WO2011030556A1 - 水素および酸素の混合ガス発生装置およびそれを用いた内燃機関 - Google Patents

水素および酸素の混合ガス発生装置およびそれを用いた内燃機関 Download PDF

Info

Publication number
WO2011030556A1
WO2011030556A1 PCT/JP2010/005553 JP2010005553W WO2011030556A1 WO 2011030556 A1 WO2011030556 A1 WO 2011030556A1 JP 2010005553 W JP2010005553 W JP 2010005553W WO 2011030556 A1 WO2011030556 A1 WO 2011030556A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
oxygen gas
current
gas generator
inverter
Prior art date
Application number
PCT/JP2010/005553
Other languages
English (en)
French (fr)
Inventor
伸光 柳原
充生 今村
Original Assignee
株式会社レガルシィ
トラストハイテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レガルシィ, トラストハイテック株式会社 filed Critical 株式会社レガルシィ
Priority to KR1020127008950A priority Critical patent/KR101753045B1/ko
Priority to CN201080040453.7A priority patent/CN102597327B/zh
Priority to JP2011530755A priority patent/JP5775456B2/ja
Priority to EP10815156A priority patent/EP2476781A4/en
Publication of WO2011030556A1 publication Critical patent/WO2011030556A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • C25B1/044Hydrogen or oxygen by electrolysis of water producing mixed hydrogen and oxygen gas, e.g. Brown's gas [HHO]
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/67Heating or cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0644Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0668Treating or cleaning means; Fuel filters
    • F02D19/0671Means to generate or modify a fuel, e.g. reformers, electrolytic cells or membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • F02M25/12Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone the apparatus having means for generating such gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/04Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to an apparatus for generating a mixed gas of hydrogen and oxygen (hereinafter referred to as “hydrogen-oxygen gas”) as brown gas, and an internal combustion engine using the same.
  • hydrogen-oxygen gas a mixed gas of hydrogen and oxygen
  • Patent Document 1 As a method for increasing combustion efficiency, for example, there is a method using hydrogen oxygen gas as disclosed in Patent Document 1.
  • the chemical equivalent ratio of hydrogen gas and oxygen generated by electrolysis of water that is generally used is 2: 1 and mixed.
  • the generation method of hydrogen gas and oxygen gas using the principle of electrolysis of water generally used has a limit in the generation amount, and when used in a hydrogen oxygen gas apparatus, combustion is likely to be stable. It had to be a large stationary type. That is, when a hydrogen oxygen gas device is used as a driving force source with a large load fluctuation, it is difficult to stably supply hydrogen oxygen gas by conventional water electrolysis, and the combustion process is increased by increasing the combustion efficiency. It was difficult to approach complete combustion.
  • a high current is used at a high voltage such as 100V.
  • a large amount of water vapor is generated by heat generated by energization.
  • vehicles such as passenger cars and ships, it is desired to generate a large amount of hydrogen gas in a low current state.
  • An object of the present invention is to provide a hydrogen oxygen gas generator that generates hydrogen gas at a low current and generates less water vapor.
  • An object of the present invention is to provide a hydrogen-oxygen gas generating apparatus that can supply hydrogen-oxygen gas stably when using hydrogen-oxygen gas in order to bring combustion in an internal combustion engine close to complete combustion.
  • the present invention includes a power source, an inverter electrically connected to the power source, an electrolytic cell electrically connected to the inverter, and an anode and a cathode to which voltage is applied from the inverter, and pure water.
  • An object of the present invention is to provide a hydrogen-oxygen gas generating device including nano water that is manufactured by applying ultrasonic vibration of a predetermined frequency in advance and stored inside the electrolytic cell.
  • Another object of the present invention is to further provide a power source, an inverter electrically connected to the power source, an electrolytic cell electrically connected to the inverter, and an anode and a cathode to which a voltage is applied from the inverter.
  • Another object of the present invention is to provide an internal combustion engine using a hydrogen-oxygen gas generator, which is manufactured by applying ultrasonic vibration of a predetermined frequency to pure water in advance and comprising nano water stored inside the electrolytic cell.
  • the hydrogen oxygen gas generator according to the present invention can stably generate a large amount of hydrogen oxygen gas.
  • combustion efficiency in an internal combustion engine using fossil fuel can be increased.
  • the discharge amount of CO 2 gas can be reduced.
  • the hydrogen oxygen gas generator according to the present invention can generate a large amount of hydrogen oxygen gas at a low voltage and current. Therefore, the whole apparatus can be reduced in size and can be used for vehicles such as passenger cars to large automobiles, ships, and the like.
  • FIG. 1 is a view showing a hydrogen oxygen gas generator of the present invention.
  • FIG. 2A is a diagram showing an example of an electrode structure of the hydrogen oxygen gas generator of the present invention
  • FIG. 2B is a diagram showing a gas collection part of the hydrogen oxygen gas generator of the present invention.
  • FIG. 3 is a system diagram of the hydrogen-oxygen gas generator according to the first embodiment of the present invention.
  • FIG. 4 shows a control flowchart of the inverter.
  • the hydrogen oxygen gas generator 1 includes a power source 2, an inverter 3, an electrolytic cell 4, and a hydrogen oxygen gas supply pipe 12.
  • the power source 2 can be selected without particular limitation as long as it can supply power to the electrolytic cell 4.
  • power source 2 can be a 24 volt power source.
  • the anode and the cathode of the power source 2 are connected to the anode side electrode plate 10 and the cathode side electrodes 11a and 11b of the electrolytic cell 4 through the inverter 3, respectively.
  • the voltage of the power supply 2 is dropped by the inverter 3.
  • the voltage is lowered from 24 volts to 12 volts. Thereby, it can be used for mobile vehicles, such as a passenger car and a ship.
  • the electrolytic tank 4 is a container having a structure in which the tank 9 is closed by the upper lid 6.
  • the upper lid 6 is attached to the tank 9 with a packing 8 made of an insulating material interposed therebetween.
  • the upper lid 6 is screwed into the tank 9 with an insulating packing 26 sandwiched between bolts 25 with washers. Thereby, it has a structure which does not let hydrogen oxygen gas which is the ultrafine particle generated inside the electrolytic cell 4 escape to the outside.
  • special silicone is used for the inner tank of the electrolytic cell 4 to prevent leakage. If an acrylic resin material is used for each part of the tank 9, for example, heat generated inside can be prevented from being transmitted to the outside.
  • nano water 31 is used as the electrolytic solution.
  • nano water is defined as water produced in advance by applying vibration of an ultrasonic band to pure water for a predetermined time.
  • a hydroxide such as potassium hydroxide or sodium hydroxide is added as a catalyst to the electrolytic solution in the tank 9 of the electrolytic tank 4.
  • tourmaline 32 may be added to the electrolytic solution in the tank 9 of the electrolytic tank 4.
  • the tourmaline is, for example, a drabbit tourmaline, which is somewhat large.
  • the effect of emitting negative ions can be expected.
  • a spherical shape can be adopted. Thereby, the deposit
  • FIG. 1 schematically shows a pair of anode side electrode plate 10 and cathode side electrode 11, but actually, as shown in FIG. 2A, the cathode side electrode plate and the anode side electrode plate As one set, it is preferable to immerse a set of a plurality of electrodes in the electrolytic solution.
  • a set of the anode side electrode plate 10 and the cathode side electrode 11 is configured such that the anode side electrode plates 10a and 10b and the cathode side electrodes 11a and 11b are alternately arranged at a constant interval.
  • a plurality of such electrode sets are prepared and immersed in the electrolytic cell 4. For example, if 6 sets of electrodes are used, there will be 24 electrodes.
  • a reinforced stainless alloy (SUS316), a titanium alloy, or the like can be used for example.
  • a titanium alloy having an iridium or platinum layer on its surface such as a titanium alloy having iridium deposited on its surface or a titanium alloy having a platinum surface layer plated by plating. be able to. However, it is not limited to this.
  • Each of the anode side electrode plates 10a and 10b and the cathode side electrodes 11a and 11b has a shape having a long side edge with a length L and a short side edge with a length D, and the short side edge side is the electrolytic cell 4. It is good to immerse in the electrolytic cell in the electrolytic cell 4 so that it may become the depth direction of this electrolyte solution.
  • length D length L can be 1: 2.
  • the electrolytic cell In the electrolytic cell, according to the principle of electrolysis of water, by supplying power from the power source 2, in the anode side electrode plates 10a and 10b, the anode side electrode plates 10a and 10b react with the electrolytic solution, and hydroxylation occurs. It generates physical ions (OH ⁇ ) and receives electrons. The electrons flow toward the cathode side electrodes 11a and 11b. In the cathode side electrodes 11a and 11b, hydrogen ions (H + ) receive electrons from the cathode side electrode 11 and become hydrogen molecules (H 2 ).
  • the electrolyte solution is not pure water, but nano-water, in which water molecule clusters are broken to form water molecules alone, so that hydrogen ions (H + ) and hydroxide ions (OH) are used in the electrolyte solution. - ) Is easier to generate. Further, by using tourmaline, the emission of electrons at the cathode side electrodes 11a and 11b is promoted. Furthermore, the tourmaline is spheronized and granulated, so that deposits on the electrode can be reduced and the sustainability of the electrode can be increased.
  • a hydrogen oxygen gas supply pipe 12 for conveying hydrogen oxygen gas generated in the electrolytic cell 4 is joined to the upper cover 6 of the electrolytic cell 4.
  • the hydrogen oxygen gas supply pipe 12 communicates with the inside from the upper lid 6 through a gas collection port 12a.
  • a partition 6a, 6b, 6c, 6d is perpendicular to the upper lid 6 so that the partition 6a, 6b, 6c, 6d surrounds the gas collection port 12a around the gas collection port 12a on the upper lid 6 near the gas collection port 12a corresponding to the inside of the electrolytic cell 4. It is attached to extend in the direction.
  • a gap of about several millimeters is provided between each of the partitions 6a, 6b, 6c, 6d.
  • the generated water oxygen gas passes through this gap and is conveyed from the gas collection port 12a to the hydrogen oxygen gas supply pipe 12 through the space defined by the partitions 6a, 6b, 6c, 6d.
  • the partitions 6a, 6b, 6c, and 6d block the water vapor generated when the temperature of the water that is the electrolytic solution in the electrolytic cell 4 rises, and only the generated water oxygen gas is defined by the partitions 6a, 6b, 6c, and 6d. Enter the space to be. Water oxygen gas can be prevented from flowing into the hydrogen oxygen gas supply pipe 12.
  • a drain valve 13 is disposed in the hydrogen oxygen gas supply pipe 12, and water vapor that slightly enters the space defined by the partitions 6a, 6b, 6c, and 6d is contained in the hydrogen oxygen gas supply pipe 12 together with the hydrogen oxygen gas. Even if it has been transferred to the hydrogen oxygen gas supply pipe 12, it can be removed as water.
  • the amount of hydrogen generation is significantly improved. For this reason, the hydrogen generation amount with respect to the energization amount from the power source 2 increases, and the fluctuation of the hydrogen generation amount with respect to the change amount of the energization amount also increases at the same time.
  • the fluctuation of the hydrogen generation amount becomes large, the ratio of the hydrogen oxygen gas supplied into the fuel gas fluctuates and the combustion efficiency is not stable. Therefore, it is necessary to control the energization amount from the power source 2 by the inverter 3.
  • the inverter 3 keeps the actual amount of current flowing in the electrolytic cell 4 at a predetermined amount, suppresses the rise in the temperature of the electrolyte, and generates stable hydrogen oxygen gas.
  • the inverter 3 includes a current setting unit 3a, a current detection unit 3b, a current monitoring unit 3c, a current control unit 3e, a temperature monitoring unit 3d, and a voltage monitoring unit 3f, and controls the current flowing through the electrolyte.
  • the current setting means 3a is connected to the power source 2 and applied with the converted input voltage.
  • the current setting means 3a is connected to the anode side electrode plates 10a and 10b and the cathode side electrodes 11a and 11b of the electrolytic cell 4.
  • the current setting means 3a allows a current to flow through the anode side electrode plates 10a and 10b and the cathode side electrodes 11a and 11b, and sets the target current to a predetermined current value.
  • the value of the current actually flowing from the inverter 3 to the anode side electrode plate 10 and the cathode side electrodes 11a and 11b is detected by the current detection means 3b.
  • the detected current is converted into a control numerical value by the current monitoring means 3c.
  • a temperature sensor 4a is attached to the electrolytic cell 4, and the temperature of the electrolytic cell 4 is detected.
  • the temperature detected by the temperature sensor 4a is converted into a numerical value for control by the temperature monitoring means 3d.
  • the voltage monitoring means 3f detects a primary side voltage (voltage input from the power source 2 to the inverter 3) before being input to the inverter 3 of the power source 2, and converts it into a numerical value for control.
  • FIG. 3 is a diagram showing a flowchart of the inverter 3 of the hydrogen oxygen gas generator 1 of the present invention.
  • the voltage is set by the current setting means 3a so that the set current becomes zero (S11).
  • a voltage is applied between the anode side electrode plates 10a and 10b and the cathode side electrodes 11a and 11b to start a current flow through the electrolyte.
  • Voltage monitoring is started by the voltage monitoring means 3f. If there is no abnormality in the voltage applied from the power source 2 to the inverter 3, the process proceeds to temperature monitoring (S13). (S17).
  • the current control unit 3e that has received the command sends a command to the current setting unit 3a so as to set a preset current at the time of voltage abnormality.
  • the current setting means 3b sets the current when the voltage is abnormal.
  • the process proceeds to temperature monitoring (S13).
  • the temperature of the temperature sensor 4a is detected (S13). If the temperature of the electrolytic cell 4 has reached the limit temperature by temperature monitoring (S13), a command is sent to the current control means 3e so as to set the current at the time of temperature abnormality set in advance as temperature abnormality (S18). .
  • the current control means 3e sends a command to the current setting means 3a so as to set a preset voltage at the time of abnormal temperature.
  • the current setting means 3b sets the voltage when the temperature is abnormal.
  • the limit temperature is a temperature at which evaporation of the internal electrolyte solution starts, and in the case of water, it is a temperature at which generation of water vapor starts. The current is controlled so that the limit temperature is not exceeded.
  • the process proceeds to current monitoring (S14). After setting the voltage so that the set current becomes zero (S11), the voltage is increased and the current starts to flow. In the current monitoring (S14), this amount of current is monitored. When the voltage between the anode side electrode plates 10a and 10b and the cathode side electrodes 11a and 11b is increased, the current increases only slightly until electrolysis occurs. The current increases rapidly from a certain point along with the electrolysis. If the current value actually measured by the current detection means 3b is larger than the target current, a command is sent to the current control means 3e to lower the voltage to reduce the current (S15). Conversely, if the current value actually measured by the current detection means 3b is smaller than the target current, a command is sent to the current control means 3e to increase the voltage in order to increase the current (S16).
  • the current control means 3e Upon receipt of the command, the current control means 3e sends a command to the current setting means 3a so as to increase the current according to the command. Accordingly, the current setting means 3a sets the current according to the command. If the current value actually measured by the current detection means 3b is within the target current range, a command is sent to the current control means 3a to keep the set current as it is, or the state is kept as it is. .
  • each step is always repeated at a predetermined timing.
  • the target current is determined in advance depending on the size of the electrolytic cell 4 and the amount of the electrolytic solution. For example, when the target current is set to 8.0 amperes, the set current is set to zero (S11), and when the voltage is increased and the current starts to flow, the current starts when hydrogen oxygen gas starts to be generated. It rises rapidly.
  • the current control means 3e performs control so that the current actually applied to the electrolyte is a constant target current of 8 amperes.
  • the current value to be a constant value by changing the application timing of the input voltage, or to control the input voltage by changing the voltage value.
  • the voltage duty can be changed by changing the application timing to a pulse shape. Thereby, it is possible to control the amount of the voltage applied to the nano water so that the current detected by the current detecting means 3b is kept at the target current.
  • Table 1 compares the amount of hydrogen oxygen gas generated when nano water, pure water and commercial ionic water are used as the electrolytic solution. Hydrogen / oxygen gas that is generated when the voltage duty is changed by the inverter 3 so that the target current applied to the electrode is 8.0 volts when nano water, pure and commercial ionic water are used as the electrolyte. The amount of was compared. From this, it can be seen that when nano water is used, the most hydrogen oxygen gas is generated when the voltage duty is the lowest. It shows that the amount of hydrogen oxygen gas generated is particularly increased by using nano water. Table 1
  • a cathode made by depositing iridium at a thickness of 0.5 mm on a titanium alloy plate having a thickness of 1.5 mm was used.
  • Table 2 is a comparison with an example in which a stainless steel electrode is used. This shows that the amount of hydrogen oxygen gas generated is larger when iridium is deposited on the titanium alloy plate. It shows that the generation amount of hydrogen oxygen gas is particularly increased by using a titanium alloy electrode on which iridium is deposited.
  • FIG. 7 is an explanatory diagram of an internal combustion engine 21 using the hydrogen oxygen gas generator 1 of the present invention.
  • a hydrogen oxygen gas pipe 12 is coupled to a fuel gas pipe 19 that communicates between the internal combustion engine 20 and the intake port 16.
  • the hydrogen oxygen gas generated by the hydrogen oxygen gas generator 1 reaches the fuel gas pipe 19 via the hydrogen oxygen gas pipe 12, is mixed with the fuel gas, and is sucked into the internal combustion engine 20.
  • hydrogen oxygen gas is mixed with the fuel gas sucked from the intake port 16, the content ratio of hydrogen oxygen gas is increased, combustion efficiency is improved, and harmful gas is removed from the exhaust gas 21. it can. And by raising combustion efficiency, the required fuel gas can be reduced and the fuel efficiency is also improved.
  • Examples of the internal combustion engine include engines from general passenger cars to large automobiles and ships, boilers, incinerators, and the like.
  • Table 3 shows a performance comparison example of the internal combustion engine using the hydrogen oxygen gas generator.
  • the consumption of fuel gasoline
  • the ship was anchored on the quay and a comparative experiment was performed in an idling state of 1500 (rpm).
  • rpm idling state of 1500
  • 1000 cc of hydrogen oxygen gas is mixed per minute.
  • the internal combustion engine using the hydrogen oxygen gas generator 1 has improved fuel efficiency. This means that the combustion efficiency has increased.
  • FIG. 5 is a system diagram of the hydrogen-oxygen gas generator 1 according to Embodiment 2 of the present invention.
  • FIG. 6 shows a control flowchart of the inverter in that case.
  • the hydrogen oxygen gas generator 1 other than the inside of the inverter 3 is the same as that of the first embodiment.
  • parts different from the first embodiment will be described, and description of the same parts as the first embodiment will be omitted.
  • the internal combustion engine has an output shaft, and the rotation speed of the output shaft is detected by a rotation sensor.
  • a rotation sensor Various methods are conceivable for detecting the number of rotations by the rotation sensor. For example, a method for detecting the number of rotations of the alternator may be used.
  • the inverter 3 includes a current setting means 3a, a current detection means 3b, a current monitoring means 3c, a current control means 3e, a temperature monitoring means 3d, and a voltage monitoring means 3f, and a rotational speed for monitoring the rotational speed of the internal combustion engine power section. Monitoring means 3g is provided.
  • the operations of the current setting means 3a, current detection means 3b, current monitoring means 3c, current control means 3e, temperature monitoring means 3d and voltage monitoring means 3f are the same as those in the first embodiment.
  • S21 to S28 correspond to S11 to S18, and each operation is the same.
  • the rotational speed monitoring means 3g has an output shaft of the internal combustion engine, and changes the target current according to the rotational speed of the output shaft.
  • the temperature monitoring (S23) there is a step of changing the target current according to the rotational speed of the output shaft (S24). For example, if the target current is set to 0.5 amps from 0 to 800 (rpm), the target current is set to 8.0 amps from 800 to 1500 (rpm), and the target current exceeds 1500 (rpm) The target current is set from 8.0 amperes to 20.0 amperes.
  • a group of target current values to be switched is determined in advance as a predetermined target current value corresponding to the rotational speed. After setting each target current, the process proceeds to the current monitoring step (S24, S25, S26).
  • the current amount is monitored by current monitoring (S24).
  • current monitoring When the voltage between the anode side electrode plates 10a and 10b and the cathode side electrodes 11a and 11b is increased, the current increases only slightly until electrolysis occurs. The current increases rapidly from a certain point along with the electrolysis. If the current value actually measured by the current detection means 3b is larger than the target current, a command is sent to the current control means 3e to lower the voltage to reduce the current (S25). Conversely, if the current value actually measured by the current detection means 3b is smaller than the target current, a command is sent to the current control means 3e to increase the voltage in order to increase the current (S26).
  • the current control means 3e that has received the command sends a command to the current setting means 3a so as to increase the current in accordance with the command. Accordingly, the current setting means 3a sets the current according to the command. If the current value actually measured by the current detection means 3b is within the target current range, a command is sent to the current control means 3a to keep the set current as it is, or the state is kept as it is. .
  • each step is the same as in the first embodiment in that it is always repeated at a predetermined timing.
  • the target current is determined in advance depending on the size of the electrolytic cell 4 and the amount of the electrolytic solution. For example, when the rotational speed is 1000 (rpm), the target current is set to 8.0 amperes (S29).
  • the current control means 3e performs control so that the current actually applied to the electrolyte becomes a constant target current of 8.0 amperes.
  • the control method is the same as that of the first embodiment.
  • the input voltage application timing is changed to control the current value to be a constant value, or the input voltage is controlled to change the voltage value. I can take it.
  • the voltage duty can be changed by changing the application timing to a pulse shape.
  • the hydrogen-oxygen gas generating apparatus can be widely applied to apparatuses having a combustion process including an internal combustion engine.
  • sufficient hydrogen oxygen gas can be generated with a low voltage and current, it can be applied to an internal combustion engine of a vehicle or a ship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

 低電流で水素ガスを発生させ、水蒸気の発生が少ない水素酸素ガス発生装置を提供することを目的としている。水素酸素ガス発生装置は、電源と、該電源に電気的に接続されるインバータと、該インバータと電気的に接続され、内部に、ナノ水と、該ナノ水内に浸漬される陽極および陰極とを有する電解槽とを備える。これにより、低い電流で駆動し、水蒸気の発生を少なくすることができる。

Description

水素および酸素の混合ガス発生装置およびそれを用いた内燃機関
 本発明は、ブラウンガスたる水素および酸素の混合ガス(以下、「水素酸素ガス」とよぶ)の発生装置およびそれを用いた内燃機関に関する。 
 近年、さまざまな技術分野で、環境への配慮を重視した技術開発がなされている。特に、内燃機関など、化石燃料の燃焼を利用した技術分野では、COの排出量を削減することを目的とした技術開発が盛んである。たとえば、燃焼プロセスを持たない技術への転換により、COの排出量を削減することは一つの方法である。実用化されているハイブリッド車を含め、様々なタイプの発電・蓄電技術を利用する電気駆動の乗用車などはその例である。
 しかしながら、現在の技術水準では、燃焼プロセスを持たない技術への転換ができず、あくまで化石燃料の燃焼プロセスが不可避となる技術分野も存在する。たとえば、大きな駆動力を必要とする船舶や、大型自動車、ボイラなどである。このような技術分野では、排気されるガスに含まれる有毒ガスやCOガスの低減化により環境への配慮を実現することが考えられる。排気されるガスに含まれる有毒ガスやCOガスの低減化は、燃焼効率を上昇させて、燃焼プロセスを如何に完全燃焼に近づけるかの点に集約される。また、燃焼効率を上昇させることにより、必要な燃料も減るため、燃費も向上する。
 燃焼効率を上昇させる方法として、たとえば特許文献1に開示されるように水素酸素ガスを利用する方法がある。ここでは、一般に使用されている水の電気分解により発生する水素ガスと酸素の化学当量比を2:1として混合するものである。
実用新案登録第3131938号公報
 しかしながら、一般に使用されている水の電気分解の原理を用いた水素ガスおよび酸素ガスの発生方法では、発生量には限界があり、水素酸素ガス装置で利用する場合には、燃焼が安定しやすい大型の定置式とせざるをえなかった。すなわち、負荷変動が多い駆動力源として水素酸素ガス装置を利用する場合には、従来の水の電気分解では安定的な水素酸素ガスの供給が困難であり、燃焼効率を上昇させて燃焼プロセスを完全燃焼に近づけることは困難であった。
 特に、従来の水素酸素ガス装置で水素酸素ガスを大量に発生させるには、100Vなどの高い電圧で高い電流を使用している。また、通電による熱で、水蒸気が多く発生する問題がある。乗用車などの車両や船舶などにおいては、低電流の状態で多量の水素ガスを発生させることが望まれる。
 本願発明は、低電流で水素ガスを発生させ、水蒸気の発生が少ない水素酸素ガス発生装置を提供することを目的としている。
 本願発明は、内燃機関での燃焼を完全燃焼に近づけるために水素酸素ガスを利用する際に、に安定的な水素酸素ガスの供給ができる水素酸素ガス発生装置を提供することを目的としている。
 本願発明は、電源と、該電源に電気的に接続されインバータと、該インバータと電気的に接続され、該インバータから電圧が印加される陽極および陰極とを内部に有する電解槽と、純水に予め所定の周波数の超音波振動を印加して製造され、該電解槽の内部に貯藏されるナノ水とを備える水素酸素ガス発生装置を提供することにある。
 本願発明の目的は、さらに、電源と、該電源に電気的に接続されインバータと、該インバータと電気的に接続され、該インバータから電圧が印加される陽極および陰極とを内部に有する電解槽と、純水に予め所定の周波数の超音波振動を印加して製造され、該電解槽の内部に貯藏されるナノ水とを備える水素酸素ガス発生装置を用いた内燃機関を提供することにある。
 従来の水素酸素ガス発生装置に比べ、本願発明による水素酸素ガス発生装置では、安定的に多量の水素酸素ガスを発生することができる。ひいては、内燃機関に適用した結果、化石燃料を使用した内燃機関においての燃焼効率を上昇させることができる。これにより、COガスの排出量が低減化できる。
 さらに、本願発明による水素酸素ガス発生装置では、低い電圧・電流で多くの水素酸素ガスを発生させることができる。そのため、装置全体を小型化でき、乗用車から大型自動車などの車両や船舶などに利用することができる。
 
