JP2007330844A - 水の水質改質方法およびその装置 - Google Patents

水の水質改質方法およびその装置 Download PDF

Info

Publication number
JP2007330844A
JP2007330844A JP2006162359A JP2006162359A JP2007330844A JP 2007330844 A JP2007330844 A JP 2007330844A JP 2006162359 A JP2006162359 A JP 2006162359A JP 2006162359 A JP2006162359 A JP 2006162359A JP 2007330844 A JP2007330844 A JP 2007330844A
Authority
JP
Japan
Prior art keywords
water
container
crushed
molecules
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006162359A
Other languages
English (en)
Inventor
Takeshi Toba
剛 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHI MITSUE
Original Assignee
NISHI MITSUE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHI MITSUE filed Critical NISHI MITSUE
Priority to JP2006162359A priority Critical patent/JP2007330844A/ja
Publication of JP2007330844A publication Critical patent/JP2007330844A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

【課題】様々な原水をより高度に改質して水処理に関する化学的な負荷の軽減、食品類の酸化防止や制菌等の諸問題を解決する。
【解決手段】被処理水2を破砕して水分子同士の水素結合によるクラスターを分解した破砕水8を形成する水破砕工程Pと、この破砕水8に一部可視光領域を含む紫外線を照射して極性水分子に共鳴振動を励起し、他のイオン原子・イオン分子に対しての親水性・水和性の高い活性水とする光化学反応工程Qとから成る。
【選択図】図3

Description

本発明は、化学薬品や人工由来の物質等を使用せずに、主として物理的な工程で水質改善を行うもので、例えば塩素等のハロゲン原子またはハロゲン化合物等の抑制を必要とする工業用水の処理に使用される水の水質改質方法およびその装置に関する。
近年、各種産業での水使用の局面においては、油脂分固定のための諸材料や、微生物等を基準値以内で多く使用して水の浄化を行っている。また、飲料水の改質では、各種の活性炭や多孔質の天然石や人工セラミックス等により、水を加圧してフィルタリングする等が行われている。
特になし
しかしながら、従来においては、油脂分固定のための諸材料や、微生物等を多く使用して水浄化を行っているため、環境に対する負荷が大きい。しかも、飲料水の改質で使用されるフィルターに目詰まりが生じる等の技術上の問題点も多い。また、食品加工分野においては、物流での魚介類や肉類の褐変、貯蔵品の主として脂肪類の酸化による品質劣化、好気性菌類の繁殖等が重大な問題となり、これを解決するために、従来の食品の品質管理技術においては、乾燥系食品包装等ではJAS規格による窒素ガス充填等により成果を上げているものの、魚介類、食肉類等の所謂生鮮食品類における包装物流についての制菌、鮮度保持等に関しては人工由来の各種添加物に依存しており、適切な処理技術がないのが現状である。
そこで、本発明は、叙上のような従来存した諸事情に鑑み案出されたもので、従来各方面で研究されてきた水の処理技術に、新たに電磁波の技術や関連する光触媒等の技術、液体へのガスの注入技術を複合創案することで、従来の天然石類や人工セラミックス等のフィルター類、人工由来の化学物質を使用せずに、様々な原水をより高度に改質して水処理に関する化学的な負荷の軽減、食品類の酸化防止や制菌等の諸問題を解決することができる水の水質改質方法およびその装置を提供することを目的とする。
上述した課題を解決するため、本発明に係る水の水質改質方法にあっては、被処理水を破砕して水分子同士の水素結合によるクラスターが分解された破砕水を形成する水破砕工程と、この形成された破砕水に一部可視光領域を含む紫外線を照射して極性水分子に共鳴振動を励起させ、他のイオン原子・イオン分子に対しての親水性・水和性の高い活性水とする光化学反応工程とから成ることを特徴としたものである。
また、光化学反応工程は、植物種子類、各種高分子類、非晶質材料、結晶材料、各種双極性分子や結晶水を含む材料の少なくとも1つを破砕水中に浸漬し、前記紫外線を照射することで、材料に含まれる各種形態の水の改質を通じて、諸材料を改質可能にするものである。
本発明に係る水の水質改質装置にあっては、被処理水を破砕して水分子同士の水素結合によるクラスターが分解された破砕水を形成するために、被処理水を高圧加圧噴射し、金属板またはセラミック板の高硬度壁面に衝突粉砕させる水破砕手段と、このようにして形成された破砕水を、他のイオン原子・イオン分子に対しての親水性・水和性の高い活性水とするために、当該破砕水に、一部可視光領域を含む波長100〜500ナノメートル範囲の紫外線を照射して極性水分子に共鳴振動を励起させる光化学反応手段とから成ることを特徴としたものである。
水破砕手段は、被処理水を高圧加圧噴射する加圧ポンプと、この噴射水を衝突させる放物面を形成した高硬度壁面としての金属板またはセラミック板とを備え、光化学反応手段は、破砕水収容可能な容器であって、該容器の内壁面に光触媒性の金属酸化物材料を付設し、且つ内部に紫外線を照射可能とする紫外線放射管を備えて成るものである。
水破砕手段の前処理として、超音波発生装置を備えた容器に被処理水を通過させることより、当該被処理水に20kHz程度もしくはそれ以上の振動を付与するものとしたものである。
光化学反応手段は、紫外線を連続的に照射可能とするよう容器中に設置された紫外線放射管と、紫外線放射効率を高め、且つ安全のために容器外部への紫外線漏洩を防止可能とするよう当該破砕水容器全体を金属薄膜によって電磁波シールドを施して成るものである。
光化学反応手段は、紫外線放射管を、放射紫外線の波長帯域に応じて複数本が同時に使用できるように容器内に設置させ、放射効率を高めることを目的として容器内の破砕水に対し自動水流を生起させるようにしたものである。
水破砕手段、光化学反応手段、容器およびこれらを結ぶ流路それぞれには、アルゴンガス等の不活性ガスもしくは酸素等の活性ガスを注入可能としたものである。
光化学反応手段は、容器内に、植物種子類、各種高分子類、非晶質材料、結晶材料、各種双極性分子や結晶水を含む材料の少なくとも1つを破砕水と共に浸漬し、紫外線を照射することで、材料に含まれる各種形態の水の改質を通じて、諸材料を改質可能としたものである。
以上のように構成された本発明に係る水の水質改質方法およびその装置にあって、本発明では、水破砕工程により、被処理水である原水をクラスター状態の純水から単分子構造に近い透明な状態に戻すことを第1の手順とする。
