TWI553666B - 透明導電膜及具備該導電膜之裝置 - Google Patents

透明導電膜及具備該導電膜之裝置 Download PDF

Info

Publication number
TWI553666B
TWI553666B TW099131411A TW99131411A TWI553666B TW I553666 B TWI553666 B TW I553666B TW 099131411 A TW099131411 A TW 099131411A TW 99131411 A TW99131411 A TW 99131411A TW I553666 B TWI553666 B TW I553666B
Authority
TW
Taiwan
Prior art keywords
transparent conductive
conductive film
atoms
hydrogen
less
Prior art date
Application number
TW099131411A
Other languages
English (en)
Other versions
TW201128661A (en
Inventor
藤嶋大介
Original Assignee
松下知識產權經營股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下知識產權經營股份有限公司 filed Critical 松下知識產權經營股份有限公司
Publication of TW201128661A publication Critical patent/TW201128661A/zh
Application granted granted Critical
Publication of TWI553666B publication Critical patent/TWI553666B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Insulated Conductors (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)

Description

透明導電膜及具備該導電膜之裝置
本發明係關於透明導電膜及具備該導電膜之裝置。
透明導電膜向來係被使用在液晶顯示裝置、有機電致發光裝置等影像顯示裝置;薄膜太陽電池、色素增感太陽電池等太陽電池裝置;及電子零件等各種裝置。
該種透明導電膜係以電阻較小為佳。
作為透明導電膜者向來已知有由含有錫(Sn)的氧化銦(ITO)所構成之透明導電膜及由氧化鋅(ZnO)所構成之透明導電膜等。
在以氧化銦作為主成分的透明導電膜中,於由ITO所構成之透明導電膜之外,已揭示有例如由利用濺鍍法添加有鈰(Ce)之氧化銦所構成之透明導電膜(參照例如專利文獻1)。
(先前技術文獻)
(專利文獻)
專利文獻1:日本特開平8-260134號公報
然而,由添加有鈰的氧化銦所構成之透明導電膜存在著難以使長波長側的光吸收少、作成良好的載子移動度、且更降低電阻之問題。
本發明係有鑑於前述之問題而研創出者,其目的係提供一種透明導電膜及具備該導電膜之裝置,該導電膜的長波長側之光吸收少,並具有良好的載子移動度,且可將電阻作成較低。
本發明之透明導電膜之特徵係包含含有氫及鈰的氧化銦,且實質上由多結晶構造所構成者,比電阻為3.4×10-4Ω‧cm以下。
依據本發明,由於透明導電膜係包含含有氫及鈰的氧化銦,且實質上由多結晶構造所構成,比電阻為3.4×10-4Ω‧cm以下,所以長波長側之光吸收少,並可獲得良好的載子移動度,且可將電阻作成更低。
因此,當運用於液晶顯示裝置、有機電致發光裝置等影像顯示裝置;薄膜太陽電池、色素增感太陽電池等太陽電池裝置;及電子零件等各種裝置時,可提升該等裝置的特性。
再者,前述鈰含量係以1.0×1020atoms/cm3以上1.4×1021atoms/cm3以下為佳。
再者,前述氫含量係以在1021atoms/cm3的等級(order)為佳。
再者,載子移動度係以70cm2/Vs以上,載子密度係以2.0×1020cm-3以上3.5×1020cm-3以下為佳。
再者,前述透明導電膜亦可藉離子鍍覆法來成膜,利用該方法時,以在該成膜後進行預定的退火處理為佳。又,作為該成膜中氫(H)之供給源者,係以水蒸汽等的水(H2O)或氫氣(H2)為佳。
再者,形成前述透明導電膜的基體可具有紋理構造(texture structure),亦可為藉由異向性蝕刻該基體而形成的多數個金字塔形之凹凸構造。
再者,上述透明導電膜較佳為實質上具有多結晶構造之柱狀構造,且亦可具有非晶質部分。
可提供一種透明導電膜及具備該導電膜之裝置,該導電膜的長波長側之光吸收少,並具有良好的載子移動度,且可將電阻作成更低。
以下,使用圖式說明關於本發明實施形態之透明導電膜。
圖中,1係由依序具有玻璃基板、多晶矽基板、單晶矽基板、及實質上為本質i型非晶矽層與p型非晶矽層所構成之上表面屬於該p型非晶矽層的單晶矽基板等之基體,2係形成在前述基體1上之透明導電膜。
上述透明導電膜2係由含有氫(H)並含有鈰(Ce)之主成分為氧化銦所構成之膜。亦即,上述透明導電膜2係含有氫(H)、鈰(Ce)、銦(In)及氧(O),由摻雜有氫(H)及鈰(Ce)作為雜質的氧化銦(In2O3)所構成。
上述透明導電膜2係實質上由多結晶構造所構成,並由以滿蓋基體上之形態豎起的多數個柱狀構造所構成,且雖極少但具有非晶質部分。
上述透明導電膜2的氫(H)含量以1.0×1021atoms/cm3以上為佳,1021atoms/cm3的等級為更佳。
上述透明導電膜2的比電阻為3.4×10-4Ω‧cm以下。上述透明導電膜2的比電阻雖愈小愈佳,但亦可為3.4×10-4Ω‧cm以下1.0×10-4Ω‧cm以上。
該氫的含量係透明導電膜2的膜厚方向之中間位置的含量的值,且大致相當於去除掉透明導電膜2的兩表面附近之平均含量。
上述透明導電膜2的含氫濃度,除了兩表面附近以外,以基體1側的含氫濃度較膜表面側大為佳,且以朝基體1側緩緩地變大之構成為更佳。
上述透明導電膜2的鈰(Ce)含量最好係1.0×1020atoms/cm3以上1.4×1021atoms/cm3以下,較佳為2.4×1020atoms/cm3以上1.2×1021atoms/cm3以下,更佳為4.8×1020atoms/cm3以上1.1×1021atoms/cm3以下,特佳為7.5×1020atoms/cm3以上1.0×1021atoms/cm3以下,尤佳為7.5×1020atoms/cm3以上8.5×1020atoms/cm3以下。
以下說明本實施形態的透明導電膜之製造方法。
首先,準備藉由洗淨處理去除掉表面雜質的基體1。
又,上述基體1為於n型單晶矽基板上由實質上以本質性的i型非晶矽層及p型非晶矽層依序形成而構成之基體時,於藉由洗淨n型單晶矽基板去除雜質後,使用例如RF電漿CVD法,在頻率:約13.56MHz,形成溫度:約100℃至約300℃,反應壓力:約5Pa至約100Pa,RF功率:約1mW/cm2至約500mW/cm2的條件下,在上述n型單晶矽基板上依序形成上述i型非晶矽層及上述p型非晶矽層,之後,再度進行洗淨。
接著,使用離子鍍覆法在Ar與O2的混合氣體及水蒸汽的氛圍中及室溫下,於上述基體1上形成由含有氫(H)及鈰(Ce)作為雜質的氧化銦所構成之透明導電膜。在此,以膜材料源而言,使用有含預定量氧化鈰(CeO2)粉末作為雜質摻雜用的In2O3粉末之燒結體。在此情形時,透過使用改變氧化鈰(CeO2)粉末含量的燒結體,即可使上述透明導電膜中的鈰(Ce)量產生變化。
其次,為了進行該透明導電膜的結晶化,上述透明導電膜係進行例如約200℃ 1小時左右之退火處理,以製作透明導電膜2。又,於製造各種裝置時,在製造步驟兼進行退火處理時,亦可不用另設該退火步驟。
本實施形態的透明導電膜2從電子背散射繞射(Electron back scatter diffraction patterns;EBSD)、穿透型電子顯微鏡(TEM)及X射線繞射法(XRD)的測量結果,得知實質上由具有多結晶構造的多柱構造所構成,且雖極少但具有非晶質部分。
第2圖係顯示本實施形態之實施例1至實施例7及比較例1至比較例10之製作膜時所使用的燒結體中的氧化鈰(CeO2)量、基體種類、透明導電膜中的鈰(Ce)含量與氫含量、透明導電膜的比電阻、載子移動度及載子密度的圖。圖中,於氫含量欄中,「多」係透明導電膜中的氫(H)量為約2.0×1021atoms/cm3,「少」係為9.0×1020atoms/cm3;基體欄的「(111)矽基板」係指由在n型單晶矽基板上依序設有層厚約5nm的實質上為本質性i型非晶矽層及層厚約5nm的p型非晶矽層所構成之基體。
比較例1至10係除了燒結體、水蒸汽量以外,係以與本實施形態的製造方法相同的方法來製作。又,比較例1至7係由含有氫(H)及鈰(Ce)的主成分為氧化銦所構成之透明導電膜;比較例8至10之透明導電膜係由含有氫(H)及錫(Sn)的主成分為氧化銦所構成之透明導電膜。
第3圖係顯示上述實施例1至實施例7的透明導電膜2及比較例1至10的透明導電膜之比電阻與該透明導電膜中的鈰(Ce)之量的關係圖。在此,圖中,實線係透明導電膜中的氫(H)量為2.0×1021atoms/cm3者,虛線係透明導電膜中的氫(H)量為9.0×1020atoms/cm3者。又,比電阻係使用霍爾效應測量裝置以凡得包(van der Pauw)法測量。
從第2圖及第3圖可得知:透明導電膜的鈰(Ce)含量在1.0×2020atoms/cm3以上1.4×1021atoms/cm3以下的範圍,透明導電膜中的氫(H)量為2.0×1021atoms/cm3之1021atoms/cm3的等級時,相較於透明導電膜中的氫(H)量為9.0×1020atoms/cm3之1020atoms/cm3的等級之情形,比電阻較小,為在3.4×10-4Ω‧cm以下。
更且,得知在透明導電膜中的氫(H)量為2.0×1021atoms/cm3之1021atoms/cm3的等級時,較佳為透明導電膜的鈰(Ce)含量在2.4×2020atoms/cm3以上1.2×1021atoms/cm3以下的範圍而比電阻在2.5×10-4Ω‧cm以下之小值;而更佳為在4.8×2020atoms/cm3以上1.1×1021atoms/cm3以下的範圍而比電阻在2.2×10-4Ω‧cm以下之小值;而在7.5×2020atoms/cm3以上1.0×1021atoms/cm3以下的範圍特佳;而在7.5×2020atoms/cm3以上8.5×1020atoms/cm3以下尤其更佳。
第4圖係顯示上述實施例1至實施例7的透明導電膜2及比較例1至比較例10的透明導電膜之載子移動度與該透明導電膜中的鈰(Ce)量之關係圖。圖中,實線係透明導電膜中的氫(H)量為2.0×1021atoms/cm3者,虛線係透明導電膜中的氫(H)量為9.0×1020atoms/cm3者。又,載子移動度係使用霍爾效應測量裝置來測量。
載子移動度係由於其值愈大愈使比電阻減少,且作為裝置(device)的電極之特性變為良好,所以載子移動度高者較佳。
從第2圖及第4圖可得知:透明導電膜的鈰(Ce)含量在1.0×2020atoms/cm3以上1.4×1021atoms/cm3以下的範圍,透明導電膜中的氫(H)量為2.0×1021atoms/cm3之1021atoms/cm3的等級時,相較於透明導電膜中的氫(H)量為9.0×1020atoms/cm3之1020atoms/cm3的等級之情形,載子移動度較大,為在70cm2/Vs以上之大。
更且,得知在透明導電膜中的氫(H)量為2.0×1021atoms/cm3之1021atoms/cm3的等級時,透明導電膜的鈰(Ce)含量在1.0×2020atoms/cm3以上1.2×1021atoms/cm3以下的範圍,載子移動度較宜約在90cm2/Vs以上;而在2.4×2020atoms/cm3以上1.1×1021atoms/cm3更佳,而在4.8×2020atoms/cm3以上1.0×1021atoms/cm3特佳;而在7.5×2020atoms/cm3以上8.5×1020atoms/cm3以下尤其更佳。
從上述的上述透明導電膜之比電阻及載子移動度的觀點而言,透明導電膜的鈰(Ce)含量係在1.0×2020atoms/cm3以上1.4×1021atoms/cm3以下為宜,較佳為在2.4×2020atoms/cm3以上1.1×1021atoms/cm3以下,更佳為在4.8×2020atoms/cm3以上1.0×1021atoms/cm3以下,特佳為在7.5×2020atoms/cm3以上8.5×1020atoms/cm3以下。
第5圖係顯示上述實施例1至實施例7的透明導電膜2及比較例1至比較例10的透明導電膜之載子密度與該透明導電膜中之鈰(Ce)量的關係圖。圖中,實線係透明導電膜中的氫(H)量為2.0×1021atoms/cm3者,虛線係透明導電膜中的氫(H)量為9.0×1020atoms/cm3者。又,載子密度係使用霍爾效應測量裝置來測量。
載子密度係由於其值愈大愈吸收長波長側光,且載子本身成為散射主要原因,故以結果而言會使載子移動度減少,因此若比電阻為相同,則以載子密度小者為佳。不過,載子密度若太低,則膜中的粒界散亂增加,以結果而言為了使移動度減少,載子密度較宜係在某一定範圍。
從第2圖及第5圖可得知:透明導電膜的鈰(Ce)含量在1.0×2020atoms/cm3以上2.0×1021atoms/cm3以下的範圍中,載子密度為在2.0×2020cm-3以上3.5×1020atoms/-3以下,雖為良好的範圍,但該透明導電膜的鈰(Ce)含量在更高濃度側或更低濃度側為更佳。
又,從第2圖至第4圖得知:由含有氫(H)及錫(Sn)的主成分為氧化銦所構成之屬於透明導電膜之比較例8至比較例10係以比電阻小,而載子移動度未達60cm2/Vs,且由含有氫含量位在1021atoms/cm3等級的氫(H)及鈰(Ce)之主成分為氧化銦所構成之透明導電膜者較佳。
本發明之透明導電膜係可適當地使用於液晶顯示裝置、有機電致發光裝置等影像顯示裝置;薄膜太陽電池、色素增感太陽電池等太陽電池裝置;及電子零件等。
例如,亦可運用在玻璃基板上依序形成有:具有紋理構造的透明導電膜、一導電型非晶矽層、實質上本質的i型非晶矽層、與該一導電型為相反導電型的非晶矽層;以及透明導電膜之薄膜太陽電池的該透明導電膜。
(產業利用可能性)
由於可提供一種透明導電膜及具備該導電膜之裝置,該導電膜的長波長側之光吸收少,並具有良好的載子移動度,且可將電阻作成較低,因此可利用於液晶顯示裝置、有機電致發光裝置等影像顯示裝置;薄膜太陽電池、色素增感太陽電池等太陽電池裝置;及電子零件等領域。
1...基體
2...透明導電膜
第1圖係本發明一實施形態之透明導電膜的剖面圖。
第2圖係顯示本發明一實施形態之透明導電膜的實施例1至實施例7及比較例1至比較例10之製作膜所使用的燒結體、基體種類、透明導電膜中的鈰(Ce)含量與氫含量、透明導電膜的比電阻、載子移動度及載子密度圖。
第3圖係顯示本發明一實施形態之實施例及比較例中的透明導電膜之鈰(Ce)濃度與比電阻的關係圖。
第4圖係顯示本發明一實施形態之實施例及比較例中的透明導電膜之鈰(Ce)濃度與載子移動度的關係圖。
第5圖係顯示本發明一實施形態之實施例及比較例中的透明導電膜之鈰(Ce)濃度與載子密度的關係圖。
1...基體
2...透明導電膜

Claims (4)

  1. 一種透明導電膜,其特徵係包含含有氫及鈰的氧化銦,且實質上由多結晶構造所構成者,比電阻為3.4×10-4Ω‧cm以下。
  2. 如申請專利範圍第1項所述之透明導電膜,其中,前述鈰之含量係1.0×1020atoms/cm3以上1.4×1021 atoms/cm3以下。
  3. 如申請專利範圍第1項或第2項所述之透明導電膜,其中,前述氫之含量係1021 atoms/cm3之等級。
  4. 一種裝置,其特徵係使用申請專利範圍第1項至第3項中任一項所述之透明導電膜。
TW099131411A 2009-09-17 2010-09-16 透明導電膜及具備該導電膜之裝置 TWI553666B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009216259 2009-09-17

Publications (2)

Publication Number Publication Date
TW201128661A TW201128661A (en) 2011-08-16
TWI553666B true TWI553666B (zh) 2016-10-11

Family

ID=43758744

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099131411A TWI553666B (zh) 2009-09-17 2010-09-16 透明導電膜及具備該導電膜之裝置

Country Status (7)

Country Link
US (1) US20120174972A1 (zh)
EP (1) EP2479763A4 (zh)
JP (1) JP5895144B2 (zh)
KR (1) KR20120074276A (zh)
CN (1) CN102498525B (zh)
TW (1) TWI553666B (zh)
WO (1) WO2011034143A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201133874A (en) * 2009-09-18 2011-10-01 Sanyo Electric Co Solar battery cell, solar batterymodulee and solar battery system
KR101656118B1 (ko) * 2009-09-18 2016-09-08 파나소닉 아이피 매니지먼트 가부시키가이샤 태양 전지, 태양 전지 모듈 및 태양 전지 시스템
JP5257372B2 (ja) * 2009-11-30 2013-08-07 住友金属鉱山株式会社 酸化物蒸着材と透明導電膜および太陽電池
WO2013061637A1 (ja) * 2011-10-27 2013-05-02 三菱電機株式会社 光電変換装置とその製造方法、および光電変換モジュール
JP6037239B2 (ja) * 2014-09-12 2016-12-07 長州産業株式会社 透明導電膜、これを用いた装置または太陽電池、及び透明導電膜の製造方法
KR101821394B1 (ko) * 2016-01-14 2018-01-23 엘지전자 주식회사 태양전지
US11674217B2 (en) 2016-03-29 2023-06-13 Ulvac, Inc. Method of manufacturing substrate with a transparent conductive film, manufacturing apparatus of substrate with transparent conductive film, substrate with transparent conductive film, and solar cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200540519A (en) * 2004-03-31 2005-12-16 Idemitsu Kosan Co Indium oxide - cerium oxide - base sputtering target, and transparent conductive film, and production method of transparent conductive film
TWI245809B (en) * 2001-07-17 2005-12-21 Idemitsu Kosan Co Sputtering target and transparent conductive film

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150378A (ja) * 1984-08-20 1986-03-12 Mitsui Toatsu Chem Inc 非晶質太陽電池の製法
JPH0343911A (ja) * 1989-07-10 1991-02-25 Showa Denko Kk 透明導電膜
JPH0754133A (ja) * 1993-08-12 1995-02-28 Sumitomo Metal Mining Co Ltd スパッタリング用itoターゲット
JP2985763B2 (ja) * 1995-03-22 1999-12-06 凸版印刷株式会社 多層導電膜、並びにこれを用いた透明電極板および液晶表示装置
JP3158948B2 (ja) 1995-03-22 2001-04-23 凸版印刷株式会社 スパッタリングターゲット
JP3447163B2 (ja) * 1995-11-30 2003-09-16 出光興産株式会社 透明導電積層体
JP2000012879A (ja) * 1998-06-24 2000-01-14 Toppan Printing Co Ltd 光電変換素子用透明電極およびそれを用いた光電変換素子
JP2000294980A (ja) * 1999-04-06 2000-10-20 Nippon Sheet Glass Co Ltd 透光性電磁波フィルタおよびその製造方法
JP2001047549A (ja) * 1999-08-06 2001-02-20 Mitsui Chemicals Inc 透明導電性フィルム
JP4036616B2 (ja) * 2000-01-31 2008-01-23 三洋電機株式会社 太陽電池モジュール
WO2002074532A1 (fr) * 2001-03-15 2002-09-26 Mitsui Chemicals Inc. Corps lamine et dispositif d'affichage utilisant ce corps lamine
JP2002313141A (ja) * 2001-04-16 2002-10-25 Toyobo Co Ltd 透明導電性フィルム、透明導電性シートおよびタッチパネル
JP2004247220A (ja) * 2003-02-14 2004-09-02 Toppan Printing Co Ltd 積層体、電極および画像表示素子
JP4171428B2 (ja) * 2003-03-20 2008-10-22 三洋電機株式会社 光起電力装置
JP2005108468A (ja) * 2003-09-26 2005-04-21 Mitsui Chemicals Inc 透明導電性シート、透明導電性シートの製造方法および上記透明導電性シートを用いた光増感太陽電池
JP2005108467A (ja) * 2003-09-26 2005-04-21 Mitsui Chemicals Inc 透明導電性シートおよびそれを用いた光増感太陽電池。
JP4805648B2 (ja) * 2005-10-19 2011-11-02 出光興産株式会社 半導体薄膜及びその製造方法
JP5148170B2 (ja) * 2006-05-31 2013-02-20 株式会社半導体エネルギー研究所 表示装置
WO2008146693A1 (ja) * 2007-05-23 2008-12-04 National Institute Of Advanced Industrial Science And Technology 酸化物透明導電膜、およびそれを用いた光電変換素子、光検出素子
TWI524567B (zh) * 2007-09-27 2016-03-01 半導體能源研究所股份有限公司 發光元件,照明裝置,發光裝置,與電子裝置
WO2009116580A1 (ja) * 2008-03-19 2009-09-24 三洋電機株式会社 太陽電池及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI245809B (en) * 2001-07-17 2005-12-21 Idemitsu Kosan Co Sputtering target and transparent conductive film
TW200540519A (en) * 2004-03-31 2005-12-16 Idemitsu Kosan Co Indium oxide - cerium oxide - base sputtering target, and transparent conductive film, and production method of transparent conductive film

Also Published As

Publication number Publication date
KR20120074276A (ko) 2012-07-05
JPWO2011034143A1 (ja) 2013-02-14
EP2479763A4 (en) 2013-11-13
TW201128661A (en) 2011-08-16
EP2479763A1 (en) 2012-07-25
US20120174972A1 (en) 2012-07-12
WO2011034143A1 (ja) 2011-03-24
CN102498525A (zh) 2012-06-13
CN102498525B (zh) 2014-01-29
JP5895144B2 (ja) 2016-03-30

Similar Documents

Publication Publication Date Title
TWI553666B (zh) 透明導電膜及具備該導電膜之裝置
Sta et al. Structural, optical and electrical properties of undoped and Li-doped NiO thin films prepared by sol–gel spin coating method
US8404302B2 (en) Solution process for fabricating a textured transparent conductive oxide (TCO)
Sakthivel et al. Studies on optoelectronic properties of magnetron Sputtered cadmium stannate (Cd2SnO4) thin films as alternative TCO materials for solar cell applications
Ghosh et al. A novel blanket annealing process to achieve highly transparent and conducting Al doped ZnO thin films: Its mechanism and application in perovskite solar cells
Wang et al. Investigation of the optical and electrical properties of ZnO/Cu/ZnO multilayers grown by atomic layer deposition
Bose et al. Properties of boron doped ZnO films prepared by reactive sputtering method: Application to amorphous silicon thin film solar cells
Wang et al. Simulation, fabrication, and application of transparent conductive Mo-doped ZnO film in a solar cell
Das et al. Further optimization of ITO films at the melting point of Sn and configuration of Ohmic contact at the c-Si/ITO interface
Wang et al. Transparent conductive Hf-doped In2O3 thin films by RF sputtering technique at low temperature annealing
WO2011126074A1 (ja) 酸化亜鉛系透明導電膜、その製造方法及び用途
Sun et al. p-type conductive NiOx: Cu thin films with high carrier mobility deposited by ion beam assisted deposition
Gong et al. Investigation of In2O3: SnO2 films with different doping ratio and application as transparent conducting electrode in silicon heterojunction solar cell
Lee et al. Characteristics of Al-doped ZnO films annealed at various temperatures for InGaZnO-based thin-film transistors
Ohta et al. Rapid thermal-plasma annealing of ZnO: Al films for silicon thin-film solar cells
Abdulkadir et al. Properties of indium tin oxide on black silicon after post-deposition annealing for heterojunction solar cells
Micali et al. Structural, optical and electrical characterization of ITO films co-doped with Molybdenum
Wang et al. Effect of residual water vapor on the performance of indium tin oxide film and silicon heterojunction solar cell
Wu et al. High haze Ga and Zr co-doped zinc oxide transparent electrodes for photovoltaic applications
Luo et al. Highly transparent and conductive p-type CuI films by optimized solid-iodination at room temperature
Shu-Wen A Study of annealing time effects on the properties of Al: ZnO
JP4248793B2 (ja) 薄膜太陽電池の製造方法
Qiu et al. Direct current sputtered aluminum-doped zinc oxide films for thin crystalline silicon heterojunction solar cell
Han et al. Indium-free Cu/fluorine doped ZnO composite transparent conductive electrodes with stretchable and flexible performance on poly (ethylene terephthalate) substrate
Chantarat et al. Effect of oxygen on the microstructural growth and physical properties of transparent conducting fluorine-doped tin oxide thin films fabricated by the spray pyrolysis method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees