WO2011033790A1 - 対物レンズ素子及びこれを用いた光ピックアップ装置 - Google Patents

対物レンズ素子及びこれを用いた光ピックアップ装置 Download PDF

Info

Publication number
WO2011033790A1
WO2011033790A1 PCT/JP2010/005695 JP2010005695W WO2011033790A1 WO 2011033790 A1 WO2011033790 A1 WO 2011033790A1 JP 2010005695 W JP2010005695 W JP 2010005695W WO 2011033790 A1 WO2011033790 A1 WO 2011033790A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
substrate
lens element
optical
normal line
Prior art date
Application number
PCT/JP2010/005695
Other languages
English (en)
French (fr)
Inventor
林 克彦
田中 康弘
山形 道弘
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011531803A priority Critical patent/JP5884081B2/ja
Publication of WO2011033790A1 publication Critical patent/WO2011033790A1/ja
Priority to US13/411,655 priority patent/US20120163142A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses

Definitions

  • the present invention relates to an objective lens element used for performing at least one of recording / reproducing / erasing information on an optical information recording medium, and an optical pickup device using the objective lens element.
  • optical information recording / reproducing apparatuses that perform high-density recording using a blue laser are commercially available.
  • BD blue laser
  • DVD digital versatile disc
  • CD infrared laser
  • an objective lens for both a blue laser objective lens and a red laser objective lens and an infrared laser objective lens is generally mounted on the apparatus.
  • Patent Document 1 discloses a technique for reducing the aberration that occurs when a lens is tilted with respect to the optical axis by preliminarily increasing the unsatisfactory sine condition of one lens during lens design.
  • An object of the present invention is to provide an objective lens element capable of obtaining an optimum spot performance only by simple position adjustment, and an optical pickup device using the objective lens element.
  • the present invention relates to an objective lens element that has optical functional surfaces on the incident side and the emission side, and collects incident light flux through a substrate to form a spot.
  • the axis of symmetry of the optical function surface is arranged parallel to the normal line of the substrate, and the incident light beam incident with the central ray inclined at 0.5 degrees with respect to the normal line of the substrate is condensed.
  • the amount of occurrence of third-order astigmatism in the spot is determined for the spot formed by concentrating the incident light beam incident in parallel to the normal of the substrate, with the axis of symmetry of the optical functional surface parallel to the normal of the substrate. The amount is smaller than the amount of spherical aberration.
  • the optical axis of symmetry is arranged at an angle of 0.5 degrees with respect to the normal line of the substrate, and the incident light beam incident in parallel to the normal line of the substrate is condensed and formed.
  • the amount of occurrence of the third-order coma aberration of the spot is such that the axis of symmetry of the optical function surface is arranged parallel to the normal line of the substrate, and the incident light beam incident with the central ray inclined at 0.5 degrees with respect to the normal line of the substrate You may make it not be larger than the generation amount of the 3rd-order coma aberration of the spot formed by condensing.
  • An optical pickup device includes a light source that emits laser light, and a laser beam emitted from the light source that is focused on an information recording surface of an optical information recording medium to form a spot.
  • the optimum spot performance can be obtained by simply adjusting the position of the objective lens element.
  • FIG. 1 is a configuration diagram of an objective lens element according to the first embodiment.
  • FIG. 2 is a diagram for explaining a state in which off-axis light is incident on the objective lens element according to the first embodiment.
  • FIG. 3 is a diagram showing a state in which the objective lens element according to the present embodiment is tilted with respect to the normal line of the substrate of the optical disc.
  • FIG. 4 is a configuration diagram illustrating the optical pickup device according to the second embodiment.
  • FIG. 5 is an optical path diagram of the objective lens element according to Numerical Example 1.
  • FIG. 6 is an aberration diagram showing spherical aberration and unsatisfactory sine conditions of the objective lens element according to Numerical Example 1.
  • FIG. 7 is a graph illustrating aberration components generated when light having an inclination with respect to the optical axis is incident on the objective lens element according to Numerical Example 1.
  • FIG. 8 is a graph showing aberration components generated when the optical axis of the objective lens element according to Numerical Example 1 is tilted with respect to the normal line of the substrate of the optical disc.
  • FIG. 9 is an optical path diagram of the objective lens element according to the value example 2.
  • FIG. 10 is an aberration diagram showing spherical aberration of the objective lens element according to Numerical Example 2 and an unsatisfactory amount of the sine condition.
  • FIG. 11 is a graph showing aberration components generated when light having an inclination with respect to the optical axis is incident on the objective lens element according to Numerical Example 2, that is, when off-axis light is incident.
  • FIG. 12 is a graph showing an aberration component generated when the optical axis of the objective lens element according to Numerical Example 2 is tilted with respect to the normal line of the substrate of the optical disc.
  • FIG. 1 is a configuration diagram of an objective lens element according to the first embodiment.
  • the objective lens element 1 is a BD dedicated objective lens element.
  • NA is 0.85
  • a wavelength of 408 nm is collected through a protective substrate having a thickness of 0.1 mm to form a well-corrected aberration-corrected spot on the information recording surface of the optical disc.
  • the protective substrate thickness at the time of design is 87.5 ⁇ m, which is an intermediate value between the thickest protective substrate thickness and the thinnest protective substrate thickness.
  • the thickness of the protective substrate at the time of designing is adjusted as appropriate.
  • a collimator lens is inserted on the optical path between the light source and the objective lens element 1.
  • the collimating lens functions as an aberration correction element that moves in the optical axis direction and corrects spherical aberration.
  • the light beam 2 emitted from the light source and transmitted through the collimator lens is incident on the first surface of the objective lens element 1 as convergent light.
  • the first surface of the objective lens element 1 is an aspherical surface.
  • the light beam incident on the objective lens element 1 is emitted from the second surface.
  • This second surface is aspheric.
  • the light beam transmitted through the second surface of the objective lens element 1 is condensed on the information recording surface of the BD disc 5 to form a spot.
  • the light beam 2 reflected by the information recording surface passes through the objective lens 1 again and is condensed on the detector by a relay lens (not shown).
  • FIG. 2 is a diagram for explaining a state in which off-axis light is incident on the objective lens element according to the first embodiment.
  • off-axis light may enter the objective lens element due to a shift of the objective lens element itself during tracking, a light source mounting error, an optical system arrangement error, or the like.
  • the amount of third-order astigmatism that occurs in the following state (1) is greater than the amount of third-order spherical aberration that occurs in the second state described below. Designed to be smaller.
  • An incident light beam (solid line in FIG. 2) in which the axis of symmetry (optical axis) of the optical function surface is arranged parallel to the normal line of the substrate of the optical disk 5 and the central ray is inclined with respect to the normal line of the substrate.
  • the axis of symmetry of the optical function surface is arranged in parallel to the normal line of the substrate, and the incident light beam (broken line in FIG. 2) incident in parallel to the normal line of the substrate is condensed.
  • spot formation (solid line in FIG. 2) in which the axis of symmetry (optical axis) of the optical function surface is arranged parallel to the normal line
  • the axis of symmetry of the optical function surface is arranged parallel to the normal line of the substrate of the optical disc 5, and the incident light beam that is incident with the central ray inclined at 0.5 degree with respect to the normal line of the substrate is condensed and formed.
  • the amount of generated third-order astigmatism of the spot is such that the axis of symmetry of the optical function surface is arranged parallel to the normal line of the substrate and the incident light beam incident parallel to the normal line of the substrate is condensed. It is preferably less than 2/3 of the generation amount of spherical aberration, and more preferably less than 1/2.
  • FIG. 3 is a diagram showing a state in which the objective lens element according to the first embodiment is tilted with respect to the normal line of the substrate of the optical disk.
  • an objective lens element may be disposed at an inclination in order to optimally correct the aberration of the entire optical system during assembly.
  • an actuator equipped with an objective lens element may be used with an inclination. Therefore, in the objective lens element according to the present embodiment, the amount of third-order coma aberration generated in the following state (3) is greater than the amount of third-order coma aberration generated in the state (4) below. Designed not to be large.
  • the symmetry axis (optical axis) of the optical function surface is arranged with an inclination of 0.5 degrees with respect to the normal line of the substrate, and the incident light beam incident in parallel to the normal line of the substrate is condensed.
  • the third-order coma aberration is preferably 25 m ⁇ or less, and more preferably 15 m ⁇ or less.
  • the axis of symmetry of the optical function surface is arranged in parallel with the normal of the substrate of the optical disc 5, and the incident light flux incident with the central ray inclined at 0.5 degrees with respect to the normal of the substrate is It is preferable that the third-order coma aberration of the spot formed by focusing is 25 m ⁇ or more.
  • the symmetry axis of the optical function surface is arranged in parallel with the normal line of the substrate of the optical disc 5 and the incident light beam incident with the central ray inclined at 0.5 degrees with respect to the normal line of the substrate is
  • the third-order coma aberration of the spot formed by focusing is preferably 35 m ⁇ or more.
  • the amount of coma generated when the objective lens element is tilted with respect to the normal of the substrate of the optical disk is smaller than the amount of coma generated by off-axis light. Therefore, when an optical pickup device in which two objective lens elements are mounted on one actuator is assembled, adjustment of the actuator is facilitated, and manufacture of the optical pickup is facilitated. Hereinafter, this point will be described more specifically.
  • a DVD / CD compatible objective lens element is mounted on the same actuator together with a BD-dedicated objective lens element according to the present invention.
  • the tilt of the actuator equipped with two objective lens elements is adjusted so that the spot performance of DVD and CD is optimized.
  • the spot performance of the BD dedicated objective lens element mounted on the same actuator is not necessarily optimal.
  • coma aberration occurs because the objective lens element dedicated to BD is inclined with respect to the optical axis.
  • the lens is designed so that the sine condition is satisfied and no coma is generated for off-axis light.
  • coma generated when the objective lens element itself is tilted with respect to the optical axis becomes large.
  • it is possible to improve the spot performance by adjusting the tilt of only the objective lens element dedicated for BD the amount of coma generated with respect to the tilt angle of the objective lens element is extremely large. Adjustment is actually difficult.
  • the objective lens element 1 according to the present invention is designed so that the amount of coma generated when the optical axis is inclined with respect to the normal of the substrate of the optical disk 5 is small. That is, since the objective lens element 1 is insensitive to aberrations with respect to tilt, the spot performance does not deteriorate even if tilted to some extent. Therefore, even if the angle of the actuator is adjusted so that the spot performance of the objective lens element compatible with DVD / CD is optimized, the spot of the objective lens element 1 for BD is not greatly deteriorated from the optimum performance.
  • the information recording medium 20 may be, for example, a CD (Compact Disc), a CD-R (Compact Disk Recordable), a CD-RW (Compact Disk ReWriteable), a CD-ROM (Compact Disk Read Only Memory), a DVD (Discard).
  • a CD Compact Disc
  • CD-R Compact Disk Recordable
  • CD-RW Compact Disk ReWriteable
  • CD-ROM Compact Disk Read Only Memory
  • DVD DVD
  • DVD-R Digital Versatile Disc Recordable
  • DVD-RW Digital Versatile Disc Rewriteable
  • DVD-ROM Digital Versatile DiscReadyMemoryRimableMemoryRim) Memory
  • EVD Enhanced Versatile Disc
  • EVD-R Enhanced Versatile Disc Recordable
  • EVD-RW Enhanced Versatile Disc ReWritable
  • EVD-ROM Enhanced Versatile Disc Read Only Memory
  • EVD-RAM Enhanced Versatile Disk Random Access Memory
  • BD Blu-ray Disc
  • BD-R Blu-ray Disc Recordable
  • BD-RW Blu-ray Disc ReWriteable
  • BD-ROM Blu-ray Disc Read On) y Memory
  • BD-RAM Blu-ray Disc Random Access Memory
  • an optical pickup apparatus in which two objective lens elements are mounted on the same actuator has been described.
  • the design of the present invention can be applied to an optical pickup apparatus in which only one objective lens element is mounted. Even in this case, a simple assembly of the optical pickup device can be similarly realized by performing the design that can obtain the optical characteristics described in this embodiment.
  • FIG. 4 is a configuration diagram illustrating the optical pickup device according to the second embodiment.
  • the optical pickup device shown in FIG. 4 includes a light source 10 that emits light of a predetermined wavelength, a beam shaping lens 11, a polarization beam splitter 12, a collimator lens 13, an objective lens element 14, a detection lens 17, and a detector. 18.
  • the objective lens element 14 is the BD-dedicated objective lens element described in the first embodiment.
  • the wavelength of the light source 10 is 390 to 450 nm
  • the NA of the objective lens element 14 is 0.8 or more
  • the distance (working distance) between the objective lens element 14 and the BD disc 20 is less than 100 ⁇ m.
  • the collimating lens 13 is movable in the optical axis direction, and moves in the optical axis direction, thereby changing the parallelism of the incident light beam and correcting the spherical aberration of the generated condensing spot.
