WO2011036955A1 - セルロースまたはヘミセルロースの加水分解用触媒、並びにこの触媒を用いる糖含有液の製造方法 - Google Patents
セルロースまたはヘミセルロースの加水分解用触媒、並びにこの触媒を用いる糖含有液の製造方法 Download PDFInfo
- Publication number
- WO2011036955A1 WO2011036955A1 PCT/JP2010/063284 JP2010063284W WO2011036955A1 WO 2011036955 A1 WO2011036955 A1 WO 2011036955A1 JP 2010063284 W JP2010063284 W JP 2010063284W WO 2011036955 A1 WO2011036955 A1 WO 2011036955A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cellulose
- catalyst
- carbon material
- hydrolysis
- porous carbon
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 148
- 239000001913 cellulose Substances 0.000 title claims abstract description 148
- 229920002678 cellulose Polymers 0.000 title claims abstract description 147
- 238000006460 hydrolysis reaction Methods 0.000 title claims abstract description 77
- 230000007062 hydrolysis Effects 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 44
- 229920002488 Hemicellulose Polymers 0.000 title claims abstract description 33
- 235000000346 sugar Nutrition 0.000 title claims description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- 230000008569 process Effects 0.000 title abstract description 5
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 109
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 85
- 239000008103 glucose Substances 0.000 claims abstract description 85
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims abstract description 83
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 76
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 67
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 32
- 239000011148 porous material Substances 0.000 claims abstract description 20
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 14
- 150000003624 transition metals Chemical class 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims description 85
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 59
- 238000010438 heat treatment Methods 0.000 claims description 41
- 238000010521 absorption reaction Methods 0.000 claims description 40
- 238000002835 absorbance Methods 0.000 claims description 27
- 239000007788 liquid Substances 0.000 claims description 26
- 125000003118 aryl group Chemical group 0.000 claims description 24
- 229920001542 oligosaccharide Polymers 0.000 claims description 15
- 150000002482 oligosaccharides Chemical class 0.000 claims description 15
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 14
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 14
- NOEGNKMFWQHSLB-UHFFFAOYSA-N 5-hydroxymethylfurfural Chemical compound OCC1=CC=C(C=O)O1 NOEGNKMFWQHSLB-UHFFFAOYSA-N 0.000 claims description 12
- RJGBSYZFOCAGQY-UHFFFAOYSA-N hydroxymethylfurfural Natural products COC1=CC=C(C=O)O1 RJGBSYZFOCAGQY-UHFFFAOYSA-N 0.000 claims description 12
- 239000007787 solid Substances 0.000 claims description 12
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 11
- 230000003301 hydrolyzing effect Effects 0.000 claims description 11
- 238000001157 Fourier transform infrared spectrum Methods 0.000 claims description 10
- 229910052707 ruthenium Inorganic materials 0.000 claims description 10
- 239000011163 secondary particle Substances 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 9
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 7
- 229910052763 palladium Inorganic materials 0.000 claims description 7
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- 229910052703 rhodium Inorganic materials 0.000 claims description 7
- 239000010948 rhodium Substances 0.000 claims description 7
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 6
- 239000011541 reaction mixture Substances 0.000 claims description 5
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 claims description 4
- 229910052741 iridium Inorganic materials 0.000 claims description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 4
- 238000000411 transmission spectrum Methods 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 239000012295 chemical reaction liquid Substances 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 150000002772 monosaccharides Chemical class 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 35
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 32
- 238000002360 preparation method Methods 0.000 abstract description 8
- 230000006866 deterioration Effects 0.000 abstract description 2
- 108010009736 Protein Hydrolysates Proteins 0.000 abstract 1
- 235000010980 cellulose Nutrition 0.000 description 131
- 235000001727 glucose Nutrition 0.000 description 78
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 56
- 229910052751 metal Inorganic materials 0.000 description 29
- 239000002184 metal Substances 0.000 description 29
- 230000006870 function Effects 0.000 description 19
- 125000000524 functional group Chemical group 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 238000001994 activation Methods 0.000 description 13
- 230000003197 catalytic effect Effects 0.000 description 13
- 239000002994 raw material Substances 0.000 description 13
- 239000001257 hydrogen Substances 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- 230000004913 activation Effects 0.000 description 11
- 239000003513 alkali Substances 0.000 description 11
- 230000008859 change Effects 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 125000000686 lactone group Chemical group 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- -1 saccharide compound Chemical class 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 101150017073 cmk1 gene Proteins 0.000 description 5
- 238000011049 filling Methods 0.000 description 5
- 239000011949 solid catalyst Substances 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000004448 titration Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 4
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 4
- 239000000571 coke Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 150000008163 sugars Chemical class 0.000 description 4
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 3
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 3
- 229930091371 Fructose Natural products 0.000 description 3
- 239000005715 Fructose Substances 0.000 description 3
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000000855 fermentation Methods 0.000 description 3
- 230000004151 fermentation Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 239000002028 Biomass Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000012018 catalyst precursor Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 230000009229 glucose formation Effects 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 241001313099 Pieris napi Species 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229920000704 biodegradable plastic Polymers 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- FYGDTMLNYKFZSV-ZWSAEMDYSA-N cellotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@@H](O[C@@H]2[C@H](OC(O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-ZWSAEMDYSA-N 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000002153 concerted effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002304 glucoses Chemical class 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- TWNIBLMWSKIRAT-VFUOTHLCSA-N levoglucosan Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@H]2CO[C@@H]1O2 TWNIBLMWSKIRAT-VFUOTHLCSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229920003124 powdered cellulose Polymers 0.000 description 1
- 235000019814 powdered cellulose Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000001464 small-angle X-ray scattering data Methods 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 150000004044 tetrasaccharides Chemical class 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/18—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/462—Ruthenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/617—500-1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/618—Surface area more than 1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/638—Pore volume more than 1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/084—Decomposition of carbon-containing compounds into carbon
-
- C—CHEMISTRY; METALLURGY
- C13—SUGAR INDUSTRY
- C13K—SACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
- C13K1/00—Glucose; Glucose-containing syrups
- C13K1/02—Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/066—Zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/03—Catalysts comprising molecular sieves not having base-exchange properties
- B01J29/0308—Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
- B01J29/0316—Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
- B01J29/0325—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/041—Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
- B01J29/042—Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing iron group metals, noble metals or copper
- B01J29/043—Noble metals
Definitions
- the present invention relates to a catalyst for hydrolysis of cellulose or hemicellulose using a porous carbon material or a metal-supported porous carbon material, and a method for producing a sugar-containing liquid using this catalyst.
- Conventional cellulose hydrolysis methods include sulfuric acid method and enzyme method.
- the sulfuric acid method has the problem of corrosion of the apparatus and the neutralization treatment of the reaction waste
- the enzyme method has the problem that the enzyme is expensive and low in activity, and it is necessary to separate the enzyme from the reaction product.
- Non-patent Document 1 a report by Tohoku University and Arai et al. (Non-patent Document 1), many kinds of products are produced and the selectivity of glucose is not high.
- a pressurized hot water method using a solid catalyst can be mentioned.
- the pressurized hot water method has the advantage that no neutralization treatment or separation process is required. However, it is necessary to develop a highly active catalyst that can withstand pressurized hot water conditions.
- Non-patent Document 2 Tokyo Institute of Technology, Hara et al. (Non-patent Document 2) and Kochi University, Onda et al. (Non-patent Document 3) have reported a cellulose hydrolysis reaction using a solid acid catalyst composed of carbon to which sulfuric acid is immobilized.
- oligosaccharide or glucose is obtained as a main product.
- glucose can be said to be an important compound because it can be converted into bioplastics and biofuels.
- Patent Document 1 discloses a method for liquefying cellulosic biomass including a step of reacting a cellulosic biomass raw material with a functional group on the surface of a carrier and hydrothermally decomposing it, and mentions an inorganic solid such as activated carbon as the carrier.
- Patent Document 2 discloses a method for hydrolyzing cellulose including a step of heat-treating a reaction solution comprising a cellulose raw material, dispersed water, and a solid catalyst having an acidic functional group or a basic functional group in the molecule. As the solid catalyst, activated carbon is mentioned.
- Patent Documents 1 to 3 and Non-Patent Documents 1 to 4 are specifically incorporated herein by reference.
- Non-Patent Documents 2 and 3 may elute the immobilized sulfuric acid, and since a large amount of sulfuric acid is used for catalyst preparation, the drawbacks of the sulfuric acid method cannot be completely overcome. It can be said that there is still room for improvement.
- Patent Document 1 does not disclose an example using activated carbon, and does not disclose what activated carbon can be used.
- Patent Document 2 discloses an example using commercially available general activated carbon, but only shows the residual ratio of cellulose, such as glucose yield, selectivity thereof, generation of other by-products, etc. Is not disclosed.
- a first object of the present invention is to provide a new catalyst for hydrolysis of cellulose or hemicellulose, which does not require the use of a large amount of sulfuric acid for the preparation of the catalyst and does not allow the sulfuric acid to elute from the catalyst. .
- Patent Document 3 a cellulose hydrolysis reaction under rapid heating and air cooling conditions using a supported metal catalyst that does not require an acid.
- the supported metal catalyst is (i) no acid is required, (ii) the supported metal is not eluted, (iii) the catalytic activity can be controlled by changing the combination of the supported metal and the support, etc.
- a new cellulose or hemicellulose hydrolysis catalyst that does not decrease its activity due to structural change even in hot water, and a method for producing cellulose or hemicellulose hydrolyzate such as glucose using the catalyst.
- the second purpose is to provide it.
- a porous carbon material having a relatively large specific surface area such as a porous carbon material prepared using mesoporous silica as a template and having a relatively large amount of a phenolic hydroxyl group as a surface functional group.
- the supported metal catalyst used for the carrier has excellent cellulose and hemicellulose hydrolysis activity, and even during hydrolysis in hot water, the structural change and deterioration of the catalyst are not observed, and it can be used repeatedly in the reaction. As a result, the first aspect of the invention that achieves the second object of the present invention has been completed.
- the present inventors have obtained a porous carbon material having a large specific surface area such as a porous carbon material prepared using mesoporous silica as a template and having a predetermined amount of a relatively large amount of phenolic hydroxyl groups as surface functional groups. Having found cellulose and hemicellulose hydrolyzing activity, the second aspect of the invention that accomplishes the first object of the present invention has been completed.
- the present invention is as follows.
- a transition carbon of group 8 to 11 was supported on a porous carbon material having a specific surface area of 800 m 2 / g or more and 2500 m 2 / g or less and a phenolic hydroxyl group content of 100 mmol / kg or more and 700 mmol / kg or less.
- the catalyst according to [1], wherein the porous carbon material is a porous carbon material having a shape in which mesoporous silica is used as a template and pores of the mesoporous silica are filled with carbon.
- transition metal is at least one selected from the group consisting of ruthenium, platinum, rhodium, palladium, iridium, nickel, cobalt, iron, copper, silver and gold.
- transition metal is at least one selected from the group consisting of ruthenium, platinum, palladium and rhodium.
- a cellulose or hemicellulose hydrolysis catalyst comprising a porous carbon material having a specific surface area of 800 m 2 / g or more and 2500 m 2 / g or less and a phenolic hydroxyl group content of 100 mmol / kg or more and 700 mmol / kg or less.
- the porous carbon material has a shape in which mesoporous silica is used as a template and pores of the mesoporous silica are filled with carbon.
