WO2011034143A1 - 透明導電膜及びこれを備えた装置 - Google Patents

透明導電膜及びこれを備えた装置 Download PDF

Info

Publication number
WO2011034143A1
WO2011034143A1 PCT/JP2010/066077 JP2010066077W WO2011034143A1 WO 2011034143 A1 WO2011034143 A1 WO 2011034143A1 JP 2010066077 W JP2010066077 W JP 2010066077W WO 2011034143 A1 WO2011034143 A1 WO 2011034143A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
atoms
cerium
hydrogen
Prior art date
Application number
PCT/JP2010/066077
Other languages
English (en)
French (fr)
Inventor
大介 藤嶋
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to EP10817256.0A priority Critical patent/EP2479763A4/en
Priority to CN201080041351.7A priority patent/CN102498525B/zh
Priority to JP2011531967A priority patent/JP5895144B2/ja
Publication of WO2011034143A1 publication Critical patent/WO2011034143A1/ja
Priority to US13/421,512 priority patent/US20120174972A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a transparent conductive film and an apparatus provided with the same.
  • transparent conductive films have been used in various devices such as liquid crystal display devices, image display devices such as organic electroluminescence devices, solar cell devices such as thin film solar cells and dye-sensitized solar cells, and electronic components.
  • Such a transparent conductive film desirably has a small electrical resistance.
  • a transparent conductive film a transparent conductive film made of indium oxide (ITO) containing tin (Sn), a transparent conductive film made of zinc oxide (ZnO), and the like are known.
  • ITO indium oxide
  • ZnO zinc oxide
  • the transparent conductive film containing indium oxide as a main component for example, a transparent conductive film made of indium oxide to which cerium (Ce) is added by sputtering is disclosed in addition to a transparent conductive film made of ITO (for example, patents) Reference 1).
  • the transparent conductive film made of indium oxide to which cerium is added has a problem that light absorption on the long wavelength side is small, it is difficult to achieve good carrier mobility and lower electrical resistance.
  • the present invention has been made in view of the above points, a transparent conductive film capable of reducing light absorption on the long wavelength side, achieving good carrier mobility, and lowering electrical resistance, and an apparatus including the same Is to provide.
  • a transparent conductive film according to one aspect of the present invention is a transparent conductive film that includes indium oxide containing hydrogen and cerium and has a substantially polycrystalline structure, and has a specific resistance of 3.4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less.
  • the transparent conductive film comprising indium oxide containing hydrogen and cerium and having a substantially polycrystalline structure and having a specific resistance of 3.4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less, Light absorption on the long wavelength side is small, carrier mobility can be improved, and electrical resistance can be further reduced.
  • FIG. 1 is a cross-sectional view of a transparent conductive film according to an embodiment of the present invention.
  • Sintered bodies, types of substrates, cerium (Ce) content and hydrogen used in film production in Examples 1 to 7 and Comparative Examples 1 to 10 according to an embodiment of the present invention It is a figure which shows content, the specific resistance of a transparent conductive film, carrier mobility, and carrier density. It is a figure which shows the relationship between the cerium (Ce) density
  • Reference numeral 1 denotes a glass substrate, a polycrystalline silicon substrate, a single crystal silicon substrate, and a substantially intrinsic i-type amorphous silicon layer and a p-type amorphous silicon layer in this order.
  • a substrate such as a single crystal silicon substrate, 2 is a transparent conductive film formed on the substrate 1.
  • the transparent conductive film 2 is a film containing hydrogen (H) and a main component containing cerium (Ce) made of indium oxide. That is, the transparent conductive film 2 contains hydrogen (H), cerium (Ce), In (indium), and oxygen (O), and is doped with indium oxide (H) and cerium (Ce) as impurities. In 2 O 3 ).
  • the transparent conductive film 2 has a substantially polycrystalline structure and a large number of columnar structures standing so as to cover the substrate, and has an extremely small amount but an amorphous portion.
  • the content of hydrogen (H) in the transparent conductive film 2 is preferably 1.0 ⁇ 10 21 atoms / cm 3 or more, and more preferably on the order of 10 21 atoms / cm 3 .
  • the hydrogen content is a value of the content at the intermediate position in the film thickness direction of the transparent conductive film 2 and substantially corresponds to the average content excluding the vicinity of both surfaces of the transparent conductive film 2.
  • the concentration of hydrogen in the transparent conductive film 2 is preferably higher on the substrate 1 side than on the film surface side, except for the vicinity of both surfaces, and more preferably gradually increases toward the substrate 1 side. .
  • the specific resistance of the transparent conductive film 2 is 3.4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less.
  • the specific resistance of the transparent conductive film 2 is preferably as small as possible, but may be 3.4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less and 1.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or more.
  • the content of cerium (Ce) in the transparent conductive film 2 is desirably 1.0 ⁇ 10 20 atoms / cm 3 or more and 1.4 ⁇ 10 21 atoms / cm 3 or less, and preferably 2.4 ⁇ 10 20 atoms / cm 3. 3 to 1.2 ⁇ 10 21 atoms / cm 3 , more preferably 4.8 ⁇ 10 20 atoms / cm 3 to 1.1 ⁇ 10 21 atoms / cm 3 , still more preferably 7.5 ⁇ 10 20 atoms / cm 3 or more and 1.0 ⁇ 10 21 atoms / cm 3 or less, particularly preferably 7.5 ⁇ 10 20 atoms / cm 3 or more and 8.5 ⁇ 10 20 atoms / cm 3 or less.
  • a substrate 1 from which impurities on the surface are removed by cleaning is prepared.
  • the substrate 1 is a substrate in which an intrinsic i-type amorphous silicon layer and a p-type amorphous silicon layer are formed in this order on an n-type single crystal silicon substrate
  • the n-type single crystal silicon is used.
  • frequency about 13.56 MHz
  • formation temperature about 100 ° C.
  • reaction pressure about 5 Pa to about 100 Pa
  • RF Power Forming the i-type amorphous silicon layer and the p-type amorphous silicon layer in this order on the n-type single crystal silicon substrate under the condition of about 1 mW / cm 2 to about 500 mW / cm 2 , and then cleaning again Went.
  • indium oxide containing hydrogen (H) and cerium (Ce) as an impurity A transparent conductive film is formed.
  • a sintered body of In 2 O 3 powder containing a predetermined amount of cerium oxide (CeO 2 ) powder for doping was used as a material source.
  • the amount of cerium (Ce) in the transparent conductive film can be changed by using a sintered body in which the content of cerium oxide (CeO 2 ) powder is changed.
  • the transparent conductive film 2 is fabricated by annealing the transparent conductive film at about 200 ° C. for about 1 hour in order to proceed with crystallization.
  • the manufacturing process also serves as an annealing process, the annealing process may not be provided separately.