  • the spherical aberration generated here refers to spherical aberration caused by wavelength change, temperature change, thickness change from the disk surface to the recording layer, optical element manufacturing error, and pickup assembly error.
  • FIG. 4 shows only the optical system for BD, but a DVD or CD optical system may be provided along with this.
  • a DVD-dedicated objective lens element, a CD-dedicated objective lens element, a DVD / CD compatible objective lens element, or other objective lens element may be mounted on the actuator on which the BD objective lens element 14 is mounted.
  • the first surface of the objective lens element 14 is aspheric.
  • the aspherical surface of the first surface is represented by one aspherical expression, but it may be divided into a plurality of concentric regions. Further, a diffractive structure may be provided on the optical functional surface.
  • the light beam 15 emitted from the light source 10 is shaped into an elliptical beam by the beam shaping lens 11, then reflected by the reflecting surface 12 a of the polarization beam splitter 12, and transmitted through the collimating lens 13.
  • the light enters the objective lens 14 as substantially parallel light and enters the first surface of the objective lens element 14.
  • the light beam 15 is emitted from the second surface of the objective lens element 14 and is well focused on the information recording surface of the BD disc 20. Then, the light 15 reflected by the information recording surface again passes through the objective lens element 14, passes through the collimating lens 13 and the polarization beam splitter 12, and is condensed on the detector 18 by the relay lens 17.
  • the collimating lens 13 is movable in the optical axis direction in order to correct spherical aberration that occurs during recording / reproduction of the BD disc 20.
  • the spherical aberration can be corrected instead of the collimating lens 13
  • other optical elements such as a liquid crystal element, a beam expander, and a liquid lens can be used as the aberration correcting element.
  • the beam shaping lens 11 may be omitted, but it is preferable that the beam shaping lens 11 is provided because the light use efficiency can be improved.
  • the amount of third-order astigmatism generated by off-axis incidence is suppressed to be smaller than the amount of third-order spherical aberration. Since there is no method for correcting third-order astigmatism with an optical pickup device, it is preferable to minimize the generated aberration. On the other hand, since the third-order spherical aberration can be corrected by an aberration correction element (for example, the collimating lens 13), there is no problem even if it occurs. Therefore, in the optical pickup device according to the present embodiment, a good spot can be formed on the information recording surface of the information recording medium, and stable recording and reproduction can be performed.
  • an aberration correction element for example, the collimating lens 13
  • the optical pickup device of the present invention it is possible to obtain the optimum spot performance only by performing simple adjustment at the time of assembly.
  • the amount of coma generated when the lens is tilted with respect to the optical axis is not larger than the amount of coma that occurs off-axis. Even when a lens element is provided, adjustment is easy and assembly can be performed easily.
  • the third-order coma aberration generated when the optical axis of the objective lens element for BD is tilted with respect to the BD is designed, but the present invention is not limited to this.
  • Other objective lens elements may be similarly designed.
  • the surface to which the aspheric coefficient is given is an aspherical refractive optical surface or a surface having a refractive action that is transparent to the aspherical surface.
  • the aspherical surface shape is defined by the following equation (1).
  • X distance from the tangent plane of the aspherical vertex of the aspherical point whose height from the optical axis is h
  • h height from the optical axis
  • k j the conic constant of the lens j-th surface
  • a j, n n-th order aspherical constant of the j- th lens surface.
  • Table 1 shows the construction data of Numerical Example 1.
  • the design wavelength is 408 nm
  • the disk substrate thickness is 0.0725 mm
  • the focal length is 1.3 mm
  • the effective diameter is 2.18 mm
  • NA is 0.86
  • the lens thickness is 1.73 mm.
  • the effective diameter is the value of the first surface (surface number 1 in Table 1) of the objective lens element.
  • FIG. 5 is an optical path diagram of the objective lens element according to Numerical Example 1.
  • FIG. 6 is an aberration diagram showing spherical aberration and unsatisfactory sine conditions of the objective lens element according to Numerical Example 1.
  • FIG. 7 is a graph showing aberration components generated when light having an inclination with respect to the optical axis is incident on the objective lens element according to Numerical Example 1, that is, when off-axis light is incident.
  • the horizontal axis represents the angle of view of the light beam, and the vertical axis represents the amount of aberration. From FIG. 7, when the inclination of off-axis light is 0.5 degree, the generated third-order astigmatism is 9 m ⁇ , the coma aberration is 55 m ⁇ , and the spherical aberration is 10 m ⁇ .
  • FIG. 8 is a graph showing an aberration component generated when the optical axis of the objective lens element according to Numerical Example 1 is tilted with respect to the normal line of the substrate of the optical disc.
  • the horizontal axis represents the tilt angle of the optical axis with respect to the normal of the optical disk substrate, and the vertical axis represents the amount of aberration. From FIG. 8, when the lens tilt angle is 0.5 degree, the third-order coma aberration that occurs is 10 m ⁇ .
  • FIG. 9 is an optical path diagram of the objective lens element according to Numerical Example 2.
  • FIG. 10 is an aberration diagram showing spherical aberration of the objective lens element according to Numerical Example 2 and an unsatisfactory amount of the sine condition.
  • FIG. 11 is a graph showing aberration components generated when light having an inclination with respect to the optical axis is incident on the objective lens element according to Numerical Example 2, that is, when off-axis light is incident.
  • the horizontal axis represents the angle of view of the light beam, and the vertical axis represents the amount of aberration. From FIG. 11, when the inclination of off-axis light is 0.5 degree, the generated third-order astigmatism is 8 m ⁇ , the third-order coma aberration is 55 m ⁇ , and the third-order spherical aberration is 12 m ⁇ .
  • FIG. 12 is a graph showing an aberration component generated when the optical axis of the objective lens element according to Numerical Example 2 is tilted with respect to the normal line of the substrate of the optical disk.
  • the horizontal axis represents the tilt angle of the optical axis with respect to the normal of the optical disk substrate, and the vertical axis represents the amount of aberration. From FIG. 12, when the lens tilt angle is 0.5 degrees, the generated third-order coma aberration is 10 m ⁇ .
  • the present invention relates to an objective lens element for recording / reproducing / erasing information on / from an optical disc, an optical pickup device using the same, an information device such as a personal computer incorporating the optical pickup device, an optical disc recorder, etc. It can be used for video equipment and audio equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Lenses (AREA)

