JP2005279417A - 電気化学的水処理装置 - Google Patents

電気化学的水処理装置 Download PDF

Info

Publication number
JP2005279417A
JP2005279417A JP2004096020A JP2004096020A JP2005279417A JP 2005279417 A JP2005279417 A JP 2005279417A JP 2004096020 A JP2004096020 A JP 2004096020A JP 2004096020 A JP2004096020 A JP 2004096020A JP 2005279417 A JP2005279417 A JP 2005279417A
Authority
JP
Japan
Prior art keywords
water
treated
metal electrode
electrode
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004096020A
Other languages
English (en)
Inventor
Norio Koike
紀夫 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKAI GIKEN KK
Original Assignee
DENKAI GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKAI GIKEN KK filed Critical DENKAI GIKEN KK
Priority to JP2004096020A priority Critical patent/JP2005279417A/ja
Publication of JP2005279417A publication Critical patent/JP2005279417A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

【課題】 従来の金属電極を使用する水処理では、金属電極にスケール成分が析出して有効電極面積が減少し、更に金属電極表面の電極物質が金属溶解性成分を有する被処理水中に溶解して金属電極の劣化を誘発していた。これらの欠点のない水処理方法を提供する。
【解決手段】 開口部13を有しかつ供給される原料水を金属電極16により電解して殺菌能力を有する活性種を含有する電解水20を生成させる電解チャンバー14を被処理水12を収容した被処理水チャンバー11に浸漬させ、生成した前記電解水を前記開口部からオーバーフローさせ、被処理水と接触させる。前記被処理水を金属電極に接触させずに電解水を生成させることができるため、金属電極表面の電極物質が溶出したり、金属電極表面に硬度成分が析出することを完全に防止するか最小限に抑制できる。更に電解チャンバーが移動可能で、単一の電解装置に固定設置する必要がなく、複数の電解装置で被処理水の処理に使用できる。
【選択図】 図1

Description

本発明は、各種用水の電気化学的処理装置に関し、より詳細には金属電極を使用してスクラバー水等の多数の微生物を含む被処理水を処理して清澄化する際の前記金属電極の劣化を実質的に生じさせないか、生じても劣化を最小限に抑制しながら前記水処理を行うための装置に関する。
純水、工業用水、井戸水、風呂水、プ−ル水、冷却水、洗浄水、生活排水、工場排水等の各種用水には程度の差こそあれ細菌等の各種微生物が棲息し、またミネラル等の無機物質や有機物質が溶解している。これらの水溶液は適度な養分を含むことから、該水溶液が微生物の繁殖に適した温度条件下に置かれると、微生物が繁殖し、水質低下を起こしたり、前記各水溶液が流通する配管等の内壁に微生物が付着、蓄積して前記配管を有する機器の機能を損なうことが多い。これら各種の用水では必要とされる殺菌レベルは異なるが、いずれの用水でも水中微生物数を低減させて水質の改良を行うことが必要とされている。
このような各種用水を殺菌処理する方法として、薬剤処理、オゾン処理、活性炭処理、紫外線照射処理、加熱処理等の種々の処理法が被処理水の種類に応じて選択して用いられている。しかし、いずれの方法も処理効果、操作性、安全性および環境負荷等の問題を抱え、満足の得られる方法ではなかった。
