WO2021132708A1 - 電解水の生成方法、生成噴霧器及び生成噴霧装置 - Google Patents

電解水の生成方法、生成噴霧器及び生成噴霧装置 Download PDF

Info

Publication number
WO2021132708A1
WO2021132708A1 PCT/JP2020/049053 JP2020049053W WO2021132708A1 WO 2021132708 A1 WO2021132708 A1 WO 2021132708A1 JP 2020049053 W JP2020049053 W JP 2020049053W WO 2021132708 A1 WO2021132708 A1 WO 2021132708A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
container
electrode structure
electrolyzed water
ozone
Prior art date
Application number
PCT/JP2020/049053
Other languages
English (en)
French (fr)
Inventor
登 菊本
Original Assignee
株式会社Hbコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Hbコーポレーション filed Critical 株式会社Hbコーポレーション
Publication of WO2021132708A1 publication Critical patent/WO2021132708A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/13Ozone
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form

Definitions

  • the present invention relates to a method for generating electrolyzed water from raw material water by electrolysis, a generation sprayer, and a generation spray device.
  • Ozone is (o 3) has a strong oxidizing power, is small residual toxicity for changing oxygen (o 2) a time of about several tens of minutes in an aqueous solution. Therefore, today, ozone gas and ozone water, which is an aqueous solution of ozone, are used in a wide range of fields such as sterilization, deodorization, decolorization, and oxidation / decomposition of harmful substances, and are attracting attention as an oxidant that replaces chlorine, especially as a bactericide. ..
  • Sterilization with ozone is effective in a wide range of bacteria, yeasts, molds, viruses, etc., and since the mechanism of action is to oxidatively destroy the cell membrane of bacteria, resistant bacteria are unlikely to occur, and it also has a deodorizing effect.
  • ozone has an odor and stimulates the respiratory system of the human body, so it is necessary to comply with the indoor environmental standard for air concentration (volume concentration of 0.1 ppm or less), and ozone is iron or It is necessary to pay attention to the fact that nitrile rubber and the like are corroded and deteriorated (Non-Patent Document 1).
  • the main methods for producing ozone water are the gas dissolution method and the direct electrolysis method.
  • the gas dissolution method is a method for producing ozone water by dissolving ozone gas produced by a method such as generating oxygen gas as a raw material by electric discharge in water.
  • the gas dissolution method has a drawback that it is difficult to obtain high-concentration ozone water because ozone gas is sparingly soluble in water, and most of them are used at a low concentration of 1 mg / L or less.
  • the direct electrolysis method is a method of generating ozone water by electrolyzing raw water such as tap water. High-concentration ozone water can be obtained more economically by the direct electrolysis method (the same document).
  • Patent Document 1 electrolyzes raw material water in a bottle that can be grasped with one hand so that ozone water can be easily used at home.
  • the basic configuration of a simple ozone water generation sprayer that can generate and spray 0.1 mL to 1 mL at a time is disclosed.
  • the ozone water generation sprayer comprises a discharge unit 107 and a bottle 104, and the bottle 104 has electrodes 105 and 106 erected on its flat inner bottom surface for electrolyzing raw water to generate ozone water.
  • the ozone water generated in the bottle 104 is sprayed from the discharge unit 107 through the spray tube 112.
  • Similar basic configurations are disclosed in JP-A-2019-0379446, Re-Table 2003-000957, and JP-A-2003-266073.
  • ozone water having a volume of several tens of mL and an ozone concentration of about 1 to 2 mg / L can be generated with high efficiency in a short time of about 2 to 4 minutes. It is an issue.
  • Conventional techniques for increasing the efficiency of ozone water generation by the direct electrolysis method include (1) arranging electrodes in the compartment, (2) devising the electrode surface, (3) controlling ion movement, and (4) controlling convection. Are known.
  • a compartment is provided in a container for storing raw water, and electrodes for electrolysis are placed in the compartment to perform electrolysis, and the height generated in the compartment is generated.
  • This is a technology that sprays only concentrated ozone water.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2009-154030 (Patent Document 2) provides an electrolytic cell 205 communicating with the tank 204 in the electrolyzed water generation spraying device 201, and the tank 204 and the electrolytic cell 205 are described.
  • Japanese Patent Application Laid-Open No. 2003-062573 and Japanese Patent Application Laid-Open No. 2003-181338 disclose a technique for attaching an electrode for electrolysis for generating ozone water in the immediate vicinity of a spray nozzle of a discharge portion.
  • the amount of ozone water that can be stored in the compartments is small, so if the amount of spray per unit time exceeds a certain value, the ozone water generation speed will not catch up with the spray speed, and the spray water will not catch up.
  • the ozone concentration decreases.
  • Japanese Patent No. 6258566 discloses an invention in which the anode and / or the cathode is meshed in order to increase the contact area with the raw material water and increase the electrolysis efficiency.
  • Japanese Patent Application Laid-Open No. 03-000957 discloses a technique for increasing the ozone generation efficiency by using an electrode for electrolysis provided with an electrode catalyst made of tantalum oxide or niobium oxide on the surface. Further, in Japanese Patent Application Laid-Open No.
  • a wire mesh made of a noble metal having an ozone generation catalytic function is used for the anode electrode, and a lath mesh made of a corrosion-resistant metal is superposed on the outer surface side of the anode electrode to form raw water.
  • the raw material water is advanced so as to sew a narrow gap connecting the meshes, and the stirring action dissolves the generated ozone bubbles in the water, preventing the ozone from being discharged as a gas.
  • a technique for increasing the efficiency of ozone water generation is disclosed. Although these techniques are useful, the electrode structure is complicated and the manufacturing cost tends to be high.
  • the above-mentioned technique is a technique for increasing the efficiency of ozone water generation by controlling the ion transfer in the vicinity of the electrode.
  • the electrolysis reactions (formula 1) and (formula 3) of water in which oxygen ( ⁇ 2 ) and hydrogen (H 2) are generated are mainly used. Yes, accompanied by a reaction (Equation 2) that produces trace amounts of ozone (O 3).
  • the above-mentioned technique is a method of controlling the convection of the raw material water so that high-concentration ozone water (or electrolyzed water) can be sprayed.
  • Patent Document 3 In Japanese Patent Application Laid-Open No. 3207605 (Patent Document 3), as shown in FIG. 23, an electrode member is housed and fixed in a holder 340 attached to the inside of the lower end of the container 320, and a plurality of the electrode members are provided from above.
  • a decorative piece 331 having a hole, a negative electrode electrolytic piece 332, an insulating washer 333, and a positive electrode electrolytic piece 334 are stacked, and the decorative piece 331 and the holder 340 are thermally fused to accommodate the electrode member in the holder 340.
  • the invention of a fixed, spray is disclosed.
  • the holder 340 in which electrolyzed water is generated is formed in a cylindrical shape with a short height and a wide bottom area to suppress convection generated in the container 320 during electrolysis, and a spray tube directly above the holder 340.
  • the water suction port of By providing the water suction port of, it is possible to spray highly concentrated electrolyzed water if the amount is small.
  • the convection in the container 320 is weak, only the concentration of the electrolyzed water in the vicinity of the holder 340 increases, and the concentration of the entire container 320 does not increase so much.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2003-334557
  • the electrolytic cell 402 in which the electrode portion (electrolyzer) 401 is penetrated in the horizontal direction and the power supply device 404 are removable.
  • the invention of the sterilizing washing water generator configured as described above is disclosed.
  • a terminal cover portion 415 having an anode power receiving terminal 405-1 and a cathode power receiving terminal 405-2 is provided in the lower part of the electrolytic cell 402. Therefore, the horizontal cross section of the lower part of the electrolytic cell 402 is smaller than that of the upper part.
  • the raw water in the electrolytic cell 402 has an ascending water flow from the electrode portion 401 and a descending water flow mainly along the inner surface of the electrolytic cell 402.
  • the lower precipitation stream finally reaches the inner bottom surface of the electrolytic cell 402.
  • the descending water flow does not directly hit the electrode portion 401, so that the low-concentration electrolyzed water contained in the descending water flow is present. It takes time to receive electrolysis and increase the concentration.
  • the electrode portion 401 since the electrode portion 401 is oriented in the horizontal direction, the volume of the raw material water affected by Joule heating and the formation of fine bubbles is larger than that in the case where the electrode portion 401 is oriented in the vertical direction. The speed is also slow, and the speed of convection tends to decrease due to collision with the descending water flow. In addition, when the electrode portion 401 is oriented in the horizontal direction, fine bubbles generated by electrolysis accumulate and stay in the lower half of the substantially cylindrical surface of the electrode portion 401, and the effective area of the electrode is about. Since it is reduced by half, the production rate of electrolyzed water is significantly reduced. There is much room for improvement in the arrangement and orientation of the electrode portion 401 in the electrolytic cell 402.
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2017-05191
  • An electrolytic device including a unit 520 and a power supply unit 530 for supplying power to the electrode unit 520.
  • the power supply unit 530 is attached to the main body portion and extends from the main body portion to the bottom surface side of the electrolytic cell 510, and is an electrode.
  • the portion 520 is attached to the feeding portion 530, gaps D1 and D2 are provided between the electrode portion 520 and the inner side surface and the bottom surface of the electrolytic cell 510, and the outer shell portion 524 is arranged on the outer surface of the electrode portion 520.
  • the invention of an electrolytic cell is disclosed in which a concentric groove portion 525 is provided on the upper surface side of the outer shell portion 524, the lower surface side is released, and water can circulate along the electrode portion 520 in the axial direction.
  • a water flow flowing upward through the electrode portion 520 is generated due to the temperature rise of the electrolyzed water accompanying the electrolysis treatment, and the water before the electrolysis treatment is supplied to the electrode portion 520.
  • the water before the electrolysis treatment which is stored above the electrode portion 520, is passed between the electrode portion 520 and the side surface of the electrolytic cell 510 to the lower side of the electrode portion 520. It can be circulated and replenished to the electrode portion 520 from below the electrode portion 520. As a result, the water in the electrolytic cell 510 can be efficiently circulated to the electrode portion 520, so that the efficiency of the electrolysis treatment can be improved and the time required for the electrolysis treatment can be shortened.
  • this electrolytic device has a disadvantage that the electrode portion hangs down from the main body portion and the power supply portion is provided in the main body portion, so that the main body portion constituting the lid of the electrolytic cell becomes heavy and inconvenient to handle. is there.
  • Japanese Patent Application Laid-Open No. 2012-501385 states that the indicator light is turned on when the current value flowing through the electrolytic cell is within a predetermined range, and the indicator light is turned on when the current value flows out of the range.
  • Patent Document 6 discloses a technique of a spray device having an oxidant efficacy indicator lamp for displaying the efficacy of electrolyzed water in the spray head portion. No details of the control for turning on and off the indicator light are described.
  • the conventional techniques (1) to (5) for increasing the production efficiency of ozone water (or electrolyzed water) by the direct electrolysis method are simple and inexpensive household ozone water generation sprayers having a bottle that can be grasped with one hand. It is not a satisfactory technology to use for (or electrolyzed water sprayer).
  • the rising water flow generated from the vicinity of the electrode structure attached to the inner bottom surface of the container during electrolysis can be generated.
  • Patent Document 4 discloses a configuration in which the inner bottom surface of the container is not flat, but this is for penetrating the electrode portion on the side surface of the container, not for controlling the water flow in the container.
  • Patent Document 5 the idea of controlling the ascending water flow and the descending water flow in the container can be seen, but there is an idea that the flow is controlled by devising the shape of the inner bottom surface of the container and the like. do not.
  • a configuration has not been realized in which the effectiveness of the sterilizing / deodorizing action of the sprayed ozone water (or electrolyzed water) is displayed in real time to the user in an easy-to-understand manner.
  • An object of the present invention is to provide a simple and inexpensive method for producing electrolyzed water (or ozone water) that can be used at home, a production atomizer that can be held by one hand, and a production spray device.
  • a further object of the present invention is to improve the production efficiency of electrolyzed water by devising the shape of the inner bottom surface of the container for storing the raw material water, and to achieve the above object.
  • a further object of the present invention is to provide an electrolyzed water generation spray device that clearly displays the effectiveness of sterilization and deodorization of electrolyzed water.
  • ozone water is used to mean an aqueous solution containing ozone.
  • electrolyzed water is used to mean an aqueous solution obtained by electrolyzing raw water (water or an aqueous solution).
  • electrolyzed ozone water is used to mean an aqueous solution of ozone water that is also electrolyzed water.
  • ozone water may be used to mean the above-mentioned electrolyzed ozone water. That is, in the present specification, the phrase “ozone water” means electrolytic ozone water in a narrow sense, and means an aqueous solution containing ozone in a broad sense.
  • the present invention has been made to solve the above problems, and the first form thereof is a container for storing raw water and electrolyzed water (or electrolyzed water) generated from the raw water in the container. It is a method of generating electrolyzed water in an electrolyzed water generating atomizer including at least a spraying mechanism for spraying water, in which an electrode structure is erected on the inner bottom surface of the container and a water injection port is provided above the inner bottom surface of the container. , The spray mechanism is attached to the water injection port to promote convection of the raw water in the container to the inner bottom surface of the container or the lower part of the electrode structure facing the inner bottom surface of the container.
  • a convection promoting means for this purpose is provided, and a voltage is applied to the electrode structure to electrolyze the raw water to generate electrolyzed water.
  • An ascending water flow generated by the acting buoyancy and a descending water flow in which the raw water flows down toward the inner bottom surface of the container are generated, and the convection promoting means promotes the convection of the raw water in the container.
  • the convection promoting means is a concave basin portion provided on the inner bottom surface of the container and recessed downward, and the concave basin portion is a concave basin that surrounds the bottom surface of the concave basin portion and its periphery.
  • the electrode structure is erected on the bottom surface of the concave basin portion in the container, and the raw material water flows through the concave basin wall surface of the concave basin portion toward the bottom surface of the concave basin portion. It is an electrolytic water generation method that promotes the descending water flow by descending.
  • An example of the second embodiment of the present invention is an electrolyzed water generation method in which the wall surface of the concave basin portion is perpendicular to the bottom surface of the concave basin portion.
  • Another example of the second embodiment of the present invention is an electrolyzed water generation method in which the wall surface of the concave basin portion is a slope.
  • Yet another example of the second embodiment of the present invention is an electrolyzed water generation method in which the wall surface of the concave basin is smoothly connected to the inner surface of the container.
  • the electrode structure includes an anode member and a cathode member arranged with the anode member and an electrode gap separated from each other, and the convection promoting means faces the inner bottom surface of the container.
  • An opening formed between the lower part of the cathode member and the inner bottom surface of the container. Electrolyzed water that promotes the descending water flow by flowing the raw material water into the electrode gap through the opening. It is a generation method.
  • the electrode structure includes an anode member and a cathode member arranged with the anode member and an electrode gap separated from each other, and a plurality of holes are provided in the cathode member, and the holes are provided.
  • a fifth embodiment of the present invention includes a container for storing raw water, an electrode structure for electrolyzing the raw water in the container to generate electrolyzed water (or ozone water), and the electrolyzed water. It is an electrolyzed water generation sprayer provided with a spraying mechanism for spraying, and the electrode structure is erected on the inner bottom surface of the container and faces the inner bottom surface of the container or the inner bottom surface of the container. , A convection promoting means for promoting convection of the raw water in the container is provided in the lower part of the electrode structure, a water injection port is provided above the inner bottom surface of the container, and the spray is sprayed on the water injection port. It is an electrolyzed water generation sprayer characterized in that a mechanism is attached.
  • the convection promoting means is a downwardly recessed concave basin provided on the inner bottom surface of the container, and the concave basin portion has a concave basin bottom surface and the concave basin.
  • the portion is an electrolytic water generation sprayer composed of a bottom surface of the concave basin portion and a wall surface of the concave basin portion surrounding the bottom surface of the concave basin portion, and the electrode structure is erected on the bottom surface of the concave basin portion in the container.
  • An example of the sixth embodiment of the present invention is an electrolyzed water generating atomizer in which the wall surface of the concave basin portion is perpendicular to the bottom surface of the concave basin portion.
  • Another example of the sixth embodiment of the present invention is an electrolyzed water generating atomizer in which the wall surface of the concave basin portion is a slope.
  • Yet another example of the sixth embodiment of the present invention is an electrolyzed water generating atomizer in which the wall surface of the concave basin is smoothly connected to the inner surface of the container.
  • the electrode structure includes an anode member and a cathode member arranged with the anode member and an electrode gap separated from each other, and the convection promoting means faces the inner bottom surface of the container. It is an opening formed between the lower part of the cathode member and the inner bottom surface of the container, and is an electrolyzed water generating atomizer in which the raw material water flows into the electrode gap through the opening.
  • the electrode structure includes an anode member and a cathode member arranged with the anode member and an electrode gap separated from each other, and the cathode member is provided with a plurality of holes.
  • An electrolyzed water generating atomizer in which the raw water and / or the electrolyzed water enters and exits the electrode gap through the holes.
  • a ninth aspect of the present invention is an electrolyzed water generating spray device including the electrolyzed water generating atomizer and a power supply unit for mounting the electrolyzed water generating atomizer, and the power supply unit or the electrolyzed water generating atomizer.
  • An electrolyzed water generating spray device characterized by controlling the lighting of the lamp.
  • At least a container for storing the raw material water and a spraying mechanism for spraying the electrolyzed water (or ozone water) generated from the raw material water in the container are provided.
  • the inner bottom surface of the container or the lower part of the electrode structure facing the inner bottom surface of the container is provided with a convection promoting means for promoting the convection of the raw water in the container, and the electrode structure is provided.
  • Electrolyzed water is generated by electrolyzing the raw water by applying a voltage to the water, and the rising water flow generated by the buoyancy acting vertically on the raw water in the electrode structure during electrolysis and the raw water. Generates a descending water flow that flows down toward the inner bottom surface of the container, promotes the convection of the raw water in the container by the convection promoting means, and supplies the raw water to the electrode structure. It is possible to provide a method for producing electrolyzed water, which comprises advancing an electrolyzed water production reaction by electrolysis to increase the concentration of electrolyzed water produced.
  • the convection promoting means for promoting the convection of the raw water in the container is not provided in the inner bottom surface of the container or the lower part of the electrode structure facing the inner bottom surface of the container, the rising water flow is generated. Since there is no means to promote the downward water flow in which the raw water flows down toward the inner bottom surface of the container, the convection of the raw water in the container is weak, and the raw water circulates locally in the container to generate the raw water. The generated ozone water (or electrolyzed water) stays in the lower part of the container, and the amount of raw water having a low ozone concentration (or electrolyzed product concentration) supplied to the electrode structure is reduced.
  • the ozone concentration (or electrolyzed product concentration) of the raw material water in the electrode structure becomes high, and the ozone production reaction (or electrolyzed water production reaction) represented by (Equation 2) does not proceed much.
  • a convection promoting means for promoting convection of the raw material water in the container is provided at the inner bottom surface of the container or the lower part of the electrode structure facing the inner bottom surface of the container.
  • the descending water flow in which the raw material water flows down toward the inner bottom surface of the container is promoted, the convection of the raw material water in the container becomes stronger, the raw material water in the container circulates on a large scale, and the electrode
  • the structure is supplied with abundant raw water having a low ozone concentration (or electrolytic product concentration). Therefore, the ozone concentration (or electrolyzed product concentration) of the raw material water in the electrode structure becomes low, and the ozone production reaction (or electrolysis reaction) represented by (Equation 2) proceeds to efficiently perform ozone water (or electrolysis reaction).
  • Electrolyzed water is generated, and the generated ozone water (or electrolyzed water) having a high ozone concentration (or electrolytic product concentration) is distributed throughout the container by the upper water stream and the descending water stream.
  • the cause of the rising water flow is buoyancy.
  • the buoyancy is caused by the temperature rise of the raw material water in the electrode structure due to Joule heating accompanying electrolysis and thermal expansion, and oxygen and hydrogen generated by electrolysis. , Ozone and other gas fine bubbles are mixed in the raw material water, so that the substantial density of the raw material water is lowered.
  • the electrode structure is erected on the inner bottom surface of the container.
  • “Erecting” means having the inner bottom surface as the surface so that the direction of the surface of the electrode constituting the electrode structure intersects the inner bottom surface of the container (preferably a vertical direction). It means that the electrode structure is attached to the existing member. Since the electrode structure is erected, the raw material water is continuously buoyant while traveling from the lower side to the upper side in the electrode structure, and a strong rising water flow is generated.
  • the raw water in the present invention is mainly assumed to be tap water, commercially available mineral water, etc. from the viewpoint of easy use at home, but the present invention is not limited to this, and an electrolysis reaction (or ozone) is assumed. From the viewpoint of adjusting the rate of the formation reaction), it may be an aqueous solution in which a gas such as chlorine or a solute such as a salt such as sodium chloride is dissolved in water, or distilled water, deionized water, purified water or the like. There may be.
  • the electrolyzed water (or ozone water) generated by electrolyzing the raw material water is not limited to ozone, but also various types such as chlorine, hypochlorous acid, chlorous acid, sodium hydroxide, oxygen, hydrogen, and sodium chloride.
  • ozone water can be generated by electrolyzing raw water such as tap water or commercially available mineral water, and has an advantage that deterioration due to corrosion of the electrode structure at that time is also slight.
  • the convection promoting means is a downwardly recessed concave basin provided on the inner bottom surface of the container, and the concave basin surrounds the bottom surface of the concave basin and its surroundings.
  • the electrode structure is erected on the bottom surface of the concave basin in the container, and the raw material water directs the wall surface of the concave basin of the concave basin toward the bottom surface of the concave basin.
  • the raw material water makes the concave basin wall surface of the concave basin portion the bottom surface of the concave basin portion. Since there is a descending water flow that flows down toward, the descending water flow that the raw material water flows down toward the inner bottom surface of the container is promoted, the convection of the raw material water in the container becomes stronger, and the raw material water in the container becomes large-scale.
  • the electrode structure is supplied with abundant raw water having a low ozone concentration (or electrolytic product concentration).
  • the ozone concentration (or electrolyzed product concentration) of the raw material water in the electrode structure becomes low, and the ozone production reaction (or electrolysis reaction) represented by (Equation 2) proceeds to efficiently perform ozone water (or electrolysis reaction). Electrolyzed water) is generated, and the generated ozone water (or electrolyzed water) having a high ozone concentration (or electrolytic product concentration) is distributed throughout the container by the upper water stream and the descending water stream.
  • the electrode structure is erected on the bottom surface of the concave basin.
  • “Erecting” means having the bottom surface of the concave basin as the surface so that the direction of the surface of the electrode constituting the electrode structure intersects the bottom surface of the concave basin (preferably a vertical direction). It means that the electrode structure is attached to the member. Since the electrode structure is erected, the raw material water is continuously buoyant while traveling from the lower side to the upper side in the electrode structure, and a strong rising water flow is generated.
  • the second embodiment of the present invention it is possible to provide a method for generating electrolyzed water in which the wall surface of the concave basin portion is perpendicular to the bottom surface of the concave basin portion.
  • the concave basin portion in this example can be easily manufactured by a processing method such as cutting or injection molding.
  • the wall surface of the concave basin is composed of slopes, the raw water that has descended along the inner surface of the container is transferred to the bottom surface of the concave basin and the electrode structure erected on the bottom surface of the concave basin.
  • the second embodiment of the present invention it is possible to provide a method for generating electrolyzed water in which the wall surface of the concave basin portion is smoothly connected to the inner surface surface of the container.
  • the wall surface of the concave basin is smoothly connected to the inner surface of the container, the raw water that has descended along the inner surface of the container is erected on the bottom surface of the concave basin and the bottom surface of the concave basin. It can be smoothly guided to the electrode structure, and highly concentrated electrolyzed water can be efficiently generated.
  • the electrode structure includes an anode member and a cathode member arranged with the anode member and an electrode gap separated from each other, and the convection promoting means is provided on the inner bottom surface of the container. It is an opening formed between the lower portion of the cathode member and the inner bottom surface of the container facing each other, and the raw water flows into the electrode gap through the opening to promote the descending water flow.
  • a method for generating electrolyzed water can be provided.
  • an opening formed between the lower portion of the cathode member and the inner bottom surface of the container facing the inner bottom surface of the container is provided as a convection promoting means, and the raw material is provided through the opening.
  • Water can flow into the electrode gaps of the electrode structure. Therefore, the raw material water flows into the electrode gap of the electrode structure through the opening along with the rising water flow generated in the electrode gap of the electrode structure during electrolysis, so that the raw material water flows toward the inner bottom surface of the container.
  • the descending water flow is promoted, the convection of the raw water in the container becomes strong, the raw water in the container circulates on a large scale, and the raw water having a low ozone concentration (or electrolytic product concentration) is contained in the electrode structure. It is abundantly supplied.
  • the ozone concentration (or electrolyzed product concentration) of the raw material water in the electrode structure becomes low, and the ozone production reaction (or electrolysis reaction) represented by (Equation 2) proceeds to efficiently perform ozone water (or electrolysis reaction). Electrolyzed water) is generated, and the generated ozone water (or electrolyzed water) having a high ozone concentration (or electrolytic product concentration) is distributed throughout the container by the upper water stream and the descending water stream.
  • the electrode structure includes an anode member and a cathode member arranged with an electrode gap between the anode member and the cathode member, and the cathode member is provided with a plurality of holes. It is possible to provide a method for generating electrolyzed water in which the raw material water and / or the electrolyzed water enters and exits the electrode gap through the holes. By providing a plurality of holes in the cathode member, the raw material water can be efficiently guided from the outside to the electrode gap, and the generated ozone water (or electrolyzed water) can be efficiently sent out from the electrode gap to the outside. Therefore, ozone water (or electrolyzed water) can be efficiently generated.
  • the surface area of the cathode member is increased to increase the effective area for electrolysis, and the concentration of ozone water (or electrolyzed water) generated is increased.
  • the cathode member has holes or no holes can efficiently generate ozone water (or electrolyzed water) depends on various conditions such as the shape of the cathode member, the size, number, and arrangement of the holes. Dependent.
  • a container for storing raw water an electrode structure for electrolyzing the raw water in the container to generate electrolyzed water (or ozone water), and the above.
  • It is an electrolyzed water generation sprayer provided with a spraying mechanism for spraying electrolyzed water, and the electrode structure is erected on the inner bottom surface of the container and is placed on the inner bottom surface of the container or the inner bottom surface of the container.
  • a convection promoting means for promoting convection of the raw water in the container is provided at the lower part of the electrode structure facing the electrode structure, and a water injection port is provided above the inner bottom surface of the container. It is possible to provide an electrolyzed water generating sprayer characterized in that the spraying mechanism is attached.
  • the descending water flow is promoted to strengthen the convection of the raw water in the container, the raw water in the container is circulated on a large scale, and the raw water having a low ozone concentration (or electrolytic product concentration) is formed in the electrode structure.
  • the convection promoting means is a concave basin portion provided on the inner bottom surface of the container, which is recessed downward, and the concave basin portion has a concave basin bottom surface.
  • the concave basin portion is composed of a bottom surface of the concave basin portion and a wall surface of the concave basin portion surrounding the bottom surface of the concave basin portion, and an electrolytic water generation sprayer in which the electrode structure is erected on the bottom surface of the concave basin portion in the container can be provided.
  • a descending water flow flowing down is generated to promote convection of the raw water in the container, and the raw water is supplied to the electrode structure to promote an ozone generation reaction (electrolyzed water generation reaction) by electrolysis.
  • the ozone concentration (or electrolyzed product concentration) in the generated ozone water (or electrolyzed water) can be increased.
  • an electrolyzed water generating atomizer in which the wall surface of the concave basin portion is perpendicular to the bottom surface of the concave basin portion.
  • the concave basin portion in this example can be easily manufactured by a processing method such as cutting or injection molding.
  • the wall surface of the concave basin is composed of slopes, the raw water that has descended along the inner surface of the container is transferred to the bottom surface of the concave basin and the electrode structure erected on the bottom surface of the concave basin. , It can be guided smoothly, and highly concentrated electrolyzed water can be efficiently generated. According to still another example of the sixth aspect of the present invention, it is possible to provide an electrolyzed water generating atomizer in which the wall surface of the concave basin is smoothly connected to the inner surface of the container.
  • the wall surface of the concave basin is smoothly connected to the inner surface of the container, the raw water that has descended along the inner surface of the container is erected on the bottom surface of the concave basin and the bottom surface of the concave basin. It can be smoothly guided to the electrode structure, and highly concentrated electrolyzed water can be efficiently generated.
  • the electrode structure includes an anode member and a cathode member arranged with the anode member and an electrode gap separated from each other, and the convection promoting means is provided on the inner bottom surface of the container. It is an opening formed between the lower portion of the cathode member and the inner bottom surface of the container, which are opposed to each other, and an electrolyzed water generating atomizer in which the raw material water flows into the electrode gap through the opening can be provided.
  • the electrolyzed water generating sprayer of this embodiment is configured so that the raw water can flow into the electrode gap through the opening, it acts vertically on the raw water in the electrode structure during electrolysis.