本発明の水素酸素ガス発生装置を示した図である。 本発明の水素酸素ガス発生装置の電極構造の例を示した図である。 本発明の水素酸素ガス発生装置の集ガス部を示した図である。 本発明の実施例1の水素酸素ガス発生装置の系統図である。 本発明の実施例1水素酸素ガス発生装置のインバータの制御フローチャートを示した図である。 本発明の実施例2の水素酸素ガス発生装置の系統図である。 本発明の実施例2水素酸素ガス発生装置のインバータの制御フローチャートを示した図である。 本発明の水素酸素ガス発生装置を利用した内燃機関の説明図である。
(実施例1) 
 図1から図4を参照して、本発明の水素酸素ガス発生装置1について、説明する。図1は、本発明の水素酸素ガス発生装置を示した図である。図2Aは、本発明の水素酸素ガス発生装置の電極構造の例を示した図であり、図2Bは本発明の水素酸素ガス発生装置の集ガス部を示した図である。また、図3は、本発明の実施例1の水素酸素ガス発生装置の系統図である。図4には、インバータの制御フローチャートを示している。
水素酸素ガス発生装置1は、電源2と、インバータ3と、電解槽4と、水素酸素ガス供給管12とを備える。
 電源2は、電解槽4に電力を供給することができるものであれば、特に制限なく選択することができる。たとえば、電源2は24ボルトの電源とできる。電源2の陽極および陰極は、それぞれインバータ3を介して、電解槽4の陽極側電極板10と陰極側電極11a,11bとに接続されている。電源2の電圧は、インバータ3により、電圧を降下させる。たとえば、本実施例では24ボルトから12ボルトに降下させる。これにより、乗用車、船舶など移動型の乗物に使用することができる。
 電解槽4は、槽9を上蓋6で閉じる構造の容器である。上蓋6は、絶縁素材によるパッキン8を挟んで、槽9に取り付けられる。上蓋6は、ワッシャー付きボルト25に絶縁パッキン26を挟んで槽9に螺嵌される。これにより、電解槽4の内部で発生する超微粒子たる水素酸素ガスを外部に逃がさない構造となっている。また、電解槽4の内槽には特殊シリコーンを使用し、漏電を防ぐ構造となっている。槽9の各部分には、たとえばアクリル樹脂材を使用すれば内部で発生する熱を外に伝わらないようにすることができる。
 電解槽4の槽9には、電解液供給口7から電解液が注入され、槽9内に満たされる。電解液としては、いわゆるナノ水31を使用する。本願では、「ナノ水」は、超音波帯の振動を所定の時間だけ純水に印加して予め製造された水と定義する。本実施例では、たとえば36キロヘルツの周波数の超音波振動を24時間加え続けて製造したナノ水を使用した。
また、電解槽4の槽9の電解液中には、たとえば水酸化カリウムや水酸化ナトリウム等のような水酸化物を触媒として添加する。
 さらに、電解槽4の槽9の電解液中には、トルマリン32を添加してもよい。トルマリンは、たとえばドラバイトトルマリンであって、ある程度大きなものを採用する。マイナスイオンを発する効果が期待できる。たとえば、球体形状のものを採用することができる。これにより、電極への付着物を低減化することができる。
 電解槽4の電解液中には、電源2の陽極および陰極にそれぞれ接続されている陽極側電極板10と陰極側電極11とが浸漬されている。なお、図1には模式的に1対の陽極側電極板10と陰極側電極11とを示しているが、実際には、図2Aに示すように、陰極側電極板と陽極側電極板とを1つのセットとして、複数の電極のセットを電解液中に浸漬することが好ましい。すなわち、陽極側電極板10a,10bと陰極側電極11aと11bとで一定の間隔で交互に配置するような1セットの陽極側電極板10と陰極側電極11とを構成させる。このような電極セットを複数準備し、電解槽4内に浸漬させる。たとえば、6セットの電極を用いれば、24枚の電極となる。陽極側電極板10a,10bと陰極側電極11aと11bのそれぞれは、材料として、たとえば、強化ステンレス合金(SUS316),チタン合金などを使用することができる。さらに、チタン合金を使用する場合には、イリジウムを表面に蒸着したチタン合金、または表面にメッキ処理でプラチナの表面層を施したチタン合金など、イリジウムまたはプラチナ層を表面に有するチタン合金を使用することができる。ただし、これに制限されるものではない。
 また、陽極側電極板10a,10bと陰極側電極11aと11bのそれぞれは、長さLの長辺縁と長さDの短辺縁とを有する形状であって、短辺縁側が電解槽4の電解液の深さ方向となるように電解槽4内で電解槽に浸漬させるとよい。たとえば、長さD:長さLは1:2とすることができる。
 電解槽では、水の電気分解の原理にしたがい、電源2から電力を供給することにより、陽極側電極板10a,10bでは、陽極側電極板10aと10bと電解液とが反応して、水酸化物イオン(OH)を生成するとともに電子を受け取る。その電子は陰極側電極11a,11bに向けて流れる。陰極側電極11a,11bでは、水素イオン(H)が陰極側電極11の電子を受け取って、水素分子(H)となる。電解液としては、単なる純水ではなく、水分子のクラスターが崩れて水分子単体となっているナノ水を用いることにより、電解液中で、水素イオン(H)および水酸化物イオン(OH)を生成しやすくなる。また、トルマリンを用いることにより、陰極側電極11a,11bでの電子の放出が促進される。さらに、トルマリンを球体化・粒状化することで、電極への付着物を低減化し電極の持続性を高めることができる。
 図2Bに示すように、電解槽4の上蓋6には、電解槽4で発生した水素酸素ガスを搬送する水素酸素ガス供給管12が接合されている。水素酸素ガス供給管12は集ガス口12aで上蓋6とから内部に連通している。電解槽4の内部側にあたる集ガス口12a付近の上蓋6には、衝立6a,6b,6c,6dが、集ガス口12aの周りに集ガス口12aを取り囲むように、上蓋6に対して鉛直方向に延在するように取り付けられる。衝立6a,6b,6c,6dのそれぞれの間には、数ミリ程度の隙間を設ける。発生した水酸素ガスは、この隙間を通って、衝立6a,6b,6c,6dで画定される空間を介して、集ガス口12aから水素酸素ガス供給管12に搬送される。衝立6a,6b,6c,6dにより、電解槽4の電解液である水の温度が上昇することで発生する水蒸気はブロックされ、発生した水酸素ガスのみが衝立6a,6b,6c,6dで画定される空間内に入る。水素酸素ガス供給管12への水酸素ガスの流入を防ぐことができる。
 さらに、水素酸素ガス供給管12には水抜きバルブ13が配置され、衝立6a,6b,6c,6dで画定される空間内に僅かに入り込む水蒸気が、水素酸素ガスとともに水素酸素ガス供給管12内に搬送されてしまった場合でも、水として水素酸素ガス供給管12から除去できる。
 電解槽4に上記のとおり、ナノ水をとトルマリンを用いることにより、水素発生量が格段に向上する。このため、電源2からの通電量に対する水素発生量が大きくなり、通電量の変化量に対する水素発生量の変動も同時に大きくなってしまう。水素発生量の変動が大きくなると、燃料ガス内に供給される水素酸素ガスの割合が変動し、燃焼効率が安定しない。そこで、電源2からの通電量をインバータ3により制御する必要が生じる。インバータ3により、電解槽4内に流れる実際の電流の量を所定の量に保ち、電解液の温度の上昇を抑えて、安定した水素酸素ガスの発生を図る。
 インバータ3は、電流設定手段3a、電流検出手段3b、電流監視手段3c、電流制御手段3e、温度監視手段3dおよび電圧監視手段3fを備え、電解液に流す電流を制御する。電流設定手段3aは電源2に接続され、変換された入力電圧が印加される。電流設定手段3aは、電解槽4の陽極側電極板10a,10bと陰極側電極11a,11bとに接続されている。電流設定手段3aは、陽極側電極板10a,10bと陰極側電極11a,11bとに、電流を流すとともに、所定の電流値の目標電流に設定する。インバータ3から陽極側電極板10と陰極側電極11a,11bとに実際に流れた電流の値は、電流検出手段3bにより検出される。検出された電流は、電流監視手段3cにより制御数値に変換される。一方、電解槽4には、温度センサ4aが取り付けてあって、電解槽4の温度が検出される。温度センサ4aにより検出された温度は、温度監視手段3dにより制御用数値に変換される。電圧監視手段3fは、電源2のインバータ3に入力される前の一次側電圧(電源2からインバータ3へ入力される電圧)を検出し、それを制御用数値に変換する。
 インバータ3のシーケンスにつき、図3を参照して説明する。図3は、本発明の水素酸素ガス発生装置1のインバータ3のフローチャートを示した図である。まず、電流設定手段3aにより、設定電流をゼロとなるように電圧を設定する(S11)。その後、陽極側電極板10a,10bと陰極側電極11a,11b間の電圧を印加して電解液に電流を流し始める。電圧監視手段3fにより、その電圧監視を開始する。電源2からインバータ3にかかる電圧に異常がなければ温度監視(S13)へ移行し、電圧に異常があれば予め設定した電圧異常時の電流に設定するように、電流制御手段3eに指令を送る(S17)。指令を受けた電流制御手段3eは、電流設定手段3aに対し、予め設定した電圧異常時の電流に設定するように指令を送る。これにしたがって、電流設定手段3bは、電圧異常時の電流に設定する。
 続いて、温度監視(S13)へ移行する。まず、温度センサ4aの温度を検出する(S13)。温度監視(S13)により、電解槽4の温度が限界温度に達していれば、温度異常として、予め設定した温度異常時の電流に設定するように、電流制御手段3eに指令を送る(S18)。指令を受けた電流制御手段3eは、電流設定手段3aに対し、予め設定した温度異常時の電圧に設定するように指令を送る。これにしたがって、電流設定手段3bは、温度異常時の電圧に設定する。ここで限界温度とは、内部の電解液の蒸発が始まる温度であり、水であれば水蒸気の発生が始まる温度である。限界温度を越えないように電流を制御する。
 温度センサ4aの検出した温度が限界温度に達していなければ、電流監視(S14)へ移行する。設定電流がゼロとなるように電圧を設定した後(S11)、電圧を上昇させて、電流を流し始める。電流監視(S14)では、この電流量を監視する。陽極側電極板10a,10bと陰極側電極11a,11b間の電圧を上昇させると、電気分解が生じるまでは電流は僅かにしか上昇しない。電気分解とともにある時点から電流が急激に増加する。電流検出手段3bにより実際に測定された電流値が、目標電流よりも大きい場合には電流を低下させるべく電圧を下げるように電流制御手段3eに指令を送る(S15)。逆に、電流検出手段3bにより実際に測定された電流値が目標電流よりも小さい場合には、電流を上昇させるべく、電圧を上昇させるように電流制御手段3eに指令を送る(S16)。
 指令を受けた電流制御手段3eは、その指令に応じて電流を上昇させるように電流設定手段3aに対し指令を送る。これにしたがって、電流設定手段3aは、指令に応じた電流に設定する。電流検出手段3bにより実際に測定された電流の値が、目標電流の範囲内にある場合には、設定電流をそのまま維持するように電流制御手段3aに指令を送るか、またはそのままの状態を保つ。
 上記の制御ステップにおいて、各ステップは、所定のタイミングで常時繰返される。目標電流は、電解槽4の大きさ、電解液の量によって、予め決定される。たとえば、目標電流が8.0アンペアとなるように設定する、設定電流をゼロとした後(S11)、電圧を上昇させて電流を流し始めると、水素酸素ガスが発生し始めた時点から電流が急激に上昇する。これに併せて、電流制御手段3eが実際に電解液に負荷される電流が一定の目標電流8アンペアとなるように制御する。たとえば、入力電圧の印加タイミングを変化させて電流値が一定の値となるように制御したり、入力電圧を電圧値を変化させて制御するなどの方法がとれる。たとえば、印加タイミングをパルス状とすることで電圧デューティを変化させることもできる。これにより、電流検出手段3bが検出した電流を目標電流に保つように、ナノ水への該電圧の印加量の制御を行うことができる。
 ナノ水を利用した場合の効果は表1のとおりである。表1は、電解液としてナノ水,純粋および市販イオン水を使用した場合の水素酸素ガスの発生量を比較したものである。電解液としてナノ水,純粋および市販イオン水を使用した際に、電極にかかる目標電流が8.0ボルトになるようにして、インバータ3により電圧デューティを変化させた際に、発生する水素酸素ガスの量を比較した。これから、ナノ水を使用した場合には、電圧デューティが最も低い場合に最も多い水素酸素ガスを発生していることがわかる。ナノ水を使用することで、特に水素酸素ガスの発生量が多くなることを示している。
 
表1  
Figure JPOXMLDOC01-appb-I000001
 さらに、本実施例では、陰極として、1.5ミリメートル厚のチタン合金板にイリジウムを0.5ミリメートル厚で蒸着させたものを使用した。表2は、ステンレス電極を使用した場合の例との比較である。これから、チタン合金板にイリジウムを蒸着させた場合のほうが、水素酸素ガスの発生量が多いことがわかる。イリジウムを蒸着させたチタン合金電極を使用することで、特に水素酸素ガスの発生量が多くなることを示している。
 
表2
Figure JPOXMLDOC01-appb-I000002
 図7は、本発明の水素酸素ガス発生装置1を利用した内燃機関21の説明図である。内燃機関20と吸気口16との間に連通する燃料ガス管19には、水素酸素ガス管12が結合されている。水素酸素ガス発生装置1で発生させた水素酸素ガスは、水素酸素ガス管12を経由して燃料ガス管19に至り、燃料ガスと混合されて内燃機関20に吸入される。これにより、吸気口16から吸入された燃料ガスに水素酸素ガスが混合されて、水素酸素ガスの含有比率が高まって、燃焼効率が向上するとともに、排気ガス21から有害ガスの除去をすることができる。そして、燃焼効率を上昇させることにより、必要な燃料ガスが削減可能であって、燃費も向上する。内燃機関の例としては、一般乗用車から大型自動車、船舶などのエンジンや、ボイラ、焼却炉等が挙げられる。
 本願の水素酸素ガス発生装置1で発生させた水素酸素ガスを内燃機関で用いた性能評価は、次のとおりである。表3は水素酸素ガス発生装置を用いた内燃機関の性能比較例である。内燃機関として6000ccクラスエンジンを搭載した船舶において、水素酸素ガス発生装置1を搭載させたものと非搭載のものとにおいて、燃料(ガソリン)の消費量を比較した。船舶は岸壁に停泊させて、1500(rpm)のアイドリング状態で比較実験を行った。この実験では、水素酸素ガス発生装置を用いた場合に、毎分1000ccの水素酸素ガスを混合している。この実験からも、水素酸素ガス発生装置1を使用した内燃機関において、燃費が向上していることがわかる。これは、燃焼効率が上昇したことを意味する。
 
表3
Figure JPOXMLDOC01-appb-I000003
(実施例2) 
図5図6,図7を参照して、別の実施例としての本発明の水素酸素ガス発生装置1について、説明する。実施例1と実施例2は基本的に同じであるが、その違いは、内燃機関20の状態をインバータ3の制御に取り込む点にある。図5は、本発明の実施例2の水素酸素ガス発生装置1の系統図である。図6には、その場合のインバータの制御フローチャートを示している。インバータ3の内部以外の水素酸素ガス発生装置1は、実施例1と同様である。以下、実施例1と異なる部分について説明し、実施例1と同じ部分の説明は省略する。
 図6に示すように、内燃機関には出力軸があって、その出力軸の回転数を回転センサにより検出する。回転センサによる回転数の検出には、いろいろな方法が考えられ、たとえば、オルタネータの回転数を検出する方法でも良い。
 インバータ3には、電流設定手段3a、電流検出手段3b、電流監視手段3c、電流制御手段3e、温度監視手段3dおよび電圧監視手段3fに加え、内燃機関動力部の回転数の監視を行う回転数監視手段3gを備えている。電流設定手段3a、電流検出手段3b、電流監視手段3c、電流制御手段3e、温度監視手段3dおよび電圧監視手段3fの動作は、実施例1と同じである。図6におけるフローチャートにおいて、S21からS28までは、S11からS18と対応し、各動作は同じである。
 実施例2で回転数監視手段3gは内燃機関の出力軸があって、その出力軸の回転数に応じて、目標電流を変更する。フローチャートでは、温度監視(S23)の後に、出力軸の回転数に応じて、目標電流を切り替える変更するステップを有する(S24)。たとえば、0から800(rpm)においては目標電流を0.5アンペアに設定し、800から1500(rpm)においては目標電流を8.0アンペアに設定し、1500(rpm)を越えた場合には目標電流を8.0アンペアから20.0アンペアに設定する。切り替えるべき目標電流値のグループは、回転数に応じた所定の目標電流値として、予め決定しておく。それぞれの目標電流に設定した後における電流監視のステップ(S24,S25,S26)へ移行する。
 すなわち、電流監視(S24)で、電流量を監視する。陽極側電極板10a,10bと陰極側電極11a,11b間の電圧を上昇させると、電気分解が生じるまでは電流は僅かにしか上昇しない。電気分解とともにある時点から電流が急激に増加する。電流検出手段3bにより実際に測定された電流値が、目標電流よりも大きい場合には電流を低下させるべく電圧を下げるように電流制御手段3eに指令を送る(S25)。逆に、電流検出手段3bにより実際に測定された電流値が目標電流よりも小さい場合には、電流を上昇させるべく、電圧を上昇させるように電流制御手段3eに指令を送る(S26)。指令を受けた電流制御手段3eは、その指令に応じて電流を上昇させるように電流設定手段3aに対し指令を送る。これにしたがって、電流設定手段3aは、指令に応じた電流に設定する。電流検出手段3bにより実際に測定された電流の値が、目標電流の範囲内にある場合には、設定電流をそのまま維持するように電流制御手段3aに指令を送るか、またはそのままの状態を保つ。制御ステップにおいて、各ステップは、所定のタイミングで常時繰返される点も実施例1と同じである。目標電流は、電解槽4の大きさ、電解液の量によって、予め決定される。たとえば、回転数が1000(rpm)の場合には、目標電流が8.0アンペアとなるように設定する(S29)。電圧を上昇させて電流を流し始めると、水素酸素ガスが発生し始めた時点から電流が急激に上昇する。これに併せて、電流制御手段3eが実際に電解液に負荷される電流が一定の目標電流8.0アンペアとなるように制御する。制御の方法も実施例1と同様で、たとえば、入力電圧の印加タイミングを変化させて電流値が一定の値となるように制御したり、入力電圧を電圧値を変化させて制御するなどの方法がとれる。たとえば、印加タイミングをパルス状とすることで電圧デューティを変化させることもできる。
 これにより、内燃機関の最適の状態の水素ガスを発生させることができるとともに、水蒸気を発生させる温度上昇に使われる無駄な電力のしようを防ぐことができる。
 
 本願発明による水素酸素ガス発生装置は、内燃機関を含め燃焼プロセスを有する装置に広く適用することができる。特に、低い電圧・電流で十分な水素酸素ガスを発生させられるため、車両・船舶の内燃機関に適用することができる。
 
 この出願は2009年9月10日に出願された日本国特許出願第2009-231942からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。
1  水素酸素ガス発生装置
2  電源
3  インバータ
4  電解槽
10 陽極側電極板
11 陰極側電極板
 

 

Claims (8)

  1.  電源と、
     該電源に電気的に接続されインバータと、
     該インバータと電気的に接続され、該インバータから電圧が印加される陽極および陰極とを内部に有する電解槽と、
    純水に予め所定の周波数の超音波振動を印加して製造され、該電解槽の内部に貯藏されるナノ水とを備え、
    該インバータは、該インバータから該電解槽の該陽極と該陰極とに実際に流れた電流の値を検出する電流検出手段を備え、該電流検出手段が検出した電流を目標電流に保つように該ナノ水への該電圧の印加量の制御を行うことを特徴とする水素酸素ガス発生装置。
  2.  請求項1に記載の水素酸素ガス発生装置であって、該水素酸素ガス発生装置は内燃機関に接続され、該インバータは該内燃機関の出力軸の回転数に応じて、該回転数に応じた所定の目標電流値に切換えることを特徴とする水素酸素ガス発生装置。
  3.  請求項1または2に記載の水素酸素ガス発生装置であって、該陽極および該陰極は、イリジウムまたはプラチナ層を表面に有するチタン合金であることを特徴とする水素酸素ガス発生装置。
  4.  請求項1から3のいずれか一項に記載の水素酸素ガス発生装置であって、該陽極および該陰極のそれぞれは、長辺の縁と短辺の縁を有する形状であって、短辺の縁が該ナノ水の深さ方向となるように該電解槽に浸漬されていることを特徴とする水素酸素ガス発生装置。
  5.  請求項1から4のいずれか一項に記載の水素酸素ガス発生装置であって、該電解槽は、樹脂製であることを特徴とする水素酸素ガス発生装置。
  6.  請求項1から5のいずれか一項に記載の水素酸素ガス発生装置であって、該水素酸素ガス発生装置は該電解槽の温度を検出する温度センサを備え、
    該インバータは、該温度センサが検出した温度を監視する温度監視手段を備え、
    該温度センサにより検出された温度が、水蒸気を発生させる限界温度に達していれば、予め設定した温度異常時の電流に設定するように、該電流制御手段に指令を送り、
    該電流制御手段は、該電流設定手段に指令を送って、該温度異常時の電流となるように該電圧を制御することを特徴とする水素酸素ガス発生装置。
  7.  請求項1から6のいずれか一項に記載の水素酸素ガス発生装置であって、該電解槽は、該電解槽の上蓋に発生する水素酸素ガスを集める集ガス口を備え、該上蓋の内側の該集ガス口付近には、該集ガス口の囲むように、複数の衝立が配置され、隣接する衝立の間には、隙間を有することを特徴とする水素酸素ガス発生装置。
  8.  燃料ガスを吸入して燃焼させる内燃機関であって、
    請求項1から7のいずれか一項に記載した水素酸素ガス発生装置で発生した水素ガスと酸素ガスとを該燃焼前に該燃料ガスに混合して燃焼させることを特徴とする内燃機関。
PCT/JP2010/005553 2009-09-10 2010-09-10 水素および酸素の混合ガス発生装置およびそれを用いた内燃機関 WO2011030556A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127008950A KR101753045B1 (ko) 2009-09-10 2010-09-10 수소 및 산소의 혼합 가스 발생 장치 및 그것을 사용한 내연 기관
CN201080040453.7A CN102597327B (zh) 2009-09-10 2010-09-10 氢和氧的混合气体产生装置和使用该装置的内燃机
JP2011530755A JP5775456B2 (ja) 2009-09-10 2010-09-10 水素および酸素の混合ガス発生装置およびそれを用いた内燃機関
EP10815156A EP2476781A4 (en) 2009-09-10 2010-09-10 APPARATUS FOR PRODUCING A MIXED GAS OF HYDROGEN AND OXYGEN AND INTERNAL COMBUSTION ENGINE USING THE APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-231942 2009-09-10
JP2009231942 2009-09-10

Publications (1)

Publication Number Publication Date
WO2011030556A1 true WO2011030556A1 (ja) 2011-03-17

Family

ID=43732235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005553 WO2011030556A1 (ja) 2009-09-10 2010-09-10 水素および酸素の混合ガス発生装置およびそれを用いた内燃機関

Country Status (5)

Country Link
EP (1) EP2476781A4 (ja)
JP (1) JP5775456B2 (ja)
KR (1) KR101753045B1 (ja)
CN (1) CN102597327B (ja)
WO (1) WO2011030556A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069164A1 (ja) * 2011-11-11 2013-05-16 Hosokawa Kanji Hhoガス発生装置
WO2013170309A1 (en) * 2012-05-18 2013-11-21 Steve Daniel Burns Electrolytic cell
CN104214019A (zh) * 2014-09-12 2014-12-17 湖州康龙电子有限公司 一种智能型内燃机节油器的控制电路及智能型内燃机节油器
WO2016125717A1 (ja) * 2015-02-06 2016-08-11 株式会社日立製作所 電力供給システム
JP2016180177A (ja) * 2015-03-09 2016-10-13 リン, シン−ユンLin, Hsin−Yung ガス発生器
WO2017006381A1 (ja) * 2015-07-03 2017-01-12 萩谷 公康 電解システム
CN108131220A (zh) * 2018-02-08 2018-06-08 北京清旺新能源科技有限公司 一种提高燃料燃烧效率的燃料燃烧助燃系统
US10494992B2 (en) 2018-01-29 2019-12-03 Hytech Power, Llc Temperature control for HHO injection gas
US10605162B2 (en) 2016-03-07 2020-03-31 HyTech Power, Inc. Method of generating and distributing a second fuel for an internal combustion engine
CN114285297A (zh) * 2020-09-27 2022-04-05 华为数字能源技术有限公司 逆变器、动力总成及电动车
US11879402B2 (en) 2012-02-27 2024-01-23 Hytech Power, Llc Methods to reduce combustion time and temperature in an engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT107973B (pt) 2014-10-20 2018-03-29 Ultimate Cell Lda Método para aumentar a eficiência de motores de combustão
CN105112935B (zh) * 2015-09-21 2017-07-11 李云飞 一种过电位控制结构及方法
CN105780043A (zh) * 2016-02-04 2016-07-20 福建方明环保科技股份有限公司 从水中提取包含有氘气的气体的设备及其提取方法
CN107458219A (zh) * 2017-08-10 2017-12-12 广东科学技术职业学院 一种汽车节能动力系统
WO2020130771A1 (es) * 2018-12-18 2020-06-25 Bioactivos Y Nutracéuticos De México S.A. De C.V. Dispositivo generador de hidrógeno para ahorro de combustible

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215309A (ja) * 1995-02-14 1996-08-27 Geochto:Kk 負イオン発生装置
JPH11256382A (ja) * 1998-03-10 1999-09-21 Research Institute Of Innovative Technology For The Earth 水電解槽およびこれを備えたメタノール製造装置
JP2001252663A (ja) * 2000-03-13 2001-09-18 Terumo Corp 電解水生成装置
JP2004197211A (ja) * 2002-12-16 2004-07-15 Koichi Aihara 水素・酸素混合ガス発生装置
JP2005240152A (ja) * 2004-02-27 2005-09-08 Jippu:Kk 水の電気分解方法及び装置
JP3131938U (ja) 2006-12-05 2007-05-31 岡本 忠美 水素酸素混合ガスを利用した水の熱分解による焼却溶融装置
JP2007330844A (ja) * 2006-06-12 2007-12-27 Takeshi Toba 水の水質改質方法およびその装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH596444A5 (ja) * 1976-01-16 1978-03-15 Talenti Pier F
CA2287270C (en) * 1999-10-25 2009-10-13 Gabi Balan Hydrogen generating apparatus and components therefor
US6336430B2 (en) * 1998-06-29 2002-01-08 Fatpower Inc. Hydrogen generating apparatus
JP3720831B2 (ja) * 2004-05-07 2005-11-30 有限会社飛幡恒産 混合化ブラウンガス製造装置及び製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215309A (ja) * 1995-02-14 1996-08-27 Geochto:Kk 負イオン発生装置
JPH11256382A (ja) * 1998-03-10 1999-09-21 Research Institute Of Innovative Technology For The Earth 水電解槽およびこれを備えたメタノール製造装置
JP2001252663A (ja) * 2000-03-13 2001-09-18 Terumo Corp 電解水生成装置
JP2004197211A (ja) * 2002-12-16 2004-07-15 Koichi Aihara 水素・酸素混合ガス発生装置
JP2005240152A (ja) * 2004-02-27 2005-09-08 Jippu:Kk 水の電気分解方法及び装置
JP2007330844A (ja) * 2006-06-12 2007-12-27 Takeshi Toba 水の水質改質方法およびその装置
JP3131938U (ja) 2006-12-05 2007-05-31 岡本 忠美 水素酸素混合ガスを利用した水の熱分解による焼却溶融装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2476781A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069164A1 (ja) * 2011-11-11 2013-05-16 Hosokawa Kanji Hhoガス発生装置
US11879402B2 (en) 2012-02-27 2024-01-23 Hytech Power, Llc Methods to reduce combustion time and temperature in an engine
WO2013170309A1 (en) * 2012-05-18 2013-11-21 Steve Daniel Burns Electrolytic cell
CN104214019A (zh) * 2014-09-12 2014-12-17 湖州康龙电子有限公司 一种智能型内燃机节油器的控制电路及智能型内燃机节油器
WO2016125717A1 (ja) * 2015-02-06 2016-08-11 株式会社日立製作所 電力供給システム
JP2016146679A (ja) * 2015-02-06 2016-08-12 株式会社日立製作所 電力供給システム
JP2016180177A (ja) * 2015-03-09 2016-10-13 リン, シン−ユンLin, Hsin−Yung ガス発生器
WO2017006381A1 (ja) * 2015-07-03 2017-01-12 萩谷 公康 電解システム
US11280261B2 (en) 2016-03-07 2022-03-22 HyTech Power, Inc. Systems for HHO gas second fuel distribution and control
US10605162B2 (en) 2016-03-07 2020-03-31 HyTech Power, Inc. Method of generating and distributing a second fuel for an internal combustion engine
US11815011B2 (en) 2016-03-07 2023-11-14 Hytech Power, Llc Generation and regulation of HHO gas
US10494992B2 (en) 2018-01-29 2019-12-03 Hytech Power, Llc Temperature control for HHO injection gas
US10619562B2 (en) 2018-01-29 2020-04-14 Hytech Power, Llc Explosion safe electrolysis unit
US11828219B2 (en) 2018-01-29 2023-11-28 Hytech Power, Llc Rollover safe electrolysis unit for vehicles
CN108131220A (zh) * 2018-02-08 2018-06-08 北京清旺新能源科技有限公司 一种提高燃料燃烧效率的燃料燃烧助燃系统
CN114285297A (zh) * 2020-09-27 2022-04-05 华为数字能源技术有限公司 逆变器、动力总成及电动车

Also Published As

Publication number Publication date
JPWO2011030556A1 (ja) 2013-02-04
CN102597327A (zh) 2012-07-18
CN102597327B (zh) 2016-08-03
KR101753045B1 (ko) 2017-07-03
JP5775456B2 (ja) 2015-09-09
EP2476781A4 (en) 2013-03-13
KR20120093858A (ko) 2012-08-23
EP2476781A1 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5775456B2 (ja) 水素および酸素の混合ガス発生装置およびそれを用いた内燃機関
US20170159618A1 (en) Hydrogen on Demand Electrolysis Fuel Cell System
EP3101158B1 (en) Electrochemical reactor for producing oxyhydrogen gas
CN101445940B (zh) 一种产生氢氧助燃气体的节能装置及方法
WO2013069164A1 (ja) Hhoガス発生装置
EP3460100B1 (en) Alkaline water electrolysis device and operation method thereof
US20040074781A1 (en) Hydrogen generator for uses in a vehicle fuel system
JP5977352B2 (ja) 内燃機関のためにオンデマンドで水素を発生させる水素補給システム
WO2012017729A1 (ja) ブラウンガス発生システム
CN102369313A (zh) 电解方法、装置和系统
US20170107899A1 (en) Hydrogen Generator and Control for Internal-Combustion Vehicle
US20170107635A1 (en) Hydrogen Generation and Control for Internal-Combustion Vehicle
WO2010048533A2 (en) Dual cylinder hydrogen generator system
JP2012122092A (ja) 燃焼補助装置
WO2011136291A1 (ja) 電気分解槽を有するエンジンシステム
WO2011004344A1 (en) Device for hydrogen enrichment of the fuel of internal combustion engine fed by ammonia, during the start-up and during the steady state
US9932891B2 (en) Engine system
US20130174930A1 (en) Apparatus and methods for a hydroxy gas assisted combustion engine
EP3365542A1 (en) Hydrogen generation and control for internal-combustion vehicle
KR20170107811A (ko) 차량용 산소-수소 혼합가스 발생장치 및 그 제어방법
JP2009041086A (ja) 水素発生装置
JP2017193748A (ja) 酸水素ガスによる内熱機関燃焼補助装置
JP2014125979A (ja) エンジンの制御装置及び制御方法
KR102655125B1 (ko) Pem 수전해 스택을 활용한 내연기관 차량용 연비개선 장치
JP2013108162A (ja) 車両用燃費改善方式

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040453.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815156

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011530755

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127008950

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010815156

Country of ref document: EP