WO2011030686A1 - 二次電池 - Google Patents
二次電池 Download PDFInfo
- Publication number
- WO2011030686A1 WO2011030686A1 PCT/JP2010/064699 JP2010064699W WO2011030686A1 WO 2011030686 A1 WO2011030686 A1 WO 2011030686A1 JP 2010064699 W JP2010064699 W JP 2010064699W WO 2011030686 A1 WO2011030686 A1 WO 2011030686A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- lithium
- secondary battery
- electrolytic solution
- negative electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0422—Cells or battery with cylindrical casing
- H01M10/0427—Button cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/044—Activating, forming or electrochemical attack of the supporting material
- H01M4/0445—Forming after manufacture of the electrode, e.g. first charge, cycling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1397—Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/446—Initial charging measures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M2010/4292—Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a secondary battery.
- This application claims priority based on Japanese Patent Application No. 2009-208171 filed in Japan on September 9, 2009, the contents of which are incorporated herein by reference.
- the lithium secondary battery includes a positive electrode, a negative electrode, and an electrolyte (electrolytic solution) as constituent elements.
- a lithium-containing transition metal oxide is used as the positive electrode active material.
- the negative electrode active material lithium metal, lithium alloy, a carbon material that absorbs and releases lithium ions, a silicon material, a tin material, and the like are used.
- the electrolyte an organic solvent in which a lithium salt such as lithium tetrafluoroborate (LiBF 4 ) or lithium hexafluorophosphate (LiPF 6 ) is dissolved is used.
- aprotic organic solvents such as ethylene carbonate and propylene carbonate are used.
- the positive electrode active material LiCoO 2 and LiNiO 2 with high theoretical capacity, LiCo 0.15 Ni 0.8 Al 0.05 O 2 with high output, and LiMn 2 O 2 and LiMnPO 4 with high safety, And materials such as LiFePO 4 have been investigated.
- a lithium ion secondary battery using lithium manganese oxide for the positive electrode and graphite for the negative electrode has a plateau portion (potential flat portion) at a voltage of 3.8 to 4.1 V with respect to the lithium ratio in the charge / discharge curve.
- Non-Patent Document 1 uses a chemical reaction that improves the theoretical capacity of the positive electrode. Examples of this chemical reaction include LiMn 2 O 4 + 3x / 2 LiI ⁇ Li 1 + x Mn 2 O 4 + x / 2 LiI 3 .
- the lithium ion secondary battery using the lithium-excess positive electrode as described above has a plateau portion at a voltage of 2.8 to 3.0 V with respect to the lithium ratio in the charge / discharge curve. This is reported to be derived from LiMn 2 O 4 + ye ⁇ + yLi + ⁇ Li 1 + y Mn 2 O 4 . It has also been reported that charge / discharge capacity deteriorates when charge / discharge is repeated at a voltage of 2.8 to 3.0 V (see Non-Patent Document 2, for example).
- the lithium content in a positive electrode material is improved by carrying
- the present invention has been made in view of such circumstances, and an object thereof is to provide a secondary battery capable of improving cycle characteristics and rate characteristics.
- the first aspect of the present invention for solving the above problems is the following secondary battery. (1) That is, a positive electrode containing an oxide that occludes and releases lithium ions, a negative electrode containing a material that occludes and releases lithium ions, and transport of charge carriers between the positive electrode and the negative electrode.
- the positive electrode is a secondary battery including a compound represented by a composition formula Li a M 1 b O d or Li a M 1 b M 2 c O d ;
- the secondary battery is characterized in that the positive electrode is a positive electrode formed by electrically connecting a lithium-containing transition metal oxide and lithium metal in a second electrolyte containing lithium ions.
- the secondary battery preferably includes the following features.
- the 1st electrolyte solution contains a carbonate type organic solvent.
- the first electrolytic solution is (1) or (2) containing 15 volume percent or more of phosphate ester.
- a secondary battery capable of improving cycle characteristics and rate characteristics can be provided.
- FIG. 1 It is a schematic diagram which shows an example of the basic composition for producing the positive electrode which concerns on the secondary battery of this invention. It is a schematic diagram which shows an example of the secondary battery of this invention. It is an exploded view of a coin-type secondary battery. It is a figure which shows the XRD measurement result of the positive electrode of the Example and comparative example of this invention. It is an initial charge curve figure of the coin cell of the example of the present invention. It is a figure which shows the rate characteristic evaluation result of the coin cell of the Example and comparative example of this invention.
- the inventor of the present application has evaluated by performing a cycle characteristic experiment and a rate characteristic experiment using a secondary battery including a positive electrode represented by the above composition formula, and found that the cycle characteristic and the rate characteristic can be improved.
- the inventor of the present application uses a positive electrode (lithium-excess positive electrode) represented by the above composition formula, and the amount of lithium stored in the negative electrode during charging increases compared to the case where a normal positive electrode is used. It is presumed that this is due to an increase in capacity due to the discharge. Since the lithium-rich positive electrode is produced by electrically connecting a lithium-containing transition metal oxide and lithium metal in an electrolytic solution containing lithium ions, the lithium ions selectively adhere to the positive electrode surface portion.
- the lithium content in the positive electrode is relatively higher in the positive electrode surface portion than in the positive electrode.
- a film having a relatively large lithium content is formed on the surface of the positive electrode, and this film serves as a protective film, making it difficult for the positive electrode to undergo a volume change due to a change in crystal structure. It is assumed that deterioration of cycle characteristics due to volume change is suppressed. According to the secondary battery including the above composition formula, it is possible to improve cycle characteristics and rate characteristics.
- the protective film formed on the surface of the positive electrode makes it difficult for the decomposition reaction on the positive electrode, which has been conventionally generated, to occur, and it is difficult for impurities to be generated. It seems that I was able to.
- FIG. 1 is a schematic diagram showing a basic configuration for producing a positive electrode (lithium-rich positive electrode) according to the secondary battery of the present invention.
- the basic configuration for producing a lithium-rich positive electrode is a lithium transition metal oxide electrode (lithium-containing transition metal oxide) 102, a lithium electrode (lithium metal) 103, and an electrolysis containing lithium ions.
- a liquid (second electrolytic solution) 104 and an electrically conductive material 105 are included as constituent elements. Examples of the electrically conductive material 105 include, but are not limited to, a copper wire and an aluminum rod, and any material having electrical conductivity can be used.
- the shape and size of the electrode may be arbitrarily selected.
- the concentration of the lithium salt can be arbitrarily selected and is preferably 0.1 to 3, more preferably 0.8 to 2.
- FIG. 2 is a schematic diagram showing the secondary battery 201 of the present invention.
- the secondary battery 201 includes a positive electrode 202, a negative electrode 203, and an electrolytic solution (first electrolytic solution) 204.
- the positive electrode 202 is a lithium-excess positive electrode manufactured by the above basic configuration or a positive electrode manufacturing method described later, and is formed to include an oxide that occludes and releases lithium ions.
- the negative electrode 203 includes a material that occludes and releases lithium ions.
- the electrolytic solution 204 is a solution that transports charge carriers (ions, electrons, holes) between the positive electrode 202 and the negative electrode 203, and includes a lithium salt.
- the electrolytic solution 204 may be configured to contain a phosphorus compound and a high concentration lithium salt at the same time.
- the concentration of the lithium salt can be arbitrarily selected and is preferably 0.1 to 3, more preferably 0.8 to 2.
- the positive electrode 202 contains a compound represented by the composition formula Li a M 1 b O d or Li a M 1 b M 2 c O d (a, b, c, and d indicating the composition ratio are 1.2. ⁇ a ⁇ 2, 0 ⁇ b, c ⁇ 2, and 2 ⁇ d ⁇ 4.
- M 1 and M 2 are Co, Ni, Mn, Fe, Al, Sn, Mg, Any one element selected from the group consisting of Ge, Si, and P is shown, provided that M 1 ⁇ M 2 .
- a is more preferably 1.2 ⁇ a ⁇ 1.7.
- M 1 and M 2 are preferably selected from Mn, Ni, Co, Fe, P, Mg, Si, Sn, and Al, preferably Mn, Ni, Co, Al, P, or More preferably, it is Fe.
- the compound represented by the composition formula Li a M 1 b O d or Li a M 1 b M 2 c O d are Li 1.3 Mn 2 O 4 , Li 1.2 CoO 2 , Li 1. .2 NiO 2 , Li 1.3 Co 0.15 Ni 0.8 Al 0.05 O 2 , Li 1.3 Mn 1.5 Ni 0.5 O 4 and the like.
- the positive electrode 202 can have a shape in which a positive electrode is formed on a positive electrode current collector.
- the formation state and conditions can be arbitrarily selected.
- the material for forming the positive electrode current collector include nickel, aluminum, copper, gold, silver, an aluminum alloy, and stainless steel.
- a positive electrode electrical power collector foil, a metal flat plate, etc. which consist of carbon etc. can be used.