- a method for producing a sugar-containing liquid [14] The production method according to [13], wherein the hydrolysis of cellulose is carried out under heating at a temperature at which a pressure is applied. [15] The production method according to [14], wherein the heating temperature is in the range of 110 to 380 ° C. [16] The production according to [14] or [15], wherein the heating is completed when the conversion rate by hydrolysis of cellulose is between 10 and 100% and the selectivity of glucose is between 20 and 80%. Method. [17] The heating is such that the conversion by hydrolysis of cellulose is between 10 and 100%, the selectivity of glucose is between 20 and 80%, and the selectivity of 5-hydroxymethylfurfural is 8% or less.
- a new cellulose or hemicellulose hydrolysis catalyst capable of suppressing a decrease in activity due to repeated use. Furthermore, according to the present invention, it is possible to provide a new catalyst for hydrolysis of cellulose or hemicellulose, which does not require the use of a large amount of sulfuric acid for catalyst preparation and does not allow the sulfuric acid to elute from the catalyst.
- cellulose can be hydrolyzed to obtain a sugar-containing liquid containing glucose as a main component, and hemicellulose can be hydrolyzed to provide a sugar containing sugar as a main component. A containing liquid can be obtained.
- the time change of the temperature in the reaction container in an Example is shown.
- the XRD pattern (bottom: before use, top: after use in the reaction) of the Ru / ⁇ -Al 2 O 3 catalyst used in the examples is shown.
- the SAXS pattern of CMK-3 used in the example is shown.
- the measurement result of the transmission FT-IR spectrum of each carbon material used in the Example and activated carbon is shown.
- the measurement result of the diffuse reflection FT-IR spectrum of each carbon material and activated carbon used in the examples is shown.
- An example is shown in which a baseline is provided in the diffuse reflection FT-IR spectrum of CMK-3 in FIG. 5 to measure the absorption intensity PhOH of the phenolic hydroxyl group and the absorption intensity C of the aromatic ring. It is a TEM image of Ru / CMK-3 used in the example.
- the first aspect of the present invention relates to a cellulose or hemicellulose hydrolysis catalyst in which a transition metal of group 8 to 11 is supported on a porous carbon material.
- the porous carbon material has a specific surface area of 800 m 2 / g or more and 2500 m 2 / g or less and a phenolic hydroxyl group amount of 100 mmol / kg or more and 700 mmol / kg or less.
- the specific surface area in this specification means a BET specific surface area.
- porous carbon material having a specific surface area of 800 m 2 / g or more and 2500 m 2 / g or less and a phenolic hydroxyl group amount of 100 mmol / kg or more and 700 mmol / kg or less for example, mesoporous silica is used as a template, and mesoporous is used. Mention may be made of a porous carbon material having a shape in which pores of mesoporous silica are filled with carbon, which is prepared by filling the pores of silica with carbon and then removing the mesoporous silica as a template.
- the porous carbon material has a specific surface area of 800 m 2 / g or more and 2500 m 2 / g or less, and a bending vibration of a phenolic hydroxyl group at 1200 cm ⁇ 1 ⁇ 50 cm ⁇ 1 of the FT-IR transmission spectrum.
- This red porous carbon material having infrared absorption is more specifically drawn from a minimum of absorbance between 1700 cm -1 from 1550 cm -1 in the FT-IR transmission spectrum of carbon until the absorbance 1000 cm -1 is referred to as baseline, the ratio of the absorbance at 1240 cm -1 derived from a phenolic hydroxyl group to the absorbance of 1530 cm -1 derived from an aromatic ring (a PhOH / a C) can be those wherein at least 0.2. More preferably, the porous carbon material is a porous carbon material having a shape in which pores of the mesoporous silica are filled with carbon, and an absorbance ratio (A PhOH / A C ) is 0.2 or more. It is.
- the second aspect of the present invention is a cellulose comprising a porous carbon material having a specific surface area of 800 m 2 / g or more and 2500 m 2 / g or less and having a phenolic hydroxyl group content of 100 mmol / kg or more and 700 mmol / kg or less. Or it relates to a catalyst for hydrolysis of hemicellulose.
- the second aspect of the present invention is a cellulose or hemicellulose hydrolysis catalyst made of only the porous carbon material, on which no transition metal is supported.
- the porous carbon material can be, for example, a porous carbon material having a shape in which mesoporous silica is used as a template and pores of the mesoporous silica are filled with carbon.
- the porous carbon material 1615 cm to the straight line connecting the values of KM function of 1540 cm -1 and 1750 cm -1 in the diffusion reflection FT-IR spectrum of the KM (Kubelka-Munk) after the function conversion carbon baseline the ratio of the absorption intensity based a straight line connecting the values of KM function 1190Cm -1 and 1270 cm -1 for absorption intensity based on the aromatic ring of -1 to the phenolic hydroxyl group of 1240 cm -1 to baseline (PhOH / C) is It can also be a porous carbon material of 0.2 or more. More preferably, the porous carbon material is a porous carbon material having a shape in which pores of the mesoporous silica are filled with carbon, and the absorption intensity
- the present inventors searched for a catalyst carrier that is stable in hot water, which is a hydrolysis condition of cellulose or hemicellulose, and that can promote hydrolysis of cellulose or hemicellulose. As a result, a catalyst having a metal supported on the porous carbon material was found (first embodiment).
- the present inventors have variously aimed to provide a new catalyst for hydrolysis of cellulose or hemicellulose, which does not require the use of a large amount of sulfuric acid for the preparation of the catalyst and does not allow the sulfuric acid to elute from the catalyst. Study was carried out. As a result, it has been found that the porous carbon material functions as a catalyst for hydrolysis of cellulose or hemicellulose even in a state where no metal is supported (second embodiment).
- porous carbon material is porous as described above, using mesoporous silica as a template, filling the pores of mesoporous silica with carbon, and then removing the template of mesoporous silica. It is a carbon material.
- the mesoporous silica used as the template is preferably one having a specific surface area of, for example, 300 m 2 / g or more from the viewpoint of obtaining a porous carbon material.
- Such a porous carbon material includes, for example, CMK (Non-Patent Document 4).
- CMK is an ordered mesoporous carbon that is synthesized by transferring the structure of ordered mesoporous silica and is highly oxygenated (one oxygen atom per 12-16 carbon atoms).
- the structure of CMK can be controlled by changing the structure of silica as a template.
- CMK-1 with different spatial structure uses MCM-48 as a template
- CMK-3 uses SBA-15 as a template. Can be synthesized.
- Filling the pores of the mesoporous silica with carbon can be performed, for example, by using a saccharide compound and filling the saccharide compound into the pores of the mesoporous silica and then heating the carbon compound to carbonize the saccharide compound.
- the silica of the template can be removed by stirring in hydrofluoric acid or a basic aqueous solution.
- the method described in Non-Patent Document 4 can be referred to.
- the porous carbon material thus obtained is sometimes called mesoporous carbon, and examples thereof are summarized in Table 1 below.
- porous carbon material in addition to a porous carbon material produced using mesoporous silica as a template, a porous carbon material obtained by heat treating coke, phenol resin, or coconut shell and activating with alkali or water vapor is used. You can also A method for producing a porous carbon material having a predetermined specific surface area and a phenolic hydroxyl group amount by activation with an alkali or water vapor will be specifically described below. For example, when coke is used among the above raw materials, the coke is carbonized by heating at 400 to 700 ° C. for 1 to 20 hours, preferably 8 to 12 hours in a reducing atmosphere. The first heat treatment at 400 to 600 ° C. and the second heat treatment at 600 to 700 ° C.
- the heating temperature of the first heat treatment is less than 400 ° C.
- the thermal decomposition reaction is insufficient and carbonization is difficult to proceed.
- the heat treatment temperature exceeds 600 ° C., it becomes the same as the heating temperature of the second heat treatment, making it difficult to obtain a stepwise heating effect.
- the heating temperature of the second heat treatment is less than 600 ° C., it becomes the same as the heating temperature of the first heat treatment, and the heating effect by the second heat treatment is difficult to obtain.
- the heat treatment temperature exceeds 700 ° C., activation of the next step becomes difficult.
- the rate of temperature rise is preferably 3 to 10 ° C./hr, more preferably 4 to 6 ° C./hr.
- the holding time at the maximum temperature is preferably 5 to 20 hours, more preferably 8 to 12 hours.
- the rate of temperature rise is preferably 10 to 100 ° C./hr, more preferably 40 to 80 ° C./hr.
- the holding time at the maximum temperature is preferably 1 to 20 hours, more preferably 1 to 12 hours.
- a hydroxide is preferable. Specifically, sodium hydroxide, potassium hydroxide, cesium hydroxide and the like are preferable.
- the maximum temperature during the activation treatment is usually in the range of 600 ° C to 800 ° C, preferably in the range of 700 ° C to 760 ° C. If the maximum temperature during the activation process is too high, the amount of remaining metal increases, which tends to adversely affect the catalyst activity. On the other hand, if the maximum temperature during the activation treatment is too low, the alkali activation reaction does not proceed, so that it becomes difficult to obtain a carbon material having a desired surface functional group.
- the holding time at the maximum temperature during the activation process is preferably within 30 minutes. If the holding time at the maximum temperature is too long, it becomes difficult to obtain a carbon material having a desired surface functional group. After holding at the maximum temperature as described above, cool.
- the cooling rate when cooling from the maximum temperature during activation to 590 ° C. is preferably 60 ° C./hr or more. If the temperature lowering rate is too slow, it becomes difficult to obtain a carbon material having a desired surface functional group.
- the phenolic hydroxyl group adheres to the surface of the porous carbon material, or the phenolic hydroxyl group present in the raw material remains, whereby the amount of phenolic hydroxyl group can be set within a predetermined range. Deviating from the temperature and time ranges of the heat treatment conditions by chemical activation is not preferable because it is difficult to control the surface functional group amount in the porous carbon material to the desired range as described above.
- porous carbon materials those having a specific surface area of 800 m 2 / g or more can be used in the present invention. From the viewpoint of providing a highly active catalyst, it is preferably 1000 m 2 / g or more, more preferably 1100 m 2 / g or more. Although there is no upper limit on the specific surface area from the viewpoint of catalytic activity, it is, for example, 2500 m 2 / g from the viewpoint that it can be produced economically, and anything exceeding this is not preferred from an economic viewpoint.
- the porous carbon material that can be used in the present invention has a phenolic hydroxyl group content of 100 mmol / kg or more and 700 mmol / kg or less when the surface functional groups are quantified by titration.
- the amount of phenolic hydroxyl group is less than 100 mmol / kg, sufficient catalytic activity cannot be obtained, and when the amount of phenolic hydroxyl group exceeds 700 mmol / kg, it cannot be economically produced.
- the lower limit of the phenolic hydroxyl group amount is preferably 120 mmol / kg or more, more preferably 150 mmol / kg or more, and the upper limit of the phenolic hydroxyl group amount is preferably 650 mmol / kg or less, more preferably 600 mmol / kg or less.
- the porous carbon material preferably has an infrared absorption near 1200 cm ⁇ 1 .
- FIG. 4 shows an example of a transmission FT-IR spectrum of the porous carbon material prepared in the examples (measured with a disk diluted to 0.1% by mass with KBr and formed into a circle having a diameter of 1 cm).
- the infrared absorption at 1200 cm ⁇ 1 ⁇ 50 cm ⁇ 1 is an absorption attributed to the bending vibration of the phenolic hydroxyl group and the CO stretching vibration.
