WO2011034149A1 - 二次電池用非水電解液 - Google Patents

二次電池用非水電解液 Download PDF

Info

Publication number
WO2011034149A1
WO2011034149A1 PCT/JP2010/066089 JP2010066089W WO2011034149A1 WO 2011034149 A1 WO2011034149 A1 WO 2011034149A1 JP 2010066089 W JP2010066089 W JP 2010066089W WO 2011034149 A1 WO2011034149 A1 WO 2011034149A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium salt
secondary battery
aqueous electrolyte
lithium
electrolytic solution
Prior art date
Application number
PCT/JP2010/066089
Other languages
English (en)
French (fr)
Inventor
真男 岩谷
隆司 関
昇二 古田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201080041916.1A priority Critical patent/CN102576905B/zh
Priority to JP2011531973A priority patent/JP5556818B2/ja
Priority to EP10817262A priority patent/EP2479832A1/en
Publication of WO2011034149A1 publication Critical patent/WO2011034149A1/ja
Priority to US13/421,229 priority patent/US8568931B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte for a secondary battery.
  • Non-aqueous electrolytes in secondary batteries such as lithium secondary batteries and lithium ion secondary batteries are non-aqueous electrolytes containing inorganic lithium salts such as LiPF 6 and LiBF 4 because of their high conductivity and excellent voltage resistance.
  • An electrolytic solution (1) is used.
  • the electrolyte salt a bissulfonylimide lithium salt such as Li [N (SO 2 —CFH—CF 3 ) 2 ], Li [N (SO 2 —CH 2 —CF 3 ) 2 ] or the like as a main component (total electrolyte salt)
  • a non-aqueous electrolyte (2) used as 60 mol% or more with respect to 100 mol% is also known (Patent Document 1).
  • nonaqueous electrolytic solution (1) has high conductivity
  • sudden heat generation may occur near the positive electrode in the electrolytic solution, leading to thermal runaway.
  • non-aqueous electrolyte (2) has a question of practicality because sufficient conductivity cannot be obtained.
  • the present inventor provides a non-aqueous electrolyte for a secondary battery that provides a secondary battery having high conductivity and stability in which thermal runaway is suppressed, and a secondary battery having such a non-aqueous electrolyte. Objective.
  • R 1 and R 2 in formula (a1) are independently of each other a fluorine-containing alkyl group having 1 to 5 carbon atoms or a fluorine atom which may contain an etheric oxygen atom.
  • the non-aqueous electrolyte for secondary batteries according to any one of [1] to [5], wherein the non-aqueous electrolyte includes a carbonate solvent.
  • the total amount of the lithium salt (a1) and the lithium salt (a2) in the nonaqueous electrolytic solution is 0.5 to 3.0 mol with respect to 1 liter of the total solvent.
  • the nonaqueous electrolytic solution for a secondary battery according to any one of [6].
  • the non-aqueous electrolyte for secondary batteries according to any one of [1] to [7], wherein the non-aqueous electrolyte for secondary batteries is a non-aqueous electrolyte for lithium ion secondary batteries.
  • a secondary battery having both high conductivity and stability in which thermal runaway is suppressed can be obtained.
  • Example 3 is a graph showing the results of observing the exothermic behavior of the electrolyte solution in Example 1.
  • 5 is a graph showing the results of observing the exothermic behavior of an electrolyte solution in Comparative Example 1.
  • 6 is a graph showing the results of observing the exothermic behavior of an electrolyte solution in Comparative Example 2.
  • Non-aqueous electrolyte for secondary batteries of the present invention is a non-aqueous electrolyte containing a lithium salt as an electrolyte salt.
  • the nonaqueous electrolytic solution of the present invention contains a lithium salt (a1) represented by the following formula (a1), an inorganic lithium salt (a2), and a solvent. These lithium salts dissociate in the non-aqueous electrolyte of the present invention and supply lithium ions.
  • R 1 and R 2 in the formula (a1) are each independently a fluorine-containing alkyl group having 1 to 5 carbon atoms which may contain an etheric oxygen atom (hereinafter referred to as “fluorinated alkyl group ( ⁇ )”). Or a fluorine atom.
  • fluorinated alkyl group ( ⁇ ) etheric oxygen atom
  • the lithium salt represented by the formula (a1) is referred to as a lithium salt (a1).
  • each carbon atom bonded to a sulfur atom has a structure of —CHF—, and the group bonded to the opposite side of the sulfur atom of the carbon atom is a part or all of hydrogen atoms being a fluorine atom And a bissulfonylimide lithium salt which is a fluoroalkyl group or a fluorine atom which may contain an etheric oxygen atom.
  • R 1 in the lithium salt (a1) is a fluorine-containing alkyl group ( ⁇ ) or a fluorine atom, preferably a fluorine-containing alkyl group ( ⁇ ). When R 1 is a fluorine-containing alkyl group ( ⁇ ), the carbon number is 1-5.
  • the fluorine-containing alkyl group ( ⁇ ) of R 1 has 1 to 5 carbon atoms, it was added at a molar concentration sufficient to exhibit the effect of suppressing the decomposition heat generation of the electrolyte solution on the positive electrode during battery overheating. Even in the case, there is little influence on other characteristics such as conductivity.
  • the number of carbon atoms of the fluorine-containing alkyl group ( ⁇ ) of R 1 is preferably 1 to 3 and particularly preferably 1 from the viewpoint of maintaining high conductivity.
  • R 1 is a fluorine-containing alkyl group ( ⁇ )
  • the fluorine-containing alkyl group ( ⁇ ) is highly effective in suppressing thermal runaway, so that all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms.
  • R 2 is the same fluorine-containing alkyl group ( ⁇ ) or fluorine atom as R 1 , and the preferred embodiment is also the same.
  • R 1 and R 2 may be the same or different.
  • the lithium salt (a1) the following lithium salt (a1-1) is particularly preferable from the viewpoint of achieving both stability in which thermal runaway is suppressed and high conductivity.
  • the inorganic lithium salt (a2) is an electrolyte salt as a main component in the nonaqueous electrolytic solution of the present invention, and is an inorganic lithium salt that dissociates in the nonaqueous electrolytic solution and supplies lithium ions.
  • the lithium salt (a2) that is an inorganic lithium salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, and the like.
  • LiPF 6 , LiBF 4 and LiClO 4 are preferable.
  • These lithium salts are compounds known as lithium salts for lithium ion secondary batteries.
  • the nonaqueous electrolytic solution of the present invention contains at least one lithium salt selected from the group consisting of LiPF 6 , LiBF 4 and LiClO 4 as a lithium salt (a2) from the viewpoint of easily obtaining an electrolytic solution having high conductivity. It is preferable that LiPF 6 is included.
  • the non-aqueous electrolyte of the present invention preferably contains only at least one selected from the group consisting of LiPF 6 , LiBF 4 and LiClO 4 as the lithium salt (a2), and LiPF 6 as the lithium salt (a2). It is particularly preferable that only be included.
  • the ratio of the lithium salt (a1) to the total amount of the lithium salt (a1) and the lithium salt (a2) is 5.0 to 20.0 mol%. This ratio is preferably 5.0 to 15.0 mol%, and more preferably 5.0 to 10.0 mol%.
  • the proportion of the lithium salt (a1) is larger, thermal runaway in the secondary battery having the non-aqueous electrolyte of the present invention can be suppressed, so that a secondary battery having excellent stability can be obtained.
  • the smaller the proportion of lithium salt (a1) the higher the conductivity.
  • the proportion of the lithium salt (a1) is 5.0 to 20.0 mol%, the effect of suppressing thermal runaway can be obtained while ensuring practical conductivity.
  • the total amount of the lithium salt (a1) and the lithium salt (a2) in the nonaqueous electrolytic solution of the present invention is preferably 0.5 to 3.0 mol, preferably 0.5 to 2.0 mol with respect to 1 liter of the total solvent. More preferred.
  • the smaller the total amount of lithium salt (a1) and lithium salt (a2) the easier it is to dissolve these lithium salts in the solvent.
  • the nonaqueous electrolytic solution of the present invention contains a lithium salt (a3), the content of the lithium salt (a3) is 5 to 40 mol% in the total lithium salt contained in the nonaqueous electrolytic solution. preferable.
  • the nonaqueous electrolytic solution of the present invention contains a small amount of lithium salt (a1) as described above, an effect of suppressing thermal runaway in the vicinity of the positive electrode when a secondary battery is obtained can be obtained.
  • a solvent such as a carbonate-based solvent is oxidatively decomposed at the positive electrode when it is excessively charged.
  • the thermal runaway can be suppressed by using the lithium salt (a1) as the lithium salt that is an electrolyte salt.
  • the bissulfonylimide anion generated by dissociation of the lithium salt (a1) contained in the electrolytic solution forms a protective film on the positive electrode.
  • the protective film prevents a solvent such as a carbonate-based solvent from coming into contact with the positive electrode and suppresses the oxidation of the solvent on the positive electrode, thereby suppressing thermal runaway of the secondary battery. It is done.
  • the present inventor has also found that the effect of suppressing thermal runaway by the protective film is achieved by a small amount of lithium salt (a1). Therefore, the nonaqueous electrolytic solution of the present invention can use a lithium salt such as LiPF 6 having high conductivity as a main component, and high conductivity can also be obtained.
  • the lithium salt (a1) also has the following effects.
  • a bissulfonylimide lithium salt having a perfluoroalkyl group such as Li [N (SO 2 C 2 F 5 ) 2 ] (hereinafter referred to as “lithium salt (b1
  • the following lithium salt (b2) having a cyclic structure (where k represents an integer of 1 to 5) is easily reductively decomposed on the negative electrode.
  • the lithium salt (a1) of the nonaqueous electrolytic solution of the present invention a hydrogen atom is bonded to each carbon atom bonded to a sulfur atom in the fluorine-containing alkyl group, so that the lithium salt (b1) and the lithium salt Excellent reduction resistance compared to (b2). Therefore, even the negative electrode using graphite is hardly reduced and decomposed, and the effect of suppressing thermal runaway is stably exhibited. Therefore, it is particularly preferable to apply the nonaqueous electrolytic solution of the present invention to a secondary battery having a negative electrode using graphite.
  • the nonaqueous electrolytic solution of the present invention is an electrolytic solution containing a solvent substantially free of water and the lithium salt. That is, even if the solvent in the nonaqueous electrolytic solution of the present invention contains water, the amount of water is such that the performance deterioration of the secondary battery using the nonaqueous electrolytic solution of the present invention is not observed. It is.
  • the amount of water contained in the nonaqueous electrolytic solution of the present invention is preferably 0 to 500 ppm by mass, more preferably 0 to 100 ppm by mass, with respect to the total mass of the electrolyte. Particularly preferred is ppm.
  • solvent for the nonaqueous electrolytic solution of the present invention carbonate solvents, hydrofluoroethers, and ether compounds containing no fluorine atoms are preferred.
  • the compound represented by Formula (2) is described as a compound (2), and it describes similarly also in the compound represented by another number.
  • Carbonate solvent examples include cyclic carbonates and chain carbonates.
  • the carbonate-based solvent only one of cyclic carbonate and chain carbonate may be used, or one or a mixture of two or more of both may be used.
  • the carbonate solvent improves the solubility and conductivity of the lithium salt.
  • Cyclic carbonate means 1,3-dioxolan-2-one, 1,3-dioxolan-2-one derivatives, 1,3-dioxol-2-one and 1,3-dioxol-2-one derivatives. These derivatives are compounds having a halogen atom, an alkyl group, or a haloalkyl group at the 4-position, 5-position, or both the 4-position and 5-position.
  • the halogen atom is preferably a chlorine atom or a fluorine atom
  • the alkyl group is preferably an alkyl group having 4 or less carbon atoms
  • the haloalkyl group is a haloalkyl group having 1 or more chlorine atoms or fluorine atoms and having 4 or less carbon atoms. Is preferred.
  • a chain carbonate means a dialkyl carbonate and a dialkyl carbonate derivative. The two alkyl groups of the dialkyl carbonate may be the same or different, and their carbon number is preferably 6 or less.
  • a dialkyl derivative refers to a compound in which one or both alkyl groups are substituted with a haloalkyl group having 6 or less carbon atoms having one or more chlorine atoms or fluorine atoms.
  • the alkyl group or haloalkyl group preferably has 4 or less carbon atoms, more preferably 1 or 2 carbon atoms.
  • Cyclic carbonates include propylene carbonate, ethylene carbonate, butylene carbonate, 4-chloro-1,3-dioxolan-2-one, 4-trifluoromethyl-1,3-dioxolan-2-one, fluoroethylene carbonate, vinylene carbonate And at least one compound selected from the group consisting of dimethyl vinylene carbonate is preferred, and ethylene carbonate, propylene carbonate, fluoroethylene carbonate, and vinylene carbonate are particularly preferred from the viewpoint of availability, solubility of lithium salt, and conductivity.
  • chain carbonates include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, di-n-propyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, methyl isopropyl carbonate, ethyl isopropyl carbonate, diisopropyl carbonate, and 3- At least one compound selected from the group consisting of fluoropropyl methyl carbonate is preferable, and dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate are particularly preferable from the viewpoints of availability, solubility of lithium salt, and conductivity.
  • the carbonate type solvent which acts as a characteristic improvement aid mentioned later can also be used.
  • the carbonate solvent having such an action include fluoroethylene carbonate, trifluoropropylene carbonate, phenylethylene carbonate, erythritan carbonate, spiro-bis-dimethylene carbonate, and the like. It is preferable that the carbonate solvent that acts as an aid for improving these properties is used in combination with other carbonate solvents.
  • cyclic carbonate is preferable.
  • the cyclic carbonate decomposes on the surface of the negative electrode (for example, a carbon electrode) to form a stable film. Since the film formed of the cyclic carbonate can reduce the resistance at the electrode interface, the intercalation of lithium ions into the negative electrode is promoted. That is, the film formed of the cyclic carbonate in the non-aqueous electrolyte of the present invention reduces the impedance at the negative electrode interface, thereby promoting the intercalation of lithium ions into the negative electrode.