すなわち、第1の手順では、被処理水に30〜100気圧レベルの高圧をかけて、それを高硬度の壁面に向けて噴射衝突させて、被処理水中に保持されて懸濁の主因をなしている無機、有機の水以外の不純物を分離させる。同時に、液体の凝集力として作用していると考えられるファンデルワールス力(双極子−双極子間の分散型相互作用)や水素結合力に抗して、被処理水を構成している水分子の集合体であるクラスターを単分子に近い状態に解離させる。
第2の手順では、光化学反応工程により、第1の手順で得られた破砕水を容器に収容して電磁波である紫外線を照射し、その電磁振動によって双極性分子である水分子に共鳴振動を励起させる。
この水分子の基本構造は、周知のとおり、1個の酸素原子Oと2個の水素原子Hが共有結合で結ばれており、O−H結合の距離は約0.957Å、H−O−Hの角度は104.5°である。また、酸素原子を正四面体の中心に置いたとき、O−H結合はこの酸素原子から正四面体の略頂点方向に伸びている。このとき、2つのO−H結合の作る角度は104.5°で幾何学的な正四面体の中心角109.5°と非常に近い値となる。また、正四面体の残りの2つの頂点には酸素原子の2個の非共有な孤立電子対が配向している。また、水は水素結合により、直鎖や枝分かれしたクラスターと、四角形から十一角形にわたる多角形のクラスターの混合状態となる。このような水分子の水素結合による影響は、分子量が同程度の他の液体に比べて熱容量、気化熱、表面張力、粘性率を大きくさせている。このような水分子の特性に対し、上記した各原子間距離の整数倍の波長を有する電磁波を照射することで、共鳴吸収理論に従って双極性分子としての水分子振動を励起させて活性化させ、これによって、各種のイオン原子やイオン分子に対する水分子の親水性・水和性を付与させる。
第3の手順では、被処理水の処理後の使用目的に応じて、窒素ガス、アルゴンガス等の不活性ガスや、酸素ガス等の活性ガスを工程中においてより効率的に注入する。
第4の手順では、光化学反応工程での紫外線照射において、容器内に酸化チタン等の光触媒性の金属酸化物を設置し、この光触媒効果によって悪臭の分解、菌の抑制、さらには処理水の改質改善を促進させる。
本発明によれば、従来各方面で研究されてきた水の処理技術に、新たに電磁波の技術や関連する光触媒等の技術、液体へのガスの注入技術を複合創案することで、従来の天然石類や人工セラミックス等のフィルター類、人工由来の化学物質を使用せずに、様々な原水をより高度に改質して水処理に関する化学的な負荷の軽減、食品類の酸化防止や制菌等の諸問題を解決することができる。
すなわち、化学薬品、人工由来の物質を使用せずに、主として物理的な技術を用いて、広範囲な産業分野で用いられる水質改善を行うことができ、水質浄化等における環境負荷の軽減等に寄与することができる。
また、本発明によって得られる処理水は、小クラスターの高振動活性状態にある水分子として想定され、水溶液中のイオン原子またはイオン分子に相互作用して優れた親水性・水和性を示すものであり、例えば塩素等のハロゲン原子またはハロゲン化物等の抑制を必要とする工業用水処理分野にも大きく寄与するものである。
さらに、食品加工分野においては、本発明の処理水を作る工程中、窒素ガス、アルゴンガス等の不活性ガス類をより効率的に注入して酸素を排除することで品質劣化の主要因である酸化を抑制することができ、食品の品質管理にも大きく寄与するものである。
以下、図面を参照して本発明を実施するための最良の一形態を説明する。
本発明に係る水の水質改質方法は、図1に示すように、被処理水を破砕して水分子同士の水素結合によるクラスターが分解された破砕水を形成するための水破砕工程Pと、このようにして形成された破砕水に一部可視光領域を含む紫外線を照射して極性水分子に共鳴振動を励起させ、他のイオン原子・イオン分子に対しての親水性・水和性の高い活性水とするための光化学反応工程Qとから成る。
また、この光化学反応工程Qは、植物種子類、各種高分子類、非晶質材料、結晶材料、各種双極性分子や結晶水を含む材料の少なくとも1つを破砕水中に浸漬し、前記紫外線を照射することで、材料に含まれる各種形態の水の改質を通じて、諸材料を改質可能にするものとなっている。
周知のとおり、この水分子の基本構造は、1個の酸素原子Oと2個の水素原子Hが共有結合で結ばれており、O−H結合の距離は約0.957Å、H−O−Hの角度は104.5°である。また、酸素原子を正四面体の中心に置いたとき、O−H結合はこの酸素原子から正四面体の略頂点方向に伸びている。このとき、2つのO−H結合の作る角度は104.5°で幾何学的な正四面体の中心角109.5°と非常に近い値となる。また、正四面体の残りの2つの頂点には酸素原子の2個の非共有な孤立電子対が配向している(図2参照)。
また、水は水素結合により、直鎖や枝分かれしたクラスターと、四角形から十一角形にわたる多角形のクラスターの混合状態となる。図2(a)では、水分子8個のクラスターが示されている。このような水分子の水素結合による影響は、分子量が同程度の他の液体に比べて熱容量、気化熱、表面張力、粘性率を大きくさせている。このような水分子の特性に対し、上記した各原子間距離の整数倍の波長を有する電磁波を照射することで、共鳴吸収理論に従って双極性分子としての水分子振動を励起させて活性化させ、これによって、各種のイオン原子やイオン分子に対する水分子の親水性・水和性を付与させる。図2(b)では、イオンを取り囲む水分子の模式図として、塩素イオンとの水和状況が示されている。
図3には、水の水質改善装置の具体的な構成が示されている。
本装置は、第1の工程として、原水槽1に貯留する例えば湖沼、河川、市水、海水等の被処理水2を高圧水流ポンプ3により高圧ノズル4を介して破砕室7内に噴射させる。さらに詳しく説明すると、破砕室7内に例えば金属板またはセラミック板等による高硬度壁面6を設け、この高硬度壁面6に被処理水2である噴射原水5を衝突させることによって破砕水8が形成されるものである。このとき、高圧水流ポンプ3としては、各種実験により10気圧ポンプを使用して繰り返し循環噴射する破砕水8を利用することができるようにしているが、必要エネルギー値から判断して約30〜100気圧程度の高圧が好ましい。また、高硬度壁面6に対する噴射原水5の衝突をより有効的に行わせるために、当該高硬度壁面6自体を噴射距離1mに対応する放物面に形成してある。
尚、重力加速度を利用するために、垂直下に噴射しても良い。また、高硬度壁面6によって形成された破砕水8を循環水槽9に貯留して、高圧水流ポンプ3から再度噴射するようにしても良いことは既述のとおりである。
第2の工程では、第1の工程で得られた破砕水8に波長領域が100nmから500nmの紫外線を照射する。すなわち、前記の工程により破砕の完了した被処理水である破砕水8を循環ポンプ10により紫外線管12を備えた容器11内に移送する。このとき、紫外線管12は破砕水8中に浸漬される。この紫外線管12は所望の波長(エネルギー)および出力ワット数を実現するために、容器11内に並列もしくは直列に複数本が設置される。また、紫外線の照射効率を高めることと、人体安全のために容器11全体を金属薄膜等によって電磁シールドすると共に接地を行なう。このようにして全ての処理が完了した処理完了水13は、循環ポンプ10を介して破砕水循環水槽14に貯留され、容器11内に再循環されることで複数回の紫外線照射を可能としてある。そして、最終的に処理完了水13は、循環ポンプ10により処理完了水槽15内に貯留される。
第3の工程では、水に窒素ガスやアルゴンガス等の不活性ガスや、酸素等の活性ガスを注入する。すなわち、不活性ガスや活性ガス等の例えば液体ガス16をガス用配管17から注入効率を上げるための減圧ポンプ20を介して容器11内に気化ガスの状態で注入する。同時に、この液体ガス16は、循環水層9、14、および破砕室7、処理完了水槽15それぞれにも注入される。
第4の工程では、容器11内の紫外線照射環境内で光触媒を生起させる。
すなわち、前記第2の工程では、破砕水8に紫外線を照射するが、その紫外線の波長領域は100nmから500nmである。既に、酸化チタンに紫外線を照射することで電子・正孔対を生じ、空気中の酸素や水と反応することでスーパーオキサイドイオンや水酸ラジカルを生成するという所謂ホンダ・フジシマ効果として周知の技術である光触媒効果に重要な波長は、酸化チタン原子のエネルギーバンドのギャップエネルギー(3.2eV)やプランク定数等から波長が約387.5nmとして換算されている。したがって、当工程においては酸化チタンや酸化亜鉛等の光触媒性の金属酸化物に波長が約387.5nmの紫外線を照射することで、各種の臭気の分解、生菌雑菌類の制御等の光触媒効果を得るよう、前記容器11および処理完了水槽15の内底部には例えば酸化チタンもしくは酸化亜鉛等の光触媒プレート19を目的に応じて着脱可能となるように設置する。
次に、上記した構成による水の水質改善装置の使用・動作について説明する。
先ず、第1の工程として、原水タンク1に貯留する被処理水2を高圧水流ポンプ3により高圧ノズル4を介して破砕室7内に噴射し、破砕室7内に設けられた高硬度壁面6に被処理水2である噴射原水5を衝突させる。そして、このようにして高硬度壁面6によって形成された破砕水8を循環水槽9に貯留し、高圧水流ポンプ3から再度噴射する。
第2の工程として、第1の工程で得られた破砕の完了後の破砕水8を循環ポンプ10により紫外線管12を備えた容器11内に移送する。この処理完了水13は、循環ポンプ10を介して破砕水循環水槽14に貯留され、容器11内に再循環して再度紫外線照射を行った後、最終的に、循環ポンプ10により処理完了水槽15内に貯留される。
第3の工程として、ガス用配管17から注入効率を上げるための減圧ポンプ20を介して容器11内に窒素ガスやアルゴンガス等の不活性ガスや、酸素等の活性ガスを注入する。同時に、この液体ガス16は、循環水層9、14、および破砕室7、処理完了水槽15それぞれにも注入される。