- the porous carbon material used in the present invention has much stronger infrared absorption near 1200 cm ⁇ 1 than general activated carbon.
- the difference between the lines is taken as absorption by the phenolic hydroxyl group.
- the absorbance of the phenolic hydroxyl group is CMK-3: 0.060, C-MCM41: 0.026, SX Ultra: 0.009, C-Q10: 0.013.
- the absorbance derived from the 1530 cm -1 aromatic ring calculated using the same baseline was CMK-3: 0.049, C-MCM41: 0.057, SX Ultra: 0.062, C-Q10: 0.053.
- Absorption derived from an aromatic ring does not change greatly in any carbon material, and can be used as a reference value. Therefore, when the value obtained by dividing the absorbance of the phenolic hydroxyl group by the absorbance of the aromatic ring (A PhOH / A C ) was calculated for each carbon, CMK-3: 1.2, C-MCM41: 0.46, SX Ultra: 0.15, C-Q10 : 0.25.
- the upper limit of the ratio (A PhOH / A C ) is not particularly limited in relation to the catalyst activity, but is, for example, 1.5, preferably 1.4.
- FIG. 5 shows an example of a diffuse reflection FT-IR spectrum of the porous carbon material prepared in the example (measured with a disk diluted to 0.1% by mass with KBr and formed into a circle having a diameter of 1 cm). The measurement is performed by filling a ceramic cup without diluting the carbon material, irradiating the sample with diffused infrared light (interferogram), diffusing and reflecting it, condensing it using an integrating sphere, and collecting the MCT detector. It was guided to.
- FIG. 5 shows the measured spectrum after KM (Kubelka-Munk) function conversion. The absolute value of the KM function has little meaning, and the intensity cannot be directly compared between spectra, so the absorption intensity was normalized by the following method.
- the absorption intensity by the phenolic hydroxyl group was defined as follows. The straight line connecting the values of KM function of 1190cm -1 and 1270 cm -1 and a baseline, the absorption intensity of the phenolic hydroxyl groups of the difference between the value and the baseline KM function in 1240 cm -1. Moreover, the absorption intensity by an aromatic ring was defined as follows. The straight line connecting the KM function values of 1540 cm -1 and 1750 cm -1 is taken as the baseline, and the difference between the KM function value and the baseline at 1615 cm -1 is taken as the absorption intensity of the aromatic ring. As described above, the absorption intensity of the aromatic ring per unit carbon amount is almost constant regardless of the carbon material.
- the density of the phenolic hydroxyl group of the carbon material can be expected to be proportional to a value (defined as a PhOH / C ratio) obtained by dividing the absorption intensity of the phenolic hydroxyl group by the absorption intensity of the aromatic ring. That is, the value normalized as the PhOH / C ratio reflects the density of the phenolic hydroxyl group of each carbon material and can be compared.
- a PhOH / C ratio reflects the density of the phenolic hydroxyl group of each carbon material and can be compared.
- any carbon material exhibiting good catalytic activity preferably has a PhOH / C ratio of 0.2 or more, more preferably 0.3 or more, still more preferably 0.4 or more, and most preferably 0.5 or more.
- the upper limit of the PhOH / C ratio is not particularly limited in relation to the catalyst activity, but is, for example, 1 and preferably 0.9.
- the porous carbon material used in the present invention has a phenolic hydroxyl group on the surface, and the amount thereof is much larger than that of general activated carbon.
- hydroxyl groups are known to have a high affinity with cellulose molecules
- porous carbon materials having a large number of phenolic hydroxyl groups exhibit a high affinity with cellulose and have new acid sites. It is inferred that it is expressed. Therefore, in the 2nd aspect of this invention, it is thought that a high catalytic activity is shown in a hydrolysis of a cellulose, without performing the process using a sulfuric acid.
- the porous carbon material that can be used in the present invention preferably has an average secondary particle size (d50 (volume basis)) (50% particle size) of 1 ⁇ m or more and 30 ⁇ m or less. More preferably, they are 2 micrometers or more and 30 micrometers or less, More preferably, they are 4 micrometers or more and 15 micrometers or less. If a porous carbon material having an average secondary particle diameter of 30 ⁇ m or less is used, sufficient catalytic activity can be obtained, and if the average secondary particle diameter is 1 ⁇ m or more, it can be produced economically. Is also preferable.
- the transition metal supported on the porous carbon material is selected from the group consisting of ruthenium, platinum, rhodium, palladium, iridium, nickel, cobalt, iron, copper, silver and gold, for example. At least one kind. These transition metals may be used alone or in combination of two or more.
- the transition metal is preferably selected from platinum group metals such as ruthenium, platinum, rhodium, palladium and iridium from the viewpoint of high catalytic activity, and from the viewpoint of high cellulose conversion and glucose selectivity, ruthenium, platinum, It is particularly preferred that it is selected from palladium and rhodium.
- the transition metal is supported on the surface of the porous carbon material at a dispersity of 0.01 to 0.95, preferably 0.1 to 0.9, more preferably 0.3 to 0.8, for example. It is appropriate to be. If the degree of dispersion is too low, the reaction rate tends to decrease.
- the degree of dispersion of the transition metal can be adjusted as follows. It can be adjusted by the amount of the transition metal compound used as a raw material and the temperature conditions (temperature increase rate, maximum temperature) for hydrogen reduction.
- the amount of the transition metal supported on the porous carbon material carrier is appropriately determined in consideration of the type of the transition metal and the degree of dispersion. For example, 0.01 to 50% by mass of the catalyst, preferably 0.01 to 30%. It is appropriate that the content is 10% by mass, more preferably 0.01 to 10% by mass.
- a catalyst made of a transition metal-supported porous carbon material can be produced by referring to an ordinary method for producing a metal-supported solid catalyst.
- it can be prepared by the impregnation method as follows.
- the support is vacuum dried at 150 ° C. for 1 hour.
- water is added and dispersed, and an aqueous solution containing a predetermined amount of metal salt is added thereto and stirred for 15 hours.
- the solid obtained by distilling off water under reduced pressure is reduced to 400 ° C. for 2 hours in a hydrogen stream, and the solid obtained as a catalyst is used as a catalyst (lower flowchart).
- the catalyst used in the present invention can be a single metal supported on a single porous carbon material support, or in addition, a single support supported on a plurality of types of metals. You can also. Furthermore, it is also possible to use a material in which the above single metal is supported on a single carrier, or a composite in which two or more types of metals are supported on a single carrier, for example, a mixture. By using a combination of two or more, it may be possible to improve both the cellulose conversion rate and the glucose selectivity, and as a result, a high glucose yield may be obtained.
- the combination of metal and carrier when used in combination considers the type of cellulose used as a raw material, the conditions of the hydrolysis reaction, and the type of the other catalyst (metal and carrier) used in combination. And can be determined as appropriate. The same applies to the case where a single carrier carrying a plurality of types of metals is used as a catalyst.
- the catalyst according to the first aspect of the present invention and the catalyst according to the second aspect of the present invention can be used in a reaction in which cellulose is heated in the presence of water to produce oligosaccharides and glucose. Furthermore, the catalyst according to the first aspect of the present invention and the catalyst according to the second aspect of the present invention can be used in a reaction in which hemicellulose is heated in the presence of water to produce a sugar. Each reaction will be described later.
- the present invention includes a method for producing a sugar-containing liquid mainly composed of glucose using the catalyst of the first aspect of the present invention and the catalyst of the second aspect of the present invention.
- This production method includes hydrolyzing cellulose in the presence of at least one kind of the catalyst of the present invention and water to produce at least oligosaccharide and glucose.
- the reaction of hydrolyzing cellulose to produce glucose is as shown below, but in reality, when cellulose is hydrolyzed, an oligosaccharide is produced, and the oligosaccharide is further hydrolyzed to produce glucose. It is thought to produce.
- a sugar-containing liquid containing glucose as a main component is produced using the catalyst of the first aspect, the catalyst of the second aspect, or both.
- the reaction mechanism is not clear, the catalytic action of the catalyst of the second aspect consisting only of the porous carbon material and the catalytic action of the catalyst of the first aspect of the present invention in which a metal is supported on the porous carbon material.
- the contribution to each reaction is considered to be different within the range of the experimental results shown in the Examples. However, it is considered that the contribution varies depending on the reaction conditions (temperature, time, temperature change).
- the above scheme shows a cellulose hydrolysis reaction using the catalyst of the first embodiment (supported metal catalyst).
- the cellulose hydrolysis reaction using the catalyst of the second aspect is the same.
- tetrasaccharide or higher oligosaccharide, cellotriose, cellobiose, and the like are produced in addition to glucose in the case of using either the catalyst of the first aspect or the catalyst of the second aspect.
- the product glucose further reacts to produce mannose, fructose, levoglucosan, 5-hydroxymethylfurfural, furfural and the like.
- the sugar-containing liquid obtained in the present invention contains a hydrolyzate of cellulose containing these glucoses and a by-product from the produced glucose, but the main component is glucose.
- the main component refers to a solid content or a liquid (however, a reaction product) containing the largest contained mass.
- the catalyst according to the first aspect and the catalyst according to the second aspect have different degrees of contribution to each reaction (hydrolysis of cellulose, hydrolysis of oligosaccharide, etc.). As a result, the product The composition of can also change.
- the conversion by hydrolysis of cellulose is in the range of 10 to 100%, preferably in the range of 30 to 100%, more preferably in the range of 40 to 100%.
- the glucose selectivity is in the range of 20 to 80%, preferably in the range of 25 to 80%, more preferably in the range of 30 to 80%.
- % Range most preferably in the range of 40-80%.
- the selectivity of 5-hydroxymethylfurfural can be 8% or less, preferably 6% or less, more preferably 5% or less, and most preferably 4% or less.
- 5-hydroxymethylfurfural is known as a substance that inhibits fermentation when saccharified cellulose is used in the fermentation process. Since the production method of the present invention provides a sugar-containing liquid with a low selectivity for 5-hydroxymethylfurfural, the present invention can produce an advantageous sugar-containing liquid with little inhibition when used in the fermentation process, which is extremely useful. It is.
- the hydrolysis of cellulose is usually carried out at a temperature at which the cellulose is heated in a sealed container at normal pressure in the presence of a catalyst and water, and the water vapor partial pressure exceeds 0.1 MPa, for example, at a pressurized state.
- the temperature of the heating to be pressurized is suitably in the range of, for example, 110 to 380 ° C., and the cellulose is rapidly hydrolyzed and the conversion of the product glucose to other sugars is suppressed.
- the temperature is preferably relatively high, for example, 170 to 320 ° C., more preferably 200 to 300 ° C., further preferably 210 to 260 ° C., and most preferably 215 to 250 ° C. Is appropriate.
- the hydrolysis of cellulose in the production method of the present invention is usually carried out in a closed container such as an autoclave, it is in a pressurized state when the reaction system is heated at the above temperature even at normal pressure at the start of the reaction. It becomes. Further, the reaction can be carried out by pressurizing the inside of the sealed container before or during the reaction.
- the pressure to be applied is, for example, 0.1 MPa to 30 MPa, preferably 1 MPa to 20 MPa, more preferably 2 MPa to 10 MPa.
- the reaction solution can be heated and pressurized while being circulated through a reactor filled with a catalyst with a high-pressure pump, or the reaction solution in which the catalyst is dispersed can be reacted with a high-pressure pump. It can also react by heating and pressurizing while circulating in the vessel.
- the catalyst dispersed in the reaction liquid can be recovered after the reaction and reused.
- the amount of water used for hydrolysis is such that at least the total amount of cellulose can be hydrolyzed, and more preferably, with respect to the cellulose, for example, a mass ratio of 1 to 1 in consideration of fluidity and stirring properties of the reaction mixture.
- the range can be 500.
- the amount of the catalyst used can be appropriately determined in consideration of the activity of the catalyst and the reaction conditions (for example, temperature, time, etc.). For example, the mass ratio relative to cellulose is 0.005 to 5. Is appropriate.
- the atmosphere of the hydrolysis can be air, and it is industrially preferable that it is air.
- air may be another gas, for example, oxygen, nitrogen, hydrogen, or a mixture thereof (other than air).
- the heating for the hydrolysis may be completed when the conversion rate by hydrolysis of cellulose is between 10 and 100% and the selectivity of glucose is between 20 and 80%. It is preferable for increasing the rate.
- the heating for hydrolysis is such that the conversion by hydrolysis of cellulose is preferably in the range of 30 to 100%, more preferably in the range of 40 to 100%, still more preferably in the range of 50 to 100%, most preferably. Is in the range of 55-100% and ends when the glucose selectivity is preferably in the range of 25-80%, more preferably in the range of 30-80%, most preferably in the range of 40-80%. Is appropriate.
- the form of the hydrolysis reaction may be either a batch type or a continuous type. Furthermore, the reaction is preferably performed while stirring the reaction mixture.
- a sugar-containing liquid containing glucose as a main component and having a small 5-hydroxymethylfurfural content can be produced by a hydrolysis reaction at a relatively high temperature for a relatively short time.
- the reaction solution After completion of the heating, it is preferable to cool the reaction solution from the viewpoint of suppressing the conversion of glucose to other sugars and increasing the glucose yield. Cooling of the reaction solution is preferably performed under the condition that the glucose selectivity is maintained between 20 and 80% from the viewpoint of increasing the glucose yield, more preferably in the range of 25 to 80%, and more preferably. It is in the range of 30 to 80%, most preferably in the range of 40 to 80%.
- the reaction solution is preferably cooled as quickly as possible to a temperature at which the conversion of glucose into other sugars does not occur, from the viewpoint of increasing the glucose yield, for example, in the range of 1 to 200 ° C./min.
- the rate is preferably in the range of 10 to 150 ° C./min.
- the temperature at which the conversion of glucose into other sugars does not occur is, for example, 150 ° C., preferably 110 ° C. That is, the reaction solution is suitably cooled to a temperature of 150 ° C. in the range of 1 to 200 ° C./min, preferably in the range of 10 to 150 ° C./min. It is more appropriate to carry out in the range of ° C / min, preferably in the range of 10 to 150 ° C / min.
- the selectivity of 5-hydroxymethylfurfural can be 8% or less, preferably 6% or less, more preferably 5% or less, and most preferably 4% or less. .
- cellulose used as a raw material
- commercially available powdered cellulose can be used as it is.
- Cellulose is vegetable, for example, water-insoluble cellulose obtained by alkali treatment of chemical pulp (holocellulose) obtained by bleaching defatted wood flour by chlorination to remove hemicellulose.
- cellulose exhibits crystallinity when two or more cellulose molecules are bonded by hydrogen bonding.
- cellulose having such crystallinity can be used as a raw material.
- cellulose that has been subjected to a treatment for lowering crystallinity of such crystalline cellulose and having reduced crystallinity can also be used.
- Cellulose with reduced crystallinity can be partially reduced in crystallinity or completely or almost completely lost.
- the type of the crystallinity reduction treatment is not particularly limited, but is preferably a crystallinity reduction treatment that can break the hydrogen bond and at least partially generate a single-chain cellulose molecule.
- a method such as a ball mill method that physically breaks hydrogen bonds between cellulose molecules to obtain single-chain cellulose molecules (H. Zhao, J. H. Kwak, J. A. Franz, J. M. White, J. E. Holladay, Energy & Fuels, 20, 807 (2006), all of which are specifically incorporated herein by reference), phosphoric acid treatment, etc.
- the method of chemically breaking hydrogen bonds between cellulose molecules to obtain single-chain cellulose Y. -H. P. Zhang, J. Cui, L. R. Lynd, L. Kuang, Biomacromolecules, 7 No. 644 (2006), the entire description of which is specifically incorporated herein by reference).
- crystallinity lowering treatment of cellulose as a raw material for example, pressurized hydrothermal treatment (Nobuyuki Hayashi, Shuji Fujita, Goro Irie, Go Sakamoto, Masao Shibata, J. Jpn. Inst. Energy, 83, 805 ( 2004), M. Sasaki, Z. Fang, Y. Fukushima, T. Adschiri, K. Arai, Ind. Eng. Chem. Res., 39, 2883 (2000), all of which are specifically disclosed herein. Which is incorporated by reference).
- the reaction mixture is cooled and then subjected to solid-liquid separation, and a sugar-containing aqueous solution mainly composed of glucose is recovered as a liquid phase, and a solid containing at least a catalyst and unreacted cellulose is separated as a solid phase.
- the solid-liquid separation method is not particularly limited, and can be appropriately determined from conventional methods in consideration of the shape and form of the catalyst, the amount of unreacted cellulose, and the like. For example, a filtration method, a centrifugal separation method, a sedimentation method and the like can be used.
- the solid containing the catalyst and unreacted cellulose can be directly used for the next reaction.
- the catalyst does not need to be activated when reused. However, it can also be reused after being activated, for example, using normal metal-supported solid catalyst activation.
- the catalyst In the activation treatment of the catalyst, the catalyst is washed with water and dried, and then heated at 200 to 500 ° C. for 1 to 5 hours in a hydrogen stream to return the supported metal surface to a reduced state and on the metal and support. Residual organic matter can be removed by thermal decomposition and used.
- the present invention includes a method for producing a sugar-containing liquid containing sugar as a main component using the catalyst of the present invention. This production method includes hydrolyzing hemicellulose in the presence of at least one catalyst of the present invention and water to produce at least a sugar.
- Hemicellulose is a polysaccharide composed of glucose, galactose, xylose, mannose, arabinose, fructose and the like.
- Monosaccharides and oligosaccharides can be synthesized by hydrolyzing hemicellulose using the catalyst of the present invention.
- Examples of the sugar obtained by the method of the present invention include glucose, mannose, arabinose, xylose, galactose, fructose and the like.
- Hemicellulose hydrolysis can be carried out in substantially the same manner as the above cellulose hydrolysis.
- hemicellulose is generally easier to hydrolyze than cellulose, and the reaction temperature is suitably in the range of 60 to 300 ° C., for example.
- the temperature is appropriate to set the temperature in the range of 80 to 260 ° C, more preferably 100 to 250 ° C, and still more preferably 120 to 240 ° C.
- the carrier was dispersed in water, an aqueous ruthenium chloride (RuCl 3 .3H 2 O) solution as a supported metal precursor was added, and the mixture was stirred for 16 hours. After distilling off water under reduced pressure, when a carbon support was used, the catalyst precursor was reduced with hydrogen at 400 ° C. for 2 hours. When an inorganic oxide support was used, a supported metal catalyst was prepared by carrying out oxygen calcination of the catalyst precursor at 400 ° C. for 2 hours and then performing hydrogen reduction in the same manner. The amount of metal supported is 2% by mass.
- RuCl 3 .3H 2 O aqueous ruthenium chloride
- cellulose treated as follows was used. In a ceramic pot mill, 1 kg of zirconia balls having a diameter of 1 cm and 10 g of cellulose (Merck, Avicel) were placed. It was set on a desktop pot mill rotary table and ball milled at 60 rpm for 96 hours. This treatment decreased the crystallinity of cellulose from 65% to about 10%. Amorphous cellulose exhibits higher reactivity than crystalline cellulose and can be efficiently hydrolyzed.
- Soluble component yield (%) (Substance amount of carbon of the target component) / (Substance amount of carbon of added cellulose) ⁇ 100
- Cellulose conversion (%) [1- (mass of recovered cellulose) / (mass of added cellulose)] ⁇ 100
- Glucose selectivity (%) (glucose yield) / (cellulose conversion) ⁇ 100
- Ru / activated carbon and Ru / C 60 have low activity, and when no catalyst is used (Run 1 (Comparative Example 1)), the cellulose conversion rate is 30%, Glucose yield was 4% and glucose selectivity was 15%).
- CMK-1 and CMK-3 that do not support Ru showed high activity in cellulose degradation, but increased the selectivity of oligomers (cellooligosaccharides) (detailed in (5)).
- Ru / ⁇ -Al 2 O 3 is slightly lower than Ru / CMK-3. It was active, and the other catalysts had low activity (Run 15-21 (Comparative Example 5-11)).
- mesoporous carbon and mesoporous carbon-supported Ru show high activity as a catalyst for the hydrolysis reaction of cellulose, and are excellent catalysts that do not deteriorate in activity even under pressurized hot water.
- CMK-3 had low activity (glucose yield 7%, Run 39 (Reference Example 2)), while Ru / CMK-3 had high activity (glucose yield 25 %, Run 40 (Reference Example 3)). It was revealed that Ru / CMK-3 catalyst has high catalytic activity to hydrolyze oligomers to produce glucose. Similar results were obtained when CMK-1 was used instead of CMK-3.
- C-MCM41 a carbon support was synthesized by the same method as CMK-3 using MCM-41 as a template.
- the carbon synthesized by this method is hereinafter referred to as C-MCM41.
- C-Q10 Q-10 (Fuji Silysia Cariact) as a casting_mold
- template The carbon synthesized by this method is hereinafter referred to as C-Q10.
- C-MCM41 had a glucose yield of 10% (Run 26 (Example 15)
- C-Q10 had a glucose yield of 8% (Run 27 ( Example 16)).
- Ru / C-MCM41 and Ru / C-Q10 were synthesized in the same manner as Ru / CMK-3. Ru / C-MCM41 had a glucose yield of 14% and Ru / C-Q10 was 18% (Run 10 and 11 (Examples 9 and 10)).
- CMK-3 (0.34% / m 2 )> C-MCM41 (0.23% / m 2 )> C-Q10 (0.20% / m 2 ) and CMK-3 was found to have a high catalytic activity per unit area.
- the absorbance derived from the 1530 cm -1 aromatic ring calculated using the same baseline was CMK-3: 0.049, C-MCM41: 0.057, SX Ultra: 0.062, C-Q10: 0.053.
- the absorption derived from the aromatic ring does not change greatly with any carbon, and can be used as a reference value. Therefore, when the value obtained by dividing the absorbance of the phenolic hydroxyl group by the absorbance of the aromatic ring (A PhOH / A C ) was calculated for each carbon material, CMK-3: 1.2, C-MCM41: 0.46, SX Ultra: 0.15, C- Q10: It was 0.25. The order of this value is consistent with the order of glucose producing activity of each carbon.
- CMK-3 Since CMK-3 is highly oxygenated functionalized and easily adsorbs and hydrolyzes cellulose, the activity per unit surface area is considered to be high.
- the absorption at 1500 cm -1 was attributed to the stretching vibration of the aromatic ring, suggesting that any carbon has an aromatic ring.
- the diffuse reflection FT-IR spectrum of each carbon material was measured (Fig. 5).
- the measurement was performed as follows.
- the ceramic cup was filled with carbon without dilution.
- the modulated infrared light (interferogram) was irradiated and diffusely reflected on the carbon sample, collected using an integrating sphere, and guided to the MCT detector.
- FIG. 5 shows the spectrum after the KM (Kubelka-Munk) function conversion of the measurement result.
- the absolute value of the KM function does not make much sense, and it is not possible to directly compare intensities between spectra. Therefore, the absorption strength was standardized by the following method. First, the absorption intensity by the phenolic hydroxyl group was defined as follows.
- the density of the phenolic hydroxyl group on carbon can be expected to be proportional to the value obtained by dividing the absorption intensity of the phenolic hydroxyl group by the absorption intensity of the aromatic ring (defined as the PhOH / C ratio). That is, the value normalized as the PhOH / C ratio reflects the density of the phenolic hydroxyl group of each carbon and can be compared.
- CMK-3 has a high specific surface area, has oxygen-containing functional groups at a high density, easily adsorbs cellulose, and absorbs cellulose. Hydrolyzes into oligomers. The oligomer enters the mesopores, and Ru supported in a highly dispersed state hydrolyzes the oligomer into glucose. Due to the concerted action of CMK-3 and Ru described above, it is considered that the Ru / CMK-3 catalyst exhibits high glucose production activity. However, not only the Ru / CMK-3 catalyst but also the CMK-3 catalyst and other porous carbon materials and metal-supported porous carbon materials exhibit excellent cellulose hydrolysis performance and glucose production activity.
- the carboxyl group, lactone group and phenolic hydroxyl group are quantified by the following method according to the neutralization titration method.
- NaHCO 3 is added to the porous carbon material, followed by filtration.
- the filtrate is back titrated with hydrochloric acid to quantify the carboxyl group.
- the same back titration is performed using Na 2 CO 3 instead of NaHCO 3 .
- a carboxyl group and a lactone group are quantified.
- the same back titration is then performed using NaOH.
- a carboxyl group, a lactone group, and a phenolic hydroxyl group are quantified. From these quantitative analyses, the amounts of carboxyl group, lactone group, and phenolic hydroxyl group are calculated.
- 0.1N (normal) -NaHCO 3 aqueous solution 50 mL was added and shaken for 48 hours. This was filtered, and 10 mL of the filtrate was collected, placed in 50 mL of water, and back-titrationed with 0.1 N (normal) -HCl aqueous solution. From the titration amount, the amount of carboxyl groups was determined. Similarly, the amount of carboxyl group + lactone group was determined by using 0.1 N (normal) -Na 2 CO 3 aqueous solution (50 mL) for the shaking solution. Further, the amount of carboxyl group + lactone group + phenolic hydroxyl group was determined in the same manner by using 0.1 N (normal) -NaOH aqueous solution (50 mL) for the shaking solution.
- the present invention is useful in the technical field of producing sugar-containing liquids such as glucose from cellulose resources.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Catalysts (AREA)
- Nanotechnology (AREA)
Abstract
Description
[1]
800m2/g以上2500m2/g以下の比表面積を有し、かつ100mmol/kg以上700mmol/kg以下であるフェノール性水酸基量を有する多孔性炭素材料に8~11族の遷移金属が担持されたセルロースまたはヘミセルロース加水分解用触媒。
[2]
前記多孔性炭素材料が、メソポーラスシリカを鋳型として前記メソポーラスシリカの細孔に炭素が充填された形状を有する多孔性炭素材料である[1]に記載の触媒。
[3]
多孔性炭素材料が、炭素のFT-IR透過スペクトルにおける1550cm-1から1700cm-1の間の吸光度の最小値から1000cm-1の吸光度まで引いた直線をベースラインとする、芳香環に由来する1530cm-1の吸光度に対するフェノール性水酸基に由来する1240cm-1の吸光度の比(APhOH/AC)が0.2以上である[1]または[2]に記載の触媒。
[4]
多孔性炭素材料の平均二次粒子径(d50(体積基準))が1μm以上30μm以下である[1]~[3]のいずれかに記載の触媒。
[5]
遷移金属が、ルテニウム、白金、ロジウム、パラジウム、イリジウム、ニッケル、コバルト、鉄、銅、銀および金から成る群から選ばれる少なくとも1種である[1]~[4]のいずれかに記載の触媒。
[6]
遷移金属が、ルテニウム、白金、パラジウム及びロジウムから成る群から選ばれる少なくとも1種である[1]~[4]のいずれかに記載の触媒。
[7]
800m2/g以上2500m2/g以下の比表面積を有し、かつ100mmol/kg以上700mmol/kg以下であるフェノール性水酸基量を有する多孔性炭素材料からなるセルロースまたはヘミセルロース加水分解用触媒。
[8]
前記多孔性炭素材料が、メソポーラスシリカを鋳型として前記メソポーラスシリカの細孔に炭素が充填された形状を有する、[7]に記載の触媒。
[9]
前記多孔性炭素材料が、炭素のK-M(Kubelka-Munk)関数変換後の拡散反射FT-IRスペクトルにおける1540cm-1と1750cm-1のK-M関数の値を結んだ直線をベースラインとする1615cm-1の芳香環に基づく吸収強度に対する、1190cm-1と1270cm-1のK-M関数の値を結んだ直線をベースラインとする1240cm-1のフェノール性水酸基に基づく吸収強度の比(PhOH/C)が0.2以上である[7]または[8]に記載の触媒。
[10]
多孔性炭素材料の平均二次粒子径(d50(体積基準))が1μm以上30μm以下である[7]~[9]のいずれかに記載の触媒。
[11]
セルロースを水の存在下で加熱して、オリゴ糖およびグルコースを生成する[1]~[10]のいずれかに記載の触媒。
[12]
ヘミセルロースを水の存在下で加熱して、糖を生成する[1]~[10]のいずれかに記載の触媒。
[13]
[1]~[10]のいずれかに記載の触媒の少なくとも1種および水の存在下に、セルロースを加水分解して、少なくともオリゴ糖およびグルコースを生成することを含む、グルコースを主成分とする糖含有液の製造方法。
[14]
セルロースの加水分解を、加圧状態となる温度での加熱下で実施する、[13]に記載の製造方法。
[15]
前記加熱の温度は110~380℃の範囲である[14]に記載の製造方法。
[16]
前記加熱は、セルロースの加水分解による転化率が10~100%の間であって、グルコースの選択率が20~80%の間にある時点で終了する[14]または[15]に記載の製造方法。
[17]
前記加熱は、セルロースの加水分解による転化率が10~100%の間であって、グルコースの選択率が20~80%の間であり、かつ5-ヒドロキシメチルフルフラールの選択率が8%以下である時点で終了する[14]または[15]に記載の製造方法。
[18]
前記加熱の終了後は、反応液を冷却する[14]~[17]のいずれかに記載の製造方法。
[19]
前記反応液の冷却は、グルコースの選択率が20~80%の間を維持する条件で行う[18]に記載の製造方法。
[20]
前記反応液の冷却は、110℃の温度まで1~200℃/分の速度で行う[18]または[19]に記載の製造方法。
[21]
セルロースが結晶性を有する、または結晶性を低下させたセルロースである[13]~[20]のいずれかに記載の製造方法。
[22]
加水分解後、反応混合物を固液分離に供し、グルコースを主成分とする糖含有液と少なくとも触媒および未反応セルロースを含む固体とを分離する[13]~[21]のいずれかに記載の製造方法。
[23]
[1]~[10]のいずれかに記載の触媒の少なくとも1種および水の存在下に、ヘミセルロースを加水分解して、少なくともオリゴ糖または単糖を生成することを含む、糖を主成分とする糖含有液の製造方法。
本発明の第1の態様は、多孔性炭素材料に8~11族の遷移金属が担持されたセルロースまたはヘミセルロース加水分解用触媒に関する。この触媒において多孔性炭素材料は、800m2/g以上2500m2/g以下の比表面積を有し、かつ100mmol/kg以上700mmol/kg以下であるフェノール性水酸基量を有するものである。尚、本明細書における比表面積は、BET比表面積を意味する。800m2/g以上2500m2/g以下の比表面積を有し、かつ100mmol/kg以上700mmol/kg以下であるフェノール性水酸基量を有する多孔性炭素材料としては、例えば、メソポーラスシリカを鋳型として、メソポーラスシリカの細孔に炭素を充填し、その後、鋳型であるメソポーラスシリカを除去することで作製される、メソポーラスシリカの細孔に炭素が充填された形状を有する多孔性炭素材料を挙げることかできる。また、上記多孔性炭素材料は、800m2/g以上2500m2/g以下の比表面積を有し、かつFT-IR透過スペクトルの1200cm-1±50 cm-1にフェノール性の水酸基の変角振動とC-O伸縮振動に帰属される赤外吸収を有する、表面官能基としてフェノール性水酸基を有する多孔性炭素材料であることもできる。この赤外吸収を有する多孔性炭素材料は、より具体的には、炭素のFT-IR透過スペクトルにおける1550cm-1から1700cm-1の間の吸光度の最小値から1000cm-1の吸光度まで引いた直線をベースラインとする、芳香環に由来する1530cm-1の吸光度に対するフェノール性水酸基に由来する1240cm-1の吸光度の比(APhOH/AC)が0.2以上であるものであることができる。より好ましくは、前記多孔性炭素材料は、前記メソポーラスシリカの細孔に炭素が充填された形状を有する多孔性炭素材料であって、かつ吸光度比(APhOH/AC)が0.2以上であるものである。
例えば、上記原料のうちコークスを用いる場合、コークスを還元雰囲気中、400~700℃で1~20時間、好ましくは8~12時間加熱することにより炭化する。好ましくは400~600℃の第一熱処理及び600~700℃の第二熱処理を行うことが好ましい。第一熱処理の加熱温度が400℃未満では熱分解反応が不十分であり炭素化が進行し難くなる。また、熱処理温度が600℃を超えると第二熱処理の加熱温度と同じとなり、段階的な加熱効果が得られ難くなる。第二熱処理の加熱温度が600℃未満では第一熱処理の加熱温度と同じとなり第二熱処理による加熱効果が得られ難くなる。また、熱処理温度が700℃を超えると次工程の賦活が難しくなる。第一熱処理では、昇温速度は3~10℃/hrが好ましく、4~6℃/hrがより好ましい。最高温度での保持時間は5~20時間が好ましく、8~12時間がより好ましい。第二熱処理では、昇温速度は10~100℃/hrが好ましく、40~80℃/hrがより好ましい。最高温度での保持時間は1~20時間が好ましく、1~12時間がより好ましい。
その後、アルカリ賦活を行う場合は、反応に使用するアルカリ金属化合物は、特に限定されるものではないが、水酸化物が好ましい。具体的には、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等が好ましい。賦活処理時の最高温度は、通常、600℃~800℃の範囲であり、好ましくは700℃~760℃の範囲である。
賦活処理時の最高温度が高くなりすぎると、残存する金属量が多くなり、触媒活性に悪影響を及ぼしやすい。一方賦活処理時の最高温度が低すぎると、アルカリ賦活反応が進行しないため、所望の表面官能基を持つ炭素材料が得られにくくなる。
賦活処理時の最高温度での保持時間は、30分間以内であることが好ましい。最高温度での保持時間が長くなりすぎると、所望の表面官能基を持つ炭素材料が得られにくくなる。
上記のような最高温度で保持した後、冷却する。賦活処理時の最高温度から590℃までに冷却するときの降温速度を60℃/hr以上にすることが好ましい。降温速度が遅すぎると所望の表面官能基を持つ炭素材料が得られにくくなる。
上記工程により、フェノール性水酸基が多孔性炭素材料表面に付着したり、原料中に存在するフェノール性水酸基が残存することにより、フェノール性水酸基量を所定の範囲とすることができる。
前記薬品賦活による熱処理条件の上記温度、時間の範囲を逸脱すると、多孔性炭素材料中の表面官能基量を前述したような所望の範囲に制御することが困難となるため、好ましくない。
フェノール性水酸基による吸収強度を以下のように定義した。1190cm-1と1270cm-1のK-M関数の値を結んだ直線をベースラインとし、1240cm-1におけるK-M関数の値とベースラインとの差をフェノール性水酸基の吸収強度とする。
また、芳香環による吸収強度を以下のように定義した。1540cm-1と1750cm-1のK-M関数の値を結んだ直線をベースラインとし、1615cm-1におけるK-M関数の値とベースラインとの差を芳香環の吸収強度とする。
単位炭素量当たりの芳香環の吸収強度は炭素材料によらずほぼ一定であることは上述したとおりである。従って、炭素材料のフェノール性水酸基の密度は、フェノール性水酸基の吸収強度を芳香環の吸収強度で除した値(PhOH/C比として定義する)と比例すると期待できる。つまり、PhOH/C比として規格化された値は各炭素材料のフェノール性水酸基の密度を反映し、比較可能である。PhOH/C比を各炭素材料について算出したところ、CMK-3:0.24、SK-261:0.54、MSP-20:0.78、AC(N):0.17であった。活性の高いSK-261およびMSP-20では高密度にフェノール性水酸基を有し、比較的活性なCMK-3、低活性なAC(N)とフェノール性水酸基の密度が低下し、良好な相関が得られた。つまり、良好な触媒活性を示す炭素材料はいずれもPhOH/C比が好ましくは0.2以上であり、より好ましくは0.3以上、さらに好ましくは0.4以上、最も好ましくは0.5以上である。PhOH/C比の上限は、触媒活性との関係では特に制限はないが、例えば、1であり、好ましくは0.9である。
本発明は、本発明の第1の態様の触媒および本発明の第2の態様の触媒を用いるグルコースを主成分とする糖含有液の製造方法を包含する。この製造方法は、上記本発明の触媒の少なくとも1種および水の存在下に、セルロースを加水分解して、少なくともオリゴ糖およびグルコースを生成することを含むものである。セルロースを加水分解してグルコースを生成する反応は、簡単に示すと下記に示すとおりであるが、実際には、セルロースが加水分解されるとオリゴ糖が生じ、さらにオリゴ糖が加水分解してグルコースを生じると考えられる。本発明では、第1の態様の触媒、第2の態様の触媒またはその両方を用いて、グルコースを主成分とする糖含有液を製造するものである。反応機構は明確にはなっていないが、多孔性炭素材料のみからなる第2の態様の触媒による触媒作用と、多孔性炭素材料に金属を担持した本発明の第1の態様の触媒による触媒作用とは、各反応(セルロースの加水分解、オリゴ糖の加水分解等)への寄与が、実施例に示す実験結果の範囲内では、異なるものと考えられる。但し、前記寄与は、反応条件(温度や時間、温度の変化)によって変動すると考えられる。
このような条件で加水分解反応を行うことにより、5-ヒドロキシメチルフルフラールの選択率を8%以下、好ましくは6%以下、より好ましくは5%以下、最も好ましくは4%以下とすることができる。
本発明は、本発明の触媒を用いる糖を主成分とする糖含有液の製造方法を包含する。この製造方法は、上記本発明の触媒の少なくとも1種および水の存在下に、ヘミセルロースを加水分解して、少なくとも糖を生成することを含むものである。
本発明の方法で得られる糖としては、例えば、グルコース、マンノース、アラビノース、キシロース、ガラクトース、フルクトース等を挙げることができる。
(1)触媒および非晶質セルロースの調製
CMK-3の合成法を示す。希硫酸中でSBA-15にショ糖を含浸した後、固体残渣を160℃で炭化させた。本処理を2回繰り返したのち、窒素気流下900℃で熱処理した。得られた固体をフッ酸中で攪拌することによりシリカを除去し、CMK-3とした。
CMK-1は、鋳型にMCM-48を用いて同様の方法により合成した。
担持金属触媒は含浸法により調製した。具体的には、水に担体を分散させ、担持金属前駆体である塩化ルテニウム(RuCl3・3H2O)水溶液を添加して16時間攪拌した。水を減圧留去した後、炭素担体を用いた場合は触媒前駆体を400℃で2時間水素還元した。また無機酸化物担体を用いた場合は、触媒前駆体を400℃で2時間酸素焼成した後、同様に水素還元をすることにより担持金属触媒を調製した。金属の担持量は2質量%である。
セルロース加水分解反応は、高圧反応器(内容積100mL、オーエムラボテック製MMJ-100、ハステロイ製)にセルロース324mg(C6H10O5単位で2.0mmol)、触媒50mg(担持金属10μmol)および水40mLを加え、600rpmで撹拌しながら室温から230℃まで約15分で加熱した。230℃に到達すると同時に加熱を止め、冷却した。典型的な反応容器内の温度の時間変化を図1に示す。
セルロース転化率(%)=[1-(回収セルロースの質量)/(加えたセルロースの質量)]×100
グルコース選択率(%)=(グルコース収率)/(セルロース転化率)×100
各種炭素担体を用いて調製した担持Ru触媒によるセルロース加水分解反応の結果を表2および3に示す。Ru/CMK-3が最も高い加水分解活性を示し、セルロース転化率62%、グルコース収率26%、グルコース選択率42%であった(Run 2(実施例1))。また、Ru/CMK-1はRu/CMK-3と同程度の活性を示した(Run 6(実施例5))、セルロース転化率55%、グルコース収率25%、グルコース選択率45%)。反応温度を高くするとグルコース収率は低下した(Run 7、8(実施例6, 7))。一方、Ru/活性炭やRu/C60(Run 12-14(比較例2-4))は低活性であり、触媒を用いない場合(Run 1(比較例1))、セルロース転化率30%、グルコース収率4%、グルコース選択率15%)と大きくは変わらなかった。Ruを担持しないCMK-1およびCMK-3はセルロース分解に高活性を示すが、オリゴマー(セロオリゴ糖)の選択率が高くなった((5)の項で詳細を述べる)。
b)SUS-316製反応器
c)SUS-316製反応器, 10atm N2加圧
d)5質量% Ru/CMK-3
e)10質量% Ru/CMK-3
f)触媒量:100 mg
g)200℃水素還元
h)300℃水素還元
i)活性炭:Norit SX Ultra
j)活性炭:和光純薬、活性炭素粉末
k)Al2O3:触媒学会参照触媒 JRC-ALO-2
l)TiO2:Deggusa、P-25
m)TiO2:Merck
n)ZrO2:触媒学会参照触媒 JRC-ZRO-2
o)ZrO2:和光純薬
p)HUSY(40):Zeolyst、CBV780、Si/Al = 40
q)MCM-41:Aldrich
r)5-ヒドロキシメチルフルフラール
高い活性を示したRu/CMK-3とRu/γ-Al2O3触媒をセルロース加水分解反応に繰り返し用いて、触媒の耐久性を検討した。
そこでRu/CMK-3に着目し、まずRu担持量の加水分解活性への影響を検討した。Ru担持量を2、5、10wt%と増加させたところ、グルコース収率は26%から32%まで増加した(表2、Run 2-4(実施例1-3))。グルコース選択率も42%から49%まで増加した。また金属を担持していないCMK-3をセルロース分解反応に用いたところ、セルロース転化率57%、グルコース収率19%、グルコース選択率34%と比較的高い加水分解活性を示した(Run 22(実施例11))。反応容器を変えるとグルコース収率は低下したが、N2加圧するとRun22と同等のグルコース収率になった。これは反応容器の加熱性能の違いによるものと考えられる(Run 23、24(実施例12, 13))。グルコースとオリゴマー(2~4量体)を合わせた収率は、Ru担持量にほとんど依存せず約40%であった。以上の結果から、CMK-3がスルホン酸基を有さないにもかかわらず、セルロースを加水分解できることが明らかとなった。また、CMK-3はセルロース加水分解触媒として作用し、担持したRuはオリゴマー加水分解反応を促進していることが示唆された。このことを実証するため、120℃でセロビオースの加水分解反応を実施した。表5に示したように、CMK-3は低活性であった(グルコース収率7%、Run 39(参考例2))が、Ru/CMK-3は高活性であった(グルコース収率25%、Run 40(参考例3))。Ru/CMK-3触媒はオリゴマーを加水分解して、グルコースを生成する触媒活性が高いことが明らかになった。CMK-3の代わりにCMK-1を用いても同様の結果が得られた。
まずフェノール性水酸基による吸収強度を以下のように定義した。1190cm-1と1270cm-1のK-M関数の値を直線で結んだものをベースラインとし、1240cm-1におけるK-M関数の値とベースラインとの差をフェノール性水酸基の吸収強度とした。
次に芳香環による吸収強度を以下のように定義した。1540cm-1と1750cm-1のK-M関数の値を結んだ直線をベースラインとし、1615cm-1におけるK-M関数の値とベースラインとの差を芳香環の吸収強度とした。
図5に示すCMK-3のペクトルに上記ベースラインを設けてフェノール性水酸基の吸収強度PhOHと芳香環の吸収強度Cを計測した例を図6に示す。
単位炭素量当たりの芳香環の吸収強度は炭素によらずほぼ一定であることは上述したとおりである。従って、炭素上のフェノール性水酸基の密度は、フェノール性水酸基の吸収強度を芳香環の吸収強度で除した値(PhOH/C比として定義する)と比例すると期待できる。つまり、PhOH/C比として規格化された値は各炭素のフェノール性水酸基の密度を反映し、比較可能である。PhOH/C比を各炭素について算出したところ、CMK-3:0.24、SK-261:0.54、MSP-20: 0.78、AC(N):0.17であった。活性の高いSK-261およびMSP-20では高密度にフェノール性水酸基を有し、比較的活性なCMK-3、低活性なAC(N)とフェノール性水酸基の密度が低下し、良好な相関を得た。つまり、良好な活性を示す炭素はいずれもPhOH/C比が0.2以上である。
Run 41(実施例23)
(1)触媒の調製
アルカリ賦活多孔質炭素材料の調製法を示す。コークスを700℃で加熱処理し、ジェットミルにて微粉砕した後、水酸化カリウムを添加し700℃で加熱処理し、賦活化した。これを水で洗浄した後、塩酸で中和し、さらに熱水で煮沸した後、乾燥した。これを篩分し、粒径1μm以上30μm以下の粉末(SDK-261、平均粒径13μm)を得た。
前述のA(2)の方法に従い、触媒として担持金属触媒の代わりに(1)で得たアルカリ賦活多孔質炭素材料を用いて反応を行った。結果を表8に示す。表8から明らかなように、(1)で得たアルカリ賦活多孔質炭素材料を用いた場合、高いセルロース転化率とグルコース選択率が得られた。また、5-ヒドロキシメチルフルフラールの選択率は低かった。一方、比較として行った市販の活性炭(Norit社製SX ultra)ではセルロース転化率とグルコース選択率はともに低く、炭素材料を添加しない場合と同等であった。
前述のA(2)の方法に従い、市販のフェノール樹脂原料のアルカリ賦活多孔質炭素材料(MSP-20、関西熱化学(株)製)を用いて反応を行った。結果を表8に示す。表8から明らかなように、市販のフェノール樹脂原料のアルカリ賦活多孔質炭素材料を用いた場合も、比較例に比べて高いセルロース転化率とグルコース選択率が得られた。また、5-ヒドロキシメチルフルフラールの選択率は低かった。
Run 41(実施例23)、Run 42(実施例24)、Run 28(比較例12)およびRun 22(実施例11)で用いた多孔質炭素材料の官能基および平均二次粒径の測定を行った。それぞれの測定方法は以下のとおりである。
中和適定法により、以下の方法でカルボキシル基、ラクトン基およびフェノール性水酸基の定量を行う。まず、多孔質炭素材料にNaHCO3を加えて、ろ過し、ろ液を塩酸で逆滴定してカルボキシル基を定量する。次にNaHCO3に代えてNa2CO3を用いて同様の逆滴定を行う。これによりカルボキシル基とラクトン基が定量される。次にNaOHを用いて同様の逆滴定を行う。これによりカルボキシル基とラクトン基とフェノール性水酸基が定量される。これらの定量分析から、カルボキシル基、ラクトン基、およびフェノール性水酸基の量をそれぞれ算出する。
レーザー回折式粒度分布計(日機装 Microtrac MT3300EXII)を用い、試料を水中に分散させて平均二次粒子径(d50(体積基準))(50%粒径)を測定した。
Claims (23)
- 800m2/g以上2500m2/g以下の比表面積を有し、かつ100mmol/kg以上700mmol/kg以下であるフェノール性水酸基量を有する多孔性炭素材料に8~11族の遷移金属が担持されたセルロースまたはヘミセルロース加水分解用触媒。
- 前記多孔性炭素材料が、メソポーラスシリカを鋳型として前記メソポーラスシリカの細孔に炭素が充填された形状を有する多孔性炭素材料である請求項1に記載の触媒。
- 多孔性炭素材料が、炭素のFT-IR透過スペクトルにおける1550cm-1から1700cm-1の間の吸光度の最小値から1000cm-1の吸光度まで引いた直線をベースラインとする、芳香環に由来する1530cm-1の吸光度に対するフェノール性水酸基に由来する1240cm-1の吸光度の比(APhOH/AC)が0.2以上である請求項1または2に記載の触媒。
- 多孔性炭素材料の平均二次粒子径(d50(体積基準))が1μm以上30μm以下である請求項1~3のいずれかに記載の触媒。
- 遷移金属が、ルテニウム、白金、ロジウム、パラジウム、イリジウム、ニッケル、コバルト、鉄、銅、銀および金から成る群から選ばれる少なくとも1種である請求項1~4のいずれかに記載の触媒。
- 遷移金属が、ルテニウム、白金、パラジウム及びロジウムから成る群から選ばれる少なくとも1種である請求項1~4のいずれかに記載の触媒。
- 800m2/g以上2500m2/g以下の比表面積を有し、かつ100mmol/kg以上700mmol/kg以下であるフェノール性水酸基量を有する多孔性炭素材料からなるセルロースまたはヘミセルロース加水分解用触媒。
- 前記多孔性炭素材料が、メソポーラスシリカを鋳型として前記メソポーラスシリカの細孔に炭素が充填された形状を有する、請求項7に記載の触媒。
- 前記多孔性炭素材料が、炭素のK-M(Kubelka-Munk)関数変換後の拡散反射FT-IRスペクトルにおける1540cm-1と1750cm-1のK-M関数の値を結んだ直線をベースラインとする1615cm-1の芳香環に基づく吸収強度に対する、1190cm-1と1270cm-1のK-M関数の値を結んだ直線をベースラインとする1240cm-1のフェノール性水酸基に基づく吸収強度の比(PhOH/C)が0.2以上である請求項7または8に記載の触媒。
- 多孔性炭素材料の平均二次粒子径(d50(体積基準))が1μm以上30μm以下である請求項7~9のいずれかに記載の触媒。
- セルロースを水の存在下で加熱して、オリゴ糖およびグルコースを生成する請求項1~10のいずれかに記載の触媒。
- ヘミセルロースを水の存在下で加熱して、糖を生成する請求項1~10のいずれかに記載の触媒。
- 請求項1~10のいずれかに記載の触媒の少なくとも1種および水の存在下に、セルロースを加水分解して、少なくともオリゴ糖およびグルコースを生成することを含む、グルコースを主成分とする糖含有液の製造方法。
- セルロースの加水分解を、加圧状態となる温度での加熱下で実施する、請求項13に記載の製造方法。
- 前記加熱の温度は110~380℃の範囲である請求項14に記載の製造方法。
- 前記加熱は、セルロースの加水分解による転化率が10~100%の間であって、グルコースの選択率が20~80%の間にある時点で終了する請求項14または15に記載の製造方法。
- 前記加熱は、セルロースの加水分解による転化率が10~100%の間であって、グルコースの選択率が20~80%の間であり、かつ5-ヒドロキシメチルフルフラールの選択率が8%以下である時点で終了する請求項14または15に記載の製造方法。
- 前記加熱の終了後は、反応液を冷却する請求項14~17のいずれかに記載の製造方法。
- 前記反応液の冷却は、グルコースの選択率が20~80%の間を維持する条件で行う請求項18に記載の製造方法。
- 前記反応液の冷却は、110℃の温度まで1~200℃/分の速度で行う請求項18または19に記載の製造方法。
- セルロースが結晶性を有する、または結晶性を低下させたセルロースである請求項13~20のいずれかに記載の製造方法。
- 加水分解後、反応混合物を固液分離に供し、グルコースを主成分とする糖含有液と少なくとも触媒および未反応セルロースを含む固体とを分離する請求項13~21のいずれかに記載の製造方法。
- 請求項1~10のいずれかに記載の触媒の少なくとも1種および水の存在下に、ヘミセルロースを加水分解して、少なくともオリゴ糖または単糖を生成することを含む、糖を主成分とする糖含有液の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10818631.3A EP2481479B1 (en) | 2009-09-25 | 2010-08-05 | Catalyst for hydrolysis of cellulose or hemicellulose, and process for production of sugar-containing solution using the catalyst |
US13/498,285 US9144785B2 (en) | 2009-09-25 | 2010-08-05 | Catalyst for hydrolyzing cellulose or hemicellulose and method for producing sugar-containing solution employing same |
CN201080043202.4A CN102711994B (zh) | 2009-09-25 | 2010-08-05 | 纤维素或半纤维素的水解用催化剂、以及使用该催化剂的含糖液的制造方法 |
JP2011532940A JP5633878B2 (ja) | 2009-09-25 | 2010-08-05 | セルロースまたはヘミセルロースの加水分解用触媒、並びにこの触媒を用いる糖含有液の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009220087 | 2009-09-25 | ||
JP2009-220087 | 2009-09-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011036955A1 true WO2011036955A1 (ja) | 2011-03-31 |
Family
ID=43795716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/063284 WO2011036955A1 (ja) | 2009-09-25 | 2010-08-05 | セルロースまたはヘミセルロースの加水分解用触媒、並びにこの触媒を用いる糖含有液の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9144785B2 (ja) |
EP (1) | EP2481479B1 (ja) |
JP (1) | JP5633878B2 (ja) |
CN (1) | CN102711994B (ja) |
TW (1) | TWI484039B (ja) |
WO (1) | WO2011036955A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014097799A1 (ja) * | 2012-12-18 | 2014-06-26 | 昭和電工株式会社 | 植物性バイオマスの加水分解方法 |
WO2014097801A1 (ja) * | 2012-12-18 | 2014-06-26 | 昭和電工株式会社 | 植物性バイオマスの加水分解方法 |
US20150191498A1 (en) * | 2012-07-03 | 2015-07-09 | National University Corp Hokkaido University | Method for decomposing plant biomass, and method for producing glucose |
WO2016186167A1 (ja) * | 2015-05-20 | 2016-11-24 | 国立大学法人北海道大学 | バイオマス加水分解触媒の製造方法 |
WO2017104687A1 (ja) * | 2015-12-18 | 2017-06-22 | 昭和電工株式会社 | セロオリゴ糖の製造方法 |
WO2018131711A1 (ja) * | 2017-01-16 | 2018-07-19 | 国立大学法人北海道大学 | 糖類含有セルロース加水分解物の製造方法 |
WO2020003723A1 (ja) * | 2018-06-29 | 2020-01-02 | 日立化成株式会社 | 加水分解用触媒及び水溶性糖類の製造方法 |
CN111569939A (zh) * | 2020-06-04 | 2020-08-25 | 吉林建筑大学 | 一种Pickering型多酸催化剂及其制备方法、一种催化纤维素水解的方法 |
CN111893219A (zh) * | 2020-07-14 | 2020-11-06 | 江苏理工学院 | 一种碳基固体酸催化剂催化多糖水解的方法 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL206678A0 (en) | 2010-06-28 | 2010-12-30 | Hcl Cleantech Ltd | A method for the production of fermentable sugars |
PT106039A (pt) * | 2010-12-09 | 2012-10-26 | Hcl Cleantech Ltd | Processos e sistemas para o processamento de materiais lenhocelulósicos e composições relacionadas |
GB2505148B8 (en) | 2011-04-07 | 2016-12-07 | Virdia Ltd | Lignocellulose conversion processes and products |
WO2013055785A1 (en) | 2011-10-10 | 2013-04-18 | Virdia Ltd | Sugar compositions |
EP2878614A1 (en) | 2012-05-03 | 2015-06-03 | Virdia Ltd. | Methods for treating lignocellulosic materials |
CN103657652B (zh) * | 2013-12-10 | 2016-11-16 | 华北电力大学 | 一种固体酸催化剂Fe3O4@C/MWCNTs及其催化纤维素水解的方法 |
EP3242871B1 (en) | 2015-01-07 | 2019-11-06 | Virdia, Inc. | Methods for extracting and converting hemicellulose sugars |
CN104614329B (zh) * | 2015-01-15 | 2017-05-31 | 淮阴师范学院 | 葡萄糖脱水反应液中5‑羟甲基糠醛含量的快速测定方法 |
WO2016135268A1 (en) * | 2015-02-25 | 2016-09-01 | Universiteit Utrecht Holding B.V. | Method for preparing a chemical compound using a ruthenium metal catalyst on a zirconium oxide support in the presence of a contaminant |
EA036683B1 (ru) | 2015-04-10 | 2020-12-08 | Комет Биорефайнинг Инк. | Способы и составы для обработки целлюлозной биомассы и продукты на ее основе |
EP3303639B1 (en) | 2015-05-27 | 2020-08-05 | Virdia, Inc. | Integrated methods for treating lignocellulosic material |
CN105413726B (zh) * | 2015-12-08 | 2018-03-30 | 上海师范大学 | 镶嵌在碳材料中的碱催化剂及其制备方法和用途 |
CN106938196A (zh) | 2015-12-10 | 2017-07-11 | 财团法人工业技术研究院 | 固体催化剂及应用该催化剂的醣类的制备方法 |
AU2019265921A1 (en) | 2018-05-10 | 2020-11-26 | Comet Biorefining Inc. | Compositions comprising glucose and hemicellulose and their use |
CN112044424B (zh) * | 2020-08-27 | 2023-04-07 | 浙江工业大学 | 一种高岭土-勃姆石复合催化剂的制备及其催化纤维素水解的方法 |
WO2024025871A1 (en) * | 2022-07-26 | 2024-02-01 | Mississippi State University | Methods and systems for integrating-sphere-assisted resonance synchronous (isars) spectroscopy |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006129735A (ja) | 2004-11-02 | 2006-05-25 | Hiroshima Univ | 触媒を用いたセルロースの加水分解方法および触媒を用いたグルコースの生産方法 |
WO2007100052A1 (ja) * | 2006-03-01 | 2007-09-07 | National University Corporation Hokkaido University | セルロースの加水分解および/または加水分解物の還元用触媒およびセルロースから糖アルコールの製造方法 |
JP2009201405A (ja) * | 2008-02-27 | 2009-09-10 | Kochi Univ | グルコースの製造方法およびスルホン化活性炭の製造方法 |
JP2009296919A (ja) | 2008-06-12 | 2009-12-24 | Tokyo Univ Of Agriculture & Technology | セルロース系バイオマスの液化方法 |
WO2010067593A1 (ja) | 2008-12-09 | 2010-06-17 | 国立大学法人 北海道大学 | グルコースを主成分とする糖含有液の製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001089991A1 (en) | 2000-05-24 | 2001-11-29 | Finecell Co., Ltd. | Mesoporous carbon material, carbon/metal oxide composite materials, and electrochemical capacitors using them |
CN101525355B (zh) | 2009-03-13 | 2012-12-26 | 清华大学 | 一种水解木质纤维素制备木糖和阿拉伯糖的方法 |
-
2010
- 2010-08-05 EP EP10818631.3A patent/EP2481479B1/en active Active
- 2010-08-05 JP JP2011532940A patent/JP5633878B2/ja active Active
- 2010-08-05 US US13/498,285 patent/US9144785B2/en active Active
- 2010-08-05 CN CN201080043202.4A patent/CN102711994B/zh active Active
- 2010-08-05 WO PCT/JP2010/063284 patent/WO2011036955A1/ja active Application Filing
- 2010-08-06 TW TW099126284A patent/TWI484039B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006129735A (ja) | 2004-11-02 | 2006-05-25 | Hiroshima Univ | 触媒を用いたセルロースの加水分解方法および触媒を用いたグルコースの生産方法 |
WO2007100052A1 (ja) * | 2006-03-01 | 2007-09-07 | National University Corporation Hokkaido University | セルロースの加水分解および/または加水分解物の還元用触媒およびセルロースから糖アルコールの製造方法 |
JP2009201405A (ja) * | 2008-02-27 | 2009-09-10 | Kochi Univ | グルコースの製造方法およびスルホン化活性炭の製造方法 |
JP2009296919A (ja) | 2008-06-12 | 2009-12-24 | Tokyo Univ Of Agriculture & Technology | セルロース系バイオマスの液化方法 |
WO2010067593A1 (ja) | 2008-12-09 | 2010-06-17 | 国立大学法人 北海道大学 | グルコースを主成分とする糖含有液の製造方法 |
Non-Patent Citations (10)
Title |
---|
GREEN CHEM., vol. 10, 2008, pages 1033 - 1037 |
H. ZHAO; J. H. KWAK; J. A. FRANZ; J. M. WHITE; J. E. HOLLADAY, ENERGY & FUELS, vol. 20, 2006, pages 807 |
IND. ENG. CHEM. RES., vol. 39, 2000, pages 2883 - 2990 |
J. AM. CHEM. SOC., vol. 130, 2008, pages 12787 - 12793 |
J. PHYS. CHEM. B, vol. 103, 1999, pages 7743 - 7746 |
M. SASAKI; Z. FANG; Y. FUKUSHIMA; T. ADSCHIRI; K. ARAI, IND. ENG. CHEM. RES., vol. 39, 2000, pages 2883 |
MASAAKI KITANO ET AL.: "Adsorption-Enhanced Hydrolysis of P-1,4-Glucan on Graphene-Based Amorphous Carbon Bearing S03H, COOH, and OH Groups", LANGMUIR, vol. 25, no. 9, 5 May 2009 (2009-05-05), pages 5068 - 5075, XP008156442 * |
NOBUYUKI HAYASHI; SHUJI FUJITA; TAKERO IRIE; TSUYOSHI SAKAMOTO; MASAO SHIBATA, J. JPN. INST. ENERGY, vol. 83, 2004, pages 805 |
TASUKU KOMANOYA ET AL.: "Tanso Tanji Kinzoku Shokubai ni yoru Cellulose Kasui Bunkai", SHOKUBAI TORONKAI TORONKAI A YOKOSHU, vol. 105, 24 March 2010 (2010-03-24), pages 59, XP008157535 * |
Y. -H. P. ZHANG; J. CUI; L. R. LYND; L. KUANG, BIOMACROMOLECULES, vol. 7, 2006, pages 644 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150191498A1 (en) * | 2012-07-03 | 2015-07-09 | National University Corp Hokkaido University | Method for decomposing plant biomass, and method for producing glucose |
WO2014097801A1 (ja) * | 2012-12-18 | 2014-06-26 | 昭和電工株式会社 | 植物性バイオマスの加水分解方法 |
JPWO2014097801A1 (ja) * | 2012-12-18 | 2017-01-12 | 昭和電工株式会社 | 植物性バイオマスの加水分解方法 |
JPWO2014097799A1 (ja) * | 2012-12-18 | 2017-01-12 | 昭和電工株式会社 | 植物性バイオマスの加水分解方法 |
WO2014097799A1 (ja) * | 2012-12-18 | 2014-06-26 | 昭和電工株式会社 | 植物性バイオマスの加水分解方法 |
JPWO2016186167A1 (ja) * | 2015-05-20 | 2018-03-08 | 国立大学法人北海道大学 | バイオマス加水分解触媒の製造方法 |
WO2016186167A1 (ja) * | 2015-05-20 | 2016-11-24 | 国立大学法人北海道大学 | バイオマス加水分解触媒の製造方法 |
WO2017104687A1 (ja) * | 2015-12-18 | 2017-06-22 | 昭和電工株式会社 | セロオリゴ糖の製造方法 |
WO2018131711A1 (ja) * | 2017-01-16 | 2018-07-19 | 国立大学法人北海道大学 | 糖類含有セルロース加水分解物の製造方法 |
WO2020003723A1 (ja) * | 2018-06-29 | 2020-01-02 | 日立化成株式会社 | 加水分解用触媒及び水溶性糖類の製造方法 |
CN111569939A (zh) * | 2020-06-04 | 2020-08-25 | 吉林建筑大学 | 一种Pickering型多酸催化剂及其制备方法、一种催化纤维素水解的方法 |
CN111569939B (zh) * | 2020-06-04 | 2022-11-15 | 吉林建筑大学 | 一种Pickering型多酸催化剂及其制备方法、一种催化纤维素水解的方法 |
CN111893219A (zh) * | 2020-07-14 | 2020-11-06 | 江苏理工学院 | 一种碳基固体酸催化剂催化多糖水解的方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201120219A (en) | 2011-06-16 |
TWI484039B (zh) | 2015-05-11 |
US9144785B2 (en) | 2015-09-29 |
CN102711994B (zh) | 2016-04-20 |
EP2481479B1 (en) | 2018-09-26 |
EP2481479A1 (en) | 2012-08-01 |
EP2481479A4 (en) | 2014-07-09 |
US20120240921A1 (en) | 2012-09-27 |
JP5633878B2 (ja) | 2014-12-03 |
CN102711994A (zh) | 2012-10-03 |
JPWO2011036955A1 (ja) | 2013-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5633878B2 (ja) | セルロースまたはヘミセルロースの加水分解用触媒、並びにこの触媒を用いる糖含有液の製造方法 | |
Jollet et al. | Non-catalyzed and Pt/γ-Al 2 O 3-catalyzed hydrothermal cellulose dissolution–conversion: influence of the reaction parameters and analysis of the unreacted cellulose | |
Sevilla et al. | The production of carbon materials by hydrothermal carbonization of cellulose | |
Mission et al. | Synergizing graphene oxide with microwave irradiation for efficient cellulose depolymerization into glucose | |
JP4423432B2 (ja) | セルロースの加水分解および/または加水分解物の還元用触媒およびセルロースから糖アルコールの製造方法 | |
JP5013531B2 (ja) | グルコースの製造方法およびスルホン化活性炭の製造方法 | |
Wang et al. | Glucose production from hydrolysis of cellulose over a novel silica catalyst under hydrothermal conditions | |
JP5641504B2 (ja) | グルコースを主成分とする糖含有液の製造方法 | |
CN110433853B (zh) | 一种改性介孔分子筛负载铂基催化剂及其制备方法 | |
EP2655302B1 (fr) | Procédé de transformation de biomasse lignocellulosique ou de cellulose par des catalyseurs à base d'oxyde d'étain et/ou d'oxyde d'antimoine et d'un métal choisi dans les groupes 8 à 11. | |
Putro et al. | Production of gamma-valerolactone from sugarcane bagasse over TiO 2-supported platinum and acid-activated bentonite as a co-catalyst | |
WO2011050424A1 (en) | Catalytic process for the production of alcohols from biomass-related feedstock | |
WO2012022853A1 (fr) | Procédé de transformation de biomasse lignocellulosique ou de cellulose par des catalyseurs acides solides de lewis a base d'oxyde de tungstene et d'un metal choisi dans les groupes 8 à 11 | |
US20170057903A1 (en) | Production of organic materials using solid catalysts | |
Li et al. | Synthesis of hierarchical HZSM-5 utilizing natural cellulose as templates for promoted production of aromatic hydrocarbons in the catalytic pyrolysis of biomass | |
FR2969603A1 (fr) | Procede de transformation de biomasse lignocellulosique ou de cellulose par des acides solides de lewis non zeolithique stables a base d'etain ou d'antimoine seul ou en melange | |
Cheng et al. | Direct conversion of corn cob to formic and acetic acids over nano oxide catalysts | |
JP6212564B2 (ja) | 炭素原子5〜6個を有する糖アルコールを得る方法 | |
Li et al. | Catalytic hydrothermal saccharification of rice straw using mesoporous silica-based solid acid catalysts | |
Gordillo‐Cruz et al. | Corn Starch Hydrolysis by Alumina and Silica‐Alumina Oxides Solid Acid Catalysts | |
EP2871246A1 (en) | Method for decomposing plant biomass, and method for producing glucose | |
Martins et al. | Hydrolysis of cassava's (Manihot esculenta Crantz) waste polysaccharides using the natural zeolite Stilbite-Ca as catalyst | |
Pizzolitto et al. | Acid sites modulation of siliceous-based mesoporous material by post synthesis methods | |
Aspromonte et al. | Valorization of the wheat bran C5 fraction using Ru/ZrO2-MCM48 catalysts | |
WO2015158634A1 (fr) | Procede de transformation d'une charge comprenant une biomasse lignocellulosique utilisant un catalyseur homogene comprenant un lanthanide en combinaison avec un catalyseur heterogene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080043202.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10818631 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011532940 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1201001306 Country of ref document: TH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010818631 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13498285 Country of ref document: US |