WO2017104687A1 - セロオリゴ糖の製造方法 - Google Patents

セロオリゴ糖の製造方法 Download PDF

Info

Publication number
WO2017104687A1
WO2017104687A1 PCT/JP2016/087161 JP2016087161W WO2017104687A1 WO 2017104687 A1 WO2017104687 A1 WO 2017104687A1 JP 2016087161 W JP2016087161 W JP 2016087161W WO 2017104687 A1 WO2017104687 A1 WO 2017104687A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction temperature
cellooligosaccharide
producing
reaction
temperature
Prior art date
Application number
PCT/JP2016/087161
Other languages
English (en)
French (fr)
Inventor
藤田 一郎
福岡 淳
小林 広和
アビジット シュロトリ
Original Assignee
昭和電工株式会社
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社, 国立大学法人北海道大学 filed Critical 昭和電工株式会社
Priority to CN201680062329.8A priority Critical patent/CN108350011A/zh
Priority to JP2017556084A priority patent/JP6779505B2/ja
Priority to EP16875664.1A priority patent/EP3395824A4/en
Priority to US15/779,986 priority patent/US20180362669A1/en
Publication of WO2017104687A1 publication Critical patent/WO2017104687A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • B09B3/45Steam treatment, e.g. supercritical water gasification or oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification
    • C07H1/08Separation; Purification from natural products
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/06Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B10/00Production of sugar juices
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing a cellooligosaccharide containing an oligomer having a polymerization degree of glucose of 3 to 6 by a hydrolysis reaction of plant biomass using a carbon catalyst.
  • Cellooligosaccharides are oligosaccharides polymerized by ⁇ 1,4 bonding of glucose, and have recently been found to have functionality such as moisturizing, stickiness suppression, taste imparting, starch aging reduction, and protein denaturation suppression. Expected to be used in the food and feed fields. In particular, cellooligosaccharides having a degree of polymerization of glucose of 3 or more are expected to increase in terms of the increase in functionality and the provision of new functionality.
  • a hydrothermal treatment method Japanese Patent Laid-Open No. 2011-068578 (US2012 / 232264A1); Patent Document 2, International Publication No. 2011/036955 Pamphlet (US9144785B2)); Patent Document 3, International Publication No. 2012/128055 pamphlet (US9284614B2); Patent Document 4
  • hydrothermal treatment method using oxidized water containing hypochlorous acid Japanese Patent Laid-Open No. 2006-320261; Patent Document 5
  • cellooligosaccharide is handled as an intermediate product in the process of decomposing cellulose into glucose, and specific data such as yield is not disclosed.
  • a method for industrially efficiently producing an oligomer having a polymerization degree of glucose of 3 to 6 has not been established.
  • a desired product slightly contained in a hydrolysis reaction solution mainly composed of glucose is purified. And it was only manufactured. From the above, it is desired to establish a production method capable of obtaining cellooligosaccharides containing oligomers having a polymerization degree of glucose of 3 (cellotriose) to 6 which are not currently industrially produced in high yield.
  • JP 2009-189293 A JP 2011-068578 A (US2012 / 232264A1) International Publication No. 2011/036955 Pamphlet (US9144785B2) International Publication No. 2012/128055 (US9284614B2) JP 2006-320261 A
  • An object of the present invention is to provide a method for producing a cellooligosaccharide containing an oligomer having a polymerization degree of glucose of 3 to 6 in a method for hydrolyzing plant biomass using a carbon catalyst.
  • the present inventors controlled the rate of temperature rise, the rate of cooling, the reaction temperature, and the reaction time to cause a hydrothermal reaction so that the degree of polymerization of glucose is 3 to 3. It has been found that cellooligosaccharides containing 6 oligomers can be produced, and the present invention has been completed.
  • the present invention relates to the following methods for producing cellooligosaccharides [1] to [9].
  • [1] The temperature time in the range of 170 to 230 ° C. in the graph showing the relationship between the reaction temperature (vertical axis) and the reaction time (horizontal axis) for the reaction of heat hydrolysis in the presence of plant biomass, carbon catalyst and water.
  • the maximum reaction temperature (X) and the maximum reaction temperature holding time (Y) are expressed by the following formulas (1) to (3): (In the formula, X represents the maximum reaction temperature (° C.), and Y represents the retention time (minute) at the maximum reaction temperature.) 2.
  • cellooligosaccharide containing an oligomer having a polymerization degree of glucose of 3 to 6 can be produced from plant biomass using a carbon catalyst.
  • FIG. 2 is a graph schematically showing the temperature transition of a hydrolysis reaction with a maximum reaction temperature of less than 230 ° C., where the horizontal axis represents time (minutes) and the vertical axis represents temperature (° C.), in the range of 170 to 230 ° C.
  • the temperature-time product (° C / min) is shown by shading.
  • FIG. 5 is a graph schematically showing a temperature transition of a hydrolysis reaction in which the maximum reaction temperature exceeds 230 ° C., the horizontal axis indicates time (minutes), the vertical axis indicates temperature (° C.), and ranges from 170 to 230 ° C.
  • the temperature-time product (° C / min) is shown by shading.
  • FIG. 6 is a graph showing results (results of Examples 1 to 7 and Comparative Examples 1 to 12) according to the present invention in which the reaction temperature was changed using steam activated activated carbon (BA50, SD50) and drug activated activated carbon (Zn60). .
  • Biomass generally refers to “renewable organism-derived organic resources excluding fossil resources”, but “plant biomass” used in the present invention (hereinafter sometimes referred to as solid substrate).
  • plant biomass used in the present invention (hereinafter sometimes referred to as solid substrate).
  • Plant biomass can be used either purified or unpurified. As refined treatment, after subjecting it to alkaline steaming, alkaline sulfite steaming, neutral sulfite steaming, alkaline sodium sulfide steaming, ammonia steaming, etc., solid-liquid separation and washing with water, The thing containing a cellulose is mentioned. Further, cellulose prepared industrially may be used. Plant biomass may contain ash such as silicon, aluminum, calcium, magnesium, potassium and sodium derived from raw materials as impurities.
  • Plant biomass may be dry or wet, and may be crystalline or non-crystalline.
  • the plant biomass is desirably pulverized prior to the reaction.
  • the contact property with the solid catalyst is increased by the pulverization, and the hydrolysis reaction is promoted.