  • the rising water flow generated by buoyancy and the falling water flow in which the raw water flows down toward the inner bottom surface of the container are promoted, the raw water is supplied to the electrode structure, and the ozone generation reaction (electrolyzed water generation reaction) by electrolysis occurs. It has the advantage of increasing the ozone concentration (or electrolyzed product concentration) in the advancing and produced ozone water (or electrolyzed water).
  • the electrode structure includes an anode member and a cathode member arranged with the anode member and an electrode gap separated from each other, and the cathode member is provided with a plurality of holes.
  • the electrolyzed water generating atomizer in which the raw material water and / or the electrolyzed water enters and exits the electrode gap through the holes can be provided.
  • an electrolyzed water generation spraying device including the electrolyzed water generation sprayer and a power supply unit for mounting the electrolyzed water generation sprayer, and is the power supply unit or the electrolyzed water.
  • the generation atomizer has a control unit and a lamp, and the control unit has a predetermined time for displaying that the concentration of the electrolyzed water in the container is an effective concentration after the completion of the electrolyzed water generation process. During the period, it is possible to provide an electrolyzed water generating spray device characterized by controlling the lighting of the lamp.
  • the ozone concentration of ozone water in the container gradually decreases if left unattended due to the self-decomposition reaction of ozone.
  • electrolyzed water may gradually lose its effectiveness such as sterilization and deodorization after a lapse of time from its production by electrolysis.
  • the ozone water (or electrolyzed water) in the current container has a sufficient ozone concentration (or electrolyzed product concentration) for spraying to disinfect and deodorize.
  • a lamp is used to indicate whether or not the product is used so that the user can easily understand it.
  • the control unit may display that the ozone concentration (or electrolytic product concentration) of the ozone water in the container is an effective concentration for a predetermined time. Controls the lighting of the lamp.
  • the predetermined time time for turning on the lamp
  • the predetermined time is preferably selected by the control unit from a plurality of predetermined times according to the amount of raw material water in the container used for the production reaction. Since the rate of self-decomposition reaction of ozone and the like depends on the temperature, more preferably, this predetermined time is the amount of raw water in the container used for the production reaction and the air temperature or the inside of the container measured by the temperature sensor. It is desirable that the control unit selects from a plurality of predetermined times according to the temperature of the ozone water.
  • FIG. 1 is a perspective view showing an ozone water generation sprayer (electrolyzed water generation sprayer) according to an embodiment of the present invention, showing a state in which an ozone water generation sprayer (electrolyzed water generation sprayer) is placed on a power supply unit.
  • FIG. 2 is a perspective view showing a state in which the ozone water generation atomizer is removed from the power supply unit.
  • FIG. 3 is an explanatory diagram showing the configuration of each part of the ozone water generation atomizer.
  • FIG. 4 is a perspective view showing a state in which the electrode structure of the ozone water generation sprayer is erected on the inner bottom surface of the container.
  • FIG. 1 is a perspective view showing an ozone water generation sprayer (electrolyzed water generation sprayer) according to an embodiment of the present invention, showing a state in which an ozone water generation sprayer (electrolyzed water generation sprayer) is placed on a power supply unit.
  • FIG. 5 is a cross-sectional explanatory view for explaining the action and effect of the concave basin portion provided on the inner bottom surface of the container.
  • FIG. 6 is a cross-sectional explanatory view showing a plurality of embodiments of the concave basin portion provided on the inner bottom surface of the container.
  • FIG. 7 is a plan explanatory view showing a plurality of embodiments of the concave basin portion provided on the inner bottom surface of the container.
  • FIG. 8 is a graph showing how the ozone concentration of ozone water generated in the container decreases with the passage of time in one embodiment of the present invention.
  • FIG. 9 is a flow chart showing a main control flow executed by the control unit of the ozone water generation spraying device according to the embodiment of the present invention.
  • FIG. 9 is a flow chart showing a main control flow executed by the control unit of the ozone water generation spraying device according to the embodiment of the present invention.
  • FIG. 10 is a flow chart showing a flow of ozone water generation processing executed by the control unit.
  • FIG. 11 is a flow chart showing a flow of post-treatment of ozone water executed by the control unit.
  • FIG. 12 is an exploded perspective view (12A) and a perspective view (12B) of the electrode structure according to the embodiment of the present invention.
  • FIG. 13 is a top view (13A) and a side view (13B) of the electrode structure shown in FIG.
  • FIG. 14 is an exploded perspective view (14A), a perspective view (14B), and a perspective view (14C) of a modified form of the electrode structure according to another embodiment of the present invention.
  • FIG. 12 is an exploded perspective view (12A) and a perspective view (12B) of the electrode structure according to the embodiment of the present invention.
  • FIG. 13 is a top view (13A) and a side view (13B) of the electrode structure shown in FIG.
  • FIG. 14 is an exploded perspective view (14A), a perspective
  • FIG. 15 is an exploded perspective view (15A) and a perspective view (15B) of the electrode structure according to still another embodiment of the present invention.
  • FIG. 16 is a perspective view of an electrode structure according to still another embodiment of the present invention.
  • FIG. 17 is a perspective view of an electrode structure according to still another embodiment of the present invention.
  • FIG. 18 is an explanatory view illustrating various methods of winding a string-shaped insulating spacer around an anode member in the present invention.
  • FIG. 19 is an explanatory view of an electrode structure having a cathode opening, which is erected on the inner bottom surface of a container according to an embodiment of the present invention.
  • FIG. 20 is an explanatory view of an electrode structure having a cathode opening, which is erected on the bottom surface of the concave basin portion according to another embodiment of the present invention.
  • FIG. 21 is a cross-sectional view of a conventional electrolyzed water generating sprayer.
  • FIG. 22 is a cross-sectional view of a conventional electrolyzed water generation spraying device.
  • FIG. 23 is a cross-sectional view of a spray for generating and spraying conventional electrolyzed water.
  • FIG. 24 is a cross-sectional view of a conventional sterilizing washing water generator.
  • FIG. 25 is a partial cross-sectional view of a conventional electrolyzer.
  • FIG. 1 is a perspective view showing an ozone water generation sprayer (electrolyzed water generation sprayer) 7 according to an embodiment of the present invention. It is composed of an ozone water generation sprayer (electrolyzed water generation sprayer) 1 and a power supply unit 6 for mounting the ozone water generation sprayer 1.
  • the ozone water generation sprayer 1 is erected on a container 4 for storing the raw material water 43 and an inner bottom surface 46 of the container 4, and the raw material water 43 in the container 4 is electrolyzed to form ozone water (or electrolyzed water) 42.
  • FIG. 2 is a perspective view showing a state in which the ozone water generation atomizer 1 is removed from the power supply unit 6.
  • the lower portion of the ozone water generation atomizer 1 has a skirt shape, and is placed on the convex portion 66 of the power supply portion of the power supply portion 6.
  • the power supply unit 6 is connected to a household outlet to supply a DC voltage and a DC current to the AC-DC adapter 61 for converting an AC voltage into a DC voltage and the ozone water generation atomizer 1. It includes a power cord 61a, three operation buttons 64, and three indicator lamps 65.
  • the operation button 64 includes a power button 64a, a first generation button 64b for long-time generation, and a second generation button 64c for short-time generation.
  • the indicator lamp 65 includes a power lamp 65a, a first generation lamp 65b, and a second generation lamp 65c, and lights up for a predetermined time when a button corresponding to each lamp is pressed.
  • the energization for electrolysis is performed only when the ozone water generation sprayer 1 is mounted on the power supply unit 6. In consideration of safety, in order to ensure that the ozone concentration in the indoor air does not exceed the indoor environmental standard of 0.1 ppm (0.1 mg / L), pressing the first generation button for a predetermined time, for example, 4 Electrolysis is performed only for a minute, and when the second generation button is pressed, electrolysis is performed for a predetermined time, for example, 2 minutes, and at the same time, the user is notified of the end of electrolysis by light or sound, and at the same time, electrolysis is performed. Complete the energization for.
  • the AC-DC adapter 61 is provided separately from the housing of the power supply unit 6, but in the modified embodiment of the present embodiment, the AC-DC adapter 61 is used in the power supply unit 6. It may be built in the housing.
  • a circuit chamber 9 is attached to the lower side of the container 4 via an interposition ring 94.
  • the circuit chamber 9 is provided with a connection terminal portion 91 for connecting the electrode portion 62 of the power supply unit 6.
  • a DC voltage and a DC current are supplied to the electrode structure 2 from the connection terminal portion 91 via the printed circuit board 92.
  • the spraying mechanism 5 is for transporting the head portion 51 detachably attached to the container 4 and the ozone water (or electrolyzed water) 42 in the container 4 to the head portion 51.
  • the head portion 51 includes a lever 54 and a nozzle 53.
  • a small amount of ozone water (or electrolyzed water) 42 of about 0.1 to 1.0 mL passes through the tube 52 and heads from inside the container 4 by the pumping action.
  • the ozone water (or electrolyzed water) 42 transported to the section 51 passes through the nozzle 53 and becomes a spray stream to be ejected to the outside.
  • lever accommodating groove portion and a slide member movable along the lever accommodating groove portion are provided on the outer surface of the container 4, and the lever 54 is accommodated in the lever accommodating groove portion and slides when not in use. By moving the member to cover and fix the tip end portion of the lever-54, the lever-54 may be brought into close contact with the outer surface of the container 4 and housed compactly.
  • a head cover 51a is attached to the container 4 in a removable manner.
  • the head cover 51a is provided with a notch so as not to interfere with the rotational operation of the lever 54, and ozone water (or electrolyzed water) 42 is sprayed even when the head cover 51a is attached to the container 4. Is possible.
  • the spray mechanism 5 is a manual type, but in the modified form of the present embodiment, a spray mechanism using an electric pump may be used as the spray mechanism 5.
  • Electrode structure support frame In FIG. 1, since the electrode structure 2 is supported by fitting into the electrode structure support frame 28, it may collapse or crack when cleaning with a brush during maintenance. There is less concern about damage to the.
  • the electrode structure support frame 28 is fixed to the bottom plate 49 of the container 4 or is integrally formed with the bottom plate 49.
  • FIG. (3B) illustrates the structure of the spraying mechanism 5 and the method of removing the spraying mechanism 5 when the raw material water 43 is put into the container 4 in one embodiment of the present invention.
  • the water injection port 4x of the container 4 is provided above the inner bottom surface 46 of the container 4, and is preferably provided at the uppermost portion of the container 4.
  • the screw type coupling is disengaged, and the spray mechanism 5 can be removed from the container 4 as indicated by the arrow 5y.
  • Water 43 can be put into the container 4 from the water injection port 4x of the container 4.
  • the spray mechanism 5 After injecting the raw material water, the spray mechanism 5 is fitted into the water injection port 4x of the container 4, the spray cap 5x is rotated in the direction opposite to the rotation arrow 5z, and the spray mechanism 5 is fixed to the container 4.
  • the spray mechanism 5 has a lever lock 54a between the spray cap 5x and the lever 54.
  • the lever lock 54a can take two angular positions, a normal position and a position rotated by 90 degrees. When the lever lock 54a is in the normal position, ozone water (or electrolyzed water) 42 can be sprayed by grasping and rotating the lever 54 by hand, but when the lever lock 54a is in the position rotated 90 degrees, the ozone water (or electrolyzed water) 42 can be sprayed.
  • the lever 54 is fixed and cannot be grasped and rotated by hand, and ozone water (or electrolyzed water) 42 cannot be sprayed.
  • FIG. (3C) is a perspective view for explaining the water level line 43 provided in the container 4 in one embodiment of the present invention.
  • the container 4 is provided with a plurality of water level lines of a first water level line 43b and a second water level line 43c.
  • the user puts the raw material water 43 in the container 4 to the position indicated by one of the water level lines, attaches the spray cap 5x to the container 4, places the container 4 on the power supply unit 6, and presses the operation button 64 to ozone. Produces water.
  • the first generation button 64b for long-term generation is pressed
  • the first generation button for short-time generation is pressed. 2 Press the generation button 64c.
  • Long-term generation is standard, but short-time generation can be performed in a hurry. In this way, by providing a plurality of water level lines, the amount of raw material water 43 to be electrolyzed is reduced in the case of short-time generation as compared with the case of long-term generation, and ozone water (or electrolyzed water) is produced. Ozone concentration (or electrolytic product concentration) can be kept high.
  • FIG. 4 is a perspective view showing a state in which the electrode structure 2 of the ozone water generation sprayer 1 is erected on the inner bottom surface 46 of the container 4 in one embodiment of the present invention.
  • the inner bottom surface 46 of the container 4 has a concave basin portion 48 that is recessed downward, and the concave basin portion 48 is composed of a concave basin portion bottom surface 48a and a concave basin portion wall surface 48b that surrounds the concave basin portion 48a.
  • the electrode structure 2 is erected on the bottom surface 48a of the tray. Further, the electrode structure support frame 28 is erected on the inner bottom surface 46 of the container 4.
  • the concave basin portion 48 constitutes the convection promoting means 46c.
  • the ozone water generation atomizer 1 generates ozone water (or electrolyzed water) 42 by applying a voltage to the electrode structure 2 to electrolyze the raw material water 43, and the raw material in the electrode structure 2 at the time of electrolysis.
  • the raw material in the container 4 is generated by an ascending water flow 81 generated by a buoyancy acting in the vertical direction on the water 43 and a descending water flow 82 in which the raw water 43 flows down the concave basin wall surface 48b toward the concave basin bottom surface 48a.
  • ozone water (or electrolyzed water) 42 produced by promoting the convection of the water 43, supplying the raw material water 43 to the electrode structure 2 and advancing the ozone generation reaction (or electrolyzed water generation reaction) by electrolysis.
  • the ozone concentration (or electrolyzed product concentration) can be increased. Since the electrode structure 2 is supported by being fitted into the "U-shaped" electrode structure support frame 28 or the like, it is damaged such as collapsing or cracking when cleaning with a brush during maintenance. There is less worry.
  • the support frame upper member 28b of the electrode structure support frame 28 is provided with a support frame opening 28a so as not to obstruct the rising water flow.
  • the electrode structure 2 is horizontally arranged with a plate-shaped anode member 21 and a string-shaped insulating spacer 30 sandwiched between the anode member 21 and the electrode gap.
  • a cathode member 22 having a "U" cross section.
  • the cathode member 22 is provided with a plurality of holes 27, and the raw material water 43 and / or ozone water (or electrolyzed water) 42 can enter and exit the electrode gap through the holes 27.
  • an embodiment in which the cathode member 21 of the electrode structure 2 is not provided with a hole is also possible.
  • FIG. 5 is a cross-sectional explanatory view for explaining the action and effect of the concave basin portion 48 provided on the inner bottom surface 46 of the container 4.
  • FIG. (5A) shows an embodiment of the present invention
  • FIG. (5B) shows the prior art.
  • a concave basin 48 is provided on the inner bottom surface 46 which is the upper surface of the container bottom plate 49 of the container 4, and the concave basin 48 is the concave basin bottom surface 48a.
  • the electrode structure 2 is erected on the bottom surface 48a of the concave basin in the container 4 and is composed of the concave basin wall surface 48b surrounding the basin.
  • Ozone water (or electrolyzed water) 42 is generated by electrolyzing the raw material water 43 by applying a voltage to the electrode structure 2.
  • the rising water flow 81 generated by the buoyancy acting vertically on the raw water 43 in the electrode structure 2 and the concave where the raw water 43 flows down the concave basin wall surface 48b toward the concave basin bottom surface 48a.
  • the descending water flow 82a in the basin and the descending water flow 82 in which the raw water 43 descends along the inner surface 47 of the container 4 are generated to promote the convection of the raw water 43 in the container 4, and the ozone concentration in the electrode structure 2 is increased.
  • the raw material water 43 having a low (or electrolyzed product concentration) is supplied to proceed the ozone generation reaction (or electrolyzed water generation reaction) by electrolysis, and the ozone concentration (or electrolyzed water) 42 in the generated ozone water (or electrolyzed water) 42 Electrolyzed product concentration) can be increased.
  • the concave basin wall surface 48b is vertical, but an embodiment in which the concave basin wall surface is a slope is also possible, and a greater effect and effect is exhibited.
  • Case A is the case where the angle (elevation angle) of the concave basin wall surface 48b with respect to the horizontal plane is 30 ° to 60 °
  • case B is the case where the concave basin wall surface 48b has the same height and the elevation angle is 90 °.
  • a case C be the case where the concave basin portion 46 is not provided in the case, and let a, b, and c be the ozone concentrations (or electrolytic product concentrations) in the ozone water (or electrolyzed water) 42 generated in each case, then a>.
  • b> c There is a relationship of b> c, and the value of the ratio (ac) / (bc) is empirically about 1.5.
  • case B the ozone concentration and the like are about three times higher than in case C (about 200% improvement)
  • case A the ozone concentration and the like are about four times higher than in case C. (Improved by about 300%).
  • the concave basin portion 48 is not provided on the inner bottom surface 46 of the container 4, and the electrode structure 2 is erected on the flat inner bottom surface 46. Therefore, at the time of electrolysis, although the rising water flow 81 generated by the buoyancy acting in the vertical direction exists on the raw water 43 in the electrode structure 2, the concave basin falling water flow 82a does not exist, and the raw water flows accordingly.
  • the descending water flow 82 in which 43 descends along the inner surface 47 of the container 4 is weakened, and the bottom water flow 82b toward the electrode structure 2 is also weakened.
  • the convection of the raw material water 43 in the container 4 becomes weak, the generated ozone water (or electrolyzed water) 42 stays at the bottom of the container 4 in which the electrode structure 2 is present, and the ozone concentration (or electrolysis) in the electrode structure 2 is present.
  • the raw material water 43 having a low product concentration) is not sufficiently supplied, the ozone generation reaction (or electrolyzed water generation reaction) by electrolysis does not proceed so much, and the ozone concentration (or electrolyzed water) 42 in the generated ozone water (or electrolyzed water) 42. Or the concentration of electrolyzed product) cannot be made sufficiently high.
  • FIG. 6 is a cross-sectional explanatory view showing various embodiments of the bottom plate 49, the inner bottom surface 46, and the concave basin portion 48 of the container 4 in the present invention.
  • FIG. (6A) is similar to the embodiment shown in FIG. (5A), but shows an embodiment in which the concave basin wall surface 48b is not a vertical surface but a slope.
  • FIG. (6B) shows an embodiment in which the concave basin portion 48 is composed of two stages.
  • the concave basin 48 in the present embodiment includes a concave basin bottom surface 48a, which is a substantially flat surface on which the electrode structure 2 is erected, a concave basin wall surface 48b, which is a slope surrounding the bottom surface 48a, and the periphery thereof. It is composed of a second concave basin bottom surface 48a2 which is a substantially flat surface surrounding the surface, and a second concave basin wall surface 48b2 which is a slope surrounding the lower surface 48a2.
  • the concave basin wall surface 48b and / or the second concave basin wall surface 48b2 may be in a vertical plane. Further, an embodiment in which the concave basin portion 48 is composed of three or more stages is also possible. FIG.
  • FIG. (6C) shows an embodiment in which the concave basin wall surface 48b is smoothly connected to the inner side surface 47 of the container 3.
  • the concave basin wall surface 48b is not smoothly connected to the concave basin bottom surface 48a.
  • an embodiment in which the concave basin wall surface 48b is smoothly connected to the concave basin bottom surface 48a is also possible.
  • the embodiment shown in FIG. (6B) or FIG. (6C) also has the same operation as that of the embodiment shown in FIG. (6A) and exerts the same effect.
  • FIG. 7 is a plan explanatory view showing various embodiments of the inner bottom surface 46, the concave basin portion 48, and the electrode structure 2 of the container 4 in the present invention.
  • a substantially square concave basin 48 is provided on the inner bottom surface 46 of the container 4, and a rectangular electrode structure 2 in a plan view is erected on the concave basin 48. It is composed of a substantially square concave basin bottom surface 48a and a plan view substantially square annular concave basin wall surface 48b which is a slope surrounding the bottom surface 48a.
  • FIG. 7A a substantially square concave basin 48 is provided on the inner bottom surface 46 of the container 4, and a rectangular electrode structure 2 in a plan view is erected on the concave basin 48. It is composed of a substantially square concave basin bottom surface 48a and a plan view substantially square annular concave basin wall surface 48b which is a slope surrounding the bottom surface 48a.
  • an elliptical concave basin 48 is provided on the inner bottom surface 46 of the container 4, and the concave basin 48 is provided with an electrode structure 2 having a rectangular shape in a plan view. It is composed of a circular concave basin bottom surface 48a and an annular concave basin wall surface 48b in a plan view, which is a slope surrounding the bottom surface 48a.
  • a hexagonal polygonal concave basin 48 is provided on the inner bottom surface 46 of the container 4, and the concave basin 48 is provided with an electrode structure 2 having a rectangular shape in a plan view. It is composed of a polygonal concave basin bottom surface 48a and a plan view polygonal annular concave basin wall surface 48b which is a slope surrounding the bottom surface 48a.
  • a concave basin 48 is provided on the inner bottom surface 46 of the container 4, and the concave basin 48 has an electrode structure 2 having a circular shape in a plan view.
  • the bottom surface 48a of the concave basin which is a substantially flat surface of the circular shape provided
  • the concave basin wall surface 48b which is an annular concave basin in plan view, which is a slope surrounding the bottom surface
  • the plan view circle which is a substantially flat surface surrounding the surrounding surface. It is composed of an annular second concave basin bottom surface 48a2 and a plan-viewing annular second concave basin wall surface 48b2 which is a slope surrounding the lower surface 48a2.
  • a concave basin 48 is provided on the inner bottom surface 46 of the container 4, and the concave basin 48 has a rectangular electrode structure 2 in a plan view.
  • the bottom surface 48a of the concave basin which is a substantially flat surface having a substantially quadrangular shape
  • the wall surface 48b of the concave basin which is a slope surrounding the concave basin portion 48b, which is a substantially square annular shape
  • a flat surface which is a substantially flat surface surrounding the surface.
  • FIG. (7F) shows the shape of the inner bottom surface 46 of the container 4 with contour lines.
  • the inner bottom surface 46 of the container 4 corresponds to the concave tray portion 48
  • the concave tray portion wall surface 48b is smoothly connected to the inner side surface 47 of the container 4.
  • the concave basin 48 is a concave basin bottom surface 48a, which is a substantially flat surface having a circular shape on which an electrode structure 2 having a circular shape in a plan view is erected, and an annular concave basin portion in a plan view, which is a slope surrounding the bottom surface 48a. It consists of a wall surface 48b.
  • the concave basin wall surface 48b is provided with a groove 46g extending radially from the concave basin bottom surface 48a.
  • the raw water 43 guides the concave basin descending water flow 82a, which is a water flow flowing down the concave basin wall surface 48b toward the concave basin bottom surface 48a, along the groove 46g, and the concave basin descending water flow 82a.
  • the raw material water 43 having a low ozone concentration (or electrolyzed product concentration) to the electrode structure 2, and perform an ozone generation reaction (or electrolyzed water) by electrolysis.
  • the production reaction can be allowed to proceed, and the ozone concentration (or electrolyzed product concentration) in the produced ozone water (or electrolyzed water) 42 can be increased.
  • FIG. 7 The configurations in the various embodiments shown in FIG. 7 can be used in combination. Each embodiment has the same effect as that of the embodiment shown in FIG. (5A) and exerts the same effect. Further, although the cross-sectional shape of the container 4 is circular in FIG. 7, various cross-sectional shapes such as polygons such as oval, square, and hexagon, substantially polygons, and stars are also possible, and are shown in FIG. It has the same effect as that of the above-described embodiment and has the same effect.
  • the electrode structure 2 of the ozone water generation sprayer 1 is attached to the upper surface of the container bottom plate 49 of the container 4, that is, the inner bottom surface 46. It is explanatory drawing which shows the state.
  • FIG. (19A) is a front view
  • FIG. (19B) is an end face view on the AA'cut surface of FIG. (19A)
  • the electrode structure 2 includes an anode member 21 and a cathode member 22 arranged so as to separate the anode member 21 from the electrode gap 23.
  • the anode member 21 has an anode connecting protrusion 25 attached to the container bottom plate 49 in a penetrating state, and an anode leg portion 25z attached to the container bottom plate 49.
  • the cathode member 22 has a cathode connecting projection 26 attached to the container bottom plate 49 in a penetrating state, and one or more cathode legs 26z attached to the container bottom plate 49.
  • the substance constituting the cathode leg portion 26z may be the same as or different from the substance constituting the portion other than the cathode leg portion 26z of the cathode member 22.
  • cathode opening 26o which are demarcated openings, are formed.
  • the cathode opening 26o constitutes the convection promoting means 46c.
  • the electrode structure 2 in the present embodiment is preferably supported by fitting or the like into the electrode structure support frame 28, and the support frame of the electrode structure support frame 28.
  • the upper member 28b is preferably provided with a support frame opening 28a so as not to obstruct the rising water flow 81.
  • the electrode structure 2 in the present embodiment has a string-shaped insulating spacer 30 sandwiched between the anode member 21 and the cathode member 22.
  • the cathode member 22 is provided with a plurality of holes 27, and the raw material water 43 and / or the ozone water (or electrolyzed water) 42 can enter and exit the electrode gap 23 through the holes 27.
  • a water flow 83o and a perforated water flow 83i are formed.
  • a modified form in which the cathode member 21 is not provided with the hole 27 can also be used.
  • the anode member 21 of the electrode structure 2 has a plate-like shape, and the cathode member 22 also has a substantially U-shape.
  • FIGS. 12 to 18 are shown. Various shapes of electrode structures described below are available in use.
  • electrolyzed water 42 is generated by electrolyzing the raw material water 43 by applying a voltage to the electrode structure 2, and the inside of the electrode structure 2 is electrolyzed during electrolysis.
  • the rising water flow 81 generated by the buoyancy acting in the vertical direction on the raw water 43 and the falling water flow 82 in which the raw water 43 flows down toward the inner bottom surface 46 of the container 4 are generated, and the cathode opening which is the convection promoting means 46c is generated. 26o promotes convection of the raw material water 43 in the container 4, supplies the raw material water 43 to the electrode structure 2, advances the electrolyzed water generation reaction by electrolysis, and increases the concentration of the generated electrolyzed water 42. be able to.
  • the cathode opening 26o which is an opening formed between the lower portion of the cathode member 22 and the inner bottom surface 46 of the container 4 facing the inner bottom surface 46 of the container 4, is the convection promoting means 46c.
  • the raw material water 43 can flow into the electrode gap 23 of the electrode structure 2 in the form of an opening inflow water flow 82o through the cathode opening 26o. Therefore, along with the rising water flow 81 generated in the electrode gap 23 of the electrode structure 2 during electrolysis, the raw material water 43 passes through the cathode opening 26o in the form of an opening inflow water flow 82o, and the electrode gap 23 of the electrode structure 2 is formed.
  • the electrode structure 2 is supplied with abundant raw material water 43 having a low ozone concentration (or electrolytic product concentration). Therefore, the ozone concentration (or electrolyzed product concentration) of the raw water 43 in the electrode structure 2 becomes low, and the ozone production reaction (or electrolysis reaction) represented by (Equation 2) proceeds to efficiently ozone.
  • Water (or electrolyzed water) 42 is generated, and the generated ozone water (or electrolyzed water) 42 having a high ozone concentration (or electrolyzed product concentration) is distributed throughout the container 4 by the rising water flow 81 and the falling water flow 82.
  • the horizontal length (width) of the cathode opening 26o (when there are a plurality of cathode openings, the horizontal length (width) of each cathode opening).
  • the sum) is preferably 1/2 or more, and more preferably 2/3 or more, the length (width) of the inner bottom surface 46 of the cathode member 22 in the horizontal direction.
  • the length (height) of the cathode opening 26o in the vertical direction is measured from the inner bottom surface 46.
  • the height of the cathode member 22 is preferably 1% or more and 20% or less, and more preferably 2% or more and 10% or less.
  • FIG. 20 is an explanatory view of an embodiment of the present invention in which the concave basin and the opening are used in combination.
  • FIG. (20A) is a front view
  • FIG. (20B) is an end view of the CC'cut surface of FIG. (20A).
  • the horizontal cross-sectional view of the electrode structure 2 is the same as that shown in FIG. (19C), and is therefore omitted.
  • the electrode structure 2 of the ozone water generation sprayer 1 is provided on the upper surface of the container bottom plate 49 of the container 4, that is, the inner bottom surface 46, and is the concave basin portion of the concave basin portion 48 recessed downward. It is erected on the bottom surface 48a.
  • the concave basin 48 is composed of a concave basin bottom surface 48a and a concave basin wall surface 48b surrounding the concave basin surface 48a, and raw material water 43 flows down the concave basin wall surface 48b of the concave basin 48 toward the concave basin bottom surface 48a.
  • the electrode structure 2 includes an anode member 21 and a cathode member 22 arranged so as to separate the anode member 21 from the electrode gap 23.
  • the anode member 21 has an anode connecting protrusion 25 attached to the container bottom plate 49 in a penetrating state, and an anode leg portion 25z attached to the container bottom plate 49.
  • the cathode member 22 has a cathode connecting projection 26 attached to the container bottom plate 49 in a penetrating state, and one or more cathode legs 26z attached to the container bottom plate 49.
  • the substance constituting the cathode leg portion 26z may be the same as or different from the substance constituting the portion other than the cathode leg portion 26z of the cathode member 22.
  • cathode openings 26o which are demarcated openings, are formed.
  • the concave basin portion 48 and the cathode opening portion 26o form the convection promoting means 46c.
  • a plurality of holes 27 provided in the shape insulating spacer 30, the cathode member 22, and various forms of electrode structures described below with reference to FIGS. 12 to 18 can be used.
  • the concave basin 48 various forms of the concave basin described with reference to FIGS. 6 and 7 can be used.
  • the concave basin wall surface 48b is not limited to a vertical surface, but may be a slope or a multi-step staircase surface.
  • the lower part of the anode member 21, the bottom surface of the concave basin 48a, and the anode connecting protrusion 25 are between the lower part of the anode member 21 facing the bottom surface 48a of the concave basin and the bottom surface 48a of the concave basin.
  • anode opening 26o which is an opening formed by demarcating the boundary with the anode leg 25z, is formed, but the lower part of the anode member 21 is formed like the anode member 21 in the embodiment shown in FIG.
  • a modified form in which the lower surface of the anode member is embedded in the bottom surface 48a of the concave basin and the anode opening 26o does not exist is also available.
  • the electrolyzed water 42 is electrolyzed by applying a voltage to the electrode structure 2 erected on the bottom surface 48a of the concave basin to electrolyze the raw material water 43. Is generated, and an ascending water flow 81 generated by a buoyancy acting vertically on the raw water 43 in the electrode structure 2 during electrolysis and a descending water flow 82 in which the raw water 43 flows down toward the inner bottom surface 46 of the container 4. And, the convection of the raw water 43 in the container 4 is promoted by the concave basin 48 and the cathode opening 26o which are the convection promoting means 46c, and the raw water 43 is supplied to the electrode structure 2 for electrolysis.
  • the electrolyzed water generation reaction is allowed to proceed, and the concentration of the electrolyzed water 42 produced can be increased.
  • the effect of using the concave basin bottom surface 48a and the cathode opening 26o together is as follows.
  • the cathode opening 26o which is an opening formed between the lower portion of the cathode member 22 and the concave basin bottom surface 48a facing the concave basin bottom surface 48a, and the concave basin portion 48 .
  • the raw material water 43 can flow into the electrode gap 23 of the electrode structure 2 in the form of an opening inflow water flow 82o through the cathode opening 26o.
  • the raw material water 43 flows into the electrode gap 23 of the electrode structure 2 through the cathode opening 26o along with the rising water flow 81 generated in the electrode gap 23 of the electrode structure 2 during electrolysis.
  • the concave basin descending water flow 82a flowing down the concave basin wall surface 48b of the concave basin 48 toward the concave basin bottom surface 48a and the descending water flow 82 in which the raw material water 43 flows down toward the inner bottom surface 46 of the container 4 are promoted.
  • the convection of the raw material water 43 in the container 4 becomes strong, the raw material water 43 in the container 4 circulates on a large scale, and the raw material water 43 having a low ozone concentration (or electrolytic product concentration) is present in the electrode structure 2.
  • the ozone concentration (or electrolyzed product concentration) of the raw material water 43 in the electrode structure 2 becomes low, and the ozone production reaction or electrolyzed water production reaction represented by (Equation 2) proceeds to efficiently ozone water.
  • (Or electrolyzed water) 42 is generated, and the generated ozone water (or electrolyzed water) 42 having a high ozone concentration (or electrolyzed product concentration) is distributed throughout the container 4 by the rising water flow 81 and the falling water flow 82.
  • FIG. (3A) is a cross-sectional explanatory view showing the structure of the lower part of the ozone water generating atomizer 1 and the structure of the power supply unit 6 according to the embodiment of the present invention.
  • the power supply unit 6 includes a power supply cord 61a, a control unit 63, an operation button 64, an indicator lamp 65, and an electrode unit 62.
  • An electrode portion 62 composed of a plus electrode 62a, a minus electrode 62b, and a control electrode 63c, which are three concentric annular electrodes having different radii, is provided on the upper surface of the power supply portion convex portion 66 of the power supply unit 6.
  • the control unit 63 controls the potential of each electrode of the electrode unit 62 and the current flowing through each electrode.
  • the container side wall 4a of the container 4 is fitted to the circuit room side wall 95 of the circuit room 9 via an interposition ring 94.
  • Screw holes 49z and screws are located at positions corresponding to the convex portion 49b of the bottom plate of the container provided on the bottom plate 49 of the container, the annular printed circuit board 92, and the convex portion 96a of the bottom plate of the circuit chamber provided on the bottom plate 96 of the circuit chamber 9 of the circuit chamber 9, respectively.
  • Holes 92z and screw holes 96z are provided, and the convex portion 49b of the container bottom plate, the printed circuit board 92, and the convex portion 96a of the circuit chamber bottom plate are screwed together by screws commonly inserted into these screw holes.
  • the container bottom plate 49 of the container 4 is provided with a container bottom plate opening 49a, and an electrode structure holding plate 29 is attached to the container bottom plate 49 (by a screw (not shown)) so as to cover the container bottom plate opening 49a from below. It is fixed by screwing or by other methods such as adhesion.
  • the electrode structure 2 is erected on the electrode structure holding plate 29. The electrode structure 2 extends from the container bottom plate opening 49a to the inside of the container 4, that is, upward, and its height is higher than the upper surface of the container bottom plate 49 of the container 4.
  • the shape of the container bottom plate opening 49a is substantially quadrangular in the plan view.
  • the upper surface of the container bottom plate 49 is a slope at the edge of the container bottom plate opening 49a. Therefore, the inner bottom surface 46 of the container 4 has a concave basin portion 48 recessed downward, which is composed of a concave basin portion wall surface 48b which is the slope and a concave basin portion bottom surface 48a surrounded by the concave basin portion wall surface 48b.
  • the electrode structure 2 is erected on the bottom surface 48a of the concave basin portion.
  • the concave basin bottom surface 48a is composed of a part of the upper surface of the electrode structure holding plate 29.
  • the concave tray portion 48 is provided directly on the upper surface of the container bottom plate.
  • a slit is provided in the electrode structure holding plate 29 or the container bottom plate 49, and the electrode structure 2 is provided in the slit.
  • the anode connecting protrusion 25 extending from the anode member 21 and the cathode connecting protrusion 26 extending from the cathode member 22 are inserted to reach the circuit chamber 9 and are connected to the anode.
  • a lead wire is connected to the protrusion 25 and the cathode connection protrusion 26 from the side of the circuit chamber 9, and a corrosion-resistant resin is poured into the slit to cure the protrusion so as to maintain watertightness between the inside of the container 4 and the circuit chamber 9.
  • the electrode structure 2 can be fixed to the electrode structure holding plate 29 or the container bottom plate 49.
  • the materials constituting the container side wall 4a, the container bottom plate 49, the electrode structure holding plate 29, and the electrode structure support frame 28 are not particularly limited, but for example, an acrylic resin or a polycarbonate resin can be preferably used.
  • the materials constituting the head cover 51a, the lever 54, the power supply 6, the circuit chamber side wall 95, and the circuit chamber bottom plate 96 are not particularly limited, but for example, ABS resin or polycarbonate resin can be preferably used.
  • the circuit chamber bottom plate 96 of the circuit chamber 9 is provided with a connection terminal portion 91 at a position corresponding to the electrode portion 62 of the power supply portion 6 at the time of mounting.
  • the connection terminal portion 91 is composed of three needle-shaped terminals, a positive terminal 91a, a negative terminal 91b, and a control terminal 91c, and each needle-shaped terminal is provided with a spring mechanism (not shown) at the time of mounting.
  • Each needle-shaped terminal makes reliable electrical contact with the positive electrode 62a, the negative electrode 62b, or the control electrode 62c, which are the corresponding annular electrodes of the electrode portion 62, by the restoring force of the spring.
  • a DC voltage and a DC current are supplied from the connection terminal portion 91 to the anode connection protrusion 25 and the cathode connection protrusion 26 of the electrode structure 2 via the printed circuit board 92.
  • FIG. 8 is a graph showing a time change in ozone concentration of ozone water after generation of ozone water by electrolysis in the embodiment of the present invention described later.
  • Curve C1 shows the ozone concentration when 115 mL of raw water was electrolyzed for 4 minutes to generate ozone water (Example 1)
  • curve C2 shows 80 mL of raw water electrolyzed for 2 minutes to generate ozone water.
  • the ozone concentration when it is generated (Example 2) is shown.
  • the horizontal axis shows the elapsed time from the end of electrolysis.
  • Case 1 corresponds to the case where the raw material water 43 is put in the container 4 up to the first water level line 43b in FIG. (3C), and case 2 corresponds to the case where the raw water 43 is put up to the second water level line 43c.
  • a first lamp comprising a main lamp 92b and a green LED lamp according to the volume of raw material water to be electrolyzed during generation of ozone water by electrolysis. Either the generation lamp 65b or the second generation lamp 65c is turned on to display the current state of the ozone water generation spraying device 7 to the user.
  • the main lamp 92b is a blue LED lamp provided on the upper surface of the printed circuit board 92 of the circuit chamber 9, and illuminates the raw material water in the container 4 through the translucent container bottom plate 49 (see FIG. 3A).
  • the main lamp 92b and the first generation lamp 65b or the second generation lamp 65c are turned off.
  • the main lamp 92b which is a blue LED lamp
  • the sub lamp 92c which is a green LED lamp
  • the sub-lamp 92c is a green LED lamp provided on the upper surface of the printed circuit board 92 of the circuit chamber 9, and illuminates the raw material water in the container 4 through the translucent container bottom plate 49 (see FIG. 3A).
  • the secondary lamp 92c is turned on for a predetermined time according to the volume of the raw material water subjected to electrolysis, and then turned off.
  • the sub lamp 92c When the raw material water 43 is put up to the first water level line 43b of the container 4 and ozone water is generated by pressing the first generation button 64b, the sub lamp 92c is lit only for the first effective time (for example, 20 minutes). Then, when the raw material water 43 is put up to the second water level line 43c of the container 4 and ozone water is generated by pressing the second generation button 64c, the sub lamp 92c has a second effective time (for example, 10 minutes). Only lights up. The first effective time and the second effective time are determined in consideration of the sterilizing and deodorizing effects of the ozone water sprayed.
  • ozone water is sprayed by grasping the ozone water generation sprayer 1 by hand, lifting it from the power supply unit 6 and rotating the lever 54 with a finger while the sub lamp 92c is lit, the container at the time of spraying is used.
  • the ozone concentration of the ozone water in 4 does not fall below 0.5 mL, and a certain sterilizing and deodorizing effect can be expected.
  • the power supply unit 6 has a control unit 63.
  • the control unit 63 controls the potential of each electrode of the electrode unit 62 and the current flowing through each electrode in response to the operation input from the operation button 64, and controls the lighting and extinguishing of each lamp of the indicator lamp 65. Further, a control signal is sent to the sub-control unit 92a provided on the printed circuit board 92 of the circuit chamber 9 of the container 4 through the control electrode 62c.
  • the sub-control unit 92a receives a control signal from the control unit 63 to control the potentials of the anode connecting protrusions 25 and the cathode connecting protrusions 26 of the electrode structure 2 and the current flowing through each connecting protrusion, and also controls the main lamp 92b and the main lamp 92b. Controls the lighting and extinguishing of the secondary lamp 93c.
  • the control unit 63 has a CPU, a timer, and volatile memory and storage means, and the sub-control unit 92a also has a CPU, volatile memory, and storage means.
  • FIG. 9 is a flow chart showing a main control flow of control performed by the control unit 63 in the ozone water generation spraying device 7 according to the embodiment of the present invention.
  • the main control flow starts in step S1.
  • step S2 it is checked whether or not it is connected to the power supply, and if it is connected, the process proceeds to step S3, and if it is not connected, the process returns to step S2.
  • step S3 the power lamp is turned on for a predetermined time (for example, 3 seconds) to indicate to the user that the power is connected.
  • step S4 it is checked whether or not the ozone water generation atomizer 1 is seated in the power supply unit 6, and if it is seated, the process proceeds to step S5, and if it is not seated, the process returns to step S4.
  • step S5 the initial value 0 is assigned to the variable "state" that stores the state.
  • steps S6, S7, and S8 it is checked whether or not any of the first generation button 64b, the second generation button 64c, and the power button 64a is pressed, and if the first generation button 64b is pressed, step S9.
  • step S10 If the second generation button 64c is pressed, the process proceeds to step S10, if the power button 64a is pressed, the process proceeds to step S11, and if none of the buttons are pressed, the process returns to step S4.
  • step S9 the value 1 is assigned to the variable “state”, the first generation lamp 65b is turned on, the first generation processing time (for example, 240 seconds) is assigned to the variable “t E”, and the process proceeds to step S12. ..
  • step S10 the value 2 is assigned to the variable "state”, the second generation lamp 65c is turned on, the second generation processing time (for example, 120 seconds) is assigned to the variable "t E", and the process proceeds to step S12. ..
  • step S11 the power lamp 65a is turned on for a predetermined time (for example, 3 seconds), and the process proceeds to step S14 in which the termination process is performed.
  • step S12 ozone water generation processing, which will be described later, is performed.
  • step S13 post-treatment for the generation of ozone water, which will be described later, is performed, and the process proceeds to step S14.
  • step S14 the end process described later is performed, and the process proceeds to step S15.
  • step S15 the main control flow ends.
  • step S12 The flow of the generation process in step S12 will be described with reference to FIG.
  • the raw material water is electrolyzed for a predetermined time to generate ozone water. At that time, it is desirable to display the current state to the user in an easy-to-understand manner.
  • step S12s the generation process starts.
  • step S20 the time t of the timer is set to the initial value zero (t ⁇ 0), and the timer is started.
  • step S21 the presence or absence of abnormality is checked.
  • the abnormality means an abnormality in the current value of the electrode unit 2, an abnormality in the temperature detected by the temperature sensor, detection that the ozone water generation atomizer 1 is not mounted on the power supply unit 6, and the like.
  • step S25 the error termination process is a process in which the indicator lamp 65 is made to blink for a predetermined time, then all the lamps are turned off, and all the terminals of the connection terminal portion 91 are grounded. If there is no abnormality, the process proceeds to step S22. In step S22, it is determined whether or not the power button has been pressed. If YES, the process proceeds to step S26, and if NO, the process proceeds to step S23.
  • step S26 the power lamp 65a is turned on for a predetermined time (for example, 3 seconds), the process proceeds to the end process of step S27, and the process proceeds to step S15 to end the main control flow.
  • the termination process is a process of turning off all the lamps and grounding all the terminals of the connection terminal portion 91.
  • step S23 the electrode structure 2 is energized, the main lamp 92b is turned on, and the process proceeds to step S24.
  • the control unit 63 sends a control signal to the sub control unit 92a via the control electrode 62c, and the sub control unit 92c bases the electrode structure on the control signal. Turn 2 into an energized state.
  • step S24 it is determined whether or not the time t of the timer is larger than the variable “t E”. If YES, the process proceeds to step S12e, the generation process is completed, and the process returns to the main control flow. If NO, the process returns to step S21.
  • step S13 post-generation processing starts.
  • step S30 the electrode structure 2 is turned off and the main lamp 92b is turned off by the cooperation between the control unit 63 and the sub control unit 92a in the same manner as described above.
  • step S34 the process proceeds to step S34, and if neither 1 nor 2 is present, this is an abnormality. Therefore, the process proceeds to step S25 to perform the error end processing, and further proceeds to step S15 to end the main control flow.
  • step S33 the first generation lamp 65b is turned off, the first effective time (for example, 20 minutes) is substituted into the variable “t G”, and the process proceeds to step S35.
  • step S34 the second generation lamp 65c is turned off, the second effective time (for example, 10 minutes) is substituted into the variable “t G”, and the process proceeds to step S35.
  • step S35 the initial value 0 is substituted for the time t of the timer (t ⁇ 0), the timer is started, the sub lamp 92c is turned on, and the process proceeds to step S36.
  • step S36 it is determined whether or not the power button 64a is pressed. If YES, the process proceeds to step S39, the power lamp is turned on for a predetermined time (for example, 3 seconds), and then the process proceeds to step S13e, the post-generation processing is completed, and the process returns to the main control flow. If NO, the process proceeds to step S37. In step S37, it is determined whether or not the time t of the timer is larger than the variable “t G ”.
  • step S38 If YES, the process proceeds to step S38, and if NO, the process returns to step S36. In step S38, after turning off the sub lamp 92c, the process proceeds to step S13e. In step S13e, the post-generation processing is completed and the process returns to the main control flow.
  • FIG. 12A and 12B are an exploded perspective view (12A) and a perspective view (12B) of the electrode structure according to the embodiment of the present invention
  • FIG. 13 is a top view (13A) and a top view (13A) of the electrode structure shown in FIG. It is a side view (13B).
  • the electrode structure 2 includes a rectangular plate-shaped anode member 21, a cathode member 22 having a U-shaped or U-shaped cross section facing the anode member 21 across an electrode gap 23, and an anode.
  • the string-shaped insulating spacer 30 is an O-ring 30a around which the anode member 21 is wound. All of the ⁇ ring 30a are oriented in a direction intersecting the vertical direction (see the vertical upward direction indicated by the arrow 45 indicating the vertical direction) when the container 4 is placed and electrolyzed. ing.
  • the angle ⁇ formed by the orientation direction 31 of the string-shaped insulating spacer 30 (the direction of the maximum inclination diameter of the O-ring 30a) and the arrow 45 indicating the vertical direction is not 0 ° but an acute angle.
  • the number of O-rings 30a around which the anode member 21 is wound is not limited to two, and may be one or three or more.
  • the string-shaped insulating spacer 30 around which the anode member 21 is wound may not be the O-ring 30a, but may be the string 30b around which the anode member 21 is spirally wound.
  • the string-shaped insulating spacer 30 does not necessarily have to be wound around the entire circumference of the anode member 21 without a gap, and in the modified form of the present embodiment, the viewpoint of ensuring the mobility of the raw material water 43 in the electrode gap 23. It may be composed of a plurality of separated arcs.
  • the string-shaped insulating spacer 30 does not necessarily have to have the same thickness over the entire circumference of the anode member 21, and in another modified form of the present embodiment, the string-shaped insulating spacer 30 is in the vicinity of the cathode member 22 in the electrode gap 23. From the viewpoint of ensuring the mobility of the raw material water 43, it may be composed of a string-shaped insulating material having a different thickness depending on the location.
  • the material of the string-shaped insulating spacer 30 of the present invention is not particularly limited, but fluororesin, soft fluororesin, byton rubber, silicone rubber, vinyl chloride rubber, ethylene propylene rubber and the like can be used, and from the viewpoint of corrosion resistance. Therefore, fluororesin, soft fluororesin, and the like are preferable.
  • the cathode member 22 is provided with a plurality of holes 27.
  • the flow of the raw material water 43 in the electrode gap 23 and the container 4 is secured, the ozone generation reaction (or electrolysis reaction) is accelerated, and the ozone water (or electrolyzed water) is provided. 42 can be efficiently generated.
  • the cathode member 22 has a U-shape or a U-shape in cross section, and has one opening on the side surface thereof.
  • the structure which does not provide a hole in the cathode member 22 in FIG. 12 is also possible. This point is the same for the embodiments shown in FIGS. 1 to 7, 13 to 17 and 19 and 20.
  • the string-shaped insulating spacer 30 formed of the O-ring 30a is preferably made of an elastic material.
  • the electrode structure 2 is configured by inserting the anode member 21 wound by the string-shaped insulating spacer 30 and the cathode member 22.
  • the electrode structure 2 can be constructed by simple insertion without using an adhesive, and the structure is maintained by the elasticity of the string-shaped insulating spacer 30, so that the structure is simple and easy to manufacture.
  • An ozone water generation atomizer 1 having an electrode structure 2 can be provided.
  • the material constituting the anode member 21 is not particularly limited as long as it has conductivity, but at least the surface thereof is from the viewpoint of corrosion resistance and catalytic action of the ozone generation reaction (or electrolyzed water generation reaction). It preferably contains a noble metal such as platinum or iridium and an oxide thereof, or a niobium oxide, a tantalum oxide, or carbon.
  • An anode connecting protrusion 25 extends from the anode member 21.
  • the material constituting the cathode member 22 is not particularly limited as long as it has conductivity, but from the viewpoint of not embrittlement with respect to generated hydrogen, platinum group elements, nickel, stainless steel, titanium, and the like. Zirconium, gold, silver, carbon and the like are preferred.
  • a cathode connecting protrusion 26 is extended from the cathode member 22.
  • FIG. 14 is an exploded perspective view (14A), a perspective view (14B), and a perspective view (14C) of a modified form of the electrode structure 2 according to another embodiment of the present invention. Since the configuration of this embodiment is common to the embodiment shown in FIG. 12 in many respects, the differences will be mainly described.
  • the anode member 21 has a cylindrical shape
  • the cathode member 22 has a cylindrical shape.
  • a string-shaped insulating spacer 30 composed of an O-ring 30a winds around the side surface of the cylinder of the anode member 21.
  • FIG. (14C) shows a modified form of this embodiment.
  • the anode member 21 has a cylindrical shape from the viewpoint of reducing the amount of precious metals and the like constituting the anode member 21.
  • the number of O-rings 30a around which the anode member 21 is wound is not limited to two, and may be one or three or more.
  • the string-shaped insulating spacer 30 around which the anode member 21 is wound may not be the O-ring 30a, but may be the string 30b around which the anode member 21 is spirally wound.
  • the string-shaped insulating spacer 30 does not necessarily have to be wound around the entire circumference of the anode member 21 without a gap, and in the modified form of the present embodiment, the viewpoint of ensuring the mobility of the raw material water 43 in the electrode gap 23. It may be composed of a plurality of separated arcs. Further, the string-shaped insulating spacer 30 does not necessarily have to have the same thickness over the entire circumference of the anode member 21, and in another modified form of the present embodiment, the string-shaped insulating spacer 30 is in the vicinity of the cathode member 22 in the electrode gap 23. From the viewpoint of ensuring the mobility of the raw material water 43, it may be composed of a string-shaped insulating material having a different thickness depending on the location.
  • FIG. 15 is an exploded perspective view (15A) and a perspective view (15B) of the electrode structure 2 according to still another embodiment of the present invention. Since the configuration of this embodiment is common to the above-described embodiments in many respects, the differences will be mainly described.
  • This embodiment differs from the embodiment shown in FIG. 12 only in the structure of the cathode member 22.
  • the cathode member 22 is composed of two separated plates, and the electrode structure 2 is formed by sandwiching the anode member 21 wound by the string-shaped insulating spacer 30 between the two plates.
  • the members constituting the electrode structure 2 are fixed to each other by adhesion, fusion, fastening, or the like.
  • the cathode member 22 is composed of two separated plates and has two openings on the side surfaces thereof, the degree of freedom of movement of the raw material water 43 entering and exiting the electrode gap 23 from the outside is large. Therefore, the raw material water 43 can be efficiently guided into the electrode gap 23 from the outside of the electrode structure 2, and the generated ozone water (or electrolyzed water) 42 can be efficiently guided from the inside of the electrode gap 23 to the outside of the electrode structure 2. Since it can be efficiently sent out to, ozone water can be efficiently generated.
  • FIG. 16 is a perspective view of the electrode structure 2 according to still another embodiment of the present invention. Since the configuration of this embodiment is common to the above-described embodiments in many respects, the differences will be mainly described.
  • This embodiment is a modification of the embodiment shown in FIG.
  • n plate-shaped anode members 21 wound by a string-shaped insulating spacer 30 are plate-shaped cathode members having n recesses, where n is an integer of 2 or more. It is configured by being inserted into each of the recesses of 22.
  • n is 2
  • the cross-sectional shape of the cathode member is “m-shaped”.
  • the surface area of the anode member 21 where the ozone generation reaction (or electrolyzed water generation reaction) occurs is large, ozone water (or electrolyzed water) can be efficiently generated.
  • FIG. 17 is a perspective view of the electrode structure 2 according to still another embodiment of the present invention. Since the configuration of this embodiment is common to the above-described embodiments in many respects, the differences will be mainly described.
  • This embodiment is a modification of the embodiment shown in FIG.
  • n plate-shaped anode members 21 wound by a string-shaped insulating spacer 30 are formed of (n + 1) plate-shaped cathode members 22 in which n is an integer of 2 or more.
  • n is an integer of 2 or more.
  • Each member is fixed to each other by adhesion, fusion, fastening, etc.
  • the surface area of the anode member 21 where the ozone generation reaction (or electrolyzed water generation reaction) occurs is large, ozone water (or electrolyzed water) can be efficiently generated.
  • FIG. 18 is an explanatory diagram showing various methods of winding the string-shaped insulating spacer 30 around the plate-shaped anode member 21 in the embodiment of the present invention.
  • the anode member 21 shown in FIG. (18A) has a rectangular shape except for the anode connecting protrusion 25, and is wound with a string-shaped insulating spacer 30 composed of two O-rings 30a, and has an arrow 45 indicating a vertical direction and a string shape.
  • (18B) is oriented in a direction forming an angle of 60 ° with the vertical direction by spirally winding a string-shaped insulating spacer 30 made of a string around the same anode member as in FIG.
  • the raw material water in the container 4 is provided by providing the concave basin 48 on the inner bottom surface 46 of the container 4 and erection the electrode structure 2 on the bottom surface 48a of the concave basin portion 48a. Convection can be promoted, and the concentration of ozone water generated can be increased as compared with the case of the prior art in which the concave basin portion 48 is not provided. An experiment was conducted in which the concentration of ozone water produced was compared between the case where the concave basin portion 48 was present on the inner bottom surface 46 and the case where the concave basin portion 48 was not present, while keeping the other conditions constant. Further, with respect to the cathode opening 26o shown in FIGS. 19 and 20, an experiment was conducted in which the concentration of ozone water produced was compared between the presence and absence of the cathode opening 26o.
  • the portion of the anode member 21 excluding the anode connecting protrusion 25 has a rectangular shape, the lengths of the two sides of the rectangle are 14 mm and 22 mm, and the thickness is 1.0 mm.
  • the anode member 21 around which the string-shaped insulating spacer 30 is wound is inserted into the cathode member 22 having a U-shaped cross section shown in FIG. 12 to form the electrode structure 2.
  • the titanium cathode member 22 having a thickness of 0.6 mm has a rectangular shape when viewed from the front, except for the cathode connecting protrusion 26, and the lengths of the two sides of the rectangle are 15 mm and 23 mm. Further, the width of the cathode member 22 in a side view is 5 mm.
  • the cathode member 22 has a large number of holes 27.
  • the electrode structure 2 was erected at the center of the concave basin bottom surface 48a of the concave basin portion 48 provided on the flat inner bottom surface 46 of the container bottom plate 49 of the transparent container 4 shown in FIG.
  • the container 4 has a cylindrical shape with an inner diameter of 50 mm and a height of 80 mm, and has a full volume of 1.6 ⁇ 10 2 mL.
  • the concave basin 48 has a rectangular shape in a plan view, and is composed of a rectangular concave basin bottom surface 48a and a vertical concave basin wall surface 48b surrounding the rectangular basin portion 48, and the lengths of the two sides of the rectangle are 19 mm and 9 mm.
  • the height of the vertical concave basin wall surface 48b is 5 mm.
  • Example 1 corresponding to the first water level line 43b
  • Example 2 corresponding to the second water level line 43c
  • a constant voltage of 12 V is applied between the anode member 21 and the cathode member 22 for 240 seconds (Example 1) or 120 seconds (implementation).
  • Example 2 it was applied and electrolyzed. During that time, the current value was about 1.0 A.
  • the raw water 43 (and ozone water (or electrolyzed water) 42) in the container 4 was transferred to a washed beaker and packed test (Kyoritsu).
  • the ozone concentration was measured using ozone WAK-O3) manufactured by the Institute of Physical and Chemical Research. The experiment was repeated 5 times, and the average value of the 5 measurements was taken as the measured value of the ozone concentration.
  • the measured ozone concentrations were 1.8 mg / L (Example 1) and 1.1 mg / L (Example 2).
  • As the raw material water 43 commercially available mineral water (Volvic, Kirin Co., Ltd.), whose hardness and TDS value were confirmed to be close to the average value of national tap water and almost constant, was used.
  • the ozone concentration measured in Examples 1 and 2 was about 3 times that of Comparative Examples 1 and 2, respectively.
  • the convection generated in the raw material water 43 in the container 4 is visually confirmed during the electrolysis, the convection generated in Comparative Example 1 is clearly weaker than that in Example 1 and is localized in the vicinity of the electrode structure 2. It was small.
  • the convection generated in Comparative Example 2 was clearly weaker than that in Example 2, and was localized in the vicinity of the electrode structure 2 and was small in scale.
  • the electrode structure 2 was configured in the form shown in FIG. 19 and erected in the center of the flat inner bottom surface 46 of the container bottom plate 49 of the transparent container 4 shown in FIG. No concave basin was provided on the inner bottom surface 46.
  • the length (height) of the cathode opening 26o in the vertical direction was set to 3 mm.
  • Other conditions and configurations were exactly the same as in Examples 1 and 2, and ozone water was generated by electrolysis and ozone concentration was measured.
  • Example 3 corresponding to the first water level line 43b
  • Example 4 corresponding to the second water level line 43c
  • electrolysis was performed, and the ozone concentration was measured 5 minutes after the completion of electrolysis.
  • a constant voltage of 12V was applied, and the current value was about 1.0A.
  • the average value of the five measurements was taken as the measured value of ozone concentration.
  • the measured ozone concentrations were 1.8 mg / L (Example 3) and 1.2 mg / L (Example 4).
  • the electrode structure 2 is configured in the form shown in FIG. 20 and is erected in the center of the concave basin bottom surface 48a of the concave basin portion 48 provided on the flat inner bottom surface 46 of the container bottom plate 49 of the transparent container 4 shown in FIG. did.
  • the length (height) of the cathode opening 26o and the anode opening 25o in the vertical direction was set to 3 mm.
  • the other conditions were exactly the same as in Examples 1 and 2, and ozone water was generated by electrolysis and the ozone concentration was measured.
  • Example 5 corresponding to the first water level line 43b
  • Example 6 corresponding to the second water level line 43c
  • electrolysis was performed, and the ozone concentration was measured 5 minutes after the completion of electrolysis.
  • a constant voltage of 12V was applied, and the current value was about 1.0A.
  • the average value of the five measurements was taken as the measured value of ozone concentration.
  • the measured ozone concentrations were 2.3 mg / L (Example 5) and 1.5 mg / L (Example 6).
  • the ozone concentration measured in Examples 3 and 4 was about 3 times that of Comparative Examples 1 and 2, respectively.
  • the ozone concentration measured in Examples 5 and 6 was about 4 times that of Comparative Examples 1 and 2, respectively.
  • the inner bottom surface 46 of the container 4 is recessed.
  • the electrode structure 2 By providing the basin 48 and erection the electrode structure 2 on the bottom surface 48a of the concave basin, convection of the raw material water in the container 4 is promoted, and ozone is efficiently generated by electrolysis. It was found that it is possible to increase the ozone concentration of water about 3 to 4 times.
  • Example 1 ⁇ Verification of sterilization effect> The ozone water having a temperature of 20 ° C. produced in Example 1 was dropped onto the target bacteria on the preparation 1 minute after the completion of the production, and the viable cell count 15 seconds later was examined with an optical microscope. As a result, it was confirmed that 99% of the target bacteria were eradicated. The target bacteria were collected from the kitchen and toilet of the sample household.
  • Example 1 ⁇ Verification of deodorant effect> The ozone water having a temperature of 20 ° C. generated in Example 1 was manually sprayed into a 10 L volume bag containing a gaseous malodorous substance and air at a room temperature of 20 ° C. 5 minutes after the completion of the generation.
  • the deodorant rate was calculated by measuring the concentrations before and 10 minutes after spraying 10 times by grasping and rotating the lever 54 with a gas chromatograph. The experiment was performed 5 times to obtain the average value, and the results shown in the table below were obtained.
  • Isovaleric acid is one of the causative substances of body odor.
  • Odorous substance Deodorant rate after 10 minutes Isovaleric acid 84.6% Acetic acid 80.0% Ammonia 45.0% Isovaleric acid, acetic acid, and ammonia are causative agents of toilet and shoe box odors, pet odors, body odors, tobacco and car odors, and malodors such as clothes, furniture, sofas and curtains. It was found that by spraying ozone water (or electrolyzed water) generated by the ozone water generation sprayer of the present invention, a deodorizing effect is exhibited against these malodors.
  • ozone water or electrolyzed water
  • the present invention is not limited to the above-described embodiments and examples, and includes various combinations, modifications, design changes, etc. within the technical scope thereof without departing from the technical idea of the present invention.
  • the anode member 21 is used as an inner electrode and the cathode member 22 is used as an outer electrode, but the anode member is used as an outer electrode and the cathode member is used as an inner electrode.
  • a configuration in which an anode opening is provided between the lower portion of the anode member serving as an external electrode and the inner bottom surface of the container in the configuration can also be used for the purpose of solving the problem of the present invention.
  • a convection promoting means is provided near the inner bottom surface of the container, that is, a concave basin portion is provided on the inner bottom surface of the container and an electrode structure is erected on the bottom surface of the concave basin portion, or the electrode structure of the electrode structure.
  • the technical idea of improving the production efficiency of ozone water by controlling the convection generated in the raw material water near the inner bottom surface of the container is a new one not found in the prior art.
  • the ozone water generation method, the generation sprayer, and the generation spray device according to the present invention can be easily used by individuals at home and can be widely used in the industry related to the manufacture and sale of electric appliances.
  • Electrode water generation sprayer 2 Electrode structure 4 Container 5 Spraying mechanism 6 Power supply 7 Electrolyte water generation sprayer 9 Circuit room 21 Anode member 22 Electrode member 23 Electrode gap 24 Gap flow path 25 Anode connection protrusion 25z Anode leg 26 Cone connection Projection 26o Anode opening 26z Electrode leg 27 hole 28 Electrode structure support frame 28a Support frame opening 28b Support frame upper member 29 Electrode structure holding plate 30 String-shaped insulating spacer 30a ⁇ Ring 30b String 31 (String-shaped insulating spacer ) Orientation direction arrow 4a Container side wall 4x Water injection port 42 Ozone water (or electrolyzed water) 42a Water surface 43 Raw material water 43b First water level line 43c Second water level line 45 Vertical direction arrow 46 Inner bottom surface 46c Convection promoting means 46g groove 47 Inner side surface 48 Concave basin 48a Concave basin bottom surface 48a2 Second concave basin bottom surface 48b Concave basin wall surface 49b2 Second concave basin wall surface 49 Container bottom plate 49a

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

本発明の課題は、容器の内底面付近の原料水に生じる対流を制御することにより、家庭で利用できる効率的な電解水の生成方法、生成噴霧器、及び生成噴霧装置を提供することである。課題の解決手段は、原料水43を貯留するための容器4と、容器4内の原料水43を電気分解して電解水(又はオゾン水)42を生成するための電極構造体2と、電解水42を噴霧するための噴霧機構5と、を備え、電極構造体2は、容器4の内底面46に立設され、容器4の内底面46、又は、容器4の内底面46に対向する、電極構造体2の下部に、容器4内の原料水43の対流を促進するための対流促進手段が設けられている電解水生成噴霧器1であり、原料水43が容器4の内底面46に向かって流れ下る下降水流82を生じさせて容器4内の原料水43の対流を促進し、電極構造体2に原料水43を供給して、電気分解による電解水の生成反応を進行させ、高濃度の電解水42を生成する。

Description

電解水の生成方法、生成噴霧器及び生成噴霧装置
 本発明は、原料水から電気分解により電解水を生成する方法、生成噴霧器及び生成噴霧装置に関する。
 オゾン(О3)は強力な酸化力を有するが、水溶液においては数十分程度の時間で酸素(О2)に変化するため残留毒性が少ない。そこで今日では、オゾンガスや、オゾンの水溶液であるオゾン水は、殺菌、脱臭、脱色、有害物質の酸化・分解など幅広い分野で利用され、塩素などに代わる酸化剤、特に殺菌剤として注目されている。オゾンによる殺菌は細菌、酵母、カビ、ウイルスなど広範囲に有効であり、作用機序が細菌の細胞膜を酸化破壊するものであるため耐性菌を生じにくく、脱臭効果を併せもつ、といった特長がある。他方、オゾンは臭気を有し、人体の呼吸器系に刺激を与えるので、空気中の濃度の室内環境基準(体積濃度で0.1ppm以下)を守る必要があること、また、オゾンは鉄やニトリルゴムなどの腐食や劣化を起こすこと、といった点に注意が必要である(非特許文献1)。
 オゾン水の主な製法として、ガス溶解法と直接電解法がある。ガス溶解法は、酸素ガスを原料として放電により生成する等の方法で製造したオゾンガスを水に溶解させてオゾン水を製造する方法である。ガス溶解法は、オゾンガスが水に難溶であるため高濃度のオゾン水を得ることが難しいという難点があり、多くは1mg/L以下という低濃度で利用されている。直接電解法は、水道水等の原料水を電気分解することでオゾン水を生成する方法である。直接電解法により、高濃度のオゾン水をより経済的に得ることができる(同文献)。
 特開2003-93479号公報(特許文献1)には、図21に示すように、家庭で手軽に利用できるよう、片手で把持することができるボトル内で原料水を電気分解してオゾン水を生成し、それを1回に0.1mL~1mLずつ噴霧できる簡易型のオゾン水生成噴霧器の基本的構成が開示されている。オゾン水生成噴霧器は吐出部107とボトル104からなり、ボトル104は、その平坦な内底面に立設された、原料水を電気分解してオゾン水を生成するための電極105、106を有し、ボトル104内に生成されたオゾン水は噴霧用チューブ112を通して吐出部107から噴霧される。特開2019-037946号公報、再表2003-000957号公報、及び特開2003-266073号公報にも、同様の基本的構成が開示されている。
 このような家庭用簡易型のオゾン水生成噴霧器においては、体積が数十mL、オゾン濃度が1~2mg/L程度のオゾン水を2~4分程度の短時間に高効率に生成することが課題である。もちろん、電気分解における電流値又は電圧値を高めることで、オゾン濃度が4mg/L以上の高濃度のオゾン水を生成することは可能であるが、噴霧時の、及び条件によっては生成時も、刺激臭が強く、家庭内での実用に耐えない。
 直接電解法でオゾン水の生成効率を高める従来技術として、(1)区画内に電極を配置、(2)電極表面の工夫、(3)イオン移動の制御、(4)対流の制御、などが知られている。
(1)区画内に電極を配置
 標記の技術は、原料水を貯留する容器内に区画を設け、区画内に電気分解用の電極を配置して電気分解を行い、区画内で生成された高濃度のオゾン水のみを噴霧する技術である。例えば、図22に示すように、特開2009-154030号公報(特許文献2)には、電解水生成噴霧装置201において、タンク204に連通する電解槽205を設け、タンク204と電解槽205は、連通路207でのみ連通するように構成し、噴霧機構203を手でプッシュするたびに、オゾン水を噴霧用ノズルから噴霧すると同時に、タンク204内から連通路207を通して原料水が小容量の電解槽205内へ流入し、電解槽205内で電気分解されて、再び高濃度のオゾン水が電解槽205内に生成される技術が開示されている。
 類似した技術は特開2011-092883号公報にも開示されている。他にも、特許第6249200号公報や特開2004-148109号公報には、噴霧用チューブの内部にオゾン水を生成する電解セルを取り付ける技術が開示されている。又、特開2003-062573号公報や特開2003-181338号公報には、吐出部の、噴霧用ノズルの直近にオゾン水を生成するための電解用電極を取り付ける技術が開示されている。これらの技術には、区画された部分等に貯留できるオゾン水の量が少ないため、単位時間当たりの噴霧量がある値を超えると、オゾン水の生成スピードが噴霧スピードに追い付かず、噴霧水中のオゾン濃度が低下する難点がある。
(2)電極表面の工夫
 標記の技術は、電極の形状や電極表面の物質を工夫することにより、オゾン水生成の効率を高める技術である。例えば、特許第6258566号公報には、原料水との接触面積を増やして電解効率を上げるために、陽極及び/又は陰極をメッシュ状にする発明が開示されている。また、再表03-000957号公報には、表面にタンタル酸化物又はニオブ酸化物からなる電極触媒を備えた電解用電極を用いることで、オゾンの生成効率を高める技術が開示されている。また、特開平08-134677号公報には、陽極電極にオゾン発生触媒機能を有した貴金属製の金網を使用し、陽極電極の外面側には耐食性金属で製造したラス網を重ねて、原料水を供送することで、網目どうしを結ぶ狭い間隙を縫うように原料水を進行させ、その撹拌作用により、発生したオゾン気泡を水に溶解させ、オゾンが気体のまま排出されることを防ぎ、オゾン水の生成効率を高める技術が開示されている。これらの技術は有用であるが、電極構造が複雑で製造コストが高くなりがちである。
(3)イオン移動の制御
 標記の技術は、電極近傍でのイオン移動を制御することにより、オゾン水の生成効率を高める技術である。一般に、直接電解法においては、次の化学反応式に示すように、酸素(О2)及び水素(H2)が生成される水の電気分解反応(式1)及び(式3)が主であり、それに、微量のオゾン(O3)が生成される反応(式2)が付随する。
[陽極反応]
  (式1)2H2O → O2+4H++4e-
  (式2)3H2O → O3+6H++6e-
[陰極反応]
  (式3)2H++2e- → H2
(式2)からわかるように、原料水の電気分解により陽極で生じた水素イオン(H+)が陽極近傍にとどまって高濃度で存在するとオゾンの生成反応(式2)の進行が妨げられる。
 上記の特許文献2には、陽極と線状の陰極とが陽イオン交換膜で隔てられてなる電解セルが開示されている。陽極で生成した水素イオンは、陽イオン交換膜を通って陰極へと進み、(式3)が示すように陰極において電子を受け取り、水素(H2)となる。その結果、陽極付近に水素イオンが高濃度にとどまらないため、オゾン生成を効率的に行うことができる。また、特許第4723627号公報及び上記の特許第6258566号公報にも、陽イオン交換膜で陽極と陰極を隔ててなる膜-電極構造体が開示されている。しかし、イオン交換膜は、膜-電極構造体の構造が複雑になりがちで、保守管理のコストがかかる。
(4)対流の制御
 標記の技術は、原料水の対流を制御することにより、高濃度のオゾン水(又は電解水)を噴霧できるようにする方法である。
 実登第3207605号公報(特許文献3)には、図23に示すように、容器320の下端内部に取着されたホルダ340に電極部材が収容固定され、該電極部材は、上から、複数の孔口を有する飾り片331、負極電解片332、絶縁ワッシャ333、正極電解片334が積み重ねられてなり、飾り片331とホルダ340が熱融合されることにより、ホルダ340に前記電極部材が収容固定される、スプレーの発明が開示されている。この発明においては、電解水が生成されるホルダ340を背が低く底面積が広い円筒状に構成することで電気分解時に容器320内に発生する対流を抑制し、ホルダ340の直上に噴霧用チューブの吸水口を設けることで、少量であれば濃度の高い電解水を噴霧することができる。しかし、容器320内の対流が弱いから、ホルダ340付近の電解水の濃度だけが高くなり、容器320全体の濃度はあまり上がらない難点がある。
 特開2003-334557号公報(特許文献4)には、図24に示すように、電極部(電解装置)401が水平方向に貫設された電解槽402と、電源装置404が取り外し可能となる様に構成された殺菌洗浄水生成装置の発明が開示されている。電解槽402に電極部401を貫設するために、電解槽402の下部には、陽極受電端子405-1及び陰極受電端子405-2を有する端子カバー部415が設けられている。そのため、電解槽402の下部の水平断面は、その上部より小さい。電気分解時には、電解槽402内の原料水に、電極部401からの上昇水流と、主に電解槽402の内側面に沿った下降水流が生じる。下降水流は最終的に電解槽402の内底面に行き着く。しかし、電解槽の内底面と電極部401との間には上下方向の隙間があるため、上記下降水流が直接、電極部401に当たるわけではないから、下降水流に含まれる濃度の低い電解水が電気分解を受けて高濃度化するまでに時間を要する。また、電極部401が水平方向に配向しているから、鉛直方向に配向している場合と比べると、ジュール加熱及び微気泡生成の影響を受ける原料水の体積が大きく、その分、上昇水流の速さも遅く、また、下降水流と衝突して対流の速さが減りやすい。加えて、電極部401が水平方向に配向していると、電気分解で生成する微気泡が電極部401の略円筒面状の表面の下半分に集積・滞留して、電極の有効面積が約半分に減るために、電解水の生成速度が著しく低下する。電解槽402における電極部401の配置及び配向には大いに改善の余地がある。
 特開2017-05191号公報(特許文献5)には、図25に示すように、電解槽510と、電解槽510に着脱可能に装着される本体部と、電解槽510内に配置される電極部520と、電極部520に給電するための給電部530とを備える電解装置であって、給電部530は本体部に取り付けられ、本体部から電解槽510の底面側へ延伸しており、電極部520は給電部530に取着され、電極部520と電解槽510の内側面および底面との間には隙間D1,D2が設けられ、電極部520の外面には外郭部524が配置され、外郭部524の上面側には同心円状の溝部525が設けられ、下面側は解放され、電極部520を軸方向に沿って水が循環可能になっている電解装置の発明が開示されている。この電界装置においては、隙間D2が形成されていることにより、電解処理に伴う電解水の温度上昇によって電極部520を通って上方へ流れる水流を発生させ、電極部520に電解処理前の水を効率的に補給できる。また、隙間D1が形成されていることにより、電極部520よりも上方に貯水されている電解処理前の水を電極部520と電解槽510の側面との間を介して電極部520の下方へ循環させ、電極部520の下方から電極部520に補給することができる。これにより、電解槽510内の水を電極部520に効率よく循環させることができるので、電解処理の効率を向上させ、電解処理に要する時間を短縮することができる。しかし、この電解装置は、電極部が本体部から垂下しており、電源部が本体部に設けられているから、電解槽の蓋を構成する本体部が重くなり、取り扱いが不便になる短所がある。
(5)その他
 上記の特許第6249200号公報には、噴霧用チューブの内部にオゾン水を生成する電解セルを取り付ける構成において、さらにスパイラル状の小さな構造物を噴霧用チューブの内部に設けることにより、電解セルで発生したオゾンの気泡を砕いて微細な気泡に変換してオゾンの溶存率を高め、オゾン水の生成効率を向上する技術が開示されているが、構造が複雑で保守に手間を要する。
 オゾン水の生成効率を向上する技術ではないが、特表2012-501385号公報には、電解セルに流れる電流値が所定の範囲内にあるときには表示灯を点灯し、範囲外にあるときには表示灯を消灯する技術が開示されている。また、特表2006-518666号公報(特許文献6)には、スプレーヘッド部に、電解水の効力を表示するためのオキシダント効力表示灯を有するスプレー装置の技術が開示されているが、オキシダント効力表示灯の点灯及び消灯のための制御の詳細については全く記載されていない。
 このように、直接電解法でオゾン水(又は電解水)の生成効率を高める従来技術(1)~(5)は、簡易かつ安価な家庭用の、片手で把持できるボトルを有するオゾン水生成噴霧器(又は電解水生成噴霧器)に利用するには、満足できる技術ではない。そして、いずれの技術も、原料水を貯留する容器の内底面の形状等を工夫することにより、電気分解の際に、容器の内底面に取着された電極構造体の近傍から生じる上昇水流と、容器の内側面に沿って生じる下降水流の流れを制御して、オゾン水(又は電解水)の生成効率を上げる、という発想を有していない。例えば、特許文献4には、容器の内底面が平坦ではない構成が開示されているが、それは容器の側面に電極部を貫設するためであり、容器内の水流を制御するためではない。また、特許文献5には、容器内の上昇水流と下降水流の流れを制御するという発想は見られるが、その流れの制御を容器の内底面の形状等を工夫することにより行うという発想は存在しない。更に、噴霧されるオゾン水(又は電解水)の除菌・消臭作用の効力を、リアルタイムで使用者にわかりやすく表示する構成が実現されていない。
特開2003-93479号公報 特開2009-154030号公報 実登第3207605号公報 特開2003-334557号公報 特開2017-05191号公報 特表2006-518666号公報
新しい展開に入ったオゾン水の利用技術、西村喜之ほか、日本食品工学会誌、Vol.2、No.3、pp.103-113、Sep.2001
 本発明の目的は、簡易かつ安価な、家庭で利用できる電解水(又はオゾン水)の生成方法、片手で保持可能な生成噴霧器、及び生成噴霧装置を提供することである。本発明の更なる目的は、原料水を貯留する容器の内底面の形状等を工夫することにより、電解水の生成効率を上げて、上記の目的を達成することである。本発明の更なる目的は、電解水の除菌・消臭の効力をわかりやすく表示する電解水の生成噴霧装置を提供することである。
 なお、本明細書においては、「オゾン水」という語句は、オゾンを含有する水溶液、という意味で使用される。また、「電解水」という語句は、原料水(水又は水溶液)を電気分解することにより得られる水溶液、という意味で使用される。また、「電解オゾン水」という語句は、オゾン水のうち電解水でもある水溶液、という意味で使用される。ただし、「オゾン水」という語句が、上記の電解オゾン水の意味で使用される場合もある。すなわち、本明細書において「オゾン水」という語句は、狭義には電解オゾン水を意味し、広義にはオゾンを含有する水溶液を意味する。
 本発明は上記課題を解決するためになされたものであり、その第1の形態は、原料水を貯留するための容器と、前記容器内の原料水から生成された電解水(又はオゾン水)を噴霧するための噴霧機構と、を少なくとも備える電解水生成噴霧器における電解水生成方法であり、前記容器の内底面に電極構造体を立設し、前記容器の内底面より上方に注水口を設け、当該注水口に前記噴霧機構を取着し、前記容器の内底面、又は、前記容器の内底面に対向する、前記電極構造体の下部に、前記容器内の前記原料水の対流を促進するための対流促進手段を設け、前記電極構造体に電圧を印加して前記原料水を電気分解することで電解水を生成し、電気分解の際に前記電極構造体内の前記原料水に鉛直方向に作用する浮力によって生じる上昇水流と、前記原料水が前記容器の内底面に向かって流れ下る下降水流と、を生じさせ、前記対流促進手段によって前記容器内の前記原料水の対流を促進し、前記電極構造体に前記原料水を供給して、電気分解による電解水生成反応を進行させ、生成される電解水の濃度を高くすることを特徴とする電解水生成方法である。
 本発明の第2の形態は、前記対流促進手段は、前記容器の内底面に設けられた下方に凹んだ凹盆部であり、該凹盆部は凹盆部底面とその周囲を囲う凹盆部壁面とで構成され、前記容器内の前記凹盆部底面に前記電極構造体を立設し、前記原料水が前記凹盆部の前記凹盆部壁面を前記凹盆部底面に向かって流れ下ることで、前記下降水流を促進する電解水生成方法である。
 本発明の第2の形態の一例は、前記凹盆部壁面が前記凹盆部底面と垂直である電解水生成方法である。本発明の第2の形態の別の例は、前記凹盆部壁面が斜面である電解水生成方法である。本発明の第2の形態の更に別の例は、前記凹盆部壁面が前記容器の内側面となめらかに接続されている電解水生成方法である。
 本発明の第3の形態は、前記電極構造体は、陽極部材と、該陽極部材と電極間隙を隔てて配置された陰極部材を含み、前記対流促進手段は、前記容器の内底面に対向する、前記陰極部材の下部と、前記容器の内底面との間に形成される開口部であり、前記開口部を通して、前記原料水が前記電極間隙に流れ込むことで、前記下降水流を促進する電解水生成方法である。
 本発明の第4の形態は、前記電極構造体は、陽極部材と、該陽極部材と電極間隙を隔てて配置された陰極部材と、を含み、該陰極部材に複数の孔を設け、前記孔を通して、前記原料水及び/又は前記電解水が前記電極間隙に出入する電解水生成方法である。
 本発明の第5の形態は、原料水を貯留するための容器と、前記容器内の原料水を電気分解して電解水(又はオゾン水)を生成するための電極構造体と、前記電解水を噴霧するための噴霧機構と、を備える電解水生成噴霧器であり、前記電極構造体は、前記容器の内底面に立設され、前記容器の内底面、又は、前記容器の内底面に対向する、前記電極構造体の下部に、前記容器内の前記原料水の対流を促進するための対流促進手段が設けられ、前記容器の内底面より上方に注水口が設けられ、当該注水口に前記噴霧機構が取着されていることを特徴とする電解水生成噴霧器である。
 本発明の第6の形態は、前記対流促進手段は、前記容器の内底面に設けられた下方に凹んだ凹盆部であり、該凹盆部は凹盆部底面を有し、該凹盆部は凹盆部底面とその周囲を囲う凹盆部壁面とで構成され、前記容器内の前記凹盆部底面に前記電極構造体が立設されている電解水生成噴霧器である。
 本発明の第6の形態の一例は、前記凹盆部壁面が前記凹盆部底面と垂直である電解水生成噴霧器である。本発明の第6の形態の別の例は、前記凹盆部壁面が斜面である電解水生成噴霧器である。本発明の第6の形態の更に別の例は、前記凹盆部壁面が前記容器の内側面となめらかに接続されている電解水生成噴霧器である。
 本発明の第7の形態は、前記電極構造体は、陽極部材と、該陽極部材と電極間隙を隔てて配置された陰極部材を含み、前記対流促進手段は、前記容器の内底面に対向する、前記陰極部材の下部と、前記容器の内底面との間に形成される開口部であり、前記開口部を通して、前記原料水が前記電極間隙に流れ込む電解水生成噴霧器である。
 本発明の第8の形態は、前記電極構造体は、陽極部材と、該陽極部材と電極間隙を隔てて配置された陰極部材と、を含み、該陰極部材に複数の孔が設けられ、前記孔を通して、前記原料水及び/又は前記電解水が前記電極間隙に出入する電解水生成噴霧器である。
 本発明の第9の形態は、前記電解水生成噴霧器と、前記電解水生成噴霧器を載置するための電源部と、を有する電解水生成噴霧装置であり、前記電源部又は前記電解水生成噴霧器は、制御部及びランプを有し、前記制御部は、電解水の生成処理完了後は、前記容器内の電解水の濃度が有効な濃度であることを表示するために、所定の時間の間、前記ランプを点灯させる制御を行うことを特徴とする電解水生成噴霧装置である。
 本発明の第1の形態によれば、原料水を貯留するための容器と、前記容器内の原料水から生成された電解水(又はオゾン水)を噴霧するための噴霧機構と、を少なくとも備える電解水生成噴霧器における電解水生成方法であり、前記容器の内底面に電極構造体を立設し、前記容器の内底面より上方に注水口を設け、当該注水口に前記噴霧機構を取着し、前記容器の内底面、又は、前記容器の内底面に対向する、前記電極構造体の下部に、前記容器内の前記原料水の対流を促進するための対流促進手段を設け、前記電極構造体に電圧を印加して前記原料水を電気分解することで電解水を生成し、電気分解の際に前記電極構造体内の前記原料水に鉛直方向に作用する浮力によって生じる上昇水流と、前記原料水が前記容器の内底面に向かって流れ下る下降水流と、を生じさせ、前記対流促進手段によって前記容器内の前記原料水の対流を促進し、前記電極構造体に前記原料水を供給して、電気分解による電解水生成反応を進行させ、生成される電解水の濃度を高くすることを特徴とする電解水生成方法を提供できる。
 容器の内底面、又は、容器の内底面に対向する、電極構造体の下部に、容器内の原料水の対流を促進するための対流促進手段が設けられていない場合には、前記上昇水流があるのみで、原料水が容器の内底面に向かって流れ下る下降水流を促進する手段が存在しないから、容器内の原料水の対流が弱く、容器内を局所的に原料水が循環し、生成したオゾン水(又は電解水)が容器の下部に滞留し、電極構造体に供給されるオゾン濃度(又は電解生成物濃度)の低い原料水が少なくなる。そのため、電極構造体内の原料水のオゾン濃度(又は電解生成物濃度)が高くなり、(式2)で示されるオゾンの生成反応(又は電解水生成反応)があまり進行しない。それに対して、容器の内底面、又は、容器の内底面に対向する、電極構造体の下部に、容器内の原料水の対流を促進するための対流促進手段が設けられている場合には、前記上昇水流に加えて、原料水が容器の内底面に向かって流れ下る下降水流が促進されて、容器内の原料水の対流が強くなり、容器内の原料水が大規模に循環し、電極構造体にはオゾン濃度(又は電解生成物濃度)の低い原料水が豊富に供給される。そのため、電極構造体内の原料水のオゾン濃度(又は電解生成物濃度)が低くなり、(式2)で示されるオゾンの生成反応(又は電気分解反応)が進行して効率的にオゾン水(又は電解水)が生成され、生成されたオゾン濃度(又は電解生成物濃度)の高いオゾン水(又は電解水)が前記上位水流及び前記下降水流によって容器全体に行き渡る。なお、前記上昇水流が生じる原因は浮力であるが、該浮力は、電解に伴うジュール加熱により電極構造体内の原料水の温度が上がって熱膨張すること、及び電解に伴って発生した酸素、水素、オゾン等の気体の微細な気泡が該原料水に混入するために該原料水の実質的な密度が下がること、により生じる。
 本形態において、電極構造体は、容器の内底面に立設される。「立設」とは、電極構造体を構成する電極の表面の方向が、容器の内底面に交差する方向(好ましくは垂直な方向)を成すように、当該内底面をその表面として有している部材に、電極構造体を取着する、という意味である。電極構造体が立設されているから、原料水は電極構造体内を下方から上方へと進む間に継続的に浮力を受け、強い上昇水流が生じる。
 なお、本発明における原料水としては、家庭で容易に利用できるという観点から主に、水道水や市販のミネラルウォータ等を想定しているが、それに限られるものではなく、電気分解反応(又はオゾン生成反応)の速度を調節する観点から、塩素等の気体や塩化ナトリウム等の塩類などの溶質を水に溶存させた水溶液であってもよく、又、蒸留水や脱イオン水、精製水等であってもよい。原料水を電気分解することにより生成される電解水(又はオゾン水)についても、オゾンに限らず、塩素、次亜塩素酸、亜塩素酸、水酸化ナトリウム、酸素、水素、塩化ナトリウムなど種々の物質や電解生成物が水に溶解した水溶液であってよい。ただし、塩類等の溶質を水に溶存させた水溶液を原料水として用いる場合には、溶質を水に溶存させる手段を設ける必要があり、かつ、電気分解に用いる電極構造体の腐食による劣化を防止又は監視する手段も必要である。電解水の中でオゾン水は、水道水や市販のミネラルウォーター等の原料水を電気分解して生成することができ、その際の電極構造体の腐食による劣化も軽微である利点を有する。
 本発明の第2の形態によれば、前記対流促進手段は、前記容器の内底面に設けられた下方に凹んだ凹盆部であり、該凹盆部は凹盆部底面とその周囲を囲う凹盆部壁面とで構成され、前記容器内の前記凹盆部底面に前記電極構造体を立設し、前記原料水が前記凹盆部の前記凹盆部壁面を前記凹盆部底面に向かって流れ下ることで、前記下降水流を促進する電解水生成方法を提供することができる。
 前記対流促進手段として、容器の内底面に下方に凹んだ凹盆部が設けられている場合には、前記上昇水流に加えて、原料水が凹盆部の凹盆部壁面を凹盆部底面に向かって流れ下る下降水流が存在するから、原料水が容器の内底面に向かって流れ下る下降水流が促進されて、容器内の原料水の対流が強くなり、容器内の原料水が大規模に循環し、電極構造体にはオゾン濃度(又は電解生成物濃度)の低い原料水が豊富に供給される。そのため、電極構造体内の原料水のオゾン濃度(又は電解生成物濃度)が低くなり、(式2)で示されるオゾンの生成反応(又は電気分解反応)が進行して効率的にオゾン水(又は電解水)が生成され、生成されたオゾン濃度(又は電解生成物濃度)の高いオゾン水(又は電解水)が前記上位水流及び前記下降水流によって容器全体に行き渡る。
 本形態において、電極構造体は、凹盆部底面に立設される。「立設」とは、電極構造体を構成する電極の表面の方向が、凹盆部底面に交差する方向(好ましくは垂直な方向)を成すように、凹盆部底面をその表面として有している部材に、電極構造体を取着する、という意味である。電極構造体が立設されているから、原料水は電極構造体内を下方から上方へと進む間に継続的に浮力を受け、強い上昇水流が生じる。
 本発明の第2の形態の一例によれば、前記凹盆部壁面が前記凹盆部底面と垂直である電解水生成方法を提供できる。この例における凹盆部は、切削加工、射出成形等の加工法で作製することが容易である。本発明の第2の形態の別の例によれば、前記凹盆部壁面が斜面である電解生成方法を提供できる。この例では、凹盆部壁面が斜面で構成されているから、容器の内側面に沿って下降してきた原料水を、凹盆部底面及び凹盆部底面に立設された電極構造体へと、スムーズに導くことができ、濃度の高い電解水を効率的に生成することができる。本発明の第2の形態の更に別の例によれば、前記凹盆部壁面が前記容器の内側面となめらかに接続されている電解水生成方法を提供できる。この例では、凹盆部壁面が容器の内側面となめらかに接続されているから、容器の内側面に沿って下降してきた原料水を、凹盆部底面及び凹盆部底面に立設された電極構造体へと、スムーズに導くことができ、濃度の高い電解水を効率的に生成することができる。
 本発明の第3の形態によれば、前記電極構造体は、陽極部材と、該陽極部材と電極間隙を隔てて配置された陰極部材を含み、前記対流促進手段は、前記容器の内底面に対向する、前記陰極部材の下部と、前記容器の内底面との間に形成される開口部であり、前記開口部を通して、前記原料水が前記電極間隙に流れ込むことで、前記下降水流を促進する電解水生成方法を提供できる。
 本形態においては、前記容器の内底面に対向する、前記陰極部材の下部と、前記容器の内底面との間に形成される開口部が、対流促進手段として設けられ、当該開口部を通して、原料水が電極構造体の電極間隙に流れ込むことができる。したがって、電気分解の際に電極構造体の電極間隙内に生じる上昇水流に伴って、原料水が前記開口部を通して電極構造体の電極間隙に流れ込むから、原料水が容器の内底面に向かって流れ下る下降水流が促進されて、容器内の原料水の対流が強くなり、容器内の原料水が大規模に循環し、電極構造体にはオゾン濃度(又は電解生成物濃度)の低い原料水が豊富に供給される。そのため、電極構造体内の原料水のオゾン濃度(又は電解生成物濃度)が低くなり、(式2)で示されるオゾンの生成反応(又は電気分解反応)が進行して効率的にオゾン水(又は電解水)が生成され、生成されたオゾン濃度(又は電解生成物濃度)の高いオゾン水(又は電解水)が前記上位水流及び前記下降水流によって容器全体に行き渡る。
 本発明の第4の形態によれば、前記電極構造体は、陽極部材と、該陽極部材と電極間隙を隔てて配置された陰極部材と、を含み、該陰極部材に複数の孔を設け、前記孔を通して、前記原料水及び/又は前記電解水が前記電極間隙に出入する電解水生成方法を提供できる。陰極部材に複数の孔を設けることにより、外部から原料水を電極間隙に効率的に導くことができ、又、生成したオゾン水(又は電解水)を電極間隙から外部へと効率的に送り出すことができるので、オゾン水(又は電解水)を効率的に生成することができる。更に、陰極部材に複数の孔を設けることにより、陰極部材の表面に曲率が大きく局所的に電場の強い領域を作り出して、(式2)で示されるオゾンの生成反応(又は電気分解反応)を加速することができる。加えて、陰極部材に複数の孔を設けることにより、陰極部材の表面の単位面積当たりの電流密度を高めて、(式2)で示されるオゾンの生成反応(又は電気分解反応)を加速し、オゾン水(又は電解水)を効率的に生成することができる。なお、本発明においては、電極構造体の陰極部材に孔を設けない形態も可能である。孔を設けない形態では、陰極部材の表面積を大きくして電気分解の有効面積を稼ぎ、生成するオゾン水(又は電解水)の濃度を高める。陰極部材に孔がある形態と孔がない形態のいずれがオゾン水(又は電解水)を効率的に生成できるかは、陰極部材の形状や、孔の大きさ、数、配置等の諸条件に依存する。
 本発明の第5の形態によれば、原料水を貯留するための容器と、前記容器内の原料水を電気分解して電解水(又はオゾン水)を生成するための電極構造体と、前記電解水を噴霧するための噴霧機構と、を備える電解水生成噴霧器であり、前記電極構造体は、前記容器の内底面に立設され、前記容器の内底面、又は、前記容器の内底面に対向する、前記電極構造体の下部に、前記容器内の前記原料水の対流を促進するための対流促進手段が設けられ、前記容器の内底面より上方に注水口が設けられ、当該注水口に前記噴霧機構が取着されていることを特徴とする電解水生成噴霧器を提供できる。
 本形態の電解水生成噴霧器は、前記対流促進手段により、電気分解の際に電極構造体内の原料水に鉛直方向に作用する浮力によって生じる上昇水流と、原料水が容器の内底面に向かって流れ下る下降水流と、を促進して、容器内の原料水の対流を強くし、容器内の原料水を大規模に循環させ、電極構造体にオゾン濃度(又は電解生成物濃度)の低い原料水を供給して、電気分解によるオゾン生成反応(又は電解水生成反応)を進行させ、生成されるオゾン水(又は電解水)のオゾン濃度(又は電解生成物濃度)を高くすることができる。
 本発明の第6の形態によれば、前記対流促進手段は、前記容器の内底面に設けられた下方に凹んだ凹盆部であり、該凹盆部は凹盆部底面を有し、該凹盆部は凹盆部底面とその周囲を囲う凹盆部壁面とで構成され、前記容器内の前記凹盆部底面に前記電極構造体が立設されている電解水生成噴霧器を提供できる。
 本形態の電解水生成噴霧器は、電気分解の際に電極構造体内の原料水に鉛直方向に作用する浮力によって生じる上昇水流と、原料水が凹盆部の凹盆部壁面を凹盆部底面に向かって流れ下る下降水流と、を生じさせて容器内の前記原料水の対流を促進し、電極構造体に原料水を供給して、電気分解によるオゾン生成反応(電解水生成反応)を進行させ、生成されるオゾン水(又は電解水)におけるオゾン濃度(又は電解生成物濃度)を高くすることができる。
 本発明の第6の形態の一例によれば、前記凹盆部壁面が前記凹盆部底面と垂直である電解水生成噴霧器を提供できる。この例における凹盆部は、切削加工、射出成形等の加工法で作製することが容易である。本発明の第6の形態の別の例によれば、前記凹盆部壁面が斜面である電解水生成噴霧器を提供できる。この例では、凹盆部壁面が斜面で構成されているから、容器の内側面に沿って下降してきた原料水を、凹盆部底面及び凹盆部底面に立設された電極構造体へと、スムーズに導くことができ、濃度の高い電解水を効率的に生成することができる。本発明の第6の形態の更に別の例によれば、前記凹盆部壁面が前記容器の内側面となめらかに接続されている電解水生成噴霧器を提供できる。この例では、凹盆部壁面が容器の内側面となめらかに接続されているから、容器の内側面に沿って下降してきた原料水を、凹盆部底面及び凹盆部底面に立設された電極構造体へと、スムーズに導くことができ、濃度の高い電解水を効率的に生成することができる。
 本発明の第7の形態によれば、前記電極構造体は、陽極部材と、該陽極部材と電極間隙を隔てて配置された陰極部材を含み、前記対流促進手段は、前記容器の内底面に対向する、前記陰極部材の下部と、前記容器の内底面との間に形成される開口部であり、前記開口部を通して、前記原料水が前記電極間隙に流れ込む電解水生成噴霧器を提供できる。
 本形態の電解水生成噴霧器は、前記開口部を通して前記原料水が前記電極間隙に流れ込むことができるように構成されているから、電気分解の際に電極構造体内の原料水に鉛直方向に作用する浮力によって生じる上昇水流と、原料水が容器の内底面に向かって流れ下る下降水流と、が促進され、電極構造体に原料水が供給され、電気分解によるオゾン生成反応(電解水生成反応)が進行し、生成されるオゾン水(又は電解水)におけるオゾン濃度(又は電解生成物濃度)が高くなる利点を有する。
 本発明の第8の形態によれば、前記電極構造体は、陽極部材と、該陽極部材と電極間隙を隔てて配置された陰極部材と、を含み、該陰極部材に複数の孔が設けられ、前記孔を通して、前記原料水及び/又は前記電解水が前記電極間隙に出入する電解水生成噴霧器を提供できる。
 本発明の第9の形態によれば、前記電解水生成噴霧器と、前記電解水生成噴霧器を載置するための電源部と、を有する電解水生成噴霧装置であり、前記電源部又は前記電解水生成噴霧器は、制御部及びランプを有し、前記制御部は、電解水の生成処理完了後は、前記容器内の電解水の濃度が有効な濃度であることを表示するために、所定の時間の間、前記ランプを点灯させる制御を行うことを特徴とする電解水生成噴霧装置を提供できる。
 例えば、所定時間の電気分解による生成直後のオゾン水のオゾン濃度が高くても、オゾンの自己分解反応により、放置しておくと容器内のオゾン水のオゾン濃度は徐々に減少する。一般に電解水は、電気分解による生成から時間が経過すると、除菌・消臭等の効力が徐々に失われることがある。本形態の電解水生成噴霧装置は、現在の容器内のオゾン水(又は電解水)が、スプレーして除菌・消臭を行うために十分なオゾン濃度(又は電解生成物濃度)を有しているのか否かを、使用者にとって分かりやすいようにランプで表示する。すなわち、前記制御部は、オゾン水の生成処理完了後は、容器内のオゾン水のオゾン濃度(又は電解生成物濃度)が有効な濃度であることを表示するために、所定の時間の間、ランプを点灯させる制御を行う。この所定の時間(ランプを点灯させる時間)は、生成反応に供した容器内の原料水の水量に応じて、予め決めた複数の時間から制御部が選択することが好ましい。オゾン等の自己分解反応の速度は温度に依存するから、より好ましくは、この所定の時間は、生成反応に供した容器内の原料水の水量と、温度センサーにより計測される、気温又は容器内のオゾン水の水温に応じて、予め決めた複数の時間から制御部が選択することが望ましい。
図1は、本発明の一実施形態に係るオゾン水生成噴霧装置(電解水生成噴霧装置)を示す斜視図であり、オゾン水生成噴霧器(電解水生成噴霧器)を電源部に載置した状態を示す。 図2は、オゾン水生成噴霧器を電源部から取り外した状態を示す斜視図である。 図3は、オゾン水生成噴霧器の各部の構成を示す説明図である。 図4は、オゾン水生成噴霧器の電極構造体が、容器の内底面に立設されている様子を示す斜視図である。 図5は、容器の内底面に設けられた凹盆部の作用と効果を説明するための断面説明図である。 図6は、容器の内底面に設けられる凹盆部の、複数の実施形態を示す断面説明図である。 図7は、容器の内底面に設けられる凹盆部の、複数の実施形態を示す平面説明図である。 図8は、本発明の一実施形態において、容器内に生成したオゾン水のオゾン濃度が、時間経過とともに減少していく様子を示すグラフ図である。 図9は、本発明の一実施形態に係るオゾン水生成噴霧装置の制御部が実行する主制御フローを示すフロー図である。 図10は、制御部が実行するオゾン水の生成処理のフローを示すフロー図である。 図11は、制御部が実行するオゾン水の生成後処理のフローを示すフロー図である。 図12は、本発明の一実施形態に係る電極構造体の分解斜視図(12A)及び斜視図(12B)である。 図13は、図12に示した電極構造体の上面図(13A)及び側面図(13B)である。 図14は、本発明の別の一実施形態に係る電極構造体の分解斜視図(14A)、斜視図(14B)、及び、その一変形形態の斜視図(14C)である。 図15は、本発明の更に別の一実施形態に係る電極構造体の分解斜視図(15A)及び斜視図(15B)である。 図16は、本発明の更に別の一実施形態に係る電極構造体の斜視図である。 図17は、本発明の更に別の一実施形態に係る電極構造体の斜視図である。 図18は、本発明において、陽極部材に紐状絶縁スペーサを巻回する様々な仕方を例示する説明図である。 図19は、本発明の一実施形態に係る、容器の内底面に立設された、陰極開口部を有する電極構造体の説明図である。 図20は、本発明の別の一実施形態に係る、凹盆部底面に立設された、陰極開口部を有する電極構造体の説明図である。 図21は、従来の電解水生成噴霧器の断面図である。 図22は、従来の電解水生成噴霧装置の断面図である。 図23は、従来の電解水を生成噴霧するためのスプレーの断面図である。 図24は、従来の殺菌洗浄水生成装置の断面図である。 図25は、従来の電解装置の部分断面図である。
 次に、本発明に係るオゾン水(又は電解水)の生成方法、生成噴霧器及び生成噴霧装置の実施形態を図面に従って詳細に説明する。
<オゾン水生成噴霧装置の全体構成> 図1は、本発明の一実施形態に係るオゾン水生成噴霧装置(電解水生成噴霧装置)7を示す斜視図であり、オゾン水生成噴霧装置7は、オゾン水生成噴霧器(電解水生成噴霧器)1と、オゾン水生成噴霧器1を載置するための電源部6から構成される。オゾン水生成噴霧器1は、原料水43を貯留するための容器4と、容器4の内底面46に立設され、容器4内の原料水43を電気分解してオゾン水(又は電解水)42を生成するための電極構造体2と、オゾン水(又は電解水)42を噴霧するための噴霧機構5と、を備える。図2は、オゾン水生成噴霧器1を電源部6から取り外した状態を示す斜視図である。オゾン水生成噴霧器1の下部の形状はスカート状になっており、電源部6の電源部凸部66に載置される。
<電源部> 電源部6は、家庭用のコンセントに接続し、交流電圧を直流電圧に変換するためのAC-DCアダプタ61と、オゾン水生成噴霧器1に直流電圧及び直流電流を供給するための電源コード61aと、3つの操作ボタン64と、3つの表示ランプ65と、を備える。操作ボタン64は、電源ボタン64aと、長時間生成用の第1生成ボタン64bと、短時間生成用の第2生成ボタン64cと、を含む。表示ランプ65は、電源ランプ65aと、第1生成ランプ65bと、第2生成ランプ65cを含み、それぞれのランプに対応するボタンが押圧されたときに、所定の時間だけ点灯する。電気分解のための通電は、オゾン水生成噴霧器1を電源部6に載置した状態でのみ実行される。安全に配慮し、室内の空気中のオゾン濃度が室内環境基準である0.1ppm(0.1mg/L)を超えないことを保証するため、第1生成ボタンを押圧すると所定の時間、例えば4分間だけ電気分解が行われ、又、第2生成ボタンを押圧すると所定の時間、例えば2分間だけ電気分解が行われて、光又は音で電気分解の終了を使用者に告知すると同時に、電気分解のための通電を完了する。なお、図1の実施形態においては、AC-DCアダプタ61は電源部6の筐体とは別に設けられているが、本実施形態の変形形態においては、AC-DCアダプタ61を電源部6の筐体内に内蔵してもよい。
<オゾン水生成噴霧器の容器と回路室> 容器4の下側には、介装リング94を介して回路室9が取着されている。図3も参照して、回路室9には、電源部6の電極部62を接続するための、接続端子部91が設けられている。接続端子部91からプリント基板92を介して、直流電圧及び直流電流が電極構造体2に供給される。
<噴霧機構> 図1において、噴霧機構5は、容器4に取り外し可能な態様で取着されるヘッド部51と、容器4内のオゾン水(又は電解水)42をヘッド部51に輸送するためのチューブ52と備え、ヘッド部51は、レバ―54と、ノズル53とを備える。使用者がレバ―54を手で握って回動させるとポンプ作用により、0.1~1.0mL程度の少量のオゾン水(又は電解水)42がチューブ52を通って、容器4内からヘッド部51へと輸送され、輸送されたオゾン水(又は電解水)42はノズル53を通過して噴霧流となって外へと噴射される。噴霧後に使用者がレバ―54から手を放すと、ヘッド部51に設けられたバネ(図示せず)の作用により、先ほど回動したレバ―54はもとの位置に戻る。なお、容器4の外側表面に、レバ―収容溝部と、レバ―収容溝部に沿って移動可能なスライド部材と、を設けて、非使用時にレバ―54をレバ―収容溝部に収容して、スライド部材を移動させてレバ―54の先端部を覆止して固定することで、レバ―54を容器4の外側表面に密着させてコンパクトに収容する構成としてもよい。容器4には、取り外し可能な態様でヘッド部カバー51aが装着されている。ヘッド部カバー51aには、レバ―54の回動動作を邪魔しないよう切欠部が設けられており、ヘッド部カバー51aを容器4に装着した状態でもオゾン水(又は電解水)42を噴霧することが可能である。なお、図1に示す実施形態では噴霧機構5は手動式であるが、本実施形態の変形形態においては、噴霧機構5として電動式のポンプを用いた噴霧機構を用いてもよい。
<電極構造体支持枠> 図1において、電極構造体2は、電極構造体支持枠28に嵌め込み等により支持されているから、保守時にブラシを用いて洗浄等を行う際に、倒壊や割れ等の損傷を受ける心配が少ない。なお、電極構造体支持枠28は、容器4の底板49に固定されているか、又は、底板49と一体に形成されている。
<噴霧機構の使用> 図(3B)は、本発明の一実施形態における、噴霧機構5の構造と、容器4に原料水43を入れる際などに噴霧機構5を取り外す方法を説明したものである。容器4の注水口4xは、容器4の内底面46より上方に設けられており、好ましくは容器4の最上部に設けられている。ヘッド部カバー51aをあらかじめ取り外し、スプレーキャップ5xを回転矢印5zの示す方向に回転させると、ネジ式の結合がはずれて、矢印5yが示すように噴霧機構5を容器4から取り外すことができ、原料水43を容器4の注水口4xから容器4に入れることができる。原料水の注入後は、噴霧機構5を容器4の注水口4xに嵌め、スプレーキャップ5xを回転矢印5zとは逆方向に回転させて、噴霧機構5を容器4に固定する。噴霧機構5は、スプレーキャップ5xとレバ―54の間にレバ―ロック54aを有する。レバ―ロック54aは、通常位置と90度回転した位置の2つの角度位置をとることができる。レバ―ロック54aが通常位置にあるときには、レバー54を手で把持して回動させるとオゾン水(又は電解水)42を噴霧できるが、レバ―ロック54aが90度回転した位置にあるときには、レバー54は固定されており、手で把持して回動させることができず、オゾン水(又は電解水)42を噴霧できない。
<水位線> 図(3C)は、本発明の一実施形態において、容器4に設けられた水位線43について説明するための斜視図である。容器4には、第1水位線43bと第2水位線43cの複数の水位線が設けられている。使用者は、いずれかの水位線が示す位置まで容器4に原料水43を入れ、容器4にスプレーキャップ5xを取り付け、容器4を電源部6に載置し、操作ボタン64を押圧してオゾン水の生成を行う。例えば、第1水位線43bまで原料水43を入れたときには、長時間生成用の第1生成ボタン64bを押圧し、第2水位線43cまで原料水43を入れたときには、短時間生成用の第2生成ボタン64cを押圧する。長時間生成を標準とするが、急ぐ場合には短時間生成を行うことができる。このように、複数の水位線を設けることで、短時間生成の場合には電解の対象となる原料水43の水量を長時間生成の場合より減らして、生成されるオゾン水(又は電解水)のオゾン濃度(又は電解生成物濃度)を高く保つことができる。
<凹盆部> 図4は、本発明の一実施形態において、オゾン水生成噴霧器1の電極構造体2が、容器4の内底面46に立設されている様子を示す斜視図である。容器4の内底面46は下方に凹んだ凹盆部48を有し、凹盆部48は、凹盆部底面48aとその周囲を囲う凹盆部壁面48bとで構成され、容器4内の凹盆部底面48aに電極構造体2が立設されている。また、電極構造体支持枠28が容器4の内底面46に立設されている。本実施形態においては、凹盆部48が対流促進手段46cを構成する。オゾン水生成噴霧器1は、電極構造体2に電圧を印加して原料水43を電気分解することでオゾン水(又は電解水)42を生成し、電気分解の際に電極構造体2内の原料水43に鉛直方向に作用する浮力によって生じる上昇水流81と、原料水43が凹盆部壁面48bを凹盆部底面48aに向かって流れ下る下降水流82と、を生じさせて容器4内の原料水43の対流を促進し、電極構造体2に原料水43を供給して、電気分解によるオゾン生成反応(又は電解水生成反応)を進行させ、生成されるオゾン水(又は電解水)42におけるオゾン濃度(又は電解生成物濃度)を高くすることができる。電極構造体2は、「コの字」型の電極構造体支持枠28に嵌め込み等により支持されているから、保守時にブラシを用いて洗浄等を行う際に、倒壊や割れ等の損傷を受ける心配が少ない。電極構造体支持枠28の支持枠上部部材28bには、前記上昇水流を妨げないように、支持枠開口部28aが設けられている。
<電極構造体> 本実施形態においては、電極構造体2は、板状の陽極部材21と、間に紐状絶縁スペーサ30を挟むことにより陽極部材21と電極間隙を隔てて配置された、水平断面が「コの字」形の陰極部材22と、を含む。陰極部材22には複数の孔27を設けられ、孔27を通して原料水43及び/又はオゾン水(又は電解水)42が前記電極間隙に出入することができる。なお、本発明においては、電極構造体2の陰極部材21に孔が設けられていない実施形態も可能である。
<凹盆部の効果> 図5は、容器4の内底面46に設けられた凹盆部48の作用と効果を説明するための断面説明図である。図(5A)は本発明の一実施形態を示し、図(5B)は従来技術を示す。本発明においては、図(5A)に示すように、容器4の容器底板49の上表面である内底面46には、凹盆部48が設けられ、凹盆部48は、凹盆部底面48aとその周囲を囲う凹盆部壁面48bとで構成され、容器4内の凹盆部底面48aに電極構造体2が立設されている。電極構造体2に電圧を印加して原料水43を電気分解することでオゾン水(又は電解水)42が生成される。電気分解の際に、電極構造体2内の原料水43に鉛直方向に作用する浮力によって生じる上昇水流81と、原料水43が凹盆部壁面48bを凹盆部底面48aに向かって流れ下る凹盆部下降水流82aと、原料水43が容器4の内側面47に沿って下降する下降水流82と、が生じて容器4内の原料水43の対流を促進し、電極構造体2にオゾン濃度(又は電解生成物濃度)の低い原料水43を供給して、電気分解によるオゾン生成反応(又は電解水生成反応)を進行させ、生成されるオゾン水(又は電解水)42におけるオゾン濃度(又は電解生成物濃度)を高くすることができる。なお、図(5A)に示す実施形態では凹盆部壁面48bは鉛直であるが、凹盆部壁面が斜面である実施形態も可能であり、より大きな作用と効果を奏する。凹盆部壁面48bの水平面に対する角度(仰角)が30°~60°の場合をケースAとし、凹盆部壁面48bの高さが同じで仰角が90°である場合をケースBとし、内底面に凹盆部46を設けない場合をケースCとし、各場合で生成されるオゾン水(又は電解水)42におけるオゾン濃度(又は電解生成物濃度)を順にa,b,cとすると、a>b>cの関係があり、比(a-c)/(b-c)の値は経験的に約1.5である。すなわち、例えば、ケースBではケースCに比べてオゾン濃度等が約3倍になった(約200%向上した)とすれば、ケースAではケースCに比べてオゾン濃度等が約4倍になる(約300%向上する)。
 一方、従来技術においては、図(5B)に示すように、容器4の内底面46には凹盆部48が設けられず、平坦な内底面46に電極構造体2が立設されている。そのため、電気分解の際に、電極構造体2内の原料水43に鉛直方向に作用する浮力によって生じる上昇水流81は存在するものの、凹盆部下降水流82aは存在せず、その分、原料水43が容器4の内側面47に沿って下降する下降水流82が弱くなり、電極構造体2へ向かう底部水流82bも弱い。したがって容器4内の原料水43の対流が弱くなり、生成したオゾン水(又は電解水)42が電極構造体2の存在する容器4の底部に滞留し、電極構造体2にオゾン濃度(又は電解生成物濃度)の低い原料水43が十分に供給されず、電気分解によるオゾン生成反応(又は電解水生成反応)があまり進行せず、生成されるオゾン水(又は電解水)42におけるオゾン濃度(又は電解生成物濃度)を十分に高くすることができない。
<凹盆部の種々の形態> 図6は、本発明における、容器4の底板49、内底面46、及び凹盆部48の様々な実施形態を示す断面説明図である。図(6A)は、図(5A)に示した実施形態に似ているが、凹盆部壁面48bが鉛直面ではなく、斜面である実施形態を示している。図(6B)は、凹盆部48が2段から構成された実施形態を示す。本実施形態における凹盆部48は、電極構造体2が立設されている略平坦面である凹盆部底面48aと、その周囲を囲う斜面である凹盆部壁面48bと、更にその周囲を囲う略平坦面である第2の凹盆部底面48a2と、更にその周囲を囲う斜面である第2の凹盆部壁面48b2と、で構成される。凹盆部壁面48b及び/又は第2の凹盆部壁面48b2は、鉛直面であってもよい。また、凹盆部48が3段以上から構成された実施形態も可能である。図(6C)は、凹盆部壁面48bが容器3の内側面47となめらかに接続されている実施形態を示す。図(6C)においては凹盆部壁面48bは凹盆部底面48aとなめらかに接続されていない。しかし、凹盆部壁面48bが凹盆部底面48aとなめらかに接続された実施形態も可能である。図(6B)又は図(6C)に示した実施形態も、図(6A)に示した実施形態と同様な作用を有し、同様な効果を奏する。
 図7は、本発明における、容器4の内底面46、凹盆部48、及び電極構造体2の様々な実施形態を示す平面説明図である。図(7A)に示す実施形態においては、容器4の内底面46に略四角形状の凹盆部48が設けられ、凹盆部48は、平面視四角形状の電極構造体2が立設された略四角形状の凹盆部底面48aと、その周囲を囲う斜面である平面視略四角環状の凹盆部壁面48bと、からなる。
 図(7B)に示す実施形態においては、容器4の内底面46にだ円形状の凹盆部48が設けられ、凹盆部48は、平面視四角形状の電極構造体2が立設されただ円形状の凹盆部底面48aと、その周囲を囲う斜面である平面視だ円環状の凹盆部壁面48bと、からなる。
 図(7C)に示す実施形態においては、容器4の内底面46に六角の多角形状の凹盆部48が設けられ、凹盆部48は、平面視四角形状の電極構造体2が立設された多角形状の凹盆部底面48aと、その周囲を囲う斜面である平面視多角環状の凹盆部壁面48bと、からなる。
 図(7D)に示す本発明に係る2段の実施形態においては、容器4の内底面46に凹盆部48が設けられ、凹盆部48は、平面視円形状の電極構造体2が立設された円形状の略平坦面である凹盆部底面48aと、その周囲を囲う斜面である平面視円環状の凹盆部壁面48bと、更にその周囲を囲う略平坦面である平面視円環状の第2の凹盆部底面48a2と、更にその周囲を囲う斜面である平面視円環状の第2の凹盆部壁面48b2と、からなる。
 図(7E)に示す本発明に係る2段の実施形態においては、容器4の内底面46に凹盆部48が設けられ、凹盆部48は、平面視四角形状の電極構造体2が立設された略四角形状の略平坦面である凹盆部底面48aと、その周囲を囲う斜面である平面視略四角環状の凹盆部壁面48bと、更にその周囲を囲う略平坦面である平面視環状の第2の凹盆部底面48a2と、更にその周囲を囲う斜面である平面視円環状の第2の凹盆部壁面48b2と、からなる。
 図(7F)は、容器4の内底面46の形状を等高線で示している。図(7F)に示す本発明の実施形態においては、容器4の内底面46は凹盆部48に一致し、凹盆部壁面48bは容器4の内側面47となめらかに接続されている。凹盆部48は、平面視円形状の電極構造体2が立設された円形状の略平坦面である凹盆部底面48aと、その周囲を囲う斜面である平面視円環状の凹盆部壁面48bと、からなる。本実施形態の変形形態においては、凹盆部壁面48bに、凹盆部底面48aから放射状に延びる溝46gが設けられている。溝46gを設けることで、原料水43が凹盆部壁面48bを凹盆部底面48aに向かって流れ下る水流である凹盆部下降水流82aを溝46gに沿って導き、凹盆部下降水流82aを強め、容器4内の原料水43の対流を促進し、電極構造体2にオゾン濃度(又は電解生成物濃度)の低い原料水43を供給して、電気分解によるオゾン生成反応(又は電解水生成反応)を進行させ、生成されるオゾン水(又は電解水)42におけるオゾン濃度(又は電解生成物濃度)を高くすることができる。
 図7に示した種々の実施形態における諸構成は組み合わせて用いることができる。いずれの実施形態も、図(5A)に示した実施形態と同様な作用を有し、同様な効果を奏する。また、図7では容器4の断面形状は円形であるが、だ円形、四角、六角等の多角形又は略多角形、星型などの様々な断面形状も可能であり、図(5A)に示した実施形態と同様な作用を有し、同様な効果を奏する。
<陰極開口部> 図19は、本発明の一実施形態において、オゾン水生成噴霧器1の電極構造体2が、容器4の容器底板49の上側の表面、すなわち内底面46に取着されている様子を示す説明図である。図(19A)は正面図であり、図(19B)は図(19A)のA-A’切断面における端面図であり、図(19C)は図(19A)のB-B’切断面における端面図である。電極構造体2は、陽極部材21と、陽極部材21と電極間隙23を隔てて配置された陰極部材22を含む。陽極部材21は、容器底板49に貫通状態で取着された陽極接続突起25と、容器底板49に取着された陽極脚部25zを有する。陰極部材22は、容器底板49に貫通状態で取着された陰極接続突起26と、容器底板49に取着された1つ以上の陰極脚部26zを有する。陰極脚部26zを構成する物質は、陰極部材22の陰極脚部26z以外の部分を構成する物質と同じでも異なっていてもよい。容器4の内底面46に対向する、陰極部材22の下部と、容器4の内底面46との間には、当該陰極部材22の下部、内底面46、陰極接続突起26及び陰極脚部26zにより境界を画されて形成される開口部である、1つ以上の陰極開口部26oが形成されている。本実施形態においては、陰極開口部26oが対流促進手段46cを構成する。
 図19に示した実施形態の可能な変形形態について説明する。図19では図示が省略されているが、本実施形態における電極構造体2は、電極構造体支持枠28に嵌め込み等により支持されていることが好ましく、かつ、電極構造体支持枠28の支持枠上部部材28bには、上昇水流81を妨げないように、支持枠開口部28aが設けられていることが好ましい。また、本実施形態における電極構造体2は、陽極部材21と陰極部材22との間に挟まれた紐状絶縁スペーサ30を有する。陰極部材22には複数の孔27を設けられ、孔27を通して原料水43及び/又はオゾン水(又は電解水)42が電極間隙23に出入することができ、電気分解の際には、出孔水流83o及び入孔水流83iが形成される。なお、本実施形態においては、陰極部材21に孔27が設けられていない変形形態も利用可能である。さらに、図19では、電極構造体2の陽極部材21は板状の形状であり、同じく陰極部材22は略コの字型の形状であるが、本実施形態においては、図12~図18を用いて以下で説明する種々の形状の電極構造体が利用可能である。
 <陰極開口部の効果> 本実施形態においては、電極構造体2に電圧を印加して原料水43を電気分解することで電解水42が生成され、電気分解の際に電極構造体2内の原料水43に鉛直方向に作用する浮力によって生じる上昇水流81と、原料水43が容器4の内底面46に向かって流れ下る下降水流82と、を生じさせ、対流促進手段46cである陰極開口部26oによって容器4内の原料水43の対流を促進し、電極構造体2に原料水43を供給して、電気分解による電解水生成反応を進行させ、生成される電解水42の濃度を高くすることができる。ここで、陰極開口部26oの効果は次の通りである。本実施形態においては、容器4の内底面46に対向する、陰極部材22の下部と、容器4の内底面46との間に形成される開口部である陰極開口部26oが、対流促進手段46cとして設けられ、陰極開口部26oを通して開口部流入水流82oの形で、原料水43が電極構造体2の電極間隙23に流れ込むことができる。したがって、電気分解の際に電極構造体2の電極間隙23内に生じる上昇水流81に伴って、原料水43が陰極開口部26oを通して開口部流入水流82oの形で電極構造体2の電極間隙23に流れ込むから、原料水43が容器4の内底面46に向かって流れ下る下降水流82が促進されて、容器4内の原料水43の対流が強くなり、容器4内の原料水43が大規模に循環し、電極構造体2にはオゾン濃度(又は電解生成物濃度)の低い原料水43が豊富に供給される。そのため、電極構造体2内の原料水43のオゾン濃度(又は電解生成物濃度)が低くなり、(式2)で示
されるオゾンの生成反応(又は電気分解反応)が進行して効率的にオゾン水(又は電解水)42が生成され、生成されたオゾン濃度(又は電解生成物濃度)の高いオゾン水(又は電解水)42が上昇水流81及び下降水流82によって容器4全体に行き渡る。開口部流入水流82oを促進する観点から、陰極開口部26oの水平方向の長さ(幅)(陰極開口部が複数存在する場合には、各陰極開口部の水平方向の長さ(幅)の和)は、陰極部材22の内底面46における当該水平方向の長さ(幅)の1/2以上であることが好ましく、2/3以上であることがより好ましい。また、開口部流入水流82oを促進する観点および陰極接続突起26を含む陰極部材22の低コスト化の観点から、陰極開口部26oの鉛直方向の長さ(高さ)は、内底面46から測った陰極部材22の高さの1%以上20%以下であることが好ましく、2%以上~10%以下であることがより好ましい。
<開口部と凹盆部の併用形態> 図20は、凹盆部と開口部を併用する、本発明の一実施形態の説明図である。図(20A)は正面図であり、図(20B)は図(20A)のC-C’切断面における端面図である。電極構造体2の水平断面図は、図(19C)と同様であるので省略した。本実施形態においては、オゾン水生成噴霧器1の電極構造体2が、容器4の容器底板49の上側の表面、すなわち内底面46に設けられた、下方に凹んだ凹盆部48の凹盆部底面48aに立設されている。凹盆部48は凹盆部底面48aとその周囲を囲う凹盆部壁面48bとで構成され、原料水43が凹盆部48の凹盆部壁面48bを凹盆部底面48aに向かって流れ下ることができる。電極構造体2は、陽極部材21と、陽極部材21と電極間隙23を隔てて配置された陰極部材22を含む。陽極部材21は、容器底板49に貫通状態で取着された陽極接続突起25と、容器底板49に取着された陽極脚部25zを有する。陰極部材22は、容器底板49に貫通状態で取着された陰極接続突起26と、容器底板49に取着された1つ以上の陰極脚部26zを有する。陰極脚部26zを構成する物質は、陰極部材22の陰極脚部26z以外の部分を構成する物質と同じでも異なっていてもよい。凹盆部底面48aに対向する、陰極部材22の下部と、凹盆部底面48aとの間には、当該陰極部材22の下部、凹盆部底面48a、陰極接続突起26及び陰極脚部26zにより境界を画されて形成される開口部である、1つ以上の陰極開口部26oが形成されている。本実施形態においては、凹盆部48と陰極開口部26oが対流促進手段46cを構成する。本実施形態においても、図19に示した実施形態についてすでに説明した変形形態と同様な種々の変形形態、すなわち、電極構造体2の電極構造体支持枠28による支持、支持枠開口部28a、紐状絶縁スペーサ30、陰極部材22に設けた複数の孔27、及び、図12~図18を用いて以下で説明する種々の形態の電極構造体、が利用可能である。また、凹盆部48についても、図6及び図7を用いて説明した種々の形態の凹盆部が利用可能である。例えば、凹盆部壁面48bは鉛直面に限らず、斜面や、多段の階段面でもよい。さらに、本実施形態では、凹盆部底面48aに対向する、陽極部材21の下部と、凹盆部底面48aとの間には、陽極部材21の下部、凹盆部底面48a、陽極接続突起25及び陽極脚部25zにより境界を画されて形成される開口部である、陽極開口部26oが形成されているが、図19に示す実施形態における陽極部材21のように、陽極部材21の下部が凹盆部底面48aに当接するか、又は、陽極部材の下部が凹盆部底面48aに埋設されて、陽極開口部26oが存在しない変形形態も利用可能である。
<開口部と凹盆部の併用の効果> 本実施形態においては、凹盆部底面48aに立設された電極構造体2に電圧を印加して原料水43を電気分解することで電解水42が生成され、電気分解の際に電極構造体2内の原料水43に鉛直方向に作用する浮力によって生じる上昇水流81と、原料水43が容器4の内底面46に向かって流れ下る下降水流82と、を生じさせ、対流促進手段46cである凹盆部48及び陰極開口部26oによって容器4内の原料水43の対流を促進し、電極構造体2に原料水43を供給して、電気分解による電解水生成反応を進行させ、生成される電解水42の濃度を高くすることができる。ここで、凹盆部底面48aと陰極開口部26oを併用することの効果は次の通りである。本実施形態においては、凹盆部底面48aに対向する、陰極部材22の下部と、凹盆部底面48aとの間に形成される開口部である陰極開口部26o、及び、凹盆部48が、対流促進手段46cとして設けられ、陰極開口部26oを通して開口部流入水流82oの形で、原料水43が電極構造体2の電極間隙23に流れ込むことができる。したがって、電気分解の際に電極構造体2の電極間隙23内に生じる上昇水流81に伴って、原料水43が陰極開口部26oを通して電極構造体2の電極間隙23に流れ込むから、原料水43が凹盆部48の凹盆部壁面48bを凹盆部底面48aに向かって流れ下る凹盆部下降水流82a、及び、原料水43が容器4の内底面46に向かって流れ下る下降水流82が促進されて、容器4内の原料水43の対流が強くなり、容器4内の原料水43が大規模に循環し、電極構造体2にはオゾン濃度(又は電解生成物濃度)の低い原料水43が豊富に供給される。そのため、電極構造体2内の原料水43のオゾン濃度(又は電解生成物濃度)が低くなり、(式2)で示されるオゾンの生成反応又は電解水生成反応が進行して効率的にオゾン水(又は電解水)42が生成され、生成されたオゾン濃度(又は電解生成物濃度)の高いオゾン水(又は電解水)42が上昇水流81及び下降水流82によって容器4全体に行き渡る。
<オゾン水生成噴霧器の下部構造> 図(3A)は、本発明の一実施形態であるオゾン水生成噴霧器1の下部の構造、及び電源部6の構造を示す断面説明図である。電源部6は、電源コード61a、制御部63、操作ボタン64、表示ランプ65、電極部62を有する。電源部6の電源部凸部66の上面には、半径が異なる同心円状の3つの環状の電極であるプラス電極62a、マイナス電極62b及び制御電極63cからなる電極部62が設けられている。半径が異なる同心円状の3つの環状の電極から電極部62が構成されているから、オゾン水生成噴霧器1を電源部6に載置する際に、載置する向き(角度)を気にする必要がなく使用者にとって便利である。操作ボタン64からの操作入力に応じて、制御部63は、電極部62の各電極の電位と、各電極を通して流れる電流を制御する。
 容器4の容器側壁4aは、介装リング94を介して、回路室9の回路室側壁95に嵌合により装着されている。容器底板49に設けられた容器底板凸部49b、環状のプリント基板92、回路室9の回路室底板96に設けられた回路室底板凸部96aにはそれぞれ対応する位置に、ネジ穴49z、ネジ穴92z、ネジ穴96zが設けられており、これらのネジ穴に共通に挿入されるネジにより、容器底板凸部49bとプリント基板92と回路室底板凸部96aは螺着されている。
 容器4の容器底板49には容器底板開口部49aが設けられており、容器底板開口部49aを下方から覆うように、電極構造体保持板29が(図示していないネジにより)容器底板49に螺着により、若しくは接着等の他の方法により固定されている。電極構造体保持板29には電極構造体2が立設されている。電極構造体2は容器底板開口部49aから容器4の内部へ、すなわち上方へと延伸しており、その背丈は容器4の容器底板49の上面より高い。
 容器底板開口部49aの形状は平面図において略四角形である。容器底板49の上面は、容器底板開口部49aの縁部において斜面となっている。そのため、容器4の内底面46は、該斜面である凹盆部壁面48bと、凹盆部壁面48bに囲われる凹盆部底面48aとからなる、下に凹んだ凹盆部48を有し、電極構造体2は凹盆部底面48aに立設されている。図(3A)に示す実施形態においては、凹盆部底面48aは、電極構造体保持板29の上面の一部により構成される。この実施形態の変形形態として、例えば図(5A)に示すように、電極構造体保持板と容器底板を一体に形成する場合には、容器底板の上面に直接、凹盆部48が設けられる。
<電極構造体の固定> 電極構造体保持板29若しくは容器底板49に電極構造体2を固定するには、電極構造体保持板29若しくは容器底板49にスリットを設け、該スリットに電極構造体2を構成する陽極部材21に延設された陽極接続突起25と(図3を参照)、陰極部材22に延設された陰極接続突起26と、を挿入して回路室9まで到達させ、陽極接続突起25と陰極接続突起26に回路室9の側から導線を接続し、該スリットに耐腐食性の樹脂を流し込んで硬化させることにより、容器4内と回路室9との間の水密を保つように、電極構造体2を電極構造体保持板29若しくは容器底板49に固定することができる。
 容器側壁4a、容器底板49、電極構造体保持板29、及び電極構造体支持枠28を構成する素材は特に限定されないが、例えばアクリル樹脂やポリカーボネート樹脂を好適に使用することができる。ヘッド部カバー51a、レバー54、電源部6、回路室側壁95、回路室底板96を構成する素材は特に限定されないが、例えばABS樹脂やポリカーボネート樹脂を好適に使用することができる。
<回路室と接続端子> 回路室9の回路室底板96には、載置時の電源部6の電極部62に対応する位置に、接続端子部91が設けられている。接続端子部91は、プラス端子91a、マイナス端子91b、制御端子91cの3本の針状端子からなり、いずれの針状端子にもスプリング機構(図示せず)が設けられていて、載置時にはそれぞれの針状端子が、電極部62の対応する環状電極であるプラス電極62a、マイナス電極62b、又は制御電極62cと、スプリングの復元力により確実な電気的接触を行う。接続端子部91からプリント基板92を介して、直流電圧及び直流電流が電極構造体2の陽極接続突起25及び陰極接続突起26に供給される。
<生成後のオゾン濃度の変化> 図8は、後述する本発明の実施例において、電気分解によりオゾン水を生成した後のオゾン水のオゾン濃度の時間変化を示すグラフ図である。曲線C1は115mLの原料水を4分間だけ電気分解してオゾン水を生成した場合(実施例1)のオゾン濃度を示し、曲線C2は80mLの原料水を2分間だけ電気分解してオゾン水を生成した場合(実施例2)のオゾン濃度を示す。横軸には電気分解終了からの経過時間をとっている。電気分解の終了直後はオゾン水のオゾン濃度が均一でなく、測定濃度が安定しないため、経過時間が4分以降のデータを示している。いずれの場合にもオゾン濃度は経過時間と共に減少する。ケース1の場合には20分後のオゾン濃度が0.5mg/L以上であり、ケース2の場合は10分後のオゾン濃度が0.5mg/L以上であった。ケース1は、図(3C)において第1水位線43bまで原料水43を容器4に入れた場合に対応し、ケース2は、第2水位線43cまで入れた場合に対応する。
<オゾン水生成中の状態表示> 本発明の一実施形態では、電気分解によるオゾン水の生成中に、主ランプ92bと、電気分解に供する原料水の体積に応じて緑色LED灯からなる第1生成ランプ65b又は第2生成ランプ65cのいずれかを点灯させて現在のオゾン水生成噴霧装置7の状態を使用者に表示する。主ランプ92bは、回路室9のプリント基板92の上面に設けられた青色LED灯であり、半透明な容器底板49を透して容器4内の原料水を照らす(図3A参照)。オゾン水の生成が完了すれば、主ランプ92bと、第1生成ランプ65bまたは第2生成ランプ65cは消灯される。
<オゾン水の効力の表示> 本発明の一実施形態では、電気分解によるオゾン水の生成が完了すると、青色LED灯である主ランプ92bが消灯して、替わりに緑色LED灯である副ランプ92cが点灯する。副ランプ92cは、回路室9のプリント基板92の上面に設けられた緑色LED灯であり、半透明な容器底板49を透して容器4内の原料水を照らす(図3A参照)。副ランプ92cは、オゾン水の生成完了後、電気分解に供された原料水の体積に応じて所定の時間だけ点灯したのち、消灯される。原料水43を容器4の第1水位線43bまで入れて、第1生成ボタン64bを押圧することによりオゾン水を生成した場合には、副ランプ92cは第1有効時間(例えば20分間)だけ点灯し、原料水43を容器4の第2水位線43cまで入れて、第2生成ボタン64cを押圧することによりオゾン水を生成した場合には、副ランプ92cは第2有効時間(例えば10分間)だけ点灯する。第1有効時間及び第2有効時間は、噴霧されるオゾン水の除菌・消臭効果を考慮して決める。副ランプ92cが点灯している間に、オゾン水生成噴霧器1を手で把持し、電源部6から持ち上げて、レバー54を指で回動させることによりオゾン水を噴霧すれば、噴霧時の容器4内のオゾン水のオゾン濃度は0.5mLを下回ることはなく、一定の除菌・消臭効果が期待できる。
<制御部の構成> 電源部6は制御部63を有する。制御部63は、操作ボタン64から
の操作入力に応じて、電極部62の各電極の電位と、各電極を通して流れる電流を制御するとともに、表示ランプ65の各ランプの点灯と消灯を制御し、更に、制御電極62cを通して容器4の回路室9のプリント基板92に設けられた副制御部92aに制御信号を送る。副制御部92aは、制御部63からの制御信号を受けて、電極構造体2の陽極接続突起25及び陰極接続突起26の電位と、各接続突起を通して流れる電流を制御するとともに、主ランプ92b及び副ランプ93cの点灯と消灯を制御する。制御部63は、CPUとタイマと揮発性のメモリ及び記憶手段を有し、副制御部92aも、CPUと揮発性のメモリ及び記憶手段を有する。
 図9は、本発明の一実施形態のオゾン水生成噴霧装置7において、制御部63が行う制御の主制御フローを示すフロー図である。オゾン水生成噴霧装置7の電源コードがコンセントに差し込まれると、ステップS1で主制御フローがスタートする。次いで、ステップS2では、電源に接続されているかどうかがチェックされ、接続されていればステップS3に進み、接続されていなければステップS2に戻る。ステップS3では、電源ランプを所定時間(例えば3秒間)だけ点灯し、電源に接続されたことを使用者に表示する。次いでステップS4では、オゾン水生成噴霧器1が電源部6に着座しているかどうかがチェックされ、着座していればステップS5に進み、着座していなければステップS4に戻る。次いでステップS5では、状態を記憶する変数「state」に初期値0が代入される。次いでステップS6,S7,S8では、第1生成ボタン64b、第2生成ボタン64c、電源ボタン64aのいずれかが押圧されたか否かがチェックされ、第1生成ボタン64bが押圧されたならばステップS9に進み、第2生成ボタン64cが押圧されたならばステップS10に進み、電源ボタン64aが押圧されたならばステップS11に進み、いずれのボタンも押圧されなかったならばステップS4に戻る。ステップS9では、変数「state」に値1を代入し、第1生成ランプ65bを点灯状態にし、変数「tE」に第1生成処理時間(例えば240秒)を代入して、ステップS12に進む。ステップS10では、変数「state」に値2を代入し、第2生成ランプ65cを点灯状態にし、変数「tE」に第2生成処理時間(例えば120秒)を代入して、ステップS12に進む。ステップS11では、電源ランプ65aを所定時間(例えば3秒間)だけ点灯し、終了処理を行うステップS14に進む。
 ステップS12では、後述するオゾン水の生成処理を行う。次いでステップS13では、後述するオゾン水の生成後処理を行い、ステップS14に進む。ステップS14では、後述する終了処理を行い、ステップS15に進む。ステップS15では、主制御フローが終了する。
 図10を参照して、ステップS12の生成処理のフローについて説明する。生成処理では、所定の時間だけ原料水を電気分解して、オゾン水を生成する。その際、使用者に現在の状態をわかりやすく表示することが望ましい。ステップS12sでは、生成処理がスタートする。次いでステップS20では、タイマの時刻tを初期値ゼロに設定し(t←0)、タイマをスタートする。次いでステップS21では、異常の有無をチェックする。異常とは、電極部2の電流値の異常、温度センサが検知する温度の異常、オゾン水生成噴霧器1が電源部6に載置されていないことの検知等を意味する。異常があれば、後述するステップS25のエラー終了処理へと進み、更にステップS15へと進んで主制御フローを終了する。ここで、エラー終了処理は、表示ランプ65を所定時間だけ点滅状態にしたのち、すべてのランプを消灯し、接続端子部91のすべての端子をアースする処理である。異常がなければ、ステップS22へと進む。ステップS22では、電源ボタンが押圧されたか否かが判定され、YESであればステップS26へ進み、NOであればステップS23へと進む。ステップS26では電源ランプ65aを所定の時間(例えば3秒間)だけ点灯して、ステップS27の終了処理へと進み、更にステップS15へと進んで主制御フローを終了する。ここで、終了処理は、すべてのランプを消灯し、接続端子部91のすべての端子をアースする処理である。ステップS23では、電極構造体2を通電状態にするとともに、主ランプ92bを点灯状態とし、ステップS24へと進む。なお、電極構造体2を通電状態にするためには、制御部63は制御電極62cを介して副制御部92aに制御信号を送り、副制御部92cは該制御信号に基づいて、電極構造体2を通電状態にする。また、主ランプ92bを点灯状態にするためには、制御部63は制御電極62cを介して副制御部92aに制御信号を送り、副制御部92aは該制御信号に基づいて、主ランプ92bを点灯状態にする。副ランプ92cも同様である。ステップS24では、タイマの時刻tが変数「tE」より大きいか否かが判定される。YESであれば、ステップS12eに進んで生成処理が終了し、主制御フローに復帰する。NOであれば、ステップS21に戻る。
 図11を参照して、ステップS13の生成後処理のフローについて説明する。生成後処理では、電気分解後に、生成されたオゾン水の現在のオゾン濃度が除菌・消臭に有効な濃度であるのか否かを、使用者にわかりやすく表示することが望ましい。ステップS13sでは、生成後処理がスタートする。次いでステップS30では、上記と同様に制御部63と副制御部92aの連携により、電極構造体2を非通電状態にし、主ランプ92bを消灯状態とする。次いでステップS31,S32では、変数「state」の値が、1、2、1でも2でもない、のいずれであるかチェックされ、もしstate=1ならばステップS33に進み、もしstate=2ならばステップS34に進み、もし1でも2でもなければ、これは異常であるから、ステップS25に進んで、前記エラー終了処理を行い、更にステップS15へ進んで、主制御フローを終了する。ステップS33では、第1生成ランプ65bを消灯状態にし、変数「tG」に第1有効時間(例えば20分)を代入してステップS35へと進む。ステップS34では、第2生成ランプ65cを消灯状態にし、変数「tG」に第2有効時間(例えば10分)を代入してステップS35へと進む。ステップS35では、タイマの時刻tに初期値0を代入し(t←0)、タイマをスタートし、副ランプ92cを点灯状態にし、ステップS36に進む。ステップS36では、電源ボタン64aが押圧されたか否かが判定される。YESであれば、ステップS39に進み、電源ランプを所定時間(例えば3秒間)だけ点灯した後に、ステップS13eへと進み、生成後処理を終了して主制御フローへと復帰する。NOであればステップS37へと進む。ステップS37では、タイマの時刻tが変数「tG」より大きいか否かが判定され、YESであればステップS38へと進み、NOであればステップS36へと戻る。ステップS38では、副ランプ92cを消灯状態とした後に、ステップS13eへと進む。ステップS13eでは、生成後処理を終了して主制御フローへと復帰する。
<電極構造体の構成> 次に、本発明の実施形態に係る電極構造体の種々の構成を説明する。図12は、本発明の一実施形態に係る電極構造体の分解斜視図(12A)及び斜視図(12B)であり、図13は、図12に示した電極構造体の上面図(13A)及び側面図(13B)である。本実施形態において、電極構造体2は、矩形板状の陽極部材21と、陽極部材21に電極間隙23を隔てて対面する断面形状がU字型若しくはコの字型の陰極部材22と、陽極部材21と陰極部材22とで挟持された紐状絶縁スペーサ30と、電極間隙23のうち、紐状絶縁スペーサ30以外の空間部分である間隙流路24と、で構成される。本実施形態に於いては、紐状絶縁スペーサ30は、陽極部材21を巻回するOリング30aである。Оリング30aは、そのいずれの部分も、容器4を載置して電気分解を行う際に、鉛直方向(鉛直方向を示す矢印45が指し示す鉛直上方の向きを参照)と交差する方向に配向されている。特に、紐状絶縁スペーサ30の配向方向31(Oリング30aの最大傾斜直径の方向)と鉛直方向を示す矢印45とがなす角θは、0°ではなく、鋭角を成している。
 図12において、陽極部材21を巻回するOリング30aの個数は2個に限られず、1個でもよく、3個以上でもよい。また、陽極部材21を巻回する紐状絶縁スペーサ30は、Oリング30aでなくてもよく、螺旋状に陽極部材21を巻回する紐30bでもよい。また、紐状絶縁スペーサ30は、必ずしも陽極部材21の全周を隙間なく巻回する必要はなく、本実施形態の変形形態においては、電極間隙23内の原料水43の移動性を確保する観点から、分離した複数の円弧から構成されていてもよい。また、紐状絶縁スペーサ30は、必ずしも陽極部材21の全周に渡って同じ太さである必要はなく、本実施形態の別の変形形態においては、電極間隙23内の陰極部材22の近傍の原料水43の移動性を確保する観点から、場所によって太さが異なる紐状絶縁材料から構成されていてもよい。
 本発明の紐状絶縁スペーサ30の材質としては、特に限定されるものではないが、フッ素樹脂、軟質フッ素樹脂、バイトンゴム、シリコンゴム、塩ビゴム、エチレンプロピレンゴム等が利用可能であり、耐食性の観点から、フッ素樹脂や軟質フッ素樹脂等が好ましい。
 図12において、陰極部材22には、複数の孔27が設けられている。陰極部材22に複数の孔を設けることにより、電極間隙23と容器4内の原料水43の流通を確保し、オゾンの生成反応(又は電気分解反応)を加速し、オゾン水(又は電解水)42を効率的に生成することができる。図12において、陰極部材22は、断面形状がU字型若しくはコの字型であり、その側面に開口部が1つある。なお、本発明では、図12において陰極部材22に孔を設けない構成も可能である。この点は、図1~7、図13~17及び図19、20に示す実施形態についても同様である。
 図13において、Oリング30aで構成される紐状絶縁スペーサ30は弾性素材からなることが好ましい。その場合、電極構造体2は、紐状絶縁スペーサ30により巻回された陽極部材21と、陰極部材22との挿嵌により構成される。本形態によれば、接着剤をもちいることなく、単なる挿嵌により電極構造体2を構成でき、その構成が紐状絶縁スペーサ30の弾性により維持されるので、構造がシンプルで製造が容易な電極構造体2を有するオゾン水生成噴霧器1を提供できる。
 本発明において、陽極部材21を構成する素材は、導電性を有する限り特に限定されるものではないが、耐食性、及びオゾン生成反応(又は電解水生成反応)の触媒作用の観点から少なくともその表面は白金、イリジウム等の貴金属及びそれらの酸化物、又は、ニオブ酸化物、又は、タンタル酸化物、又は、カーボンを含むことが好ましい。陽極部材21には、陽極接続突起25が延設されている。
 本発明において、陰極部材22を構成する素材は、導電性を有する限り特に限定されるものではないが、発生する水素に対して脆化しないという観点から、白金族元素、ニッケル、ステンレス、チタン、ジルコニウム、金、銀、カーボン等が好ましい。陰極部材22には、陰極接続突起26が延設されている。
 図14は、本発明の別の一実施形態における電極構造体2の分解斜視図(14A)、斜視図(14B)、及び、その一変形形態の斜視図(14C)である。本実施形態の構成は、図12に示す実施形態と多くの点で共通であるから、相違点を中心に説明する。図(14A)及び図(14B)に示す実施形態においては、陽極部材21は円柱形状であり、陰極部材22は円筒形状である。Oリング30aで構成される紐状絶縁スペーサ30が陽極部材21の円柱の側面を巻回している。紐状絶縁スペーサ30は、陽極部材21と陰極部材22の間に挟持されており、その配向方向は鉛直方向と交差する方向である。図(14C)は、本実施形態の変形形態を示す。本変形形態においては、陽極部材21を構成する貴金属等の使用量を節減する観点から、陽極部材21は円筒形状をなしている。なお、陽極部材21を巻回するOリング30aの個数は2個に限られず、1個でもよく、3個以上でもよい。また、陽極部材21を巻回する紐状絶縁スペーサ30は、Oリング30aでなくてもよく、螺旋状に陽極部材21を巻回する紐30bでもよい。また、紐状絶縁スペーサ30は、必ずしも陽極部材21の全周を隙間なく巻回する必要はなく、本実施形態の変形形態においては、電極間隙23内の原料水43の移動性を確保する観点から、分離した複数の円弧から構成されていてもよい。また、紐状絶縁スペーサ30は、必ずしも陽極部材21の全周に渡って同じ太さである必要はなく、本実施形態の別の変形形態においては、電極間隙23内の陰極部材22の近傍の原料水43の移動性を確保する観点から、場所によって太さが異なる紐状絶縁材料から構成されていてもよい。
 図15は、本発明の更に別の一実施形態に係る電極構造体2の分解斜視図(15A)及び斜視図(15B)である。本実施形態の構成は、既述の実施形態と多くの点で共通であるから、相違点を中心に説明する。本実施形態は、図12に示した実施形態と陰極部材22の構造のみが異なる。本実施形態において、陰極部材22は2枚の分離した板からなり、これら2枚の板が、紐状絶縁スペーサ30により巻回された陽極部材21を挟持することにより電極構造体2が構成される。電極構造体2を構成する各部材は、接着、融着、締着等により互いに固定される。図15において、陰極部材22は2枚の分離した板からなり、その側面に開口部が2つあるから、電極間隙23に外部から出入りする原料水43の移動の自由度が大きい。そのため、電極構造体2の外部から原料水43を電極間隙23内に効率的に導くことができ、又、生成したオゾン水(又は電解水)42を電極間隙23内から電極構造体2の外部へと効率的に送り出すことができるので、オゾン水を効率的に生成することができる。
 図16は、本発明の更に別の一実施形態に係る電極構造体2の斜視図である。本実施形態の構成は、既述の実施形態と多くの点で共通であるから、相違点を中心に説明する。本実施形態は、図12に示す実施形態の変形形態である。図16において、電極構造体2は、nを2以上の整数として、紐状絶縁スペーサ30により巻回されたn枚の板状の陽極部材21が、n個の凹部をもつ板状の陰極部材22の凹部にそれぞれ挿嵌されて構成されている。nが2の場合には、陰極部材の断面形状は「mの字型」である。本実施形態においては、オゾン生成反応(又は電解水生成反応)の起きる陽極部材21の表面積が大きくなるので、オゾン水(又は電解水)を効率的に生成することができる。
 図17は、本発明の更に別の一実施形態に係る電極構造体2の斜視図である。本実施形態の構成は、既述の実施形態と多くの点で共通であるから、相違点を中心に説明する。本実施形態は、図15に示す実施形態の変形形態である。図17において、電極構造体2は、nを2以上の整数として、紐状絶縁スペーサ30により巻回されたn枚の板状の陽極部材21が、(n+1)枚の板状の陰極部材22の間に挿嵌され、接着、融着、締着等により各部材が互いに固定されて構成されている。本実施形態においては、オゾン生成反応(又は電解水生成反応)の起きる陽極部材21の表面積が大きくなるので、オゾン水(又は電解水)を効率的に生成することができる。
 図18は、本発明の実施形態において、板状の陽極部材21に紐状絶縁スペーサ30を巻回する種々の仕方を示す説明図である。
 図(18A)に示す陽極部材21は、陽極接続突起25を除く部分が長方形形状で、2輪のOリング30aからなる紐状絶縁スペーサ30が巻回され、鉛直方向を示す矢印45と紐状絶縁スペーサ30の配向方向31とのなす角度θは、θ=60°である。
 図(18C)に示す陽極部材21は、図(18A)と同じ陽極部材に、2輪のOリング30aからなる紐状絶縁スペーサ30が巻回されて水平方向に配向され、前記角度θがθ=90°である。
 図(18D)に示す陽極部材21は、図(18A)と同じ陽極部材に、2輪のOリング30aからなる紐状絶縁スペーサ30が巻回されて鉛直方向に配向され、前記角度θがθ=0°である。
 図(18B)に示す陽極部材21は、図(18A)と同じ陽極部材に、紐からなる紐状絶縁スペーサ30が螺旋状に巻回されて、鉛直方向と60°の角度をなす方向に配向され、前記角度θがθ=60°である。
 図5に示すように、本発明においては、容器4の内底面46に凹盆部48を設け、凹盆部底面48aに電極構造体2を立設することにより、容器4内の原料水の対流を促し、凹盆部48を設けない従来技術の場合と比べて、生成するオゾン水の濃度を高くすることができる。他の条件を一定に保ちつつ、内底面46に凹盆部48がある場合とない場合とで、生成するオゾン水の濃度を比較する実験を行った。また、図19及び図20に示した陰極開口部26oについても、それがある場合とない場合とで、生成するオゾン水の濃度を比較する実験を行った。
<実施例:凹盆部を設けた場合>
 図(18C)に示すように、陽極部材21の陽極接続突起25を除く部分が長方形形状で、長方形の2辺の長さが14mmと22mmであり、厚みが1.0mmの白金製の陽極部材21に、太さ2.0mmの2輪のOリング30aからなる紐状絶縁スペーサ30を巻回して、鉛直方向と90°の角度をなす方向に配向させた。この、紐状絶縁スペーサ30を巻回した陽極部材21を、図12に示す断面形状がU字型をなす陰極部材22に挿嵌して電極構造体2を構成した。厚み0.6mmのチタン製の陰極部材22は、陰極接続突起26を除いて、正面視において長方形形状であり、長方形の2辺の長さは15mmと23mmである。また、陰極部材22の側面視における幅は5mmである。陰極部材22は多数の孔27を有する。この電極構成体2を、図1に示す透明な容器4の容器底板49の平坦な内底面46に設けた凹盆部48の凹盆部底面48aの中央に立設した。容器4は、内直径50mm、高さ80mmの円筒形状であり、満杯時の容積は1.6×102mLである。凹盆部48は平面視において長方形状であり、長方形状の凹盆部底面48aとその周囲を囲う鉛直な凹盆部壁面48bからなり、長方形の2辺の長さは19mmと9mmである。また、鉛直な凹盆部壁面48bの高さは5mmである。容器4内に115mL(実施例1:第1水位線43bに対応)又は80mL(実施例2:第2水位線43cに対応)の原料水43を投入して電極構造体2を水面下に浸漬させたのち、水温を調整して、水温が20℃になった状況が確認できたら、陽極部材21と陰極部材22の間に12Vの定電圧を240秒(実施例1)又は120秒(実施例2)の間、印加して電気分解を行った。その間、電流値は約1.0Aであった。水温を20℃に保ちつつ、電気分解の終了から5分経過後ただちに、容器4内の原料水43(及びオゾン水(又は電解水)42)を洗浄されたビーカーに移し、パックテスト(協立理化学研究所製、オゾンWAK-O3)を用いてオゾン濃度を測定した。実験を5回繰り返して、5回分の測定の平均値をオゾン濃度の測定値とした。オゾン濃度の測定値は1.8mg/L(実施例1)及び1.1mg/L(実施例2)であった。なお、原料水43としては、硬度及びTDS値が全国水道水の平均値に近く、かつ、ほぼ一定であることが確認できた市販のミネラルウォーター(ボルヴィック、キリン株式会社)を用いた。
<比較例:凹盆部を設けない場合>
 実施例と同様に電極構造体2を構成し、図1に示す透明な容器4の容器底板49の平坦な内底面46の中央に立設した。内底面46に凹盆部は設けなかった。他の構成及び条件は実施例1及び2と全く同じに揃えて、電気分解によるオゾン水の生成とオゾン濃度の測定を行った。容器4内に115mL(比較例1:第1水位線43bに対応)又は80mL(比較例2:第2水位線43cに対応)の原料水43を投入して、同様に240秒(比較例1)又は120秒(比較例2)の間、電気分解を行い、電気分解終了の5分後にオゾン濃度を測定した。電気分解中は12Vの定電圧を加え、電流値は約1.0Aであった。5回分の測定の平均値をオゾン濃度の測定値とした。オゾン濃度の測定値は0.6mg/L(比較例1)及び0.4mg/L(比較例2)であった。
 実施例1、2において測定されたオゾン濃度は、比較例1、2のそれぞれ約3倍であった。電気分解中に、容器4内の原料水43に生じる対流を目視によって確認すると、比較例1で生じる対流は実施例1に比べて明らかに弱く、かつ電極構造体2の付近に局在して小規模であった。同様に、比較例2で生じる対流も実施例2に比べて明らかに弱く、かつ電極構造体2の付近に局在して小規模であった。容器4の内底面46に凹盆部48を設け、凹盆部底面48aに電極構造体2を立設することで、容器4内の原料水の対流が促進され、電気分解により効率的にオゾンが生成され、生成されるオゾン水のオゾン濃度を約3倍に高めることが可能であることがわかった。
<実施例:凹盆部を設けずに陰極開口部を設けた場合>
 図19に示す形態に電極構造体2を構成し、図1に示す透明な容器4の容器底板49の平坦な内底面46の中央に立設した。内底面46に凹盆部は設けなかった。陰極開口部26oの鉛直方向の長さ(高さ)は3mmとした。他の条件及び構成は実施例1及び2と全く同じに揃えて、電気分解によるオゾン水の生成とオゾン濃度の測定を行った。容器4内に115mL(実施例3:第1水位線43bに対応)又は80mL(実施例4:第2水位線43cに対応)の原料水43を投入して、同様に240秒(実施例3)又は120秒(実施例4)の間、電気分解を行い、電気分解終了の5分後にオゾン濃度を測定した。電気分解中は12Vの定電圧を加え、電流値は約1.0Aであった。5回分の測定の平均値をオゾン濃度の測定値とした。オゾン濃度の測定値は1.8mg/L(実施例3)及び1.2mg/L(実施例4)であった。
<実施例:凹盆部と陰極開口部の両方を設けた場合>
 図20に示す形態に電極構造体2を構成し、図1に示す透明な容器4の容器底板49の平坦な内底面46に設けた凹盆部48の凹盆部底面48aの中央に立設した。陰極開口部26o及び陽極開口部25oの鉛直方向の長さ(高さ)はいずれも3mmとした。他の条件は実施例1及び2と全く同じに揃えて、電気分解によるオゾン水の生成とオゾン濃度の測定を行った。容器4内に115mL(実施例5:第1水位線43bに対応)又は80mL(実施例6:第2水位線43cに対応)の原料水43を投入して、同様に240秒(実施例5)又は120秒(実施例6)の間、電気分解を行い、電気分解終了の5分後にオゾン濃度を測定した。電気分解中は12Vの定電圧を加え、電流値は約1.0Aであった。5回分の測定の平均値をオゾン濃度の測定値とした。オゾン濃度の測定値は2.3mg/L(実施例5)及び1.5mg/L(実施例6)であった。
 実施例3、4において測定されたオゾン濃度は、比較例1、2のそれぞれ約3倍であった。実施例5、6において測定されたオゾン濃度は、比較例1、2のそれぞれ約4倍であった。電気分解中に、容器4内の原料水43に生じる対流を目視によって確認すると、比較例1で生じる対流は実施例3、5に比べて明らかに弱く、かつ電極構造体2の付近に局在して小規模であった。同様に、比較例2で生じる対流も実施例4、6に比べて明らかに弱く、かつ電極構造体2の付近に局在して小規模であった。容器4の内底面46に対向する、陰極部材22の下部と、容器4の内底面46との間に陰極開口部26oを形成することにより、又は、それに加えて容器4の内底面46に凹盆部48を設け、凹盆部底面48aに電極構造体2を立設することにより、容器4内の原料水の対流が促進され、電気分解により効率的にオゾンが生成され、生成されるオゾン水のオゾン濃度を約3~4倍に高めることが可能であることがわかった。
<安全性の検証> 実施例1において生成した温度20℃のオゾン水を、室温25℃の1m3の空間内で噴霧機構5を手で把持してレバー54を回動させることにより10回噴霧した後の空間オゾン濃度を計測した。5回実験してその平均値を求め、下表に示す結果を得た。噴霧1回当たりのオゾン水の吐出量は約0.4mLである。
   オゾン水の生成完了からの時間    空間オゾン濃度(ppm)
   (噴霧前)             0.00250
   0分後(生成完了直後)       0.00625
   1分後               0.00875
   15分後              0.00500
   30分後              0.00250
 高濃度のオゾンは人体に有害であるが、本発明のオゾン水生成噴霧器においては、ミスト状にして噴霧することでオゾン濃度は低くなり、空間オゾン濃度は0.01ppm以下の安全値となることがわかった。
<除菌効果の検証>
 実施例1において生成した温度20℃のオゾン水を、生成完了から1分後にプレパラート上の対象菌に滴下し、15秒後の生菌数を光学顕微鏡で調べた。その結果、対象菌の99%が除菌されていることが確認できた。対象菌は、サンプル家庭の台所やトイレから採取した。
<消臭効果の検証>
 実施例1において生成した温度20℃のオゾン水を、生成完了から5分後に、室温20℃のもとで気体状の悪臭物質と空気を封入した体積10Lの袋に、噴霧機構5を手で把持してレバー54を回動させることにより10回噴霧し、噴霧前及び10分後の濃度をガスクロマトグラフで計測して消臭率を計算した。5回実験してその平均値を求め、下表に示す結果を得た。なお、イソ吉草酸は体臭の原因物質の1つである。
   悪臭物質           10分後の消臭率
   イソ吉草酸          84.6%
   酢酸             80.0%
   アンモニア          45.0%
 イソ吉草酸、酢酸、及びアンモニアは、トイレや靴箱の臭い、ペット臭、体臭、タバコや車の臭い、衣服、家具、ソファやカーテンなどの悪臭の原因物質である。本発明のオゾン水生成噴霧器により生成されたオゾン水(又は電解水)を噴霧することで、これらの悪臭に対して、消臭効果が発揮されることがわかった。
 本発明は、上記の実施形態や実施例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々の組合せ、変形例、設計変更などをその技術的範囲内に包含するものであることは云うまでもない。例えば、図12~図18に示す電極構造体2はいずれも、陽極部材21を内側電極とし、陰極部材22を外側電極として構成されているが、陽極部材を外側電極とし、陰極部材を内側電極とする構成や、当該構成において外部電極となる陽極部材の下部と容器の内底面との間に陽極開口部を設ける構成もまた、本発明の課題を解決する目的で利用可能である。
 本発明は、容器の内底面付近に対流促進手段を設けること、すなわち、容器の内底面に凹盆部を設けて凹盆部底面に電極構造体を立設すること、又は、電極構造体の陰極部材の下部と容器の内底面の間に陰極開口部を設けることにより、容器内の原料水に生じる対流を制御し、該対流を促進してオゾンの生成反応又は電解水生成反応を促し、家庭で利用できる安価かつ簡易で高効率なオゾン水の生成方法、生成噴霧器、及び生成噴霧装置を提供するものである。容器の内底面付近の原料水に生じる対流を制御することで、オゾン水の生成効率を向上させるという技術的思想は従来技術には見られない新規なものである。本発明に係るオゾン水の生成方法、生成噴霧器及び生成噴霧装置は、家庭において個人が手軽に利用可能であり、電器製品の製造及び販売に係る業界において広く利用できるものである。
1     電解水生成噴霧器     2     電極構造体
4     容器           5     噴霧機構
6     電源部          7     電解水生成噴霧装置
9     回路室          21    陽極部材
22    陰極部材         23    電極間隙
24    間隙流路         25    陽極接続突起
25z   陽極脚部         26    陰極接続突起
26o   陰極開口部        26z   陰極脚部
27    孔            28    電極構造体支持枠
28a   支持枠開口部       28b   支持枠上部部材
29    電極構造体保持板     30    紐状絶縁スペーサ
30a   Оリング         30b   紐
31    (紐状絶縁スペーサの)配向方向を示す矢印
4a    容器側壁         4x    注水口
42    オゾン水(又は電解水)  42a   水面
43    原料水          43b   第1水位線
43c   第2水位線        45    鉛直方向を示す矢印
46    内底面          46c   対流促進手段
46g   溝
47    内側面          48    凹盆部
48a   凹盆部底面        48a2  第2の凹盆部底面
48b   凹盆部壁面        49b2  第2の凹盆部壁面
49    容器底板         49a   容器底板開口部
49b   容器底板凸部       49z   ネジ穴
5x    スプレーキャップ     5y    矢印
5z    回転矢印         51    ヘッド部
51a   ヘッド部カバー      52    チューブ
53    ノズル          54    レバー
54a   レバ―ロック       61    AC-DCアダプタ
61a   電源コード
62    電極部          62a   プラス電極
62b   マイナス電極       62c   制御電極
63    制御部
64    操作ボタン        64a   電源ボタン
64b   第1生成ボタン      64c   第2生成ボタン
65    表示ランプ        65a   電源ランプ
65b   第1生成ランプ      65c   第2生成ランプ
66    電源部凸部        81    上昇水流
82    下降水流         82a   凹盆部下降水流
82b   底部水流         82o   開口部流入水流
83i   入孔水流         83o   出孔水流
91    接続端子部        91a   プラス端子
91b   マイナス端子       91c   制御端子
92    プリント基板       92a   副制御部
92b   主ランプ         92c   副ランプ
92z   ネジ穴          94    介装リング
95    回路室側壁        96    回路室底板
96a   回路室底板凸部      96z   ネジ穴
C1,C2 曲線

Claims (9)

  1.  原料水を貯留するための容器と、前記容器内の原料水から生成された電解水を噴霧するための噴霧機構と、を少なくとも備える電解水生成噴霧器における電解水生成方法であり、
     前記容器の内底面に電極構造体を立設し、
     前記容器の内底面より上方に注水口を設け、当該注水口に前記噴霧機構を取着し、
     前記容器の内底面、又は、前記容器の内底面に対向する、前記電極構造体の下部に、前記容器内の前記原料水の対流を促進するための対流促進手段を設け、
     前記電極構造体に電圧を印加して前記原料水を電気分解することで電解水を生成し、
     電気分解の際に前記電極構造体内の前記原料水に鉛直方向に作用する浮力によって生じる上昇水流と、前記原料水が前記容器の内底面に向かって流れ下る下降水流と、を生じさせ、前記対流促進手段によって前記容器内の前記原料水の対流を促進し、前記電極構造体に前記原料水を供給して、電気分解による電解水生成反応を進行させ、生成される電解水の濃度を高くすることを特徴とする電解水生成方法。
  2.  前記対流促進手段は、前記容器の内底面に設けられた下方に凹んだ凹盆部であり、該凹盆部は凹盆部底面を有し、
     前記容器内の前記凹盆部底面に前記電極構造体を立設し、
     前記原料水が前記凹盆部を前記凹盆部底面に向かって流れ下ることで、前記下降水流を促進する請求項1に記載の電解水生成方法。
  3.  前記電極構造体は、陽極部材と、該陽極部材と電極間隙を隔てて配置された陰極部材を含み、
     前記対流促進手段は、前記容器の内底面に対向する、前記陰極部材の下部と、前記容器の内底面との間に形成される開口部であり、
     前記開口部を通して、前記原料水が前記電極間隙に流れ込むことで、前記下降水流を促進する請求項1に記載の電解水生成方法。
  4.  前記電極構造体は、陽極部材と、該陽極部材と電極間隙を隔てて配置された陰極部材と、を含み、該陰極部材に複数の孔を設け、前記孔を通して、前記原料水及び/又は前記電解水が前記電極間隙に出入する請求項1~3のいずれかに記載の電解水生成方法。
  5.  原料水を貯留するための容器と、
     前記容器内の原料水を電気分解して電解水を生成するための電極構造体と、
     前記電解水を噴霧するための噴霧機構と、
    を備える電解水生成噴霧器であり、
     前記電極構造体は、前記容器の内底面に立設され、
     前記容器の内底面、又は、前記容器の内底面に対向する、前記電極構造体の下部に、前記容器内の前記原料水の対流を促進するための対流促進手段が設けられ、
     前記容器の内底面より上方に注水口が設けられ、当該注水口に前記噴霧機構が取着されていることを特徴とする電解水生成噴霧器。
  6.  前記対流促進手段は、前記容器の内底面に設けられた下方に凹んだ凹盆部であり、該凹盆部は凹盆部底面を有し、
     前記容器内の前記凹盆部底面に前記電極構造体が立設されている請求項5に記載の電解水生成噴霧器。
  7.  前記電極構造体は、陽極部材と、該陽極部材と電極間隙を隔てて配置された陰極部材を含み、
     前記対流促進手段は、前記容器の内底面に対向する、前記陰極部材の下部と、前記容器の内底面との間に形成される開口部であり、
     前記開口部を通して、前記原料水が前記電極間隙に流れ込む請求項5に記載の電解水生成噴霧器。
  8.  前記電極構造体は、陽極部材と、該陽極部材と電極間隙を隔てて配置された陰極部材と、を含み、該陰極部材に複数の孔が設けられ、前記孔を通して、前記原料水及び/又は前記電解水が前記電極間隙に出入する請求項5~7のいずれかに記載の電解水生成噴霧器。
  9.  請求項5~8のいずれかに記載の電解水生成噴霧器と、前記電解水生成噴霧器を載置するための電源部と、を有する電解水生成噴霧装置であり、
     前記電源部又は前記電解水生成噴霧器は、制御部及びランプを有し、
     前記制御部は、電解水の生成処理完了後は、前記容器内の電解水の濃度が有効な濃度であることを表示するために、所定の時間の間、前記ランプを点灯させる制御を行うことを特徴とする電解水生成噴霧装置。
PCT/JP2020/049053 2019-12-28 2020-12-27 電解水の生成方法、生成噴霧器及び生成噴霧装置 WO2021132708A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019240000A JP6890793B1 (ja) 2019-12-28 2019-12-28 オゾン水の生成方法、生成噴霧器及び生成噴霧装置
JP2019-240000 2019-12-28

Publications (1)

Publication Number Publication Date
WO2021132708A1 true WO2021132708A1 (ja) 2021-07-01

Family

ID=76429660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/049053 WO2021132708A1 (ja) 2019-12-28 2020-12-27 電解水の生成方法、生成噴霧器及び生成噴霧装置

Country Status (3)

Country Link
JP (3) JP6890793B1 (ja)
TW (1) TWI744150B (ja)
WO (1) WO2021132708A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113694221B (zh) * 2021-07-19 2023-07-11 河南牧业经济学院 畜禽舍微酸性电解水制备喷施一体机
KR102400096B1 (ko) * 2021-11-29 2022-05-23 주식회사 한새 살균장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003093479A (ja) * 2001-07-18 2003-04-02 Sanyo Electric Co Ltd 殺菌方法及び電解水生成装置
JP2005279417A (ja) * 2004-03-29 2005-10-13 Denkai Giken:Kk 電気化学的水処理装置
JP2006098003A (ja) * 2004-09-30 2006-04-13 Kurita Water Ind Ltd 循環型冷却水系の電解処理方法及び電解処理装置
JP2011177321A (ja) * 2010-03-01 2011-09-15 Sanyo Electric Co Ltd 手指除菌装置
WO2011136291A1 (ja) * 2010-04-28 2011-11-03 Yamamori Takashi 電気分解槽を有するエンジンシステム
JP2015042397A (ja) * 2013-08-26 2015-03-05 株式会社デザイアン オゾン水生成装置
JP2015058423A (ja) * 2013-09-20 2015-03-30 株式会社デザイアン オゾン水生成装置
JP2019055395A (ja) * 2017-09-20 2019-04-11 マクセルホールディングス株式会社 水電解装置及び電解水吐水端末

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078275U (ja) * 1993-07-08 1995-02-03 花王株式会社 液体噴出器
JP3638756B2 (ja) * 1997-05-23 2005-04-13 株式会社吉野工業所 詰め替え式ポンプ付き容器
JP3109593U (ja) * 2004-12-27 2005-05-19 世偉 李 液体ボトル構造
JP4410155B2 (ja) * 2005-06-16 2010-02-03 ペルメレック電極株式会社 電解水噴出装置
JP4723627B2 (ja) * 2007-11-15 2011-07-13 ペルメレック電極株式会社 膜−電極接合体、これを用いる電解セル、電解水スプレー装置及び殺菌方法
JP5454849B2 (ja) * 2008-12-25 2014-03-26 株式会社吉野工業所 ポンプ用の容器体
JP2016101287A (ja) * 2014-11-28 2016-06-02 株式会社魚市 電解水の生成装置
TWM555360U (zh) * 2017-04-17 2018-02-11 Ye qing yuan 氫氧水噴霧電解裝置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003093479A (ja) * 2001-07-18 2003-04-02 Sanyo Electric Co Ltd 殺菌方法及び電解水生成装置
JP2005279417A (ja) * 2004-03-29 2005-10-13 Denkai Giken:Kk 電気化学的水処理装置
JP2006098003A (ja) * 2004-09-30 2006-04-13 Kurita Water Ind Ltd 循環型冷却水系の電解処理方法及び電解処理装置
JP2011177321A (ja) * 2010-03-01 2011-09-15 Sanyo Electric Co Ltd 手指除菌装置
WO2011136291A1 (ja) * 2010-04-28 2011-11-03 Yamamori Takashi 電気分解槽を有するエンジンシステム
JP2015042397A (ja) * 2013-08-26 2015-03-05 株式会社デザイアン オゾン水生成装置
JP2015058423A (ja) * 2013-09-20 2015-03-30 株式会社デザイアン オゾン水生成装置
JP2019055395A (ja) * 2017-09-20 2019-04-11 マクセルホールディングス株式会社 水電解装置及び電解水吐水端末

Also Published As

Publication number Publication date
JP6890793B1 (ja) 2021-06-18
JP7565031B2 (ja) 2024-10-10
JP2021119012A (ja) 2021-08-12
JP2021107069A (ja) 2021-07-29
JP6936998B2 (ja) 2021-09-22
TW202124781A (zh) 2021-07-01
JP2021107574A (ja) 2021-07-29
TWI744150B (zh) 2021-10-21

Similar Documents

Publication Publication Date Title
KR101292059B1 (ko) 막-전극 어셈블리, 이를 채택하는 전해 셀, 전해수 분무기 및, 살균 방법
JP5870038B2 (ja) 手の消毒用デバイス
TWI380831B (zh) 殺菌方法及電解水噴射裝置
KR101081447B1 (ko) 막-전극 어셈블리, 이를 이용하는 전해 유닛, 전해수 분사장치, 및 살균 방법
WO2019123999A1 (ja) 携帯用電解水噴霧器
JP3619828B2 (ja) 電解用電極及びその製造方法及び電解用電極を用いた電解方法及び電解水生成装置
EP2078701B1 (en) Membrane-electrode assembly, electrolytic cell employing the same, electrolytic-water sprayer, and method of sterilization
US20030024828A1 (en) Sterilizing method and electrolyzed water producing apparatus
WO2021132708A1 (ja) 電解水の生成方法、生成噴霧器及び生成噴霧装置
JP4740813B2 (ja) 脱臭・殺菌装置
JP2007283180A (ja) オゾン水生成装置およびオゾン水生成方法
JP2006518666A (ja) 表面殺菌及び現場殺菌用の電解槽
JP2858853B2 (ja) 加湿器
US20130277211A1 (en) Reusable spray bottle with integrated dispenser
JP2008127583A (ja) 膜−電極接合体、これを用いた電解ユニット、電解水噴出装置及び殺菌方法
KR100643591B1 (ko) 전해 살균수 제조장치 및 그 제조방법
JP2012052168A (ja) 塩徐放用カートリッジ、塩徐放用カートリッジを備えた電解水生成装置、及び塩徐放用カートリッジを備えた電解水噴霧器
US20160097132A1 (en) Reusable spray bottle with integrated dispenser
KR100827384B1 (ko) 전해 살균장치
JP2019111474A (ja) 携帯用電解水噴霧器
JP2020063460A (ja) 携帯用電解水噴霧器
US20140190820A1 (en) Reusable apparatus with sparingly soluble solid for cleaning and/or disinfecting
JP2021120140A (ja) オゾン水の生成方法、生成噴霧器及び生成噴霧装置
JP2012052165A (ja) 塩徐放用カートリッジ、この塩徐放用カートリッジを備えた電解水生成装置、及びこの電解水生成装置を備えた除菌装置若しくは空気清浄装置
CN216663245U (zh) 手持高氧化电位水生成器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20907009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP