature flowing from the air supply source 10 into the tire T by the bead air pressure (gauge pressure of 400 kPa) is ⁇ 20 ° C.
  • the air temperature in the tire T is reduced to 67 ° C. from the equation (4).
  • the air pressure in the tire T is lowered to the test air pressure of 200 kPa (gauge pressure)
  • the air temperature in the tire T becomes 21 ° C., which is almost the outside air temperature. In this case, the temperature change in the tire T during the tire test is slight, and the pressure change hardly occurs.
  • the final temperature in the tire T is also affected by temperature change due to heat transfer in addition to the above calculation.
  • the temperature setting of the cooled air it is desirable to experimentally check an appropriate value for each tire testing device 2.
  • the air pressure in the tire T is within the range of ⁇ 5 ° C. from the outside air temperature when the bead air pressure is changed to the test air pressure, it is confirmed by experiments that the temperature change and the pressure change are gentle. Yes.
  • the tire test is performed according to the following procedure.
  • the air pressure in the tire T is adjusted to the bead air pressure via the pipe of the bead seat system 11.
  • air cooled to a temperature lower than the outside air temperature (for example, ⁇ 20 ° C.) by the air temperature adjusting mechanism 21 is supplied to inflate the tire T in a short time, and the bead portion of the tire T is moved to the rims 6 and 7. Install firmly.
  • the switching valve 15 is turned on and the shutoff valve 16 is turned off, whereby the air flow path of the test system 12 is closed and the air flow path of the bead seat system 11 is opened. Is done. Thereby, compressed air is distribute
  • the air temperature in the tire T is higher than the air temperature when cooled by the air temperature adjusting mechanism 21 due to adiabatic expansion ( For example, 67 ° C. under bead seat air pressure).
  • the flow path of the compressed air is switched to the test system 12 by turning the switching valve 15 off while the supply / discharge valve 14 is on and the shutoff valve 16 is off. Is exhausted out of the air flow path 8.
  • the compressed air in the tire T which has been set to bead air pressure, can be switched to the test air pressure by the test pressure adjusting valve 13 provided in the piping of the test system 12. At this time, since the air in the tire T adiabatically expands, the temperature of the air in the tire T decreases to almost the outside air temperature (for example, 21 ° C. under the test air pressure).
  • the air temperature in the tire T becomes almost the outside air temperature, and the tire test (about 1 second).
  • the temperature change with time is slight.
  • almost no pressure change occurs according to the equation (5). That is, by providing the air temperature adjusting mechanism 21 that cools the air supplied from the air supply source 10 to the tire T to a temperature lower than the outside air temperature, it is possible to suppress fluctuations in air pressure that are difficult to adjust with a pressure regulator. Can do. Therefore, during the tire test, the air in the tire T can be maintained at the test air pressure, and the uniformity can be accurately measured.
  • the pneumatic circuit 1 of the second embodiment is different from the first embodiment in that the air temperature adjusting mechanism 21 has an exhaust unit 24.
  • the exhaust means 24 exhausts the air in the tank 23 to the outside before supplying it to the tire T with the bead air pressure, thereby causing adiabatic expansion.
  • the air supply source 10 can supply air having a pressure (for example, about 800 kPa) higher than the bead air pressure.
  • the air temperature adjusting mechanism 21 includes a tank 23 disposed on the downstream side of the pressure gauge 19 and on the upstream side of the branch point between the bead seat system 11 and the test system 12.
  • the tank 23 includes a relief valve 33 via a shutoff valve 32.
  • a shutoff valve 31 is also provided upstream of the tank 23 so that the flow path from the air supply source 10 can be shut off.
  • the shutoff valves 31 and 32 and the relief valve 33 constitute an exhaust means 24.
  • the shutoff valve 31 is turned off, and the air supply source 10 and the tank 23 are connected.
  • the shutoff valve 32 is also off and is shut off from the relief valve 33.
  • the tank 23 contains high-pressure air having an outside air temperature of 800 kPa.
  • the shut-off valve 31 is turned on to shut off the pneumatic circuit 1 from the air supply source 10. Thereafter, the shut-off valve 32 is turned on to connect the flow path to the relief valve 33, and the pressure in the tank 23 is rapidly lowered to a predetermined bead air pressure (gauge pressure of about 400 kPa). Thereafter, the switching valve 15 is turned on, and the air of the bead air pressure is supplied into the tire T.
  • a predetermined bead air pressure gauge pressure of about 400 kPa
  • the air pressure P1 before adiabatic expansion is 900 kPa (absolute pressure)
  • the air temperature T1 is the outside air temperature (293 K)
  • the air pressure P2 after adiabatic expansion is 500 kPa (absolute pressure)
  • 1.4.
  • the air temperature T2 at the bead air pressure can be lowered to ⁇ 25 ° C. Since the bead air pressure is adjusted by the relief valve 33 provided in the tank 23, the bead pressure adjusting valve 22 in FIG. 4 is not necessarily required. In this case, when the air supply source 10 and the tank 23 are connected, the pressure of the entire bead seat system 11 becomes the bead air pressure. Therefore, by releasing the pressure with the relief valve 33, it is possible to cool the entire air in the pipe of the bead seat system 11.
  • the final pressure in the tank 23 may be set higher than the target bead air pressure in accordance with the volume ratio between the tank 23 and the tire T.
  • a pressure regulating valve (a valve capable of switching between a bead air pressure and a pressure higher than the bead air pressure) is separately provided between the air supply source 10 and the tank 23, and air is supplied from the air supply source 10 by the bead air pressure in the bead seat. May be supplied so that the cooled air in the tank 23 is pushed out to the tire T.
  • the description is abbreviate
  • the present invention is not limited to the above-described embodiments, and the shape, structure, material, combination, and the like of each member can be appropriately changed without departing from the essence of the invention.
  • the present invention has been described by taking a uniformity machine as an example of the tire testing apparatus 2.
  • the pneumatic circuit 1 of the present invention can also be used in a tire testing apparatus that performs evaluations other than uniformity.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tires In General (AREA)
  • Testing Of Balance (AREA)

Abstract

 本発明は、タイヤに供給される空気の温度を調整することによってタイヤ試験中に生じる空気圧の変動が抑制可能なタイヤ試験装置を提供する。本発明のタイヤ試験装置2の空気圧回路1は、一対のリム6、7間に装着されるタイヤTに空気を供給する空気供給源10と、この空気供給源10からタイヤTに供給される空気の圧力をタイヤTを膨らませてリム6、7に装着するためのビード空気圧又はこのビード空気圧より低圧でタイヤ試験時に用いるテスト空気圧に調整する圧力調整弁13とを備える。また、本発明のタイヤ試験装置2の空気圧回路1は、ビード空気圧でタイヤTに供給される空気の温度を、外気温度を下回る温度に冷却可能な空気温度調整機構21を備える。

Description

タイヤ試験装置の空気圧回路、タイヤ試験装置及びタイヤ試験方法
 本発明は、タイヤユニフォーミティマシンなどのタイヤ試験装置に用いられる空気圧回路、この空気圧回路を備えたタイヤ試験装置、及びこの空気圧回路を用いてタイヤの試験を行うタイヤ試験方法に関する。
 従来より、製品として完成したタイヤには、ユニフォーミティ(均一性)などを計測して良否を判定するタイヤ試験(ユニフォーミティ検査)が行われている。例えば乗用車用のタイヤについてユニフォーミティを計測する場合、タイヤ試験は概ね特許文献1に示される試験装置を用いて以下のような手順で行われる。
 特許文献1のタイヤ試験装置は、リム上に着座するタイヤに対して工場空気源から供給された圧縮空気を圧力調整して供給する空気圧回路を備えており、タイヤを膨らませた後でタイヤ試験を行う。この空気圧回路は、途中で分岐した2系統の配管を備えている。一方はタイヤを短時間で膨らますと共にタイヤをリムに装着するビードシート系統の配管であり、他方はタイヤを試験する際に用いられるテスト系統の配管である。ビードシート系統の配管とテスト系統の配管とを切替弁を用いて切り替えることによって、空気圧回路は2系統の配管経路でタイヤを膨らますことができるようになっている。
 このタイヤ試験装置でタイヤ試験を行う場合は、まず検査ラインの上流から流れてきたタイヤが、上下に分割されたリムで挟み込まれる。次に、ビードシート系統の配管を用いて、タイヤが短時間で膨らまされる。このときビードシート系統の配管を用いてタイヤに供給される圧縮空気の空気圧は、タイヤ試験時のテスト圧(テスト空気圧)よりも高圧(例えば、約400kPa)であるのが一般的である。タイヤは、圧力上昇時間も含めて前記ビードシート圧に1秒程度にわたり保持される。
 次に、このタイヤ試験装置では、切替弁を用いて、圧縮空気の流路が、ビードシート系統の配管からテスト系統の配管に切り替えられる。このテスト系統の配管の途中には圧力調整弁が設けられており、高圧の圧縮空気をテスト圧(例えば、約200kPa)に減圧可能となっている。それゆえ、テスト系統の配管を通じて圧縮空気を供給することにより、タイヤ内の空気圧がテスト圧に調整される。そして、テスト圧に保持されたタイヤにドラムを押し付けて、ドラムに設けた荷重計測器を用いてタイヤに発生する反発力を計測することにより、タイヤのユニフォーミティが計測される。
 なお、上述した圧力調整弁として、特許文献2に示されるようにサーボ式の圧力レギュレータが用いられることもある。
日本国特公平6-95057号公報 米国特許第5291776号明細書
 ところで、タイヤ試験においては、試験中のタイヤ内の空気圧が少しでも変動すると、ユニフォーミティの計測結果が大きく変動することが知られている。それゆえ、不良品を市場に出さないためにも、また間違って良品を不良品と判定しないためにも、タイヤ内の空気圧をテスト圧に一定に保つ事が重要になる。ところが、実際のタイヤ試験においては、テスト中に空気圧が低下したり、まれに上昇したりすることがある。
 このようなタイヤ内の空気圧の変化は、0.5kPa程度と小さい場合もあれば1kPa程度と大きい場合もある。しかし、空気圧の変化が0.5kPa程度と小さい場合であっても、タイヤ内の空気圧の変化はユニフォーミティの計測結果に大きく影響する。タイヤ1回転におけるタイヤの反発力の変化を計測するユニフォーミティ検査では、タイヤ自体が有する反発力の変動特性に、タイヤ内で発生した空気圧の変化に伴う反発力の変化が加わった値で計測されてしまう。それゆえ、同一タイヤにおいても、計測タイミングによって変動特性の重なりの位相関係が変わることにより試験の度に計測結果が異なり、試験装置の繰り返し安定性が確実に判別できなくなる可能性がある。その結果、試験装置・試験ラインとしての品質確保に難を来たすおそれがある。
 しかしながら、特許文献1のタイヤ試験装置に使われるような一般的な圧力調整弁では、上述のような微小な空気圧の変化を調整することは困難である。なぜなら、一般的な圧力調整弁では圧力調整範囲は1000kPa程度であり、圧力調整精度は良くても±0.1%、つまり1kPa程度である。したがって、1kPa程度の圧力調整精度しか持たない圧力調整弁を用いても、タイヤ試験中に0.5kPa程度で変動するタイヤ内の空気圧を調整することは不可能である。
 一方、特許文献2にはサーボ式の圧力調整弁が開示されている。このサーボ式の圧力調整弁は、圧力調整精度には優れるものの、応答性が低く、価格も高価である。それゆえ、このサーボ式の圧力調整弁は、緩やかで定常的な空気圧の変動には対応できても、1秒程度しかないタイヤ試験時間内でタイムリーにタイヤ内の空気圧を調整できるほどの応答性は持っていない。また、サーボ式の圧力調整弁のように高価な部材を用いると、タイヤ試験装置の価格が高騰するという問題もある。それゆえ、特許文献2のように、サーボ式の圧力調整弁を用いたタイヤ試験装置でタイヤ試験中に変動するタイヤ内の空気圧を調整することも現実的でない。
 本発明は、上述の問題に鑑みてなされたものであり、タイヤに供給される空気の温度を調整することにより、タイヤ試験中に生じる空気圧の変動を抑えることができるタイヤ試験装置の空気圧回路を提供することを目的とする。
 また、本発明は、低コストで精度良くユニフォーミティを計測できるタイヤ試験装置及びタイヤ試験方法を提供することを目的とする。
 前記目的を達成するため、本発明は次の技術的手段を講じている。