  • the transparent conductive film 2 of the present embodiment has a columnar structure having a substantially polycrystalline structure from the measurement results of backscattered electron diffraction (EBSD), transmission electron microscope (TEM), and X-ray diffraction (XRD). Although very few, it turned out that it has an amorphous part.
  • EBSD backscattered electron diffraction
  • TEM transmission electron microscope
  • XRD X-ray diffraction
  • FIG. 2 shows the amount of cerium oxide (CeO 2 ) in the sintered bodies used for film production in Examples 1 to 7 and Comparative Examples 1 to 10 according to the present embodiment, the type of substrate, and the transparent conductive film. It is a figure which shows cerium (Ce) content and hydrogen content in a inside, the specific resistance of a transparent conductive film, carrier mobility, and a carrier density.
  • the amount of Ce in the transparent conductive film was measured using Rutherford backscattering analysis (RBS). Further, the amount of hydrogen in the transparent conductive film was measured using hydrogen forward scattering analysis (HFS).
  • “large” indicates the amount of hydrogen (H) in the transparent conductive film is about 2.0 ⁇ 10 21 atoms / cm, and “low” indicates 9.0 ⁇ 10 20 atoms / cm 3.
  • “(111) Si substrate” in the column of the substrate means a substantially intrinsic i-type amorphous silicon layer having a layer thickness of about 5 nm and a p-type amorphous silicon layer having a layer thickness of about 5 nm on an n-type single crystal silicon substrate. In this order.
  • Comparative Examples 1 to 10 were produced by the same method as the production method of this embodiment except for the amount of sintered body and water vapor.
  • Comparative Examples 1 to 7 are transparent conductive films whose main components containing hydrogen (H) and cerium (Ce) are made of indium oxide, and the transparent conductive films of Comparative Examples 8 to 10 are made of hydrogen (H) and A transparent conductive film whose main component containing tin (Sn) is indium oxide.
  • FIG. 3 is a graph showing the relationship between the specific resistance of the transparent conductive film 2 of Examples 1 to 7 and the transparent conductive films of Comparative Examples 1 to 10 and the amount of cerium (Ce) in the transparent conductive film. It is a thing.
  • the solid line indicates that the amount of hydrogen (H) in the transparent conductive film is 2.0 ⁇ 10 21 atoms / cm 3
  • the dotted line indicates that the amount of hydrogen (H) in the transparent conductive film is 9.0. ⁇ 10 20 atoms / cm 3
  • the specific resistance was measured by the van der Pau method using a Hall effect measuring device.
  • the content of cerium of the transparent conductive film (Ce) is 2.4
  • the specific resistance is preferably as small as 2.5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less in the range of 10 ⁇ 10 20 atoms / cm 3 to 1.2 ⁇ 10 21 atoms / cm 3, and more preferably 4.8 ⁇ 10 20 atoms / cm.
  • the specific resistance is preferably as small as 2.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less in the range of 3 to 1.1 ⁇ 10 21 atoms / cm 3, and more preferably 7.5 ⁇ 10 20 atoms / cm 3 to 1.0 ⁇ It is found that the range of 10 21 atoms / cm 3 or less is more preferable, and 7.5 ⁇ 10 20 atoms / cm 3 or more and 8.5 ⁇ 10 20 atoms / cm 3 or less is particularly preferable.
  • FIG. 4 is a graph showing the relationship between the carrier mobility of the transparent conductive film 2 of Examples 1 to 7 and the transparent conductive films of Comparative Examples 1 to 10 and the amount of cerium (Ce) in the film. is there.
  • the solid line indicates that the amount of hydrogen (H) in the transparent conductive film is 2.0 ⁇ 10 21 atoms / cm 3
  • the dotted line indicates that the amount of hydrogen (H) in the transparent conductive film is 9.0 ⁇ 10 20. atoms / cm 3 .
  • the carrier mobility was measured using a Hall effect measuring device.
  • the carrier mobility is high.
  • the cerium (Ce) content of the transparent conductive film is 1.0.
  • the carrier mobility is preferably about 90 cm 2 / Vs or more, and preferably 2.4 ⁇ 10 20 atoms / cm 3 to 1.1 ⁇ .
  • the range of 10 21 atoms / cm 3 or less is preferable, and the range of 4.8 ⁇ 10 20 atoms / cm 3 or more and 1.0 ⁇ 10 21 atoms / cm 3 or less is more preferable, and particularly 7.5 ⁇ 10 20 atoms / cm 3. 3 to 8.5 ⁇ 10 20 atoms / cm 3 is preferable.
  • the content of cerium (Ce) in the transparent conductive film is 1.0 ⁇ 10 20 atoms / cm 3 or more and 1.4 ⁇ 10 21 atoms / cm 3.
  • the following is desirable, preferably 2.4 ⁇ 10 20 atoms / cm 3 or more and 1.1 ⁇ 10 21 atoms / cm 3 or less, more preferably 4.8 ⁇ 10 20 atoms / cm 3 or more and 1.0 ⁇ 10 21 atoms or less.
  • / cm 3 or less more preferably 7.5 ⁇ 10 20 atoms / cm 3 or more and 8.5 ⁇ 10 20 atoms / cm 3 or less.
  • FIG. 5 is a graph showing the relationship between the carrier density and the amount of cerium (Ce) in the transparent conductive films 2 of Examples 1 to 7 and the transparent conductive films of Comparative Examples 1 to 10. .
  • the solid line indicates that the amount of hydrogen (H) in the transparent conductive film is 2.0 ⁇ 10 21 atoms / cm 3
  • the dotted line indicates that the amount of hydrogen (H) in the transparent conductive film is 9.0 ⁇ 10 20. atoms / cm 3 .
  • the carrier density was measured using a Hall effect measuring device.
  • the carrier density increases, the longer wavelength side light is absorbed, and the carrier itself becomes a scattering factor. As a result, the carrier mobility is reduced. A smaller carrier density is desirable. However, if the carrier density becomes too low, the grain boundary scattering in the film increases, resulting in a decrease in mobility. Therefore, it is desirable that the carrier density is within a certain range.
  • the carrier density is 2 0.0 ⁇ 10 20 cm ⁇ 3 or more and 3.5 ⁇ 10 20 cm ⁇ 3 or less, which is a good range, but in this range, the content of cerium (Ce) in the transparent conductive film is higher. It can be seen that the density side or the lower density side is better.
  • Comparative Examples 8 to 10 which are transparent conductive films whose main components containing hydrogen (H) and tin (Sn) are made of indium oxide have a small specific resistance but carrier transfer. time is less than 60cm 2 / Vs, towards the transparent conductive film composed mainly containing hydrogen hydrogen content of the order of 10 21 atoms / cm 3 (H ) and cerium (Ce) is made of indium oxide are preferred I understand that.
  • the transparent conductive film according to the present invention can be suitably used for image display devices such as liquid crystal display devices and organic electroluminescence devices, solar cells such as crystal solar cells, thin film solar cells, and dye-sensitized solar cells, electronic components, and the like.
  • a transparent conductive film having a texture structure on a glass substrate, a one-conductivity-type amorphous silicon layer, a substantially intrinsic i-type amorphous silicon layer, an amorphous silicon layer and a transparent conductive film opposite to the one-conductivity type May be applied to the transparent conductive film of the thin film solar cell formed in this order.
  • a liquid crystal display device organic It can be used in the fields of image display devices such as electroluminescence devices, solar cells such as crystalline solar cells, thin film solar cells, and dye-sensitized solar cells, and electronic components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Insulated Conductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】長波長側の光吸収が少なく、良好なキャリア移動度を有し、電気抵抗をより低くすることが可能な透明導電膜及びこれを備えた装置を提供する。 【解決手段】水素及びセリウムを含有する酸化インジウムを含み、実質的に多結晶構造からなる透明導電膜2であって、比抵抗が3.4×10-4Ω・cmである。