- the material for forming the negative electrode 203 may include any material that absorbs and releases lithium ions, and can be arbitrarily selected. Examples include commonly used carbon materials, silicon materials, nickel materials, and lithium metals. Specific examples of carbon materials include pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, organic polymer compound fired bodies (phenolic resins, furan resins, etc.) ), Carbon fiber, activated carbon, and graphite can be used. In the present invention, cokes, activated carbon, graphite and the like can be particularly preferably used. In addition, the negative electrode 203 may be composed of a plurality of constituent materials.
- a binder may be used to strengthen the connection between the constituent materials of the negative electrode 203.
- binders include polytetrafluoroethylene, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene / butadiene copolymer rubber, polypropylene , Polyethylene, polyimide, partially carboxylated cellulose, various polyurethanes, and polyacrylonitrile.
- the negative electrode 203 can have a shape in which a negative electrode is formed on a negative electrode current collector. The formation state and the like can be arbitrarily selected.
- Examples of the material for forming the negative electrode current collector include nickel, aluminum, copper, gold, silver, an aluminum alloy, and stainless steel, as with the material for forming the positive electrode current collector described above.
- a foil made of carbon or the like, a metal flat plate, or the like can be used as the negative electrode current collector.
- SEI Solid Electrolyte Interface
- SEI Solid Electrolyte Interface
- SEI produces and charges a battery composed of an electrode made of a carbon material and an electrode made of a material that releases lithium ions and is located on the opposite side of the separator. By repeating the discharge at least once, it can be formed on the negative electrode (carbon material). After charging and discharging, an electrode made of a carbon material can be taken out and used as the negative electrode 203 of the present invention.
- a carbonate-based electrolytic solution in which a lithium salt is dissolved can be used.
- an electrode in which lithium ions are contained in the carbon material layer obtained by ending the discharge at the end of charge / discharge can be used as the negative electrode 203 of the present invention.
- Examples of phosphorus compounds that can be included in the electrolytic solution 204 include phosphate ester derivatives.
- Examples of the phosphate ester derivative include compounds represented by the following general formulas (1) and (2).
- R 1a , R 2a and R 3a in the general formulas (1) and (2) may be the same or different, and are an alkyl group having 7 or less carbon atoms, a halogenated alkyl group, an alkenyl group, cyano Represents a group, a phenyl group, an amino group, a nitro group, an alkoxy group, a cycloalkyl group, or a silyl group, and any one of R 1a , R 2a , R 3a , or a ring structure in which all are bonded to each other, Also good.
- these phosphorus compounds include trimethyl phosphate, triethyl phosphate, tributyl phosphate, triphenyl phosphate, dimethylethyl phosphate, dimethylpropyl phosphate, dimethylbutyl phosphate, diethylmethyl phosphate, and dipropyl phosphate.
- examples thereof include methyl, dibutylmethyl phosphate, methylethylpropyl phosphate, methylethylbutyl phosphate, and methylpropylbutyl phosphate.
- trimethyl phosphite triethyl phosphite, tributyl phosphate, triphenyl phosphite, dimethyl ethyl phosphite, dimethyl propyl phosphite, dimethyl butyl phosphite, diethyl methyl phosphite, dipropyl phosphite
- Examples include methyl, dibutylmethyl phosphite, methylethylpropyl phosphite, methylethylbutyl phosphite, methylpropylbutyl phosphite, and dimethyltrimethylsilyl phosphite.
- trimethyl phosphate and triethyl phosphate are preferable because of high stability.
- examples of the phosphoric acid ester derivative include compounds represented by the following general formulas (3), (4), (5) and (6).
- R 1b and R 2b in the general formulas (3), (4), (5) and (6) may be the same or different, and are an alkyl group having 7 or less carbon atoms, or a halogenated alkyl group, It represents any of an alkenyl group, a cyano group, a phenyl group, an amino group, a nitro group, an alkoxy group, and a cycloalkyl group, and may have a cyclic structure in which R 1b and R 2b are bonded to each other.
- X 1 and X 2 are halogen atoms, which may be the same or different.
- these phosphorus compounds include methyl fluorophosphate (trifluoroethyl), ethyl fluorophosphate (trifluoroethyl), propyl fluorophosphate (trifluoroethyl), allyl fluorophosphate (trifluoroethyl), fluoro Butyl phosphate (trifluoroethyl), phenyl fluorophosphate (trifluoroethyl), bis (trifluoroethyl) fluorophosphate, methyl fluorophosphate (tetrafluoropropyl), ethyl fluorophosphate (tetrafluoropropyl), fluoro Tetrafluoropropyl phosphate (trifluoroethyl), phenyl fluorophosphate (tetrafluoropropyl), bis (tetrafluoropropyl) fluorophosphate, methyl fluorophosphate (fluorophenyl), e
- fluoroethylene fluorophosphate bis (trifluoroethyl) fluorophosphate, fluoroethyl difluorophosphate, trifluoroethyl difluorophosphate, propyl difluorophosphate, and phenyl difluorophosphate are preferable.
- fluoroethyl difluorophosphate, tetrafluoropropyl difluorophosphate, and fluorophenyl difluorophosphate are more preferable in terms of low viscosity and flame retardancy.
- the electrolytic solution 204 preferably contains 15% by volume or more of phosphate ester, more preferably 20% by volume or more, and still more preferably 25% by volume or more. Although an upper limit can be selected arbitrarily, it is more preferable that it is 90 volume% or less, and it is further more preferable that it is 60 volume% or less.
- phosphate ester derivatives may be used alone or in combination of two or more.
- the electrolytic solution 204 may contain a carbonate-based organic solvent.
- the carbonate organic solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethoxyethane, diethyl ether, and phenyl.
- Examples include methyl ether, tetrahydrofuran (THF), ⁇ -butyrolactone, and ⁇ -valerolactone.
- ethylene carbonate, diethyl carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate ⁇ -butyrolactone, and ⁇ -valerolactone are preferably used from the viewpoint of stability.
- the capacity can be improved by mixing these carbonate-based organic solvents with the electrolytic solution 204.
- concentration of these carbonate-based organic solvents is preferably 5% by volume or more, more preferably 10% by volume or more with respect to the electrolytic solution, in order to obtain a sufficient capacity improvement effect.
- these carbonate type organic solvents may be used independently, or may use 2 or more types together.
- the electrolytic solution 204 may contain a film forming additive that electrochemically forms a film on the surface of the negative electrode 203.
- a film forming additive that electrochemically forms a film on the surface of the negative electrode 203.
- film forming additives include, for example, vinylene carbonate (VC), vinyl ethylene carbonate (VEC), ethylene sulfite (ES), propane sultone (PS), butane sultone (BS), sulfolene, sulfolane, and dioxathiola.
- VC vinylene carbonate
- VEC vinyl ethylene carbonate
- ES propane sultone
- BS butane sultone
- sulfolene sulfolane
- dioxathiola dioxathiola.
- FEC fluoroethylene carbonate
- CEC chloroethylene carbonate
- SUCAH succinic anhydride
- DAC diallyl carbonate
- DPS diphenyl disulfide
- the battery characteristic will be adversely affected if the amount of the film forming additive added is too large, it is preferably less than 10% by mass.
- the film forming additive may be used alone or in combination of two or more.
- a lithium salt can be dissolved in an organic solvent.
- the lithium salt is arbitrarily selected. Examples include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , LiB (C 2 O 4 ) 2 , LiCF 3 SO 3 , LiCl, LiBr, and LiI. It is done.
- LiBF 2 (CF 3 ) (C 2 F 5 ), LiPF 5 (CF 3 ), LiPF 5 (C 2 F 5 ), LiPF 5 in which at least one fluorine atom of LiPF 6 is substituted with a fluorinated alkyl group Mention may also be made of (C 3 F 7 ), LiPF 4 (CF 3 ) 2 , LiPF 4 (CF 3 ) (C 2 F 5 ), and LiPF 3 (CF 3 ) 3 .
- examples of the lithium salt include compounds represented by the following general formula (7).
- R 1c and R 2c in the general formula (7) may be the same or different and are selected from halogen and fluorinated alkyl, and R 1c and R 2c are bonded to form a cyclic structure. May also be formed. Specific examples thereof include LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), Alternatively, a five-membered cyclic compound CTFSI-Li (LiN (SO 2 CF 2 ) 2 ) and a six-membered cyclic compound LiN (SO 2 CF 2 ) 2 CF 2 can be given.
- lithium salt examples include compounds represented by the following general formula (8).
- R 1d , R 2d and R 3d in the general formula (7) may be the same or different and are selected from halogen and fluorinated alkyl. Specific examples thereof include LiC (CF 3 SO 2 ) 3 and LiC (C 2 F 5 SO 2 ) 3 .
- these lithium salts may be used independently or may be used in mixture of 2 or more types. In particular, among these lithium salts, LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) having high thermal stability, and LiN (FSO 2 ) 2 and LiPF 6 having high ion conductivity are used. Is preferred.
- a separator (see FIG. 3) can be sandwiched between the positive electrode 202 and the negative electrode 203 so that the positive electrode 202 and the negative electrode 203 do not contact each other.
- the separator may be arbitrarily selected.
- a porous film made of polyethylene, polypropylene, or the like, a cellulose film, and a nonwoven fabric can be used.
- these separators may be used independently and may use 2 or more types together.
- the shape of the secondary battery is not particularly limited, and a conventionally known battery can be used.
- Examples of the shape of the secondary battery include a cylindrical shape, a square shape, a coin shape, and a sheet shape.
- Such a secondary battery includes, for example, the above-described positive electrode, negative electrode, electrolytic solution, and separator, or a laminate or a wound body thereof from a metal foil such as a metal case, a resin case, or an aluminum foil, and a synthetic resin film. It is produced by sealing with a laminate film.
- the electrolytic solution is prepared by dissolving a carbonate compound in a solution in which a lithium salt is dissolved at a predetermined concentration in a dry room.
- VGCF registered trademark
- carbon nanofiber carbon nanofiber
- NMP N-methylpyrrolidone
- an electrolytic solution in which a lithium salt is dissolved, a lithium metal electrode, the aforementioned LiMn 2 O 4 positive electrode, and an electrically conductive material are prepared.
- the concentration of the lithium salt in the electrolytic solution can be arbitrarily selected, but is preferably 0.1 to 3, and more preferably 0.8 to 2.
- the kind of lithium salt can also be selected arbitrarily, and for example, LiPF 6 , LiTFSI, LiBETI, and the like are preferable.
- the lithium metal and the LiMn 2 O 4 positive electrode are immersed in an electrolytic solution in which a lithium salt is dissolved in a state where the lithium metal and the LiMn 2 O 4 positive electrode are connected by an electrically conductive substance (electrically connected state).
- a lithium excess positive electrode is produced by short-circuiting the lithium metal electrode and the LiMn 2 O 4 positive electrode in the electrolyte.
- the excessive amount of lithium in the positive electrode can be controlled by the time for short-circuiting.
- the time for short-circuiting can be arbitrarily selected. For example, 1 to 60 minutes is preferable.
- the lithium ions selectively adhere to the positive electrode surface portion.
- the lithium content in the positive electrode is relatively higher on the positive electrode surface than in the positive electrode. That is, since a film having a relatively large lithium content is formed on the positive electrode surface, this film serves as a protective film, and volume change due to a change in crystal structure is less likely to occur in the positive electrode. For this reason, the deterioration of the cycle characteristics due to the volume change which has occurred conventionally is suppressed.
- the protective film formed on the surface of the positive electrode makes it difficult for the conventional decomposition reaction on the positive electrode to occur and impurities are less likely to be generated.
- a carbonate-based electrolytic solution can be preferably used as the electrolytic solution.
- the electrolytic solution in this step is preferably the same as the electrolytic solution used in the secondary battery using the lithium-rich positive electrode after the production. For the same reason, it is desirable to use the same lithium salt as that used in the secondary battery using the lithium-excess positive electrode.
- the lithium metal electrode a lithium metal alone or a lithium electrode deposited on a copper foil in order to improve electrical conductivity may be used.
- the electrically conductive substance is not particularly limited as long as it is a material that easily conducts electricity, and may be, for example, a copper wire or an aluminum rod. This electrically conductive material combines the lithium metal electrode and the lithium transition oxide electrode to play a role in flowing current.
- a negative electrode active material a graphite-based material is dispersed in N-methylpyrrolidone (NMP) to form a slurry, which is then applied to a copper foil as a negative electrode current collector and dried to produce a negative electrode having a diameter of 12 mm.
- NMP N-methylpyrrolidone
- a coin cell made of a negative electrode and lithium metal located on the opposite electrode with a separator interposed therebetween and an electrolyte solution is produced, and discharged and charged at a rate of 0.1 C.
- the electrolytic solution used at this time can be prepared by dissolving lithium hexafluorophosphate (LiPF 6 : molecular weight: 151.9) having a concentration of 1 mol / L in a carbonate-based organic solvent.
- EC ethylene carbonate
- DEC diethyl carbonate
- the cut-off potential at this time is 0 V for discharging and 1.5 V for charging.
- FIG. 3 is an exploded view of the coin-type secondary battery 301.
- the positive electrode 5 obtained by the above method is disposed on a positive electrode current collector 6 also serving as a coin cell receiving shape made of stainless steel, and further, a porous polyethylene film is further formed thereon.
- a negative electrode 3 made of graphite is stacked with a separator 4 formed therebetween to obtain an electrode laminate.
- the electrolytic solution obtained by the above method is injected into the electrode laminate and vacuum impregnated to fill the gaps between the electrodes 3 and 5 and the separator 4 with the electrolytic solution.
- the insulating packing 2 and the negative electrode current collector that also serves as a coin cell receiving type are overlapped, and the outside is covered with the stainless steel exterior 1 and caulked by a caulking machine to be integrated, whereby a coin-type secondary battery can be manufactured.
- the secondary battery 201 of the present embodiment cycle characteristics and rate characteristics can be improved.
- the inventor of the present application produces a secondary battery 201 in which the positive electrode 202 includes a compound represented by the composition formula Li a M 1 b O d or Li a M 1 b M 2 c O d , and uses this to perform a cycle characteristic experiment, As a result of evaluating the rate characteristic, it was found that the cycle characteristic and the rate characteristic can be improved.
- the inventor of the present application uses a positive electrode 202 (lithium-excess positive electrode) represented by the above composition formula, so that the amount of lithium stored in the negative electrode during charging increases compared to the case of using a normal positive electrode. It is presumed that the capacity is increased by the subsequent discharge.
- the lithium-excess positive electrode 202 is produced by electrically connecting a lithium-containing transition metal oxide and lithium metal in the electrolytic solution 204 containing lithium ions, the lithium ions are selectively applied to the surface portion of the positive electrode 202. Adhere to.
- the lithium content in the positive electrode 202 is relatively higher on the surface of the positive electrode 202 than in the positive electrode 202. That is, a film having a relatively large lithium content is formed on the surface of the positive electrode 202, and this film serves as a protective film, so that the positive electrode 202 is less likely to undergo a volume change due to a change in crystal structure. For this reason, the deterioration of the cycle characteristics due to the volume change which has occurred conventionally is suppressed.
- the protective film formed on the surface of the positive electrode 202 makes it difficult for the decomposition reaction on the positive electrode, which has conventionally occurred, to occur, and it is difficult to generate impurities. For this reason, the adverse effect on the battery reaction, which has been a concern in the past, can be suppressed.
- the electrolytic solution 204 contains 15 volume percent or more of the phosphate ester, the electrolytic solution 204 can be made incombustible. Therefore, the highly safe secondary battery 201 can be provided.
- the electrolytic solution 204 can contain a carbonate-based organic solvent, the capacity can be improved. Accordingly, the secondary battery 201 having excellent cycle characteristics and rate characteristics can be provided.
- the electrolytic solution 204 can include a film forming additive that electrochemically forms a film on the surface of the negative electrode 203.
- a film can be formed in advance on the surface of the negative electrode 203 so that lithium ions can pass therethrough and electrolyte solution 204 cannot pass. Since the film (SEI) formed on the surface of the negative electrode 203 serves as a protective film, reductive decomposition between the negative electrode 203 and the electrolytic solution 204 is suppressed. Further, the reaction in the negative electrode 203 can proceed reversibly and smoothly. For this reason, capacity degradation of the secondary battery 201 can be prevented. Therefore, the secondary battery 201 capable of maintaining excellent cycle characteristics and rate characteristics can be provided.
- the inventor of the present application conducted an experiment to verify the effect of the secondary battery of the present invention.
- the secondary battery described above is prepared, and in the manufacturing process, a predetermined short-circuit time is set, the lithium content in the positive electrode is set to a predetermined amount, and the phosphor is dissolved in the electrolyte.
- the mixing ratio of the compound, the carbonate-based organic solvent, the film forming additive, and lithium was set to predetermined conditions. It has been demonstrated that combining these conditions makes it possible to improve cycle characteristics and rate characteristics.
- the experimental results will be described.
- the conditions for producing the lithium-excess positive electrode were as follows: an electrolytic solution in which a LiPF 6 salt having a concentration of 1.0 mol / L was dissolved in a mixed solution of EC: DEC (30:70), a lithium metal electrode, a LiMn 2 O 4 positive electrode, and electric conduction Stainless steel foil was used as a sex substance. The short circuit time was 15 min.
- FIG. 4 shows XRD measurement results of a coin cell using a LiMn 2 O 4 positive electrode short-circuited with lithium metal for 15 minutes and a LiMn 2 O 4 positive electrode (positive electrode used in Comparative Examples 1 to 5).