  • the carbonate solvent it is also preferable to use a chain carbonate and a cyclic carbonate in combination.
  • a cyclic carbonate and a chain carbonate in combination As the carbonate solvent, it is also preferable to use a chain carbonate and a cyclic carbonate in combination.
  • the volume ratio (V 1 : V 2 ) of the linear carbonate (volume V 1 ) to the cyclic carbonate (volume V 2 ) is 1:10 to 10 : 1 is preferred. If the content of the cyclic carbonate is within this range, the melting point of the mixed solvent becomes an appropriate range, and the electrolyte solution in which the lithium salt is dissolved becomes stable. On the other hand, when the content of the chain carbonate is within this range, the solubility of the lithium salt falls within an appropriate range, and the electrolyte solution in which the lithium salt is dissolved becomes stable.
  • the content of the carbonate solvent in the nonaqueous electrolytic solution of the present invention is not particularly limited, and can be appropriately changed depending on the solvent system to be combined. If the content of the carbonate-based solvent is 0 to 40% by volume with respect to 100% by volume of the total solvent used in the non-aqueous electrolyte, it is easy to obtain a highly stable electrolyte without gas generation problems. If it is 100 volume%, it is easy to obtain the electrolyte solution which was excellent in the solubility and conductivity of lithium salt.
  • Hydrofluoroether is a solvent that imparts nonflammability to an electrolytic solution, and has a structure in which some of the hydrogen atoms of the ether are replaced by fluorine atoms.
  • the hydrofluoroether include the following compound (2).
  • R 3 and R 4 in the compound (2) are each independently a fluorine-containing alkyl group having 1 to 10 carbon atoms or a fluorine-containing alkyl group having 1 to 10 carbon atoms having an etheric oxygen atom between carbon atoms.
  • R 3 and R 4 is a partially fluorinated group.
  • R 3 and R 4 may be the same or different.
  • the fluorine-containing alkyl group is a group in which part or all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms.
  • the partially fluorinated group refers to a group in which a part of hydrogen atoms of an alkyl group which may have an etheric oxygen atom between carbon atoms is substituted with a fluorine atom.
  • a hydrogen atom is present in the partially fluorinated group.
  • the structure of the alkyl group in the fluorine-containing alkyl group and the fluorine-containing alkyl group having an etheric oxygen atom between carbon atoms is a straight chain structure, a branched structure, a cyclic structure, or a partially cyclic structure, respectively.
  • Compound (2) includes a compound (2-A) in which R 3 and R 4 are both a partially fluorinated alkyl group having 1 to 10 carbon atoms, and R 3 is an ether between a carbon atom and a carbon atom.
  • the compound (2-B) which is a partially fluorinated alkyl group having 1 to 10 carbon atoms is preferred.
  • Compound (2) is preferably a compound having a total carbon number of 4 to 10 and particularly preferably a compound of 4 to 8 because the boiling point is too low when the carbon number is too small and the viscosity is increased when the carbon number is too large.
  • the molecular weight of the compound (2) is preferably from 200 to 800, particularly preferably from 200 to 500. Since the number of etheric oxygen atoms in the compound (2) affects flammability, the number of etheric oxygen atoms in the case of the compound (2) having an etheric oxygen atom is preferably 1 to 4, and 1 or 2 Is particularly preferred. Further, since the nonflammability is improved when the fluorine content in the compound (2) is increased, the ratio of the total atomic weight of fluorine atoms to the molecular weight of the compound (2) is preferably 50% or more, particularly preferably 60% or more.
  • the compound (2-A) is preferable, and CF 3 CH 2 OCF 2 CF 2 H (trade name: AE-3000, manufactured by Asahi Glass Co., Ltd.), CHF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CH 2 OCF 2 CHFCF 3 is preferred, and CF 3 CH 2 OCF 2 CF 2 H is particularly preferred.
  • hydrofluoroether other than the compound (2) examples include the following compound (3).
  • X A represents an alkylene group having 1 to 5 carbon atoms, a partially fluorinated alkylene group having 1 to 5 carbon atoms, or a carbon number having an etheric oxygen atom between carbon atoms. Any one of an alkylene group having 1 to 5 carbon atoms or a partially fluorinated alkylene group having 1 to 5 carbon atoms and having an etheric oxygen atom between carbon atoms.
  • the partially fluorinated alkylene group refers to a group in which some of the hydrogen atoms of the alkylene group are substituted with fluorine atoms.
  • X A in the formula (3) is CH 2 , CH 2 CH 2 , A hydrofluoroether that is one selected from the group consisting of CH (CH 3 ) CH 2 and CH 2 CH 2 CH 2 is preferred.
  • the hydrofluoroether is preferably at least one selected from the group consisting of the compound (2) and the compound (3).
  • the hydrofluoroether content is 0 to 40% by volume with respect to 100% by volume of the total amount of solvent used in the non-aqueous electrolyte, an electrolyte having excellent lithium salt solubility and conductivity can be easily obtained. If it is 100 volume%, there is no problem of gas generation and it is easy to obtain a highly stable electrolyte.
  • the volume ratio (Vb / Va) is 0.01 to 0.99. Preferably, 0.1 to 0.9 is more preferable.
  • the ether compound is an ether compound containing no fluorine atom.
  • the ether compound include the following compound (4).
  • m in the compound (4) is an integer of 1 to 10
  • Q is a linear alkylene group having 1 to 4 carbon atoms, or one or more hydrogen atoms of the linear alkylene group is 1 carbon atom.
  • Q when m is 2 or more may be the same group or different groups.
  • R 5 and R 6 are each independently an alkyl group having 1 to 5 carbon atoms or an alkylene group having 1 to 10 carbon atoms formed by linking R 5 and R 6 .
  • M in the compound (4) is preferably 1 to 6, more preferably 2 to 5, and particularly preferably 2 to 4.
  • Q is particularly preferably —CH 2 CH 2 —.
  • R 5 and R 6 are each preferably a methyl group or an ethyl group, particularly preferably a methyl group.
  • the following compound (4A) is preferable.
  • m, R 5 and R 6 in the compound (4A) are the same as described above.
  • Examples of the compound (4A) include monoglyme, diglyme, triglyme, tetraglyme, pentaglime, hexaglyme, diethylene glycol diethyl ether, triethylene glycol diethyl ether, tetraethylene glycol diethyl ether, pentaethylene glycol diethyl ether, hexaethylene glycol diethyl ether.
  • Monoglyme, diglyme, triglyme, tetraglyme, pentag lime or hexaglyme is more preferred.
  • Examples of the compound (4A) in which R 5 and R 6 are linked to form an alkylene group having 1 to 10 carbon atoms include 12-crown-4, 14-crown-4, 15-crown- 5, 18-crown-6.
  • a compound (4) may be used individually by 1 type, and may use 2 or more types together.
  • the content of the compound (4) in the nonaqueous electrolytic solution of the present invention is preferably 0 to 30% by volume, more preferably 0 to 20% by volume with respect to 100% by volume of the total solvent solution used in the nonaqueous electrolytic solution. .
  • the solubility of lithium salt improves, so that there is much content of a compound (4).
  • the solvent of the nonaqueous electrolytic solution of the present invention may contain other solvents such as an ester solvent in addition to the carbonate solvent, hydrofluoroether, and ether compound.
  • the ester solvent refers to a solvent that is a chain ester or cyclic ester of an acid such as carboxylic acid, sulfonic acid, phosphoric acid, and nitric acid.
  • the ester solvent has preferably 3 or more and 12 or less, more preferably 4 or more and 8 or less.
  • An ester solvent having a smaller number of carbon atoms has a boiling point that is too low, and the secondary battery tends to expand due to its vapor pressure even under normal use conditions of the secondary battery.
  • ester solvents include carboxylic acid esters such as propionic acid alkyl esters, malonic acid dialkyl esters and acetic acid alkyl esters, cyclic esters such as ⁇ -butyrolactone, and cyclic sulfonic acid esters such as 1,3-propane sultone and 1,4-butane sultone. And sulfonic acid alkyl esters such as methyl methanesulfonate, and phosphoric acid alkyl esters.
  • carboxylic acid esters such as propionic acid alkyl esters, malonic acid dialkyl esters and acetic acid alkyl esters
  • cyclic esters such as ⁇ -butyrolactone
  • cyclic sulfonic acid esters such as 1,3-propane sultone and 1,4-butane sultone.
  • sulfonic acid alkyl esters such as methyl methanesulfonate, and phosphoric acid al
  • ester solvents there are some which show the effect of the property improvement aid described later, such as cyclic sulfonic acid ester and sulfonic acid alkyl ester, and may be contained for the purpose of property improvement at the same time as the solvent.
  • the content thereof is preferably 30% by volume or less, more preferably 25% by volume or less, with respect to 100% by volume of the total solvent used in the nonaqueous electrolytic solution. 20% by volume or less is particularly preferable.
  • the above-mentioned solvents can be used alone or in combination depending on the required properties, and the following solvents (i) to (iii) are preferred.
  • the solvent (i) is excellent in lithium ion conductivity.
  • the solvent (ii) is excellent in cycle characteristics.
  • the solvent (iii) is excellent in safety.
  • the nonaqueous electrolytic solution of the present invention may contain other components as necessary in order to improve the function of the electrolytic solution.
  • the other components include conventionally known overcharge inhibitors, dehydrating agents, deoxidizing agents, capacity maintenance characteristics after high-temperature storage, and property improvement aids for improving cycle characteristics.
  • overcharge inhibitor examples include aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran; 2-fluoro Partially fluorinated products of the above aromatic compounds such as biphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene; fluorinated anisole such as 2,4-difluoroanisole, 2,5-difluoroanisole and 2,6-difluoroaniol Compounds.
  • An overcharge inhibitor may be used individually by 1 type, and may use 2 or more types together.
  • the content of the overcharge inhibitor in the non-aqueous electrolyte (100% by mass) of the present invention is preferably 0.1 to 5% by mass. If the content of the overcharge inhibitor in the non-aqueous electrolyte is 0.1% by mass or more, the secondary battery having the non-aqueous electrolyte of the present invention can be easily prevented from being ruptured and ignited by overcharging. The secondary battery can be used more stably.
  • the dehydrating agent examples include molecular sieves, mirabilite, magnesium sulfate, calcium hydride, sodium hydride, potassium hydride, and lithium aluminum hydride.
  • the solvent used in the nonaqueous electrolytic solution of the present invention it is preferable to use a solvent obtained by performing rectification after dehydrating with the dehydrating agent. Moreover, you may use the solvent which performed only the dehydration by the said dehydrating agent, without performing rectification.
  • the property improvement aid examples include succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic acid Carboxylic anhydrides such as anhydrides and phenylsuccinic anhydrides; ethylene sulfite, busulfan, sulfolane, sulfolene, dimethyl sulfone, diphenyl sulfone, methylphenyl sulfone, dibutyl disulfide, dicyclohexyl disulfide, tetramethylthiuram monosulfide, N, N -Sulfur-containing compounds such as dimethylmethanesulfonamide, N, N-diethylmethanesulfonamide; 1-methyl-2-pyrrolidinone, 1-methyl
  • the non-aqueous electrolyte solution of the present invention contains a property improving aid
  • the content of the property improving aid in the non-aqueous electrolyte solution (100% by mass) is preferably 0.1 to 5% by mass.
  • the nonaqueous electrolytic solution of the present invention preferably has a conductivity at 25 ° C. of 0.70 S ⁇ m ⁇ 1 or more for practical use of a secondary battery having the nonaqueous electrolytic solution.
  • the conductivity of the non-aqueous electrolyte is measured by the method described in “Molten Salt and High Temperature Chemistry 2002, 45, 42-60”. Further, the viscosity (20 ° C.) of the non-aqueous electrolyte measured with a rotary viscometer is preferably 0.1 to 20 cP.
  • the nonaqueous electrolytic solution of the present invention is preferably an electrolytic solution in which a potential region (potential window) at which a decomposition current value reaches 0.05 mA / cm 2 is in a region wider than a range of 0.2 V to 4.2 V. .
  • the value of the potential window is a value expressed in terms of a lithium metal reference potential.
  • the potential window can be measured by the method described in the examples.
  • the conductivity is high and the thermal runaway due to sudden heat generation near the positive electrode is suppressed, Can be obtained.
  • a lithium ion secondary battery having a negative electrode and a positive electrode and the non-aqueous electrolyte of the present invention is preferable.
  • the non-aqueous electrolyte of the present invention is not limited to the lithium ion secondary battery, but is a secondary battery such as a lithium metal secondary battery, a lithium ion secondary battery, or a lithium air secondary battery, or a primary battery such as a lithium primary battery. You may use for.
  • the negative electrode examples include an electrode containing a negative electrode active material that can electrochemically occlude and release lithium ions.
  • a negative electrode active material known negative electrode active materials for lithium ion secondary batteries can be used.
  • graphite graphite
  • carbonaceous materials such as amorphous carbon
  • metals such as lithium metal and lithium alloy
  • metal compounds can be used.
  • These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.
  • a carbonaceous material is preferable, and the carbonaceous material which coat
  • the lithium salt (a1) in the nonaqueous electrolytic solution of the present invention is not easily reduced and decomposed even on the negative electrode using graphite, and can stably exhibit the effect of suppressing thermal runaway.
  • Graphite preferably has a lattice plane (002 plane) d-value (interlayer distance, hereinafter simply referred to as “d-value”) of 0.335 to 0.338 nm obtained by X-ray diffraction using the Gakushin method. More preferably, the thickness is 335 to 0.337 nm.
  • the crystallite size (Lc) determined by X-ray diffraction by the Gakushin method is preferably 30 nm or more, more preferably 50 nm or more, and further preferably 100 nm or more.
  • the ash content of graphite is preferably 1% by mass or less, more preferably 0.5% by mass or less, and further preferably 0.1% by mass or less.
  • graphite having a d value of 0.335 to 0.338 nm is used as a core material, and the d value is larger on the surface of the graphite than the graphite.
  • the ratio of graphite (mass W A ), which is coated with amorphous carbon, and amorphous carbon (mass W B ) covering the graphite is 80 / weight ratio (W A / W B ). It is preferably 20 to 99/1.
  • the particle size of the carbonaceous material is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, further preferably 5 ⁇ m or more, and more preferably 7 ⁇ m or more as a median diameter by a laser diffraction / scattering method. Particularly preferred. Further, the particle size of the carbonaceous material is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, further preferably 40 ⁇ m or less, and particularly preferably 30 ⁇ m or less.
  • the specific surface area according to the BET method of the carbonaceous material is preferably 0.3 m 2 / g or more, more preferably 0.5 m 2 / g or more, and further preferably 0.7 m 2 / g or more. Preferably, it is particularly preferably 0.8 m 2 / g or more.
  • the specific surface area of the carbonaceous material is preferably from 25.0 m 2 / g, more preferably at most 20.0 m 2 / g, more preferably at most 15.0 m 2 / g, 10 It is especially preferable that it is 0.0 m 2 / g or less.
  • the peak intensity I A of the peak P A in the range of 1570 to 1620 cm ⁇ 1 and the peak P in the range of 1300 to 1400 cm ⁇ 1 are analyzed.
  • the half width of the peak P A is, it is particularly preferable is preferably 26cm -1 or less, and 25 cm -1 or less.
  • metals that can be used as the negative electrode active material other than metallic lithium include Ag, Zn, Al, Ga, In, Si, Ti, Ge, Sn, Pb, P, Sb, Bi, Cu, Ni, Sr, and Ba. It is done. Moreover, as a lithium alloy, the alloy of lithium and the said metal is mentioned. Moreover, as a metal compound, the said metal oxide etc. are mentioned. Among these, at least one metal selected from the group consisting of Si, Sn, Ge, Ti, and Al, a metal compound containing the metal, a metal oxide, and a lithium alloy are preferable, and selected from the group consisting of Si, Sn, and Al.
  • At least one kind of metal a metal compound containing the metal, a lithium alloy, and lithium titanate.
  • a metal capable of inserting and extracting lithium ions, a metal compound containing the metal, and a lithium alloy generally have a larger capacity per unit mass than a carbonaceous material typified by graphite, so a higher energy density is required. It is suitable for a secondary battery.
  • the positive electrode examples include an electrode including a positive electrode active material that can electrochemically occlude and release lithium ions.
  • a positive electrode active material known positive electrode active materials for lithium ion secondary batteries can be used.
  • lithium-containing transition metal oxides such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide
  • V, Ti, Cr, Mn, Fe, Co, Ni, Cu or the like is preferable as the transition metal of the lithium-containing transition metal composite oxide
  • lithium-cobalt composite oxide such as LiCoO 2
  • lithium-nickel composite such as LiNiO 2
  • Lithium manganese composite oxides such as oxides, LiMnO 2 , LiMn 2 O 4 , LiMnO 3
  • some of the transition metal atoms that are the main components of these lithium transition metal composite oxides are Al, Ti, V, Cr, Mn
  • Examples include those substituted with other metals such as Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, and Yb.
  • Examples of those substituted with other metals include LiMn 0.5 Ni 0.5 O 2 , LiMn 1.8 Al 0.2 O 4 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiMn 1 .5 Ni 0.5 O 4, LiNi 1/3 Co 1/3 Mn 1/3 O 2, LiMn 1.8 Al 0.2 O 4 and the like.
  • Examples of transition metal oxides include TiO 2 , MnO 2 , MoO 3 , V 2 O 5 , V 6 O 13 , transition metal sulfides TiS 2 , FeS, MoS 2 , metal oxides SnO 2 , Examples thereof include SiO 2 .
  • the olivine-type metal lithium salt is represented by (formula) Li L X x Y y O z F g (where X is Fe (II), Co (II), Mn (II), Ni (II), V (II), Or Cu (II), Y represents P or Si, and 0 ⁇ L ⁇ 3, 1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 3, 4 ⁇ z ⁇ 12, 0 ⁇ g ⁇ 1, respectively. Or a complex thereof.
  • positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.
  • a material in which a substance having a composition different from that of the substance constituting the main cathode active material is attached to the surface of the cathode active material can be used.
  • Surface adhesion substances include oxides such as aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide; lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate; carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate.
  • the lower limit of the mass with respect to the positive electrode active material is preferably 0.1 mass ppm, more preferably 1 mass ppm, and still more preferably 10 mass ppm.
  • the upper limit is preferably 20% by mass, more preferably 10% by mass, and still more preferably 5% by mass.
  • the surface adhering substance can suppress the oxidation reaction of the non-aqueous electrolyte on the surface of the positive electrode active material, and can improve the battery life.
  • a lithium-containing composite oxide based on an ⁇ -NaCrO 2 structure such as LiCoO 2 , LiNiO 2 , LiMnO 2, or the like, LiMn 2 O, because of its high discharge voltage and high electrochemical stability
  • LiCoO 2 , LiNiO 2 , LiMnO 2, or the like, LiMn 2 O because of its high discharge voltage and high electrochemical stability
  • a lithium-containing composite oxide based on a spinel structure such as 4 is preferred.
  • a binder that binds the negative electrode active material or the positive electrode active material is used.
  • the binder for binding the negative electrode active material and the positive electrode active material any binder can be used as long as it is a material that is stable with respect to the solvent and the electrolytic solution used during electrode production.
  • the binder is, for example, a fluororesin such as polyvinylidene fluoride or polytetrafluoroethylene, a polyolefin such as polyethylene or polypropylene, a polymer having an unsaturated bond such as styrene / butadiene rubber, isoprene rubber or butadiene rubber, and a copolymer thereof. Examples thereof include acrylic polymers such as polymers, acrylic acid copolymers, and methacrylic acid copolymers, and copolymers thereof. These binders may be used individually by 1 type, and may use 2 or more types together.
  • the electrode may contain a thickener, a conductive material, a filler and the like in order to increase mechanical strength and electrical conductivity.
  • a thickener examples include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and polyvinylpyrrolidone. These thickeners may be used individually by 1 type, and may use 2 or more types together.
  • the conductive material examples include metal materials such as copper or nickel, and carbonaceous materials such as graphite or carbon black. These electrically conductive materials may be used individually by 1 type, and may use 2 or more types together.
  • a binder, a thickener, a conductive material, a solvent, etc. are added to a negative electrode active material or a positive electrode active material to form a slurry, which is then applied to a current collector and dried. It can.
  • the electrode is preferably consolidated by pressing after drying. If the density of the positive electrode active material layer is too low, the capacity of the secondary battery may be insufficient.
  • the current collector various current collectors can be used, but usually a metal or an alloy is used.
  • the negative electrode current collector include copper, nickel, and stainless steel, with copper being preferred.
  • the current collector for the positive electrode include metals such as aluminum, titanium, and tantalum, and alloys thereof, and aluminum or an alloy thereof is preferable, and aluminum is particularly preferable.
  • the shape of the secondary battery may be selected according to the application, and may be a coin type, a cylindrical type, a square type or a laminate type. Further, the shapes of the positive electrode and the negative electrode can be appropriately selected according to the shape of the secondary battery.
  • the charging voltage of the secondary battery is preferably 3.4 V or more, particularly preferably 4.0 V or more, and particularly preferably 4.2 V or more.
  • the positive electrode active material of the secondary battery is a lithium-containing transition metal oxide, a lithium-containing transition metal composite oxide, a transition metal oxide, a transition metal sulfide, or a metal oxide
  • the charging voltage is preferably 4.0 V or more, 4.2V is particularly preferred.
  • the charging voltage is preferably 3.2 V, particularly preferably 3.4 V or more.
  • the nonaqueous electrolytic solution of the present invention has an oxidation resistance of 4.2 V or more and a reduction resistance of 0.2 V or less, it can be used for any electrode having an operating potential in this range.
  • the secondary battery is particularly preferably a secondary battery that is used at a charging voltage of 4.2 V or more (potential based on lithium metal). For example, a secondary battery having the non-aqueous electrolyte of the present invention having a potential window wider than the range of 0V to 4.2V can be given.
  • a porous film is usually interposed as a separator between the positive electrode and the negative electrode of the secondary battery.
  • the nonaqueous electrolytic solution is used by impregnating the porous membrane.
  • the material and shape of the porous membrane are not particularly limited as long as it is stable with respect to the non-aqueous electrolyte and has excellent liquid retention properties, such as polyvinylidene fluoride, polytetrafluoroethylene, a copolymer of ethylene and tetrafluoroethylene, etc.
  • a porous sheet or non-woven fabric made of a polyolefin resin such as polyethylene or polypropylene is preferred, and a material such as polyethylene or polypropylene is preferred.
  • the material of the battery casing used for the secondary battery may be any material that is usually used for the secondary battery. Nickel-plated iron, stainless steel, aluminum or an alloy thereof, nickel, titanium, resin material, film material Etc.
  • the secondary battery having the non-aqueous electrolyte of the present invention described above has high conductivity and suppresses thermal runaway due to sudden heat generation near the positive electrode. Therefore, the secondary battery is a mobile phone, a portable game machine, a digital camera, a digital video camera, a power tool, a notebook computer, a portable information terminal, a portable music player, an electric vehicle, a hybrid vehicle, a train, an aircraft, an artificial satellite, It can be used for various applications such as submarines, ships, uninterruptible power supplies, robots, and power storage systems.
  • Lithium salt (a1-1) was dissolved so as to be 142 mM with respect to the total amount of the electrolytic solution 1 prepared in Production Example 1 to prepare an electrolytic solution 3.
  • the ratio of the lithium salt (a1-1) to the total of 100 mol% of LiPF 6 and the lithium salt (a1-1) in the electrolytic solution 3 was 12.5 mol%.
  • a LiCoO 2 positive electrode was produced.
  • the LiCoO 2 positive electrode, a lithium metal foil having the same area as the LiCoO 2 positive electrode, and a polyethylene separator were laminated in the order of the lithium metal foil, the separator, and the LiCoO 2 positive electrode to produce a battery element.
  • the battery element is placed in a bag made of a laminate film in which both surfaces of aluminum (thickness 40 ⁇ m) are coated with a resin layer (polyethylene resin), and terminals of the LiCoO 2 positive electrode and negative electrode (lithium metal foil) of the battery element are provided.
  • the bag was stored outside the bag.
  • the electrolytic solution 1 prepared in Production Example 1 was injected into the bag and vacuum sealed to produce a sheet-like secondary battery 1 (secondary battery 1).
  • Example 1 The secondary battery 1 produced in Production Example 7 was charged to 4.2 V with a constant current corresponding to 0.1 C at 25 ° C. in a state of being sandwiched between glass plates in order to enhance the adhesion between the electrodes. .5 cycles of discharging to 3 V with a constant current corresponding to 1 C were performed to stabilize the secondary battery. Thereafter, the secondary battery 1 was charged to 4.5 V with a constant current corresponding to 0.1 C, and further charged to a current value of 0.01 C with a constant voltage of 4.5 V.
  • 1 C represents a current value that discharges the reference capacity at 4.2 V of the battery in one hour
  • 0.1 C represents a current value that is 1/10 of the current value.
  • a sample positive electrode was placed on a SUS (stainless steel) sealed DSC pan having a capacity of 15 ⁇ L, and 5 ⁇ L of the electrolyte solution 3 prepared in Production Example 3 was dropped on the sample positive electrode to seal the container. Then, using a DSC6000 (model name) manufactured by Seiko Instruments Inc., thermal analysis of the electrolytic solution 3 on the sample positive electrode was performed at a temperature rising rate of 5 ° C./min in a temperature range of 50 ° C. to 350 ° C. The result is shown in FIG.
  • the secondary battery using the electrolytic solution of the present invention has a very high temperature leading to thermal runaway on the positive electrode side and can be used stably.
  • the lithium salt (A1) and the lithium salt (a1) with respect to the total amount of the lithium salt (a1) and the inorganic lithium salt (a2) are not contained.
  • an electrolytic solution having a content of less than 5 mol% is used, a large exothermic peak is observed at a lower temperature in the thermal analysis, which is lower than that of the secondary battery using the electrolytic solution of the present invention. It was found that there was a risk of thermal runaway at temperature.
  • Example 2 For the electrolytic solution 3 prepared in Production Example 3, the conductivity was measured using the method described in “Molten Salt and High Temperature Chemistry 2002, Vol. 45, pp. 42-60”. The measurement temperature was 25 ° C.
  • Example 3 For the electrolytic solution 4 prepared in Production Example 4, the conductivity was measured in the same manner as in Example 2.
  • the non-aqueous electrolyte of the present invention suppresses thermal runaway in the vicinity of the positive electrode by using a lithium salt composed of a small amount of lithium salt (a1) and a lithium salt (a2) as a main electrolyte. High stability and high conductivity.
  • the non-aqueous electrolyte for secondary batteries of the present invention is useful as an electrolyte containing no water used for secondary batteries such as lithium ion secondary batteries.
  • the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2009-217943 filed on September 18, 2009 are cited here as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