Description

透明導電膜及びこれを備えた装置
 本発明は、透明導電膜及びこれを備えた装置に関する。
 従来より、液晶ディスプレイ装置、有機エレクトロルミネッセンス装置等の画像表示装置、薄膜太陽電池、色素増感太陽電池等の太陽電池装置、電子部品等の各種装置に透明導電膜が使用されている。
 斯かる透明導電膜は、電気抵抗が小さいことが望ましい。従来、透明導電膜としては、錫(Sn)を含有する酸化インジウム(ITO)からなる透明導電膜や酸化亜鉛(ZnO)からなる透明導電膜等が知られている。酸化インジウムを主成分とする透明導電膜としては、ITOからなる透明導電膜の他、例えば、スパッタリング法によるセリウム(Ce)を添加した酸化インジウムからなる透明導電膜が開示されている(例えば、特許文献1参照)。
特開平8-260134号公報
 しかしながら、セリウムが添加された酸化インジウムからなる透明導電膜は、長波長側の光吸収が少なく、良好なキャリア移動度にし、電気抵抗をより低くすることが困難であるという問題がある。
 本発明は、上記の点を鑑みなされたものであり、長波長側の光吸収が少なく、良好なキャリア移動度にし、電気抵抗をより低くすることが可能な透明導電膜及びこれを備えた装置を提供するものである。
 本発明の一局面に係る透明導電膜は、水素及びセリウムを含有する酸化インジウムを含み、実質的に多結晶構造からなる透明導電膜であって、比抵抗が3.4×10-4Ω・cm以下である。
 本発明によれば、水素及びセリウムを含有する酸化インジウムを含み、実質的に多結晶構造からなる透明導電膜であって、比抵抗が3.4×10-4Ω・cm以下であるので、長波長側の光吸収が少なく、キャリア移動度を良好にでき、電気抵抗をより低くすることができる。
 従って、液晶ディスプレイ装置、有機エレクトロルミネッセンス装置等の画像表示装置、結晶太陽電池、薄膜太陽電池、色素増感太陽電池等の太陽電池装置、電子部品等に適用した場合、これら装置の特性を向上できる。
 長波長側の光吸収が少なく、良好なキャリア移動度にし、電気抵抗をより低くすることが可能な透明導電膜及びこれを備えた装置を提供できる。
図1は本発明の一実施形態に係る透明導電膜の断面図である。 本発明の一実施形態に係る実施例1~実施例7及び比較例1~比較例10の膜作製に用いた焼結体、基体の種類、透明導電膜中のセリウム(Ce)含有量及び水素含有量、透明導電膜の比抵抗、キャリア移動度及びキャリア密度を示す図である。 本発明の一実施形態に係る実施例及び比較例にかかる透明導電膜のセリウム(Ce)濃度と比抵抗の関係を示す図である。 本発明の一実施形態に係る実施例及び比較例にかかる透明導電膜のセリウム(Ce)濃度とキャリア移動度の関係を示す図である。 本発明の一実施形態に係る実施例及び比較例にかかる透明導電膜のセリウム(Ce)濃度とキャリア密度の関係を示す図である。
 以下、本発明の実施の形態に係る透明導電膜について図を用いて説明する。
 1は、ガラス基板、多結晶シリコン基板、単結晶シリコン基板、及び実質的に真性なi型アモルファスシリコン層及びp型アモルファスシリコン層をこの順序で備えてなる上表面が該p型アモルファスシリコン層である単結晶シリコン基板等の基体であり、2は前記基体1上に形成された透明導電膜である。
 透明導電膜2は、水素(H)を含有すると共に、セリウム(Ce)を含有する主成分が酸化インジウムからなる膜である。即ち、上記透明導電膜2は、水素(H)、セリウム(Ce)、In(インジウム)及び酸素(O)を含有し、不純物として水素(H)及びセリウム(Ce)がドープされた酸化インジウム(In)からなる。
 また、透明導電膜2は、実質的に多結晶構造からなり、且つ基体上を覆いつくすように立ってなる多数の柱状構造からなり、極めて少ないが、非晶質部分を有する。
 透明導電膜2の水素(H)の含有量は、1.0×1021atoms/cm以上が好ましく、1021atoms/cmのオーダーがより好ましい。水素の含有量は、透明導電膜2の膜厚方向における中間位置の含有量の値であり、透明導電膜2の両表面近傍を除いての平均含有量に略相当する。透明導電膜2の水素の含有濃度は、両表面近傍を除いて基体1側の方が膜表面側より含有濃度が大きくなるのが好ましく、基体1側に向かって徐々に大きくなる構成がより好ましい。
 透明導電膜2の比抵抗は、3.4×10-4Ω・cm以下である。透明導電膜2の比抵抗は小さいほどよいが、3.4×10-4Ω・cm以下1.0×10-4Ω・cm以上であってもよい。
 透明導電膜2のセリウム(Ce)の含有量は、1.0×1020atoms/cm以上1.4×1021atoms/cm以下が望ましく、好ましくは2.4×1020atoms/cm以上1.2×1021atoms/cm以下、より好ましくは4.8×1020atoms/cm以上1.1×1021atoms/cm以下、更に好ましくは7.5×1020atoms/cm以上1.0×1021atoms/cm以下、特に好ましくは7.5×1020atoms/cm以上8.5×1020atoms/cm以下である。