Abstract

 簡易な位置調整のみで、最適なスポット性能を得ることが可能な対物レンズ素子及びこれを用いた光ピックアップ装置を提供する。本発明の対物レンズ素子において、光学機能面の対称軸を基板の法線と平行に配置し、基板の法線に対して、中心光線が0.5度傾いて入射した入射光束(図の実線)を集光して形成したスポットの3次非点収差の発生量を、光学機能面の対称軸を基板の法線と平行に配置し、基板の法線に平行に入射した入射光束(図の破線)を集光して形成したスポットの球面収差の発生量より小さくする。

Description

対物レンズ素子及びこれを用いた光ピックアップ装置
 本発明は、光情報記録媒体に対して情報の記録・再生・消去の少なくとも1つを行うために用いられる対物レンズ素子及びこれを用いた光ピックアップ装置に関する。
 近年、青色レーザを用いて高密度記録を行う光情報記録再生装置が市販されている。青色レーザを用いる規格(例えば、BD)と、これより旧世代の赤色レーザを用いる規格(例えば、DVD)及び赤外レーザを用いる規格(例えば、CD)との全てに互換性のある光ピックアップ装置を構成する場合、青色レーザ用対物レンズと、赤色レーザ及び赤外レーザ用対物レンズ(いわゆるDVD/CD互換対物レンズ)との両方の対物レンズを装置に搭載することが一般に行われている。
 しかしながら、この2レンズタイプの光ピックアップ装置を製造する際に、一方の対物レンズのスポットが最適になるようにアクチュエータの調整を行うと、他方の対物レンズのスポット性能が劣化してしまうという課題がある。また、両方のスポット性能を最適に調整するには、組み立て工程及び組み立て時間が増え、製造コスト高に繋がる。
 特許文献1には、レンズ設計時において、一方のレンズの正弦条件不満足量を予め大きくしておき、レンズが光軸に対して傾いた時に発生する収差を低減する技術が開示されている。
特許第3235519号公報
 しかしながら、単に一方の対物レンズの性能を改善し、光軸に対して傾いた時に発生する収差を低減したとしても、光軸に対して傾いた軸外の光がレンズに入射した場合、収差が発生してしまい、結局、スポットとしては最適な性能が得られないこととなる。
 本発明の目的は、簡易な位置調整のみで、最適なスポット性能を得ることが可能な対物レンズ素子及びこれを用いた光ピックアップ装置を提供することである。
 本発明は、入射側及び出射側に光学機能面を有し、入射光束を基板を介して集光しスポットを形成する対物レンズ素子に関する。当該対物レンズ素子において、光学機能面の対称軸を基板の法線と平行に配置し、基板の法線に対して、中心光線が0.5度傾いて入射した入射光束を集光して形成したスポットの3次非点収差の発生量を、光学機能面の対称軸を基板の法線と平行に配置し、基板の法線に平行に入射した入射光束を集光して形成したスポットの球面収差の発生量より小さくする。
 あるいは、上記の構成に変えて、光学機能面の対称軸を基板の法線に対して0.5度傾けて配置し、基板の法線に平行に入射した入射光束を集光して形成したスポットの3次コマ収差の発生量が、光学機能面の対称軸を基板の法線と平行に配置し、基板の法線に対して、中心光線が0.5度傾いて入射した入射光束を集光して形成したスポットの3次コマ収差の発生量より大きくないようにしてもよい。
 本発明に係る光ピックアップ装置は、レーザ光を出射する光源と、光源から出射されたレーザ光を光情報記録媒体の情報記録面上に集光してスポットを形成する、上記のいずれかの対物レンズ素子と、光源と対物レンズ素子との間の光路上に配置され、光路に沿って移動することによって収差を補正する収差補正素子と、情報記録面で反射された反射光を検出する検出器とを備える。
 本発明によれば、対物レンズ素子の位置を簡易に調整するだけで、最適なスポット性能を得ることができる。
図1は、実施の形態1に係る対物レンズ素子の構成図である。 図2は、実施の形態1に係る対物レンズ素子に対して軸外光が入射した状態を説明する図図である。 図3は、本実施の形態に係る対物レンズ素子が光ディスクの基板の法線に対して傾いた状態を示す図である。 図4は、実施の形態2に係る光ピックアップ装置を示す構成図である。 図5は、数値実施例1に係る対物レンズ素子の光路図である。 図6は、数値実施例1に係る対物レンズ素子の球面収差、正弦条件の不満足量示す収差図である。 図7は、数値実施例1に係る対物レンズ素子に、光軸に対して傾きをもった光が入射した場合に発生する収差成分を示すグラフである。 図8は、数値実施例1に係る対物レンズ素子の光軸が、光ディスクの基板の法線に対して傾いた場合に発生する収差成分を示すグラフである。 図9は、値実施例2に係る対物レンズ素子の光路図である。 図10は、数値実施例2に係る対物レンズ素子の球面収差、正弦条件の不満足量を示す収差図である。 図11は、数値実施例2に係る対物レンズ素子に、光軸に対して傾きをもった光が入射した場合、すなわち、軸外光が入射した場合に発生する収差成分を示すグラフである。 図12は、数値実施例2に係る対物レンズ素子の光軸が、光ディスクの基板の法線に対して傾いた場合に発生する収差成分を示すグラフである。
 (実施の形態1)
 図1は、実施の形態1に係る対物レンズ素子の構成図である。
 本実施の形態に係る対物レンズ素子1は、BD専用対物レンズ素子である。具体的に、NAは0.85であり、波長408nmを厚み0.1mmの保護基板を介して集光し、光ディスクの情報記録面上に良好に収差補正されたスポットを形成する。ただし、2層のBDディスクへの対応を可能とする場合は、設計時の保護基板厚みとして、最も厚い保護基板厚みと最も薄い保護基板厚みとの中間の値である87.5μmが用いられる。また、3層以上の多層対応の場合は、この設計時の保護基板厚みは適宜調整される。
 また、本実施の形態に係る対物レンズ素子1を用いて光ピックアップ装置を構成する場合、光源と対物レンズ素子1との間の光路上にコリメートレンズが挿入される。コリメートレンズは、光軸方向に移動して、球面収差を補正する収差補正素子として機能する。
 図1に示すように、BDディスク5の記録再生時においては、光源から出射されコリメートレンズを透過した光束2は、対物レンズ素子1の第1面に収束光として入射する。この対物レンズ素子1の第1面は非球面である。
 対物レンズ素子1に入射した光束は、第2面から出射される。この第2面は非球面である。次に、対物レンズ素子1の第2面を透過した光束は、BDディスク5の情報記録面に集光されスポットを形成する。情報記録面で反射された光束2は、再び対物レンズ1を透過し、リレーレンズ(図示せず)によって検出器に集光される。
 図2は、実施の形態1に係る対物レンズ素子に対して軸外光が入射した状態を説明する図である。
 光ピックアップ装置では、トラッキング時の対物レンズ素子自体のシフトや、光源の取り付け誤差や、光学系の配置誤差等により、対物レンズ素子に軸外からの光が入射する場合がある。そこで、本実施の形態に係る対物レンズ素子は、以下の(1)の状態において発生する3次非点収差の発生量が、以下の第2の状態において発生する3次球面収差の発生量より小さくなるように設計されている。
 (1)光学機能面の対称軸(光軸)を光ディスク5の基板の法線と平行に配置し、基板の法線に対して、中心光線が傾いて入射した入射光束(図2の実線)を集光してスポットを形成した状態
 (2)光学機能面の対称軸を基板の法線と平行に配置し、基板の法線に平行に入射した入射光束(図2の破線)を集光してスポットを形成した状態
 ここで、光学機能面の対称軸を光ディスク5の基板の法線と平行に配置し、基板の法線に対して、中心光線が0.5度傾いて入射した入射光束を集光して形成したスポットの3次非点収差の発生量が、光学機能面の対称軸を基板の法線と平行に配置し、基板の法線に平行に入射した入射光束を集光して形成したスポットの球面収差の発生量の2/3より小さいことが好ましく、1/2より小さいことがより好ましい。
 このような設計を行うと、補正できない非点収差を抑制し、入射光束の傾きに起因する球面収差は、収差補正素子によって補正を行うことができる。したがって、対物レンズ素子に対して軸外光が入射しても、情報記録面上に形成されるスポットは良好に保たれる。
 図3は、本実施の形態1に係る対物レンズ素子が光ディスクの基板の法線に対して傾いた状態を示す図である。
 光ピックアップ装置では、組み立ての際に、光学系全体の収差を最適に補正するため、対物レンズ素子を傾けて配置することがある。また、光ディスクの製造誤差による基板の厚みむらや、光ディスク自体の傾き、光ディスクの回転による傾きに起因する収差を補正するため、対物レンズ素子が搭載されたアクチュエータを傾けて使用する場合がある。そこで、本実施の形態に係る対物レンズ素子は、以下の(3)の状態で発生する3次コマ収差の発生量が、以下の(4)の状態で発生する3次コマ収差の発生量より大きくないように設計されている。
 (3)光学機能面の対称軸を基板の法線に対して傾けて配置し、基板の法線に平行に入射した入射光束を集光してスポットを形成した状態
 (4)光学機能面の対称軸(光軸)を光ディスク5の基板の法線と平行に配置し、基板の法線に対して、中心光線が傾いて入射した入射光束を集光してスポットを形成した状態
 ここで、光学機能面の対称軸(光軸)を基板の法線に対して0.5度傾けて配置し、基板の法線に平行に入射した入射光束を集光して形成したスポットの3次コマ収差が25mλ以下であることが好ましく、15mλ以下であることがより好ましい。
 光学機能面の対称軸(光軸)を基板の法線に対して0.5度傾けて配置し、基板の法線に平行に入射した入射光束を集光して形成したスポットの3次コマ収差が25mλ以下である場合、光学機能面の対称軸を光ディスク5の基板の法線と平行に配置し、基板の法線に対して、中心光線が0.5度傾いて入射した入射光束を集光して形成したスポットの3次コマ収差が25mλ以上であることが好ましい。
 光学機能面の対称軸(光軸)を基板の法線に対して0.5度傾けて配置し、基板の法線に平行に入射した入射光束を集光して形成したスポットの3次コマ収差が15mλ以下である場合、光学機能面の対称軸を光ディスク5の基板の法線と平行に配置し、基板の法線に対して、中心光線が0.5度傾いて入射した入射光束を集光して形成したスポットの3次コマ収差が35mλ以上であることが好ましい。
 このような設計を行うと、軸外光で発生するコマ収差の量よりも、対物レンズ素子が光ディスクの基板の法線に対して傾いた場合に発生するコマ収差の量の方が少なくなる。したがって、1つのアクチュエータに2つの対物レンズ素子を搭載した光ピックアップ装置の組み立て時に、アクチュエータの調整が容易となり、光ピックアップの製造が容易となる。以下、この点を更に具体的に説明する。
 本発明に係るBD専用の対物レンズ素子と共に、DVD/CD互換の対物レンズ素子がが同じアクチュエータに搭載される場合を想定する。例えば、最初に、DVD及びCDのスポット性能が最適となるように、2つの対物レンズ素子を搭載したアクチュエータの傾きを調整する。この場合、同じアクチュエータに搭載されているBD専用対物レンズ素子のスポット性能は必ずしも最適とはなっていない。その理由の一つとして、BD専用の対物レンズ素子が光軸に対して傾いているために、コマ収差が発生していることが考えられる。通常、正弦条件を満たし、軸外の光に対してコマ収差が発生しないようにレンズ設計を行う。このような設計を行った場合、対物レンズ素子自体が光軸に対して傾いた場合に発生するコマ収差は大きくなってしまう。BD専用の対物レンズ素子のみ単独で傾きを調整することで、スポット性能を向上させることは可能ではあるが、対物レンズ素子の傾き角度に対して発生するコマ収差量が極めて大きいため、そのような調整は実際には困難である。
 上述したように、本発明に係る対物レンズ素子1は、その光軸が光ディスク5の基板の法線に対して傾いた場合に発生するコマ収差の量が小さくなるように設計されている。つまり、対物レンズ素子1は、傾きに対して収差感度が鈍感であるため、ある程度傾いたとしてもスポット性能は劣化しない。したがって、DVD/CD互換の対物レンズ素子の「スポット性能が最適化されるようにアクチュエータの角度を調整しても、BD専用対物レンズ素子1のスポットも最適性能から大きく劣化することはない。
 更に、光ディスク5の基板の法線にして対物レンズ素子の光軸が傾くことで発生するコマ収差とは別に、光学系全体の組み立て誤差や各光学素子が保有するコマ収差が残存している場合がある。この場合でも、本発明の対物レンズ素子においては、光が軸外から入射した場合に発生するコマ収差の量が大きいため、少しの光源位置の調整で光学系全体のコマ収差をキャンセルすることが可能である。従来の一般的な正弦条件を満足する対物レンズ素子の場合、光が軸外から入射した場合に発生するコマ収差の量は小さいため、この調整でコマ収差をキャンセルすることは困難である。
 本発明に係る対物レンズ素子1を用いれば、このように簡易な調整方法で、全ての波長の集光スポットが最適になるように光ピックアップ装置を組み立てる事が可能である。ここで、情報記録媒体20の種類は特に限定されるものではない。情報記録媒体20は、例えば、CD(Compact Disc)、CD-R(Compact Disk Recordable)、CD-RW(Compact Disk ReWritable)、CD-ROM(Compact Disk Read Only Memory)、DVD(Digital Versatile Disc)、DVD-R(Digital Versatile Disc Recordable)、DVD-RW(Digital Versatile Disc ReWritable)、DVD-ROM(Digital Versatile Disc Read Only Memory)、DVD-RAM(Digital Versatile Disk Random Access Memory)、EVD(Enhanced Versatile Disc)、EVD-R(Enhanced Versatile Disc Recordable)、EVD-RW(Enhanced Versatile Disc ReWritable)、EVD-ROM(Enhanced Versatile Disc Read Only Memory)、EVD-RAM(Enhanced Versatile Disk Random Access Memory)、BD(Blu-ray Disc)、BD-R(Blu-ray Disc Recordable)、BD-RW(Blu-ray Disc ReWritable)、BD-ROM(Blu-ray Disc Read Only Memory)、BD-RAM(Blu-ray Disc Random Access Memory)(以上、すべて登録商標)であってもよい。
 本実施の形態では、同一のアクチュエータに2つの対物レンズ素子を搭載した光ピックアップ装置を説明したが、1つの対物レンズ素子のみを搭載した光ピックアップ装置にも本発明の設計を適用できる。この場合でも、本実施の形態で説明した光学特性が得られる設計を行うことで、同様に、簡易な光ピックアップ装置の組み立てを実現できる。
(実施の形態2)
 図4は、実施の形態2に係る光ピックアップ装置を示す構成図である。
 図4に示す光ピックアップ装置は、所定の波長の光を出射する光源10と、ビーム整形レンズ11と、偏光ビームスプリッタ12と、コリメートレンズ13と、対物レンズ素子14と、検出レンズ17と、ディテクタ18とを備える。対物レンズ素子14は、実施の形態1で説明したBD専用対物レンズ素子である。一例として、光源10の波長は390~450nm、対物レンズ素子14のNAは0.8以上、対物レンズ素子14とBDディスク20との距離(作動距離)は100μm未満である。
 コリメートレンズ13は、光軸方向に可動であり、光軸方向に移動することによって、入射した光束の平行度を変化させ、発生した集光スポットの球面収差を補正する。ここで発生した球面収差とは、波長変化、温度変化、ディスクの表面から記録層までの厚み変化、光学素子の製造誤差、ピックアップ組み立て誤差に起因して発生する球面収差を指す。
 図4では、BD用光学系のみ記載しているが、これと共にDVDまたはCDの光学系が設けられていても良い。BD用対物レンズ素子14が搭載されているアクチュエータに、DVD専用対物レンズ素子、CD専用用対物レンズ素子、DVD/CD互換用対物レンズ素子、またはその他の対物レンズ素子が搭載されても良い。
 対物レンズ素子14の第1面は、非球面である。本実施の形態では、第1面の非球面は、一つの非球面式で表されるが、同心円状の複数の領域に分割されていても良い。また、光学機能面に回折構造が設けられていても良い。
 図4に示すように、光源10から出射されたの光束15は、ビーム整形レンズ11で楕円ビームに整形された後、偏光ビームスプリッタ12の反射面12aで反射され、コリメートレンズ13を透過し、対物レンズ14に略平行光として入射し、対物レンズ素子14の第1面に入射する。
 光束15は、対物レンズ素子14の第2面から出射され、BDディスク20の情報記録面に良好に集光される。そして、この情報記録面で反射された光15は、再び対物レンズ素子14を透過し、コリメートレンズ13、偏光ビームスプリッタ12を透過し、リレーレンズ17により検出器18に集光される。
 上述したように、BDディスク20の記録再生時に発生する球面収差を補正するために、コリメートレンズ13は光軸方向に可動となっている。コリメートレンズ13の代わりに球面収差を補正可能のものであれば、例えば、液晶素子、ビームエキスパンダー、液体レンズなど、他の光学素子を収差補正素子として利用できる。また、ビーム整形レンズ11はなくても良いが、光利用効率を向上できるため、ある方が好ましい。
 対物レンズ素子14は、軸外入射で発生する3次非点収差の量が、3次球面収差の量より小さく抑えられている。3次非点収差は、光ピックアップ装置で補正する方法がないため、発生する収差を極力小さくしておくことが好ましい。一方、3次球面収差は、収差補正素子(例えば、コリメートレンズ13)によって補正が可能であるため、発生しても問題がない。それ故、本実施の形態に係る光ピックアップ装置では、情報記録媒体の情報記録面上に良好なスポットを形成することができ、安定した記録再生を可能とする。
 また、本発明の光ピックアップ装置によれば、組み立て時に簡単な調整を行うだけで最適なスポット性能をえることができる。特に、本発明に係る対物レンズ素子14では、軸外で発生するコマ収差の量よりもレンズが光軸に対して傾いた場合に発生するコマ収差の量の方が大きくないため、2つの対物レンズ素子を備える場合でも、調整が容易で組み立てを簡易に行うことができる。
 尚、本実施の形態では、BD用の対物レンズ素子の光軸がに対して傾いた場合に発生する3次のコマ収差を抑えた設計としているが、これに限らない。他の対物レンズ素子を同様に設計してもよい。
 本発明の実施例をコンストラクションデータ、収差図等を挙げてさらに具体的に説明する。なお、数値実施例1、2は、上述の実施の形態1、2にそれぞれ対応している。
 各数値実施例において、非球面係数が与えられた面は、非球面形状の屈折光学面又は非球面と透過な屈折作用を有する面であることを示す。非球面の面形状は、次の数1により定義される。
Figure JPOXMLDOC01-appb-M000001
 但し、
 X:光軸からの高さがhである非球面状の点の非球面頂点の接平面からの距離、
 h:光軸からの高さ、
 C:レンズ第j面の非球面頂点の曲率(C=1/R)、
 k:レンズ第j面の円錐定数、
 Aj,n:レンズ第j面のn次の非球面定数、である。
 (数値実施例1)
 表1に数値実施例1のコンストラクションデータを示す。表1に示すように、設計波長408nm、ディスク基材厚(設計中心基材厚)0.0725mm、焦点距離1.3mm、有効径φ2.18mm、NA0.86、レンズ厚み1.73mmである。有効径とは、対物レンズ素子の第1面(表1の面番号1)の値である。また、図5は、数値実施例1に係る対物レンズ素子の光路図である。図6は、数値実施例1に係る対物レンズ素子の球面収差、正弦条件の不満足量示す収差図である。
Figure JPOXMLDOC01-appb-T000001
 図7は、数値実施例1に係る対物レンズ素子に、光軸に対して傾きをもった光が入射した場合、すなわち、軸外光が入射した場合に発生する収差成分を示すグラフである。横軸に光線の画角を、縦軸に収差量をとる。図7より、軸外光の傾きが0.5度の場合、発生する3次非点収差は9mλ、コマ収差は55mλ、球面収差は10mλである。
 図8は、数値実施例1に係る対物レンズ素子の光軸が、光ディスクの基板の法線に対して傾いた場合に発生する収差成分を示すグラフである。横軸に光ディスクの基板の法線に対する光軸の傾斜角を、縦軸に収差量をとる。図8より、レンズチルト角が0.5度の場合、発生する3次コマ収差は10mλである。
 (数値実施例2)
 表2に数値実施例2のコンストラクションデータを示す。表2に示すように、設計波長408nm、ディスク基材厚(設計中心基材厚)0.0725mm、焦点距離1.3mm、有効径φ2.18mm、NA0.86、レンズ厚み1.74mmである。有効径とは、対物レンズ素子の第1面(表2の面番号1)の値である。また、図9は、数値実施例2に係る対物レンズ素子の光路図である。図10は、数値実施例2に係る対物レンズ素子の球面収差、正弦条件の不満足量を示す収差図である。
Figure JPOXMLDOC01-appb-T000002
 図11は、数値実施例2に係る対物レンズ素子に、光軸に対して傾きをもった光が入射した場合、すなわち、軸外光が入射した場合に発生する収差成分を示すグラフである。横軸に光線の画角を、縦軸に収差量をとる。図11より、軸外光の傾きが0.5度の場合、発生する3次非点収差は8mλ、3次コマ収差は、55mλ、3次球面収差は12mλである。
 図12は、数値実施例2に係る対物レンズ素子の光軸が、光ディスクの基板の法線に対して傾いた場合に発生する収差成分を示すグラフである。横軸に光ディスクの基板の法線に対する光軸の傾斜角を、縦軸に収差量をとる。図12より、レンズチルト角が0.5度の場合、発生する3次コマ収差は10mλである。
 本発明は、光ディスクに対して情報の記録・再生・消去を行うための対物レンズ素子、これを用いた光ピックアップ装置、この光ピックアップ装置を組み込んだ、パーソナルコンピュータなどの情報機器、光ディスクレコーダーなどの映像機器や音響機器等に利用できる。
 1  対物レンズ素子
 2  波長408nmの光束
 3  BD用対物レンズ
 4  DVD/CD互換用対物レンズ
 5  BDディスク
10  光源
11  ビーム成形レンズ
12  ビームスプリッタ
12a ビームスプリッタ反射面
13  コリメータレンズ
14  対物レンズ素子
15  波長408nmの光束
16  検出系
17  検出レンズ
18  検出器
19  光ピックアップ装置
20  情報記録媒体

Claims (3)

  1.  入射側及び出射側に光学機能面を有し、入射光束を基板を介して集光しスポットを形成する対物レンズ素子であって、
     前記光学機能面の対称軸を前記基板の法線と平行に配置し、前記基板の法線に対して、中心光線が0.5度傾いて入射した入射光束を集光して形成したスポットの3次非点収差の発生量が、前記光学機能面の対称軸を前記基板の法線と平行に配置し、前記基板の法線に平行に入射した入射光束を集光して形成したスポットの球面収差の発生量より小さい、対物レンズ素子。
  2.  入射側及び出射側に光学機能面を有し、入射光束を基板を介して集光しスポットを形成する対物レンズ素子であって、
     前記光学機能面の対称軸を前記基板の法線に対して0.5度傾けて配置し、前記基板の法線に平行に入射した入射光束を集光して形成したスポットの3次コマ収差の発生量が、前記光学機能面の対称軸を前記基板の法線と平行に配置し、前記基板の法線に対して、中心光線が0.5度傾いて入射した入射光束を集光して形成したスポットの3次コマ収差の発生量より大きくない、対物レンズ素子。
  3.  光ピックアップ装置であって、
     レーザ光を出射する光源と、
     前記光源から出射されたレーザ光を光情報記録媒体の情報記録面上に集光してスポットを形成する、請求項1または2に記載の対物レンズ素子と、
     前記光源と前記対物レンズ素子との間の光路上に配置され、前記光路に沿って移動することによって収差を補正する収差補正素子と、
     前記情報記録面で反射された反射光を検出する検出器とを備える、光ピックアップ装置。
PCT/JP2010/005695 2009-09-17 2010-09-17 対物レンズ素子及びこれを用いた光ピックアップ装置 WO2011033790A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011531803A JP5884081B2 (ja) 2009-09-17 2010-09-17 対物レンズ素子及びこれを用いた光ピックアップ装置
US13/411,655 US20120163142A1 (en) 2009-09-17 2012-03-05 Objective Lens Element and Optical Pickup Device Using the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-216229 2009-09-17
JP2009216229 2009-09-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/411,655 Continuation US20120163142A1 (en) 2009-09-17 2012-03-05 Objective Lens Element and Optical Pickup Device Using the Same

Publications (1)

Publication Number Publication Date
WO2011033790A1 true WO2011033790A1 (ja) 2011-03-24

Family

ID=43758404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005695 WO2011033790A1 (ja) 2009-09-17 2010-09-17 対物レンズ素子及びこれを用いた光ピックアップ装置

Country Status (3)

Country Link
US (1) US20120163142A1 (ja)
JP (1) JP5884081B2 (ja)
WO (1) WO2011033790A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017434A1 (ja) * 2014-07-28 2016-02-04 コニカミノルタ株式会社 投影光学系及び投影装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108398A (ja) * 2003-09-08 2005-04-21 Ricoh Co Ltd 対物レンズ、光ピックアップ及び光情報処理装置
JP2005203081A (ja) * 2003-12-18 2005-07-28 Pentax Corp 光ディスク用光学系

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1157620C (zh) * 1999-07-30 2004-07-14 松下电器产业株式会社 物镜和光学头装置
US6590717B2 (en) * 2000-09-26 2003-07-08 Matsushita Electric Industrial Co., Ltd. Optical system for optical disk, optical head unit for optical disk, and optical drive device
US7245407B2 (en) * 2002-06-10 2007-07-17 Matsushita Electric Industrial Co., Ltd. Complex objective lens compatible with information media of different thicknesses
JP2007133967A (ja) * 2005-11-10 2007-05-31 Canon Inc 光学式情報記録再生装置
JP2008084490A (ja) * 2006-09-28 2008-04-10 Sony Corp 対物レンズ、光ピックアップ装置及び光ディスク装置
WO2008044476A1 (fr) * 2006-10-05 2008-04-17 Panasonic Corporation Tête optique, unité de disque optique, ordinateur, lecteur de disque optique et enregistreur de disque optique
CN101765883B (zh) * 2007-10-10 2011-12-14 松下电器产业株式会社 光拾取装置及准直透镜

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108398A (ja) * 2003-09-08 2005-04-21 Ricoh Co Ltd 対物レンズ、光ピックアップ及び光情報処理装置
JP2005203081A (ja) * 2003-12-18 2005-07-28 Pentax Corp 光ディスク用光学系

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017434A1 (ja) * 2014-07-28 2016-02-04 コニカミノルタ株式会社 投影光学系及び投影装置

Also Published As

Publication number Publication date
JP5884081B2 (ja) 2016-03-15
US20120163142A1 (en) 2012-06-28
JPWO2011033790A1 (ja) 2013-02-07

Similar Documents

Publication Publication Date Title
US6590717B2 (en) Optical system for optical disk, optical head unit for optical disk, and optical drive device
JPWO2005101393A1 (ja) 光ピックアップ装置用の対物光学系、光ピックアップ装置、光情報記録媒体のドライブ装置、集光レンズ、及び光路合成素子
US8098562B2 (en) Objective lens comprising a diffraction structure for distributing light in to light of different diffraction orders, optical pickup device, and optical information recording or reproduction apparatus having same
WO2010044355A1 (ja) 対物レンズ及び光ピックアップ装置
JP4259067B2 (ja) 光ピックアップ装置の対物光学素子、光ピックアップ装置及び光情報記録再生装置
JP4216155B2 (ja) 光記録媒体用対物光学系およびこれを用いた光ピックアップ装置
US6781771B2 (en) Objective lens for optical recording medium and optical pickup device using it
KR20020037691A (ko) 광 픽업 장치용 대물 렌즈 및 광 픽업 장치
JP2006127714A (ja) 対物光学系及び光ピックアップ装置
JP3634736B2 (ja) 光ヘッド用対物レンズおよび光ヘッドの光学系
JP2001194581A (ja) 対物レンズ及び光ピックアップ装置
JP5199835B2 (ja) 光情報記録再生装置用対物レンズ、および光情報記録再生装置
JP5884081B2 (ja) 対物レンズ素子及びこれを用いた光ピックアップ装置
US7813252B2 (en) Optical pick-up
JP2011119026A (ja) 光ピックアップ装置及びそれに用いられる対物レンズ
JP4775612B2 (ja) 光ピックアップ装置用の対物レンズ及び光ピックアップ装置
JP5170587B2 (ja) 光ピックアップ装置の対物光学素子、光ピックアップ装置及び光情報記録再生装置
JP2001283459A (ja) 光ピックアップ装置および光ピックアップ装置用対物レンズ
JP2004103216A (ja) 光ディスク用光学系および光ディスク用ヘッド装置
WO2004097818A1 (ja) 光ピックアップ装置
JP4849905B2 (ja) 光ピックアップ光学系、対物レンズおよび光ピックアップ装置
US20070291619A1 (en) Optical pickup and objective lens used therein
US20090022039A1 (en) Optical Pickup and Objective Optical System for Use in the Same
JP5563889B2 (ja) 対物レンズの傾き角調整方法、及び光情報記録再生装置
US8472299B2 (en) Optical element and optical pickup device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816904

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011531803

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10816904

Country of ref document: EP

Kind code of ref document: A1