 高い伝導度と、熱暴走が抑制された安定性とを兼ね備えた二次電池を与える二次電池用非水電解液の提供を目的とする。 R-CHF-SO-N(Li)-SO-CHF-R(ただし、式(a1)中のRおよびRは、互いに独立にエーテル性酸素原子を含んでいてもよい炭素数1~5の含フッ素アルキル基またはフッ素原子である。)で表されるリチウム塩(a1)と無機リチウム塩(a2)と溶媒を含有し、リチウム塩(a1)と無機リチウム塩(a2)の合計100mol%に対するリチウム塩(a1)の割合が5.0~20.0mol%である二次電池用非水電解液。

Description

二次電池用非水電解液
 本発明は、二次電池用非水電解液に関する。
 リチウム二次電池、リチウムイオン二次電池等の二次電池における非水電解液としては、伝導度が高く、耐電圧性に優れることから、LiPF、LiBF等の無機リチウム塩を含む非水電解液(1)が用いられている。
 また、電解質塩として、Li[N(SO-CFH-CF]、Li[N(SO-CH-CF]等のビススルホニルイミドリチウム塩を主成分(全電解質塩100mol%に対して60mol%以上)として用いる非水電解液(2)も知られている(特許文献1)。
特開2000-260400号公報
 しかし、非水電解液(1)は、高い伝導度が得られるものの、二次電池に使用した際、電解液中の正極近傍で急激な発熱が起こって熱暴走に至ることがある。また、非水電解液(2)は、充分な伝導度が得られず、実用性に疑問があった。
 本発明者は、高い伝導度と、熱暴走が抑制された安定性とを兼ね備えた二次電池を与える二次電池用非水電解液、およびかかる非水電解液を有する二次電池の提供を目的とする。
 本発明者等は、特定のビススルホニルイミド塩が熱暴走抑制効果を発揮することを見い出し、本発明を完成した。すなわち、本発明は、前記課題を解決するために以下の構成を採用した。
[1]式(a1)で表されるリチウム塩(a1)と無機リチウム塩であるリチウム塩(a2)と溶媒とを含有し、前記リチウム塩(a1)と前記リチウム塩(a2)の合計量に対する前記リチウム塩(a1)の割合が5.0~20.0mol%である、二次電池用非水電解液。
 R-CHF-SO-N(Li)-SO-CHF-R   (a1)
(ただし、式(a1)中のRおよびRは、互いに独立に、エーテル性酸素原子を含んでいてもよい炭素数1~5の含フッ素アルキル基またはフッ素原子である。)
[2]前記リチウム塩(a1)が、式(a1-1)で表される化合物である、前記[1]に記載の二次電池用非水電解液。
 CF-CHF-SO-N(Li)-SO-CHF-CF   (a1-1)
[3]前記リチウム塩(a2)が、LiPF、LiBFまたはLiClOである、前記[1]または[2]に記載の二次電池用非水電解液。
[4]前記非水電解液が、LiPF、LiBFおよびLiClOからなる群から選ばれる少なくとも1種を含む、前記[1]または[2]に記載の二次電池用非水電解液。
[5]前記非水電解液が、LiPFを含む、前記[1]または[2]に記載の二次電池用非水電解液。
[6]前記非水電解液が、カーボネート系溶媒を含む、前記[1]~[5]のいずれかに記載の二次電池用非水電解液。
[7]前記非水電解液中の前記リチウム塩(a1)と前記リチウム塩(a2)の合計量が、全溶媒1リットルに対して0.5~3.0molである、前記[1]~[6]のいずれかに記載の二次電池用非水電解液。
[8]二次電池用非水電解液がリチウムイオン二次電池用非水電解液である、前記[1]~[7]のいずれかに記載の二次電池用非水電解液。
[9]リチウムイオンを吸蔵・放出する正極活物質を含む正極と、リチウム金属、リチウム合金またはリチウムイオンを吸蔵・放出する負極活物質を含む負極と、前記[1]~[8]のいずれかに記載の二次電池用非水電解液とを有するリチウムイオン二次電池。
 本発明の二次電池用非水電解液を用いることにより、高い伝導度と、熱暴走が抑制された安定性とを兼ね備えた二次電池が得られる。
実施例1における電解液の発熱挙動を観測した結果を示したグラフである。 比較例1における電解液の発熱挙動を観測した結果を示したグラフである。 比較例2における電解液の発熱挙動を観測した結果を示したグラフである。
<二次電池用非水電解液>
 本発明の二次電池用非水電解液(以下、単に「非水電解液」という。)は、電解質塩としてリチウム塩を含有する非水電解液である。
[リチウム塩]
 本発明の非水電解液は、下式(a1)で表されるリチウム塩(a1)と無機リチウム塩(a2)と溶媒とを含有する。これらリチウム塩は、本発明の非水電解液中で解離してリチウムイオンを供給する。
 R-CHF-SO-N(Li)-SO-CHF-R   (a1)
 ただし、式(a1)中のRおよびRは、互いに独立にエーテル性酸素原子を含んでいてもよい炭素数1~5の含フッ素アルキル基(以下、「含フッ素アルキル基(α)」という。)またはフッ素原子である。
 以下、式(a1)で表されるリチウム塩をリチウム塩(a1)と記す。また、式(a1)以外の式で表されるリチウム塩についても同様に記す。
 リチウム塩(a1)は、硫黄原子と結合する各炭素原子が-CHF-の構造を有し、該炭素原子の硫黄原子と反対側に結合する基が、水素原子の一部または全部がフッ素原子に置換されたエーテル性酸素原子を含んでいてもよいフルオロアルキル基またはフッ素原子であるビススルホニルイミドリチウム塩である。
 リチウム塩(a1)におけるRは、含フッ素アルキル基(α)またはフッ素原子であり、含フッ素アルキル基(α)が好ましい。
 Rが含フッ素アルキル基(α)である場合、その炭素数は1~5である。Rの含フッ素アルキル基(α)の炭素数が1~5であれば、電池過熱時における正極上での電解液の分解発熱を抑制する効果を発現するのに充分なモル濃度で添加した場合でも伝導度等その他の特性に与える影響が少ない。Rの含フッ素アルキル基(α)の炭素数は、伝導度を高く維持しやすい点から、1~3が好ましく、1が特に好ましい。
 また、Rが含フッ素アルキル基(α)である場合の該含フッ素アルキル基(α)は、熱暴走を抑制する効果が高い点から、アルキル基の水素原子の全てがフッ素原子に置換されていることが好ましい。
 Rは、前記Rと同じ、含フッ素アルキル基(α)またはフッ素原子であり、好ましい態様も同じである。
 RとRは、同じであってもよく、異なっていてもよい。
 リチウム塩(a1)としては、熱暴走が抑制された安定性と高い伝導度とを両立する点から、下記リチウム塩(a1-1)が特に好ましい。
Figure JPOXMLDOC01-appb-C000001
 無機リチウム塩(a2)は、本発明の非水電解液における主成分の電解質塩であり、非水電解液中で解離してリチウムイオンを供給する無機リチウム塩である。
 無機リチウム塩であるリチウム塩(a2)としては、LiPF、LiBF、LiClO、LiAsF、LiB(C、CHSOLi等が挙げられる。リチウム塩(a2)としては、LiPF、LiBFおよびLiClOが好ましい。これらのリチウム塩は、リチウムイオン二次電池用のリチウム塩として知られる化合物である。
 本発明の非水電解液は、伝導度が高い電解液が得られやすい点から、LiPF、LiBFおよびLiClOからなる群から選ばれる少なくとも1種のリチウム塩をリチウム塩(a2)として含むことが好ましく、LiPFを含むことがより好ましい。また、本発明の非水電解液は、リチウム塩(a2)として、LiPF、LiBFおよびLiClOからなる群から選ばれる少なくとも1種のみを含むことが好ましく、リチウム塩(a2)としてLiPFのみを含むことが特に好ましい。
 本発明の非水電解液における、リチウム塩(a1)とリチウム塩(a2)の合計量に対するリチウム塩(a1)の割合は5.0~20.0mol%である。この割合は、5.0~15.0mol%が好ましく、5.0~10.0mol%がより好ましい。リチウム塩(a1)の割合が多い程、本発明の非水電解液を有する二次電池における熱暴走を抑制できるため、安定性に優れた二次電池が得られる。リチウム塩(a1)の割合が少ない程、高い伝導度が得られる。リチウム塩(a1)の割合が5.0~20.0mol%であれば、実用的な伝導度を確保しながら、熱暴走抑制効果が得られる。
 本発明の非水電解液中のリチウム塩(a1)とリチウム塩(a2)の合計量は、全溶媒1リットルに対して0.5~3.0molが好ましく、0.5~2.0molがより好ましい。リチウム塩(a1)とリチウム塩(a2)の合計量が多い程、高い電導度と優れた安定性を兼ね備えた非水電解液が得られやすい。リチウム塩(a1)とリチウム塩(a2)の合計量が少ない程、それらリチウム塩を溶媒に溶解させやすい。
 また、必要に応じて非水電解液にリチウム塩(a1)および無機リチウム塩(a2)以外のリチウム塩(a3)を含有させてもよい。本発明の非水電解液がリチウム塩(a3)を含有する場合には、リチウム塩(a3)の含有量は、非水電解液に含有される全リチウム塩において5~40mol%であることが好ましい。
 本発明の非水電解液は、前述したように少量のリチウム塩(a1)を含んでいるため、二次電池とした際に正極近傍における熱暴走が抑制される効果が得られる。以下、該効果について詳述する。
 従来、前述の非水電解液(1)のようなLiPF等の無機リチウム塩を用いる二次電池では、過度に充電された場合等に、正極においてカーボネート系溶媒等の溶媒が酸化分解されることで、急激な発熱が起こって熱暴走に至ることがあった。
 これに対し、本発明者等は、電解質塩であるリチウム塩としてリチウム塩(a1)を用いることで、前記熱暴走を抑制できることを見い出した。本発明の非水電解液を有する二次電池では、電解液中に含まれるリチウム塩(a1)が解離することで生じるビススルホニルイミドアニオンが、正極上に保護膜を形成する。該保護膜により、カーボネート系溶媒等の溶媒が正極に接触することが防がれ、それら溶媒が正極上で酸化されることが抑制されるため、二次電池の熱暴走が抑制されると考えられる。
 さらに、本発明者は、前記保護膜による熱暴走の抑制効果は、少量のリチウム塩(a1)により達成されることも見い出した。そのため、本発明の非水電解液は、高い伝導度を有するLiPF等のリチウム塩を主成分として使用することができ、高い伝導度も得られる。
 また、リチウム塩(a1)は、下記効果も奏する。
 特に二次電池の負極にグラファイト(黒鉛)を用いた場合、Li[N(SO]等のパーフルオロアルキル基を有するビススルホニルイミドリチウム塩(以下、「リチウム塩(b1)」という。)や、環状構造の下記リチウム塩(b2)(ただし、kは1~5の整数を示す。)は、負極上で還元分解されやすい。これに対し、本発明の非水電解液のリチウム塩(a1)は、含フッ素アルキル基における硫黄原子と結合する各炭素原子に水素原子が結合しているため、リチウム塩(b1)およびリチウム塩(b2)に比べて耐還元性に優れている。そのため、黒鉛を用いた負極であっても還元分解され難く、熱暴走を抑制する効果が安定して発揮される。したがって、本発明の非水電解液は、黒鉛を用いた負極を有する二次電池に適用することが特に好ましい。
Figure JPOXMLDOC01-appb-C000002
[溶媒]
 本発明の非水電解液は、水を実質的に含まない溶媒と前記リチウム塩を含む電解液である。すなわち、本発明の非水電解液中の溶媒が仮に水を含んでいたとしても、その水分量は、本発明の非水電解液を用いた二次電池の性能劣化が見られない程度の量である。
 本発明の非水電解液中に含まれる水分量は、電解液の総質量に対して0~500質量ppmであることが好ましく、0~100質量ppmであることがより好ましく、0~50質量ppmであることが特に好ましい。
 本発明の非水電解液の溶媒としては、カーボネート系溶媒、ヒドロフルオロエーテル、フッ素原子を含まないエーテル化合物が好ましい。
 以下、溶媒の説明において、式(2)で表される化合物を化合物(2)と記し、他の番号で表される化合物においても、同様に記載する。
(カーボネート系溶媒)
 カーボネート系溶媒としては、環状カーボネート、鎖状カーボネートが挙げられる。カーボネート系溶媒は、環状カーボネートおよび鎖状カーボネートのいずれか一方の一種のみを用いてもよく、一方または両方の二種以上の混合物を用いてもよい。カーボネート系溶媒により、リチウム塩の溶解度、および伝導度が向上する。
