WO2011136291A1 - 電気分解槽を有するエンジンシステム - Google Patents

電気分解槽を有するエンジンシステム Download PDF

Info

Publication number
WO2011136291A1
WO2011136291A1 PCT/JP2011/060302 JP2011060302W WO2011136291A1 WO 2011136291 A1 WO2011136291 A1 WO 2011136291A1 JP 2011060302 W JP2011060302 W JP 2011060302W WO 2011136291 A1 WO2011136291 A1 WO 2011136291A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolysis tank
water
electrolysis
engine system
engine
Prior art date
Application number
PCT/JP2011/060302
Other languages
English (en)
French (fr)
Inventor
隆 山森
Original Assignee
Yamamori Takashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamori Takashi filed Critical Yamamori Takashi
Priority to JP2012512894A priority Critical patent/JPWO2011136291A1/ja
Publication of WO2011136291A1 publication Critical patent/WO2011136291A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0644Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being hydrogen, ammonia or carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/036Bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0668Treating or cleaning means; Fuel filters
    • F02D19/0671Means to generate or modify a fuel, e.g. reformers, electrolytic cells or membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • F02M25/12Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone the apparatus having means for generating such gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a technique for improving the fuel efficiency of an engine by mixing hydrogen generated by electrolysis of water with the intake air of the engine and burning it together with gasoline or the like.
  • Patent Document 1 hydrogen and oxygen obtained by electrolyzing water are separated, air is mixed with oxygen, and then mixed with hydrogen to drive an internal combustion engine to drive a vehicle, and at the same time, the internal combustion engine generates power.
  • a low-pollution engine-driven vehicle is proposed in which a vehicle drive motor is driven by electric energy generated by connecting machines and the vehicle is driven by the power of both the internal combustion engine and the drive motor.
  • Hybrid vehicles and hydrogen vehicles require special equipment such as motors and hydrogen storage tanks. They contribute to reducing carbon dioxide emissions by being used in newly produced vehicles. However, most of the carbon dioxide currently emitted by automobiles comes from conventional automobiles that do not employ these technologies. Not reducing the carbon dioxide emissions of these existing cars is not a real solution.
  • the low-pollution engine-driven vehicle of Patent Document 1 is also a hybrid specification with a motor and an engine, and cannot be immediately adopted in a conventional vehicle.
  • the inventor of the present invention invented an engine system that improves the fuel efficiency of an automobile with hydrogen obtained by electrolysis and can be immediately adopted in many existing automobiles. And completed. Further, the present invention provides an engine system that can improve the fuel efficiency of a ship engine and a boiler using the same technology.
  • an engine body an electrolysis tank for electrolyzing water with a pulsed current, and a mixer for mixing hydrogen gas generated in the electrolysis tank with air.
  • a generator that generates electrolysis tank power by driving the engine body, a battery that stores the power from the generator, and a power supply from the battery that is converted into a pulsed current for electrolysis
  • An engine system having a pulse generator for supplying to a tank.
  • an engine main body an electrolysis tank for electrolyzing water, and a gas mixer for mixing hydrogen gas and oxygen gas generated in the electrolysis tank with gaseous fuel.
  • a generator that generates electric power for the electrolysis tank by driving the engine body, a battery that accumulates the electric power from the generator, and a current generator that receives a supply of electric power from the battery and supplies a direct current to the electrolysis tank
  • an engine system having the apparatus.
  • a reversing device for reversing the direction in which the current flows at a predetermined time interval for the direct current supplied to the electrolysis tank by the current generating device.
  • the electrolysis tank has an electrolysis tank body for storing water therein, and a cylindrical shape installed so as to be immersed in the water inside the electrolysis tank body or A plurality of plate-shaped electrodes and one or more decomposition-promoting metal plates that are immersed in water inside the electrolysis tank body and installed so as to be sandwiched between the set of electrodes. It has about the engine system as described in any one of Claim 1 thru
  • a fifth invention according to claim 5 relates to the engine system according to claim 4, wherein the electrolysis promoting metal plate is electrically independent of any electrode.
  • the electrode and the decomposition promoting metal plate have a gap between the lower end of the electrode and the bottom surface of the electrolytic cell body so that convection of water is facilitated inside the electrolytic cell body.
  • a seventh aspect of the invention according to claim 7 is the engine system according to any one of 4 to 6, wherein the electrolysis tank further includes a main body cooling device that cools the periphery of the electrolysis tank main body. About.
  • An eighth aspect of the invention according to claim 8 is the engine system according to any one of 4 to 6, wherein the electrolysis tank further includes a water cooling device that cools water inside the electrolysis tank. About.
  • the ninth aspect of the present invention relates to the engine system according to any one of claims 4 to 8, wherein the electrode or the metal plate for promoting decomposition has a large number of small holes.
  • a tenth aspect of the invention according to claim 10 is dependent on claim 1, wherein the pulse generator supplies a rectangular wave having a period of 4 to 6 seconds to the electrode. 4. Claim 5 or claim 6 subordinate to claim 4 subordinate to claim 1, claim 6 subordinate to claim 5 subordinate to claim 1, claim 4 subordinate to claim 1, or claims 4 to 6 subordinate to claim 1. The engine system according to claim 7 dependent on claim 7, claim 8 dependent on claim 4 dependent on claim 1 or claim 9 dependent on claim 1 or claim 9 dependent on claim 1.
  • an ordinary automobile equipped with an engine, a generator and a battery can be simply added with an electrolysis tank, a mixer and a pulse generator for electrolyzing water with a pulsed current, or with water.
  • An engine system capable of improving fuel consumption is provided simply by adding an electrolysis tank, a gas mixer, and a current generator for electrolyzing the fuel.
  • Configuration diagram of engine system of embodiment 1 The perspective sectional view showing the structure of the electrolysis tank of the engine system of Example 1
  • the perspective sectional view of another example of the electrolysis tank of the engine system of Example 1 Diagram of a water vapor removal filter installed in the system for piping for hydrogen gas
  • the figure which shows an example of installation of the mixer in the case of mounting the engine system of Example 1 in a gasoline vehicle.
  • the figure showing the outline of the function of the metal plate for decomposition promotion The perspective sectional view of the electrolysis tank in the engine system of Example 2
  • the perspective sectional view of the example of another electrolysis tank in the engine system of Example 2 The figure showing the concept of the electrolysis tank of the engine system of Example 3.
  • Diagram of the cooling device of Example 4 Diagram of another embodiment of the cooling device of Embodiment 4 Schematic of the electrolysis tank of Example 5 Diagram of electrolysis tank of engine system of embodiment 6
  • the figure of another Example of the electrolysis tank of the engine system of Example 6 Configuration diagram of engine system of embodiment 8
  • the first feature common to the present invention is that, unlike many hydrogen engine systems in which hydrogen stored in a tank is supplied to an engine and burned, water is electrolyzed in situ to obtain the necessary hydrogen. is there. Therefore, the engine system of the present invention does not require a hydrogen storage tank.
  • the second feature common to the present invention is that, unlike many hydrogen automobiles that obtain power solely through combustion of hydrogen, hydrogen is mixed with air, oxygen, or gasoline together with gasoline, light oil or heavy oil (hereinafter referred to as gasoline). It is in point to let you. In other words, hydrogen is used in an auxiliary manner and is not burned alone without gasoline.
  • the third feature common to the present invention is that, unlike many hydrogen automobiles that require a special engine for using hydrogen as fuel, an ordinary gasoline engine is used without modification. is there. That is, the engine system of the present invention only adds an electrolysis tank, a mixer, and a pulse generator for electrolyzing water by a pulsed current to a normal car equipped with a normal engine, a generator, and a battery. Or by adding an electrolysis tank, a gas mixer and a current generator for electrolyzing water.
  • the fuel mixing ratio needs to be adjusted slightly. That is, as compared with the state before the introduction of the engine system of the present invention, the energy is excessive as much as the hydrogen gas is mixed, and the rotation has already been increased by idling. Therefore, adjustments are made to reduce the mixing ratio of gasoline and light oil. In many diesel vehicles, such adjustment can be easily performed by narrowing the fuel valve. However, in many gasoline vehicles, the gasoline injection amount is completely electronically controlled, and such manual adjustment may be difficult. However, although there are restrictions, it goes without saying that such adjustment can be made by changing the electronic program even in such a case. Thus, fuel consumption can be improved by reducing the amount of fuel input.
  • Example 1 mainly relates to the first invention and the like.
  • the second embodiment mainly relates to the fourth invention and the like.
  • Example 3 mainly relates to the sixth invention and the like.
  • the fourth embodiment mainly relates to the seventh invention and the like.
  • the fifth embodiment mainly relates to the eighth invention and the like.
  • the sixth embodiment mainly relates to the ninth invention and the like.
  • the seventh embodiment mainly relates to the tenth invention and the like.
  • the eighth embodiment mainly relates to the second invention, the third invention, the fifth invention, and the like.
  • this invention is not limited to these Examples at all, and can be implemented in various modes without departing from the gist thereof.
  • FIG. 1 is a configuration diagram of an engine system according to the first embodiment.
  • the engine system according to the first embodiment includes an engine body 0101, an electrolysis tank 0102, a mixer 0104, a generator 0105, a battery 0106, and a pulse generator 0107.
  • the required amount of water is stored inside the electrolysis tank, and the water is electrolyzed by receiving a pulse wave from the pulse generator.
  • Hydrogen generated by electrolysis moves to a mixer through a hydrogen gas pipe 0108 provided in the upper part of the electrolysis tank.
  • the mixer obtains hydrogen from the hydrogen gas pipe and air from the air cleaner 0109 and mixes them.
  • this mixed gas of hydrogen and air is further mixed with gasoline by a carburetor and then exploded and burned in a combustion chamber of the engine.
  • a mixed gas of hydrogen and air is compressed in a combustion chamber, and light oil or the like is injected into the compressed gas, whereby explosion combustion occurs.
  • the electricity generated by the generator is stored in a battery.
  • the battery supplies power to the pulse generator, and the pulse generator receives power supply from the battery, converts it into a pulse wave, and supplies it to the electrolysis tank.
  • the “engine body” is an internal combustion engine that uses gasoline, light oil or the like as fuel. Includes both reciprocating and rotary engines.
  • a reciprocating engine since the combustion speed of hydrogen is high, knocking due to an explosion is likely to occur when the air-fuel mixture comes into contact with a heated plug or the like. For this reason, the compression ratio of the air-fuel mixture cannot be increased.
  • the rotary engine is less likely to knock because the air-fuel mixture does not contact the plug until immediately before ignition.
  • a high compression ratio cannot be obtained in a rotary engine, since a high compression ratio cannot be used in the case of an air-fuel mixture containing hydrogen, this disadvantage does not become a handicap.
  • the rotary engine is compatible with hydrogen.
  • the disadvantage of the rotary engine that the combustion efficiency is poor does not change even when hydrogen is used.
  • the engine body includes a diesel engine in addition to a gasoline engine.
  • the engine body is a normal engine driven by gasoline, light oil, etc., and does not require modification or improvement for burning hydrogen.
  • FIG. 2 is a perspective cross-sectional view illustrating the structure of the electrolysis tank of the engine system of the first embodiment.
  • the electrolysis tank includes an electrolysis tank body 0201 and a plurality of electrodes 0202 and 0203.
  • the electrolysis tank body is a container having a hollow inside for storing water, and at the same time, serves as a skeleton for supporting the electrodes and the like inside.
  • a stepped portion 0204 is provided in the lower portion of the side wall of the electrolysis tank main body, and a bottom plate 0205 made of an insulating material is locked to the stepped portion.
  • the plurality of electrodes are installed on the bottom plate so as to be immersed in water inside the electrolysis tank body.
  • the shape of the main body of the electrolysis tank is a cylindrical shape, but this shape has no particular significance. Any other shape such as a box shape may be used as long as a sufficient space for electrolysis is formed in the interior and it has a required strength.
  • a number of holes are formed in the bottom plate, so that water inside the electrolysis tank can freely move between the spaces separated by the electrodes through a space 0208 formed between the bottom plate and the electrolysis tank body. ing.
  • the electrode is connected to a pulse generator outside the electrolytic cell main body by an electric wire 0206 passed through a hole formed in the side wall of the electrolytic cell main body.
  • One electrode serves as a cathode and the other electrode serves as an anode.
  • the electrodes of the present example are cylindrical cylinders with both ends opened, and the cylinders are installed upright so that the openings are up and down.
  • the cylindrical shape is the reason that the space inside the water tank can be used effectively by matching the shape of the electrolysis tank body, and other shapes may be used.
  • one electrode is installed near the side wall surface of the electrolytic cell main body, and the other electrode is installed upright in the center of the interior.
  • the electrode should be installed so that the electrode side wall surface is approximately vertical. This is because the gas generated on the electrode surface is easily raised by buoyancy. The gas generated on the electrode surface reduces the area where the electrode and water are in contact with each other, and reduces the efficiency of electrolysis. If the gas generated on the electrode surface rises quickly and is separated from the electrode surface, the efficiency of electrolysis is improved. Further, in the case of the present invention in which the electrolysis tank is mounted on an automobile, it is expected that bubbles are separated from the electrodes due to vibrations of the engine or road surface.
  • the electrolysis tank body may be provided with a glass tube 0207 that communicates with the inside of the electrolysis tank body so that the water level of the water stored therein can be seen.
  • the electrolysis tank body has a lid that can be opened and closed, and a hydrogen gas pipe for collecting the hydrogen gas generated by the electrolysis and sending it to the mixer is connected to the lid.
  • the electrolysis tank electrolyzes water with a pulsed current.
  • a voltage is applied between the electrodes, electrons are transferred between water and the electrode, and hydrogen is generated from the cathode and oxygen is generated from the anode.
  • electrolysis can be performed more efficiently when a pulse wave is used as the current used for the electrolysis than when a constant voltage is applied as a direct current.
  • Pulse wave refers to a square wave or a square wave that repeats positive and negative or high voltage and low voltage (or zero voltage) with a constant period, and here, in particular, constant voltage and zero voltage. It is preferable to repeat the above.
  • the water stored in the electrolysis tank is a sodium hydroxide solution in which certain sodium hydroxide is dissolved.
  • the concentration is preferably about 50 grams of sodium hydroxide per liter of water.
  • sulfuric acid, sodium carbonate, sodium sulfate and the like can be used.
  • the metal used for the electrode is preferably stainless steel.
  • SUS316L material is most suitable for an electrode of an electrolysis tank because it has a high pitting corrosion potential due to the addition of molybdenum and has excellent corrosion resistance against pitting corrosion due to a potential difference.
  • other usable materials include nickel, platinum, and carbon rods. However, care must be taken in combination with the type of aqueous solution.
  • FIG. 3 is a perspective sectional view of another example of the electrolysis tank of the engine system of Example 1.
  • FIG. Two plate-like electrodes 0302 and 0303 are installed inside the electrolysis tank body 0301. Each electrode has holes in two places, and the electrodes are stably supported by fixing the two support rods 0309 passed through the holes to the side wall surface of the electrolytic cell main body. These electrodes are connected to an external pulse generator by an electric wire 0311 passed through a hole provided in the side wall surface of the electrolytic cell main body.
  • a glass tube may be installed so that the water level inside the electrolysis tank main body can be visually observed in the same manner as the electrolysis tank of FIG.
  • Electrolysis of water generates hydrogen at the cathode and oxygen at the anode. Therefore, hydrogen and oxygen can be extracted separately for each electrode.
  • neither the electrolysis tank of FIG. 2 nor the electrolysis tank of FIG. This is because the generated gas is consumed sequentially and is not stored in large quantities, so there is no particular danger in mixing them. Therefore, in this embodiment, not only hydrogen gas but also oxygen gas is sent to the combustion chamber of the engine.
  • the collected oxygen may be used for oxidizing and burning carbon monoxide, carbonized soot and dust in a DPF (Diesel particulate filter).
  • DPF Diesel particulate filter
  • FIG. 4 is a view of a water vapor removal filter installed in the hydrogen gas piping system.
  • the water vapor removal filter 0460 has a structure that holds water 0461 therein.
  • a hydrogen mixture inlet 0462 is provided at the lower part of the water vapor removal filter, and this is connected to the lid of the electrolysis tank by a hose.
  • a hydrogen mixed gas outlet 0463 is provided at the upper part of the water vapor removing filter, and this is connected to the mixer by a hose.
  • the air-fuel mixture taken in from the hydrogen gas intake port passes through the water inside the water vapor removal filter. Bubbles 0464 in the figure depict the air-fuel mixture passing through the water. At this time, the water vapor contained in the mixture is cooled and liquefied and removed from the mixture.
  • a reserve tank for supplying water to the electrolysis tank may be installed to replenish the consumed water.
  • a water level sensor is installed in the electrolysis tank, and when the water level in the electrolysis tank falls below a predetermined level, the water level sensor detects this, The electric pump may be configured to send water in the reserve tank to the electrolysis tank.
  • FIG. 5 is a diagram illustrating an example of installation of a mixer when the engine system of the first embodiment is mounted on a gasoline vehicle. That is, the mixer 0503 is sandwiched between the air cleaner 0501 and the carburetor 0502.
  • the mixer has the shape of a short pipe, and a pipe 0504 is connected to the side surface of the mixer, and a hydrogen gas pipe 0505 is further connected to the end of the pipe.
  • the air taken in from the air cleaner and the hydrogen gas taken in from the hydrogen gas pipe are mixed inside the mixer.
  • the air / hydrogen mixture is further mixed with gasoline inside the carburetor.
  • the mixer is installed between the carburetor and the engine. In this case, air and gasoline are mixed first, and then hydrogen gas is further mixed.
  • the mixer may be attached to a tube for recombustion of blow-by gas.
  • Blow-by gas is an incombustible gas that leaks into the crankcase through a slight gap between the piston and cylinder in the engine, but since it is restricted from being discharged into the atmosphere, it is mixed with a new mixture and burned.
  • a blow-by gas pipe for sending blow-by gas from the crankcase chamber to the combustion chamber is provided, and this blow-by gas pipe is usually connected to an air pipe for sending air from the air cleaner to the engine.
  • the hydrogen gas pipe is connected to the air pipe via the blow-by gas pipe, and these can be regarded as a mixer as a unit.
  • the “generator” generates electric power for the electrolysis tank by driving the engine body.
  • the generator is called an alternator, dynamo, generator or the like, and a generator mounted on a general automobile or the like can be used as it is. Even if it is for an electrolysis tank, the purpose is not limited to this.
  • the generator is an alternator that generates an alternating current
  • the alternating current is rectified by a diode or the like to be converted into a direct current for use.
  • Battery refers to a rechargeable secondary battery or storage battery, which stores power from the generator.
  • the battery can be used as it is with a normal car.
  • lead acid battery is common, it is not restricted to this.
  • the “pulse generator” receives power from the battery, converts it into a pulsed current, and supplies it to the electrolysis tank.
  • the pulse wave has already been explained.
  • the pulse wave can be generated by an electronic circuit called a multivibrator in which two capacitors are combined. In addition, it can be generated by an electronic circuit called an oscillation circuit, a flip-flop, or the like.
  • the fuel efficiency can be easily improved by simply adding an electrolysis tank, a mixer and a pulse generator to an existing automobile.
  • the engine system of the second embodiment is characterized in that the electrolysis tank in the engine system of the first embodiment has a metal plate for promoting decomposition for performing electrolysis more efficiently. It is.
  • FIG. 6 is a diagram schematically showing the function of the metal plate for promoting decomposition.
  • two metal plates for decomposition promotion 0633 are arranged so as to be immersed in the sodium hydroxide solution at equal intervals.
  • current 0634 flows in the sodium hydroxide solution.
  • the current flowing in the sodium hydroxide solution passes through the metal plate for promoting decomposition on the way.
  • the cathode side surface of the decomposition promoting metal plate is positively charged and the anode side surface is negatively charged. Water is electrolyzed on the surface of the metal plate for promoting decomposition thus charged, and oxygen is generated on the positively charged surface and hydrogen is generated on the negatively charged surface.
  • the metal plate for accelerating decomposition can increase the area where water is decomposed by simply placing it between the electrodes in this way, and as a result, the efficiency of electrolysis can be increased.
  • Example 2 ⁇ Configuration of Example 2>
  • the engine system of the second embodiment is different from the engine system of the first embodiment only in the electrolysis tank, and the other configuration is the same as that of the first embodiment.
  • the electrolysis tank will be described in detail.
  • FIG. 7 is a perspective sectional view of an electrolysis tank in the engine system of the second embodiment.
  • the electrolysis tank includes an electrolysis tank body 0701, a plurality of electrodes 0702 and 0703, and one or more decomposition promoting metal plates 0710.
  • the “electrolysis tank body” is for storing water inside.
  • the plurality of “electrodes” are cylindrical or plate-like electrodes installed so as to be immersed in water inside the electrolysis tank main body.
  • one or more “decomposition promoting metal plates” are cylindrical or plate-like metal plates installed so as to be immersed in water inside the electrolysis tank body and sandwiched between the pair of electrodes. is there.
  • FIG. 7 is an example in the case of a cylindrical shape. In the example of FIG. 7, the shape of the electrolytic cell main body, the electrode, and the decomposition promoting metal plate are all cylindrical, but this shape is not particularly significant as in the case of FIG. Other shapes such as a mold may be used.
  • the metal used for the metal plate for promoting decomposition is preferably stainless steel as in the case of the electrode.
  • SUS316L material is most suitable as a metal plate for promoting decomposition in an electrolysis tank because it has a high pitting corrosion potential due to the addition of molybdenum and has excellent corrosion resistance against pitting corrosion due to a potential difference.
  • other usable materials include nickel, platinum, and carbon rods. However, care must be taken in combination with the type of aqueous solution.
  • FIG. 8 is a perspective sectional view of another example of the electrolysis tank in the engine system of the second embodiment.
  • FIG. 7 shows an example of a “tubular” electrode and a decomposition promoting metal plate.
  • FIG. 8 shows an example of a “plate”.
  • Two plate-like electrodes 0802 and 0803 are installed inside the electrolysis tank main body 0801. Between the two electrodes, two decomposition promoting metal plates 0810 are arranged at equal intervals so as to be sandwiched.
  • the electrode and the metal plate for promoting decomposition are each provided with two holes, and the electrode and the electrode for promoting decomposition are fixed by fixing the two support rods 0809 passed through the holes to the side wall surface of the electrolysis tank body.
  • the metal plate is stably supported.
  • the electrode is connected to an external pulse generator by an electric wire 0811 passed through a hole provided on the side wall surface of the electrolytic cell main body.
  • FIG. 9 is a diagram illustrating a concept of an electrolysis tank of the engine system of the third embodiment.
  • the temperature of the aqueous solution ideal for water electrolysis is set to about 60 to 70 degrees Celsius. However, when the temperature of the aqueous solution exceeds 70 degrees Celsius, the vaporization of the aqueous solution starts and the efficiency of electrolysis deteriorates rapidly. Therefore, it is very important that the temperature of the aqueous solution does not rise too much. Such a temperature rise is likely to occur locally on the electrode surface where electrolysis is performed. Replacing the aqueous solution whose temperature has increased in the vicinity of the electrode surface with an aqueous solution having a low temperature by generating a water flow inside the electrolysis tank has a great effect on preventing temperature increase.
  • the electrolysis tank of the engine system of Example 3 is an electrolysis tank which is devised so that a water flow easily occurs due to a convection phenomenon by providing an appropriate space between the lower part of the electrode and the bottom of the main body of the electrolysis tank.
  • water is electrolyzed actively in the portion facing the spaces 0935, 0936 and 0937 sandwiched between the electrodes 0931 and 0932 and the decomposition promoting metal plate 0933, and the temperature of the aqueous solution filled in this space rises.
  • the electrolysis does not proceed so much in the spaces 0938 and 0939 in the outer portions of the two electrodes, so that the temperature of the aqueous solution filled in these spaces hardly rises.
  • the temperature of the aqueous solution varies depending on the location within the electrolysis tank, and the aqueous solutions having different temperatures have different specific gravities, so that a water flow due to a convection phenomenon occurs within the electrolysis tank.
  • the arrows in the figure indicate the direction of water flow generated in this way.
  • Example 3 In the electrolysis tank of the engine system of Example 3, the lower end of the electrode and the decomposition-promoting metal plate is spaced from the bottom of the electrolysis tank body so that convection of water is easy inside the electrolysis tank body. It is installed to have. In such a configuration, for example, like the electrolysis tank of FIG. 2 of the first embodiment, a bottom plate with a hole is installed so as to have a gap with the bottom of the electrolysis tank body, and an electrode or a metal plate for promoting decomposition is used. Can be realized on the bottom plate.
  • the support rods supporting the electrode and the metal plate for promoting decomposition are held in the interior of the electrolysis tank and the lower part thereof. It can implement
  • Example 3 the engine system provided with the electrolysis tank which can prevent overheating of aqueous solution by the convection phenomenon of aqueous solution is provided.
  • Example 4 The electrolysis tank of the engine system of Example 3 used the convection phenomenon to prevent an increase in water temperature near the electrode. From FIG. 9, it can be seen that cooling the electrolysis tank from the outside is very effective in preventing an increase in the water temperature inside the electrolysis tank. Because the aqueous solution near the side wall surface of the electrolysis tank body is sent to each part of the electrode after sinking to the bottom due to the convection phenomenon, cooling this from the outside leads to cooling the periphery of the electrode It is.
  • FIG. 10 is a diagram of the main body cooling device of the fourth embodiment.
  • a cooling device 1040 is installed around the electrolysis tank body so as to wrap around the side and bottom surfaces of the electrolysis tank body 1001.
  • a water storage space 1041 for holding water is formed between the electrolysis tank body and the cooling device.
  • a cooling water inlet 1042 is provided on the side surface of the cooling device, and a cooling water outlet 1043 is provided on the opposite side surface.
  • the water stored in the water storage space cools the electrolysis tank body, whereby the aqueous solution inside the electrolysis tank body is cooled.
  • the water inside the water storage space warmed by this cooling is taken out from the cooling water outlet, and new cooling water is injected from the cooling water inlet.
  • FIG. 11 is a diagram of another embodiment of the main body cooling device according to the fourth embodiment.
  • a cooling pipe 1144 through which a refrigerant is passed is wound around the side surface and the bottom surface of the electrolysis tank main body 1101.
  • a heat insulating material 1145 surrounds the cooling pipe.
  • the cooling device includes a compressor for compressing the refrigerant, a condenser for releasing heat from the compressed refrigerant, an evaporator for decompressing and evaporating the compressed refrigerant, which are not shown in the figure.
  • Example 4 the engine system provided with the electrolysis tank which can prevent overheating of aqueous solution with a main body cooling device is provided.
  • Example 5 In the electrolysis tank of Example 4, the electrolysis tank body was cooled from the outside, but in the electrolysis tank of Example 5, the aqueous solution inside the electrolysis tank body was directly pumped and cooled.
  • FIG. 12 is a schematic view of an electrolysis tank of Example 5.
  • the lid 1246 placed on the electrolysis tank main body 1201 has a pumping port 1247 for pumping the aqueous solution heated inside the electrolysis tank main body and the aqueous solution cooled after being pumped back to the electrolysis tank main body.
  • Return port 1248 is provided.
  • the aqueous solution pumped from the pumping outlet is cooled by a water cooling device 1249. Since the aqueous solution heated inside the electrolysis tank main body rises to the upper part of the water tank, the pumping outlet should be installed so that the mouth is located near the water surface.
  • the return port is preferably installed so that the mouth is located at the bottom of the electrolysis tank main body so that the cooled aqueous solution can reach the entire surface from the bottom of the water tank.
  • Example 5 the engine system provided with the electrolysis tank which can prevent overheating of aqueous solution directly with a water cooling device is provided.
  • the engine system of Example 6 is an engine that can perform electrolysis of water more efficiently by forming a large number of holes in an electrode in an electrolysis tank or a metal plate for promoting decomposition. System.
  • FIG. 13 is a diagram of an electrolysis tank of the engine system of the sixth embodiment.
  • the decomposition promoting metal plate 1310 has a large number of holes, and the electrodes 1302 and 1303 have no holes.
  • the holes formed in this way improve the flow of electricity in the aqueous solution and improve the flow of the aqueous solution in the electrolysis tank caused by the convection phenomenon, and as a result, increase the efficiency of water electrolysis. is there.
  • FIG. 14 is a diagram of another embodiment of the electrolysis tank of the engine system of the sixth embodiment. This is also a diagram in the case where only the decomposition promoting metal plate 1410 has a large number of holes, and the electrodes 1402 and 1403 have no holes.
  • Electrodes may be provided in the electrode, but it is particularly effective when provided in a metal plate for promoting decomposition.
  • an engine system including an electrolysis tank in which water electrolysis is more efficiently performed by a large number of holes is provided.
  • the engine system of the seventh embodiment is an engine system in which the pulse wave supplied from the pulse generator is repeated with a period of 4 seconds to 6 seconds, whereby water can be efficiently electrolyzed.
  • Example 7 ⁇ Configuration of Example 7>
  • the pulse generator and pulse generation method have already been described.
  • a widely known method for adjusting the cycle can be adopted, and the description thereof is omitted.
  • an engine system including an electrolysis tank in which electrolysis of water is efficiently performed by setting an appropriate pulse cycle is provided.
  • the engine system of Example 8 includes an engine body, an electrolysis tank, a gas mixer, a generator, a battery, and a current generator.
  • An example of the system configuration diagram is the same as that shown in FIG. 1 for the engine system of the first embodiment.
  • the mixer 0104 in FIG. 1 is used as a gas mixer, the pulse generator 0107 is used as a current generator (a direct current). Occurrence).
  • the required amount of water is stored inside the electrolysis tank, and the water is electrolyzed by receiving a direct current from the current generator.
  • Hydrogen gas and oxygen gas generated by electrolysis move to a gas mixer through a gas pipe provided in the upper part of the electrolysis tank.
  • the gas mixer hydrogen gas and oxygen gas obtained from the gas pipe and gaseous fuel are mixed and explosively burned in the combustion chamber of the engine body.
  • Most of the power obtained by explosion combustion is used for propulsion of automobiles and ships, but a part of it is used for power generation by a generator.
  • the electricity generated by the generator is stored in a battery.
  • the battery supplies power to the current generator, and the current generator obtains power from the battery and supplies this direct current to the electrolysis tank.
  • the engine system of the eighth embodiment includes an engine system further including a reversing device for reversing the direction of current flow at a predetermined time interval with respect to the direct current supplied to the electrolysis tank by the current generating device.
  • the engine system of Example 8 includes one or more decomposition-promoting metals that are immersed in water inside the electrolysis tank body and that are installed so as to be sandwiched between the pair of electrodes.
  • the electrolysis-promoting metal plate is electrically independent of any electrode.
  • the engine to which the engine system of this embodiment can be applied includes a marine engine as well as an automobile engine.
  • FIG. 15 is a configuration diagram of an engine system according to the eighth embodiment.
  • the engine system according to the eighth embodiment includes an engine body 1501, an electrolysis tank 1502, a gas mixer 1504, a generator 1505, a battery 1506, and a current generator 1507.
  • the electrolysis tank and the gas mixer are connected by a gas pipe 1508 for sending hydrogen gas and oxygen gas generated in the electrolysis tank to the gas mixer.
  • a gas pipe 1508 for sending hydrogen gas and oxygen gas generated in the electrolysis tank to the gas mixer.
  • two electrodes 1511 and 1512 and one metal plate 1513 for promoting decomposition are provided in the electrolysis tank.
  • the engine system of the present embodiment is different from the engine system described in the above-described embodiments such as the embodiment 1, (1)
  • the current generator is configured to supply a direct current to the electrolyzer without converting it into a pulse current when it receives power from the battery, (3)
  • It is characterized in that it has a gas mixer for mixing hydrogen gas and oxygen gas generated in the electrolysis tank with gaseous fuel.
  • Other configurations of the engine main body, the generator, and the battery are the same as those of the engine system of the first embodiment and the like are not described here.
  • FIG. 16 is a perspective view illustrating an example of the structure of the electrolysis tank of the engine system of the eighth embodiment.
  • the electrolysis tank 1602 shown in this drawing two plate-like electrodes 1611 and 1612 and one sheet of decomposition promoting metal plate 1613 are disposed so as to be sandwiched therebetween.
  • the electrolysis tank is partitioned by a partition plate at the center, and a pair of electrodes and a decomposition promoting metal plate sandwiched between the electrodes are disposed on both sides thereof. That is, this is an example in which a total of six plates are arranged. Details of the configuration of the electrode and the electrode plate for promoting decomposition will be described later.
  • the shape of the electrolysis tank body is limited as long as it has sufficient strength for electrolysis inside and has the necessary strength.
  • the point which is not similar is the same as that of the first embodiment, and may be a columnar shape or other shapes other than this.
  • the electrolysis tank of the engine system of the present embodiment is also an electrolysis tank that is devised so that a water flow due to a convection phenomenon easily occurs by providing an appropriate space between the lower part of the electrode and the bottom of the main body of the electrolysis tank. desirable.
  • HHO gas is generated by electrolysis.
  • the HHO gas is a gas having a 2: 1 mixing ratio of hydrogen and oxygen obtained by electrolyzing pure water. It is also a clean gas that does not generate harmful substances such as CO and dioxins.
  • the mixing ratio of hydrogen and oxygen in the gas generated by electrolysis in this embodiment does not have to be strictly 2: 1.
  • the water stored in the electrolysis tank has a purity called pure water, particularly ultrapure water or pure water, which is almost 100%.
  • ultrapure water can be generated using a known ultrapure water production apparatus, and may be supplied to the electrolysis tank from a tank in which ultrapure water is stored.
  • a reserve tank for supplying water to the electrolysis tank may be installed to replenish the water.
  • a water level sensor is installed in the electrolysis tank, and when the water level in the electrolysis tank falls below a predetermined level, the water level sensor detects this, The same applies to the point that the electric pump may be configured to send water in the reserve tank to the electrolysis tank.
  • the electrolysis tank may be provided with electrodes or a metal plate for promoting decomposition.
  • the metal plate for promoting decomposition is one or more cylindrical or plate-like members that are immersed in water inside the electrolysis tank main body and installed so as to be sandwiched between a pair of electrodes.
  • the decomposition promoting metal plate is disposed so as to be located exactly in the middle of the pair of electrodes.
  • two plate-like electrodes 1502 and 1503 are installed inside the electrolysis tank main body 1501. Moreover, in the example of this figure, the plate-shaped decomposition
  • stimulation metal plate is provided in the form pinched
  • the pair of electrodes and the decomposition promoting metal plate are arranged in parallel to each other.
  • the feature of the metal plate for promoting decomposition of the present embodiment is that it is independent of any electrode in terms of potential. “Electrically independent of any electrode” means that the decomposition promoting metal plate is insulated from any electrode and is not in a zero potential state, that is, grounded. The state that is not done. As an example of the arrangement for ensuring such a state, a step portion is provided in the lower portion of the side wall of the electrolysis tank main body in the same manner as described with reference to FIG. It is conceivable that a bottom plate made of an insulating material is locked, and an electrode and a metal plate for promoting decomposition are arranged thereon. Further, as an example of a shape different from that shown in FIG. 2, for example, as shown in FIG.
  • two holes are formed in the electrode and the metal plate for promoting decomposition, and an insulator is used as the material 2.
  • the electrode and the decomposition promoting metal plate may be stably supported by fixing the support rod 1709 of the book to the electrolytic tank body side wall surface 1701a.
  • the “decomposition promoting metal plate” of the present embodiment is also for ensuring that the electrode needs a sufficient area for efficient electrolysis, as described in the first embodiment. .
  • the characteristics of the metal plate for promoting decomposition of the present embodiment are configured so as to be independent of any electrode as described above. However, even in such a configuration, the metal plate for promoting decomposition is charged. When the current flows in the sodium hydroxide solution, the current passes through the surface of the metal plate for promoting decomposition on the way. Thereby, the cathode side surface of the decomposition promoting metal plate is positively charged and the anode side surface is negatively charged. In the case of Example 1, water is electrolyzed on the surface of the metal plate for promoting decomposition thus charged, and oxygen is generated on the positively charged surface and hydrogen is generated on the negatively charged surface. It is the same.
  • such a metal plate for promoting decomposition may be cylindrical, and the number of sheets may be two or more when it is provided.
  • a total of six electrodes and an example of the dimensions of the decomposition promoting metal plate are about 1 mm in thickness and about 160 mm ⁇ 140 mm in height ⁇ length.
  • the distance between the metal plate for promoting decomposition and each electrode is about 15 mm.
  • the metal used for the electrode is preferably stainless steel, particularly SUS316L. This point is the same as that described in the first embodiment, and the reason is as described there.
  • a suitable material for the metal plate for promoting decomposition is stainless steel, particularly SUS316L.
  • the “gas mixer” is for mixing hydrogen gas and oxygen gas generated in the electrolysis tank with gaseous fuel.
  • the hydrogen gas and oxygen gas generated in the electrolysis tank are preferably HHO gas.
  • the mixed gas of hydrogen gas / oxygen gas and gaseous fuel mixed in the gas mixer is sent to the combustion chamber of the engine and burned in a usual cycle. That is, in the case of a gasoline engine, the mixed gas is explosively burned in the combustion chamber of the engine. At that time, the mixed gas may be guided deep inside the combustion chamber by a nozzle or the like in order to increase the combustion efficiency. Further, in the case of a diesel engine, the mixed gas is compressed in the combustion chamber, and light oil or the like is injected into the compressed gas so that it is explosively burned.
  • the “current generator” obtains power supply from the battery and supplies this direct current to the electrolysis tank.
  • the difference from the first embodiment is that a direct current is supplied to the electrolysis tank without being converted into a pulsed current.
  • Control means In this embodiment, direct current is used for electrolysis instead of pulsed current. In this case, with the passage of time, the temperature of the water in the electrolysis tank rises, causing a problem that it becomes difficult to generate HHO gas. Therefore, it is desirable that the engine system of the present embodiment has a control means for efficiently performing electrolysis including measures for these problems.
  • electrolysis is performed by applying a constant voltage and supplying a direct current, but it is necessary to control the voltage in order to perform electrolysis with a small current.
  • a voltage of 24 V at the time of incoming power is set to 12 V at the time of DC conversion.
  • the minimum electric current required for the electrolysis in this example can be supplied to the electrolysis tank.
  • a control means for coping with the above-mentioned temperature rise problem for example, it is conceivable to provide a reversing device for reversing the direction of current flow at predetermined time intervals.
  • the reversing device has, for example, a timer and a switch, and switches the direction in which the current flows at predetermined time intervals by using the timer function of the timer.
  • the predetermined time interval is a matter that should be appropriately designed according to the area and thickness of the electrode and the metal plate for promoting decomposition, the distance between the electrode and the metal plate for promoting decomposition, the amount of water in the electrolysis tank, etc.
  • each of the electrodes and the decomposition promoting metal plate has a thickness of about 1 mm, a height ⁇ length of about 160 mm ⁇ 140 mm, and a distance between the decomposition promoting metal plate and each electrode is about 15 mm.
  • the temperature of water in the electrolysis tank exceeded 50 ° C. after about 2 hours from the start of current flow, and it was obtained because it became difficult to generate HHO gas. It's time.
  • the current may be stopped once the predetermined time has elapsed, and then the current may be allowed to flow in the reverse direction.
  • the voltage may be lowered when the current value reaches a certain value.
  • a pump for sending cooling water into the electrolysis tank at predetermined time intervals may be provided.
  • the predetermined time interval is also designed according to the dimensions of the electrodes and the metal plate for promoting decomposition, etc., but in accordance with the above example, for example, once every 20 minutes can be considered.
  • the amount of HHO gas that could be obtained instantaneously was about It was 450cc.
  • the volume of HHO gas obtained by electrolysis performed by supplying a current of 1A is about 10 cc. Therefore, according to the configuration of this embodiment, the amount of HHO gas is about three times that (about 30 cc per A). Thus, it was demonstrated that more HHO gas can be generated with a smaller current.
  • a filter for removing this impurity may be provided in the vicinity of the electrolysis tank.
  • water also preferably ultrapure water
  • a stainless steel member is put in a form that is submerged in water.
  • the gas generated in the electrolysis tank is taken out and passed through the filter from the bottom to the top, so that the gas containing impurities becomes HHO gas and other substances by the action of the stainless steel member, and the combustion chamber inside the engine Impurities contained in the gas fed into the gas can be reduced to the limit.
  • the stainless steel member has a large surface area. For this reason, for example, a scoured stainless steel member (so-called stainless steel scourer) is preferably used.
  • HHO gas plays a role of helping combustion of non-combustible gas (blow-by gas).
  • non-combustible gas low-by gas
  • gasoline, heavy oil, etc. which are fuels for automobiles, etc. contain olefinic hydrocarbons.
  • incomplete combustion occurs due to lack of hydrogen, causing non-combustion.
  • Generate gas This non-combustible gas causes pollution and is subject to exhaust gas regulations. For this reason, it is necessary to return the incombustible gas to the combustion chamber and re-combust it.
  • the HHO gas is guided to the incombustible gas supply path, and this is mixed with the incombustible gas for combustion. If it is configured to supply to the chamber, it becomes possible to eliminate the shortage of hydrogen and to efficiently burn the non-combustion gas.
  • the engine system of this embodiment can also be used for boilers.
  • the HHO gas is not supplied directly to the combustion chamber, but the HHO gas is mixed with the fuel and air before the HHO gas can be stabilized.
  • the fuel efficiency is improved only by adding an electrolysis tank, a gas mixer, and a current generator for electrolyzing water to an ordinary automobile equipped with an engine, a generator, and a battery. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【課題】既存のエンジン等に改造を施すことなく、また、危険な水素貯蔵タンクを搭載することなく、電気分解槽を含む簡単な装置の追加のみにより燃費を向上させる。 【解決手段】エンジン本体と、パルス状の電流により水を電気分解するための電気分解槽と、電気分解槽で発生する水素ガスを空気と混合するための混合器と、電気分解槽用電力を発生する発電機と、電力を蓄積するバッテリーと、バッテリーからの電力をパルス状の電流に変換して電気分解槽に供給するパルス発生装置とを有するエンジンシステムを提供する。また、上記電気分解槽、混合器、パルス発生装置に代えて、直流電流で水を電気分解するための電気分解槽、電気分解槽で発生する水素ガスと酸素ガスとを気体燃料と混合するための気体混合器、バッテリーから電力の供給を受けて、直流電流を電気分解槽に供給する電流発生装置を有するエンジンシステムを提供する。

Description

電気分解槽を有するエンジンシステム
 本願発明は、水の電気分解で発生した水素をエンジンの吸気に混合してガソリンなどとともに燃焼させることにより、エンジンの燃費を向上させるための技術に関する。
 環境問題のなかでも二酸化炭素排出による温暖化はその中心をなすものである。自動車のエンジンからの排気ガスは二酸化炭素排出源の主要なものの一つであるが、その環境対策としては、エタノール等のバイオ燃料をガソリンに代替させたり、動力源を電気モータとガソリンエンジンのハイブリッドとすることが行われている。そしてこれらとは別に二酸化炭素を全く排出しないものとして水素を利用したエンジンの開発が進められてきた。
 水素は酸素と反応させて燃焼させた場合水となり、窒素酸化物や二酸化炭素を全く生じさせない。また、ハイブリッドエンジンが蓄電池やモータなど従来の自動車にはなかった多くの新技術を必要とするのに対し、水素の燃焼には従来のレシプロエンジンやロータリーエンジンの技術の多くをそのまま利用できるといった利点がある。しかし、問題も残されている。水素エンジン搭載車の多くは水素をタンクに貯蔵する必要がある。この水素貯蔵タンクは、気体の水素を高圧タンクに貯蔵する方法と、冷却した液体水素を貯蔵する方法とがあるが、前者は非常に高圧な水素を安全に貯蔵する必要があり、後者は液体水素の貯蔵には極低温であることを必要とし断熱が万全でないと液体水素が気化して失われるという問題ある。これらは完全には解決されていない。
 そこで、水素を貯蔵するのではなく電気分解により必要に応じて生成するという発想が生まれる。特許文献1は、水を電気分解して得た水素と酸素を分離し、この酸素に空気を混合したのち水素と混合して内燃機関を駆動して車輛を走行させ、同時に該内燃機関に発電機を連結して発電した電気エネルギーで車輌駆動モータを駆動して、内燃機関と駆動モータ双方の動力で車輌を走行させる低公害エンジン駆動車を提案している。
特開2003-227363
 ハイブリッド車も水素自動車もモータや水素貯蔵タンクといった特別な装備を必要とするものである。それらは、新しく生産される自動車に採用されることにより二酸化炭素排出削減に貢献するものである。しかし、現在自動車により排出されている二酸化炭素のほとんどはこれらの技術を採用されていない従来の自動車によるものである。これら既存の自動車の二酸化炭素排出を削減しないことには真の問題解決とはならない。特許文献1の低公害エンジン駆動車もモータとエンジンによるハイブリッド仕様であり、従来自動車に即座に採用できるものではない。
 本願発明者は、以上のような問題に鑑みて、電気分解により得た水素により自動車の燃費を改善するエンジンシステムであって、かつ、既存の多くの自動車に即座に採用可能なエンジンシステムを発明し、完成させたものである。また、同様の技術を用いて、船舶のエンジンやボイラーの燃費を改善することも可能なエンジンシステムを提供するものである。
 請求項1に記載の第1発明は、エンジン本体と、パルス状の電流により水を電気分解するための電気分解槽と、電気分解槽で発生する水素ガスを空気と混合するための混合器と、エンジン本体の駆動により電気分解槽用電力を発生する発電機と、発電機からの電力を蓄積するバッテリーと、バッテリーから電力の供給を受けて、これをパルス状の電流に変換して電気分解槽に供給するパルス発生装置と、を有するエンジンシステム、に関する。
 請求項2に記載の第2発明は、エンジン本体と、水を電気分解するための電気分解槽と、電気分解槽で発生する水素ガスと酸素ガスとを気体燃料と混合するための気体混合器と、エンジン本体の駆動により電気分解槽用電力を発生する発電機と、発電機からの電力を蓄積するバッテリーと、バッテリーから電力の供給を受けて、直流電流を電気分解槽に供給する電流発生装置と、を有するエンジンシステム、に関する。
 請求項3に記載の第3発明は、前記電流発生装置にて電気分解槽に供給される直流電流を、所定の時間間隔で電流の流れる方向を逆転させる逆転装置をさらに有する請求項2に記載のエンジンシステム、に関する。
 請求項4に記載の第4発明は、前記電気分解槽は、内部に水を貯蔵するための電気分解槽本体と、前記電気分解槽本体内部において水に没するように設置された筒状又は板状の複数の電極と、前記電気分解槽本体内部において水に没し、かつ、前記一組の電極に挟まれるように設置された筒状又は板状の一以上の分解促進用金属板を有することを特徴とする請求項1乃至3のいずれか一に記載のエンジンシステム、に関する。
 請求項5に記載の第5発明は、前記電気分解促進用金属板は、いずれの電極とも電位的に独立である請求項4に記載のエンジンシステム、に関する。
 請求項6に記載の第6発明は、前記電極及び分解促進用金属板は、電気分解槽本体内部にて水の対流が容易となるように、その下端が電気分解槽本体底面と隙間を持つように設置されていることを特徴とする請求項4又は5に記載のエンジンシステム、に関する。
 請求項7に記載の第7発明は、前記電気分解槽は、電気分解槽本体の周囲を冷却する本体冷却装置をさらに有することを特徴とする4乃至6のいずれか一に記載のエンジンシステム、に関する。
 請求項8に記載の第8発明は、前記電気分解槽は、電気分解槽内部の水を冷却する水冷却装置をさらに有することを特徴とする4乃至6のいずれか一に記載のエンジンシステム、に関する。
 請求項9に記載の第9発明は、前記電極又は分解促進用金属板は、多数の小穴を有することを特徴とする請求項4乃至8のいずれか一に記載のエンジンシステム、に関する。
 請求項10に記載の第10発明は、前記パルス発生装置は4秒乃至6秒を周期とする矩形波を前記電極に供給することを特徴とする請求項1、請求項1に従属する請求項4、請求項1に従属する請求項4に従属する請求項5もしくは請求項6、請求項1に従属する請求項5に従属する請求項6、請求項1に従属する請求項4乃至6に従属する請求項7、請求項1に従属する請求項4乃至6に従属する請求項8又は請求項1に従属する請求項4乃至8に従属する請求項9に記載のエンジンシステム、に関する。
 本願発明によれば、エンジン、発電機及びバッテリーを備えた通常の自動車に、パルス状の電流により水を電気分解するための電気分解槽、混合器及びパルス発生装置を追加するのみで、もしくは水を電気分解するための電気分解槽、気体混合器及び電流発生装置を追加するのみで、燃費を向上させることのできるエンジンシステムが提供される。
実施例1のエンジンシステムの構成図 実施例1のエンジンシステムの電気分解槽の構造を表す斜視断面図 実施例1のエンジンシステムの電気分解槽のもうひとつの実施例の斜視断面図 前記水素ガス用配管の系統中に設置された水蒸気除去フィルターの図 実施例1のエンジンシステムをガソリン自動車に搭載する場合における混合器の設置の一例を示す図 分解促進用金属板の機能の概略を表す図 実施例2のエンジンシステムにおける電気分解槽の斜視断面図 実施例2のエンジンシステムにおけるもうひとつの電気分解槽の例の斜視断面図 実施例3のエンジンシステムの電気分解槽の概念を表す図 実施例4の冷却装置の図 実施例4の冷却装置のもうひとつの実施例の図 実施例5の電気分解槽の概略図 実施例6のエンジンシステムの電気分解槽の図 実施例6のエンジンシステムの電気分解槽のもうひとつの実施例の図 実施例8のエンジンシステムの構成図 実施例8のエンジンシステムの電気分解槽の構造の一例を表す斜視図 実施例8のエンジンシステムの電気分解槽の構造の別の一例を表す斜視図
0101    エンジン
0102    電気分解槽
0104    混合器
0105    発電機
0106    バッテリー
0107    パルス発生装置
0108    水素ガス用配管
0109    エアクリーナ
 本願発明に共通の第一の特徴は、タンクに貯蔵された水素をエンジンに供給して燃焼させる多くの水素エンジンシステムとは異なり、水をその場で電気分解して必要な水素を得る点にある。従って、本願発明のエンジンシステムは水素貯蔵タンクを必要としない。
 本願発明に共通の第二の特徴は、もっぱら水素の燃焼により動力を得る多くの水素自動車とは異なり、水素をガソリン、軽油又は重油(以下、ガソリン等という)とともに空気もしくは酸素と混合して燃焼させる点にある。水素はいわば補助的に使用されるのであって、ガソリン等なしに単独で燃焼させることはない。
 本願発明に共通の第三の特徴は、水素を燃料とするための特別のエンジンを必要とする多くの水素自動車と異なり、通常のガソリンエンジンを改造することなくそのまま使用するものであるという点にある。すなわち本願発明のエンジンシステムは、通常のエンジン、発電機及びバッテリーを備えた通常の自動車に、パルス状の電流により水を電気分解するための電気分解槽、混合器及びパルス発生装置を追加するのみで、もしくは水を電気分解するための電気分解槽、気体混合器及び電流発生装置を追加するのみで、構成することが出来る。
 但し、燃料の混合比率については若干の調整を必要とする。すなわち、本発明のエンジンシステム導入前の状態と比べるとそのままでは水素ガスを混合した分だけエネルギーが過剰な状態となり、アイドリングで既に回転が上がった状態になる。そこで、ガソリンや軽油の混合比率を下げるための調整を行う。ディーゼル車等の多くでは燃料バルブを絞ることでそのような調整を簡単に行うことが出来る。しかし、ガソリン車の多くではガソリン噴射量が完全電子制御されており、このような手動での調整が困難な場合がある。但し、規制はあるが、そのような場合であっても電子プログラムを変更することによりそのような調整が出来ることは言うまでもない。このように燃料の投入量を絞ることにより燃費の向上が得られる。
 このような燃費向上の効果についてはエネルギー保存則の観点から疑問の目が向けられるかもしれない。すなわち、水素ガスを得るために電気が使用され、その電気はエンジンで燃料を燃焼させて得られるわけであるから結局燃費の向上はあり得ないと。しかし、本発明がエネルギー保存則に反しないことは次の例から明らかである。市街地では交通信号により頻繁に停止することを余儀なくされるが、その間のアイドリングでは燃料は無駄に燃焼されるだけである。アイドリング中の回転を発電に有効利用し、その電力を後の走行時に活用できれば燃料の無駄は減少するはずである。また、走行中であっても自動車を停止させるときには車輪に装着されたブレーキにより制動が掛けられ、自動車の運動エネルギーの多くはブレーキ部分において熱エネルギーと変わってしまうわけであるが、一部のエネルギーが発電機を回転させて電気エネルギーへと変換されることにより制動力に寄与している。惜しむらくは、通常の自動車においてはそのようにして発電された多くの電気は消費されることなくバッテリーから放電されるか、過充電を避けるために利用されていない。本発明によれば、このように制動時に無駄に失われるエネルギーの一部を発電に振り向け、そうして得られた電力を加速時に活用することができる。このようにして得られる燃費の向上がエネルギー保存則に反しないことは明らかである。
 以下、発明ごとに具体的な実施例を紹介する。実施例1は主に第1発明などに関する。実施例2は主に第4発明などに関する。実施例3は主に第6発明などに関する。実施例4は主に第7発明などに関する。実施例5は主に第8発明などに関する。実施例6は主に第9発明などに関する。実施例7は主に第10発明などに関する。実施例8は主に第2発明、第3発明、第5発明などに関する。なお、本願発明はこれら実施例に何ら限定されるものではなく、その要旨を逸脱しない範囲において、種々なる態様で実施し得る。
 <実施例1の概念>
 図1は、実施例1のエンジンシステムの構成図である。実施例1のエンジンシステムは、エンジン本体0101と、電気分解槽0102と、混合器0104と、発電機0105と、バッテリー0106と、パルス発生装置0107とを有する。
 電気分解槽の内部には必要量の水が溜められており、パルス発生装置からパルス波の供給を受けて水を電気分解する。電気分解により発生した水素は電気分解槽上部に設けられた水素ガス用配管0108を通って混合器へと移動する。混合器は、前記水素ガス用配管から水素を、エアクリーナ0109から空気を得て、これらを混合する。ガソリンエンジンの場合、この水素と空気の混合気体には、キャブレタにて更にガソリンが混合された後、エンジンの燃焼室で爆発燃焼させられる。また、ディーゼルエンジンであれば水素と空気の混合気体は燃焼室内で圧縮され、これに軽油等が噴射されることにより爆発燃焼が起きる。爆発燃焼により得られた動力の多くは自動車の推進に利用されるが、その一部は発電機による発電に利用される。発電機が発電した電気はバッテリーに貯蔵される。バッテリーはパルス発生装置に電力を供給し、パルス発生装置はバッテリーから電力の供給を得て、これをパルス波に変換して電気分解槽へ供給する。
 <実施例1の構成>
 「エンジン本体」は、ガソリン、軽油等を燃料とする内燃機関である。レシプロエンジンとロータリーエンジンの両方を含む。レシプロエンジンでは、水素の燃焼速度が速いために、混合気が熱したプラグ等に接触した際の爆発によるノッキングが起こりやすい、これが理由で混合気の圧縮比を高くすることが出来ない。この点ロータリーエンジンは混合気が点火直前までプラグに接しないためノッキングが生じにくい。ロータリーエンジンは高い圧縮比が得られないのが欠点とされるが、水素を含む混合気の場合はもともと高い圧縮比を使えないのでこの欠点がハンディとならない。このようにロータリーエンジンは水素と相性が良い。但し、燃焼効率が悪いというロータリーエンジンの欠点は水素を用いる場合でも変わらない。
 エンジン本体はガソリンエンジンの他ディーゼルエンジンを含む。いずれにしても、エンジン本体はガソリン、軽油等で駆動する通常のエンジンであって、水素を燃焼させるための改造や改良を必要とするものではない。
 「電気分解槽」は、パルス状の電流により水を電気分解するための水槽である。図2は、実施例1のエンジンシステムの電気分解槽の構造を表す斜視断面図である。電気分解槽は、電気分解槽本体0201と、複数の電極0202及び0203とを有する。電気分解槽本体は、水を貯蔵するため内部を空洞とした容器であり、また同時に、電極その他を内部に支持するための骨格となるものである。電気分解槽本体の側壁下部には段差部0204が設けられており、この段差部に絶縁体を素材とする底板0205が係止されている。底板のうえには前記複数の電極が前記電気分解槽本体内部において水に没するように設置される。本実施例では電気分解槽本体の形状は円柱形としているが、この形状に特に大きな意味はない。内部に電気分解のための十分な空間を形成し、必要な強度を有するものであれば、箱型等、他の形状でも構わない。
 底板には多数の穴が形成されており、電気分解槽内部の水が底板と電気分解槽本体の間に形成された空間0208を通じて電極により区切られた空間の間を自由に行き来できるようになっている。
 電極は、電気分解槽本体側壁にあけられた穴に通された電線0206により電気分解槽本体外部のパルス発生装置とつながれている。一の電極は陰極となり、他の電極が陽極となる。
 本実施例の電極は、それぞれ両端が開口した円柱形をした筒状であって、開口部が上下となるように筒を立てて設置される。円柱形としているのは電気分解槽本体の形状に合わせることによって、水槽内部の空間を有効に利用できるといった程度の理由であり、他の形状でも構わない。図2では、一の電極が電気分解槽本体の側壁面近くに設置され、他の電極が内部中央に立てて設置されている。
 電極は、電極側壁面がおおよそ垂直になるように設置した方がよい。これは電極面に発生したガスが浮力により上昇しやすくするためである。電極面に発生したガスは、電極と水とが接する面積を減少させ、電気分解の効率を低下させる。電極面で発生したガスが速やかに上昇して電極面から分離すれば電気分解の効率は向上する。また、電気分解槽を自動車に搭載する本発明の場合にはエンジンや路面の振動等により気泡が電極から離れることが期待される。
 電気分解槽本体には、内部に貯蔵された水の水位が目視できるように、電気分解槽本体内部と上下で連絡されたガラス管0207を設置してもよい。また、図には描いていないが電気分解槽本体には開閉可能な蓋があり、蓋には電気分解により発生した水素ガスを集めて混合器に送るための水素ガス用配管が接続される。
 電気分解槽は、パルス状の電流により水を電気分解する。電極の間に電圧を印加すると水と電極の間で電子の受け渡しが行われ、陰極から水素が、陽極から酸素が発生する。電気分解に使う電流は一定の電圧を継続して流れる直流とするよりも、パルス波としたほうが効率よく電気分解を行うことが出来ることが知られている。「パルス波」とは、一定の周期で正と負、あるいは高電圧と低電圧(又はゼロ電圧)を相互に繰り返す矩形波又は方形波のことをいうが、ここでは、特に一定電圧とゼロ電圧を相互に繰り返すものが好適である。
 電気分解槽に貯蔵する水は、一定の水酸化ナトリウムを溶かした水酸化ナトリウム溶解液とする。濃度は水1リットルに対して水酸化ナトリウム50グラム程度が好適である。水酸化ナトリウムの代わりに、硫酸、炭酸ナトリウム、硫酸ナトリウムなどを用いることもできる。
 電極に用いる金属はステンレスが好適である。とくに、SUS316L材は、モリブデン添加により孔食電位が高く電位差による孔食に対する耐食性が優れていることから、電気分解槽の電極には最も適している。ステンレスの他に使用可能な材質としては、このほかに、ニッケル、白金、炭素棒などがある。但し、水溶液の種類との組合せに注意を要する。
 図3は、実施例1のエンジンシステムの電気分解槽のもうひとつの実施例の斜視断面図である。電気分解槽本体0301の内部に2枚の板状の電極0302及び0303が設置されている。それぞれの電極には2か所に穴が開けられており、この穴に通した2本の支持棒0309を電気分解槽本体側壁面に固定することにより電極は安定的に支持されている。これらの電極は電気分解槽本体側壁面に設けられた穴に通された電線0311により外部のパルス発生装置と接続される。また、図には描いていないが、図2の電気分解槽と同様に電気分解槽本体内部の水位が目視できるようなガラス管を設置してもよい。
 水を電気分解すると陰極において水素が、陽極において酸素が発生する。従って、電極ごとに水素と酸素を分けて取り出すことが可能である。しかし、本実施例では、図2の電気分解槽においても図3の電気分解槽においても特にこれらを分離して取り出す構造を採用していない。発生したガスは順次消費され大量に貯蔵されることはないことから、これらを混合させておくことに特に危険はないからである。したがって、本実施例では水素ガスのみならず酸素ガスもエンジンの燃焼室へと送られる。
 もちろん、水素と酸素とを分離して取り出す構造を採用してもよい。その場合には、例えばディーゼル車であれば、集められた酸素はDPF(Diesel particulate filter)において一酸化炭素や炭化組磯や粉じんなどを酸化燃焼する際に用いるなどの用途が考えられる。
 水の電気分解の際には熱が発生する。そして暖められた水は多量の水蒸気を発生させる。そのため、水素ガス中には多量の水蒸気が含まれることとなる。過剰な水蒸気はエンジンにおける燃焼の妨げとなるため、これを除去することが望ましい。図4は、前記水素ガス用配管の系統中に設置された水蒸気除去フィルターの図である。水蒸気除去フィルター0460は内部に水0461を保持する構造になっている。水蒸気除去フィルターの下部には水素混合気取入口0462が設けられ、これがホースにより電気分解槽の蓋に接続される。また、水蒸気除去フィルターの上部には水素混合気取出口0463が設けられ、これがホースにより混合器に接続される。水素混合気取入口から取り入れられた混合気は水蒸気除去フィルター内部の水の中を通過することとなる。図中の泡0464は水の中を通過する混合気を描いたものである。その際混合気に含まれた水蒸気は冷却されて液化し混合気から取り除かれる。
 電気分解槽で水が電気分解されて水素と酸素に分離されると電気分解槽内の水は消費され減少する。そこで、消費された水を補充するために電気分解槽に水を供給するためのリザーブタンクを設置してもよい。リザーブタンクから電気分解槽への水の供給は、電気分解槽内に水位センサを設置しておき、電気分解槽内の水位が所定の水位を下回った場合には水位センサがこれを検知し、電動ポンプがリザーブタンク内の水を電気分解槽に送水するように構成するとよい。
 「混合器」は、電気分解槽で発生する水素ガスを空気と混合する。混合器といっても、エアクリーナ等により吸気された空気がエンジンの燃焼室内に送られる途中の経路に前記水素ガス用配管を接続する程度の構造を有するにすぎない。図5は、実施例1のエンジンシステムをガソリン自動車に搭載する場合における混合器の設置の一例を示す図である。
すなわち、エアクリーナ0501とキャブレタ0502の間に混合器0503を挟むように接続する。混合器は短い管の形状をし、その側面には管0504が接続され、その先に水素ガス用配管0505がさらに接続されている。図のように、エアクリーナから取り込まれた空気と水素ガス用配管から取り込まれた水素ガスは混合器の内部にて混合される。そして、この空気と水素の混合気にはキャブレタ内部にて更にガソリンが混合される。混合器はキャブレタとエンジンの間に設置しても問題ない。この場合、空気とガソリンが始めに混合され、その後さらに水素ガスが混合される。
 混合器はブローバイガスを再燃焼させるための管に取り付けてもよい。ブローバイガスとはエンジン内のピストンとシリンダーのわずかな隙間からクランクケース内に漏出した不燃焼ガスであるが、大気中に排出することが規制されていることから、新しい混合気と混ぜて燃焼させることが多い。その場合、ブローバイガスをクランクケース室内から燃焼室へと送るためのブローバイガス用配管が設けられ、通常は、このブローバイガス用配管がエアクリーナからエンジンへと空気を送るための空気用配管に接続される。ブローバイガス用配管に前記水素ガス用配管を接続することで水素ガスはまずブローバイガスと混合され、その後ブローバイガス用配管と前記空気用配管との接続部において最終的に空気と混合されることとなる。この場合、水素ガス用配管はブローバイガス用配管を介して空気用配管に接続されるわけであるが、これらを一体として混合器とみなすことが出来る。
 「発電機」は、エンジン本体の駆動により電気分解槽用電力を発生する。発電機は、オルタネータ、ダイナモ、ジェネレータ等と呼ばれ、一般の自動車等に搭載されているものをそのまま採用することが出来る。電気分解槽用といっても用途をこれに限定する趣旨ではない。発電機が交流電流を生じさせるオルタネータである場合には、交流をダイオード等によって整流することにより直流電流に変換して使用する。
 「バッテリー」は充電が可能な二次電池又は蓄電池をいい、発電機からの電力を蓄積する。バッテリーも通常の自動車の搭載されているものをそのまま採用することが出来る。鉛蓄電池が一般的であるが、これに限られない。
 「パルス発生装置」は、バッテリーから電力の供給を受けて、これをパルス状の電流に変換して電気分解槽に供給する。パルス波については既に説明した。パルス波は、二つのコンデンサを組み合わせたマルチバイブレータという電子回路により発生させることが出来る。その他、発振回路、フリップフロップ等と呼ばれる電子回路でも発生させることが出来る。
 <実施例1の効果>
 実施例1によれば、既存の自動車に、電気分解槽、混合器及びパルス発生装置を追加するだけで簡単に燃費の向上が得られる。
 <実施例2の概念> 実施例2のエンジンシステムは、実施例1のエンジンシステムにおいてその電気分解槽がさらに効率よく電気分解を行うための分解促進用金属板を有することを特徴とするエンジンシステムである。
 水の電気分解を効率よく行うためには、十分な電極の面積を確保しなければならない。水の電気分解は電極表面において水と電極の間で電子の受け渡しが行われることにより化学反応が進行する。したがって、電子の受け渡しを行うに十分な電極の面積が必要となる。
 分解促進用金属板は、この課題を解決するものである。図6は分解促進用金属板の機能の概略を表す図である。陰極0631と陽極0632の間に2枚の分解促進用金属板0633が等間隔に水酸化ナトリウム溶液中に没するように配置されている。陰極と陽極に電圧が印加されると水酸化ナトリウム溶液中に電流0634が流れる。水酸化ナトリウム溶液中を流れる電流は途中分解促進用金属板を通過する。これにより、分解促進用金属板の陰極側の面はプラスに、陽極側の面はマイナスに帯電する。そして、このように帯電した分解促進用金属板の表面上では水の電気分解が行われ、プラスに帯電した面では酸素が、マイナスに帯電した面では水素が発生する。
 分解促進用金属板は、このように電極の間に挟んで配置しただけで水の分解が行われる面積を増やすことが出来、結果として、電気分解の効率を高めることが出来る。
 <実施例2の構成>
 実施例2のエンジンシステムは、実施例1のエンジンシステムと電気分解槽のみが異なり、他の構成は実施例1と同様である。以下では、電気分解槽についてのみ詳しく説明する。
 図7は、実施例2のエンジンシステムにおける電気分解槽の斜視断面図である。電気分解槽は、電気分解槽本体0701と、複数の電極0702及び0703と、1以上の分解促進用金属板0710を有する。「電気分解槽本体」は、内部に水を貯蔵するためのものである。複数の「電極」は、前記電気分解槽本体内部において水に没するように設置された筒状又は板状の電極である。また、一以上の「分解促進用金属板」は、前記電気分解槽本体内部において水に没し、かつ、前記一組の電極に挟まれるように設置された筒状又は板状の金属板である。図7はいずれも筒状の場合の例である。図7の例では、電気分解槽本体、電極及び分解促進用金属板の形状はいずれも円柱形としているが、実施例1における図2の場合と同様、この形状に特に大きな意味はなく、箱型等、他の形状でも構わない。
 分解促進用金属板に用いる金属は電極の場合と同様にステンレスが好適である。とくに、SUS316L材は、モリブデン添加により孔食電位が高く電位差による孔食に対する耐食性が優れていることから、電気分解槽の分解促進用金属板には最も適している。ステンレスの他に使用可能な材質としては、このほかに、ニッケル、白金、炭素棒などがある。但し、水溶液の種類との組合せに注意を要する。
 電気分解槽の他の部分は実施例1における図2の場合と同様である。
 図8は、実施例2のエンジンシステムにおけるもうひとつの電気分解槽の例の斜視断面図である。図7は「筒状」の電極及び分解促進用金属板の例であったが、図8はそれらが「板状」の場合の例である。電気分解槽本体0801の内部に2枚の板状の電極0802及び0803が設置されている。2枚の電極の間には、2枚の分解促進用金属板0810が挟まれるように等間隔に設置されている。電極及び分解促進用金属板にはそれぞれ2か所ずつに穴が開けられており、この穴に通した2本の支持棒0809を電気分解槽本体側壁面に固定することにより電極及び分解促進用金属板は安定的に支持されている。電極は電気分解槽本体側壁面に設けられた穴に通された電線0811により外部のパルス発生装置と接続される。
 <実施例2の効果>
 実施例2によれば、電気分解の効率がさらに高められた実施例1のエンジンシステムが提供される。
 <実施例3の概念>
 図9は、実施例3のエンジンシステムの電気分解槽の概念を表す図である。水の電気分解に理想的な水溶液の温度は摂氏60度乃至70度程度とされている。ところが、水溶液の温度が摂氏70度を超えると水溶液の気化が始まり電気分解の効率は急速に悪化することとなる。従って、水溶液の温度が上昇しすぎないようにすることは非常に重要である。そして、このような温度上昇は電気分解が行われる電極表面で局所的に起こりやすい。電気分解槽内部で水流を発生させることにより、電極表面近辺で温度上昇した水溶液を温度の低い水溶液で置き換えることは温度上昇防止に大きな効果を発揮する。
 実施例3のエンジンシステムの電気分解槽は、電極下部と電気分解槽本体底部との間に適切な空間を設けて対流現象による水流が起こりやすいように工夫がされた電気分解槽である。図9において水の電気分解は電極0931、0932及び分解促進用金属板0933で相互に挟まれた空間0935、0936及び0937に面する部分で活発に行われ、この空間に満たされた水溶液の温度が上昇する。これに対し、ふたつの電極の外側部分の空間0938及び0939では電気分解はさほど進行せず、そのためこの空間に満たされた水溶液の温度は上昇しにくい。こうして、電気分解槽内部で水溶液の温度が場所により異なることとなり、温度の異なる水溶液は比重が異なるために電気分解槽内部で対流現象による水流が発生する。図中の矢印はそのようにして発生した水の流れの方向を表している。
 <実施例3の構成>
 実施例3のエンジンシステムの電気分解槽は、前記電極及び分解促進用金属板が、電気分解槽本体内部にて水の対流が容易となるように、その下端が電気分解槽本体底面と隙間を持つように設置されている。このような構成は、例えば、実施例1の図2の電気分解槽のように、穴のあいた底板を、電気分解槽本体の底部と隙間を有するように設置し、電極や分解促進用金属板をその底板のうえに設置することにより実現することが出来る。あるいは、実施例1の図3の電気分解槽のように、電極及び分解促進用金属板を支持した支持棒を、電極及び分解促進用金属板が電気分解槽内部中空に保持されてそれらの下部と電気分解槽本体底部とが隙間を持つように電気分解槽本体側壁に固定することで実現することができる。
 その他の構成については、実施例2と同様である。
 <実施例3の効果>
 実施例3によれば、水溶液の対流現象により水溶液の過熱を防止することのできる電気分解槽を備えたエンジンシステムが提供される。
 <実施例4の概念>
 実施例3のエンジンシステムの電気分解槽は対流現象を利用することにより、電極近辺の水温上昇を防止するものであった。図9から、電気分解槽を外部から冷却することが電気分解槽内部の水温上昇を防止するのに非常に有効であることが分かる。なぜなら、電気分解槽本体側壁面近くの水溶液は対流現象により底部へと沈んだ後に電極各部へと送られるものであるから、これを外部から冷却することは電極の周辺を冷却することにつながるからである。
 <実施例4の構成>
 図10は、実施例4の本体冷却装置の図である。電気分解槽本体1001の側面及び底面を包み込むように電気分解槽本体の周囲に冷却装置1040が設置されている。電気分解槽本体と冷却装置の間には水を保持するための貯水空間1041が形成されている。そして、冷却装置の側面に冷却水取り入れ口1042が設けられ、その反対側の側面には冷却水取り出し口1043が設けられている。貯水空間に貯められた水は電気分解槽本体を冷却し、これにより電気分解槽本体内部の水溶液は冷却される。この冷却により暖められた貯水空間内部の水は冷却水取り出し口から取り出され、あらたな冷却水が冷却水取り入れ口から注入される。
 図11は、実施例4の本体冷却装置のもうひとつの実施例の図である。電気分解槽本体1101の側面及び底面に冷媒を通した冷却用配管1144が巻きつけられている。そして、冷却用配管の周囲を断熱材1145が取り囲んでいる。そして、冷却装置には、図には示していないが、冷媒を圧縮するためのコンプレッサ、圧縮した冷媒から放熱させるためのコンデンサ、圧縮した冷媒を減圧して気化させるためのエバポレータ等が含まれる。
 なお、図10及び図11において、電気分解槽本体内部の電極等は図から省略した。
 その他の構成については、実施例2又は実施例3と同様である。
 <実施例4の効果>
 実施例4によれば、本体冷却装置により水溶液の過熱を防止することのできる電気分解槽を備えたエンジンシステムが提供される。
 <実施例5の概念>
 実施例4の電気分解槽は電気分解槽本体を外部から冷却するものであったが、電気分解槽本体内部の水溶液を直接汲み出して冷却するのが実施例5の電気分解槽である。
 <実施例5の構成>
 図12は、実施例5の電気分解槽の概略図である。電気分解槽本体1201に被せられた蓋1246には、電気分解槽本体内部で暖められた水溶液を汲み出すための汲み出し口1247と汲みだされた後に冷却された水溶液を電気分解槽本体に戻すための戻し口1248とが備えられている。汲み出し口から汲みだされた水溶液は水冷却装置1249にて冷却される。電気分解槽本体内部で暖められた水溶液は水槽の上部に上昇してくるので汲み出し口はその口が水面近くに位置するように設置するとよい。一方、冷却された水溶液が水槽の底部から全体に行き渡るように、戻し口はその口が電気分解槽本体の底部に位置するように設置するとよい。
 その他の構成については、実施例2又は実施例3と同様である。
 <実施例5の効果>
 実施例5によれば、水冷却装置により直接的に水溶液の過熱を防止することのできる電気分解槽を備えたエンジンシステムが提供される。
 <実施例6の概念> 実施例6のエンジンシステムは、電気分解槽内の電極又は分解促進用金属板に多数の穴を形成することによって水の電気分解をより効率的に行うことができるエンジンシステムである。
 <実施例6の構成>
 図13は、実施例6のエンジンシステムの電気分解槽の図である。図は、分解促進用金属板1310のみが多数の穴を持ち、電極1302及び1303は穴を持たない場合の図である。このように多数形成された穴は、水溶液中の電気の流れを良くするとともに、対流現象によって生じた電気分解槽中の水溶液の流れを良くし、結果として水の電気分解の効率を高めるものである。図14は、実施例6のエンジンシステムの電気分解槽のもうひとつの実施例の図である。これも、分解促進用金属板1410のみが多数の穴を持ち、電極1402及び1403は穴を持たない場合の図である。
 多数の穴は電極に設けてもよいが、分解促進用金属板に設けると特に有効である。
 その他の構成は、実施例2乃至実施例5と同様である。
 <実施例6の効果>
 実施例6によれば、水の電気分解が多数の穴によりより効率的に行われる電気分解槽を備えたエンジンシステムが提供される。
 <実施例7の概念>
 実施例7のエンジンシステムは、パルス発生装置の供給するパルス波が4秒乃至6秒の周期を持って繰り返され、これにより効率的に水の電気分解を行うことのできるエンジンシステムである。
 <実施例7の構成>
 パルス発生装置とパルス発生の方法については既に述べた。周期を調整する方法も広く知られたものを採用することができるので説明を省略する。
 <実施例7の効果>
 実施例7によれば、パルスの周期を適切なものとすることにより水の電気分解が効率的に行われる電気分解槽を備えたエンジンシステムが提供される。
 <実施例8の概念> 実施例8のエンジンシステムは、エンジン本体と、電気分解槽と、気体混合器と、発電機と、バッテリーと、電流発生装置とを有する。そのシステム構成図の一例は、実施例1のエンジンシステムについて図1に示したところと同様であり、図1における混合器0104を気体混合器に、パルス発生装置0107を電流発生装置(直流電流を発生)に、それぞれ置き換えたものである。
 電気分解槽の内部には必要量の水が溜められており、電流発生装置から直流電流の供給を受けて水を電気分解する。電気分解により発生した水素ガス及び酸素ガスは電気分解槽上部に設けられたガス用配管を通って気体混合器へと移動する。気体混合器においては、前記ガス用配管から得た水素ガス及び酸素ガスと気体燃料とが混合され、エンジン本体の燃焼室において爆発燃焼させられる。爆発燃焼により得られた動力の多くは自動車や船舶の推進に利用されるが、その一部は発電機による発電に利用される。発電機が発電した電気はバッテリーに貯蔵される。バッテリーは電流発生装置に電力を供給し、電流発生装置はバッテリーから電力の供給を得て、この直流電流を電気分解槽へ供給する。
 また、実施例8のエンジンシステムには、前記電流発生装置にて電気分解槽に供給される直流電流を、所定の時間間隔で電流の流れる方向を逆転させる逆転装置をさらに有するものも含まれる。
 さらに、実施例8のエンジンシステムには、電気分解槽本体内部において水に没し、かつ、前記一組の電極に挟まれるように設置された筒状又は板状の一以上の分解促進用金属板を有するとともに、前記電気分解促進用金属板がいずれの電極とも電位的に独立であるものも含まれる。
 なお、本実施例のエンジンシステムを適用可能なエンジンには、自動車のエンジンのほか、船舶のエンジンも含まれる。
 <実施例8の構成>
  (全般)
 図15は、実施例8のエンジンシステムの構成図である。実施例8エンジンシステムは、エンジン本体1501と、電気分解槽1502と、気体混合器1504と、発電機1505と、バッテリー1506と、電流発生装置1507とを有する。また、本図の例では、電気分解槽と気体混合器は電気分解槽で発生した水素ガスと酸素ガスを気体混合器に送るためのガス用配管1508でつながれている。また、電気分解槽内には、2個の電極1511、1512と1個の分解促進用金属板1513が備えられている。
 本実施例のエンジンシステムは、実施例1などの上記実施例において述べてきたエンジンシステムと異なり、(1)電気分解槽における電気分解は直流電流により行われるように構成されている点、(2)このため電流発生装置は、バッテリーからの電力供給を受けると、これをパルス電流に変換することなく、直流電流のままこれを電気分解槽に供給するように構成されている点、(3)電気分解槽で発生する水素ガスと酸素ガスとを気体燃料と混合するための気体混合器を有する点に特徴がある。これ以外の、エンジン本体、発電機、バッテリーの構成は実施例1などのエンジンシステムと同様であるので、ここでは説明を省略する。
  (電気分解槽)
 本実施例における「電気分解槽」は、直流電流により水を電気分解するための水槽である。図16は、実施例8のエンジンシステムの電気分解槽の構造の一例を表す斜視図である。本図に示す電気分解槽1602には、2枚の板状の電極1611、1612と、その間に挟まれる形で1枚の分解促進用金属板1613が配置されている。本図の例では、電気分解槽が中央で仕切り板によって仕切られており、その両側のそれぞれに一組の電極とその間に挟まれた分解促進用金属板が配置されている。即ち、全部で6枚の板が配置されている例である。電極および分解促進用電極板の構成の詳細については後述する。
 本図の例では電気分解槽が箱型である例を示したが、内部に電気分解のための十分な空間を形成し必要な強度を有するものであれば電気分解槽本体の形状に限定はない点は実施例1と同様であり、これ以外の円柱形その他の形状であってもよい。
 本実施例のエンジンシステムの電気分解槽も、電極下部と電気分解槽本体底部との間に適切な空間を設けて対流現象による水流が起こりやすいように工夫がされた電気分解槽であることが望ましい。
 電気分解槽に容れて電気分解に用いる水としては、一定量の水酸化ナトリウムを溶かした水酸化ナトリウム溶解液が用いられる。本実施例の好適例では、電気分解によってHHOガスを発生させるようにしている。HHOガスは純水を電気分解することにより得られる水素と酸素の混合比が2:1のガスである。また、CO、ダイオキシンなどの有害物質を発生することがないクリーンなガスでもある。ただし、本実施例で電気分解で発生させるガスの水素と酸素の混合比は、厳密に2:1でなくてもよい。
 このように電気分解によってHHOガスを発生させるため、電気分解槽に貯蔵する水は純水、特に超純水あるいは純純水と呼ばれる純度が限りなく100%に近いものとすることが望ましい。このような超純水は、公知の超純水製造装置を用いて生成することが可能であり、超純水を蓄えたタンクなどから電気分解槽に供給するようにすればよい。なお、上述の実施例で述べたのと同様に、電気分解槽で水が電気分解されて水素と酸素に分離されると電気分解槽内の水は消費され減少することから、消費された水を補充するために電気分解槽に水を供給するためのリザーブタンクを設置してもよい。リザーブタンクから電気分解槽への水の供給は、電気分解槽内に水位センサを設置しておき、電気分解槽内の水位が所定の水位を下回った場合には水位センサがこれを検知し、電動ポンプがリザーブタンク内の水を電気分解槽に送水するように構成するとよい点も同様である。
  (電極、分解促進用金属板)
 電気分解槽には電極が備えられるほか、分解促進用金属板が備えられていてもよい。分解促進用金属板は、電気分解槽本体内部において水に没し、かつ、一組の電極に挟まれるように設置された筒状又は板状の一以上の部材である。好適には、分解促進用金属板は一組の電極の丁度真ん中に位置するように配置される。
 図15の例では、電気分解槽本体1501の内部に2枚の板状の電極1502及び1503が設置されている。また、本図の例では、前記一組の電極の丁度真ん中に挟まれる形で、1枚の板状の分解促進用金属板が備えられている。また、一組の電極と分解促進用金属板は平行に、互いに重なる位置に配置されている。
 本実施例の分解促進用金属板の特徴は、いずれの電極とも電位的に独立である点にある。「いずれの電極とも電位的に独立である」とは、分解促進用金属板がいずれの電極との間でも絶縁されていることをいい、また、電位ゼロの状態になっていない、即ち、接地されていない状態をいう。このような状態を確保するための配置の一例としては、実施例1で図2などを用いて説明したところと同様に、電気分解槽本体の側壁下部に段差部を設けるとともに、この段差部に絶縁体を素材とする底板を係止し、その上に電極及び分解促進用金属板を配置するといったものが考えられる。また、図2に示したものとは別の形状の例として、例えば図17に示すように、電極及び分解促進用金属板にそれぞれ2か所ずつに穴を開け、絶縁体を素材とする2本の支持棒1709を電気分解槽本体側壁面1701aに固定することにより電極及び分解促進用金属板を安定的に支持するようにしてもよい。
 本実施例の「分解促進用金属板」も、実施例1で説明したところと同様に、電気分解を効率よく行うために電極が十分な面積を必要とすることを確保するためのものである。本実施例の分解促進用金属板の特徴は、上述のようにいずれの電極とも電位的に独立であるように構成されるが、かかる構成であっても、分解促進用金属板は電荷を帯び、水酸化ナトリウム溶液中を電流が流れる際に当該電流が途中分解促進用金属板の表面を通過することとなる。これにより、分解促進用金属板の陰極側の面はプラスに、陽極側の面はマイナスに帯電する。そして、このように帯電した分解促進用金属板の表面上では水の電気分解が行われ、プラスに帯電した面では酸素が、マイナスに帯電した面では水素が発生する点は実施例1の場合と同様である。
 なお、このような分解促進用金属板は筒状ものであってもよく、又これを備える場合の枚数は2枚以上であってもよい。
 電極及び分解促進用金属板の厚み及び面積、並びに分解促進用金属板と電極との間隔、また分解促進用金属板を複数設ける場合のこれらの間の間隔は、電気分解を最もスムーズに行えるように設計される。図16に示した電気分解槽において合計で6枚配置されているそれぞれの電極、分解促進用金属板の寸法の一例としては、それぞれの厚みが約1mm、高さ×長さが約160mm×140mmであり、分解促進用金属板と各電極との間隔がともに約15mmであるものが挙げられる。
 電極に用いる金属はステンレス、とくに、SUS316L材が好適である。この点は実施例1で述べたところと同様であり、その理由もそこで述べたとおりである。また、分解促進用金属板の好適な材料も同様に、ステンレス、とくに、SUS316L材である。
  (気体混合器)
 「気体混合器」は、電気分解槽で発生する水素ガスと酸素ガスとを気体燃料と混合するためのものである。電気分解槽で発生する水素ガスと酸素ガスは、前述のように好適にはHHOガスである。
 なお、気体混合器で混合された水素ガス・酸素ガスと気体燃料の混合ガスは、エンジンの燃焼室へ送られて通例のサイクルで燃焼させられる。即ち、ガソリンエンジンの場合、当該混合ガスはエンジンの燃焼室で爆発燃焼させられる。その際、燃焼効率を高めるためノズル等によって燃焼室の内部の奥深くまで混合ガスを導くようにしてもよい。また、ディーゼルエンジンであれば当該混合ガスが燃焼室内で圧縮され、これに軽油等が噴射されることにより爆発燃焼させられる。
  (電流発生装置)
 「電流発生装置」は、バッテリーから電力の供給を得て、この直流電流を電気分解槽へ供給する。実施例1との違いは、パルス状の電流に変換することなく直流電流を電気分解槽に供給する点にある。
  (制御手段) 本実施例においては、パルス状の電流ではなく直流電流が電気分解に用いられる。この場合、時間の経過とともに電気分解槽内の水の温度が上昇し、HHOガスが発生しづらくなるという問題が生じる。そこで、本実施例のエンジンシステムでは、これらの問題への対処を含め、電気分解を効率的に行うための制御手段を有していることが望ましい。
 まず、本実施例においては、一定の電圧を印加して直流電流を供給することで電気分解を行うようにしているが、小さい電流で電気分解を行うために電圧を制御する必要がある。図15に示した電気分解槽を用いる場合には、例えば、入電時24Vの電圧を直流変換に際して12Vとする。これにより本例における電気分解に必要最小限の電流を電気分解槽に供給することができる。
 一方、上述の温度上昇の問題に対応するための制御手段としては、例えば所定の時間間隔で電流の流れる方向を逆転させるための逆転装置を設けることが考えられる。逆転装置は、例えばタイマー及びスイッチを有し、タイマーの時計機能を利用して所定の時間間隔で電流の流れる方向をスイッチにより切り換える。所定の時間間隔は、電極及び分解促進用金属板の・面積、厚み、電極と分解促進用金属板の間隔、電気分解槽内の水量などに応じて適切に設計されるべき事項であるが、例えば、上述のような各電極および分解促進用金属板のそれぞれの厚みが約1mm、高さ×長さが約160mm×140mm、分解促進用金属板と各電極との間隔がともに約15mmである場合において、電気分解槽内に約11リットルの水を貯めて電気分解を行う場合に、2時間間隔で切り換えを行うといったことが考えられる。これは、かかる条件下での実験を行った結果、電流を流し始めて2時間程度経過すると電気分解槽内の水の温度が50℃を超え、HHOガスが発生しづらくなったことから得られた時間である。
 あるいは、所定の時間間隔でいきなり電流の流れる方向を逆転させるのではなく、所定の時間が経過したところで、いったん電流を流すのを止め、その後逆方向に電流を流すようにしてもよい。このようにすることで、分解促進用金属板が電荷を帯びた状態を解消できるので、その後の電流の流れる方向の転換をスムーズに行うことが可能となる。
 あるいは、温度上昇に伴い電流値も上昇することから、電流値が一定値に達した場合に電圧を下げるようにしてもよい。
 また、電気分解槽内の水の温度の上昇を防ぐため、所定の時間間隔で電気分解槽内に冷却水を送るためのポンプを備えるようにしてもよい。所定の時間間隔は、やはり電極や分解促進用金属板の寸法等に応じて設計されるが、上述の例に即せば、例えば20分に1回といったことが考えられる。
  (本実施例のエンジンシステムの具体的構成の好適例)
 以上に説明したような構成を有する本実施例のエンジンシステムによれば、より小さい電流によってより多くの水素ガスと酸素ガスとの混合気体を電気分解により発生させることができる。かかるエンジンシステムの具体的構成の好適例としては、以下のようなものを挙げることができる。即ち、図15に示したような構造の電気分解槽であって、電極及び分解促進用金属板が上述のような厚み、面積、間隔を有し、水酸化ナトリウム13%(重量比)を超純水に溶かした溶解液を入れたものを用いて、12Vの電圧を印加し、15Aの直流電流を供給して電気分解を行った結果、瞬時に得ることができたHHOガスの量は約450ccであった。通例、1Aの電流を供給して行う電気分解により得られるHHOガスの体積は約10ccであるので、本実施例の構成によればその約3倍程度(1A当たり約30cc)の量のHHOガスが得られたこととなり、より小さい電流によってより多くのHHOガスを発生させることができることが実証された。
  (本実施例のエンジンシステムの用途)
 このように、本実施例のエンジンシステムによれば、通例の約3倍のHHOガスを得ることが可能になることから、10トントラック程度の大型自動車のエンジンに利用可能である。また、自動車に限らず船舶のエンジンにも利用可能である。これらの場合、電気分解によって発生させたHHOガスと気体燃料とを気体混合器で混合させてエンジンの燃焼室内部にノズルなどで直接送り込むことで、エンジンの燃焼効率を向上させることができる。
 なお、電気分解槽内で発生したHHOガスをエンジンの燃焼室内部に送り込む際には、以上の構成によっても生成したHHOガスに不純物が混入することを完全に防止することは困難であることから、電気分解槽の近傍などにこの不純物を除去するためのフィルターを備えるようにしてもよい。当該フィルター内には、水(やはり超純水であることが望ましい)が貯められ、さらに水に没する形でステンレス製の部材が入れられる。そして、電気分解槽で発生したガスを取り出して当該フィルター内を下から上に向かって通すことで、不純物を含むガスが、ステンレス部材の働きでHHOガスとその他の物質となり、エンジンの燃焼室内部に送り込むガスに含まれる不純物を極限まで減少させることが可能となる。なお、フィルター内での浄化効率を高めるためステンレス製の部材は表面積を広くすることが望ましく、このため好適には例えばたわし状のステンレス製部材(いわゆるステンレスたわし)が用いられる。
 また、HHOガスは不燃焼ガス(ブローバイガス)の燃焼を助けるという役割も果たす。即ち、自動車などの燃料であるガソリン、重油等にはオレフィン系炭化水素が含まれ、通例空気中の酸素と結合して燃焼する際に、水素が不足するために不完全燃焼を起こして不燃焼ガスを発生する。この不燃焼ガスは公害の原因となり、排ガス規制の対象となっている。このため、この不燃焼ガスを燃焼室に戻して再燃焼させる必要があるが、本実施例のエンジンシステムにおいて、HHOガスを不燃焼ガスの供給経路に導き、これを不燃焼ガスに混ぜて燃焼室に供給するように構成すれば、水素の不足を解消して不燃焼ガスを効率的に燃焼させることが可能となる。
 さらに、本実施例のエンジンシステムはボイラーにも利用可能である。この場合は、HHOガスを直接燃焼室に供給するのではなく、その手前でHHOガスを燃料及び空気と混合させることで、燃料及び空気を安定させることが可能となる。
 <実施例8の効果>
 実施例8によれば、エンジン、発電機及びバッテリーを備えた通常の自動車などに、水を電気分解するための電気分解槽、気体混合器及び電流発生装置を追加するのみで、燃費を向上させることができる。

Claims (10)

  1.  エンジン本体と、
     パルス状の電流により水を電気分解するための電気分解槽と、
     電気分解槽で発生する水素ガスを空気と混合するための混合器と、
     エンジン本体の駆動により電気分解槽用電力を発生する発電機と、
     発電機からの電力を蓄積するバッテリーと、
     バッテリーから電力の供給を受けて、これをパルス状の電流に変換して電気分解槽に供給するパルス発生装置と、
    を有するエンジンシステム。
  2.  エンジン本体と、
     水を電気分解するための電気分解槽と、
     電気分解槽で発生する水素ガスと酸素ガスとを気体燃料と混合するための気体混合器と、
     エンジン本体の駆動により電気分解槽用電力を発生する発電機と、
     発電機からの電力を蓄積するバッテリーと、
     バッテリーから電力の供給を受けて、直流電流を電気分解槽に供給する電流発生装置と、
    を有するエンジンシステム。
  3.  前記電流発生装置にて電気分解槽に供給される直流電流を、所定の時間間隔で電流の流れる方向を逆転させる逆転装置をさらに有する請求項2に記載のエンジンシステム。
  4.  前記電気分解槽は、
     内部に水を貯蔵するための電気分解槽本体と、
     前記電気分解槽本体内部において水に没するように設置された筒状又は板状の複数の電極と、
     前記電気分解槽本体内部において水に没し、かつ、前記一組の電極に挟まれるように設置された筒状又は板状の一以上の分解促進用金属板を有する
    ことを特徴とする請求項1乃至3のいずれか一に記載のエンジンシステム。
  5.  前記電気分解促進用金属板は、いずれの電極とも電位的に独立である請求項4に記載のエンジンシステム。
  6.  前記電極及び分解促進用金属板は、電気分解槽本体内部にて水の対流が容易となるように、その下端が電気分解槽本体底面と隙間を持つように設置されていることを特徴とする請求項4又は5に記載のエンジンシステム。
  7.  前記電気分解槽は、電気分解槽本体の周囲を冷却する本体冷却装置をさらに有することを特徴とする4乃至6のいずれか一に記載のエンジンシステム。
  8.  前記電気分解槽は、電気分解槽内部の水を冷却する水冷却装置をさらに有することを特徴とする4乃至6のいずれか一に記載のエンジンシステム。
  9.  前記電極又は分解促進用金属板は、多数の小穴を有することを特徴とする請求項4乃至8のいずれか一に記載のエンジンシステム。
  10.  前記パルス発生装置は4秒乃至6秒を周期とする矩形波を前記電極に供給することを特徴とする請求項1、請求項1に従属する請求項4、請求項1に従属する請求項4に従属する請求項5もしくは請求項6、請求項1に従属する請求項5に従属する請求項6、請求項1に従属する請求項4乃至6に従属する請求項7、請求項1に従属する請求項4乃至6に従属する請求項8又は請求項1に従属する請求項4乃至8に従属する請求項9に記載のエンジンシステム。
PCT/JP2011/060302 2010-04-28 2011-04-27 電気分解槽を有するエンジンシステム WO2011136291A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012512894A JPWO2011136291A1 (ja) 2010-04-28 2011-04-27 電気分解槽を有するエンジンシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010104466 2010-04-28
JP2010-104466 2010-04-28

Publications (1)

Publication Number Publication Date
WO2011136291A1 true WO2011136291A1 (ja) 2011-11-03

Family

ID=44861588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060302 WO2011136291A1 (ja) 2010-04-28 2011-04-27 電気分解槽を有するエンジンシステム

Country Status (2)

Country Link
JP (1) JPWO2011136291A1 (ja)
WO (1) WO2011136291A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504500A (ja) * 2011-11-25 2015-02-12 フュエル・ソリューション・エス・ア 燃焼エンジン内での燃焼の前に化石燃料と水の混合物を処理する装置
ITRM20130653A1 (it) * 2013-11-26 2015-05-27 A N D Holding Ltd Apparato per la produzione comandata ed instantanea di idrogeno da immettere nel condotto di aspirazione di un motore endotermico
WO2019153037A1 (en) * 2018-02-06 2019-08-15 Brock Darryl James Fuel efficiency system
CN111819307A (zh) * 2018-03-09 2020-10-23 卢万天主教大学 水电解过程强化系统
WO2021132708A1 (ja) * 2019-12-28 2021-07-01 株式会社Hbコーポレーション 電解水の生成方法、生成噴霧器及び生成噴霧装置
JP7507971B1 (ja) 2022-06-16 2024-06-28 フエ グエン ホン 内燃機関に水素ガスを供給するためのシステムおよび方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227363A (ja) * 2002-02-04 2003-08-15 Hirotsugu Tsuji 水素を補助剤と共に燃料とした低公害エンジン駆動車
JP2004528512A (ja) * 2001-06-04 2004-09-16 グローバル・テック・エンバイロンメンタル・プロダクツ・インコーポレイテッド 電解セルおよびそれを有する内燃エンジンキット
JP2006194230A (ja) * 2004-12-16 2006-07-27 Masahide Ichikawa 水の電気分解によるエネルギーを用いた内燃機関及び機関体
JP2008013821A (ja) * 2006-07-06 2008-01-24 炳霖 ▲楊▼ 電気分解を利用した燃焼ガス発生装置及び車載用燃焼ガス発生装置
JP2010042386A (ja) * 2007-09-11 2010-02-25 Sanyo Electric Co Ltd 電解処理装置
JP2010509504A (ja) * 2006-11-13 2010-03-25 アドバンスト・アール・エフ・デザイン・エルエルシー 電気分解装置、電気分解装置を含む内燃機関、および内燃機関を含む車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004528512A (ja) * 2001-06-04 2004-09-16 グローバル・テック・エンバイロンメンタル・プロダクツ・インコーポレイテッド 電解セルおよびそれを有する内燃エンジンキット
JP2003227363A (ja) * 2002-02-04 2003-08-15 Hirotsugu Tsuji 水素を補助剤と共に燃料とした低公害エンジン駆動車
JP2006194230A (ja) * 2004-12-16 2006-07-27 Masahide Ichikawa 水の電気分解によるエネルギーを用いた内燃機関及び機関体
JP2008013821A (ja) * 2006-07-06 2008-01-24 炳霖 ▲楊▼ 電気分解を利用した燃焼ガス発生装置及び車載用燃焼ガス発生装置
JP2010509504A (ja) * 2006-11-13 2010-03-25 アドバンスト・アール・エフ・デザイン・エルエルシー 電気分解装置、電気分解装置を含む内燃機関、および内燃機関を含む車両
JP2010042386A (ja) * 2007-09-11 2010-02-25 Sanyo Electric Co Ltd 電解処理装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504500A (ja) * 2011-11-25 2015-02-12 フュエル・ソリューション・エス・ア 燃焼エンジン内での燃焼の前に化石燃料と水の混合物を処理する装置
ITRM20130653A1 (it) * 2013-11-26 2015-05-27 A N D Holding Ltd Apparato per la produzione comandata ed instantanea di idrogeno da immettere nel condotto di aspirazione di un motore endotermico
WO2015079316A1 (en) * 2013-11-26 2015-06-04 A.N.D. Holding Ltd An apparatus for controlled and instantaneous production of hydrogen to be introduced into the intake duct of an internal-combustion engine
WO2019153037A1 (en) * 2018-02-06 2019-08-15 Brock Darryl James Fuel efficiency system
CN111819307A (zh) * 2018-03-09 2020-10-23 卢万天主教大学 水电解过程强化系统
WO2021132708A1 (ja) * 2019-12-28 2021-07-01 株式会社Hbコーポレーション 電解水の生成方法、生成噴霧器及び生成噴霧装置
JP7507971B1 (ja) 2022-06-16 2024-06-28 フエ グエン ホン 内燃機関に水素ガスを供給するためのシステムおよび方法

Also Published As

Publication number Publication date
JPWO2011136291A1 (ja) 2013-07-22

Similar Documents

Publication Publication Date Title
US7191737B2 (en) Hydrogen generator for uses in a vehicle fuel system
US7475656B2 (en) Hydrogen and oxygen production and accumulating apparatus including an internal combustion engine and method
US9284652B2 (en) Electrolyzed hydrogen gas for fuel-fired boilers and hot water heaters
CN101445940B (zh) 一种产生氢氧助燃气体的节能装置及方法
CN101900059B (zh) 车载氢氧发生器辅助燃烧系统
US8702916B2 (en) Hydrogen supplementation fuel apparatus and method
WO2011136291A1 (ja) 電気分解槽を有するエンジンシステム
JP2008502802A (ja) 水素ガス電気分解・供給装置および方法
WO2011030556A1 (ja) 水素および酸素の混合ガス発生装置およびそれを用いた内燃機関
US8464667B1 (en) Hydrogen system for internal combustion engine
US20110209993A1 (en) Dual cylinder hydrogen generator system
US8163142B1 (en) Hydrogen system for internal combustion engine
JP2017160898A (ja) 車用水電解水素酸素エネルギ発生装置
WO2014025249A1 (en) Apparatus and method for enhancing engine performance and cleaning the same
US20180171870A1 (en) Electrocatalytic system for reducing pullution and fuel consumption
WO2012017729A1 (ja) ブラウンガス発生システム
JP2012122092A (ja) 燃焼補助装置
CA2312058A1 (en) Electrolytic tank for the electrolysis of a liquid
EP2602358A1 (en) An electrolysis cell
US9932891B2 (en) Engine system
CN201351177Y (zh) 一种产生氢氧助燃气体的节能装置
WO2010011126A2 (en) Water fuel apparatus
WO2011004344A1 (en) Device for hydrogen enrichment of the fuel of internal combustion engine fed by ammonia, during the start-up and during the steady state
US20160025000A1 (en) Method and system for using the by-product of electrolysis
US9982632B2 (en) Systems and methods for a hydrogen fuel system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11775072

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512894

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11775072

Country of ref document: EP

Kind code of ref document: A1