第4の工程として、容器11内の底部に配された酸化チタンもしくは酸化亜鉛等の光触媒プレート19に向けて波長が約387.5nmの紫外線を照射し、この環境内で光触媒を生起させる。このとき、光触媒プレート19の表面に一部の架橋酸素が脱落して酸素欠陥を生じ、ここに破砕水8が解離吸着して化学吸着水(水酸基)を生成し親水性となる。また、植物種子類、各種高分子類、非晶質材料、結晶材料、各種双極性分子や結晶水を含む材料の少なくとも1つを破砕水8中に浸漬し、前記紫外線を照射することで、材料に含まれる各種形態の水の改質を通じて、諸材料が改質される。
図4には、高圧水噴射による原水破砕機構の具体的な構成が示されている。
尚、本構成において、上記した実施の形態と同じ部分には同じ符号を付与してその詳細な説明を省略する。すなわち、本構成では、破砕室7の下方にバルブ7aを介して容器11を設け、該容器11内に配したフィルター11aにより、破砕室7での破砕によって発生する沈殿物を除去するようにしてある。この構成の概略としては、被処理水2が、原水タンク1、高圧水流ポンプ3、破砕室7、容器11、循環ポンプ10、循環水槽9それぞれを循環するように構成してある。
図5には、高圧水噴射による原水破砕機構の他の具体的な構成が示されている。
尚、本構成において、上記した実施の形態と同じ部分には同じ符号を付与してその詳細な説明を省略する。すなわち、本構成では、破砕室7内の高硬度壁面6直前に羽歯車23を設け、該羽歯車23の被処理水2の噴出方向に逆らう矢方向24への回転によって被処理水2の高硬度壁面6に対する衝突速度を制御するものとしてある。そして、破砕室7の下方に連通するよう容器11を設け、該容器11内に配したフィルター11aにより、破砕室7での破砕によって発生する沈殿物を除去するようにしてある。
図6には、高圧水噴射による原水破砕機構の更に他の具体的な構成が示されている。
尚、本構成において、上記した実施の形態と同じ部分には同じ符号を付与してその詳細な説明を省略する。すなわち、本構成では、水破砕手段の前処理として、超音波発生装置21を備えた水槽25に被処理水2を通過させることより、当該被処理水2に20kHz程度もしくはそれ以上の振動を付与する。ついで、超音波処理水槽22内に貯留され、高圧水流ポンプ3の高圧ノズル4により破砕室7内に設けられた高硬度壁面6に衝突させる。
図7には、紫外線管12の具体的な構成が示されている。
尚、本構成において、上記した実施の形態と同じ部分には同じ符号を付与してその詳細な説明を省略する。すなわち、本構成では、光化学反応手段は、紫外線管12を、放射紫外線の波長帯域に応じて複数本が同時に使用できるように容器11内に設置させ、放射効率を高めるよう容器11内の破砕水8に対し自動水流を生起させるようにしてある。例えば、図7(a)に示すように、紫外線管12を内装した長尺管状の容器11を例えば3本を蛇行状に接続してあり、一端から破砕水8が流入し、他端から処理完了水13が流出するようにしてある。
図7(b)には、紫外線管12の他の具体的な構成が示されている。
尚、本構成において、上記した実施の形態と同じ部分には同じ符号を付与してその詳細な説明を省略する。すなわち、本構成では、光化学反応手段は、容器11を透光可能な材質で形成し、この外周に複数環状のもしくはスパイラル状の紫外線管12を巻装してある。
次に、各種実験に基づく分析結果についてその作用効果と共に説明する。
(原水の破砕と作用効果)
本構成による第1工程は、原水に高圧をかけて金属鋼板、セラミックス等の高硬度壁面に向けて衝突させて破砕水8を生成することにある。この実験の結果、明確な有意性として大きく次の2点が確認された。すなわち、破砕前の原水と噴射後の破砕水との温度差が、1回目では12.7℃から15.0℃に昇温した。また、2回目では16.5℃から17.5℃に昇温した。このとき、同一の原水を使用したが、1回目の作業と2回目の作業との間に2時間の時間差があった。1回目のサンプルを2回目に使用したが、2回目の開始温度が15℃でなく、16.5℃であるのは、当日の実験地の気温からみて、放置時間における自然昇温であると判断される。また、放射熱を除く熱エネルギーの本質が、原子や分子等の振動によることは周知のことであるが、本実験の結果も原理通りであった。さらに、実験に使用した原水は、静岡県焼津市沖の水面下約640mから深水層として採集し、半透性膜で塩分を除去したものを用いた。
(原水破砕、紫外線照射による透明度(色度)向上、菌の減少効果)
一般の農業用灌漑地でランダムに採集した水を原水として10気圧に加圧し、噴射距離1mで、鉄板壁に5回繰り返し衝突させて破砕水とし、この破砕水を電磁波シールドを施した別容器に入れ、その水中に波長275nmを中心値とする200ワットの紫外線管を埋設して、所定の時間だけ紫外線照射した破砕水の検査結果が図8に示されている。すなわち、目的とする透明度は大幅に向上し、明確に視認できる。一般の細菌もほぼ消滅した。細菌については、破砕後、一時増殖しているが、その後のテストによると菌の世代終了と共に消滅する。また、検査結果に「その他薬臭」とあるが、薬品は一切添加していない。これは、原水中に存在して水和していた物質が表面化したものと判断される。時間経過と共に異臭は消滅した。また、溜め池の原水であるために、目視できる程度に有機物が浮遊していたが、破砕水では視認できず、残渣としてわずかに水底に散乱していた。さらに、原水、破砕水共にpHに有意差は認められなかった。
一般の水道水を原水として上記と同じ処理水を試作し、原水と処理水との両者間における塩素反応(柴田科学(株)製粉体試薬)を見たところ、水道水原水は桃紫色に反応するが、処理水は反応せず透明であった。原水は市水であり、制菌用に使用されている塩素に反応したものであるが、処理水が塩素試薬に反応しないのは、処理水が原水に比してより高度な水和性を示したものと推定される。水和は溶液中のイオン原子や分子を、双極性分子である水分子が取り囲むように動作するものと説明されているが(岩波理化学事典5版の水和)、当実験も同一の結果を示している。因みに、両者間にはpHについての有意差は無いので、酸化還元とは関係ないものと判断される。
(破砕水の植生への作用効果)
当技術の普遍性も同時に判断するために、前記とは別の灌漑地の水を原水とし、前記と同一工程で処理した水を試験区として、市販の料理用小松菜(根付き泥無し)で、購入後8時間を経過して、萎えた状況のサンプルを処理水に浸漬した。比較区は一般の水道水とした。実験状況は試験区のサンプルはほぼ蘇生し、33時間経過後、有意性が明確になった。その後、蘇生し切れなかった水道水浸漬のサンプルを、試験区の処理水に浸漬し直したところ、約半数の葉が蘇生した。一義的には、水分子クラスターの微小化による浸透圧の変化によるものと判断される。
上記した水道水を原水とする処理水に、一般に食品容器に使用される180cc容量の発泡スチロール製容器(ポリスチレン系合成樹脂から成る)を浸漬し、継続して紫外線照射したものを取り出して自然乾燥し、この容器に原水を満たし前記と同一の塩素試薬反応を行うと、試薬投入直後は桃紫色を呈するが、約5分で桃紫色がほぼ消滅し、目視範囲で透明となった。また、未処理のガラス容器に原水を満たし、上記のように処理した発泡スチロール片で原水を撹拌することにより、桃紫色は徐々に消滅してゆくことが目視された。この場合の発泡スチロール製容器の含水率は1〜1.2%であった。この原因分析については現状未確認であるが、その後の別種の樹脂類による継続試験でも同様の有意性が確認されていることから、樹脂に含まれる水分子の水和性の変化が塩素イオンに影響を及ぼしているものと予測される。また、前記影響力をアボガドロ定数(約6.02×10の23乗)に基づいて定量的に判断すると、樹脂の含水率が1〜0.1%程度であっても、一定体積中に占める水の分子数や分子量は膨大であり、水中に存在するイオン原子やイオン分子と処理水との間の水和性に関する相互の影響力に有意性を発現するものと判断する。
官能試験ではあるが、エチルアルコールについても原水で薄めたサンプルと、同量処理水で薄めたサンプルとでは、処理水で薄めたものが、所謂、角が取れて明らかな有意性を認めることができた。数次の実験結果でも同様であり、処理水とアルコール分子中の水酸基(−OH)に関わる水和性の変化であるものと推測される。
また、イオン化し易い遷移金属である銀(Ag)についても傾向は弱いが、処理水中で紫外線照射することにより、前記と同様の結果が得られた。さらに、共有結合性結晶である水晶についても同様であった。これらは、配位水、格子水等の結晶水と、処理水との相互影響によるものと判断される。
本発明を実施するための最良の形態における水質改質方法の工程図である。 水分子の構造を説明するもので、(a)はクラスター状態にある水分子の模式図、(b)はイオンを取り囲んだ状態の水分子の模式図である。 同じく水質改質装置の構成の概略を示す構成図である。 同じく破砕機構の具体例を示す概略構成図である。 同じく破砕機構の他の具体例を示す概略構成図である。 同じく破砕機構の更に他の具体例を示す概略構成図である。 同じく紫外線管の具体例を示すもので、(a)は蛇行状に配した紫外線管の概略構成図、(b)は容器外壁に紫外線管を巻装した概略構成図である。 紫外線照射した破砕水の検査結果を表形式で示す図である。
符号の説明
P 水破砕工程
Q 光化学反応工程
1 原水槽
2 原水
3 高圧水流ポンプ
4 高圧ノズル
5 噴射原水
6 高硬度壁面
7 破砕室
8 破砕水
9 循環水層
10 循環ポンプ
11 容器
12 紫外線管
13 処理完了水
14 破砕水循環水槽
15 処理完了水槽
16 液体ガス
17 ガス用配管
18 気化ガス
19 光触媒プレート
20 減圧ポンプ
21 超音波発生装置
22 超音波処理水槽
23 羽歯車
24 噴出方向に逆らう矢方向
25 水槽

Claims (9)

  1. 被処理水を破砕して水分子同士の水素結合によるクラスターが分解された破砕水を形成する水破砕工程と、このようにして形成された破砕水に一部可視光領域を含む紫外線を照射して極性水分子に共鳴振動を励起させ、他のイオン原子・イオン分子に対しての親水性・水和性の高い活性水とする光化学反応工程とから成ることを特徴とした水の水質改質方法。
  2. 光化学反応工程は、植物種子類、各種高分子類、非晶質材料、結晶材料、各種双極性分子や結晶水を含む材料の少なくとも1つを破砕水中に浸漬し、前記紫外線を照射することで、材料に含まれる各種形態の水の改質を通じて、諸材料を改質可能にする請求項1記載の水の水質改質方法。
  3. 被処理水を破砕して水分子同士の水素結合によるクラスターが分解された破砕水を形成するために、被処理水を高圧加圧噴射し、金属板またはセラミック板の高硬度壁面に衝突粉砕させる水破砕手段と、このようにして形成された破砕水を、他のイオン原子・イオン分子に対しての親水性・水和性の高い活性水とするために、当該破砕水に、一部可視光領域を含む波長100〜500ナノメートル範囲の紫外線を照射して極性水分子に共鳴振動を励起させる光化学反応手段とから成ることを特徴とした水の水質改質装置。
  4. 水破砕手段は、被処理水を高圧加圧噴射する加圧ポンプと、この噴射水を衝突させる放物面を形成した高硬度壁面としての金属板またはセラミック板とを備え、光化学反応手段は、破砕水収容可能な容器であって、該容器の内壁面に光触媒性の金属酸化物材料を付設し、且つ内部に紫外線を照射可能とする紫外線放射管を備えて成る請求項3記載の水の水質改質装置。
  5. 水破砕手段の前処理として、超音波発生装置を備えた容器に被処理水を通過させることより、当該被処理水に20kHz程度もしくはそれ以上の振動を付与するものとした請求項3または4記載の水の水質改質装置。
  6. 光化学反応手段は、紫外線を連続的に照射可能とするよう容器中に設置された紫外線放射管と、紫外線放射効率を高め、且つ安全のために容器外部への紫外線漏洩を防止可能とするよう当該容器全体を金属薄膜によって電磁波シールドを施して成る請求項3乃至5のいずれかに記載の水の水質改質装置。
  7. 光化学反応手段は、紫外線放射管を、放射紫外線の波長帯域に応じて複数本が同時に使用できるように容器内に設置させ、放射効率を高めることを目的として容器内の破砕水に対し自動水流を生起させるようにした請求項4乃至6記載の水の水質改質装置。
  8. 水破砕手段、光化学反応手段、容器、およびこれらを結ぶ流路それぞれには、アルゴンガス等の不活性ガスもしくは酸素等の活性ガスを注入可能とした請求項3乃至7のいずれかに記載の水の水質改質装置。
  9. 光化学反応手段は、容器内に、植物種子類、各種高分子類、非晶質材料、結晶材料、各種双極性分子や結晶水を含む材料の少なくとも1つを破砕水と共に浸漬し、紫外線を照射することで、材料に含まれる各種形態の水の改質を通じて、諸材料を改質可能とした請求項3乃至8のいずれかに記載の水の水質改質装置。
JP2006162359A 2006-06-12 2006-06-12 水の水質改質方法およびその装置 Pending JP2007330844A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162359A JP2007330844A (ja) 2006-06-12 2006-06-12 水の水質改質方法およびその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006162359A JP2007330844A (ja) 2006-06-12 2006-06-12 水の水質改質方法およびその装置

Publications (1)

Publication Number Publication Date
JP2007330844A true JP2007330844A (ja) 2007-12-27

Family

ID=38930828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162359A Pending JP2007330844A (ja) 2006-06-12 2006-06-12 水の水質改質方法およびその装置

Country Status (1)

Country Link
JP (1) JP2007330844A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030556A1 (ja) * 2009-09-10 2011-03-17 株式会社レガルシィ 水素および酸素の混合ガス発生装置およびそれを用いた内燃機関
KR102055083B1 (ko) * 2019-03-19 2019-12-11 최재윤 개질 속도가 향상된 물의 개질 장치
CN110902785A (zh) * 2019-10-22 2020-03-24 杭州善上水科技有限公司 一种小分子饮用水和制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58216781A (ja) * 1982-06-11 1983-12-16 Hachidai Sangyo Kk 飲料水供給器
JPH0857478A (ja) * 1994-08-24 1996-03-05 Kiyomoto Tekko Kk プランクトンを含む液体の浄化方法及び浄化装置
JP2001300557A (ja) * 2000-02-16 2001-10-30 Kubota Corp 難分解性有機物の分解方法および装置
JP2003339270A (ja) * 2002-05-27 2003-12-02 Nippon Techno Kk 用水の殺菌と活性化により生物を生育する方法及び前記方法に使用される処理装置
JP2005007231A (ja) * 2003-06-17 2005-01-13 Advance Food Tekku Kk 超音波を利用した循環式浴槽の殺菌システム
JP2005193216A (ja) * 2004-01-08 2005-07-21 Hachiro Hirota 汚染物質浄化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58216781A (ja) * 1982-06-11 1983-12-16 Hachidai Sangyo Kk 飲料水供給器
JPH0857478A (ja) * 1994-08-24 1996-03-05 Kiyomoto Tekko Kk プランクトンを含む液体の浄化方法及び浄化装置
JP2001300557A (ja) * 2000-02-16 2001-10-30 Kubota Corp 難分解性有機物の分解方法および装置
JP2003339270A (ja) * 2002-05-27 2003-12-02 Nippon Techno Kk 用水の殺菌と活性化により生物を生育する方法及び前記方法に使用される処理装置
JP2005007231A (ja) * 2003-06-17 2005-01-13 Advance Food Tekku Kk 超音波を利用した循環式浴槽の殺菌システム
JP2005193216A (ja) * 2004-01-08 2005-07-21 Hachiro Hirota 汚染物質浄化装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030556A1 (ja) * 2009-09-10 2011-03-17 株式会社レガルシィ 水素および酸素の混合ガス発生装置およびそれを用いた内燃機関
CN102597327A (zh) * 2009-09-10 2012-07-18 莱伽露茜有限公司 氢和氧的混合气体产生装置和使用该装置的内燃机
JPWO2011030556A1 (ja) * 2009-09-10 2013-02-04 株式会社レガルシィ 水素および酸素の混合ガス発生装置およびそれを用いた内燃機関
JP5775456B2 (ja) * 2009-09-10 2015-09-09 株式会社レガルシィ 水素および酸素の混合ガス発生装置およびそれを用いた内燃機関
KR102055083B1 (ko) * 2019-03-19 2019-12-11 최재윤 개질 속도가 향상된 물의 개질 장치
CN110902785A (zh) * 2019-10-22 2020-03-24 杭州善上水科技有限公司 一种小分子饮用水和制备方法及应用

Similar Documents

Publication Publication Date Title
Chakma et al. Dye decolorization with hybrid advanced oxidation processes comprising sonolysis/Fenton-like/photo-ferrioxalate systems: a mechanistic investigation
US9334183B2 (en) Methods for the treatment of ballast water
Hu et al. Aqueous norfloxacin sonocatalytic degradation with multilayer flower-like ZnO in the presence of peroxydisulfate
Mahmoodi Photocatalytic degradation of textile dyes using ozonation and magnetic nickel ferrite nanoparticle
KR100581746B1 (ko) 수처리 장치
KR102184694B1 (ko) 가시광선 여기형 광촉매를 이용한 공기청정필터 및 이의 제조방법
CA2777952A1 (en) Method and arrangement for a water treatment
JP4346271B2 (ja) 触媒反応の強化方法
Darbandi et al. NiO nanoparticles with superior sonophotocatalytic performance in organic pollutant degradation
Sillanpää et al. NOM removal by advanced oxidation processes
Akdağ et al. Peroxydisulfate-assisted sonocatalytic degradation of metribuzin by La-doped ZnFe layered double hydroxide
Rehman et al. Potential degradation of norfloxacin using UV-C/Fe2+/peroxides-based oxidative pathways
Verma et al. Sonophotocatalytic degradation studies of alizarin reactive red dye
JP2007330844A (ja) 水の水質改質方法およびその装置
Ahmed et al. Advances in ultrasound-assisted synthesis of photocatalysts and sonophotocatalytic processes: A review
CN111320253B (zh) 利用紫外线、可见光、近红外线辐射的光催化过程活化一价氯产生活性氧化物质
KR20070107742A (ko) 액체를 처리하는 방법
Kan et al. Decomposition of aqueous chlorinated contaminants by UV irradiation with H 2 O 2
Maleki et al. Evaluation of sonocatalytic and photocatalytic processes efficiency for degradation of humic compounds using synthesized transition-metal-doped ZnO nanoparticles in aqueous solution
Kansal et al. Parametric optimization of photocatalytic degradation of catechol in aqueous solutions by response surface methodology
Bibak et al. Photocatalytic degradation of malachite green in aqueous solution using TiO2 nanocatalyst
Kidak et al. Degradation of atrazine by advanced oxidation processes
Levichev et al. Photodecomposition of sodium dodecyl sulfate under high-intensity pulsed UV radiation of continuous spectrum and hydrogen peroxide
A Elsayed et al. Advanced Oxidations of Tartrazine Azo-dye
Chae et al. Photo-catalytic degradation of rhodamine B using microwave powered electrodeless discharge lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080709

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110912

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111005

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111216