 すなわち、本発明のタイヤ試験装置の空気圧回路は、一対のリム間に装着されるタイヤに空気を供給する空気供給源を備えるタイヤ試験装置の空気圧回路であって、前記空気供給源から前記タイヤに供給される空気の温度を所定温度に調整可能な空気温度調整機構を備えることを特徴とする。
 この空気温度調整機構は、具体的には以下の空気圧回路に採用することができる。
 前記空気供給源からタイヤに供給される空気の圧力を、前記タイヤを膨らませて前記リム間に装着するためのビード空気圧又は前記ビード空気圧より低圧でタイヤ試験時に用いるテスト空気圧に調整する圧力調整弁を備える空気圧回路にあっては、前記空気温度調整機構は、前記ビード空気圧で前記タイヤに供給される空気の温度を、外気温度を下回る温度に冷却可能に構成されていることを特徴とする。
 本発明者の研究により、タイヤ試験中に圧力が低下する原因の1つとしてタイヤ内の空気温度の低下が影響していることを明らかにした。
 常温の圧縮空気がビード空気圧でタイヤに流入する際、もともとタイヤ内に存在した空気は圧縮されて断熱圧縮により温度上昇し、タイヤ内の空気が高温になる。その後、ビード空気圧からテスト空気圧に移行する際、タイヤ内圧力は急激に下がり、断熱膨張によりタイヤ内空気の温度は低下する。しかし、もともとの温度上昇量が大きいために、タイヤ内の空気の最終温度は、一般に常温であるタイヤやリムの温度よりも高くなる。その結果、タイヤ試験中にタイヤ内の空気の熱がタイヤやリムに伝熱して、タイヤ内部の空気温度が低下する。
 例えば、タイヤや配管に200kPaの圧縮空気が0.05m封じ込められている場合、計測時間1秒の間にその空気温度が25℃から24℃に1℃下がると仮定する。
 ここで、体積変化はほとんどないものと考えると、ボイル・シャルルの法則(圧力と体積の積を絶対温度で割った値は一定)より、圧力は、200kPa×1K/297K=0.7kPa低下する。また、テスト空気圧に移行した際のタイヤ内の空気温度が、リムやタイヤ温度(外気温度)よりも高ければ高いほど、計測時間中の温度変化量が増加して、圧力の変化量が増加する。
 よって、最初のビードシート系統の高圧の空気を予め冷却しておくことにより、ビード空気圧時の温度と外気温度との差が、テスト空気圧移行時の温度の低下量に近くなれば、テスト空気圧の空気温度を外気温度付近にすることができる。
 これにより、計測時間中のタイヤ内の空気の温度変化がなくなり、タイヤ試験中に生じる空気圧の変動が抑制可能となる。
 また、前記空気温度調整機構は、前記空気供給源からの空気を貯蔵可能なタンクと、前記タンク内の空気を冷却する熱交換器と、を有するよう構成されていてもよい。
 このようにタンクと熱交換器とが設けられることにより、大量の空気をタンク内にためておき、熱交換器によってタンク内の空気を予め冷却しておくことができる。つまり、大量の冷却空気を瞬間的に高圧でタイヤに送り込んで急激にタイヤを膨らませることができ、タイヤとリムのフィッティング特性(密着性)を高めることが可能となる。
 なお、前記空気温度調整機構は、前記空気供給源からの空気を前記ビード空気圧より高圧の状態で貯蔵可能なタンクと、前記ビード空気圧でタイヤに供給する前に前記タンク内の空気を外部に排気して断熱膨張させる排気手段と、を有するよう構成されていてもよい。
 このようにタンクと排気手段が設けられることにより、タンク内でビード空気圧より高圧な空気を容易に保持しながら、タイヤに空気を供給する前に、その空気を排気手段で排気して圧力をビード空気圧まで低下させることができる。これにより、断熱膨張の原理でタンク内の空気全体の温度を一気に冷却することができ、熱交換器などの特別な機構を用いることなく、簡便な構造で大量の冷却された空気を得ることができる。
 さらにまた、上述の空気圧回路を備えたタイヤ試験装置によれば、タイヤに供給される空気の温度を調整することによって、タイヤ試験中に生じる空気圧の変動が抑制可能であり、タイヤのユニフォーミティを精度良く計測できる。
 本発明のタイヤ試験方法は、一対のリム間に装着されたタイヤに空気を供給した状態で前記タイヤの特性を計測するタイヤ試験方法であって、前記タイヤに供給される空気の温度を、所定温度に調整することを特徴とする。
 また、本発明のタイヤ試験方法は、ビード空気圧に調整された空気をタイヤに供給することで前記タイヤを膨らませて一対のリム間に装着する工程と、前記リム間に装着された前記タイヤに前記ビード空気圧より低圧なテスト空気圧に調整された空気を供給した状態で前記タイヤの特性を計測する工程と、を有するタイヤ試験方法であって、前記ビード空気圧でタイヤに供給される空気の温度を、外気温度を下回る温度に冷却することを特徴とするものであってもよい。
 このように、空気供給源からタイヤに供給される空気の温度を、所定温度又は外気温度を下回る温度に調整すれば、圧力調整弁で調整できないような空気圧の変動も抑制することができ、タイヤのユニフォーミティを精度良く計測できる。
 本発明のタイヤ試験装置の空気圧回路によれば、タイヤに供給される空気の温度を調整することで、タイヤ試験中に生じる空気圧の変動を抑えることができる。また、本発明のタイヤ試験装置及びタイヤ試験方法によれば、タイヤ試験中に生じる空気圧の変動を抑制して、タイヤを精度良く試験できる。
本発明のタイヤ試験装置の正面図である。 本発明のタイヤ試験装置における空気圧回路の基本構成を示す図である。 第1実施形態の空気圧回路を示す図である。 第2実施形態の空気圧回路を示す図である。
[第1実施形態]
 第1実施形態の空気圧回路1及びこの空気圧回路1が設けられたタイヤ試験装置2を、図面に基づき説明する。
 本発明のタイヤ試験装置2は、製品として完成したタイヤTに対してユニフォーミティ試験などの製品検査を行うものである。本実施形態ではタイヤ試験装置2としてユニフォーミティマシンが用いられている。このようなタイヤ試験装置2は、例えば図1に示されるような構成を有する。
 図1に模式的に示されるように、タイヤ試験装置2は、床面にやぐら状に設けられたフレーム3と、このフレーム3に取り付けられた上下1組のタイヤ軸4、5と、これらのタイヤ軸4、5に設けられてタイヤTを固定するリム6、7と、を備えている。これらのタイヤ軸4、5は、上下軸回りに回転自在に配備されている。さらに、リム6、7で固定されたタイヤTの側方には、外周面に模擬路面が形成されたドラム(図示略)が設けられている。このドラムは、上下軸回りに駆動回転できるようになっており、また水平に移動してタイヤTに模擬路面を接触できるよう構成されている。
 以降の説明において、図1の紙面の上下をタイヤ試験装置2の上下とする。
 タイヤ試験装置2のタイヤ軸4、5は、フレーム3の上側に設けられる上タイヤ軸4と、この上タイヤ軸4と同軸に配備されると共に下方に距離をあけて昇降自在に設けられる下タイヤ軸5と、を有する。上タイヤ軸4の下端には上リム6が設けられ、また下タイヤ軸5の上端には下リム7が設けられている。タイヤ試験装置2は、上下タイヤ軸4、5を互いに接近させることによって、上下リム6、7間にタイヤTを挟み込んで固定できるように構成されている。
 タイヤ軸4、5又はドラムには、走行中のタイヤTに発生する力を計測する荷重計測器などが設けられており、タイヤTのユニフォーミティを計測できるようになっている。
 ところで、上述のようなタイヤ試験を行う際には、タイヤTの空気圧を所定の空気圧に調整しておく必要がある。そこで、タイヤ試験装置2には、タイヤT内に圧縮空気を供給したりタイヤTから圧縮空気を排出したりすることによってタイヤT内の空気圧を調整する空気圧回路1が配備されている。
 図1に示されるように、空気圧回路1は、空気供給源10からタイヤT内へ至る配管を備えており、上タイヤ軸4の内部を上下に貫通するように設けられた空気流路8の下側に開口した空気供給口9でタイヤT内に連通している。空気圧回路1は、空気流路8及び空気供給口9を通じて、圧縮空気をタイヤT内に流通できるようになっている。
 図2に示されるように、空気圧回路1は、基本的に、空気供給源10で発生した圧縮空気を所定の空気圧に調整してタイヤTに供給するよう構成されている。空気圧回路1は、タイヤTに至る経路を2系統備えている。一方は、タイヤTを短時間で膨らましてタイヤTのビードをリム6、7に押し付けるビードシート系統11であり、他方は、タイヤTを試験する際に用いられるテスト系統12である。
 なお、以下の説明において、図2中、空気供給源10側を空気圧回路1の上流側、またタイヤT側を空気圧回路1の下流側とする。この上流側及び下流側は、タイヤT内に圧縮空気を供給する際の圧縮空気の流れ(図中の矢印の方向)における上流側及び下流側と一致する。
 ビードシート系統11を介して流通される圧縮空気は、400kPa程度の空気圧(ビード空気圧)に調整される。また、テスト系統12を介して流通される圧縮空気は、ビードシート系統11より低い200kPa程度の空気圧(テスト空気圧)に調整されている。これらのビードシート系統11とテスト系統12とは、空気供給源10からタイヤTに至る途中で分岐し、それぞれの空気圧に調整された後、再び1つの配管に合流するようになっている。
 次に、テスト系統12とビードシート系統11とについて詳しく説明する。
 テスト系統12の配管経路は、上流側から下流側に向かって順番に、空気供給源10、圧力調整弁13、給排弁14、切替弁15、遮断弁16、圧力検知部17を備えている。また、ビードシート系統11の配管系路は、空気供給源10の下流側でテスト系統12の配管から分岐し、ビード圧調整弁22でビード空気圧に調整された後、切替弁15でテスト系統12と同じ配管に合流するようになっている。
 空気供給源10は、コンプレッサ(図示略)などで加圧された工場エアの供給源であり、ビードシート系統11を通じてタイヤTを膨らませる際の空気圧(ビード空気圧)と同等か又はそれより高圧の圧縮空気を発生させている。空気供給源10の下流側には、空気供給源10から流入するダストなどを捕集するエアフィルタ18が設けられている。また、エアフィルタ18の下流側には、空気供給源10で発生する圧縮空気の圧力をチェックする圧力計19が設けられている。そして、テスト系統12においては、この圧力計19の下流に圧力調整弁13が配備されている。
 圧力調整弁(テスト圧調整弁)13は、空気供給源10から送られてきた圧縮空気を所定の圧力に調整する圧力レギュレータであり、空気供給源10の下流側で分岐したテスト系統12の配管に設けられている。また、ビードシート系統11の配管には、テスト圧調整弁13と同様の構成を有するビード圧調整弁22が設けられている。
 空気供給源10で発生した高圧の圧縮空気は、ビード圧調整弁22によってビード空気圧(例えば400kPa)に減圧され、テスト圧調整弁13によってテスト空気圧(例えば200kPa)に減圧されている。
 切替弁15は、圧縮空気の流路をテスト系統12側とビードシート系統11側とで切り替えることによって、タイヤT内の空気圧を、ビード空気圧とテスト空気圧との間で切り替える。
 本実施形態の切替弁15がオン状態のときには、ビードシート系統11の配管からタイヤT内にビード空気圧に圧力調整された圧縮空気が供給できる。切替弁15が作動していない(オフ状態の)ときには、テスト系統12の配管からテスト空気圧に圧力調整された圧縮空気がタイヤT内に供給できる。
 遮断弁16は、切替弁15の下流側に設けられた方向制御弁である。遮断弁16を切り替えることによって、圧縮空気の流路を遮断して、遮断弁16の下流側のタイヤT内へ至る配管内に圧縮空気を封じ込めることができる。
 給排弁14は、テスト圧調整弁13の下流側に設けられた方向制御弁である。給排弁14の切替により、タイヤTへの給気とタイヤTからの排気(大気への放出)とが制御される。
 圧力検知部17としては、給排弁14の下流側に設けられた空気圧センサが配備されている。
 ところで、このようにテスト圧調整弁13でタイヤT内に作用させる空気圧をテスト空気圧に圧力調整しても、タイヤ試験中にタイヤT内の空気圧が微小に変化してしまうことがある。このような空気圧の変化は0.5kPa~1kPaと微小であり、圧力調整精度が±0.1%(例えば、1000kPaを定格とする圧力レギュレータの場合であれば1kPa程度)しかないテスト圧調整弁13によっては、調整が困難である。
 そこで、本発明のタイヤ試験装置2においては、タイヤ試験中に生じる空気圧の変動を抑えるために、空気供給源10からタイヤTに供給される空気の温度を所定温度に調整可能な空気温度調整機構21が設けられている。詳しくは、空気温度調整機構21は、ビード空気圧でタイヤTに供給される空気の温度を、外気温度を下回る温度へと冷却可能である。
 次に、第1実施形態の空気圧回路1に設けられる空気温度調整機構21を詳しく説明する。
 図3に示されるように、第1実施形態における空気温度調整機構21は、空気供給源10及び圧力計19の下流側、且つビードシート系統11とテスト系統12との分岐点の上流側の配管に設けられている。この空気温度調整機構21は、空気供給源10の下流側に配置されたタンク23と、このタンク23内に設けられた熱交換器30と、を有する。熱交換器30は、冷媒をチューブに通して熱交換する等の構成を有する。具体的には、熱交換器30として、ボルテックスチューブなどが利用できる。タイヤTに供給される空気は、空気温度調整機構21によって予め冷却されることが好ましい。
 次に、ビード空気圧でタイヤTに供給される空気の温度を外気温度を下回る温度にすることにより、タイヤ試験中にタイヤT内の空気圧が変化することを抑制できる点について、詳しく説明する。
 空気を供給して膨らませる前(つまり、リム6、7に装着する前)のタイヤTと、配管内の空気の圧力をP1(大気圧)、空気温度をT1(常温)とし、空気供給源10から供給される空気圧力をPa(ビード空気圧)、空気温度をTaとする。
 この場合において、ビードシート系統11でタイヤT内の圧力がビード空気圧Paまで上昇した時の、タイヤT内の空気温度T2を算出する。
 タイヤT内の空気の質量をmとし、空気の膨張時に外部から出入りする熱を0として断熱過程を考えると、エネルギの釣合は式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、m1は膨張前の空気質量、m2は膨張後の空気質量、u1は膨張前の比エネルギ、u2は膨張後の比エネルギである。(m2-m1)は流入する空気質量、hは流入する空気の比エンタルピを示す。
 ここで、タイヤT内の比エネルギをu=CvT、タイヤT内に流入する空気の比エンタルピをh=CpT(Cv:定積比熱定数、Cp:定圧比熱定数)とすると、式(1)は、式(2)のように表される。
Figure JPOXMLDOC01-appb-M000002
 状態方程式(m=PV/(RT)、R:気体定数、V:体積)及び比熱比γ(=Cp/Cv)を用いると、式(2)から、式(3)が得られる。
Figure JPOXMLDOC01-appb-M000003
 なお、式(3)において、タイヤT内で膨張後の空気圧力P2は、空気供給源10から供給される空気圧力Paと同圧になるため、P2=Paである。
 式(3)をT2について整理すると、式(4)が得られる。
Figure JPOXMLDOC01-appb-M000004
 ここで、空気供給源10から供給される空気圧力を400kPa(ゲージ圧)、空気温度を常温の20℃(外気温度)とする。また、膨らませる前のタイヤT内の空気を大気圧、20℃(外気温度)とする。
 また、P1=100kPa(絶対圧)、T1=293K(絶対温度)、Pa=P2=500kPa(絶対圧)、Ta=293K(絶対温度)、γ=1.4とすると、式(4)から、ビードシート時のタイヤT内温度T2は、107℃まで上昇することになる。
 次に、タイヤT内がビード空気圧からテスト空気圧に移行する時は、タイヤTから急激に空気が抜けるため、断熱膨張により温度は低下する。
 ビード空気圧時のタイヤT内の空気の圧力及び温度をP1、T1、テスト空気圧時のタイヤT内の空気の圧力及び温度をP2、T2とすると、断熱膨張前後の圧力と温度の関係は、比熱比γを用いて式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 ビード空気圧P1を500kPa(絶対圧)、テスト空気圧P2を300kPa(絶対圧)とすると、テスト空気圧での絶対温度T2は、T1の86%となる。よって、ビード空気圧時のタイヤT内の空気温度が107℃(380K)であれば、テスト空気圧になった時にタイヤT内の空気温度は55℃となる。
 このテスト空気圧時のタイヤT内の空気温度55℃は、外気温度20℃よりもかなり高い。そのため、タイヤ試験中にタイヤT内の空気からタイヤTのゴムや金属製のリム6、7への伝熱が起こり、タイヤT内の空気温度が低下する。タイヤT内の空気とタイヤT及びリム6、7との間の温度差が大きいほど伝熱量が大きくなり、熱容量の小さいタイヤT内の空気温度はどんどん低下するのに応じてタイヤT内の圧力が低下していく。
 実際には、ビード空気圧時(タイヤTのビード部をリム6、7に装着させるビードシート時)にも伝熱により熱が逃げていく。このため、ビードシート時のタイヤT内の空気温度は107℃までは上がらず、90℃程度になることが、実験により確認されている。この場合でも、テスト空気圧時のタイヤT内の空気温度は40℃程度となる。
 そこで、本発明のタイヤ試験装置2においては、空気供給源10からビード空気圧でタイヤTに供給される空気として、空気温度調整機構21によって外気温度を下回る温度まで冷却された空気を配管系統に流し込むものとする。
 空気供給源10からタイヤT内にビード空気圧(ゲージ圧で400kPa)で流入する空気温度が-20℃であると、式(4)から、タイヤT内の空気温度は67℃にまで下がる。この後、タイヤT内の空気圧力をテスト空気圧の200kPa(ゲージ圧)まで下げると、タイヤT内の空気温度は21℃となり、ほぼ外気温度となる。この場合、タイヤ試験時におけるタイヤT内の温度変化は僅かであり、圧力変化はほとんど発生しないこととなる。
 実際には、タイヤT内の最終温度は、上記の計算以外に伝熱による温度変化にも影響される。冷却された空気の温度設定は、各タイヤ試験装置2について適切な値を実験的に調べておくことが望ましい。また、ビード空気圧からテスト空気圧に移行した際に、タイヤT内の空気温度が外気温度から±5℃の範囲に入っていれば温度変化及び圧力変化が緩やかであることが、実験により確認されている。
 上述の空気圧回路1を備えたタイヤ試験装置2では、以下の手順でタイヤ試験が行われる。
 まず、ビードシート系統11の配管を介して、タイヤT内の空気圧をビード空気圧に調整する。次に、空気温度調整機構21によって外気温度を下回る温度(例えば、-20℃)まで冷却された空気を供給して、タイヤTを短時間で膨張させ、タイヤTのビード部をリム6、7に強固に装着する。
 より詳しくは、タイヤTの装着時には、切替弁15をオン状態、遮断弁16をオフ状態とすることで、テスト系統12の空気流路が閉鎖されると共にビードシート系統11の空気流路が開通される。これにより、ビードシート系統11側の経路を介して圧縮空気がタイヤTに流通され、タイヤTを膨張させる。
 上述したようにタイヤTをリム6、7に装着した際には、タイヤT内の空気温度が、断熱膨張により、空気温度調整機構21によって冷却された時の空気温度よりも上昇している(例えば、ビードシート空気圧下で67℃)。
 次に、給排弁14をオン状態、遮断弁16をオフ状態にしたまま切替弁15をオフ状態とすることにより、圧縮空気の流路がテスト系統12に切り替えられると共に、タイヤT内の空気が空気流路8の外へと排気される。また、テスト系統12の配管に設けられたテスト圧調整弁13により、ビード空気圧にされていたタイヤT内の圧縮空気が、テスト空気圧へと切り替えらえる。
 このとき、タイヤT内の空気は断熱膨張するため、タイヤT内の空気温度は、ほぼ外気温度まで下がる(例えば、テスト空気圧下で21℃)。
 このように、-20℃程度の冷たい空気を入れたタイヤT内の圧力をビード空気圧からテスト空気圧まで降圧することによって、タイヤT内の空気温度はほぼ外気温度となり、タイヤ試験(1秒程度)時における温度変化は僅かとなる。その結果、式(5)により、圧力変化はほとんど発生しないこととなる。
 つまり、空気供給源10からタイヤTに供給される空気を、外気温度を下回る温度まで冷却する空気温度調整機構21を設けることにより、圧力レギュレータでは調整することが困難な空気圧の変動を抑制することができる。それゆえ、タイヤ試験中、タイヤT内の空気をテスト空気圧に維持することが可能となり、ユニフォーミティを精度良く計測することが可能となる。
[第2実施形態]
 次に、第2実施形態の空気圧回路1及びこれを備えたタイヤ試験装置2について説明する。
 図4に示されるように、第2実施形態の空気圧回路1が第1実施形態と異なる点は、空気温度調整機構21として排気手段24を有する点である。排気手段24は、タンク23内の空気をビード空気圧でタイヤTに供給する前に外部に排気して、断熱膨張を生じさせる。
 また、第2実施形態の空気圧回路1において、空気供給源10は、ビード空気圧よりも高い圧力(例えば800kPa程度)の空気を供給可能である。
 空気温度調整機構21は、圧力計19の下流側、且つビードシート系統11とテスト系統12との分岐点の上流側に配置されたタンク23を備える。このタンク23は、遮断弁32を介してリリーフ弁33を備えている。また、空気供給源10からの流路を遮断できるように、タンク23の上流にも遮断弁31が設けられている。
 これら遮断弁31、32及びリリーフ弁33によって、排気手段24が構成されている。
 ここで、第2実施形態の空気温度調整機構21による空気冷却の態様を説明する。
 ビード空気圧の空気をタイヤTに供給してタイヤTを膨らませるまでは、遮断弁31をオフにしておき、空気供給源10とタンク23とが繋がった状態とする。なお、遮断弁32もまたオフであり、リリーフ弁33から遮断された状態である。
 この時、タンク23内には外気温度の800kPaの高圧空気が入っている。
 ビードシートを行う直前に、まず、遮断弁31をオンにして、空気圧回路1を空気供給源10から遮断する。その後、遮断弁32をオンにしてリリーフ弁33との流路を繋げて、タンク23内の圧力を所定のビード空気圧(ゲージ圧で400kPa程度)まで急激に低下させる。その後、切替弁15をオンにして、タイヤT内にこのビード空気圧の空気が供給される。
 式(5)から、断熱膨張前の空気圧力P1を900kPa(絶対圧)、空気温度T1を外気温度(293K)、断熱膨張後の空気圧力P2を500kPa(絶対圧)、γ=1.4とすると、ビード空気圧での空気温度T2は、-25℃にまで下げることができる。
 なお、ビード空気圧はタンク23に設けたリリーフ弁33で調整されるため、図4のビード圧調整弁22は必ずしも必要ではない。この場合、空気供給源10とタンク23が繋がっている時に、ビードシート系統11全体の圧力がビード空気圧となる。よって、リリーフ弁33によって圧を開放することにより、ビードシート系統11の配管内全体の空気を冷却することが可能である。
 タンク23の容量が、タイヤTの空気容量に対してそれほど大きくない場合、本方式ではビード空気圧が低下する。したがって、タンク23内の最終圧力が、タンク23とタイヤTとの体積比に応じて、目標ビード空気圧よりも高く設定されてもよい。また、空気供給源10とタンク23の間に、圧力調整弁(ビード空気圧と、ビード空気圧より高い圧力とを切替可能な弁)を別途設け、ビードシート中は空気供給源10からビード空気圧で空気を供給することにより、タンク23内の冷却された空気がタイヤTへと押し出されるように供給されてもよい。
 なお、第2実施形態におけるその他の構成及び作用効果は、第1実施形態と同じであるので、その説明は省略する。
 本発明は上記各実施形態に限定されるものではなく、発明の本質を変更しない範囲で、各部材の形状、構造、材質、組み合わせなどを適宜変更可能である。
 上記実施形態では、タイヤ試験装置2としてユニフォーミティマシンを例に挙げて本発明を説明した。しかし、本発明の空気圧回路1はユニフォーミティ以外の評価を行うタイヤ試験装置にも使用可能である。
 本出願は2009年9月28日出願の日本特許出願(特願2009-222463)に基づくものであり、その内容はここに参照として取り込まれる。
 1 空気圧回路
 2 タイヤ試験装置
 3 フレーム
 4 上タイヤ軸
 5 下タイヤ軸
 6 上リム
 7 下リム
 8 空気流路
 9 空気供給口
 10 空気供給源
 11 ビードシート系統
 12 テスト系統
 13 圧力調整弁(テスト圧調整弁)
 14 給排弁
 15 切替弁
 16 遮断弁
 17 圧力検知部
 18 エアフィルタ
 19 圧力計
 21 空気温度調整機構
 22 ビード圧調整弁
 23 タンク
 24 排気手段
 30 熱交換器
 T タイヤ

Claims (7)

  1.  一対のリム間に装着されるタイヤに空気を供給する空気供給源を備えるタイヤ試験装置の空気圧回路であって、
     前記空気供給源から前記タイヤに供給される空気の温度を所定温度に調整可能な空気温度調整機構を備えることを特徴とするタイヤ試験装置の空気圧回路。
  2.  前記空気供給源からタイヤに供給される空気の圧力を、前記タイヤを膨らませて前記リム間に装着するためのビード空気圧又は前記ビード空気圧より低圧でタイヤ試験時に用いるテスト空気圧に調整する圧力調整弁を備え、
     前記空気温度調整機構は、前記ビード空気圧で前記タイヤに供給される空気の温度を、外気温度を下回る温度に冷却可能に構成されていることを特徴とする請求項1に記載のタイヤ試験装置の空気圧回路。
  3.  前記空気温度調整機構は、前記空気供給源からの空気を貯蔵可能なタンクと、前記タンク内の空気を冷却する熱交換器と、を有することを特徴とする請求項2に記載のタイヤ試験装置の空気圧回路。
  4.  前記空気温度調整機構は、前記空気供給源からの空気を前記ビード空気圧より高圧の状態で貯蔵可能なタンクと、前記ビード空気圧でタイヤに供給する前に前記タンク内の空気を外部に排気して断熱膨張させる排気手段と、を有することを特徴とする請求項2に記載のタイヤ試験装置の空気圧回路。
  5.  請求項1~4のいずれか1項に記載の空気圧回路を備えることを特徴とするタイヤ試験装置。
  6.  一対のリム間に装着されたタイヤに空気を供給した状態で前記タイヤの特性を計測するタイヤ試験方法であって、
     前記タイヤに供給される空気の温度を、所定温度に調整することを特徴とするタイヤ試験方法。
  7.  ビード空気圧に調整された空気をタイヤに供給することで前記タイヤを膨らませて一対のリム間に装着する工程と、
     前記リム間に装着された前記タイヤに前記ビード空気圧より低圧なテスト空気圧に調整された空気を供給した状態で前記タイヤの特性を計測する工程と、を有するタイヤ試験方法であって、
     前記ビード空気圧でタイヤに供給される空気の温度を、外気温度を下回る温度に冷却することを特徴とするタイヤ試験方法。
PCT/JP2010/066608 2009-09-28 2010-09-24 タイヤ試験装置の空気圧回路、タイヤ試験装置及びタイヤ試験方法 WO2011037212A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080042253.5A CN102510999B (zh) 2009-09-28 2010-09-24 轮胎试验装置的气压回路、轮胎试验装置及轮胎试验方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-222463 2009-09-28
JP2009222463A JP5059075B2 (ja) 2009-09-28 2009-09-28 タイヤ試験装置の空気圧回路、タイヤ試験装置及びタイヤ試験方法

Publications (1)

Publication Number Publication Date
WO2011037212A1 true WO2011037212A1 (ja) 2011-03-31

Family

ID=43795954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066608 WO2011037212A1 (ja) 2009-09-28 2010-09-24 タイヤ試験装置の空気圧回路、タイヤ試験装置及びタイヤ試験方法

Country Status (3)

Country Link
JP (1) JP5059075B2 (ja)
CN (1) CN102510999B (ja)
WO (1) WO2011037212A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110333145A (zh) * 2019-07-15 2019-10-15 苏州热工研究院有限公司 微型试样高温胀形测试装置及测试方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6022987B2 (ja) 2013-04-03 2016-11-09 株式会社神戸製鋼所 タイヤ試験装置の空気圧回路
EP3147141B1 (en) * 2014-09-23 2017-12-13 Snap-on Equipment S.r.l. Improved method and device for fitting or removing tyres on rims
KR20180084962A (ko) * 2015-12-24 2018-07-25 미츠비시 쥬고 기카이 시스템 가부시키가이샤 마스터 디스크 및 그 장착 방법과 분리 방법
JP6657520B2 (ja) 2016-02-03 2020-03-04 株式会社神戸製鋼所 タイヤ試験装置のタイヤ空気充填機構及びタイヤ空気充填方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4233838A (en) * 1979-05-22 1980-11-18 Uniroyal, Inc. Load control for tire test machine
JPH0560640A (ja) * 1991-09-05 1993-03-12 Kobe Steel Ltd タイヤのインフレーシヨン装置及びインフレーシヨン方法
JPH1120040A (ja) * 1997-07-03 1999-01-26 Bridgestone Corp タイヤ形状調節方法及びポストキュアインフレーション装置
JP2003326610A (ja) * 2002-05-10 2003-11-19 Yokohama Rubber Co Ltd:The タイヤ加硫成形後における後加硫・タイヤ仕上げ・測定方法及びその装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291776A (en) * 1992-04-13 1994-03-08 Akron Special Machinery Tire inflation regulator for tire uniformity machine
EP0888872B1 (en) * 1997-07-03 2005-10-05 Bridgestone Corporation Method for controlling tyre uniformity and tyre post-cure inflation apparatus
CN201051034Y (zh) * 2007-06-20 2008-04-23 中国电子科技集团公司第三十八研究所 基于轮胎压力监测系统的气压模拟装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4233838A (en) * 1979-05-22 1980-11-18 Uniroyal, Inc. Load control for tire test machine
JPH0560640A (ja) * 1991-09-05 1993-03-12 Kobe Steel Ltd タイヤのインフレーシヨン装置及びインフレーシヨン方法
JPH1120040A (ja) * 1997-07-03 1999-01-26 Bridgestone Corp タイヤ形状調節方法及びポストキュアインフレーション装置
JP2003326610A (ja) * 2002-05-10 2003-11-19 Yokohama Rubber Co Ltd:The タイヤ加硫成形後における後加硫・タイヤ仕上げ・測定方法及びその装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110333145A (zh) * 2019-07-15 2019-10-15 苏州热工研究院有限公司 微型试样高温胀形测试装置及测试方法
CN110333145B (zh) * 2019-07-15 2022-04-01 苏州热工研究院有限公司 微型试样高温胀形测试装置及测试方法

Also Published As

Publication number Publication date
CN102510999B (zh) 2015-01-07
CN102510999A (zh) 2012-06-20
JP2011069772A (ja) 2011-04-07
JP5059075B2 (ja) 2012-10-24

Similar Documents

Publication Publication Date Title
JP4979740B2 (ja) タイヤ試験装置の空気圧回路、タイヤ試験装置及びタイヤ試験方法
US10718691B2 (en) Tire air filling mechanism and tire air filling method for tire testing device
WO2011037212A1 (ja) タイヤ試験装置の空気圧回路、タイヤ試験装置及びタイヤ試験方法
US9360396B2 (en) Tire uniformity testing device and tire uniformity testing method
NO872338L (no) Hydraulisk eller pneumatisk trykkstyreinnretning og dens anvendelse i utstyr for regulering av dekktrykket paa kjoeretoeyer under kjoering.
EP1725412B1 (en) Wheel having temperature compensated and controlled pressure
CN108332958B (zh) 一种多功能电磁气动截止阀试验台
TW200912267A (en) Vacuum gauge calibration apparatus capable of calibrating and testing without displacement and operating method thereof
JP6022987B2 (ja) タイヤ試験装置の空気圧回路
JP5014409B2 (ja) タイヤ試験装置の空気圧回路、タイヤ試験装置及びタイヤ試験方法
JP2007107713A (ja) ガス供給方法およびガス供給装置
JP5642040B2 (ja) タイヤユニフォミティ試験装置及びタイヤユニフォミティ試験方法
JP6906748B2 (ja) インフレート設備およびガス漏れ検知方法
CN210269079U (zh) 一种新能源汽车电池包压差式气密检测设备
JP4586312B2 (ja) タイヤ製造工程におけるブラダー外径制御方法及びその装置
JP5631290B2 (ja) タイヤユニフォミティ試験装置及びタイヤユニフォミティ試験方法
JPH1137889A (ja) 洩れ及び流量検査装置
JP6611077B2 (ja) Fv測定装置およびfv測定方法
CN207648454U (zh) 飞机充气装置
WO2021256418A1 (ja) 流量計故障判定方法及び水素充填装置
CN104165727B (zh) 一种检定轮胎压力表的装置
JP3310224B2 (ja) 容器のガス漏れを計測する方法及び装置
JPH0377042A (ja) 補強糸付ホースのリーク検査装置
JP2018062148A (ja) タイヤ加硫用ブラダー試験装置及びタイヤ加硫用ブラダーの試験方法、並びにタイヤ加硫用ブラダー
CN115791437A (zh) 浮空器囊体材料测试系统和测试方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080042253.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818884

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2708/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10818884

Country of ref document: EP

Kind code of ref document: A1