 以下に本実施形態に係る透明導電膜の製造方法を説明する。
 まず、洗浄することにより表面の不純物を除去した基体1を準備する。
 なお、上記基体1が、n型単結晶シリコン基板上に実質的に真性なi型アモルファスシリコン層及びp型アモルファスシリコン層をこの順序で形成してなる基体である場合は、n型単結晶シリコン基板を洗浄することにより不純物を除去した後、例えば、RFプラズマCVD法を用いて、周波数:約13.56MHz、形成温度:約100℃~約300℃、反応圧力:約5Pa~約100Pa、RFパワー:約1mW/cm~約500mW/cmの条件で、n型単結晶シリコン基板上に、上記i型アモルファスシリコン層および上記p型アモルファスシリコン層をこの順で形成し、その後、再度洗浄を行った。
 次に、イオンプレーティング法を用いて、ArとOの混合ガス及び水蒸気の雰囲気中および室温下で、基体1上に、不純物として水素(H)及びセリウム(Ce)を含有する酸化インジウムからなる透明導電膜を形成する。ここで、材料源として、ドーピング用の酸化セリウム(CeO)粉末を所定量含むIn粉末の焼結体を用いた。この場合、酸化セリウム(CeO)粉末の含有量を変えた焼結体を用いることにより、上記透明導電膜中のセリウム(Ce)量を変化させることができる。
 次に、上記透明導電膜を、結晶化を進めるため、例えば、約200℃で1時間程度アニールし、透明導電膜2を作製する。なお、各種装置を製造する際には、製造工程でアニール処理を兼ねる場合は、当該アニール工程を別に設けなくともよい。
 本実施形態の透明導電膜2は、後方散乱電子回折(EBSD)、透過型電子顕微鏡(TEM)及びX線回折(XRD)の測定結果から、実質的に多結晶構造を有する柱状構造からなり、極めて少ないが、非晶質部分を有することが判った。
 図2は、本実施形態に係る実施例1~実施例7及び比較例1~比較例10の膜作製に用いた焼結体中の酸化セリウム(CeO)量、基体の種類、透明導電膜中のセリウム(Ce)含有量及び水素含有量、透明導電膜の比抵抗、キャリア移動度及びキャリア密度を示す図である。尚、透明導電膜中のCeの量はラザフォード後方散乱分析法(RBS)を用いて測定した。また、透明導電膜中の水素の量は水素前方散乱分析法(HFS)を用いて測定した。
 図中、水素含有量の欄において「多」は、透明導電膜中の水素(H)量が約2.0×1021atoms/cm、「少」は9.0×1020atoms/cmであり、基体の欄の「(111)Si基板」は、n型単結晶シリコン基板上に層厚約5nmの実質的に真性なi型アモルファスシリコン層及び層厚約5nmのp型アモルファスシリコン層をこの順序で備えてなる基体を意味する。
 比較例1~10は、焼結体、水蒸気の量以外は、本実施形態の製造方法と同様の方法で作製した。なお、比較例1~7は、水素(H)及びセリウム(Ce)を含有する主成分が酸化インジウムからなる透明導電膜、比較例8~比較例10の透明導電膜は、水素(H)及び錫(Sn)を含有する主成分が酸化インジウムからなる透明導電膜である。
 図3は、上記実施例1~実施例7の透明導電膜2及び比較例1~10の透明導電膜の比抵抗と該透明導電膜中のセリウム(Ce)の量との関係を示す図にしたものである。ここで、図中、実線は透明導電膜中の水素(H)量が2.0×1021atoms/cmのものであり、点線は透明導電膜中の水素(H)量が9.0×1020atoms/cmのものである。尚、比抵抗は、ホール効果測定装置を用いてファン・デル・パウ法で測定した。
 図2及び図3から、透明導電膜のセリウム(Ce)の含有量が1.0×1020atoms/cm以上1.4×1021atoms/cm以下の範囲では、透明導電膜中の水素(H)量が2.0×1021atoms/cmの1021atoms/cmのオーダーの場合、透明導電膜中の水素(H)量が9.0×1020atoms/cmの1020atoms/cmのオーダーの場合に比べ、比抵抗が小さく、3.4×10-4Ω・cm以下であることがわかる。
 更に、透明導電膜中の水素(H)量が2.0×1021atoms/cmの1021atoms/cmのオーダーの場合、透明導電膜のセリウム(Ce)の含有量が2.4×1020atoms/cm以上1.2×1021atoms/cm以下の範囲で比抵抗が2.5×10-4Ω・cm以下と小さくより望ましく、4.8×1020atoms/cm以上1.1×1021atoms/cm以下の範囲で比抵抗が2.2×10-4Ω・cm以下と小さくより好ましく、7.5×1020atoms/cm以上1.0×1021atoms/cm以下の範囲が更に好ましく、特に7.5×1020atoms/cm以上8.5×1020atoms/cm以下がよいことが判る。
 図4は、上記実施例1~実施例7の透明導電膜2及び比較例1~比較例10の透明導電膜のキャリア移動度と膜中のセリウム(Ce)の量との関係を示す図である。図中、実線は透明導電膜中の水素(H)量が2.0×1021atoms/cmのものであり、点線は透明導電膜中の水素(H)量が9.0×1020atoms/cmのものである。尚、キャリア移動度は、ホール効果測定装置を用いて測定した。
 キャリア移動度は、その値が大きいほど、比抵抗を減少させ、デバイスの電極としての特性が良好になるので、キャリア移動度は高い方が好ましい。
 図2及び図4から、透明導電膜のセリウム(Ce)の含有量が1.0×1020atoms/cm以上1.4×1021atoms/cm以下の範囲では、透明導電膜中の水素(H)量が2.0×1021atoms/cmの1021atoms/cmのオーダーの場合、透明導電膜中の水素(H)量が9.0×1020atoms/cmの1020atoms/cmのオーダーの場合に比べ、キャリア移動度が大きく、70cm/Vs以上と大きいことが判る。
 更に、透明導電膜中の水素(H)量が2.0×1021atoms/cmの1021atoms/cmのオーダーの場合、透明導電膜のセリウム(Ce)の含有量が1.0×1020atoms/cm以上1.2×1021atoms/cm以下の範囲でキャリア移動度が約90cm/Vs以上となり望ましく、2.4×1020atoms/cm以上1.1×1021atoms/cm以下の範囲が好ましく、4.8×1020atoms/cm以上1.0×1021atoms/cm以下の範囲がより好ましく、特に7.5×1020atoms/cm以上8.5×1020atoms/cm以下がよいことが判る。
 上述の上記透明導電膜の比抵抗及びキャリア移動度の観点から、透明導電膜のセリウム(Ce)の含有量は1.0×1020atoms/cm以上1.4×1021atoms/cm以下が望ましく、好ましくは2.4×1020atoms/cm以上1.1×1021atoms/cm以下、より好ましくは4.8×1020atoms/cm以上1.0×1021atoms/cm以下、更に好ましくは7.5×1020atoms/cm以上8.5×1020atoms/cm以下であることが判る。
 図5は、上記実施例1~実施例7の透明導電膜2及び比較例1~比較例10の透明導電膜のキャリア密度と膜中のセリウム(Ce)の量との関係を示す図である。図中、実線は透明導電膜中の水素(H)量が2.0×1021atoms/cmのものであり、点線は透明導電膜中の水素(H)量が9.0×1020atoms/cmのものである。尚、キャリア密度は、ホール効果測定装置を用いて測定した。
 キャリア密度は、その値が大きいほど、長波長側の光を吸収し、また、キャリア自身が散乱要因になるため、結果としてキァリア移動度を減少させてしまうため、比抵抗が同じであれば、キャリア密度は小さい方が望ましい。ただし、キャリア密度が低くなりすぎると、膜中の粒界散乱が増加し、結果として移動度を減少させてしまうため、ある一定の範囲にあることが望ましい。
 図2及び図5から、透明導電膜のセリウム(Ce)の含有量が1.0×1020atoms/cm以上2.0×1021atoms/cm以下の範囲においては、キャリア密度が2.0×1020cm-3以上3.5×1020cm-3以下であり、良好な範囲であるが、当該範囲の中、該透明導電膜のセリウム(Ce)の含有量は、より高濃度側またはより低濃度側がよりよいことが判る。
 なお、図2~図4から、水素(H)及び錫(Sn)を含有する主成分が酸化インジウムからなる透明導電膜である比較例8~比較例10は、比抵抗は小さいものの、キャリア移動度は60cm/Vs未満であり、水素含有量が1021atoms/cmのオーダーである水素(H)及びセリウム(Ce)を含有する主成分が酸化インジウムからなる透明導電膜の方が好ましいことが判る。
 本発明にかかる透明導電膜は、液晶ディスプレイ装置、有機エレクトロルミネッセンス装置等の画像表示装置、結晶太陽電池、薄膜太陽電池、色素増感太陽電池等の太陽電池、電子部品等に適宜使用できる。
 例えば、ガラス基板上に、テクスチャー構造を有する透明導電膜、一導電型アモルファスシリコン層、実質的に真性なi型アモルファスシリコン層、該一導電型とは逆導電型のアモルファスシリコン層及び透明導電膜がこの順序に形成された薄膜太陽電池の透明導電膜に適用してもよい。
 長波長側の光吸収が少なく、良好なキャリア移動度を有し、電気抵抗をより低くすることが可能な透明導電膜及びこれを備えた装置を提供することができるので、液晶ディスプレイ装置、有機エレクトロルミネッセンス装置等の画像表示装置、結晶太陽電池、薄膜太陽電池、色素増感太陽電池等の太陽電池、電子部品等の分野において利用できる。
1 基体
2 透明導電膜
 

Claims (5)

  1.  水素及びセリウムを含有する酸化インジウムを含み、実質的に多結晶構造からなる透明導電膜であって、比抵抗が3.4×10-4Ω・cm以下であることを特徴とする透明導電膜。
  2.  前記セリウムの含有量は、1.0×1020atoms/cm以上1.4×1021atoms/cm以下であることを特徴とする請求項1記載の透明導電膜。
  3.  前記水素の含有量は、1021atoms/cmのオーダーであることを特徴とする請求項1に記載の透明導電膜。
  4.  請求項1乃至3のいずれかに記載の透明導電膜を用いたことを特徴とする装置。
  5.  請求項1乃至3のいずれかの透明導電膜を用いたことを特徴とする太陽電池。
     
PCT/JP2010/066077 2009-09-17 2010-09-16 透明導電膜及びこれを備えた装置 WO2011034143A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10817256.0A EP2479763A4 (en) 2009-09-17 2010-09-16 TRANSPARENT CONDUCTIVE FILM AND DEVICE COMPRISING SAME
CN201080041351.7A CN102498525B (zh) 2009-09-17 2010-09-16 透明导电膜和具备该透明导电膜的装置
JP2011531967A JP5895144B2 (ja) 2009-09-17 2010-09-16 透明導電膜及びこれを備えた装置
US13/421,512 US20120174972A1 (en) 2009-09-17 2012-03-15 Transparent conductive film and a device with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-216259 2009-09-17
JP2009216259 2009-09-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/421,512 Continuation US20120174972A1 (en) 2009-09-17 2012-03-15 Transparent conductive film and a device with the same

Publications (1)

Publication Number Publication Date
WO2011034143A1 true WO2011034143A1 (ja) 2011-03-24

Family

ID=43758744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066077 WO2011034143A1 (ja) 2009-09-17 2010-09-16 透明導電膜及びこれを備えた装置

Country Status (7)