 環状カーボネートとは、1,3-ジオキソラン-2-オン、1,3-ジオキソラン-2-オン誘導体、1,3-ジオキソール-2-オンおよび1,3-ジオキソール-2-オン誘導体を意味する。これらの誘導体としては、4位、5位、または4位と5位の両方に、ハロゲン原子、アルキル基、ハロアルキル基を有する化合物をいう。4位と5位の両方にこれらの原子や基を有する場合は、それらは同一であってもよく、異なっていてもよい。上記ハロゲン原子としては塩素原子またはフッ素原子が好ましく、上記アルキル基としては炭素数4以下のアルキル基が好ましく、上記ハロアルキル基としては1以上の塩素原子またはフッ素原子を有する炭素数4以下のハロアルキル基が好ましい。
 鎖状カーボネートとは、ジアルキルカーボネートおよびジアルキルカーボネート誘導体を意味する。ジアルキルカーボネートの2つのアルキル基は同一でも異なっていてもよく、それらの炭素数は6以下が好ましい。ジアルキル誘導体は、一方または両方のアルキル基が塩素原子またはフッ素原子を1以上有する炭素数6以下のハロアルキル基に置換されたものをいう。アルキル基やハロアルキル基の炭素数は4以下がより好ましく、1または2であるものがさらに好ましい。
 環状カーボネートとしては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、4-クロロ-1,3-ジオキソラン-2-オン、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、フルオロエチレンカーボネート、ビニレンカーボネートおよびジメチルビニレンカーボネートからなる群から選ばれる少なくとも1種の化合物が好ましく、入手容易性、リチウム塩の溶解度および伝導度の点から、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート、ビニレンカーボネートが特に好ましい。
 鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ジ-n-プロピルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート、メチルイソプロピルカーボネート、エチルイソプロピルカーボネート、ジイソプロピルカーボネートおよび3-フルオロプロピルメチルカーボネートからなる群から選ばれる少なくとも1種の化合物が好ましく、入手容易性、リチウム塩の溶解度および伝導度の点から、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートが特に好ましい。
 また、カーボネート系溶媒としては、後述の特性改善助剤として作用するカーボネート系溶媒も使用できる。このような作用を有するカーボネート系溶媒としては、例えばフルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、フェニルエチレンカーボネート、エリスリタンカーボネート、スピロ-ビス-ジメチレンカーボネート等が挙げられる。これらの特性改善助剤として作用するカーボネート系溶媒は、他のカーボネート系溶媒と併用することが好ましい。
 カーボネート系溶媒としては、環状カーボネートが好ましい。環状カーボネートを含む本発明の非水電解液を有する二次電池で充電を行うと、該環状カーボネートが負極(たとえば炭素電極)表面上で分解して安定な被膜を形成する。環状カーボネートにより形成された被膜は、電極界面における抵抗を低減できるため、リチウムイオンの負極へのインターカレーションが促進される。すなわち、本発明の非水電解液中の環状カーボネートにより形成された被膜によって、負極界面におけるインピーダンスが小さくなることで、リチウムイオンの負極へのインターカレーションが促進される。
 また、カーボネート系溶媒としては、鎖状カーボネートと環状カーボネートとを併用することも好ましい。カーボネート系溶媒として、環状カーボネートと鎖状カーボネートを併用することにより、低温でも高いリチウム塩濃度の溶液状態を保ちやすい。
 カーボネート系溶媒として、鎖状カーボネートと環状カーボネートとを併用する場合、鎖状カーボネート(体積V)と環状カーボネート(体積V)の体積比(V:V)は、1:10~10:1であることが好ましい。
 環状カーボネートの含有量がこの範囲内であれば、混合溶媒の融点が適切な範囲となりリチウム塩を溶解した電解液溶液が安定になる。一方、鎖状カーボネートの含有量がこの範囲であれば、リチウム塩溶解度が適切な範囲になりリチウム塩を溶解した電解液溶液が安定になる。
 本発明の非水電解液中のカーボネート系溶媒の含有量は特に制限はなく、組合わせる溶媒系により適宜変更されうる。カーボネート系溶媒の含有量が、非水電解液に用いる全溶媒100体積%に対して、0~40体積%であれば、ガス発生の問題がなく安定性の高い電解液を得やすく、40~100体積%であればリチウム塩の溶解度および伝導度にすぐれた電解液を得やすい。
(ヒドロフルオロエーテル)
 ヒドロフルオロエーテルは、電解液に不燃性を付与する溶媒であり、エーテルの水素原子の一部がフッ素原子に置換された構造を有する。
 ヒドロフルオロエーテルとしては、たとえば、下記化合物(2)が挙げられる。
 R-O-R  (2)
 ただし、化合物(2)におけるRおよびRは、それぞれ独立に炭素数1~10の含フッ素アルキル基または炭素原子-炭素原子間にエーテル性酸素原子を有する炭素数1~10の含フッ素アルキル基であり、RおよびRの一方または両方は、部分フッ素化された基である。RとRは同じであってもよく、異なっていてもよい。
 前記含フッ素アルキル基は、アルキル基の水素原子の一部または全部がフッ素原子に置換された基である。部分フッ素化された基とは、炭素原子-炭素原子間にエーテル性酸素原子を有していてもよいアルキル基の水素原子の一部がフッ素原子に置換された基をいう。部分フッ素化された基中には、水素原子が存在する。また、含フッ素アルキル基および炭素原子-炭素原子間にエーテル性酸素原子を有する含フッ素アルキル基におけるアルキル基の構造は、それぞれ、直鎖構造、分岐構造、環状構造、または部分的に環状構造を有する基(シクロアルキルアルキル基等。)が挙げられる。
 化合物(2)としては、RおよびRが、いずれも炭素数1~10の部分フッ素化されたアルキル基である化合物(2-A)と、Rが炭素原子-炭素原子間にエーテル性酸素原子を有する炭素数1~10の部分フッ素化されたアルキル基であり、Rが炭素数1~10の部分フッ素化されたアルキル基または炭素原子-炭素原子間にエーテル性酸素原子を有する炭素数1~10の部分フッ素化されたアルキル基である化合物(2-B)が好ましい。
 化合物(2)は、炭素数が少なすぎると沸点が低すぎ、多すぎると高粘度化することから、総炭素数が4~10の化合物が好ましく、4~8の化合物が特に好ましい。化合物(2)の分子量は200~800が好ましく、200~500が特に好ましい。化合物(2)中のエーテル性酸素原子数は可燃性に影響することから、エーテル性酸素原子を有する化合物(2)である場合のエーテル性酸素原子数は、1~4が好ましく、1または2が特に好ましい。また化合物(2)中のフッ素含有量が高くなると不燃性を向上させることから、化合物(2)の分子量に対するフッ素原子の原子量の合計の割合は50%以上が好ましく、60%以上が特に好ましい。
 化合物(2)としては、化合物(2-A)が好ましく、CFCHOCFCFH(商品名:AE-3000、旭硝子社製)、CHFCFCHOCFCFH、CFCHOCFCHFCFが好ましく、CFCHOCFCFHが特に好ましい。
 また、化合物(2)以外のヒドロフルオロエーテルとしては、たとえば、下記化合物(3)が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 ただし、化合物(3)中、Xは、炭素数1~5のアルキレン基、炭素数1~5の部分フッ素化されたアルキレン基、炭素原子-炭素原子間にエーテル性酸素原子を有する炭素数1~5のアルキレン基、または炭素原子-炭素原子間にエーテル性酸素原子を有する炭素数1~5の部分フッ素化されたアルキレン基のいずれかの基を示す。部分フッ素化されたアルキレン基とは、アルキレン基の水素原子の一部がフッ素原子に置換された基をいう。
 化合物(3)は、リチウム塩を均一に溶解させ、不燃性に優れた電導度の高い電解液が得られやすい点から、前記式(3)のXが、CH、CHCH、CH(CH)CH、およびCHCHCHからなる群から選ばれる1種であるヒドロフルオロエーテルであることが好ましい。
 ヒドロフルオロエーテルは、化合物(2)および化合物(3)からなる群から選ばれる少なくとも1種を用いることが好ましい。
 本発明の非水電解液中のヒドロフルオロエーテルの含有量は特に制限はなく、組合わせる溶媒系により適宜変更されうる。ヒドロフルオロエーテルの含有量が、非水電解液に用いる全溶媒量100体積%に対して、0~40体積%であればリチウム塩の溶解度および伝導度に優れた電解液を得やすく、40~100体積%であれば、ガス発生の問題がなく安定性の高い電解液を得やすい。
 また、ヒドロフルオロエーテルとして化合物(2)(容量:Va)と化合物(3)(容量:Vb)を併用する場合は、それらの容量比(Vb/Va)は、0.01~0.99が好ましく、0.1~0.9がより好ましい。
(エーテル化合物)
 前記エーテル化合物は、フッ素原子を含まないエーテル化合物である。該エーテル化合物としては、下記化合物(4)が挙げられる。
 R-O-(Q-O)-R  (4)
 ただし、化合物(4)中のmは1~10の整数であり、Qは炭素数1~4の直鎖アルキレン基、または、該直鎖アルキレン基の水素原子の1個以上が、炭素数1~5のアルキル基、もしくは炭素原子-炭素原子間にエーテル性酸素原子を含む炭素数1~5のアルキル基に置換された基である。mが2以上である場合のQは、同一の基であっても、異なる基であってもよい。RおよびRは、それぞれ独立に炭素原子数1~5のアルキル基、またはRとRが連結して形成した炭素原子数1~10のアルキレン基である。
 化合物(4)におけるmは、1~6が好ましく、2~5がより好ましく、2~4が特に好ましい。
 Qは、-CHCH-が特に好ましい。
 RおよびRは、それぞれメチル基またはエチル基が好ましく、メチル基が特に好ましい。
 化合物(4)としては、下記化合物(4A)が好ましい。
Figure JPOXMLDOC01-appb-C000004
 ただし、化合物(4A)におけるm、RおよびRは、前記と同じである。
 化合物(4A)としては、モノグライム、ジグライム、トリグライム、テトラグライム、ペンタグライム、ヘキサグライム、ジエチレングリコールジエチルエーテル、トリエチレングリコールジエチルエーテル、テトラエチレングリコールジエチルエーテル、ペンタエチレングリコールジエチルエーテル、ヘキサエチレングリコールジエチルエーテルが好ましく、モノグライム、ジグライム、トリグライム、テトラグライム、ペンタグライムまたはヘキサグライムがより好ましい。
 また、RとRが連結して炭素原子数1~10のアルキレン基を形成している化合物(4A)としては、たとえば、12-クラウン-4、14-クラウン-4、15-クラウン-5、18-クラウン-6が挙げられる。
 化合物(4)は、1種を単独で使用してもよく、2種以上を併用してもよい。
 本発明の非水電解液中の化合物(4)の含有量は、非水電解液に用いる全溶媒液100体積%に対して、0~30体積%が好ましく、0~20体積%がより好ましい。
 化合物(4)の含有量が多い程、リチウム塩の溶解度が向上する。化合物(4)の含有量が少ない程、サイクル特性に優れた非水電解液が得られやすい。
(他の溶媒)
 また、本発明の非水電解液の溶媒は、前記カーボネート系溶媒、ヒドロフルオロエーテル、エーテル化合物以外に、エステル系溶媒などの他の溶媒を含有していてもよい。エステル系溶媒は、カルボン酸、スルホン酸、リン酸、硝酸などの酸の鎖状エステルまたは環状エステルである溶媒をいう。エステル系溶媒の炭素数は、3以上12以下が好ましく、4以上8以下がより好ましい。炭素数がこれより少ないエステル系溶媒は、沸点が低すぎ、二次電池の通常の使用条件下においてもその蒸気圧により二次電池が膨張しやすくなる。また、炭素数がこれより多いエステル系溶媒は、粘度が高くなり、電解液の伝導度や低温特性を低下させるおそれがある。
 エステル系溶媒としては、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等のカルボン酸エステル、γブチロラクトン等の環状エステル、1,3-プロパンスルトン、1,4-ブタンスルトン等の環状スルホン酸エステル、メタンスルホン酸メチル等のスルホン酸アルキルエステル、リン酸アルキルエステル等が挙げられる。
 これらエステル系溶媒の中には、例えば環状スルホン酸エステル、スルホン酸アルキルエステルのように後述する特性改善助剤の効果を示すものもあり、溶媒と同時に特性改善の目的で含有されていてもよい。
 本発明の非水電解液が他の溶媒を含有する場合、その含有量は、非水電解液に用いる全溶媒100体積%に対して、30体積%以下が好ましく、25体積%以下がより好ましく、20体積%以下が特に好ましい。
 本発明の非水電解液の溶媒としては、必要とされる特性に応じて、前述した各溶媒を単独、もしくは組み合わせて使用でき、下記溶媒(i)~(iii)が好ましい。
 (i)前記カーボネート系溶媒のみからなる溶媒。
 (ii)前記カーボネート系溶媒99~70体積%と、前記ヒドロフルオロエーテル1~30体積%からなる溶媒。
 (iii)前記ヒドロフルオロエーテル30~70体積%と、前記カーボネート系溶媒0~30体積%と、前記エーテル化合物1~30体積%とからなる溶媒。
 溶媒(i)は、リチウムイオン伝導度に優れる。溶媒(ii)は、サイクル特性に優れる。溶媒(iii)は、安全性に優れる。
[他の成分]
 また、本発明の非水電解液は、前述したリチウム塩および溶媒に加えて、電解液の機能を向上させるために、必要に応じて他の成分が含まれていてもよい。他の成分としては、たとえば、従来公知の過充電防止剤、脱水剤、脱酸剤、高温保存後の容量維持特性およびサイクル特性を改善するための特性改善助剤が挙げられる。
 過充電防止剤としては、たとえば、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニオール等の含フッ素アニソール化合物が挙げられる。過充電防止剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 非水電解液が過充電防止剤を含有する場合、本発明の非水電解液(100質量%)中の過充電防止剤の含有量は、0.1~5質量%が好ましい。非水電解液中の過充電防止剤の含有量が0.1質量%以上であれば、本発明の非水電解液を有する二次電池の過充電による破裂・発火を抑制しやすく、該二次電池をより安定に使用できる。
 脱水剤としては、たとえば、モレキュラーシーブス、芒硝、硫酸マグネシウム、水素化カルシウム、水素化ナトリウム、水素化カリウム、水素化リチウムアルミニウムが挙げられる。本発明の非水電解液に用いる前記溶媒は、前記脱水剤で脱水を行った後に精留を行ったものを使用することが好ましい。また、精留を行わずに前記脱水剤による脱水のみを行った溶媒を使用してもよい。
 特性改善助剤としては、たとえば、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、フェニルコハク酸無水物等のカルボン酸無水物;エチレンサルファイト、ブスルファン、スルホラン、スルホレン、ジメチルスルホン、ジフェニルスルホン、メチルフェニルスルホン、ジブチルジスルフィド、ジシクロヘキシルジスルフィド、テトラメチルチウラムモノスルフィド、N,N-ジメチルメタンスルホンアミド、N,N-ジエチルメタンスルホンアミド等の含硫黄化合物;1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン、N-メチルスクシイミド等の含窒素化合物;ヘプタン、オクタン、シクロヘプタン等の炭化水素化合物、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物が挙げられる。これら特性改善助剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の非水系電解液が特性改善助剤を含有する場合、非水電解液(100質量%)中の特性改善助剤の含有量は、0.1~5質量%が好ましい。
 本発明の非水電解液は、非水電解液を有する二次電池の実用上、25℃における伝導度が0.70S・m-1以上であることが好ましい。非水電解液の伝導度は、「溶融塩および高温化学 2002年、45巻、42~60頁」に記載の方法で測定される。
 また、非水電解液の回転型粘度計により測定した粘度(20℃)は、0.1~20cPであることが好ましい。
 本発明の非水電解液は、分解電流値が0.05mA/cmに達する電位領域(電位窓)が0.2V~4.2Vの範囲よりも広い領域にある電解液であることが好ましい。該電位窓の値は、リチウム金属基準の電位で表した値である。電位窓の測定は、実施例に記載する方法により実施できる。
 以上説明した、電解質塩として少量のリチウム塩(a1)を含む本発明の非水電解液を用いることにより、伝導度が高く、かつ正極近傍における急激な発熱による熱暴走が抑制された安定性とを兼ね備えた二次電池が得られる。
<二次電池>
 本発明の非水電解液を用いた二次電池としては、負極および正極と、本発明の非水電解液とを有するリチウムイオン二次電池が好ましい。ただし、本発明の非水電解液は、前記リチウムイオン二次電池以外に、リチウム金属二次電池、リチウムイオン二次電池、リチウム空気二次電池等の二次電池、リチウム一次電池等の一次電池に用いてもよい。
 負極としては、電気化学的にリチウムイオンを吸蔵・放出できる負極活物質を含む電極が挙げられる。負極活物質としては、公知のリチウムイオン二次電池用負極活物質が使用できる。たとえば、リチウムイオンを吸蔵・放出できるグラファイト(黒鉛)、非晶質炭素等の炭素質材料、リチウム金属、リチウム合金等の金属、金属化合物が挙げられる。これら負極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。
 なかでも、負極活物質としては、炭素質材料が好ましく、黒鉛、および黒鉛の表面を該黒鉛に比べて非晶質の炭素で被覆した炭素質材料が特に好ましい。本発明の非水電解液におけるリチウム塩(a1)は、前述のように、黒鉛を用いた負極上でも還元分解され難く、熱暴走を抑制する効果を安定して発現できる。
 黒鉛は、学振法によるX線回折で求めた格子面(002面)のd値(層間距離、以下単に「d値」という。)が0.335~0.338nmであることが好ましく、0.335~0.337nmであることがより好ましい。また、学振法によるX線回折で求めた結晶子サイズ(Lc)は、30nm以上であることが好ましく、50nm以上であることがより好ましく、100nm以上であることがさらに好ましい。黒鉛の灰分は、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。
 また、黒鉛の表面を非晶質炭素で被覆した炭素質材料としては、d値が0.335~0.338nmである黒鉛を核材とし、該黒鉛の表面に該黒鉛よりもd値が大きい非晶質炭素が被覆されており、かつ核材の黒鉛(質量W)と該黒鉛を被覆する非晶質炭素(質量W)の割合が質量比(W/W)で80/20~99/1であることが好ましい。この炭素質材料を用いることにより、高い容量で、かつ電解液と反応しにくい負極を製造することが容易になる。
 炭素質材料の粒径は、レーザー回折・散乱法によるメジアン径で、1μm以上であることが好ましく、3μm以上であることがより好ましく、5μm以上であることがさらに好ましく、7μm以上であることが特に好ましい。また、炭素質材料の粒径は、100μm以下であることが好ましく、50μm以下であることがより好ましく、40μm以下であることがさらに好ましく、30μm以下であることが特に好ましい。
 炭素質材料のBET法による比表面積は、0.3m/g以上であることが好ましく、0.5m/g以上であることがより好ましく、0.7m/g以上であることがさらに好ましく、0.8m/g以上であることが特に好ましい。炭素質材料の比表面積は、25.0m/g以下であることが好ましく、20.0m/g以下であることがより好ましく、15.0m/g以下であることがさらに好ましく、10.0m/g以下であることが特に好ましい。
 炭素質材料は、アルゴンイオンレーザー光を用いたラマンスペクトルで分析したときに、1570~1620cm-1の範囲にあるピークPのピーク強度Iと、1300~1400cm-1の範囲にあるピークPのピーク強度Iとの比で表されるR値(=I/I)が、0.01~0.7であることが好ましい。また、ピークPの半値幅が、26cm-1以下であることが好ましく、25cm-1以下であることが特に好ましい。
 金属リチウム以外に負極活物質として使用できる金属としては、Ag、Zn、Al、Ga、In、Si、Ti、Ge、Sn、Pb、P、Sb、Bi、Cu、Ni、Sr、Ba等が挙げられる。また、リチウム合金としては、リチウムと前記金属の合金が挙げられる。また、金属化合物としては、前記金属の酸化物等が挙げられる。
 なかでも、Si、Sn、Ge、TiおよびAlからなる群から選ばれる少なくとも1種の金属、該金属を含む金属化合物、金属酸化物、リチウム合金が好ましく、Si、SnおよびAlからなる群から選ばれる少なくとも1種の金属、該金属を含む金属化合物、リチウム合金、チタン酸リチウムがより好ましい。
 リチウムイオンを吸蔵・放出できる金属、該金属を含む金属化合物、およびリチウム合金は、一般に黒鉛に代表される炭素質材料と比較して、単位質量当たりの容量が大きいので、より高エネルギー密度が求められる二次電池に好適である。
 正極としては、電気化学的にリチウムイオンを吸蔵・放出できる正極活物質を含む電極が挙げられる。
 正極活物質としては、公知のリチウムイオン二次電池用正極活物質を用いることができ、たとえば、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等のリチウム含有遷移金属酸化物、1種類以上の遷移金属を用いたリチウム含有遷移金属複合酸化物、遷移金属酸化物、遷移金属硫化物、金属酸化物、オリビン型金属リチウム塩等が挙げられる。
 リチウム含有遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、たとえば、LiCoO等のリチウムコバルト複合酸化物、LiNiO等のリチウムニッケル複合酸化物、LiMnO、LiMn、LiMnO等のリチウムマンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr,Si、Yb等の他の金属で置換したもの等が挙げられる。他の金属で置換されたものとしては、LiMn0.5Ni0.5、LiMn1.8Al0.2、LiNi0.85Co0.10Al0.05、LiMn1.5Ni0.5、LiNi1/3Co1/3Mn1/3、LiMn1.8Al0.2が挙げられる。
 遷移金属酸化物としては、たとえば、TiO、MnO、MoO、V、V13、遷移金属硫化物としてはTiS、FeS、MoS、金属酸化物としてはSnO、SiO等が挙げられる。
 オリビン型金属リチウム塩は、(式)Li(ただし、XはFe(II)、Co(II)、Mn(II)、Ni(II)、V(II)、またはCu(II)を示し、YはPまたはSiを示し、0≦L≦3、1≦x≦2、1≦y≦3、4≦z≦12、0≦g≦1である数をそれぞれ示す。)で示される物質またはこれらの複合体である。たとえば、LiFePO、LiFe(PO、LiFeP、LiMnPO、LiNiPO、LiCoPO、LiFePOF、LiMnPOF、LiNiPOF、LiCoPOF、LiFeSiO、LiMnSiO、LiNiSiO、LiCoSiOが挙げられる。
 これら正極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。
 また、これら正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質が付着したものを用いることもできる。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物;硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩;炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
 表面付着物質の量としては、正極活物質に対する質量の下限は0.1質量ppmが好ましく、より好ましくは1質量ppm、更に好ましくは10質量ppmである。上限は20質量%が好ましく、より好ましくは10質量%、更に好ましくは5質量%である。表面付着物質により、正極活物質表面での非水系電解液の酸化反応を抑制することができ、電池寿命を向上させることができる。
 正極活物質としては、放電電圧が高く、かつ電気化学的安定性が高い点から、LiCoO、LiNiO、LiMnO等のα-NaCrO構造を母体とするリチウム含有複合酸化物、LiMn等のスピネル型構造を母体とするリチウム含有複合酸化物が好ましい。
 電極の作製には、負極活物質または正極活物質を結着させる結着剤を用いる。
 負極活物質および正極活物質を結着する結着剤としては、電極製造時に使用する溶媒、電解液に対して安定な材料であれば、任意の結着剤を使用することができる。結着剤は、たとえば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等の不飽和結合を有する重合体およびその共重合体、アクリル酸共重合体、メタクリル酸共重合体等のアクリル酸系重合体およびその共重合体等が挙げられる。これらの結着剤は1種を単独で用いてもよく、2種以上を併用してもよい。
 電極中には、機械的強度、電気伝導度を高めるために増粘剤、導電材、充填剤等を含有させてもよい。
 増粘剤としては、たとえば、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、ガゼイン、ポリビニルピロリドンが挙げられる。これらの増粘剤は1種を単独で用いてもよく、2種以上を併用してもよい。
 導電材としては、たとえば、銅またはニッケル等の金属材料、グラファイトまたはカーボンブラック等の炭素質材料が挙げられる。これら導電材は1種を単独で用いてもよく、2種以上を併用してもよい。
 電極の製造法としては、負極活物質または正極活物質に、結着剤、増粘剤、導電材、溶媒等を加えてスラリー化し、これを集電体に塗布、乾燥して製造することができる。この場合、乾燥後にプレスすることによって電極を圧密化することが好ましい。
 正極活物質層の密度が低すぎると二次電池の容量が不充分となるおそれがある。
 集電体としては、各種の集電体を用いることができるが、通常は金属または合金が用いられる。負極の集電体としては、銅、ニッケル、ステンレス等が挙げられ、銅が好ましい。また、正極の集電体としては、アルミニウム、チタン、タンタル等の金属またはその合金が挙げられ、アルミニウムまたはその合金が好ましく、アルミニウムが特に好ましい。
 二次電池の形状は、用途に応じて選択すればよく、コイン型であってもよく、円筒型であっても、角型であってもラミネート型であってもよい。また、正極および負極の形状も、二次電池の形状に合わせて適宜選択することができる。
 二次電池の充電電圧は、3.4V以上とすることが好ましく、4.0V以上が特に好ましく、4.2V以上が特に好ましい。二次電池の正極活物質が、リチウム含有遷移金属酸化物、リチウム含有遷移金属複合酸化物、遷移金属酸化物、遷移金属硫化物、金属酸化物の場合の充電電圧は4.0V以上が好ましく、4.2Vが特に好ましい。また、正極活物質がオリビン型金属リチウム塩の場合の充電電圧は3.2Vが好ましく、3.4V以上が特に好ましい。本発明の非水電解液は、4.2V以上の耐酸化性と0.2V以下の耐還元性を有することから、該範囲に作動電位を有する任意の電極に使用できる。
 さらに、二次電池は、充電電圧を4.2V以上(リチウム金属を基準とした電位)で用いる二次電池であることが特に好ましい。たとえば、電位窓が0V~4.2Vの範囲より広い本発明の非水電解液を有する二次電池が挙げられる。
 二次電池の正極と負極の間には、短絡を防止するために通常はセパレータとして多孔膜を介在させる。この場合、非水電解液は該多孔膜に含浸させて用いる。多孔膜の材質および形状は、非水電解液に対して安定であり、かつ保液性に優れていれば特に制限はなく、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンとテトラフルオロエチレンのコポリマー等のフッ素樹脂、またはポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シートまたは不織布が好ましく、材質はポリエチレン、ポリプロピレン等のポリオレフィンが好ましい。また、これらの多孔膜に本発明の非水電解液を含浸させてゲル化させたものをゲル電解質として用いてもよい。
 二次電池に使用される電池外装体の材質は、二次電池に通常用いられる材質であればよく、ニッケルメッキを施した鉄、ステンレス、アルミニウムまたはその合金、ニッケル、チタン、樹脂材料、フィルム材料等が挙げられる。
 以上説明した本発明の非水電解液を有する二次電池は、高い伝導度を有し、かつ正極近傍における急激な発熱による熱暴走が抑制される。そのため、該二次電池は、携帯電話、携帯ゲーム機、デジタルカメラ、デジタルビデオカメラ、電動工具、ノートパソコン、携帯情報端末、携帯音楽プレーヤー、電気自動車、ハイブリット式自動車、電車、航空機、人工衛星、潜水艦、船舶、無停電電源装置、ロボット、電力貯蔵システム等の様々な用途に使用できる。
 以下、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
<電解液の調製>
[製造例1]
 エチレンカーボネートとエチルメチルカーボネートを容量比1:1で混合して溶媒1を調製した。溶媒1に1Mの濃度となるようにLiPF(無機リチウム塩(a2))を溶解して電解液1を調製した。
[製造例2]
 製造例1で調製した電解液1の総量に対して28mMとなるように下記リチウム塩(a1-1)(リチウム塩(a1))を溶解し、電解液2を調製した。電解液2におけるLiPFとリチウム塩(a1-1)の合計100mol%に対するリチウム塩(a1-1)の含有量は2.8mol%であった。
Figure JPOXMLDOC01-appb-C000005
[製造例3]
 製造例1で調製した電解液1の総量に対して142mMとなるようにリチウム塩(a1-1)を溶解し、電解液3を調製した。電解液3におけるLiPFとリチウム塩(a1-1)の合計100mol%に対するリチウム塩(a1-1)の割合は12.5mol%であった。
[製造例4]
 製造例1と同じ溶媒1に、0.8Mの濃度のLiPFと、0.2Mの濃度のリチウム塩(a1-1)とを溶解し、電解液4を調製した。電解液4におけるLiPFとリチウム塩(a1-1)の合計100mol%に対するリチウム塩(a1-1)の割合は20.0mol%であった。
[製造例5]
 製造例1と同じ溶媒1に、0.7Mの濃度のLiPFと、0.3Mの濃度のリチウム塩(a1-1)とを溶解し、電解液5を調製した。電解液5におけるLiPFとリチウム塩(a1-1)の合計100mol%に対するリチウム塩(a1-1)の割合は30.0mol%であった。
[製造例6]
 製造例1と同じ溶媒1に、0.5Mの濃度のLiPFと、0.5Mの濃度のリチウム塩(a1-1)とを溶解し、電解液6を調製した。電解液6におけるLiPFとリチウム塩(a1-1)の合計100mol%に対するリチウム塩(a1-1)の割合は50.0mol%であった。
<LiCoO正極-リチウム金属箔からなる単極セルのシート状リチウムイオン二次電池の作製> 
[製造例7]
 LiCoO(AGCセイミケミカル社製、商品名「セリオンC」)90質量部、カーボンブラック(電気化学工業社製、商品名「デンカブラック」)5質量部、およびポリフッ化ビニリデン5質量部を混合し、N-メチル-2-ピロリドンを加えてスラリー状とし、該スラリーを厚さ20μmのアルミニウム箔の片面に均一に塗布、乾燥し、その後正極活物質層の密度が3.0g/cmになるようにプレスしてLiCoO正極を作製した。
 次いで、前記LiCoO正極、該LiCoO正極と同面積のリチウム金属箔、およびポリエチレン製のセパレータを、リチウム金属箔、セパレータ、LiCoO正極の順に積層して電池要素を作製した。次いで、アルミニウム(厚さ40μm)の両面を樹脂層(ポリエチレン樹脂)で被覆したラミネートフィルムからなる袋内に、前記電池要素を、該電池要素のLiCoO正極および負極(リチウム金属箔)の端子が前記袋の外部に出るようにして収容した。次いで、該袋内に、製造例1で調製した電解液1を注入して真空封止を行い、シート状二次電池1(二次電池1)を作製した。
<DSC分析による過充電正極上での電解液発熱挙動観測試験>
[実施例1]
 製造例7で作製した二次電池1を、電極間の密着性を高めるためにガラス板で挟んだ状態で、25℃において、0.1Cに相当する定電流で4.2Vまで充電し、0.1Cに相当する定電流で3Vまで放電するサイクルを5サイクル行い、二次電池を安定させた。その後、該二次電池1を0.1Cに相当する定電流で4.5Vまで充電し、さらに4.5Vの定電圧で電流値が0.01Cになるまで充電した。ただし、1Cとは電池の4.2Vにおける基準容量を1時間で放電する電流値を表し、0.1Cとはその1/10の電流値を表す。
 次いで、4.5Vに過充電された二次電池1をアルゴン雰囲気のグローブボックス内で解体し、LiCoO正極を取り出してエチルメチルカーボネートで洗浄した後、30分間真空乾燥した。乾燥された過充電正極を直径3mmの円形に打ち抜いてサンプル正極とした。容量15μLのSUS製(ステンレス製)密閉式DSCパン上にサンプル正極を据え、該サンプル正極上に製造例3で調製した電解液3を5μL滴下し、容器を密閉した。そして、セイコーインスツル社製のDSC6000(機種名)を用い、50℃から350℃の温度範囲において、昇温速度5℃/分でサンプル正極上の電解液3の熱分析を実施した。その結果を図1に示す。
[比較例1]
 サンプル正極上に滴下する電解液を、電解液3から電解液1に変更した以外は、実施例1と同様にして熱分析を実施した。その結果を図2に示す。
[比較例2]
 サンプル正極上に滴下する電解液を、電解液3から電解液2に変更した以外は、実施例1と同様にして熱分析を実施した。その結果を図3に示す。
 図1に示すように、本発明の電解液を用いた二次電池は、正極側で熱暴走に至る温度が非常に高く、安定して使用できることがわかった。
 一方、図2、3に示すように、本発明の比較例においては、リチウム塩(a1)を含まない電解液またはリチウム塩(a1)と無機リチウム塩(a2)の合計量に対する前記リチウム塩(a1)の割合が含有量は5mol%未満である電解液を用いた場合、熱分析においてより低い温度で大きな発熱ピークが観測され、本発明の電解液を用いた二次電池に比べてより低い温度で熱暴走に至るおそれがあることがわかった。
<伝導度の評価>
[実施例2]
 製造例3で調製した電解液3について、「溶融塩および高温化学 2002年、45巻、42~60頁」に記載の方法を用いて伝導度を測定した。測定温度は25℃とした。
[実施例3]
 製造例4で調製した電解液4について、実施例2と同様の方法で伝導度を測定した。
[比較例3および4]
 製造例5で調製した電解液5、製造例6で調製した電解液6について、実施例2と同様の方法で伝導度を測定した。
 実施例2、3および比較例3、4における伝導度の測定結果を表1に示す。ただし、表1中のリチウム塩(a1)の含有量は、LiPFとリチウム塩(a1-1)の合計100mol%に対するリチウム塩(a1-1)の割合である。
Figure JPOXMLDOC01-appb-T000006
 表1に示すように、本発明に係わる実施例においては、高い伝導度が維持されていた。
 一方、本発明の比較例においては、伝導度が低下しており、実用には適さないものであった。
 以上のように、本発明の非水電解液は、少量のリチウム塩(a1)と、主電解質であるリチウム塩(a2)とからなるリチウム塩を用いることにより、正極近傍における熱暴走が抑制された安定性と、高い伝導度とを両立できる。
 本発明の二次電池用非水電解液は、リチウムイオン二次電池などの二次電池に使用される水を含まない電解液として有用である。

 なお、2009年9月18日に出願された日本特許出願2009-217943号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (9)

  1.  式(a1)で表されるリチウム塩(a1)と無機リチウム塩であるリチウム塩(a2)と溶媒とを含有し、
     前記リチウム塩(a1)と前記リチウム塩(a2)の合計量に対する前記リチウム塩(a1)の割合が5.0~20.0mol%である、二次電池用非水電解液。
     R-CHF-SO-N(Li)-SO-CHF-R   (a1)
    (ただし、式(a1)中のRおよびRは、互いに独立に、エーテル性酸素原子を含んでいてもよい炭素数1~5の含フッ素アルキル基またはフッ素原子である。)
  2.  前記リチウム塩(a1)が、式(a1-1)で表される化合物である、請求項1に記載の二次電池用非水電解液。
     CF-CHF-SO-N(Li)-SO-CHF-CF   (a1-1)
  3.  前記リチウム塩(a2)が、LiPF、LiBFまたはLiClOである、請求項1または2に記載の二次電池用非水電解液。
  4.  前記非水電解液が、LiPF、LiBFおよびLiClOからなる群から選ばれる少なくとも1種を含む、請求項1または2に記載の二次電池用非水電解液。
  5.  前記非水電解液が、LiPFを含む、請求項1または2に記載の二次電池用非水電解液。
  6.  前記非水電解液が、カーボネート系溶媒を含む、請求項1~5のいずれか一項に記載の二次電池用非水電解液。
  7.  前記非水電解液中の前記リチウム塩(a1)と前記リチウム塩(a2)の合計量が、全溶媒1リットルに対して0.5~3.0molである、請求項1~6のいずれか一項に記載の二次電池用非水電解液。
  8.  二次電池用非水電解液がリチウムイオン二次電池用非水電解液である、請求項1~7のいずれか1項に記載の二次電池用非水電解液。
  9.  リチウムイオンを吸蔵・放出する正極活物質を含む正極と、リチウム金属、リチウム合金またはリチウムイオンを吸蔵・放出する負極活物質を含む負極と、請求項1~8のいずれか1項に記載の二次電池用非水電解液とを有するリチウムイオン二次電池。
PCT/JP2010/066089 2009-09-18 2010-09-16 二次電池用非水電解液 WO2011034149A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080041916.1A CN102576905B (zh) 2009-09-18 2010-09-16 二次电池用非水电解液
JP2011531973A JP5556818B2 (ja) 2009-09-18 2010-09-16 二次電池用非水電解液
EP10817262A EP2479832A1 (en) 2009-09-18 2010-09-16 Non-aqueous electrolyte for secondary battery
US13/421,229 US8568931B2 (en) 2009-09-18 2012-03-15 Non-aqueous electrolyte solution for secondary batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009217943 2009-09-18
JP2009-217943 2009-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/421,229 Continuation US8568931B2 (en) 2009-09-18 2012-03-15 Non-aqueous electrolyte solution for secondary batteries

Publications (1)

Publication Number Publication Date
WO2011034149A1 true WO2011034149A1 (ja) 2011-03-24

Family

ID=43758749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066089 WO2011034149A1 (ja) 2009-09-18 2010-09-16 二次電池用非水電解液

Country Status (7)

Country Link
US (1) US8568931B2 (ja)
EP (1) EP2479832A1 (ja)
JP (1) JP5556818B2 (ja)
KR (1) KR20120081078A (ja)
CN (1) CN102576905B (ja)
TW (1) TW201125184A (ja)
WO (1) WO2011034149A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114934A (ja) * 2011-11-29 2013-06-10 Nippon Synthetic Chem Ind Co Ltd:The 金属塩、電極保護膜形成剤、それを用いた二次電池用電解質、及び二次電池
US20140295294A1 (en) * 2013-03-28 2014-10-02 Honda Motor Co., Ltd. Lithium air battery and lithium ion secondary battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9301489D0 (sv) 1993-04-30 1993-04-30 Ab Astra Veterinary composition
WO2014050873A1 (ja) * 2012-09-28 2014-04-03 ダイキン工業株式会社 電解液、電気化学デバイス、リチウム電池、及び、モジュール
US20160204469A1 (en) * 2013-08-20 2016-07-14 3M Innovative Properties Company Lithium ion battery electrolytes and electrochemical cells
JP5965445B2 (ja) 2013-09-25 2016-08-03 国立大学法人 東京大学 非水電解質二次電池
RU2645104C2 (ru) * 2013-09-25 2018-02-19 Дзе Юниверсити Оф Токио Раствор электролита для устройств хранения электроэнергии, таких как батареи и конденсаторы, содержащий соль, катион которой является щелочным металлом, щелочноземельным металлом или алюминием, и органический растворитель с гетероэлементом, способ получения упомянутого раствора электролита, а также конденсатор, включающий в себя упомянутый раствор электролита
CN105580184B (zh) 2013-09-25 2019-03-12 国立大学法人东京大学 非水电解质二次电池
DE102013221195A1 (de) 2013-10-18 2015-04-23 Wacker Chemie Ag Phosphonatosilane als Additive in Elektrolyten für Lithium-Ionen-Batterien
KR101986001B1 (ko) * 2014-07-09 2019-09-03 아사히 가세이 가부시키가이샤 비수계 리튬형 축전 소자

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260400A (ja) 1999-03-10 2000-09-22 Sanyo Electric Co Ltd 非水電解質電池
JP2000315522A (ja) * 1999-04-30 2000-11-14 Tonen Chem Corp リチウム電池用電解液
JP2007214120A (ja) * 2006-01-13 2007-08-23 Mitsubishi Chemicals Corp リチウムイオン二次電池
JP2007220670A (ja) * 2006-01-23 2007-08-30 Mitsubishi Chemicals Corp リチウムイオン二次電池
JP2007257958A (ja) * 2006-03-22 2007-10-04 Sony Corp 電池
JP2009217943A (ja) 2008-03-07 2009-09-24 Jst Mfg Co Ltd コネクタ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102297569B1 (ko) 2005-10-20 2021-09-02 미쯔비시 케미컬 주식회사 리튬 2 차 전지 및 그것에 사용하는 비수계 전해액
JP5671771B2 (ja) * 2005-11-16 2015-02-18 三菱化学株式会社 リチウム二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260400A (ja) 1999-03-10 2000-09-22 Sanyo Electric Co Ltd 非水電解質電池
JP2000315522A (ja) * 1999-04-30 2000-11-14 Tonen Chem Corp リチウム電池用電解液
JP2007214120A (ja) * 2006-01-13 2007-08-23 Mitsubishi Chemicals Corp リチウムイオン二次電池
JP2007220670A (ja) * 2006-01-23 2007-08-30 Mitsubishi Chemicals Corp リチウムイオン二次電池
JP2007257958A (ja) * 2006-03-22 2007-10-04 Sony Corp 電池
JP2009217943A (ja) 2008-03-07 2009-09-24 Jst Mfg Co Ltd コネクタ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOLTEN SALT AND HIGH- TEMPERATURE CHEMISTRY, vol. 45, 2002, pages 42 - 60
MOLTEN SALT AND HIGH-TEMPERATURE CHEMISTRY, vol. 45, 2002, pages 42 - 60

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114934A (ja) * 2011-11-29 2013-06-10 Nippon Synthetic Chem Ind Co Ltd:The 金属塩、電極保護膜形成剤、それを用いた二次電池用電解質、及び二次電池
US20140295294A1 (en) * 2013-03-28 2014-10-02 Honda Motor Co., Ltd. Lithium air battery and lithium ion secondary battery

Also Published As

Publication number Publication date
EP2479832A1 (en) 2012-07-25
JPWO2011034149A1 (ja) 2013-02-14
US8568931B2 (en) 2013-10-29
CN102576905A (zh) 2012-07-11
TW201125184A (en) 2011-07-16
US20120171580A1 (en) 2012-07-05
CN102576905B (zh) 2015-04-15
JP5556818B2 (ja) 2014-07-23
KR20120081078A (ko) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5605221B2 (ja) 二次電池用非水電解液および二次電池
JP5556818B2 (ja) 二次電池用非水電解液
US8586250B2 (en) Non-aqueous electrolyte solution for storage battery devices, and storage battery device
JP5942849B2 (ja) 二次電池用非水電解液および二次電池
WO2011052605A1 (ja) 二次電池用非水電解液および二次電池
JP5545292B2 (ja) 蓄電デバイス用電解液および蓄電デバイス
JP5786856B2 (ja) 二次電池用非水電解液および二次電池
KR20150079586A (ko) 이차 전지용 비수 전해액 및 리튬 이온 이차 전지
WO2011136226A1 (ja) 二次電池用非水電解液および二次電池
WO2015046175A1 (ja) 二次電池用非水電解液及びリチウムイオン二次電池
WO2012086602A1 (ja) 二次電池用非水電解液および二次電池
WO2011001985A1 (ja) 帯電デバイス用電解液、リチウム二次イオン電池用電解液、および二次電池
JPWO2013183719A1 (ja) 二次電池用非水電解液およびリチウムイオン二次電池
WO2012011508A1 (ja) 二次電池用非水電解液および二次電池
JP2011187234A (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
WO2015046171A1 (ja) 二次電池用非水電解液およびリチウムイオン二次電池
WO2014128940A1 (ja) 二次電池用非水電解液およびリチウムイオン二次電池
JP2013101766A (ja) 二次電池用非水電解液および二次電池
WO2012173253A1 (ja) 二次電池用非水電解液および二次電池
WO2012115112A1 (ja) 二次電池用非水電解液および二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080041916.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817262

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011531973

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127005318

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010817262

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE