WO2011036907A1 - 電池およびエネルギーシステム - Google Patents
電池およびエネルギーシステム Download PDFInfo
- Publication number
- WO2011036907A1 WO2011036907A1 PCT/JP2010/054640 JP2010054640W WO2011036907A1 WO 2011036907 A1 WO2011036907 A1 WO 2011036907A1 JP 2010054640 W JP2010054640 W JP 2010054640W WO 2011036907 A1 WO2011036907 A1 WO 2011036907A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- positive electrode
- metal cation
- molten salt
- electrolyte
- Prior art date
Links
- 150000003839 salts Chemical class 0.000 claims abstract description 74
- 239000011734 sodium Substances 0.000 claims abstract description 35
- 150000001768 cations Chemical class 0.000 claims abstract description 26
- 239000003792 electrolyte Substances 0.000 claims abstract description 25
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 25
- -1 alkali metal cations Chemical class 0.000 claims abstract description 17
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 15
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 14
- 150000001450 anions Chemical class 0.000 claims abstract description 13
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 12
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 8
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 8
- 125000001153 fluoro group Chemical group F* 0.000 claims abstract description 8
- 125000003709 fluoroalkyl group Chemical group 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims description 32
- 150000002736 metal compounds Chemical class 0.000 claims description 13
- 239000011230 binding agent Substances 0.000 claims description 9
- 239000002482 conductive additive Substances 0.000 claims description 8
- 238000007599 discharging Methods 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 229910001415 sodium ion Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 claims description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims description 2
- 229910001414 potassium ion Inorganic materials 0.000 claims description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- MHEBVKPOSBNNAC-UHFFFAOYSA-N potassium;bis(fluorosulfonyl)azanide Chemical compound [K+].FS(=O)(=O)[N-]S(F)(=O)=O MHEBVKPOSBNNAC-UHFFFAOYSA-N 0.000 description 11
- 229910021201 NaFSI Inorganic materials 0.000 description 10
- VCCATSJUUVERFU-UHFFFAOYSA-N sodium bis(fluorosulfonyl)azanide Chemical compound FS(=O)(=O)N([Na])S(F)(=O)=O VCCATSJUUVERFU-UHFFFAOYSA-N 0.000 description 10
- YLKTWKVVQDCJFL-UHFFFAOYSA-N sodium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Na+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F YLKTWKVVQDCJFL-UHFFFAOYSA-N 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 239000011575 calcium Substances 0.000 description 8
- BNOODXBBXFZASF-UHFFFAOYSA-N [Na].[S] Chemical compound [Na].[S] BNOODXBBXFZASF-UHFFFAOYSA-N 0.000 description 7
- 239000012300 argon atmosphere Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000010248 power generation Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 229940125898 compound 5 Drugs 0.000 description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 description 6
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 239000006230 acetylene black Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000011812 mixed powder Substances 0.000 description 5
- 239000011651 chromium Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 3
- 229910019730 CsFSI Inorganic materials 0.000 description 3
- 229910010941 LiFSI Inorganic materials 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 3
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 3
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- KVFIZLDWRFTUEM-UHFFFAOYSA-N potassium;bis(trifluoromethylsulfonyl)azanide Chemical compound [K+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F KVFIZLDWRFTUEM-UHFFFAOYSA-N 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000005297 pyrex Substances 0.000 description 3
- 239000003566 sealing material Substances 0.000 description 3
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000002892 organic cations Chemical class 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 2
- 239000012855 volatile organic compound Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 229910000873 Beta-alumina solid electrolyte Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002043 β-alumina solid electrolyte Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
- H01M10/39—Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
- H01M10/399—Cells with molten salts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/582—Halogenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0045—Room temperature molten salts comprising at least one organic ion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a battery and an energy system.
- Patent Document 1 discloses that a sodium-sulfur battery has a ⁇ -alumina solid electrolyte that selectively transmits molten metal sodium, which is a negative electrode active material, and molten sulfur, which is a positive electrode active material, to sodium ions. Compared to other secondary batteries, it has superior energy characteristics such as high energy density, compact equipment, almost no self-discharge, high battery efficiency, and easy maintenance. (See paragraph [0002] of Patent Document 1).
- a sodium-sulfur battery is generally configured by connecting a string of cells (unit cells) connected in series to form a module, and a module row in which the modules are connected in series is connected in parallel. It is described that the entire arrangement is used as a main component of an electric power storage system in which an AC / DC converter and a transformer are connected to an electric power system or the like (Japanese Patent Laid-Open No. 2007-273297 (Patent Document 1)). [0003]).
- the temperature of the sodium-sulfur battery is Since it takes several days just to raise the operating temperature to a high temperature, there is a problem that it takes an enormous amount of time to drive the power storage system.
- a lithium ion secondary battery As a secondary battery having a high energy density and a low operating temperature, a lithium ion secondary battery is well known, but as is well known, a lithium ion secondary battery uses a flammable organic compound liquid as an electrolyte. Therefore, safety is low and there are problems with lithium resources.
- an object of the present invention is to use a battery using sodium that has high safety, has a high energy density, can be operated at a low temperature, and has abundant resources, and the battery. To provide an energy system.
- the present invention includes a positive electrode, a negative electrode containing sodium as a main component, and an electrolyte placed between the positive electrode and the negative electrode.
- the electrolyte includes an anion represented by the following formula (I) and a metal cation.
- R 1 and R 2 each independently represents a fluorine atom or a fluoroalkyl group, and the metal cation is at least one of an alkali metal cation and at least one of an alkaline earth metal cation.
- the battery includes at least one of them.
- the positive electrode includes a metal or a metal compound represented by the following formula (II), Na x M1 y M2 z M3 w (II)
- M1 represents any one of Fe (iron), Ti (titanium), Cr (chromium) or Mn (manganese)
- M2 represents PO 4 (phosphorous tetroxide) or S (sulfur).
- M3 represents either F (fluorine) or O (oxygen)
- the composition ratio x of Na (sodium) is a real number satisfying the relationship of 0 ⁇ x ⁇ 2
- the composition ratio y of M1 is a real number satisfying the relationship of 0 ⁇ y ⁇ 1
- the composition ratio z of M2 is a real number satisfying the relationship of 0 ⁇ z ⁇ 2
- the composition ratio w of M3 is 0 ⁇ w It is a real number that satisfies the relationship of ⁇ 3, preferably satisfies the relationship of x + y> 0 and satisfies the relationship of z + w> 0.
- the positive electrode further includes a conductive additive.
- the positive electrode preferably further contains a binder.
- the metal cation is preferably potassium ion and / or sodium ion.
- the present invention provides an electrical energy generator for generating electrical energy, a secondary battery capable of charging the electrical energy generated by the electrical energy generator and discharging the charged electrical energy, Wiring for electrically connecting the energy generating device and the secondary battery, and the secondary battery is installed between the positive electrode, the negative electrode mainly composed of sodium, and the positive electrode and the negative electrode.
- the electrolyte is a molten salt containing an anion represented by the following formula (I) and a metal cation,
- R 1 and R 2 each independently represent a fluorine atom or a fluoroalkyl group, and the metal cation is at least one alkali metal cation and at least one alkaline earth metal cation.
- An energy system including at least one of the following.
- the present invention it is possible to provide a battery using sodium that is highly safe, has a high energy density, can be operated at a low temperature, and has abundant resources, and an energy system using the battery. it can.
- FIG. 1 shows a schematic configuration of a battery according to an embodiment which is an example of the battery of the present invention.
- the battery 1 according to the present embodiment includes a lower plate 2b made of a conductive material such as metal, a positive electrode 4 installed on the lower plate 2b, and a glass mesh installed on the positive electrode 4, for example.
- Separator 8 formed on the separator 8 a negative electrode 3 made of a conductive material containing sodium as a main component (sodium content is 50% by mass or more), and a conductive material such as metal installed on the negative electrode 3.
- an upper lid 2a made of a functional material.
- the upper lid 2a and the lower plate 2b are fixed by a fixing member (not shown) such as a bolt and a nut, for example, with the upper lid 2a covered on the lower plate 2b.
- a fixing member such as a bolt and a nut
- an electrically insulating sealing material 9a such as an O-ring is installed on the peripheral edge of the upper lid 2a
- an electrical insulating sealing material 9b such as an O-ring is also installed on the peripheral edge of the lower dish 2b.
- a current collector that is electrically connected to the upper lid 2a may be installed above the upper lid 2a, and a current collector that is electrically connected to the lower dish 2b is installed below the lower plate 2b. May be.
- the separator 8 is immersed in an electrolyte made of a molten salt containing an anion represented by the following formula (I) and a metal cation.
- the electrolyte made of the molten salt is used for the negative electrode 3 and the positive electrode 4. In contact with each.
- R 1 and R 2 each independently represents a fluorine atom or a fluoroalkyl group.
- R 1 and R 2 may be the same or different from each other.
- an anion R 1 and R 2 in the above formula (I) represents respectively fluorine atom (F), R 1 and R 2 are each a trifluoromethyl group ( An anion showing CF 3 ) and an anion showing that R 1 represents a fluorine atom (F) and R 2 represents a trifluoromethyl group (CF 3 ) can be used.
- molten salt used for the electrolyte one containing at least one of an anion represented by the above formula (I) and at least one of an alkali metal cation and at least one of an alkaline earth metal cation is used. .
- the above-mentioned molten salt has a low melting point. Therefore, when the molten salt is used as the battery electrolyte, the operating temperature of the battery is 280 to 360 ° C. of the sodium-sulfur battery. This is due to the fact that it can be significantly reduced.
- the molten salt when used as the battery electrolyte, the molten salt is nonflammable, so that the battery has high safety and can have a high energy density.
- R 1 and R 2 each represent F, bisfluorosulfonylimide ion (FSI ⁇ ; And / or bistrifluoromethylsulfonylimide ion (TFSI ⁇ ; hereinafter also referred to as “TFSI ion”) in which R 1 and R 2 each represent CF 3 . preferable.
- the molten salt used for the electrolyte contains FSI ions and / or TFSI ions as anions, and is either one of an alkali metal or an alkaline earth metal.
- Molten salt MFSI mono-salt, molten salt MTFSI mono-salt, mixture of two or more types of molten salt MFSI mono-salt, mixture of two or more types of molten salt MTFSI mono-salt, or molten salt It is preferable to use a mixture of one or more MFSI single salts and one or more molten salt MTFSI single salts.
- a mixture of a single salt of a molten salt MFSI, a mixture of a single salt of a molten salt MTFSI, and a mixture of one or more of a single salt of a molten salt MFSI and one or more of a single salt of a molten salt MTFSI Since it is the structure which has 2 or more types of single salt, compared with the melting
- alkali metal at least one selected from the group consisting of lithium (Li), sodium (Na), potassium (K), rubidium (Rb), and cesium (Cs) can be used.
- alkaline earth metal at least one selected from the group consisting of beryllium (Be), Mg (magnesium), calcium (Ca), strontium (Sr), and barium (Ba) can be used.
- molten salt MTFSI LiTFSI, NaTFSI, KTFSI, RbTFSI, CsTFSI, Be (TFSI) 2 , Mg (TFSI) 2 , Ca (TFSI) 2 , Sr (TFSI) 2 and Ba (TFSI) 2 Any one single salt selected from the group consisting of can be used.
- a mixture with one or more single salts selected from the group consisting of (TFSI) 2 , Ca (TFSI) 2 , Sr (TFSI) 2 and Ba (TFSI) 2 can be used.
- a binary molten salt composed of a mixture of NaFSI and KFSI (hereinafter referred to as “NaFSI-KFSI molten salt”) or NaFSI and NaTFSI is used. It is preferable to use a binary molten salt made of a mixture (hereinafter referred to as “NaFSI-NaTFSI molten salt”).
- the molar ratio of Na cation to K cation ((number of moles of K cation) / (number of moles of Na cation + number of moles of K cation)) in the NaFSI-KFSI molten salt is set to 0.4 to 0.7. It is preferable to set it to 0.5 or more and 0.6 or less.
- the battery operating temperature tends to be 90 ° C. or less.
- the composition of the molten salt includes two or more molten salts. It is preferably in the vicinity of a composition showing a crystal (eutectic composition), and most preferably a eutectic composition.
- an organic cation may be contained in the electrolyte made of the above molten salt.
- the conductivity of the electrolyte can be increased, and the operating temperature of the battery tends to be lowered.
- alkylimidazole cation such as 1-ethyl-3-methylimidazolium cation
- alkylpyrrolidinium cation such as N-ethyl-N-methylpyrrolidinium cation, 1-methyl
- An alkylpyridinium cation such as a pyridinium cation or a quaternary ammonium cation such as a trimethylhexylammonium cation can be used.
- the positive electrode 4 for example, an electrode having a configuration in which a metal or a metal compound 5 and a conductive additive 6 are fixed by a binder 7 can be used.
- the metal or metal compound 5 for example, a metal or a metal compound capable of intercalating M of the molten salt serving as an electrolyte can be used, and in particular, a metal represented by the following formula (II) Or it is preferable that a metal compound is included. In this case, a battery having excellent charge / discharge cycle characteristics and a high energy density can be obtained.
- M1 represents any one of Fe, Ti, Cr or Mn
- M2 represents either PO 4 or S
- M3 represents any of F or O. Either one is shown.
- the composition ratio x of Na is a real number that satisfies the relationship of 0 ⁇ x ⁇ 2
- the composition ratio y of M1 is a real number that satisfies the relationship of 0 ⁇ y ⁇ 1
- the composition ratio z of M2 is a real number that satisfies the relationship of 0 ⁇ z ⁇ 2
- the composition ratio w of M3 is a real number that satisfies the relationship of 0 ⁇ w ⁇ 3
- the relationship of x + y> 0 is satisfied.
- Z + w> 0 is satisfied.
- Examples of the metal compound represented by the above formula (II) include at least one selected from the group consisting of NaCrO 2 , TiS 2 , NaMnF 3 , Na 2 FePO 4 F, NaVPO 4 F and Na 0.44 MnO 2. It is preferable to use it.
- NaCrO 2 is preferably used as the metal compound represented by the above formula (II).
- the battery 1 having excellent charge / discharge cycle characteristics and high energy density tends to be obtained.
- a conductive material can be used without particular limitation, and among them, conductive acetylene black is preferably used.
- conductive acetylene black is used as the conductive assistant 6, the battery 1 having excellent charge / discharge cycle characteristics and high energy density tends to be obtained.
- the content of the conductive additive 6 in the positive electrode 4 is preferably 40% by mass or less, more preferably 5% by mass or more and 20% by mass or less of the positive electrode 4.
- the content of the conductive additive 6 in the positive electrode 4 is 40% by mass or less, particularly when the content is 5% by mass or more and 20% by mass or less, the battery 1 having excellent charge / discharge cycle characteristics and high energy density is obtained. The tendency to be able to do is even greater.
- the conductive support agent 6 does not need to be contained in the positive electrode 4 when the positive electrode 4 has electroconductivity.
- the binder 7 can be used without particular limitation as long as it can fix the metal or metal compound 5 and the conductive additive 6, and among them, polytetrafluoroethylene (PTFE) is used. Is preferred. When polytetrafluoroethylene (PTFE) is used as the binder 7, the metal compound 5 made of NaCrO 2 and the conductive additive 6 made of acetylene black tend to be firmly fixed.
- PTFE polytetrafluoroethylene
- the content of the binder 7 in the positive electrode 4 is preferably 40% by mass or less of the positive electrode 4, and more preferably 1% by mass or more and 10% by mass or less.
- the content of the binder 7 in the positive electrode 4 is 40% by mass or less, particularly when the content is 1% by mass or more and 10% by mass or less, the metal or the metal compound 5 The tendency that the conductive additive 6 can be more firmly fixed is further increased.
- the binder 7 is not necessarily included in the positive electrode 4.
- the battery 1 having the above configuration can be used as a secondary battery that can be charged and discharged by electrode reactions of the following formulas (III) and (IV).
- Negative electrode 3 Na ⁇ ⁇ Na + + e ⁇ (Discharge reaction on the right side and charge reaction on the left side)
- Cathode 4 NaCrO 2 ⁇ ⁇ xNa + + xe ⁇ + Na 1-x CrO 2 (Charging reaction on the right side and discharging reaction on the left side)
- the battery 1 can also be used as a primary battery.
- a string may be configured by electrically connecting a plurality of cells 1 that are unit cells in series, and the plurality of strings may be electrically connected.
- the modules may be configured by connecting them in parallel.
- the single cell of the battery 1 having the above-described configuration and the string and module of the single cell can be suitably used as an electric energy charging / discharging device of an energy system as described later, for example.
- FIG. 2 shows a schematic configuration of an energy system according to an embodiment which is an example of the energy system of the present invention using the battery 1 shown in FIG.
- the secondary batteries 100a, 100b, 100c, 100d, and 100e each of which includes a single cell of the battery 1 or a string or a module in which a plurality of the single cells are electrically connected, are implemented as shown in FIG. It is used as a charging / discharging device for electric energy generated in the energy system of the form.
- electrical energy generated by wind power generation in a wind farm 10 that is a large-scale wind power generation facility is sent from the wind farm 10 to the secondary battery 100a through the wiring 21, and the secondary battery 100a receives the electrical energy. Charge.
- the electrical energy charged in the secondary battery 100a is sent to the power transmission line 11 through the wiring 22 by being discharged from the secondary battery 100a. Thereafter, the electric energy is sent from the power transmission line 11 to the substation 12 through the wiring 23 and from the substation 12 to the secondary battery 100b through the wiring 24.
- the secondary battery 100b receives and charges the electrical energy sent from the substation 12 through the wiring 24.
- the electric energy generated by the photovoltaic power generation in the solar cell module 18 installed in the factory is sent to the secondary battery 100e through the wiring 29, and the secondary battery 100e receives the electric energy and charges it.
- the gas power generation facility 20 installed in the factory generates electric energy generated by using fuel gas, ammonia, or VOC (volatile organic compound), and the fuel cell facility 19 installed outside the factory.
- the electric energy is sent to the secondary battery 100e through the wirings 26 and 27, respectively, and the secondary battery 100e receives the electric energy and charges it.
- the electrical energy charged in the secondary battery 100e is discharged from the secondary battery 100e and used as power 17 for operating the factory through the wiring 28.
- the electrical energy charged in the secondary battery 100b is discharged from the secondary battery 100b and used as power 17 for operating the factory through the wiring 25 or sent to the secondary battery 100c through the wiring 25.
- the battery is charged by the secondary battery 100c.
- the electrical energy generated by the solar power generation in the mega solar facility 13 which is a large-scale solar power generation facility is used as power 17 for operating the factory through the wiring 25 or is supplied to the secondary battery 100c through the wiring 25. It is sent and charged by the secondary battery 100c.
- the electric energy charged in the secondary battery 100c is discharged from the secondary battery 100c, is sent to the electric station 14 through the wiring 30, and is charged in the electric station 14.
- the electric energy charged in the electric station 14 is sent to a vehicle 15 such as a hybrid car or an electric vehicle through the wiring 31 and used as driving power for the vehicle 15.
- the electrical energy charged in the secondary battery 100c is discharged from the secondary battery 100c, is sent to the secondary battery 100d in the automobile 15 through the wiring 32, and is charged by the secondary battery 100d.
- the electric energy charged by the secondary battery 100d is used as the driving power 16 of the automobile 15 by being discharged from the secondary battery 100d.
- secondary batteries 100a, 100b, and 100c including a single battery, a string, or a module of the battery 1 that has high safety, high energy density, and can be operated at a low temperature.
- 100d, 100e are used as electric energy charging / discharging devices.
- the energy system using these secondary batteries is also highly safe, it is possible to generate a large amount of electric energy and use it efficiently, and it takes an enormous amount of time such as several days to drive the energy system. Since it is not necessary, an energy system having excellent characteristics can be obtained.
- At least one of the wirings 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, and 33 is superconducting at high temperature. It is preferable to use a superconducting wiring that can be used. In this case, since loss during transmission of electric energy can be effectively prevented, the generated electric energy tends to be used efficiently.
- the NaCrO 2 , acetylene black and PTFE obtained as described above were kneaded at a mass ratio of 80: 15: 5 and then pressed onto an Al mesh to produce a positive electrode.
- the glass mesh containing the NaFSI-KFSI molten salt was placed on the positive electrode by immersing the glass mesh in the NaFSI-KFSI molten salt produced as described above in a glove box in an argon atmosphere.
- a negative electrode made of metallic sodium was placed on the glass mesh, and an upper lid made of stainless steel was placed on the negative electrode.
- Example 1 Thereafter, the battery of Example 1 was produced by fixing the upper lid and the lower dish using bolts and nuts.
- Example 1 (Iv) Evaluation The battery of Example 1 manufactured as described above was subjected to a charge / discharge test of 10 cycles under the conditions of an operating temperature of 80 ° C., a charge start voltage of 2.5 V, and a discharge start voltage of 3.5 V. The discharge capacity after cycling was measured. The results are shown in Table 1.
- FIG. 3 schematically shows a charge / discharge curve for illustrating the charge start voltage, the discharge start voltage, and the discharge capacity.
- the discharge capacity after 10 cycles of the battery of Example 1 was 74 (mA ⁇ h / g).
- Example 2 A battery of Example 2 was fabricated in the same manner as in Example 1 except that the positive electrode NaCrO 2 was replaced with commercially available TiS 2 .
- Example 2 The battery of Example 2 was subjected to a 10-cycle charge / discharge test under the conditions of an operating temperature of 80 ° C., a charge start voltage of 1.9 V, and a discharge start voltage of 2.4 V, and the discharge capacity after 10 cycles was measured. The results are shown in Table 1.
- the discharge capacity after 10 cycles of the battery of Example 2 was 115 (mA ⁇ h / g).
- Example 3 A battery of Example 3 was fabricated in the same manner as in Example 1 except that the positive electrode NaCrO 2 was replaced with commercially available FeF 3 .
- Example 3 The battery of Example 3 was subjected to a 10-cycle charge / discharge test under the conditions of an operating temperature of 80 ° C., a charge start voltage of 2.7 V, and a discharge start voltage of 4.1 V, and the discharge capacity after 10 cycles was measured. The results are shown in Table 1.
- the discharge capacity after 10 cycles of the battery of Example 3 was 125 (mA ⁇ h / g).
- Example 4 A NaFSI-NaTFSI molten salt was prepared using NaTFSI powder instead of KFSI powder, and NaFSI-NaTFSI molten salt was used instead of NaFSI-KFSI molten salt. A battery was produced. In addition, the preparation method of NaTFSI powder is mentioned later.
- the battery of Example 4 was subjected to a charge / discharge test for 10 cycles under the conditions of an operating temperature of 80 ° C., a charge start voltage of 2.5 V, and a discharge start voltage of 3.5 V, and the discharge capacity after 10 cycles was measured.
- the results are shown in Table 1.
- the discharge capacity after 10 cycles of the battery of Example 4 was 76 (mA ⁇ h / g).
- the batteries of Examples 1 to 4 were confirmed to be batteries having a high energy density at a low operating temperature of 80 ° C.
- the batteries of Examples 1 to 4 have high safety because non-flammable NaFSI-KFSI molten salt or NaFSI-NaTFSI molten salt is used for the electrolyte.
- HTFSI Morita Chemical Co., Ltd .: purity 99% or more
- Cs 2 CO 3 Aldrich: purity 99.9%
- the mixed powder was prepared by mixing, and then the mixed powder was heated and melted to 110 ° C. or higher, which is the melting point of the mixed powder, to prepare a NaTFSI-CsTFSI molten salt.
- a glass mesh containing NaTFSI-CsTFSI molten salt was placed on the positive electrode by immersing the glass mesh in the NaTFSI-CsTFSI molten salt produced as described above in a glove box in an argon atmosphere.
- a negative electrode made of metallic sodium was placed on the glass mesh, and an upper lid made of stainless steel was placed on the negative electrode.
- Example 5 Thereafter, the battery of Example 5 was produced by fixing the upper lid and the lower dish using bolts and nuts.
- Example 5 (Iv) Evaluation The battery of Example 5 manufactured as described above was subjected to a 10-cycle charge / discharge test under the conditions of an operating temperature of 150 ° C., a charge start voltage of 2.3 V, and a discharge start voltage of 3.1 V. The discharge capacity after cycling was measured. The results are shown in Table 2.
- FIG. 3 schematically shows a charge / discharge curve for illustrating the charge start voltage, the discharge start voltage, and the discharge capacity.
- the discharge capacity after 10 cycles of the battery of Example 5 was 100 (mA ⁇ h / g).
- Example 6 A battery of Example 6 was made in the same manner as Example 5 except that the positive electrode NaCrO 2 was replaced with commercially available TiS 2 .
- the battery of Example 6 was subjected to a charge / discharge test for 10 cycles under the conditions of an operating temperature of 150 ° C., a charge start voltage of 1.8 V, and a discharge start voltage of 2.5 V, and the discharge capacity after 10 cycles was measured.
- the results are shown in Table 2.
- the discharge capacity after 10 cycles of the battery of Example 6 was 125 (mA ⁇ h / g).
- Example 7 A battery of Example 7 was made in the same manner as Example 5 except that NaCrO 2 for the positive electrode was replaced with commercially available FeF 3 .
- Example 7 The battery of Example 7 was subjected to a 10-cycle charge / discharge test under the conditions of an operating temperature of 150 ° C., a charge start voltage of 2.6 V, and a discharge start voltage of 4.0 V, and the discharge capacity after 10 cycles was measured. The results are shown in Table 2.
- the discharge capacity after 10 cycles of the battery of Example 7 was 135 (mA ⁇ h / g).
- the batteries of Examples 5 to 7 were confirmed to be batteries having a high energy density at a low operating temperature of 150 ° C.
- the batteries of Examples 5 to 7 have high safety because non-flammable NaTFSI-CsTFSI molten salt is used for the electrolyte.
- the present invention may be used for batteries and energy systems.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
NaxM1yM2zM3w …(II)
式(II)において、M1は、Fe(鉄)、Ti(チタン)、Cr(クロム)またはMn(マンガン)のいずれか1種を示し、M2は、PO4(四酸化リン)またはS(硫黄)のいずれか一方を示し、M3は、F(フッ素)またはO(酸素)のいずれか一方を示し、Na(ナトリウム)の組成比xは、0≦x≦2の関係を満たす実数であり、M1の組成比yは、0≦y≦1の関係を満たす実数であり、M2の組成比zは、0≦z≦2の関係を満たす実数であり、M3の組成比wは、0≦w≦3の関係を満たす実数であって、x+y>0の関係を満たすとともに、z+w>0の関係を満たすことが好ましい。
また、本発明の電池において、正極は、バインダーをさらに含むことが好ましい。
図1に、本発明の電池の一例である実施の形態の電池の模式的な構成を示す。ここで、本実施の形態の電池1は、たとえば金属などの導電性材料からなる下皿2bと、下皿2b上に設置された正極4と、正極4上に設置されたたとえばガラスメッシュなどからなるセパレータ8と、セパレータ8上に設置されたナトリウムを主成分(ナトリウムの含有量が50質量%以上)とする導電性材料からなる負極3と、負極3上に設置されたたとえば金属などの導電性材料からなる上蓋2aとを備えている。
なお、上記の式(II)において、M1は、Fe、Ti、CrまたはMnのいずれか1種を示し、M2は、PO4またはSのいずれか一方を示し、M3は、FまたはOのいずれか一方を示す。
負極3:Na→ ←Na++e-(右向きが放電反応、左向きが充電反応) …(III)
正極4:NaCrO2 → ←xNa++xe-+Na1-xCrO2(右向きが充電反応、左向きが放電反応) …(IV)
また、電池1は、一次電池としての使用も可能である。
図2に、図1に示す電池1を用いた本発明のエネルギーシステムの一例である実施の形態のエネルギーシステムの模式的な構成を示す。
(i)電解質の作製
まず、アルゴン雰囲気のグローブボックス内で、KFSI(第一工業製薬(株)製)と、NaClO4(Aldrich社製:純度98%)とがそれぞれ同モルとなるように秤量した後、KFSIとNaClO4とをそれぞれアセトニトリルに溶解して30分間攪拌することにより混合して、以下の化学反応式(V)により反応させた。
次に、上記の反応後の溶液中に沈殿したKClO4を減圧濾過により除去した後、KClO4の除去後の溶液をパイレックス(登録商標)製の真空容器に入れ、真空ポンプによって333Kで2日間真空引きを行なうことによって、アセトニトリルを除去した。
その後、ジクロロメタンによる洗浄を3回行なって塩化チオニルを除去した後、塩化チオニルの除去後の物質をPFAチューブに入れ、真空ポンプによって323Kで2日間真空引きを行なうことによってジクロロメタンを除去した。これにより、白色の粉末状のNaFSIを得た。
まず、Na2CO3(和光純薬工業(株)製)とCr2O3(和光純薬工業(株)製)とをモル比1:1で混合した後にペレット状に成形し、アルゴン気流中で1223Kの温度で5時間焼成することによって、NaCrO2を得た。
まず、上記のようにして作製した正極のAlメッシュ側をAlからなる下皿側にして、正極を下皿上に設置した。
上記のようにして作製した実施例1の電池について、動作温度80℃、充電開始電圧2.5Vおよび放電開始電圧3.5Vの条件で、10サイクルの充放電試験を行ない、10サイクル後の放電容量を測定した。その結果を表1に示す。なお、図3に、充電開始電圧、放電開始電圧および放電容量をそれぞれ図解するための充放電曲線の概略を示す。
正極のNaCrO2を市販のTiS2に置き換えたこと以外は実施例1と同様にして、実施例2の電池を作製した。
正極のNaCrO2を市販のFeF3に置き換えたこと以外は実施例1と同様にして、実施例3の電池を作製した。
KFSI粉末の代わりにNaTFSI粉末を用いてNaFSI-NaTFSI溶融塩を作製し、NaFSI-KFSI溶融塩の代わりにNaFSI-NaTFSI溶融塩を用いたこと以外は実施例1と同様にして、実施例4の電池を作製した。なお、NaTFSI粉末の作製方法については後述する。
(i)電解質の作製
まず、アルゴン雰囲気のグローブボックス内で、HTFSI(森田化学工業(株)製:純度99%以上)と、Na2CO3(和光純薬化学工業(株)製:純度99.5%)とをそれぞれHTFSI:Na2CO3=2:1のモル比となるように秤量した後、HTFSIとNa2CO3とをそれぞれエタノールに溶解して30分間攪拌することにより混合して、以下の化学反応式(VII)により反応させた。
次に、ロータリーエバポレーターにより、数時間攪拌しながら、粗くエタノールを取り除いた。これをパイレックス(登録商標)製の真空容器に入れ、真空ポンプによって353Kで24時間、373Kで24時間、403Kで24時間それぞれ真空引きを行なうことによってエタノールを除去して乾燥させることによって、白色の粉末状のNaTFSIを得た。
次に、ロータリーエバポレーターにより、数時間攪拌しながら、粗くエタノールを取り除いた。これをパイレックス(登録商標)製の真空容器に入れ、真空ポンプによって353Kで24時間、373Kで24時間、403Kで24時間それぞれ真空引きを行なうことによってエタノールを除去して乾燥させることによって、白色の粉末状のCsTFSIを得た。
実施例1と同様にして、NaCrO2、アセチレンブラックおよびPTFEを質量比80:15:5で混練した後にAlメッシュ上に圧着することによって正極を作製した。
まず、上記のようにして作製した正極のAlメッシュ側をAlからなる下皿側にして、正極を下皿上に設置した。
上記のようにして作製した実施例5の電池について、動作温度150℃、充電開始電圧2.3Vおよび放電開始電圧3.1Vの条件で、10サイクルの充放電試験を行ない、10サイクル後の放電容量を測定した。その結果を表2に示す。なお、図3に、充電開始電圧、放電開始電圧および放電容量をそれぞれ図解するための充放電曲線の概略を示す。
正極のNaCrO2を市販のTiS2に置き換えたこと以外は実施例5と同様にして、実施例6の電池を作製した。
正極のNaCrO2を市販のFeF3に置き換えたこと以外は実施例5と同様にして、実施例7の電池を作製した。
Claims (6)
- 前記正極(4)は、下記の式(II)で表わされる金属または金属化合物を含み、
NaxM1yM2zM3w …(II)
前記式(II)において、
M1は、Fe、Ti、CrまたはMnのいずれか1種を示し、
M2は、PO4またはSのいずれか一方を示し、
M3は、FまたはOのいずれか一方を示し、
Naの組成比xは、0≦x≦2の関係を満たす実数であり、
M1の組成比yは、0≦y≦1の関係を満たす実数であり、
M2の組成比zは、0≦z≦2の関係を満たす実数であり、
M3の組成比wは、0≦w≦3の関係を満たす実数であり、
x+y>0の関係を満たすとともに、z+w>0の関係を満たす、請求の範囲第1項に記載の電池。 - 前記正極(4)は、導電助剤をさらに含む、請求の範囲第2項に記載の電池。
- 前記正極(4)は、バインダーをさらに含む、請求の範囲第2項に記載の電池。
- 前記金属のカチオンは、カリウムイオンおよび/またはナトリウムイオンである、請求の範囲第1項に記載の電池。
- 電気エネルギーを発生させるための電気エネルギー発生装置(10,13,18,19,20)と、
前記電気エネルギー発生装置(10,13,18,19,20)で発生した電気エネルギーを充電可能であるとともに充電された電気エネルギーを放電可能である二次電池(1,100a,100b,100c,100d,100e)と、
前記電気エネルギー発生装置(10,13,18,19,20)と前記二次電池(1,100a,100b,100c,100d,100e)とを電気的に接続するための配線(21,22,23,24,25,26,27,28,29,30,31,32,33)と、を備えており、
前記二次電池(1,100a,100b,100c,100d,100e)は、
正極(4)と、
ナトリウムを主成分とする負極(3)と、
前記正極(4)と前記負極(3)との間に設置された電解質と、を備え、
前記電解質は、下記の式(I)で表わされるアニオンと、金属のカチオンとを含む溶融塩であり、
前記金属のカチオンは、アルカリ金属のカチオンの少なくとも1種およびアルカリ土類金属のカチオンの少なくとも1種の少なくとも一方を含む、エネルギーシステム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10818584.4A EP2485317B1 (en) | 2009-09-28 | 2010-03-18 | Battery and energy system |
JP2011532920A JP5670339B2 (ja) | 2009-09-28 | 2010-03-18 | 電池およびエネルギーシステム |
CA2775284A CA2775284C (en) | 2009-09-28 | 2010-03-18 | Battery and energy system |
KR1020117029504A KR101684718B1 (ko) | 2009-09-28 | 2010-03-18 | 전지 및 에너지 시스템 |
CN2010800325200A CN102511106A (zh) | 2009-09-28 | 2010-03-18 | 电池和能量系统 |
US13/219,167 US20120058393A1 (en) | 2009-09-28 | 2011-08-26 | Battery and energy system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009222854 | 2009-09-28 | ||
JP2009-222854 | 2009-09-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/219,167 Continuation US20120058393A1 (en) | 2009-09-28 | 2011-08-26 | Battery and energy system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011036907A1 true WO2011036907A1 (ja) | 2011-03-31 |
Family
ID=43795674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/054640 WO2011036907A1 (ja) | 2009-09-28 | 2010-03-18 | 電池およびエネルギーシステム |
Country Status (8)
Country | Link |
---|---|
US (1) | US20120058393A1 (ja) |
EP (1) | EP2485317B1 (ja) |
JP (1) | JP5670339B2 (ja) |
KR (1) | KR101684718B1 (ja) |
CN (1) | CN102511106A (ja) |
CA (1) | CA2775284C (ja) |
EA (1) | EA019152B1 (ja) |
WO (1) | WO2011036907A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011108716A1 (ja) * | 2010-03-05 | 2011-09-09 | 住友電気工業株式会社 | 電池用負極前駆体材料の製造方法、電池用負極前駆体材料、及び電池 |
WO2011129391A1 (ja) * | 2010-04-16 | 2011-10-20 | 住友電気工業 株式会社 | 溶融塩電池のケースおよび溶融塩電池 |
WO2012117916A1 (ja) * | 2011-03-02 | 2012-09-07 | 住友電気工業株式会社 | 溶融塩電池 |
JP2012243924A (ja) * | 2011-05-19 | 2012-12-10 | Sumitomo Electric Ind Ltd | キャパシタ |
JP2013089506A (ja) * | 2011-10-19 | 2013-05-13 | Sumitomo Electric Ind Ltd | ナトリウム溶融塩電池用電極、ナトリウム溶融塩電池および、およびナトリウム溶融塩電池の使用方法 |
US8685571B2 (en) | 2010-04-06 | 2014-04-01 | Sumitomo Electric Industries, Ltd. | Method for producing separator, method for producing molten salt battery, separator, and molten salt battery |
JP2014137938A (ja) * | 2013-01-17 | 2014-07-28 | Sumitomo Electric Ind Ltd | 溶融塩電池、及び電源システム |
JP2014229389A (ja) * | 2013-05-20 | 2014-12-08 | 日本電信電話株式会社 | ナトリウム二次電池 |
US9553336B2 (en) | 2013-11-15 | 2017-01-24 | Sumitomo Electric Industries, Ltd. | Power supply system for well |
JP2017534162A (ja) * | 2014-10-14 | 2017-11-16 | フンダシオン セントロ デ インベスティガシオン コオペラティバ デ エネルヒアス アルテルナティバス セイセ エネルヒグネ フンダツィオアFundacion Centro De Investigacion Cooperativa De Energias Alternativas Cic Energigune Fundazioa | ナトリウムセラミック電解質電池 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10056651B2 (en) | 2010-11-05 | 2018-08-21 | Field Upgrading Usa, Inc. | Low temperature secondary cell with sodium intercalation electrode |
US10020543B2 (en) | 2010-11-05 | 2018-07-10 | Field Upgrading Usa, Inc. | Low temperature battery with molten sodium-FSA electrolyte |
JP5779050B2 (ja) * | 2010-11-30 | 2015-09-16 | 住友電気工業株式会社 | 溶融塩電池 |
JPWO2014030561A1 (ja) * | 2012-08-21 | 2016-07-28 | 住友電気工業株式会社 | 溶融塩組成物及びその溶融塩組成物を用いた二次電池 |
JP6570509B2 (ja) | 2013-03-13 | 2019-09-04 | フィールド アップグレーディング ユーエスエー・インク | ナトリウム挿入電極を有する低温二次電池 |
EP2973832B1 (en) * | 2013-03-13 | 2019-04-24 | Field Upgrading USA, Inc. | Low temperature battery with molten sodium-fsa electrolyte |
JP6510501B2 (ja) | 2013-06-06 | 2019-05-08 | フィールド アップグレーディング ユーエスエー・インク | 低粘度/高ナトリウム伝導性ハロアルミネート電解質 |
KR102363506B1 (ko) * | 2013-10-25 | 2022-02-17 | 에스케이이노베이션 주식회사 | 나트륨 이차전지 |
US10170795B2 (en) * | 2014-09-10 | 2019-01-01 | Battelle Memorial Institute | Electrolyte for high efficiency cycling of sodium metal and rechargeable sodium-based batteries comprising the electrolyte |
JP2018511922A (ja) | 2015-04-17 | 2018-04-26 | フィールド アップグレイディング ユーエスエイ インコーポレイテッド | ナトリウムイオン伝導性セラミックセパレータを有するナトリウムアルミニウム電池 |
TWI570989B (zh) | 2015-08-21 | 2017-02-11 | 財團法人工業技術研究院 | 電解液組合物、與鈉二次電池 |
RU2639458C2 (ru) * | 2015-08-24 | 2017-12-21 | Евгений Валерьевич Николаев | Автономная энергетическая установка |
US10566659B1 (en) * | 2018-12-14 | 2020-02-18 | Ses Holdings Pte. Ltd. | Eutectic mixtures containing alkali-metal sulfonimide salts, and electrochemical devices utilizing same |
CN109734069A (zh) * | 2019-01-08 | 2019-05-10 | 广西卡耐新能源有限公司 | 一种钠离子二次电池用高电压正极材料,制备方法,电极及钠离子二次电池 |
EP4415101A1 (en) * | 2021-10-06 | 2024-08-14 | Soulbrain Co., Ltd. | Electrolyte and secondary battery comprising same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000223148A (ja) * | 1999-01-27 | 2000-08-11 | Hitachi Ltd | ナトリウム―硫黄電池及びその製造方法、並びにその用途 |
WO2006101141A1 (ja) * | 2005-03-23 | 2006-09-28 | Kyoto University | 溶融塩組成物及びその利用 |
JP2007273297A (ja) | 2006-03-31 | 2007-10-18 | Ngk Insulators Ltd | ナトリウム−硫黄電池 |
JP2008243646A (ja) * | 2007-03-28 | 2008-10-09 | Kyushu Univ | フッ化物正極作製法 |
JP2009067644A (ja) * | 2007-09-14 | 2009-04-02 | Kyoto Univ | 溶融塩組成物及びその利用 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4003753A (en) * | 1976-03-15 | 1977-01-18 | Rockwell International Corporation | Electrode structure for electrical energy storage device |
US4223080A (en) * | 1979-05-11 | 1980-09-16 | Bell Telephone Laboratories, Incorporated | Cell and fuel cell electrodes having poly(phosphazene) binder |
US4753858A (en) * | 1985-07-18 | 1988-06-28 | Allied-Signal Inc. | Rechargeable sodium alloy anode |
US5168020A (en) * | 1985-07-18 | 1992-12-01 | Allied-Signal Inc. | Rechargeable sodium alloy anode |
JPS6362465A (ja) * | 1986-09-03 | 1988-03-18 | Toshiba Corp | 画像表示装置 |
US5439757A (en) * | 1992-10-14 | 1995-08-08 | National Power Plc | Electrochemical energy storage and/or power delivery cell with pH control |
US5558961A (en) * | 1994-06-13 | 1996-09-24 | Regents, University Of California | Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material |
JP4395925B2 (ja) * | 1999-06-29 | 2010-01-13 | ソニー株式会社 | 非水電解質電池 |
JP2001155731A (ja) * | 1999-11-26 | 2001-06-08 | Hitachi Maxell Ltd | 二次電池 |
CA2442257C (en) * | 2001-04-06 | 2013-01-08 | Valence Technology, Inc. | Sodium ion batteries |
US20090220838A9 (en) * | 2002-04-04 | 2009-09-03 | Jeremy Barker | Secondary electrochemical cell |
JP4404564B2 (ja) * | 2003-03-25 | 2010-01-27 | 三洋電機株式会社 | 非水電解質二次電池、正極活物質 |
CN101176225A (zh) * | 2005-03-28 | 2008-05-07 | 威伦斯技术公司 | 二次电化学电池 |
KR100822013B1 (ko) * | 2005-04-15 | 2008-04-14 | 주식회사 에너세라믹 | 불소화합물코팅 리튬이차전지 양극 활물질 및 그 제조방법 |
EP2093821A4 (en) * | 2006-11-17 | 2013-03-27 | Mitsubishi Heavy Ind Ltd | CATHODE ACTIVE MATERIAL FOR NONAQUEOUS ELECTROLYTE BATTERY, AND PROCESS FOR PRODUCING CATHODE ACTIVE MATERIAL FOR NONAQUEOUS ELECTROLYTE BATTERY |
US20080213674A1 (en) * | 2007-02-24 | 2008-09-04 | Ngk Insulators, Ltd. | Secondary battery |
JP2009129702A (ja) * | 2007-11-22 | 2009-06-11 | Sumitomo Chemical Co Ltd | ナトリウム・マンガン複合金属酸化物およびその製造方法、ならびにナトリウム二次電池 |
-
2010
- 2010-03-18 CN CN2010800325200A patent/CN102511106A/zh active Pending
- 2010-03-18 JP JP2011532920A patent/JP5670339B2/ja not_active Expired - Fee Related
- 2010-03-18 EP EP10818584.4A patent/EP2485317B1/en not_active Not-in-force
- 2010-03-18 KR KR1020117029504A patent/KR101684718B1/ko active IP Right Grant
- 2010-03-18 CA CA2775284A patent/CA2775284C/en active Active
- 2010-03-18 WO PCT/JP2010/054640 patent/WO2011036907A1/ja active Application Filing
- 2010-03-22 EA EA201000368A patent/EA019152B1/ru not_active IP Right Cessation
-
2011
- 2011-08-26 US US13/219,167 patent/US20120058393A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000223148A (ja) * | 1999-01-27 | 2000-08-11 | Hitachi Ltd | ナトリウム―硫黄電池及びその製造方法、並びにその用途 |
WO2006101141A1 (ja) * | 2005-03-23 | 2006-09-28 | Kyoto University | 溶融塩組成物及びその利用 |
JP2007273297A (ja) | 2006-03-31 | 2007-10-18 | Ngk Insulators Ltd | ナトリウム−硫黄電池 |
JP2008243646A (ja) * | 2007-03-28 | 2008-10-09 | Kyushu Univ | フッ化物正極作製法 |
JP2009067644A (ja) * | 2007-09-14 | 2009-04-02 | Kyoto Univ | 溶融塩組成物及びその利用 |
Non-Patent Citations (8)
Title |
---|
SHOHEI KANAMURA ET AL.: "Kongo Alkali Kinzoku Imide-en no Bussei to Natrium Niji Denchi eno Oyo", YOYUEN KAGAKU TORONKAI YOSHISHU, vol. 39, 29 November 2007 (2007-11-29), pages 5 - 6, XP008158026 * |
SHOHEI KANAMURA ET AL.: "Kongo Yoyu MTFSI-en (M=Na,K,Cs) no Bussei to Na/S Denchi eno Oyo", YOYUEN KAGAKU TORONKAI YOSHISHU, vol. 38, 28 November 2006 (2006-11-28), pages 15 - 16, XP008158025 * |
SHOHEI KANAMURA ET AL.: "NaTFSI-CsTFSI-Kei Yoyuen no Bussei to Natrium Niji Denchi eno Oyo", THE ELECTROCHEMICAL SOCIETY OF JAPAN TAIKAI KOEN YOSHISHU, vol. 74, 29 March 2007 (2007-03-29), pages 288, XP008158027 * |
SHOHEI KANAMURA ET AL.: "NaTFSI-CsTFSI-Kei Yoyuen no Bussei to Natrium Niji Denchi eno Oyo(II)", KAGAKU DENCHI ZAIRYO KENKYUKAI MEETING KOEN YOSHISHU, vol. 9, 11 June 2007 (2007-06-11), pages 59 - 60, XP008149829 * |
TATSUYA ISHIBASHI ET AL.: "NaTFSA-CsTFSA 2-Genkei Yoyuen no Bussei to Na/NaCr02 Denchi eno Oyo", KAGAKU DENCHI ZAIRYO KENKYUKAI MEETING KOEN YOSHISHU, vol. 11, 8 June 2009 (2009-06-08), pages 59 - 60, XP008158031 * |
TATSUYA ISHIBASHI ET AL.: "NaTFSA-CsTFSA 2-Genkei Yoyuen o Mochiita Chuteion Sado Natrium Niji Denchi", BATTERY SYMPOSIUM IN JAPAN KOEN YOSHISHU, vol. 50, 30 November 2009 (2009-11-30), pages 234, XP008150085 * |
TATSUYA ISHIBASHI ET AL.: "NaTFSA-CsTFSA 2-Genkei Yoyuen o Mochiita Na/NaCrO2 Denchi", THE ELECTROCHEMICAL SOCIETY OF JAPAN TAIKAI KOEN YOSHISHU, vol. 76, 29 March 2009 (2009-03-29), pages 377, XP008149711 * |
TATSUYA ISHIBASHI ET AL.: "NaTFSI-CsTFSI Nigenkei Yoyuen no Bussei to Natrium Niji Denchi eno Oyo", BATTERY SYMPOSIUM IN JAPAN KOEN YOSHISHU, vol. 49, 5 November 2008 (2008-11-05), pages 250, XP008149828 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011108716A1 (ja) * | 2010-03-05 | 2011-09-09 | 住友電気工業株式会社 | 電池用負極前駆体材料の製造方法、電池用負極前駆体材料、及び電池 |
US8685571B2 (en) | 2010-04-06 | 2014-04-01 | Sumitomo Electric Industries, Ltd. | Method for producing separator, method for producing molten salt battery, separator, and molten salt battery |
WO2011129391A1 (ja) * | 2010-04-16 | 2011-10-20 | 住友電気工業 株式会社 | 溶融塩電池のケースおよび溶融塩電池 |
US9276241B2 (en) | 2010-04-16 | 2016-03-01 | Sumitomo Electric Industries, Ltd. | Molten salt battery case, and molten salt battery |
WO2012117916A1 (ja) * | 2011-03-02 | 2012-09-07 | 住友電気工業株式会社 | 溶融塩電池 |
JP2012182087A (ja) * | 2011-03-02 | 2012-09-20 | Sumitomo Electric Ind Ltd | 溶融塩電池 |
JP2012243924A (ja) * | 2011-05-19 | 2012-12-10 | Sumitomo Electric Ind Ltd | キャパシタ |
JP2013089506A (ja) * | 2011-10-19 | 2013-05-13 | Sumitomo Electric Ind Ltd | ナトリウム溶融塩電池用電極、ナトリウム溶融塩電池および、およびナトリウム溶融塩電池の使用方法 |
JP2014137938A (ja) * | 2013-01-17 | 2014-07-28 | Sumitomo Electric Ind Ltd | 溶融塩電池、及び電源システム |
JP2014229389A (ja) * | 2013-05-20 | 2014-12-08 | 日本電信電話株式会社 | ナトリウム二次電池 |
US9553336B2 (en) | 2013-11-15 | 2017-01-24 | Sumitomo Electric Industries, Ltd. | Power supply system for well |
JP2017534162A (ja) * | 2014-10-14 | 2017-11-16 | フンダシオン セントロ デ インベスティガシオン コオペラティバ デ エネルヒアス アルテルナティバス セイセ エネルヒグネ フンダツィオアFundacion Centro De Investigacion Cooperativa De Energias Alternativas Cic Energigune Fundazioa | ナトリウムセラミック電解質電池 |
Also Published As
Publication number | Publication date |
---|---|
US20120058393A1 (en) | 2012-03-08 |
EA201000368A1 (ru) | 2011-04-29 |
EP2485317A1 (en) | 2012-08-08 |
CA2775284C (en) | 2018-09-04 |
JP5670339B2 (ja) | 2015-02-18 |
EP2485317A4 (en) | 2013-06-05 |
KR20120064651A (ko) | 2012-06-19 |
CA2775284A1 (en) | 2011-03-31 |
JPWO2011036907A1 (ja) | 2013-02-14 |
EA019152B1 (ru) | 2014-01-30 |
KR101684718B1 (ko) | 2016-12-08 |
CN102511106A (zh) | 2012-06-20 |
EP2485317B1 (en) | 2020-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5670339B2 (ja) | 電池およびエネルギーシステム | |
Wang et al. | Opportunities of aqueous manganese‐based batteries with deposition and stripping chemistry | |
Zhang et al. | Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage | |
Cho et al. | Commercial and research battery technologies for electrical energy storage applications | |
Zhao et al. | A reversible Br 2/Br− redox couple in the aqueous phase as a high-performance catholyte for alkali-ion batteries | |
Haas et al. | Electrochemical energy storage | |
KR20110084980A (ko) | 수용성 애노드를 가진 하이브리드 전기화학 발생기 | |
JP6476189B2 (ja) | 高エネルギー効率を有する高温ナトリウム電池 | |
WO2016085191A1 (ko) | 나트륨 이차 전지 | |
US11101485B2 (en) | Flow battery | |
Wheeler et al. | Beyond Li-Ion batteries for grid-scale energy storage | |
CN111244560B (zh) | 双金属电极二次电池 | |
CN113678300A (zh) | 具有固体电解质的高能量密度熔融锂硫和锂硒电池 | |
Cheng et al. | A novel rechargeable aqueous bismuth-air battery | |
Gallagher | Electrochemical Reactions in Aqueous Batteries with Anionic Charge Carriers | |
Bryans et al. | Standalone batteries for power backup and energy storage | |
EP3896762A1 (en) | A secondary battery containing an electrolyte of metal perchlorate | |
James et al. | Perspectives on chemistries of aqueous and non-aqueous batteries for renewable electricity storage | |
Xiaowei | The Development of Organic Redox-Active Materials for Batteries | |
Karuppasamy et al. | Alternative Propulsion Systems | |
Wu | A Reversible Conversion Cathode–Convert Dual-ion Battery into Rocking-Chair Battery | |
Zhao et al. | Recent progress in fundamental understanding of selenium-doped sulfur cathodes during charging and discharging with various electrolytes | |
Jiao | Electrode regulation for high-performance and sustainable aqueous zinc-ion batteries | |
Chalamala | Emerging eT&D Grids: Energy Storage Electrification and the Increasing Role of Power Electronics. | |
Rijith et al. | Aqueous Electrolytes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080032520.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10818584 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011532920 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20117029504 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2775284 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1201001413 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010818584 Country of ref document: EP |