Country Link
US (1) US20120174972A1 (ja)
EP (1) EP2479763A4 (ja)
JP (1) JP5895144B2 (ja)
KR (1) KR20120074276A (ja)
CN (1) CN102498525B (ja)
TW (1) TWI553666B (ja)
WO (1) WO2011034143A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132593A (ja) * 2009-11-30 2011-07-07 Sumitomo Metal Mining Co Ltd 酸化物蒸着材と透明導電膜および太陽電池
US20140238476A1 (en) * 2011-10-27 2014-08-28 Mitsubishi Electric Corporation Photoelectric conversion device and manufacturing method thereof, and photoelectric conversion module
WO2016039097A1 (ja) * 2014-09-12 2016-03-17 長州産業株式会社 透明導電膜、これを用いた装置または太陽電池、及び透明導電膜の製造方法
WO2017170125A1 (ja) * 2016-03-29 2017-10-05 株式会社アルバック 透明導電膜付き基板の製造方法、透明導電膜付き基板の製造装置、透明導電膜付き基板、及び太陽電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201133874A (en) * 2009-09-18 2011-10-01 Sanyo Electric Co Solar battery cell, solar batterymodulee and solar battery system
KR101656118B1 (ko) * 2009-09-18 2016-09-08 파나소닉 아이피 매니지먼트 가부시키가이샤 태양 전지, 태양 전지 모듈 및 태양 전지 시스템
KR101821394B1 (ko) * 2016-01-14 2018-01-23 엘지전자 주식회사 태양전지

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343911A (ja) * 1989-07-10 1991-02-25 Showa Denko Kk 透明導電膜
JPH0754133A (ja) * 1993-08-12 1995-02-28 Sumitomo Metal Mining Co Ltd スパッタリング用itoターゲット
JPH08260134A (ja) 1995-03-22 1996-10-08 Toppan Printing Co Ltd スパッタリングターゲット
JPH09123337A (ja) * 1995-03-22 1997-05-13 Toppan Printing Co Ltd 多層導電膜、並びにこれを用いた透明電極板および液晶表示装置
JPH09150477A (ja) * 1995-11-30 1997-06-10 Idemitsu Kosan Co Ltd 透明導電積層体
JP2002313141A (ja) * 2001-04-16 2002-10-25 Toyobo Co Ltd 透明導電性フィルム、透明導電性シートおよびタッチパネル
JP2004247220A (ja) * 2003-02-14 2004-09-02 Toppan Printing Co Ltd 積層体、電極および画像表示素子
WO2005062678A2 (ja) * 2003-12-19 2005-07-07 Idemitsu Kosan Co 有機エレクトロルミネッセンス素子、導電積層体及び表示装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150378A (ja) * 1984-08-20 1986-03-12 Mitsui Toatsu Chem Inc 非晶質太陽電池の製法
JP2000012879A (ja) * 1998-06-24 2000-01-14 Toppan Printing Co Ltd 光電変換素子用透明電極およびそれを用いた光電変換素子
JP2000294980A (ja) * 1999-04-06 2000-10-20 Nippon Sheet Glass Co Ltd 透光性電磁波フィルタおよびその製造方法
JP2001047549A (ja) * 1999-08-06 2001-02-20 Mitsui Chemicals Inc 透明導電性フィルム
JP4036616B2 (ja) * 2000-01-31 2008-01-23 三洋電機株式会社 太陽電池モジュール
WO2002074532A1 (fr) * 2001-03-15 2002-09-26 Mitsui Chemicals Inc. Corps lamine et dispositif d'affichage utilisant ce corps lamine
EP1408137B1 (en) * 2001-07-17 2012-04-18 Idemitsu Kosan Co., Ltd. Sputtering target for the deposition of a transparent conductive film
JP4171428B2 (ja) * 2003-03-20 2008-10-22 三洋電機株式会社 光起電力装置
JP2005108468A (ja) * 2003-09-26 2005-04-21 Mitsui Chemicals Inc 透明導電性シート、透明導電性シートの製造方法および上記透明導電性シートを用いた光増感太陽電池
JP2005108467A (ja) * 2003-09-26 2005-04-21 Mitsui Chemicals Inc 透明導電性シートおよびそれを用いた光増感太陽電池。
JP4428698B2 (ja) * 2004-03-31 2010-03-10 出光興産株式会社 酸化インジウム−酸化セリウム系スパッタリングターゲット及び透明導電膜及び透明導電膜の製造方法
JP4805648B2 (ja) * 2005-10-19 2011-11-02 出光興産株式会社 半導体薄膜及びその製造方法
JP5148170B2 (ja) * 2006-05-31 2013-02-20 株式会社半導体エネルギー研究所 表示装置
WO2008146693A1 (ja) * 2007-05-23 2008-12-04 National Institute Of Advanced Industrial Science And Technology 酸化物透明導電膜、およびそれを用いた光電変換素子、光検出素子
TWI524567B (zh) * 2007-09-27 2016-03-01 半導體能源研究所股份有限公司 發光元件,照明裝置,發光裝置,與電子裝置
WO2009116580A1 (ja) * 2008-03-19 2009-09-24 三洋電機株式会社 太陽電池及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343911A (ja) * 1989-07-10 1991-02-25 Showa Denko Kk 透明導電膜
JPH0754133A (ja) * 1993-08-12 1995-02-28 Sumitomo Metal Mining Co Ltd スパッタリング用itoターゲット
JPH08260134A (ja) 1995-03-22 1996-10-08 Toppan Printing Co Ltd スパッタリングターゲット
JPH09123337A (ja) * 1995-03-22 1997-05-13 Toppan Printing Co Ltd 多層導電膜、並びにこれを用いた透明電極板および液晶表示装置
JPH09150477A (ja) * 1995-11-30 1997-06-10 Idemitsu Kosan Co Ltd 透明導電積層体
JP2002313141A (ja) * 2001-04-16 2002-10-25 Toyobo Co Ltd 透明導電性フィルム、透明導電性シートおよびタッチパネル
JP2004247220A (ja) * 2003-02-14 2004-09-02 Toppan Printing Co Ltd 積層体、電極および画像表示素子
WO2005062678A2 (ja) * 2003-12-19 2005-07-07 Idemitsu Kosan Co 有機エレクトロルミネッセンス素子、導電積層体及び表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2479763A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132593A (ja) * 2009-11-30 2011-07-07 Sumitomo Metal Mining Co Ltd 酸化物蒸着材と透明導電膜および太陽電池
US20140238476A1 (en) * 2011-10-27 2014-08-28 Mitsubishi Electric Corporation Photoelectric conversion device and manufacturing method thereof, and photoelectric conversion module
WO2016039097A1 (ja) * 2014-09-12 2016-03-17 長州産業株式会社 透明導電膜、これを用いた装置または太陽電池、及び透明導電膜の製造方法
JP2016062647A (ja) * 2014-09-12 2016-04-25 長州産業株式会社 透明導電膜、これを用いた装置または太陽電池、及び透明導電膜の製造方法
WO2017170125A1 (ja) * 2016-03-29 2017-10-05 株式会社アルバック 透明導電膜付き基板の製造方法、透明導電膜付き基板の製造装置、透明導電膜付き基板、及び太陽電池
US11674217B2 (en) 2016-03-29 2023-06-13 Ulvac, Inc. Method of manufacturing substrate with a transparent conductive film, manufacturing apparatus of substrate with transparent conductive film, substrate with transparent conductive film, and solar cell

Also Published As

Publication number Publication date
KR20120074276A (ko) 2012-07-05
JPWO2011034143A1 (ja) 2013-02-14
EP2479763A4 (en) 2013-11-13
TW201128661A (en) 2011-08-16
EP2479763A1 (en) 2012-07-25
US20120174972A1 (en) 2012-07-12
CN102498525A (zh) 2012-06-13
CN102498525B (zh) 2014-01-29
TWI553666B (zh) 2016-10-11
JP5895144B2 (ja) 2016-03-30

Similar Documents

Publication Publication Date Title
Das et al. Optimization of Si doping in ZnO thin films and fabrication of n-ZnO: Si/p-Si heterojunction solar cells
JP5895144B2 (ja) 透明導電膜及びこれを備えた装置
Wang et al. Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films
Kwak et al. Discharge power dependence of structural and electrical properties of Al-doped ZnO conducting film by magnetron sputtering (for PDP)
Park et al. Effects of deposition temperature on characteristics of Ga-doped ZnO film prepared by highly efficient cylindrical rotating magnetron sputtering for organic solar cells
Lei et al. Flexible organic light-emitting diodes on a polyestersulfone (PES) substrate using Al-doped ZnO anode grown by dual-plasma-enhanced metalorganic deposition system
Manavizadeh et al. Influence of substrates on the structural and morphological properties of RF sputtered ITO thin films for photovoltaic application
Park et al. Characteristics of Al-doped, Ga-doped and In-doped zinc-oxide films as transparent conducting electrodes in organic light-emitting diodes
Hsu et al. Effect of deposition parameters and annealing temperature on the structure and properties of Al-doped ZnO thin films
Wang et al. Simulation, fabrication, and application of transparent conductive Mo-doped ZnO film in a solar cell
EP2866232B1 (en) Transparent conducting film and preparation method thereof
Das et al. Further optimization of ITO films at the melting point of Sn and configuration of Ohmic contact at the c-Si/ITO interface
Muneshwar et al. Development of low temperature RF magnetron sputtered ITO films on flexible substrate
Liu et al. Indium tin oxide with titanium doping for transparent conductive film application on CIGS solar cells
Lin et al. Influence of TiO2 buffer layer and post-annealing on the quality of Ti-doped ZnO thin films
Nomoto et al. Influence of the kind and content of doped impurities on impurity-doped ZnO transparent electrode applications in thin-film solar cells
Lee et al. Characteristics of Al-doped ZnO films annealed at various temperatures for InGaZnO-based thin-film transistors
Li et al. Hydrogen annealed ZnO: B film grown by LPCVD technique as TCO for enhancing conversion efficiency of a-Si: H/μc-Si: H tandem solar cells
y Díaz et al. Influence of the oxygen pressure on the physical properties of the pulsed-laser deposited Te doped SnO2 thin films
US9349885B2 (en) Multilayer transparent electroconductive film and method for manufacturing same, as well as thin-film solar cell and method for manufacturing same
Qiu et al. Direct current sputtered aluminum-doped zinc oxide films for thin crystalline silicon heterojunction solar cell
Jang et al. Evolution of structural and optoelectronic properties in fluorine–aluminum co-doped zinc oxide (FAZO) thin films and their application in CZTSSe thin-film solar cells
US9546415B2 (en) Composite transparent electrodes
KR20090101571A (ko) 붕소가 추가도핑된 산화아연계 투명 전도막 및 그 제조방법
Kim et al. Inkjet printed silver gate electrode and organic dielectric materials for bottom-gate pentacene thin-film transistors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080041351.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817256

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011531967

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127006738

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010817256

Country of ref document: EP