- the evaluation of the flammability test of the electrolyte was based on whether or not the flame could be confirmed when the glass fiber filter paper soaked with the electrolyte was brought close to the flame and then the glass fiber filter paper was moved away from the flame. .
- the capacity retention rate was measured using a coin-type secondary battery manufactured by the method described in the following example. Evaluation of the discharge capacity of the coin-type secondary battery was performed according to the following procedure. Constant current constant voltage charging with an upper limit voltage of 4.2 V was performed at a rate of 0.2 C, and discharging was performed at a rate of 0.2 C and a cut-off voltage of 3.0 V. The discharge capacity observed at that time was defined as the initial discharge capacity. Here, the discharge capacity after 10 cycles with respect to the initial discharge capacity is defined as the capacity maintenance rate. The discharge capacity is a value per unit mass of the positive electrode active material. The evaluation results of the capacity retention ratio are shown in Table 1 (Examples 1 to 8, Comparative Examples 1 to 5).
- the rate characteristics were measured by the following procedure using the battery after measuring the discharge capacity. First, constant current / constant voltage charging with an upper limit voltage of 4.2 V is performed at a rate of 0.2 C, and then discharging is performed at a constant current in the order of 1.0 C, 0.5 C, 0.2 C, and 0.1 C. It was. The lower limit voltage was 3.0V. The total of the discharge capacity obtained at each rate and the discharge capacity obtained so far was defined as the discharge capacity obtained at that rate.
- the results of rate characteristic experiments for Examples 1 and 7 and Comparative Examples 1 and 5 are shown in FIG.
- Example 1 To 85 g of lithium manganese composite oxide (LiMn 2 O 4 ), 7 g of VGCF (registered trademark) (carbon nanofiber) manufactured by Showa Denko KK was mixed as a conductive agent, and N-methylpyrrolidone (NMP)) was mixed therewith. In addition, it was dispersed to form a slurry, and then applied to an aluminum foil as a positive electrode current collector so that the thickness after drying was 160 ⁇ m and dried to produce a positive electrode having a diameter of 12 mm (hereinafter referred to as LiMn 2). O 4 positive electrode).
- LiMn 2 O 4 LiMn 2 O 4 positive electrode
- an electrolytic solution in which a LiPF 6 salt having a concentration of 1.0 mol / L is dissolved in a mixed solution of EC: DEC (30:70), a lithium metal electrode, the aforementioned LiMn 2 O 4 positive electrode, and an electrically conductive substance ( Stainless steel foil) was prepared. Then, in a state where the lithium metal and the LiMn 2 O 4 positive electrode are connected by the electrically conductive substance, the lithium metal electrode and the LiMn 2 O 4 positive electrode are immersed in the electrolytic solution in which the lithium salt is dissolved. A lithium-rich positive electrode was produced by short-circuiting for 15 minutes.
- the electrolytic solution used at this time is prepared by dissolving lithium hexafluorophosphate (LiPF 6 : molecular weight: 151.9) having a concentration of 1 mol / L in a carbonate-based organic solvent.
- a carbonate-based organic solvent a mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 30:70 was used.
- the cut-off potential at this time was set to 0 V for discharging and 1.5 V for charging. After the 10th charge, the coin cell was disassembled, and an electrode made of graphite (negative electrode with SEI) was taken out and used as a negative electrode used in Example 1.
- a carbonate-based organic solvent EC DEC in which a LiMn 2 O 4 positive electrode (lithium-excess positive electrode) obtained by short-circuiting with lithium metal for 15 minutes, a negative electrode made of graphite, and LiPF 6 having a concentration of 1.0 mol / L are dissolved.
- a coin cell was manufactured using an electrolytic solution in which 2% by mass of VC was added to (30:70). As the separator, a porous polyethylene film was used. The coin cell was measured and the evaluation results are shown in Table 1.
- Example 2 Production and measurement were carried out in the same manner as in Example 1 except that LiPF 6 was changed to a concentration of 2.0 mol / L instead of a concentration of 1.0 mol / L, and the results are shown in Table 1.
- Example 4 Example 3 except that the short-circuiting time was changed to 15 minutes and changed to 10 minutes, and lithium tetrafluorosulfonylimide (LiTFSi: molecular weight 287.1) LiTFSi salt was dissolved in the electrolytic solution instead of LiPF 6 The results are shown in Table 1.
- LiTFSi lithium tetrafluorosulfonylimide
- Example 7 The same procedure as in Example 6 was conducted except that LiPF 6 was changed to a concentration of 2.5 mol / L instead of a concentration of 2.0 mol / L. The results are shown in Table 1.
- a coin cell was prepared using the results shown in Table 1.
- Comparative Example 2 The same procedure as in Comparative Example 1 was performed except that LiPF 6 was changed to a concentration of 2.0 mol / L instead of a concentration of 1.0 mol / L, and the results are shown in Table 1.
- FIG. 4 is a diagram showing XRD measurement results of the positive electrode of the example and the positive electrode of the comparative example.
- the horizontal axis represents the diffraction angle (2 ⁇ ), and the vertical axis represents the intensity.
- reference numeral (b) is (LiMn 2 O 4 positive electrode was short-circuited for 15 minutes lithium metal) Example is there.
- the XRD pattern (b) of the example has a peak position different from the XRD pattern (a) of the comparative example, and it is confirmed that a structural change has occurred.
- LiMn 2 O 4 + ye ⁇ + yLi + ⁇ Li 1 + y Reaction by Mn 2 O 4 (0 ⁇ y ⁇ 1) that is, LiMn 2 O 4 positive electrode is short-circuited with lithium metal in the electrolyte solution for a predetermined time, thereby LiMn 2 It can be seen that the O 4 positive electrode was doped with lithium, and a reaction in which the crystal structure changed from cubic to tetragonal was performed.
- FIG. 5 is a diagram showing an initial charge curve of the coin cell of the example (a coin cell using a LiMn 2 O 4 positive electrode short-circuited with lithium metal for 15 minutes).
- the horizontal axis represents capacity
- the vertical axis represents voltage.
- the LiMn 2 O 4 positive electrode short-circuited with lithium metal for 15 minutes becomes LiMn 2 O 4 + ye ⁇ + yLi + ⁇ Li 1 + y Mn 2 O 4 (0 ⁇ y ⁇ 1). It was confirmed that the 2 O 4 positive electrode was excessively doped with lithium.
- FIG. 5 is a diagram showing an initial charge curve of the coin cell of the example (a coin cell using a LiMn 2 O 4 positive electrode short-circuited with lithium metal for 15 minutes).
- the horizontal axis represents capacity
- the vertical axis represents voltage.
- the LiMn 2 O 4 positive electrode short-circuited with lithium metal for 15 minutes becomes LiMn 2 O 4 + ye ⁇ + yLi + ⁇
- the plateau portion exists at a voltage of 2.8 to 3.0 V when the coin cell of the embodiment is used.
- the plateau portion having a voltage of 2.8 to 3.0 V is a reaction in which a lithium-doped LiMn 2 O 4 positive electrode returns to its original structure (Li 1 + y Mn 2 O 4 ⁇ LiMn 2 O 4 + ye ⁇ + yLi + (0 ⁇ derived from y ⁇ 1)).
- Table 1 shows the evaluation results of capacity retention rates in Examples 1 to 8 and Comparative Examples 1 to 5. From Table 1, in the electrolyte solution containing EC: DEC (30:70), capacity retention rates near 99% were confirmed except for Comparative Example 3, and it was confirmed that good cycle characteristics were obtained. (See Comparative Examples 1 and 2). However, it was confirmed that the capacity retention rate was further increased by using the lithium excess positive electrode (comparison between Examples 1 and 2 and Comparative Examples 1 and 2). This phenomenon is particularly noticeable when an electrolyte mixed with trimethyl phosphate (TMP) is used, and the capacity retention rate is about 50 to 70% when a normal positive electrode is used.
- TMP trimethyl phosphate
- the lower limit potential during discharge is 3.0V.
- the potential is set lower than 3.0 V, the cycle characteristics deteriorate due to the reaction of LiMn 2 O 4 + ye ⁇ + yLi + ⁇ Li 1 + y Mn 2 O 4 (0 ⁇ y ⁇ 1).
- the lower limit potential can be lowered to a potential at which the above reaction does not occur, it is preferably 3.0V.
- the lower potential at the time of discharge can be lowered to 2.85V. That is, the reaction by Li 1 + y Mn 2 O 4 ⁇ LiMn 2 O 4 + ye ⁇ + yLi + (0 ⁇ y ⁇ 1) may occur only at the first discharge.
- M 1 and M 2 are any one selected from the group consisting of Co, Ni, Mn, Fe, Al, Sn, Mg, Ge, Si, and P.
- M 1 and M 2 are different.
- 1 + y is represented by a.
- the upper limit potential is arbitrarily selected, in a high voltage positive electrode such as Li 1 + y Ni 0.5 Mn 1.5 O 4 , 5.0 V or less is preferable, but generally 4.3 V is more preferable, and 4 V More preferably, it is 2 V or less.