  • the shape and size of the plant biomass is preferably suitable for pulverization. Examples of such shapes and sizes include powders having a particle size of 20 to 1000 ⁇ m.
  • Solid catalyst is not particularly limited as long as it can catalyze the hydrolysis of plant biomass, but is representative of ⁇ -1,4 glycosidic bonds between glucose forming the main component cellulose.
  • a carbon material having an activity of hydrolyzing a glycoside bond is preferred.
  • Examples of the carbon material include activated carbon, carbon black, graphite, and air-oxidized wood powder. These carbon materials may be used alone or in combination of two or more.
  • the shape of the carbon material is preferably porous and / or fine particles in terms of improving reactivity by expanding the contact area with the substrate, and in terms of promoting acid hydrolysis by expressing acid sites.
  • a carbon material having a functional group such as a phenolic hydroxyl group, a carboxyl group, a sulfo group, or a phosphate group on its surface is preferred.
  • Porous carbon materials with functional groups on the surface include woody materials such as coconut husk, eucalyptus, bamboo, pine, walnuts, bagasse, coke, phenol, etc. using gas such as water vapor, carbon dioxide, air, etc.
  • woody materials such as coconut husk, eucalyptus, bamboo, pine, walnuts, bagasse, coke, phenol, etc. using gas such as water vapor, carbon dioxide, air, etc.
  • Examples include activated carbon prepared by a treatment method (physical method) and a high-temperature treatment method (chemical method) using a chemical such as alkali or zinc chloride.
  • the carbon material which heat-processed the wood material and activated carbon uniformly in air presence (air-oxidized) is also mentioned.
  • [Crushing plant biomass] Cellulose, which is the main component of plant biomass, exhibits crystallinity by binding two or more cellulose molecules by hydrogen bonding.
  • cellulose having such crystallinity can be used as a raw material as it is, but it is preferable to use cellulose that has been subjected to a crystallinity reduction treatment to reduce crystallinity.
  • Cellulose with reduced crystallinity may be partially reduced in crystallinity or completely or almost completely lost.
  • the crystallinity reduction process which can cut
  • Examples of a method for physically breaking hydrogen bonds between cellulose molecules include pulverization.
  • the pulverizing means is not particularly limited as long as it has a function capable of being pulverized.
  • the pulverizing apparatus may be either dry or wet, and the pulverizing system of the apparatus may be batch or continuous.
  • the crushing force of the apparatus can be any of impact, compression, shear, friction and the like.
  • Equipment used for pulverization includes rolling ball mills such as pot mills, tube mills, conical mills, vibration ball mills such as circular vibration type vibration mills, swivel type vibration mills, centrifugal mills, stirring tank mills, annular mills, flow type mills, tower type Stirrer mills such as pulverizers, swirl type jet mills, impingement type jet mills, fluidized bed type jet mills, wet type jet mills and other jet pulverizers, rough mills (crushers), shear mills such as ong mills, and mortars , Impact mills such as colloid mills, stone mills, hammer mills, cage mills, pin mills, disintegrators, screen mills, turbo mills, centrifugal classification mills, and other types of mills that employ rotation and revolving motions.
  • An example is a planetary ball mill.
  • the reaction of hydrolyzing plant biomass using a carbon catalyst is a reaction between a solid substrate and a solid catalyst. Since the contact between the substrate and the catalyst becomes rate-limiting, as a method for improving the reactivity, the solid substrate and the solid catalyst are preliminarily used. It is effective to mix and perform simultaneous grinding.
  • the simultaneous pulverization treatment can also serve as a pretreatment for reducing the crystallinity of the substrate in addition to the mixing. From this point of view, the pulverizer used is preferably a rolling ball mill, a vibrating ball mill, a stirring mill, or a planetary ball mill used for pretreatment for reducing the crystallinity of the substrate, and is classified as a pot mill or a stirring mill classified as a rolling ball mill.
  • a stirred tank mill and a planetary ball mill are more preferable. Furthermore, since a tendency of higher reactivity is observed in the raw material having a larger bulk density obtained by simultaneous pulverization of the solid catalyst and the solid substrate, a compressive force that causes the pulverized solid catalyst and the pulverized solid substrate to bite in. It is more preferable to use a rolling ball mill, a stirring mill, or a planetary ball mill to which is strongly applied.
  • the raw material obtained by simultaneously pulverizing the solid substrate and the catalyst individually pulverized is the average particle diameter after pulverization (cumulative median diameter (median diameter)):
  • the particle diameter (D50) at the point of 50% is 1 to 100 ⁇ m, preferably 1 to 30 ⁇ m, more preferably 1 to 20 ⁇ m from the viewpoint of further improving the reactivity.
  • the particle size of the raw material to be pulverized is large, it is preferable to perform a preliminary pulverization process before the pulverization in order to efficiently perform the pulverization.
  • Preliminary pulverization processes include, for example, coarse pulverizers such as shredders, jaw crushers, gyratory crushers, cone crushers, hammer crushers, roll crushers, and roll mills, stamp mills, edge runners, cutting / shear mills, rod mills, self-pulverizing machines and It can be carried out using a medium pulverizer such as a roller mill.
  • coarse pulverizers such as shredders, jaw crushers, gyratory crushers, cone crushers, hammer crushers, roll crushers, and roll mills
  • stamp mills stamp mills, edge runners, cutting / shear mills, rod mills, self-pulverizing machines and It can be carried out using a medium pulverizer such as a roller mill.
  • the processing time of a raw material will not be specifically limited if the raw material after a process is pulverized uniformly.
  • the ratio of the solid catalyst to the solid substrate is not particularly limited in both cases where the substrate is separately pulverized and when the substrate and the catalyst are simultaneously pulverized, but the hydrolysis efficiency during the reaction, the substrate after the reaction, From the viewpoints of residue reduction and product sugar recovery, the solid catalyst is preferably 1 to 100 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the solid substrate.
  • the conditions for the hydrolysis reaction to achieve the object of the present invention are as follows.
  • the hydrolysis reaction can be carried out at a temperature of 170 to 230 ° C. Unless the effect of the present invention is impaired, the maximum temperature may exceed 230 ° C.
  • An area in the range of 170 to 230 ° C. (hereinafter referred to as “temperature-time product at 170 to 230 ° C.”) in the graph (see FIGS. 1 and 2) in which the vertical axis represents the reaction temperature and the horizontal axis represents time is 80.
  • a cellooligosaccharide having a degree of polymerization of glucose of 3 to 6 can be efficiently obtained when the temperature is ⁇ 365 ° C. ⁇ min.
  • the temperature-time product of 170 to 230 ° C. can be obtained by integrating the reaction temperature with time in the range of 170 to 230 ° C., but the heating rate when heating and the cooling rate when cooling In the case of a reaction pattern in which is constant, a temperature-time product can be obtained by the following equation by approximating a trapezoid. When the maximum reaction temperature exceeds 230 ° C., the “maximum reaction temperature” in the above equation is calculated as 230 ° C. (see FIG. 2).
  • the hydrolysis reaction is preferably carried out under the condition that the maximum reaction temperature (X) and the maximum reaction temperature holding time (Y) satisfy the relationship represented by the following formulas (1) to (3).
  • X represents the maximum reaction temperature (° C.)
  • Y represents the retention time (minute) at the maximum reaction temperature.
  • the maximum reaction temperature (X) of hydrolysis and the retention time (Y) of the maximum reaction temperature are in the above ranges, decomposition from cellulose to cellooligosaccharide proceeds, and at the same time, decomposition from cellooligosaccharide to glucose and from glucose to 5 -It is preferable because excessive decomposition into hydroxymethylfurfural and the like is suppressed.
  • the maximum reaction temperature for hydrolysis is preferably 180 to 200 ° C, more preferably 180 to 190 ° C.
  • the rate of temperature rise when heating up to the reaction temperature and the rate of temperature drop when cooling after the completion of heating at the reaction temperature can be performed at a rate in the range of 0.1 to 30 ° C./min, for example. It is more suitable to carry out in the range of 0.2 to 20 ° C./min.
  • the temperature is slower than 0.1 ° C./min, the hydrolysis reaction proceeds excessively in the temperature raising process or the cooling process, and when it is faster than 30 ° C./min, the equipment cost is increased due to the increase in equipment capacity.
  • the amount of water in the hydrolysis is an amount capable of at least hydrolyzing the cellulose, and considering the fluidity and agitation of the reaction mixture, the mass ratio with respect to the cellulose is preferably in the range of 1 to 500. Can range from 2 to 200.
  • Hydrolysis is affected by pH.
  • the hydrolysis reaction is preferably performed under the condition of pH 4-7. When the pH is lower than 4, decomposition from cellooligosaccharide to glucose tends to proceed, and when the pH is higher than 7, hydrolysis is inhibited. Therefore, in order to increase the yield of cellooligosaccharide, the pH at the start of the reaction is appropriately adjusted within the above range.
  • the hydrolysis atmosphere is not particularly limited. Industrially, it is preferably performed in an air atmosphere, but may be performed in an atmosphere of a gas other than air, for example, oxygen, nitrogen, hydrogen, or a mixture thereof.
  • the cellulose hydrolysis method in the method of the present invention may be either a batch type or a continuous type.
  • the batch reaction is performed while stirring the reaction mixture in a closed container such as an autoclave.
  • a closed container such as an autoclave.
  • the reaction system is heated when the reaction system is heated at the above temperature.
  • the reaction can be carried out by pressurizing the inside of the sealed container before or during the reaction.
  • the pressure to be applied is, for example, 0.1 to 30 MPa, preferably 1 to 20 MPa, and more preferably 2 to 10 MPa.
  • the hydrolysis reaction is preferably completed when the yield of oligosaccharide having a degree of polymerization of glucose 3 (cellotriose) to 6 is between 10 and 80%.
  • the timing varies depending on the heating temperature, the type and amount of catalyst used, the amount of water (ratio to cellulose), the type of cellulose, the stirring method and its conditions, etc. These conditions should be determined by preliminary experiments. Can do.
  • Solid catalyst and solid substrate In the following examples and comparative examples, BA50 (manufactured by Ajinomoto Fine Techno Co., Ltd.) or SD50 (manufactured by Ajinomoto Fine Techno Co., Ltd.) or zinc chloride is used as the solid catalyst.
  • ZN60 manufactured by Ajinomoto Fine Techno Co., Ltd.
  • Avicel crystalline fine cellulose made by Merck
  • Examples 1 to 7 and Comparative Examples 1 to 12 Hydrolysis reaction Using the catalyst and substrate described in Table 1, the mixed pulverized raw material was 0.374 g (2.00 mmol in C 6 H 10 O 5 units) and 40 mL of water, The unground substrate was 0.324 g, 0.050 g of catalyst and 40 mL of water, respectively, in a high-pressure reactor (internal volume 100 mL, autoclave manufactured by OM Lab Tech Co., Hastelloy C22), and then stirred at 600 rpm from room temperature. The reaction temperature shown in Table 1 was heated at 10 to 30 ° C./min (average heating rate 11.3 ° C./min).
  • FIG. 3 summarizes the results of Examples 1 to 7 and Comparative Examples 1 to 12, which were carried out using steam activated activated carbon (BA50, SD50) and drug activated activated carbon (Zn60) at different reaction temperatures and holding times.
  • the marker “ ⁇ ” indicates that the yield of oligomers having a polymerization degree of glucose of 3 to 6 is 50% or more
  • “x” indicates that the yield of oligomers having a polymerization degree of glucose of 3 to 6 is less than 50%.
  • reaction temperature 200 ° C. reaction time 3 60% in minutes (Example 1), 190% at 190 ° C, 61% in 15 minutes (Example 2), 190 ° C, 64% in 5 minutes (Example 3), 69% in 180 ° C, 20 minutes (Example 4) It was confirmed that a high yield of 60% or more can be obtained by applying an appropriate reaction time at about 200 ° C. or less.
  • a cellooligosaccharide having a polymerization degree of 3 to 6 of glucose which has not been industrially produced by the hydrolysis method of plant biomass using a carbon catalyst until now, can be produced. More highly functional additives can be provided in the feed field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Saccharide Compounds (AREA)
  • Processing Of Solid Wastes (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明は植物性バイオマス、炭素触媒及び水を共存させ加熱加水分解する反応を、反応温度(縦軸)と反応時間(横軸)との関係を表すグラフにおける170~230℃の範囲の温度時間積が80~365℃・分の条件で行うことを特徴とする重合度3~6のオリゴマーを含有するセロオリゴ糖の製造方法を提供する。最高反応温度X(℃)と最高反応温度の保持時間Y(分)とが下記の式(1)~(3): Y>-0.0714X+15 (1) Y<-X+210 (2) X>175 (3) で示される関係を満たすことが好ましい。

Description

セロオリゴ糖の製造方法
 本発明は、炭素触媒を用いた植物性バイオマスの加水分解反応によりグルコースの重合度が3~6のオリゴマーを含有するセロオリゴ糖を製造する方法に関する。
 セロオリゴ糖は、グルコースがβ1,4結合して重合した少糖類であり、保湿性、べたつき抑制、清味付与、でんぷん老化低減、タンパク変性抑制などの機能性が近年見出され、医薬、化粧品、食品、飼料分野への利用が期待されている。
 特に、グルコースの重合度が3以上のセロオリゴ糖は、上記の機能性の増大、新たな機能性賦与という点でより大きな期待が寄せられている。
 しかし、現在工業的に利用されているセロオリゴ糖は、酵素反応によって製造されているが、主成分はグルコースと二量体のセロビオースであり、三量体のセロトリオース以上のオリゴマーはほとんど含有していない(特開2009-189293号公報;特許文献1)。
 酵素法以外のセロオリゴ糖製造技術としては、水熱処理方法(特開2011-068578号公報(US2012/232264A1);特許文献2、国際公開第2011/036955パンフレット(US9144785B2);特許文献3、国際公開第2012/128055パンフレット(US9284614B2);特許文献4)、次亜塩素酸を含有する酸化水による水熱処理方法(特開2006-320261号公報;特許文献5)が知られているが、いずれの特許文献にもセロオリゴ糖は、セルロースをグルコースに分解する過程の中間産物として取り扱われており、収率などの具体的データは開示されていない。すなわち、グルコースの重合度が3~6のオリゴマーを工業的に効率よく製造する方法は確立されておらず、従来はグルコースを主成分とする加水分解反応液等にわずかに含まれる目的物を精製して製造されているにすぎなかった。
 以上のことから、現状工業生産されていないグルコースの重合度が3(セロトリオース)~6のオリゴマーを含有するセロオリゴ糖が高収率で得られる製造方法の確立が望まれている。
特開2009-189293号公報 特開2011-068578号公報(US2012/232264A1) 国際公開第2011/036955パンフレット(US9144785B2) 国際公開第2012/128055パンフレット(US9284614B2) 特開2006-320261号公報
 本発明の課題は、炭素触媒を用いて植物性バイオマスを加水分解する方法において、グルコースの重合度が3~6のオリゴマーを含有するセロオリゴ糖を製造する方法を提供することにある。
 本発明者らは、炭素触媒を用いた植物性バイオマスの加水分解反応において、昇温速度、冷却速度、反応温度、反応時間を制御して水熱反応をさせることによりグルコースの重合度が3~6のオリゴマーを含有するセロオリゴ糖を製造できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の[1]~[9]のセロオリゴ糖の製造方法に関する。
[1] 植物性バイオマス、炭素触媒及び水を共存させ加熱加水分解する反応を、反応温度(縦軸)と反応時間(横軸)との関係を表すグラフにおける170~230℃の範囲の温度時間積が80~365℃・分の条件で行うことを特徴とする重合度3~6のオリゴマーを含有するセロオリゴ糖の製造方法。
[2] 最高反応温度(X)と最高反応温度の保持時間(Y)とが下記の式(1)~(3):
Figure JPOXMLDOC01-appb-M000002
(式中、Xは最高反応温度(℃)、Yは最高反応温度における保持時間(分)を表す。)
で示される関係を満たす前項1に記載のセロオリゴ糖の製造方法。
[3] 前記最高反応温度に加温するときの昇温速度、及び前記最高反応温度から冷却するときの冷却速度が0.1~30℃/分である前項1または2に記載のセロオリゴ糖の製造方法。
[4] 炭素触媒が活性炭である前項1~3のいずれかに記載のセロオリゴ糖の製造方法。
[5] 炭素触媒が水蒸気賦活活性炭である前項1~4のいずれかに記載のセロオリゴ糖の製造方法。
[6] 炭素触媒が空気酸化した水蒸気賦活活性炭及び/または空気酸化した薬剤賦活活性炭である前項1~4のいずれかに記載のセロオリゴ糖の製造方法。
[7] 植物性バイオマスと炭素触媒を予め混合して粉砕したものを原料に用いる前項1~6のいずれかに記載のセロオリゴ糖の製造方法。
[8] 予め粉砕した植物性バイオマスを原料に用いる前項1~7のいずれかに記載のセロオリゴ糖の製造方法。
[9] グルコースの重合度3~6のオリゴ糖の収率が50~80%となる時点で反応を終了する前項1~8のいずれかに記載のセロオリゴ糖の製造方法。
 本発明によれば、植物性バイオマスから、炭素触媒を用いてグルコースの重合度が3~6のオリゴマーを含有するセロオリゴ糖を製造することができる。
最高反応温度が230℃未満の加水分解反応の温度推移を模式的に表したグラフであり、横軸は時間経過(分)、縦軸は温度(℃)を示し、170~230℃の範囲の温度時間積(℃・分)を網掛けで示す。 最高反応温度が230℃を超える加水分解反応の温度推移を模式的に表したグラフであり、横軸は時間経過(分)、縦軸は温度(℃)を示し、170~230℃の範囲の温度時間積(℃・分)を網掛けで示す。 水蒸気賦活活性炭(BA50、SD50)及び薬剤賦活活性炭(Zn60)を用いて反応温度を変え実施した本発明の方法による結果(実施例1~7及び比較例1~12の結果)を示すグラフである。
 以下、本発明の方法の好適な実施形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な一例を示したものであり、本発明はそれらに限定されるものではなく、それらにより本発明の範囲が狭く解釈されるべきでない。
[植物性バイオマス(固体基質)]
 バイオマスとは一般的には「再生可能な生物由来の有機性資源で化石資源を除いたもの」を指すが、本発明で使用する「植物性バイオマス」(以下、固体基質ということがある。)は、例えば、稲わら、麦わら、サトウキビわら、籾殻、バガス、広葉樹、竹、針葉樹、ケナフ、家具廃材、建築廃材、古紙、食品残渣等の主にセルロースやヘミセルロースを含むバイオマスである。
 植物性バイオマスは、精製処理してあるものでも、精製処理してないものでも用いることができる。精製処理してあるものとしては、アルカリ蒸煮、アルカリ性亜硫酸塩蒸煮、中性亜硫酸塩蒸煮、アルカリ性硫化ソーダ蒸煮、アンモニア蒸煮などの処理をした後に固液分離し水洗することにより脱リグニン処理を行い、セルロースを含有するものが挙げられる。さらに、工業的に調製したセルロースなどでもよい。
 植物性バイオマスは、不純物として原料由来の珪素、アルミニウム、カルシウム、マグネシウム、カリウム、ナトリウムなどの灰分を含有してもよい。
 植物性バイオマスは、乾体でも湿体でもよく、結晶性でも非結晶性でもよい。植物性バイオマスは反応に先立ち粉砕することが望ましい。粉砕により固体触媒との接触性が増加して、加水分解反応が促進される。したがって、植物性バイオマスの形状・大きさは、粉砕するのに適していることが好ましい。そのような形状・大きさとしては、例えば粒径が20~1000μmの粉体状が挙げられる。
[固体触媒]
 固体触媒は、植物性バイオマスの加水分解を触媒できるものであればよく、特に限定されるものではないが、主成分であるセルロースを形成しているグルコース間のβ-1,4グリコシド結合に代表されるグリコシド結合を加水分解する活性を有する炭素材料が好ましい。
 炭素材料としては、例えば活性炭、カーボンブラック、グラファイト、空気酸化した木粉などが挙げられる。これら炭素材料は、単独で使用しても、2種以上を併用してもよい。炭素材料の形状は、基質との接触面積の拡大により反応性を向上させるという点で、多孔性及び/または微粒子であることが好ましく、酸点を発現して加水分解を促進させるという点で、その表面にフェノール性水酸基、カルボキシル基、スルホ基、リン酸基などの官能基を有する炭素材料が好ましい。
 官能基を表面に有する多孔性炭素材料としては、ヤシガラ、ユーカリ、竹、松、くるみガラ、バガスなどの木質材料や、コークス、フェノールなどを、水蒸気、二酸化炭素、空気などのガスを用いて高温処理する方法(物理法)や、アルカリ、塩化亜鉛などの薬剤を用いて高温処理する方法(化学法)により調製した活性炭が挙げられる。さらに木質材料や活性炭を空気存在下で均一に加熱処理した(空気酸化した)炭素材料も挙げられる。
 セロトリオース以上の重合度のオリゴ糖収率が高いという観点から水蒸気賦活活性炭、薬剤賦活活性炭、空気酸化した木粉、空気酸化した水蒸気賦活活性炭、空気酸化した薬剤賦活活性炭を用いることが好ましい。
[植物性バイオマスの粉砕]
 植物性バイオマスの主成分であるセルロースは、2本またはそれ以上のセルロース分子が水素結合により結合して結晶性を示す。本発明では、そのような結晶性を有するセルロースをそのまま原料として使用することができるが、結晶性低下処理を施して結晶性を低下させたセルロースを用いることが好ましい。結晶性を低下させたセルロースは、結晶性を部分的に低下させたものでも、完全にまたはほぼ完全に消失させたものでもよい。結晶性低下処理の種類には特に制限はないが、上記水素結合を切断して、1本鎖のセルロース分子を少なくとも部分的に生成できる結晶性低下処理が好ましい。少なくとも部分的に1本鎖のセルロース分子を含むセルロースを原料とすることで、加水分解の効率を大幅に向上することができる。
 物理的にセルロース分子間の水素結合を切断する方法は、例えば粉砕処理が挙げられる。粉砕手段は微粉化できる機能を備えているものであれば特に限定されない。例えば、粉砕装置の方式は乾式、湿式のいずれでもよく、また装置の粉砕システムは回分式、連続式いずれでもよい。さらに、装置の粉砕力は、衝撃、圧縮、せん断、摩擦などのいかなるものでも用いることができる。
 粉砕処理に用いる装置としては、ポットミル、チューブミル、コニカルミルなどの転動ボールミル、円振動型振動ミル、旋回型振動ミル、遠心ミルなどの振動ボールミル、撹拌槽ミル、アニュラミル、流通型ミル、塔式粉砕機などの撹拌ミル、旋回流型ジェットミル、衝突タイプジェットミル、流動層型ジェットミル、湿式タイプジェットミルなどのジェット粉砕機、らいかい機(擂潰機)、オングミルなどのせん断ミル、乳鉢、石うすなどのコロイドミル、ハンマーミル、ケージミル、ピンミル、ディスインテグレータ、スクリーンミル、ターボ型ミル、遠心分級ミルなどの衝撃式粉砕機、さらには自転及び公転の運動を採用した種類の粉砕機である遊星ボールミルなどが挙げられる。
 炭素触媒を用いる植物性バイオマスを加水分解する反応は、固体基質と固体触媒の反応であり、基質と触媒の接触が律速となるため、反応性を向上させる方法として、固体基質と固体触媒を予め混合し同時粉砕処理をすることが有効である。
 同時粉砕処理は、混合に加え、基質の結晶性を低下させる前処理を兼ねることができる。その観点から、用いる粉砕装置は、基質の結晶性を低下させる前処理に用いられる、転動ボールミル、振動ボールミル、撹拌ミル、遊星ボールミルが好ましく、転動ボールミルに分類されるポットミル、撹拌ミルに分類される撹拌槽ミル、遊星ボールミルがより好ましい。さらに、固体触媒と固体基質とを同時粉砕処理した嵩密度の大きい原料の方が反応性が高い傾向が認められることから、固体触媒の粉砕物と固体基質の粉砕物とが食い込むような圧縮力が強く加わる転動ボールミル、撹拌ミル、遊星ボールミルを用いることがさらに好ましい。
 個別に基質を粉砕した固体基質と触媒を同時粉砕した原料は、微粉砕後の平均粒径(累計中位径(メジアン径):粉体の集団の全体積を100%として求めた累計カーブが50%となる点の粒子径(D50))は1~100μmであり、反応性をより高めるという観点から、1~30μmが好ましく、1~20μmがより好ましい。
 微粉砕処理する原料の粒径が大きい場合は、微粉砕を効率的に行うために、微粉砕の前に予備的粉砕処理を行うことが好ましい。予備的粉砕処理は、例えば、シュレッダー、ジョークラッシャー、ジャイレトリクラッシャー、コーンクラッシャー、ハンマークラッシャー、ロールクラッシャー、及びロールミルなどの粗粉砕機、スタンプミル、エッジランナ、切断・せん断ミル、ロッドミル、自生粉砕機及びローラミルなどの中粉砕機を用いて実施することができる。原料の処理時間は、処理後原料が均一に微粉化されるのであれば特に限定されない。
 固体触媒と固体基質の比率は、個別に基質を粉砕する場合及び基質と触媒を同時粉砕する場合のいずれにおいても、特に限定されるものではないが、反応時の加水分解効率、反応後の基質残渣低減、生成糖の回収率の観点から、固体基質100質量部に対して固体触媒1~100質量部が好ましく、1~10質量部がより好ましい。
[加水分解反応]
 植物性バイオマスを基質として、グルコースの重合度が3~6のオリゴマーを含有するセロオリゴ糖を生成する加水分解反応は、基質を触媒と水の存在下、好ましくは加圧状態となる温度で加熱して行う。
 加熱によりセルロースはセロオリゴ糖を経て単糖であるグルコースへと分解され、さらに反応が進むと5-ヒドロキシメチルフルフラールなどの過分解物が生成する。したがって、本発明の目的を達成するためには、セルロースがセロオリゴ糖に分解されるが、その後セロオリゴ糖がグルコースへ分解されない条件で加水分解反応を行うことが必要である。
 本発明の目的を達成する加水分解反応の条件は下記のとおりである。
 加水分解反応は170~230℃の温度で実施することができる。本発明の効果を損なわない限り、最高温度は230℃を超えるときがあってもよい。
 縦軸に反応温度、横軸に時間を表した図(図1及び図2参照)における170~230℃の範囲の面積(以下、「170~230℃の温度時間積」という。)が、80~365℃・分であるとグルコースの重合度が3~6のセロオリゴ糖を効率よく得ることができる。なかでも80~300℃・分が好ましく、80~250℃・分がより好ましい。
 なお、170~230℃の温度時間積は、170~230℃の範囲において、反応温度を時間で積分することにより求めることができるが、加温するときの昇温速度及び冷却するときの冷却速度が一定である反応パターンの場合には、台形に近似して下記式により温度時間積を求めることができる。
Figure JPOXMLDOC01-appb-M000003
 なお、最高反応温度が230℃を超える場合は、上記の式の「最高反応温度」を230℃として算出する(図2参照)。
 170~230℃の温度時間積が80℃・分より小さいとセルロースからセロオリゴ糖への分解が進まず、好ましくない。また、170~230℃の温度時間積が365℃・分より大きいとセロオリゴ糖からグルコースへの分解、及びグルコースから5-ヒドロキシメチルフルフラールなどへの過分解が速やかに進むため好ましくない。
 さらに、加水分解反応は、最高反応温度(X)と最高反応温度の保持時間(Y)とが下記の式(1)~(3)で示される関係を満たす条件で行うことが好ましい。
Figure JPOXMLDOC01-appb-M000004
 上記式中、Xは最高反応温度(℃)を表し、Yは最高反応温度における保持時間(分)を表す。
 加水分解の最高反応温度(X)及び最高反応温度の保持時間(Y)が上記の範囲であると、セルロースからセロオリゴ糖への分解が進むと同時に、セロオリゴ糖からグルコースへの分解及びグルコースから5-ヒドロキシメチルフルフラールなどへの過分解が抑制され好ましい。
 なかでも好ましい加水分解の最高反応温度は180~200℃であり、より好ましくは180~190℃の範囲である。
 反応温度までに加熱する際の昇温速度と、反応温度での加熱終了し冷却するときの降温速度は、例えば、0.1~30℃/分の範囲の速度で行うことができ、好ましくは0.2~20℃/分の範囲で行うことがより適当である。0.1℃/分より緩やかであると昇温過程や冷却過程で加水分解反応が進みすぎ、30℃/分より急であると設備能力の増強による設備コストが大きくなるため好ましくない。
 加水分解の際の水の存在量は、少なくともセルロースを全量加水分解できる量であり、反応混合物の流動性や撹拌性等を考慮して、セルロースに対して、質量比1~500の範囲、好ましくは2~200の範囲とすることができる。
 なお、加水分解はpHの影響を受ける。本発明では、pH4~7の条件で加水分解反応を行うことが好ましい。pHが4より低いとセロオリゴ糖からグルコースへの分解が進みやすくなり、pHが7より高いと加水分解が阻害される。したがって、セロオリゴ糖の収率を上げるために反応開始時のpHを上記の範囲に適宜調整しておく。
 加水分解の雰囲気は特に限定されない。工業上は空気雰囲気下で行うことが好ましいが、空気以外の気体、例えば、酸素、窒素、水素またはそれらの混合物の雰囲気下で行ってもよい。
 本発明の方法におけるセルロースの加水分解形式は、バッチ式または連続式等のいずれでもよい。
 バッチ式の反応は、オートクレーブ等の密閉容器内で反応混合物を撹拌しながら行う。この場合、密閉であるため反応開始時は常圧であっても、上記温度で反応系が加熱されると加圧状態となる。さらに、反応前または反応中に密閉容器内を加圧し、反応することもできる。加圧する圧力は、例えば0.1~30MPa、好ましくは1~20MPa、さらに好ましくは2~10MPaである。
 前記加水分解反応は、グルコースの重合度3(セロトリオース)から6のオリゴ糖の収率が10~80%の間にある時点で終了することが好ましい。その時点は、加熱温度、使用する触媒の種類及び量、水の量(セルロースに対する割合)、セルロースの種類、撹拌方法及びその条件等により変化するが、これらの条件は予備的実験により決定することができる。
(1)固体触媒及び固体基質
 以下の実施例及び比較例では、固体触媒として水蒸気賦活活性炭であるBA50(味の素ファインテクノ(株)製)若しくはSD50(味の素ファインテクノ(株)製)、または塩化亜鉛による薬剤賦活活性炭であるZN60(味の素ファインテクノ(株)製)を、また固体基質としてはAvicel(Merck社製結晶性微粉セルロース)を、それぞれ直接用いるか、以下の(2)の方法で粉砕処理したものを用いた。
(2)混合粉砕原料
 固体基質としてのAvicel(Merck社製結晶性微粉セルロース)10.00gと、固体触媒1.54g(基質と触媒の質量比6.5:1.0)を、容量3600mLのセラミックポットミルの中に直径1.5cmのアルミナ球2000gと共に入れた。このセラミックポットミルを卓上ポットミル回転台(日陶科学(株)製,卓上ポットミル型式ANZ-51S)にセットし、60rpmで48時間ボールミル処理して混合同時粉砕した。得られた原料を、以下、混合粉砕原料と略記する。
実施例1~7及び比較例1~12:加水分解反応
 表1に記載の触媒と基質を用い、混合粉砕原料は0.374g(C6105単位で2.00mmol)と水40mL、未粉砕基質はそれぞれ0.324gと触媒0.050gと水40mLを、高圧反応器(内容積100mL,オーエムラボテック(株)製オートクレーブ,ハステロイC22製)に入れた後、600rpmで撹拌しながら室温から表1に記載の反応温度まで10~30℃/分(平均昇温速度11.3℃/分)で加熱した。反応最高温度に到達するとその温度で表1に記載の時間保持して後に加熱を止め、反応器を10~30℃/分(平均降温速度16.7℃/分)で風冷し、冷却後、反応液を遠心分離装置により液体と固体に分離して上清サンプルの分析を行った。なお、反応時間が「0分」とは、反応最高温度に到達した瞬間から冷却を行うことを意味する。
[生成物の定量]
 固形分を除去した液相サンプルの生成物は、(株)島津製作所製高速液体クロマトグラフ(条件1 カラム:Shodex(登録商標)SH-1011,移動相:水0.5mL/min,50℃,検出:示差屈折率)によりグルコース、セロビオースからセロヘキサオースまでのオリゴ糖を定量分析した。
 以下に収率の計算式を示す。
Figure JPOXMLDOC01-appb-M000005
[分析結果]
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000006
 図3に水蒸気賦活活性炭(BA50、SD50)及び薬剤賦活活性炭(Zn60)を用いて反応温度と保持時間を変えて実施した実施例1~7及び比較例1~12の結果をまとめて示す。なお、図中のマーカー「●」はグルコースの重合度が3~6のオリゴマー収率が50%以上を表し、「×」はグルコースの重合度が3~6のオリゴマー収率が50%未満を表す。
 水蒸気賦活活性炭BA50との混合粉砕原料を、170~230℃の反応温度領域で反応を行った際のグルコースの重合度が3~6のオリゴ糖の収率は、反応温度200℃、反応時間3分(実施例1)で60%、190℃、15分(実施例2)で61%、190℃、5分(実施例3)で64%、180℃、20分(実施例4)で69%となり、概ね200℃以下で適切な反応時間をかけることにより60%以上の高収率が得られることが確認された。200℃を上回る高温条件で反応時間をかけて行った反応では、反応温度230℃、反応時間0分(比較例1)で0%、220℃、0分(比較例2)で16%、210℃、10分(比較例3)で0%となり、いずれも過分解が進み、グルコースの重合度が3~6のオリゴ糖の高い収率は得られなかった。
 また、200℃以下の条件でも、200℃、15分(比較例4)で0%、190℃、25分(比較例5)で9%、180℃、40分(比較例7)で18%となり、時間をかけ過ぎたことにより過分解が進み、高い収率が得られなかった。逆に、190℃、0分(比較例6)で5%、180℃、0分(比較例8)で2%、170℃、30分(比較例9)で6%、170℃、10分(比較例10)で4%、170℃、0分(比較例11)で1%となったが、これは反応時間不足で加水分解が進まず高い収率が得られなかったと推測される。
 BA50以外の活性炭であるSD50、ZN60を用いて、反応温度180℃、反応時間20分で反応を行ったところ、水蒸気賦活活性炭であるSD50(実施例6)ではグルコースの重合度が3~6のオリゴ糖収率は60%、薬剤賦活活性炭であるZN60(実施例7)でも60%の結果が得られ、水蒸気賦活活性炭、薬剤賦活活性炭とも高い収率が得られることが確認された。
 反応温度180℃、反応時間20分の反応において、触媒の有無の効果を比較すると、BA50と同時粉砕原料で行った実施例4のグルコースの重合度が3~6のオリゴ糖収率は69%であったのに対し、触媒なしでアビセルだけ用いた比較例12は5%となった。この結果より、グルコースの重合度が3~6のオリゴ糖を高収率で得るためには、炭素触媒が必要であることが分かった。
 本発明の方法によれば、これまで炭素触媒を用いる植物性バイオマスの加水分解法では工業的に生産されていなかったグルコースの重合度3~6のセロオリゴ糖を製造でき、医薬、化粧品、食品、飼料分野に、より高機能な添加剤を提供することができる。

Claims (9)

  1.  植物性バイオマス、炭素触媒及び水を共存させ加熱加水分解する反応を、反応温度(縦軸)と反応時間(横軸)との関係を表すグラフにおける170~230℃の範囲の温度時間積が80~365℃・分の条件で行うことを特徴とする重合度3~6のオリゴマーを含有するセロオリゴ糖の製造方法。
  2.  最高反応温度(X)と最高反応温度の保持時間(Y)とが下記の式(1)~(3):
    Figure JPOXMLDOC01-appb-M000001
    (式中、Xは最高反応温度(℃)、Yは最高反応温度における保持時間(分)を表す。)
    で示される関係を満たす請求項1に記載のセロオリゴ糖の製造方法。
  3.  前記最高反応温度に加温するときの昇温速度、及び前記最高反応温度から冷却するときの冷却速度が0.1~30℃/分である請求項1または2に記載のセロオリゴ糖の製造方法。
  4.  炭素触媒が活性炭である請求項1~3のいずれかに記載のセロオリゴ糖の製造方法。
  5.  炭素触媒が水蒸気賦活活性炭である請求項1~4のいずれかに記載のセロオリゴ糖の製造方法。
  6.  炭素触媒が空気酸化した水蒸気賦活活性炭及び/または空気酸化した薬剤賦活活性炭である請求項1~4のいずれかに記載のセロオリゴ糖の製造方法。
  7.  植物性バイオマスと炭素触媒を予め混合して粉砕したものを原料に用いる請求項1~6のいずれかに記載のセロオリゴ糖の製造方法。
  8.  予め粉砕した植物性バイオマスを原料に用いる請求項1~7のいずれかに記載のセロオリゴ糖の製造方法。
  9.  グルコースの重合度3~6のオリゴ糖の収率が50~80%となる時点で反応を終了する請求項1~8のいずれかに記載のセロオリゴ糖の製造方法。
PCT/JP2016/087161 2015-12-18 2016-12-14 セロオリゴ糖の製造方法 WO2017104687A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680062329.8A CN108350011A (zh) 2015-12-18 2016-12-14 纤维寡糖的制造方法
JP2017556084A JP6779505B2 (ja) 2015-12-18 2016-12-14 セロオリゴ糖の製造方法
EP16875664.1A EP3395824A4 (en) 2015-12-18 2016-12-14 PROCESS FOR PREPARING A CELLOOLIGOSACCHARIDE
US15/779,986 US20180362669A1 (en) 2015-12-18 2016-12-14 Method for manufacturing cellooligosaccharide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-247401 2015-12-18
JP2015247401 2015-12-18

Publications (1)

Publication Number Publication Date
WO2017104687A1 true WO2017104687A1 (ja) 2017-06-22

Family

ID=59056739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087161 WO2017104687A1 (ja) 2015-12-18 2016-12-14 セロオリゴ糖の製造方法

Country Status (5)

Country Link
US (1) US20180362669A1 (ja)
EP (1) EP3395824A4 (ja)
JP (1) JP6779505B2 (ja)
CN (1) CN108350011A (ja)
WO (1) WO2017104687A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045305A (ja) * 2018-09-18 2020-03-26 国立大学法人北海道大学 セロオリゴ糖の製造方法
WO2020255933A1 (ja) 2019-06-17 2020-12-24 昭和電工株式会社 セロオリゴ糖を含む植物活力剤及びその使用
WO2020255934A1 (ja) 2019-06-17 2020-12-24 昭和電工株式会社 アミノ酸又はその塩とオリゴ糖を含む植物活力剤ならびにその使用
WO2021002181A1 (ja) 2019-07-02 2021-01-07 日本エイアンドエル株式会社 接着剤用共重合体ラテックスおよび接着剤組成物
KR20220009448A (ko) 2019-06-17 2022-01-24 쇼와 덴코 가부시키가이샤 외생 엘리시터 및 내생 엘리시터를 포함하는 식물 활력제 및 그 사용
WO2022202296A1 (ja) 2021-03-23 2022-09-29 昭和電工株式会社 展着剤、肥料組成物、及び農業用薬剤組成物
KR20230005373A (ko) 2020-06-29 2023-01-09 쇼와 덴코 가부시키가이샤 식물 재배 방법 및 식물활력제
TWI840572B (zh) 2019-06-17 2024-05-01 日商力森諾科股份有限公司 含有纖維寡醣之植物活力劑及其使用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113637037A (zh) * 2021-08-18 2021-11-12 华南农业大学 一种寡聚葡萄糖及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129735A (ja) * 2004-11-02 2006-05-25 Hiroshima Univ 触媒を用いたセルロースの加水分解方法および触媒を用いたグルコースの生産方法
JP2009057354A (ja) * 2007-09-03 2009-03-19 National Institute Of Advanced Industrial & Technology オリゴ糖の製造方法
WO2011036955A1 (ja) * 2009-09-25 2011-03-31 国立大学法人北海道大学 セルロースまたはヘミセルロースの加水分解用触媒、並びにこの触媒を用いる糖含有液の製造方法
WO2012128055A1 (ja) * 2011-03-22 2012-09-27 昭和電工株式会社 植物性バイオマスの加水分解反応用原料の前処理方法及び植物性バイオマスの糖化方法
WO2014097800A1 (ja) * 2012-12-18 2014-06-26 昭和電工株式会社 植物性バイオマスの加水分解方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5679055B2 (ja) * 2011-06-10 2015-03-04 トヨタ自動車株式会社 電池の充電方法、及び電池の充電制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129735A (ja) * 2004-11-02 2006-05-25 Hiroshima Univ 触媒を用いたセルロースの加水分解方法および触媒を用いたグルコースの生産方法
JP2009057354A (ja) * 2007-09-03 2009-03-19 National Institute Of Advanced Industrial & Technology オリゴ糖の製造方法
WO2011036955A1 (ja) * 2009-09-25 2011-03-31 国立大学法人北海道大学 セルロースまたはヘミセルロースの加水分解用触媒、並びにこの触媒を用いる糖含有液の製造方法
WO2012128055A1 (ja) * 2011-03-22 2012-09-27 昭和電工株式会社 植物性バイオマスの加水分解反応用原料の前処理方法及び植物性バイオマスの糖化方法
WO2014097800A1 (ja) * 2012-12-18 2014-06-26 昭和電工株式会社 植物性バイオマスの加水分解方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3395824A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045305A (ja) * 2018-09-18 2020-03-26 国立大学法人北海道大学 セロオリゴ糖の製造方法
JP7191313B2 (ja) 2018-09-18 2022-12-19 国立大学法人北海道大学 セロオリゴ糖の製造方法
WO2020255933A1 (ja) 2019-06-17 2020-12-24 昭和電工株式会社 セロオリゴ糖を含む植物活力剤及びその使用
WO2020255934A1 (ja) 2019-06-17 2020-12-24 昭和電工株式会社 アミノ酸又はその塩とオリゴ糖を含む植物活力剤ならびにその使用
KR20210151190A (ko) 2019-06-17 2021-12-13 쇼와 덴코 가부시키가이샤 아미노산 또는 그 염과 올리고당을 포함하는 식물 활력제 및 그 사용
KR20210151932A (ko) 2019-06-17 2021-12-14 쇼와 덴코 가부시키가이샤 셀로올리고당을 포함하는 식물 활력제 및 그 사용
KR20220009448A (ko) 2019-06-17 2022-01-24 쇼와 덴코 가부시키가이샤 외생 엘리시터 및 내생 엘리시터를 포함하는 식물 활력제 및 그 사용
TWI840572B (zh) 2019-06-17 2024-05-01 日商力森諾科股份有限公司 含有纖維寡醣之植物活力劑及其使用
WO2021002181A1 (ja) 2019-07-02 2021-01-07 日本エイアンドエル株式会社 接着剤用共重合体ラテックスおよび接着剤組成物
KR20230005373A (ko) 2020-06-29 2023-01-09 쇼와 덴코 가부시키가이샤 식물 재배 방법 및 식물활력제
WO2022202296A1 (ja) 2021-03-23 2022-09-29 昭和電工株式会社 展着剤、肥料組成物、及び農業用薬剤組成物

Also Published As

Publication number Publication date
EP3395824A1 (en) 2018-10-31
US20180362669A1 (en) 2018-12-20
JP6779505B2 (ja) 2020-11-04
EP3395824A4 (en) 2019-09-18
CN108350011A (zh) 2018-07-31
JPWO2017104687A1 (ja) 2018-10-11

Similar Documents

Publication Publication Date Title
WO2017104687A1 (ja) セロオリゴ糖の製造方法
EP2225387B1 (en) Process for producing saccharide
JP5300846B2 (ja) リグノセルロースまたはセルロースを含有する物質の処理方法
Zhao et al. Extracting xylooligosaccharides in wheat bran by screening and cellulase assisted enzymatic hydrolysis
WO2015098070A1 (ja) バイオマスを原料とする糖化液製造方法、糖化液製造装置及び連続式反応器
JP5943489B2 (ja) 植物性バイオマスの加水分解反応用原料の前処理方法及び植物性バイオマスの糖化方法
WO2014097800A1 (ja) 植物性バイオマスの加水分解方法
WO2014097801A1 (ja) 植物性バイオマスの加水分解方法
WO2014007295A1 (ja) 植物性バイオマスの分解方法及びグルコースの製造方法
JP2015122994A (ja) バイオマスを原料とする糖化液製造方法及び糖化液製造装置
JP5385563B2 (ja) 糖の製造方法
JP2013085523A (ja) キシロース、キシロビオース及び/又はキシロオリゴ糖の製造方法
JP7191313B2 (ja) セロオリゴ糖の製造方法
JP2022147444A (ja) セロオリゴ糖含有組成物の製造方法及びセロオリゴ糖含有組成物
CN109788790B (zh) 魔芋粉末及其制造方法
WO2014097799A1 (ja) 植物性バイオマスの加水分解方法
JP6431756B2 (ja) バイオマスの成分分離方法
CN107691763A (zh) 一种麦麸的综合利用方法
WO2015053027A1 (ja) セルロース含有バイオマスの処理方法
WO2019220937A1 (ja) マンノース抽出方法
JP2015123080A5 (ja)
JP2022084519A (ja) 多孔質セルロース粒子の製造方法
WO2014109345A1 (ja) 糖化用バイオマス組成物、糖化用バイオマス組成物の選定方法、及び糖の製造方法
JPWO2014192401A1 (ja) セルロース含有バイオマスの前処理方法、糖化用バイオマス組成物の製造方法、および糖の製造方法
JP2014128235A (ja) 糖の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556084

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016875664

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016875664

Country of ref document: EP

Effective date: 20180718