- FIG. 6 is a graph showing the rate characteristic evaluation results of the coin cells of the example and the comparative example.
- the horizontal axis represents the rate
- the vertical axis represents the capacity.
- rate characteristics were improved by using a lithium-excess positive electrode (see Examples 1 and 7 and Comparative Examples 1 and 5). This is presumably because the use of the lithium-excess positive electrode increases the amount of lithium stored in the negative electrode during charging compared to the case where a normal positive electrode is used, thereby improving the capacity of subsequent discharge.
- cycle characteristics and rate characteristics can be improved by using M 1 ⁇ M 2 ). did.
- the lithium-rich positive electrode in this example is that the positive electrode is represented by the composition formula Li a M 1 b O d or Li a M 1 b M 2 c O d , and a indicating the composition ratio is 1.2 in atomic ratio.
- ⁇ a ⁇ 2 If the value of a is too large, the irreversible capacity increases at the first charge / discharge, and therefore it is preferable to satisfy a ⁇ 1.7, and more preferably, a ⁇ 1.5. Further, if the value of a is smaller than 1.2, no structural change occurs during the first charge, so 1.2 ⁇ a is required.
- a phosphate ester is mixed in order to make the electrolytic solution incombustible.
- the phosphate ester can be optionally added to the electrolytic solution, but the proportion of the phosphate ester mixed with the electrolytic solution is preferably 20% by volume or more, more preferably 25% by volume or more.
- concentration of lithium salt shall be 1.2 mol or more, More preferably, 1. It should be 5 mol or more.
- a secondary battery capable of improving cycle characteristics and rate characteristics can be provided.
- Negative electrode 5 Positive electrode 102 Lithium transition metal oxide electrode (lithium-containing transition metal oxide) 103 Lithium electrode (lithium metal) 104 Electrolytic solution (second electrolytic solution) 201 Secondary battery 202 Positive electrode 203 Negative electrode 204 Electrolytic solution (first electrolytic solution) 301 Coin type secondary battery
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本願は、2009年9月9日に、日本に出願された特願2009-208171号に基づき優先権を主張し、その内容をここに援用する。
上記の課題を解決するための本発明の第一の態様は、以下の二次電池である。
(1)すなわち、リチウムイオンを吸蔵、及び放出する酸化物を含む正極と、前記リチウムイオンを吸蔵、及び放出する材料を含む負極と、前記正極と前記負極との間で荷電担体の輸送を行う第1の電解液と、を備え、
前記正極が組成式LiaM1 bOdあるいはLiaM1 bM2 cOdで示される化合物を含む二次電池であり、
前記正極が、リチウムイオンを含む第2の電解液中でリチウム含有遷移金属酸化物とリチウム金属とを電気的に接続させることで形成された正極であることを特徴とする二次電池である。
(上記組成式の組成比を示すa、b、c及びdは、1.2≦a≦2、0<b,c≦2、及び2≦d≦4の範囲に含まれる数を示し、上記の組成式においてM1及びM2は、Co、Ni、Mn、Fe、Al、Sn、Mg、Ge、Si及びPよりなる群から選ばれたいずれか1種の元素を示し、ただし、M1とM2とはそれぞれ異なる。)
上記二次電池は、好ましく以下の特徴を含む。
(2)第1の電解液がカーボネート系有機溶媒を含む事が好ましい。
(3)第1の電解液がリン酸エステルを15体積パーセント以上含む、(1)または(2)である事が好ましい。(4)第1の電解液が前記負極表面に電気化学的に皮膜を形成する皮膜形成添加剤を含む、(1)~(3)のいずれかの二次電池であることが好ましい。
(5)負極表面に、前記リチウムイオンは通し、かつ、前記第1の電解液は通さない皮膜が形成されている、(1)~(3)のいずれかの二次電池であることが好ましい。
リチウム過剰正極は、リチウムイオンを含む電解液中でリチウム含有遷移金属酸化物とリチウム金属とを電気的に接続させることによって作製されているため、リチウムイオンが正極表面部分に選択的に付着する。その結果、正極におけるリチウム含有量は、正極内部よりも正極表面部分の方が相対的に多くなる。つまり、正極表面にリチウム含有量が相対的に多い膜が形成され、この膜が保護膜の役割を果たし、正極において結晶構造の変化に伴う体積変化が生じにくくなり、このため、従来生じていた体積変化に起因するサイクル特性の劣化が抑制されると推測する。
上記の組成式を含む二次電池によれば、サイクル特性及びレート特性を向上させることが可能となる。また、正極表面に形成される保護膜によって、従来生じていた正極上における分解反応が起こりにくくなり、不純物が生成されにくくなり、このため、従来懸念されていた電池反応への悪影響を抑制することができたと思われる。
上記式において、aはより好ましくは1.2≦a≦1.7である。M1及びM2は、好ましくは、Mn、Ni,Co,Fe,P,Mg,Si,Sn,及びAlの中から選択されることがより好ましく、Mn,Ni,Co,Al、P,又はFeであることが更に好ましい。組成式LiaM1 bOdあるいはLiaM1 bM2 cOdで示される化合物の好ましい具体例を挙げれば、Li1.3Mn2O4、Li1.2CoO2、Li1.2NiO2、Li1.3Co0.15Ni0.8Al0.05O2、Li1.3Mn1.5Ni0.5O4などが挙げられる。ただしこれらに限定されるものではない。
また、正極202は、正極集電体の上に正極が形成された形状とすることができる。形成状態や条件等は任意で選択できる。正極集電体の形成材料としては、例えば、ニッケル、アルミニウム、銅、金、銀、アルミニウム合金及びステンレスが挙げられる。また、正極集電体としては、炭素等からなる箔、金属平板などを用いることができる。
負極203は、負極集電体の上に負極が形成された形状とすることができる。形成状態等は任意で選択できる。負極集電体の形成材料としては、上述した正極集電体の形成材料と同様に、例えば、ニッケル、アルミニウム、銅、金、銀、アルミニウム合金及びステンレスが挙げられる。また、負極集電体としては、炭素等からなる箔、及び金属平板などを用いることができる。
SEIを形成する方法としては、蒸着や化学装飾などもあるが、電気化学的に形成することが望ましい。電気化学的形成法の具体例を挙げれば、SEIは、炭素材料からなる電極と、セパレータを挟んで対極に位置しリチウムイオンを放出する材料からなる電極とから構成される電池を作製し、充放電を少なくとも1回繰り返すことによって、負極(炭素材料)上に形成することができる。充放電後、炭素材料からなる電極を取り出し、本発明の負極203として用いることができる。なお、このときの電解液としては、リチウム塩を溶解させたカーボネート系電解液を用いることができる。また、充放電の最後に放電で終わらせて、得られた、炭素材料の層内にリチウムイオンが含有されている電極を、本発明の負極203として用いることもできる。
なお、これらリチウム塩は、単独で用いても、2種以上を混合させて用いてもよい。特に、これらリチウム塩の中でも、熱安定性の高いLiN(CF3SO2)2やLiN(C2F5SO2)、及びイオン伝導度の高いLiN(FSO2)2やLiPF6を用いることが好ましい。
以下、上述した材料を用いて、本発明に係る二次電池の作製方法の好ましい例を説明する。
先ず、電解液の作製方法の例について説明する。
電解液は、ドライルーム中で、リチウム塩が所定の濃度溶解されている溶液にカーボネート化合物を溶解させることにより作製する。
正極活物質としての、リチウムマンガン複合酸化物(LiMn2O4)系材料に、導電剤として昭和電工株式会社製のVGCF(登録商標)(カーボンナノファイバー)を混合し、これをN-メチルピロリドン(NMP)に分散させてスラリーを形成する。この後、正極集電体としてのアルミニウム箔に塗布し、乾燥させて、直径12mmの正極を作製する(以下、LiMn2O4正極とする)。次に、リチウム塩が溶解された電解液、リチウム金属電極、前述のLiMn2O4正極、及び電気伝導性物質を用意する。リチウム塩の電解液中の濃度は任意に選択できるが、0.1~3が好ましく、0.8~2がより好ましい。リチウム塩の種類も任意で選択でき、例えば、LiPF6、LiTFSI、及びLiBETIなどが好ましい。そして、リチウム金属とLiMn2O4正極とが電気伝導性物質によって結ばれている状態(電気的に接続されている状態)で、リチウム塩が溶解された電解液に浸す。つまり、リチウム金属電極とLiMn2O4正極とを電解液中で短絡させることで、リチウム過剰正極を作製する。このとき、正極内のリチウムの過剰量は、短絡させる時間により制御することができる。短絡させる時間は任意に選択できる。例えば、1~60分が好ましい。
また、負極203表面に予め、リチウムイオンは通し、かつ、電解液204は通さない皮膜が形成されていることができる。負極203表面に形成される皮膜(SEI)が保護膜の役割を果たすので、負極203と電解液204との還元分解が抑制される。また、負極203における反応が可逆的かつスムーズに進むことができる。このため、二次電池201の容量劣化を防止することができる。したがって、優れたサイクル特性及びレート特性を維持することが可能な二次電池201が提供できる。
以下、この実験結果について説明する。
XRDの測定条件は、X線(CuKα=1.5406Å、 Generator Voltage=45kV、Tube Current=40mA)を用いて、回折角2Θ=15~60°の範囲内で行った。リチウム過剰正極の作製条件は、EC:DEC(30:70)の混合液に濃度1.0mol/LのLiPF6塩を溶解させた電解液、リチウム金属電極、LiMn2O4正極、及び電気伝導性物質としてステンレス箔を用いた。短絡時間15minとした。15分間リチウム金属と短絡させたLiMn2O4正極を用いたコインセル、及びLiMn2O4正極(比較例1~5で用いた正極)の、XRD測定結果を図4に示す。
15分間リチウム金属と短絡させたLiMn2O4正極を用いたコインセル(実施例1~8で用いたものと同じコインセル)の初回充電曲線を示す図5により確認を行った。
電解液の燃焼性試験評価は、電解液を染み込ませたガラス繊維濾紙を炎に近づけ、その後、前記ガラス繊維濾紙を炎から遠ざけた場合に炎が確認できるか否かを基準に判断を行った。
容量維持率の測定は、下記の実施例で述べる方法により作製したコイン型二次電池を用いて行った。前記コイン型二次電池の放電容量の評価は以下の手順で行った。0.2Cのレートで上限電圧4.2Vの定電流定電圧充電を行い、放電は同じく0.2Cのレートでカットオフ電圧を3.0Vとして行った。そのとき観測された放電容量を初回放電容量とした。ここで、初回放電容量に対する10サイクル後の放電容量を容量維持率とする。なお、放電容量とは、正極活物質の単位質量あたりの値である。この容量維持率の評価結果を表1(実施例1~8、比較例1~5)に示す。
(レート特性の測定)
レート特性の測定は、上記放電容量の測定後、その電池を用いて以下の手順で行った。最初に0.2Cのレートで上限電圧4.2Vの定電流定電圧充電を行い、次に定電流にて放電を1.0C、0.5C、0.2C、及び0.1Cの順番で行った。下限電圧は3.0Vとした。それぞれのレートで得られた放電容量と、それまでに得られた放電容量の合計を、そのレートで得られた放電容量とした。実施例1,7、比較例1,5に対するレート特性実験の結果を図6に示す。
リチウムマンガン複合酸化物(LiMn2O4)85gに、導電剤として昭和電工株式会社製のVGCF(登録商標)(カーボンナノファイバー))7gを混合し、これにN-メチルピロリドン(NMP))を加えて分散させてスラリーとした後、正極集電体としてのアルミニウム箔に、乾燥後の厚さが160μmになるように塗布し、乾燥させて、直径12mmの正極を作製した(以下、LiMn2O4正極とする)。次に、EC:DEC(30:70)の混合液に濃度1.0mol/LのLiPF6塩を溶解させた電解液、リチウム金属電極、前述のLiMn2O4正極、及び電気伝導性物質(ステンレス箔)を用意した。そして、リチウム金属とLiMn2O4正極とが電気伝導性物質によって結ばれている状態で、リチウム塩が溶解された電解液に浸し、リチウム金属電極とLiMn2O4正極とを電解液中で15分短絡させることで、リチウム過剰正極を作製した。
負極活物質としての黒鉛系材料90質量%と、バインダーとしてのポリフッ化ビニリデン8質量%とを混合し、N-メチルピロリドン(NMP)を加え、分散させてスラリーとした後、負極集電体としての銅箔に、乾燥後の厚さが120μmになるように塗布し、乾燥させ、直径12mmの負極を作製した。
そして、前記負極、及びこれに対してセパレータを挟んで対極に位置するリチウム金属と、電解液とからなるコインセルを作製し、0.1Cのレートで、放電及び充電の順に充放電を10サイクル繰り返し行い、電気化学的に負極表面上に皮膜を形成した。このとき用いる電解液は、カーボネート系有機溶媒に、濃度1mol/Lのヘキサフルオロリン酸リチウム(LiPF6:分子量:151.9)を溶解して調整したものである。このカーボネート系有機溶媒としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比30:70とした混合液を用いた。このときのカットオフ電位は、放電の場合を0V、充電の場合を1.5Vとした。そして、10回目の充電後、コインセルを分解し、黒鉛からなる電極(SEI付負極)を取り出し、これを実施例1で用いる負極として用いた。
上記15分間リチウム金属と短絡させて得たLiMn2O4正極(リチウム過剰正極)と、上記黒鉛からなる負極と、濃度1.0mol/LのLiPF6を溶解させたカーボネート系有機溶媒EC:DEC(30:70)に2質量%のVCが添加された電解液と、を用いてコインセルを作製した。セパレータとしては、多孔質のポリエチレンフィルムを用いた。このコインセルの測定を行い、その評価結果を表1に示した。
LiPF6を濃度1.0mol/Lに替えて濃度2.0mol/Lとしたこと以外は、実施例1と同様に製造及び測定を行い、その結果を表1に示した。
EC:DEC(30:70)とリン酸トリメチル(TMP)とを体積比75:25の割合で混合させた溶液(EC:DEC:TMP=23:52:25)を用いたこと以外は、実施例2と同様に製造及び測定を行い、その結果を表1に示した。
短絡時間を15分間に替えて10分間としたこと及びLiPF6に替えてリチウムテトラフルオロスルホニルイミド(LiTFSi:分子量287.1)LiTFSi塩を電解液に溶解させたこと以外は、実施例3と同様に製造及び測定を行い、その結果を表1に示した。
EC:DEC(30:70)とリン酸トリメチル(TMP)とを体積比75:25の割合で混合させた溶液(EC:DEC:TMP=23:52:25)に替えて、γブチロラクトン(γBL)とTMPとを体積比60:40の割合で混合させた溶液(γBL:TMP=60:40)を用いたこと以外は、実施例3と同様に行い、その結果を表1に示した。
EC:DEC(30:70)とリン酸トリメチル(TMP)とを体積比75:25の割合で混合させた溶液(EC:DEC:TMP=23:52:25)に替えて、γブチロラクトン(γBL)とTMPとを体積比60:40の割合で混合させた溶液(γBL:TMP=60:40)を用いたこと以外は、実施例4と同様に行い、その結果を表1に示した。
LiPF6を濃度2.0mol/Lに替えて濃度2.5mol/Lとしたこと以外は、実施例6と同様に行い、その結果を表1に示した。
EC:DEC(30:70)とリン酸トリメチル(TMP)とを体積比75:25の割合で混合させた溶液(EC:DEC:TMP=23:52:25)に替えて、EC:DEC(30:70)とリン酸トリメチル(TMP)とを体積比60:40の割合で混合させた溶液(EC:DEC:TMP=18:42:40)を用いたこと及び負極表面上にあらかじめ電気化学的に皮膜が形成されているSEI付負極を用いたこと以外は、実施例3と同様に行い、その結果を表1に示した。
LiMn2O4正極と、黒鉛からなる負極と、濃度1.0mol/LのLiPF6を溶解させたカーボネート系有機溶媒EC:DEC(30:70)に2質量%のVCが添加された電解液とを用いてコインセルを作製し、その結果を表1に示した。
LiPF6を濃度1.0mol/Lに替えて濃度2.0mol/Lとしたこと以外は、比較例1と同様に行い、その結果を表1に示した。
EC:DEC(30:70)とリン酸トリメチル(TMP)とを体積比75:25の割合で混合させた溶液(EC:DEC:TMP=23:52:25)を用いたこと及びVCが添加されていないこと以外は、比較例2と同様に行い、その結果を表1に示した。
EC:DEC(30:70)とリン酸トリメチル(TMP)とを体積比75:25の割合で混合させた溶液(EC:DEC:TMP=23:52:25)に替えて、γブチロラクトン(γBL)とTMPとを体積比60:40の割合で混合させた溶液(γBL:TMP=60:40)を用いたこと以外は、比較例3と同様に行い、その結果を表1に示した。
濃度2.0mol/LのLiPF6に替えて濃度2.5mol/Lのリチウムテトラフルオロスルホニルイミド(LiTFSi:分子量287.1)LiTFSi塩を電解液に溶解させたこと以外は、比較例4と同様に行い、その結果を表1に示した。
図4は、実施例の正極及び比較例の正極のXRD測定結果を示す図である。図4において、横軸は回折角(2Θ)、縦軸は強度である。また、図4において、符号(a)は比較例(LiMn2O4正極)のXRDパターン、符号(b)は実施例(15分間リチウム金属と短絡させたLiMn2O4正極)のXRDパターンである。図4に示すように、実施例のXRDパターン(b)は比較例のXRDパターン(a)とピーク位置が異なっており、構造変化が生じていることが確認される。LiMn2O4+ye-+yLi+→Li1+yMn2O4(0<y≦1)による反応、つまり、LiMn2O4正極を電解液中でリチウム金属と所定の時間短絡させることにより、LiMn2O4正極にリチウムをドープし、結晶構造が立方晶から正方晶へと変化する反応が行われた事がわかる。
図5は、実施例のコインセル(15分間リチウム金属と短絡させたLiMn2O4正極を用いたコインセル)の初回充電曲線を示す図である。図5において、横軸は容量、縦軸は電圧である。上述図4のXRDパターンより、15分間リチウム金属と短絡させたLiMn2O4正極は、LiMn2O4+ye-+yLi+→Li1+yMn2O4(0<y≦1)による反応により、LiMn2O4正極にリチウムが過剰にドープされている事が確認された。図5では、実施例のコインセルを用いると電圧2.8~3.0Vにプラトー部が存在することが確認される。電圧2.8~3.0Vのプラトー部は、リチウムを過剰にドープしたLiMn2O4正極が元の構造に戻る反応(Li1+yMn2O4→LiMn2O4+ye-+yLi+(0<y≦1))に由来する。
燃焼性試験の評価の結果、EC:DEC(30:70)やγBLを含む電解液にTMPを混合させることで、電解液が難燃性になることが確認された。前記すなわち、本実施例で用いられた電解液において、TMPを25体積%以上混合させた電解液では、電解液を染み込ませたガラス繊維濾紙を、火に近づけその後炎から遠ざけたところ、炎が確認されず、不燃性を有していることが確認された。それ以外の、実施例1と2や比較例1と2のようなTMPが含まれていない電解液では、炎に近づけ、その後、炎から遠ざけたところ、炎が確認された。すなわち可燃性を示した。
表1は、実施例1~8、比較例1~5における容量維持率の評価結果を示している。表1から、EC:DEC(30:70)を含む電解液では、比較例3以外はいずれも99%近い容量維持率が確認されており、良好なサイクル特性が得られていることが確認された(比較例1,2など参照)。しかし、リチウム過剰正極を用いることで、さらに容量維持率が上昇することが確認された(実施例1,2と比較例1,2の比較)。この現象は、リン酸トリメチル(TMP)を混合させた電解液を用いた場合に特に顕著に現れており、通常の正極を用いた場合には容量維持率が50~70%程度であるのに対し(比較例3~5参照)、リチウム過剰正極を用いることで、容量維持率が98%を超えることがわかった(実施例3~7参照)。このように、リチウム過剰正極を用いることで、サイクル特性の向上が図れることが確認された。リン酸エステルを混合させることで難燃化させた電解液を用いた場合には、従来ではサイクル特性の劣化が観測されていたが、本発明では、リチウム過剰正極を用いることで、難燃化を達成しつつサイクル特性を飛躍的に向上することが可能である事が確認された。したがって、本実施例のコインセルを用いることで、電解液を不燃化させ安全性を向上させたリチウムイオン二次電池を正常に動作させることが可能となる。
図6は、実施例及び比較例のコインセルのレート特性評価結果を示す図である。図6において、横軸はレート、縦軸は容量である。図6に示すように、リチウム過剰正極を用いることで、レート特性が向上することがわかった(実施例1,7、比較例1及び5参照)。これは、リチウム過剰正極を用いることで、充電の際、負極に蓄えられるリチウムの量が通常の正極を用いた場合に比べ増えるため、その後の放電による容量も向上するためであると考えられる。
5 正極
102 リチウム遷移金属酸化物電極(リチウム含有遷移金属酸化物)
103 リチウム電極(リチウム金属)
104 電解液(第2の電解液)
201 二次電池
202 正極
203 負極
204 電解液(第1の電解液)
301 コイン型二次電池
Claims (8)
- リチウムイオンを吸蔵、及び放出する酸化物を含む正極と、
前記リチウムイオンを吸蔵、及び放出する材料を含む負極と、
前記正極と前記負極との間で荷電担体の輸送を行う第1の電解液と、を備え、
前記正極が組成式LiaM1 bOdあるいはLiaM1 bM2 cOdで示される化合物を含む二次電池であり、
前記正極が、リチウムイオンを含む第2の電解液中でリチウム含有遷移金属酸化物とリチウム金属とを電気的に接続させることで形成された正極であることを特徴とする二次電池。
(上記組成式の組成比を示すa、b、c及びdは、1.2≦a≦2、0<b,c≦2、及び2≦d≦4の範囲に含まれる数を示し、上記の組成式においてM1及びM2は、Co、Ni、Mn、Fe、Al、Sn、Mg、Ge、Si及びPよりなる群から選ばれたいずれか1種の元素を示し、ただし、M1とM2とはそれぞれ異なる。) - 前記第1の電解液がリン酸エステルを15体積パーセント以上含んでいることを特徴とする請求項1に記載の二次電池。
- 前記第1の電解液がカーボネート系有機溶媒を含んでいることを特徴とする請求項1に記載の二次電池。
- 前記第1の電解液が前記負極表面に電気化学的に皮膜を形成する皮膜形成添加剤を含んでいることを特徴とする請求項1に記載の二次電池。
- 前記負極表面に、前記リチウムイオンは通し、かつ、前記第1の電解液は通さない皮膜が形成されていることを特徴とする請求項1に記載の二次電池。
- 前記正極は、リチウム含有遷移金属酸化物よりも、リチウム含有量が多く、かつ正極内部よりも正極表面の方がリチウム含有量が多い、リチウム過剰正極であることを特徴とする、請求項1に記載の二次電池。
- 正極表面に、正極内側に比べてリチウム含有量が多い膜が形成されている前記正極であることを特徴とする、請求項1に記載の二次電池。
- 第1の電解液と第2の電解液が、リチウム塩が溶解された電解液であり、かつ同じリチウム塩を含む事を特徴とする、請求項1に記載の二次電池。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011530807A JP5716667B2 (ja) | 2009-09-09 | 2010-08-30 | 二次電池 |
US13/394,676 US20120171542A1 (en) | 2009-09-09 | 2010-08-30 | Secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009208171 | 2009-09-09 | ||
JP2009-208171 | 2009-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011030686A1 true WO2011030686A1 (ja) | 2011-03-17 |
Family
ID=43732360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/064699 WO2011030686A1 (ja) | 2009-09-09 | 2010-08-30 | 二次電池 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20120171542A1 (ja) |
JP (1) | JP5716667B2 (ja) |
WO (1) | WO2011030686A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013004316A (ja) * | 2011-06-16 | 2013-01-07 | Shin Kobe Electric Mach Co Ltd | リチウムイオン電池及びそれを利用した電池システム |
JP2013069418A (ja) * | 2011-09-20 | 2013-04-18 | Semiconductor Energy Lab Co Ltd | リチウム二次電池およびその製造方法 |
JP2013089389A (ja) * | 2011-10-14 | 2013-05-13 | Nissan Motor Co Ltd | 電気化学デバイス用正極材料およびこれを用いた電気化学デバイス |
WO2014092121A1 (ja) * | 2012-12-13 | 2014-06-19 | エリーパワー株式会社 | 非水電解質二次電池の製造方法 |
EP2843748A1 (en) * | 2012-04-27 | 2015-03-04 | Nissan Motor Co., Ltd. | Non-aqueous electrolyte secondary cell and method for manufacturing same |
US9306211B2 (en) | 2012-03-07 | 2016-04-05 | Nissan Motor Co., Ltd. | Positive electrode active material, positive electrode for electrical device, and electrical device |
US9391326B2 (en) | 2012-03-07 | 2016-07-12 | Nissan Motor Co., Ltd. | Positive electrode active material, positive electrode for electric device, and electric device |
WO2016143295A1 (ja) * | 2015-03-10 | 2016-09-15 | 国立大学法人東京大学 | リチウムイオン二次電池 |
WO2016203920A1 (ja) * | 2015-06-18 | 2016-12-22 | 日本電気株式会社 | リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びこれらの製造方法 |
JP2017120765A (ja) * | 2015-12-25 | 2017-07-06 | パナソニック株式会社 | 非水電解質二次電池 |
WO2017179682A1 (ja) * | 2016-04-15 | 2017-10-19 | 国立大学法人東京大学 | 電解液及びリチウムイオン二次電池 |
US10283769B2 (en) | 2012-08-02 | 2019-05-07 | Nissan Motor Co., Ltd. | Non-aqueous organic electrolyte secondary cell |
WO2023276526A1 (ja) * | 2021-06-30 | 2023-01-05 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150263349A1 (en) * | 2012-08-02 | 2015-09-17 | Honda Motor Co., Ltd. | Battery |
JP2016027562A (ja) | 2014-07-04 | 2016-02-18 | 株式会社半導体エネルギー研究所 | 二次電池の作製方法及び製造装置 |
WO2016160703A1 (en) | 2015-03-27 | 2016-10-06 | Harrup Mason K | All-inorganic solvents for electrolytes |
US10707531B1 (en) | 2016-09-27 | 2020-07-07 | New Dominion Enterprises Inc. | All-inorganic solvents for electrolytes |
JP7535111B2 (ja) | 2021-10-13 | 2024-08-15 | シェンズェン カプチェム テクノロジー カンパニー リミテッド | 二次電池 |
CN113644275B (zh) * | 2021-10-13 | 2022-02-22 | 深圳新宙邦科技股份有限公司 | 一种二次电池 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0458469A (ja) * | 1990-06-26 | 1992-02-25 | Sanyo Electric Co Ltd | 非水電解液二次電池 |
JPH0888023A (ja) * | 1994-09-16 | 1996-04-02 | Mitsui Petrochem Ind Ltd | 非水電解液および非水電解液電池 |
JPH10223259A (ja) * | 1997-02-03 | 1998-08-21 | Toyota Central Res & Dev Lab Inc | リチウム二次電池及びその製造方法 |
JP2000243452A (ja) * | 1999-02-23 | 2000-09-08 | Toyota Central Res & Dev Lab Inc | リチウムイオン二次電池 |
JP2005259592A (ja) * | 2004-03-12 | 2005-09-22 | Sanyo Electric Co Ltd | 二次電池用非水電解液及び非水電解液二次電池 |
JP2007141760A (ja) * | 2005-11-22 | 2007-06-07 | Gs Yuasa Corporation:Kk | 非水電解質電池 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2153478C (en) * | 1994-07-07 | 1999-03-09 | Keiichi Yokoyama | Non-aqueous electrolytic solutions and non-aqueous electrolyte cells comprising the same |
US6489055B1 (en) * | 1999-06-25 | 2002-12-03 | Sanyo Electric Co., Ltd. | Lithium secondary battery |
JP4843834B2 (ja) * | 2000-07-17 | 2011-12-21 | パナソニック株式会社 | 非水電解質二次電池 |
-
2010
- 2010-08-30 US US13/394,676 patent/US20120171542A1/en not_active Abandoned
- 2010-08-30 WO PCT/JP2010/064699 patent/WO2011030686A1/ja active Application Filing
- 2010-08-30 JP JP2011530807A patent/JP5716667B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0458469A (ja) * | 1990-06-26 | 1992-02-25 | Sanyo Electric Co Ltd | 非水電解液二次電池 |
JPH0888023A (ja) * | 1994-09-16 | 1996-04-02 | Mitsui Petrochem Ind Ltd | 非水電解液および非水電解液電池 |
JPH10223259A (ja) * | 1997-02-03 | 1998-08-21 | Toyota Central Res & Dev Lab Inc | リチウム二次電池及びその製造方法 |
JP2000243452A (ja) * | 1999-02-23 | 2000-09-08 | Toyota Central Res & Dev Lab Inc | リチウムイオン二次電池 |
JP2005259592A (ja) * | 2004-03-12 | 2005-09-22 | Sanyo Electric Co Ltd | 二次電池用非水電解液及び非水電解液二次電池 |
JP2007141760A (ja) * | 2005-11-22 | 2007-06-07 | Gs Yuasa Corporation:Kk | 非水電解質電池 |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013004316A (ja) * | 2011-06-16 | 2013-01-07 | Shin Kobe Electric Mach Co Ltd | リチウムイオン電池及びそれを利用した電池システム |
JP2013069418A (ja) * | 2011-09-20 | 2013-04-18 | Semiconductor Energy Lab Co Ltd | リチウム二次電池およびその製造方法 |
US9350044B2 (en) | 2011-09-20 | 2016-05-24 | Semiconductor Energy Laboratory Co., Ltd. | Lithium secondary battery and manufacturing method thereof |
JP2013089389A (ja) * | 2011-10-14 | 2013-05-13 | Nissan Motor Co Ltd | 電気化学デバイス用正極材料およびこれを用いた電気化学デバイス |
US9306211B2 (en) | 2012-03-07 | 2016-04-05 | Nissan Motor Co., Ltd. | Positive electrode active material, positive electrode for electrical device, and electrical device |
US9391326B2 (en) | 2012-03-07 | 2016-07-12 | Nissan Motor Co., Ltd. | Positive electrode active material, positive electrode for electric device, and electric device |
US9847524B2 (en) | 2012-04-27 | 2017-12-19 | Nissan Motor Co., Ltd. | Non-aqueous electrolyte secondary cell and method for manufacturing same |
EP2843748A4 (en) * | 2012-04-27 | 2015-04-29 | Nissan Motor | NONAQUEOUS ELECTROLYTE RECHARGEABLE BATTERY AND METHOD FOR MANUFACTURING THE SAME |
EP2843748A1 (en) * | 2012-04-27 | 2015-03-04 | Nissan Motor Co., Ltd. | Non-aqueous electrolyte secondary cell and method for manufacturing same |
KR101574044B1 (ko) * | 2012-04-27 | 2015-12-02 | 닛산 지도우샤 가부시키가이샤 | 비수 전해질 2차 전지 및 그 제조 방법 |
US10283769B2 (en) | 2012-08-02 | 2019-05-07 | Nissan Motor Co., Ltd. | Non-aqueous organic electrolyte secondary cell |
WO2014092121A1 (ja) * | 2012-12-13 | 2014-06-19 | エリーパワー株式会社 | 非水電解質二次電池の製造方法 |
US9991503B2 (en) | 2012-12-13 | 2018-06-05 | Eliiy Power Co., Ltd. | Method for producing non-aqueous electrolyte secondary battery |
JPWO2014092121A1 (ja) * | 2012-12-13 | 2017-01-12 | エリーパワー株式会社 | 非水電解質二次電池の製造方法 |
JPWO2016143295A1 (ja) * | 2015-03-10 | 2017-12-21 | 国立大学法人 東京大学 | リチウムイオン二次電池 |
WO2016143295A1 (ja) * | 2015-03-10 | 2016-09-15 | 国立大学法人東京大学 | リチウムイオン二次電池 |
WO2016203920A1 (ja) * | 2015-06-18 | 2016-12-22 | 日本電気株式会社 | リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びこれらの製造方法 |
JP2017120765A (ja) * | 2015-12-25 | 2017-07-06 | パナソニック株式会社 | 非水電解質二次電池 |
WO2017179682A1 (ja) * | 2016-04-15 | 2017-10-19 | 国立大学法人東京大学 | 電解液及びリチウムイオン二次電池 |
JPWO2017179682A1 (ja) * | 2016-04-15 | 2019-02-28 | 国立大学法人 東京大学 | 電解液及びリチウムイオン二次電池 |
WO2023276526A1 (ja) * | 2021-06-30 | 2023-01-05 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池 |
Also Published As
Publication number | Publication date |
---|---|
US20120171542A1 (en) | 2012-07-05 |
JPWO2011030686A1 (ja) | 2013-02-07 |
JP5716667B2 (ja) | 2015-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5716667B2 (ja) | 二次電池 | |
KR102477644B1 (ko) | 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 비수전해액 | |
KR102469213B1 (ko) | 비수 전해액 전지용 전해액 및 그것을 이용한 비수 전해액 전지 | |
JP5557337B2 (ja) | 二次電池 | |
JP6187458B2 (ja) | リチウム二次電池 | |
KR101233829B1 (ko) | 리튬 이차 전지용 난연성 전해액 및 이를 포함하는 리튬 이차 전지 | |
KR101202334B1 (ko) | 양극 및 이를 포함한 리튬 전지 | |
WO2018008650A1 (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
JP7168851B2 (ja) | 非水電解液電池用電解液及びそれを用いた非水電解液電池 | |
CN111048831B (zh) | 用于二次电池的电解液以及包含电解液的锂二次电池 | |
WO2016117279A1 (ja) | 非水電解液電池用電解液及び非水電解液電池 | |
JP5811361B2 (ja) | 二次電池 | |
US20170317383A1 (en) | Lithium-ion secondary battery | |
KR20210011342A (ko) | 리튬 이차전지 | |
WO2019111958A1 (ja) | 非水電解液電池用電解液及びそれを用いた非水電解液電池 | |
JP5708598B2 (ja) | リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池 | |
KR20140087771A (ko) | 이차전지용 전해액 및 이를 포함하는 이차전지 | |
KR101190463B1 (ko) | 고온 저장 성능을 향상시키는 전해액 및 이를 포함하는이차 전지 | |
EP3965205A1 (en) | Non-aqueous electrolyte solution | |
EP3965204A1 (en) | Nonaqueous electrolyte solution | |
KR20220007017A (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 | |
KR20120125144A (ko) | 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지 | |
KR20200070802A (ko) | 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10815283 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011530807 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13394676 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10815283 Country of ref document: EP Kind code of ref document: A1 |