例えば、各種用水中の微生物の繁殖を抑制するための主流技術である薬剤による殺菌処理法は、その毒性から法的にも使用が厳しく規制される状況にあり、薬剤を取り扱う作業者の安全性や薬剤を含む被処理水が系外に排出された場合の環境汚染の問題などを抱えている。
紫外線照射による殺菌処理法は一過性の殺菌で色度を有する水や多量のSSを含む水の殺菌には不十分であることが多い。
このように従来より用いられている殺菌処理法では処理効率の問題または安全性の問題があり、満足できる結果は得られなかった。
このような従来技術の欠点を解消するための薬剤等を使用しない新規な水処理方法として、多孔性金属電極を使用する電気化学的な水処理装置が提案されている。
この水処理装置に使用される電極として数種のタイプのものが提案されているが、最も効率的な電極は、チタン金網(ラス)等の複数の多孔性金属電極をドーナツ状又は額縁状のスペーサーを介して積層して構成した電極構造体であり、該電極構造体を筒状等の電解槽内に収容し、被処理水を該電解槽内に供給して前記金属電極に接触させて酸化あるいは還元作用により水の殺菌等の水の改質を行うようにしている。
この水処理法は、比較的多量の被処理水を循環処理でき、処理効率が不十分であれば、再度電解槽に供給して処理を行って被処理水の殺菌等を確実に行うことができるという利点を有している。
純水のような電気伝導率が低い被処理水の場合には、この従来の水処理装置で問題ないが、冷却水のように水が蒸発し濃縮された状態で循環利用される水系ではカルシウム、マグネシウム、シリカのようなスケール成分の濃度が高くなり、これらが金属電極表面へスケールとして析出し易くなるため、樹脂製ケースの中に金属電極を収納するタイプの電解槽では、チタン等の金属電極の開口部がこれらスケールによって閉塞し、通水抵抗が大きくなって通水量が低下すると共に、スケールが電気絶縁性であるため、電極部の電気抵抗が上がり、流れる電流値が次第に低下し、殺菌効率が悪化することがある。
ビル冷房用や工場生産冷却水用として広く使用されている冷却塔は水の蒸発潜熱を冷却用に利用するもので、開放型と密閉型があり、いずれの方式も空気中から溶け込んだ栄養分が豊富で、通常屋外設置で直接日光を浴び、水温も含めて微生物の繁殖条件が揃っている。
このような冷却水中の微生物の繁殖を抑制するために、前述のように金属電極による電気化学的水処理が採用され、それらは被処理水を電気化学的水処理装置に供給して処理を行う通水型と被処理水中に電気化学的水処理装置を浸漬して処理を行う浸漬型に大別される。
特開2001−310187号公報 特開2001−314862号公報
いずれの方式の電解槽でもカルシウム等のスケール成分が電極表面に析出して電流値が低下し、殺菌効率が悪化する。
従来は定期的にスケールが析出した金属電極を塩酸水溶液等で洗浄し、前記スケールを溶解し除去していた。洗浄頻度は被処理水中のスケール成分の濃度によって異なるが、1年間に1〜6回程度が必要であった。この洗浄には危険物である塩酸等が必要であり、作業性や安全管理上も問題であった。
金属電極による電気化学的水処理法において、金属電極(陰極)でのカルシウムやマグネシウムから成るスケールの析出を抑えるために、一定時間ごとに極性を反転し、陽極で生成される酸(H+)の作用で金属表面に析出したスケールを溶解し、その成長を抑える方法が一般に採用されているが、被処理水中のスケール成分濃度が高い場合には長期にわたりスケール化を有効に抑えることは難しい。その他金属電極へのスケールの析出を抑制するために、被処理水中に水溶性ポリマーやホスホン酸等のスケール防止剤を添加する方法(特許文献1参照)や硬度除去手段(イオン交換、逆浸透膜、晶析、電解)を用いて被処理水の硬度を低減させる方法(特許文献2参照)などが提案されているが、被処理水中のスケール成分濃度が高くなるようなケースでは、処理効果が低下したり、処理コストの増加やメンテナンスの増大をもたらすといった問題を抱えている。また、前者のスケール防止剤を添加する方法では被処理水のCODなどの増加を招き、被処理水が最終的に系外に排出される場合に環境負荷を増大させるなど環境保全上の問題も抱えている。
更に前述の金属電極を使用する通水型や浸漬型による被処理水の処理では、前記金属電極としてチタン等の基材表面に白金族金属又はその酸化物を被覆した電極を使用することが多い。前記被処理水にはチタンや白金族金属又はその酸化物を溶解する不純物が含有されていることがあり、このような被処理水が前記金属電極に接触することによりチタンや白金族金属又はその酸化物が溶解して被処理水を汚染するとともに金属電極の寿命を短縮することになる。
本発明者はこれらの欠点を解消するために、被処理水を実質的に金属電極に接触させずに被処理水を殺菌能力を有する活性種を含有する電解水で電気化学的に処理する方法及び装置を提案した(特願2004−61773号)。この方法及び装置は、被処理水中の硬度成分の金属電極表面への析出や金属電極に担持された電極触媒成分の被処理水中への溶出が防止されて、金属電極の劣化を完全に又は最小限に抑制できる非常に優れた方法及び装置である。
しかし前記方法及び装置では、被処理水を金属電極を収容した電解槽内に導入する必要があり、被処理水の導入及び導出用の配管を電解槽外に設置し、更に電解槽内に被処理水の通路を設置することが要求される。これらの配管や通路の形成はそれ自身設置コストが要求されるだけでなく、被処理水循環のための電力量も無視できないことがある。
処理対象の被処理水の種類に依っては前述の方法及び装置を使用することが好ましい場合と、更に簡単な処理が望ましい場合がある。
本発明はこのような要請に応じて、より簡単な構成で、金属電極の劣化を実質的に抑制し、あるいは劣化が生じてもそれを最小限に抑制しながら被処理水の電気化学的な処理を行うための装置を提供することを目的とする。
本発明は、開口部を有しかつ供給される原料水を金属電極により電解して殺菌能力を有する活性種を含有する電解水を生成させる電解装置を被処理水中に浸漬し、前記電解水を前記開口部からオーバーフローさせることにより、前記被処理水と接触させることを特徴とする電気化学的水処理装置である。
以下本発明を詳細に説明する。
本発明では、従来のように硬度成分や金属を溶解する不純物を含有することのある被処理水を金属電極に接触させるのではなく、実質的にこれ等の有害不純物を溶解しない原料水を金属電極で電解し、殺菌能力を有する次亜塩素酸イオン等の活性種を含有する電解水を生成させるが、この際に電解槽に供給される原料水が処理前の被処理水に接触しないようにし、換言すると金属電極を有する電解槽には被処理水を導入しないように構成し、電解槽で生成した前記電解水を電解槽の開口部からオーバーフローさせて電解槽外の被処理水と接触させて電気化学的処理を行うようにする。
これにより白金族金属やその酸化物等の高価な電極物質が被覆された金属電極が硬度成分や金属溶解性不純物を含有することのある被処理水に接触することがなくなり、従って金属電極表面に被処理水に起因するスケールが析出したり、金属電極表面の電極物質が被処理水中に溶出したりすることがなくなる。従ってスケール析出による有効電極面積の低下やスケール除去のための運転中止が防止できあるいは低下の程度が小さくなり又は運転中止の回数を少なくすることができ、水処理効率が大幅に向上する。しかも電極物質の消耗が大幅に抑制されて電極の長寿命化が達成できる。
本発明における金属電極とは、チタン、タンタル、ニオブ、タングステン等の耐食性金属基体上に、金属系の触媒、例えば白金、イリジウム、ルテニウム、パラジウム、オスミウム、ロジウム、鉛、ニッケル又はそれらの酸化物や導電性ダイヤモンドを単独又は混合物又は合金(例えばステンレス)として被覆した電極を意味する。
本発明の電気化学的水処理では、前記金属電極として液抜けを良くするため及び接触効率を向上させるため多孔性金属電極を使用することが望ましく、この他に設置状況に応じて平板状電極などを使用しても良い。
この場合の「多孔」とは、電解水(活性種含有水)の流通に対する抵抗が殆ど零である程度の開口を有することを意味し、金網状、エクスパンドメッシュ状、パンチングメタル状、格子状等の形状がある。例えばエクスパンドメッシュを使用する場合、その開口サイズは短径が1.0〜6.0mm、長径が2.0〜12mm程度になるように調節することが好ましい。多孔性電極は平板状電極に比べて表面積が大きく活性種生成効率が高くなる。
該金属電極は、それぞれの開口部表面積の総和を、該電極の表面積総和と開口部表面積の総和を加えた電極全面積で除した値の百分率で定義される開口率が10〜80%であることが好ましい。開口率が10%未満であると圧力損失が大きくかつ目詰まりが起こりやすくなるからであり、80%を超えると電極強度に支障が生じ変形や破損が生ずることがあり、又金属電極と電解水の接触が不十分になることがあるからであり、目詰まり及び接触効率の両者を勘案して適切な開口率を設定することが望ましい。
本発明で使用可能な金属電極は、単一枚であっても良いが、複数枚の金属電極をスペーサーを介して積層し、各金属電極及び各スペーサーをこれらを通る電気絶縁性締着材、通常はボルト及びナットにより締着し、各金属電極相互を連結した電極構造体とすることが好ましい。
複数の金属電極とスペーサーから成る前記電極構造体は、金属電極の枚数を変えることにより、供給する原料水の量や電解槽内のスペースの状況により比較的自由にその厚さを増減させることができる。その増減はボルト及びナットを使用することが最適である電気絶縁性締着材により容易に行うことができ、例えば樹脂フレームの場合のように内厚の異なる多数の樹脂フレームを準備する等の必要がなくなる。金属電極の枚数を変えて金属電極本体の厚さを変えるだけでなく、金属電極自体又はスペーサーの厚さを変えることが望ましいこともあり、この場合も同様に電気絶縁性締着材の着脱により容易に目的を達成できる。
積層された各金属電極への給電は、単一電源又は複数の電源を使用して各金属電極へ並列又は直列になるように接続して通電する。
使用するスペーサーは隣接する金属電極間の電気絶縁を確保するためのもので、該電気絶縁性が保証されればその形状は制限されないが、原料水又は電解水と金属電極の接触効率を向上させるためにはその面積はできるだけ小さい方が良く、例えば額縁状又はドーナツ状とすることが好ましい。なお該スペーサーの厚さは1〜10mm程度であることが望ましい。金属電極が多孔板例えばチタンラスの場合は前記スペーサーは金属電極の強度補強の役割も果たす。このスペーサーは隣接する金属電極を電気的に絶縁するとともに、電解により生ずることのある酸素ガスや水素ガスのガス抜けを良好にする機能を有する。金属電極表面で生成する前記ガスは電解水が前記金属電極表面に接触することを阻害し、かつ各金属電極への通電効率を低下させる。しかしスペーサーの存在により生成ガスが隣接する金属電極間の空間から金属電極本体の周囲へ容易に移動して活性種生成効率を上昇させる。なお本発明はガス発生を伴う処理に限定されるものではなく、更に前記金属電極は単一枚で使用しても良い。更に本発明装置の構造や設置状況によっては、多孔性電極ではなく平板状電極を使用しても良い。
本発明で使用する電解槽は、開口部を有する筒状又は箱型等の底板を有する電解槽とすることが望ましく、この電解槽内に金属電極、好ましくは複数枚の金属電極をスペーサーを介して積層した電極構造体を収容する。しかし状況によっては、底板を有さない筒状の隔壁を被処理水を収容したタンク等の底面に立て、必要に応じて隔壁下端をタンク底面に溶接等で固定し、この隔壁内に金属電極又は電極構造体を収容して電解槽を構成しても良い。
この電解槽は使用時には被処理水中に浸漬される。つまりスクラバータンクのように設置スペースが狭い場合にも設置が容易になる。従って原料水供給用配管は必要になるが、被処理水を電解槽に供給しかつ導出する配管は不要で設備が大幅に簡略化できる。
更に底板を有する電解槽の場合は、電解槽の移動が容易で、単一の電解槽を、複数の被処理水用タンク間を移動させて使用できる。
前記開口部は被処理水の水面より高くなるように電解槽に形成する。該開口部は天板に相当する部分を除去した上面開口部であっても側壁に孔を形成した開口部であっても良い。
前記電解槽には原料水を供給し、この原料水を金属電極に接触させて活性種を含有する電解水を製造する。電解槽内に供給した原料水に相当する量の電解水が前記開口部からオーバーフローして電解槽周囲の被処理水に接触して該被処理水の電気化学的処理が行われる。このように金属電極を装着した電解槽を処理対象の被処理水に浸漬し、電解槽に通電しながら原料水を供給するのみで被処理水の処理を連続かつ自動的に行うことが可能になる。
本発明で使用する原料水としては、硬度成分が低く、より具体的にはCaCO換算の全硬度で200mg/L以下で有害不純物(例えばフッ酸、シアン、酢酸等の有機物)を実質的に含まない水道水、工業用水、地下水、イオン交換水、純水、雨水などを使用することが好ましいがこれらに限定されない。有害不純物を含まないクーリングタワー等の濃縮水の場合には、全硬度が200mg/L以下になるよう、原料水と被処理水を混合して使用することも可能である。
前述の該電解槽には被処理水が供給されないため、被処理水に起因する硬度成分の金属電極表面への析出や金属電極表面からの電極物質の溶出が生じることがない。
電解槽での活性種生成は、安全面の理由で直流電圧42V以下で通電することが望ましく、又電流密度が0.1〜2.0A/dm2 程度になるようにすると最適の生成効率が得られる。これは0.1A/dm2 未満では充分な活性種生成が行われないことがあり、2.0A/dm2 を越えると電極寿命が短くなることがあるからである。
前記電解槽の金属電極にガス発生が生じる電流を供給すると、生成ガスは活性種含有電解水中に対流を生じさせ、この対流により電解水全体を万遍なく金属電極表面に接触させて活性種生成効率を高めることができる。
本発明で生成する活性種の種類は、処理すべき被処理水に応じて決定すれば良く、例えば次亜塩素酸イオン、オゾン、過酸化水素及び活性酸素等が含まれる。次亜塩素酸イオンを製造するためには、塩素イオン濃度の高い水道水、工業用水、地下水等には、塩化ナトリウム、塩化カリウム、塩化水素等の塩素含有化合物の添付無しでも可能であるが、塩素イオン濃度の低い水道水、工業用水、地下水、雨水、河川水、イオン交換水、純水等の場合には、塩化ナトリウム、塩化カリウム、塩化水素等の塩素含有化合物を添加することにより、効率良い製造が可能である。
オゾン水製造も同様にして行えば良いが、無隔膜型電解の場合、陽極酸化により生成するオゾンが対極である陰極に接触すると分解しやすく生成効率が低下することがある。これを防止するためには、例えば金属電極を縦方向に設置して生成ガスを対極への接触を最小限に抑制しながら金属電極間を浮上させるよう構成しても良い。
過酸化水素水も同様にして製造すれば良いが、無隔膜型電解の場合、陰極還元により生成する過酸化水素が対極である陽極に接触すると分解しやすく生成効率が低下することがあり、この場合も同様に、陰極表面で生成した過酸化水素を陽極表面に可能な限り接触させずに接触処理部へ導くようにすれば良い。
電解槽で生成される電解水中の活性種濃度は1mg/L以上、100mg/L以下が望ましい。1mg/L未満であると被処理水の殺菌等が不十分になり、100mg/Lを超えると経済的でなくなるからである。
本発明に使用する金属電極を含む電解槽は長期間の運転に耐え洗浄は殆ど必要ないが、洗浄を行う場合には過酸化水素、キレート剤、無機酸や有機酸を用いたpH3以下の酸性水、pH9以上のアルカリ水のいずれかを単独で又は交互に流しても良い。
このように金属電極を装着した電解槽で生成した活性種は、電解水に溶解されて該電解槽の前記開口部からオーバーフローして電解槽周囲の被処理水と接触する。
これにより電解水に溶解した次亜塩素酸イオン、オゾン、過酸化水素及び活性酸素等の活性種により、少なくとも被処理水中の微生物等の殺菌が行われ、その他に酸化又は還元によるスケール成分の安定化、漂白、農薬の分解等の水質改善処理が行われることがある。前記微生物としては、細菌(バクテリア)、糸状菌(黴)、酵母、変性菌、単細胞の藻類、原生動物、ウイルス等が含まれ、水質改善には、アンモニア等の不純物の分解などが含まれる。
本発明の被処理水には、白金族金属やその酸化物を溶解するシアンイオン含有メッキ用水、白金族金属やその酸化物、及びチタン等を溶解するフッ酸を含有するスクラバー水、白金族金属やその酸化物を溶解する酢酸等の有機物を含有する洗浄水、硬度成分が多いクーリングタワー濃縮水、各種不純物を含有する浄化処理前の工場循環水等が主たる対象として含まれるが、これらに限定されず、例えば次の用水が含まれる。
自然環境中の淡水や海水、人工的に作製された水溶液、希釈用水等、更に具体的な例としては工業用水、水道水、浄水、井戸水、雨水、回収水、加湿水、排水、側溝水、貯水、海水(微生物の制菌と貝殻、藻類、水母等の殺菌)、池の水、プール水、ボイラー水、高架水槽、飲料水、風呂水、ガス吸収塔水、冷却水、温水、水耕栽培水、噴水、写真現像液、養魚用水(鑑賞魚、養殖魚)、鑑賞動物及び養殖鳥用水、水エマルジョン、製紙用水、温泉水、砂糖液、果汁希釈水、染料インク希釈水、水溶性塗料希釈水、水溶性化粧品希釈水、酒希釈水、牛乳希釈水、ジュース希釈水、お茶希釈水、豆乳希釈水、入れ歯保管制菌水、コンタクトレンズ保管制菌水、歯ブラシ保管制菌水、各種化学物質含有水溶液、火力又は原子力発電所用水等、更に水中微生物個数をゼロにすることが必要又は好ましい食品用水、医薬品用水、磁気記録用ハードディスク洗浄用水、半導体洗浄用水、自動販売機水等も含まれ、更に岸壁、パイプや各種取水の殺菌用水の前処理用にも使用できる。
前述の通り、本発明では、原料水と被処理水を接触させずに原料水を電解して電解水を製造できる。具体的には開口部を有し金属電極を収容した電解槽に原料水を供給して、当該原料水を金属電極で電解して殺菌能力を有する活性種を含有する電解水を生成させ、これを電解槽の開口部からオーバーフローさせて電解槽の周囲の被処理水と接触させ、当該被処理水を前記電解水で電気化学的に処理する。被処理水が電解槽内に入らないため、金属電極が被処理水中の不純物に汚染される等の不都合は生じない。
しかも被処理水を電解槽に導入しないため、被処理水導入用の配管や電解槽内の被処理水通路の形成が不要になる。
このように被処理水と電解水の接触により、被処理水の処理、つまり殺菌、酸化、還元あるいは漂白等が行われ、被処理水中には微生物の死骸、酸化、還元又は漂白された物質が残るが、これらは濾過等により容易に除去できる。
本発明では被処理水が金属電極に接触しないため、カルシウムイオン等の硬度成分が活性種含有水と接触した後の被処理水中に残存する。この硬度成分の除去が必要な場合には、前述した通り、硬度除去手段(イオン交換、逆浸透膜、晶析、電解)を用いて被処理水の硬度を低減させれば良い。
活性種の有する能力単独で被処理水処理を行っても十分な効果を生ずるが、前記処理を紫外線殺菌、オゾン殺菌、薬剤殺菌等と併用すると更に確実に短時間で被処理水の処理を行うことができる。
このように本発明によると、前述した被処理水に含まれる多種の微生物や有害不純物を効率良く殺菌又は分解するだけでなく、カルシウム、マグネシウム、シリコン、鉄等の金属イオンが酸化物、水酸化物、炭酸塩に変化し、シリカ等のコロイド粒子が大きくなることに依るスケール障害の防止、CODやBODの分解除去、更に微量農薬を含有する被処理水から農薬を分解除去し、着色被処理水の色を薄くするといった処理も可能である。
以上述べたように、金属電極で原料水を電解して被処理水に接触させることなく殺菌能力を有する活性種を含有する電解水を生成させ、この電解水を電解槽の開口部からオーバーフローさせて被処理水と接触させると、不純物を含む被処理水が金属電極に接触しないため、電極物質の劣化やスケール付着を生じさせること無く、被処理水の処理を行うことが可能になる。しかも電解槽の移動及び設置が容易で複数の被処理水を単一の電解槽で処理することもできる。
次いで本発明の実施形態を添付図面に基づいて説明する。
図1は、本発明の電気化学的水処理装置の第1実施形態例を示す縦断正面図である。
図1の箱型の被処理水チャンバー11には、電気化学的に処理すべき被処理水12が収容されている。この被処理水チャンバー11内には、被処理水12の水面より高い箇所に開口部、図示の例では天板を削除した形態の上面開口部13を有する例えば塩化ビニル樹脂で成形された有底角筒状の電解チャンバー14が浸漬されている。
この電解チャンバー14内には、1対の平板状枠15間に、5枚の平板状金属電極16を4枚の額縁状のスペーサー17を介して積層することにより構成された1台の金属電極構造体18が金属電極16が上下方向を向くように設置されている。
前記電解チャンバー14の下部近傍の側壁に原料水供給管19が接続され、この供給管19の他端側は電解チャンバー14の水面より高い位置に位置している。
このような構成から成る電解チャンバー14に、食塩等の塩素化合物を添加された原料水を原料水供給管19から供給しながら、前記5枚の金属電極16のうちの外側に位置する2枚の金属電極16間に通電すると、各金属電極16は分極し、例えば左面が陽分極し右面が陰分極する。原料水に溶解している食塩は各金属電極16の陽分極面で酸化され、活性種である次亜塩素酸イオンが生成して電解水となり、次亜塩素酸イオンを活性種として有する電解水20となる。
前記電解チャンバー14内に最大限収容可能な水量は一定で、原料水供給分の水量が過剰になる。過剰分の前記電解水20は前記電解チャンバー14の上部開口部13をオーバーフローして電解チャンバー14の外表面を流下して被処理水12水面に達して被処理水12と接触する。これにより電解水中の活性種が被処理水中の微生物と接触してその殺菌や他の処理が行われる。
このように図示の例では、電解チャンバー14内に塩素化合物を含んだ原料水を供給するのみで、被処理水チャンバー11に収容した被処理水の殺菌等の電気化学的処理が行われる。しかも電解チャンバー14内には純度の高い原料水のみが供給され汚染されていることの多い被処理水は供給されないため、被処理水は金属電極16に接触することがなく、被処理水に含まれる不純物が金属電極の電極物質を溶出させたり、被処理水中の硬度成分が金属電極に析出して電解効率を低下させることがなくなるか、あるいは前記溶出又は析出を最小限に抑えることができる。
従って従来の電解装置では例えば1年に1回必要であったメンテナンスが3〜5年に1回で済むことになる。金属電極16の交換等は、前記開口部13を通して容易に行うことができる。
更に被処理水チャンバー11外で組立てた電解チャンバー14を被処理水チャンバー11中の被処理水に浸漬させるだけで電気化学的水処理装置を構成することができる。
図2は、本発明の電気化学的水処理装置の第2実施形態例を示す縦断正面図である。
図2の箱型の被処理水チャンバー31にも、電気化学的に処理すべき被処理水32が収容されている。この被処理水チャンバー31内には、被処理水32の水面より高い箇所に開口部、図示の例ではその側壁に左右1対の通孔33を有する有底角筒状の電解チャンバー34が浸漬されている。
この電解チャンバー34の底板上には、1対の脚部35上に設置された、額縁状の上部枠36と額縁状の下部枠37の間に、チタン等の多孔性基材に白金族金属やその酸化物を被覆した2枚の多孔性金属電極38を1枚の額縁状のスペーサー39を介して積層することにより構成された金属電極構造体40が計4台積層されている。
電解チャンバー34の上方から、最下段の金属電極構造体40の脚部35に達する原料水供給管41が設置されている。
第1実施形態例の場合と同様に、このような構成から成る電解チャンバー34に、食塩等の塩素化合物が添加された原料水を原料水供給管41から供給しながら、前記金属電極構造体40に通電すると、原料水に溶解している食塩は各金属電極38の陽分極面で酸化され、活性種である次亜塩素酸イオンが生成して電解水となり、次亜塩素酸イオンを活性種として有する電解水42となる。
この電解水42は前記電解チャンバー34の通孔33をオーバーフローして電解チャンバー34の外表面を流下して被処理水32水面に達して被処理水32と接触する。これにより電解水中の活性種が被処理水中の微生物と接触してその殺菌や他の処理が行われる。
このように第2実施形態例でも、電解チャンバー34内に塩素化合物を含んだ原料水を供給するのみで、被処理水チャンバー31に収容した被処理水32の殺菌等の電気化学的処理が行われる。しかも同様に、被処理水に含まれる不純物が金属電極の電極物質を溶出させたり、被処理水中の硬度成分が金属電極に析出して電解効率を低下させることがなくなるか、あるいは前記溶出又は析出を最小限に抑えることができる。
次に本発明に係わる電気化学水処理方法の実施例を説明するが、該実施例は本発明を限定するものではない。
[実施例1]
熱交換器から循環する冷却塔内の冷却塔水の殺菌処理を次の条件で行った。
(1)冷却塔装置
冷却能力:200冷凍トン
循環水量:150t/hr
保有水量:2t
(2)冷却水の平均水質
pH:7.6
電気伝導率:760μs/cm
酸消費量(pH4.8):180mgCaCO3/L
全硬度:290mgCaCO3/L
カルシウム濃度:135mgCaCO3/L
シリカ濃度:65mgSiO2/L
塩素イオン濃度:85mgCl-/L
総菌数:約105個/ml
(3)電解槽
図2の活性種製造用電解装置を使用した。金属電極は、厚さ1mm、幅500mm、長さ600mmの多孔性チタン板(チタンラス)の表面を酸化イリジウムと白金で被覆(被覆厚さ1μm)した電極2枚を使用し、2枚の金属電極は1枚の厚さ2mmの額縁状スペーサーで電気絶縁し、金属電極構造体とした。この金属電極構造体4台を処理チャンバー中に積層した。
電解槽の外壁は厚さ5mmの塩ビ樹脂製とし、縦80cm、横80cm、高さ100cmの箱型に成形し、前記金属電極構造体を収容し、この電解槽を前記冷却塔水内に浸漬させた。
原料水として電気伝導率320μs/cm、塩素イオン濃度36mg/Lの地下水を用い、原料水供給管から電解槽下部に供給した。なお原料水にはNaCl等の塩素含有化合物は添加しなかった。
(4)電気化学的水処理条件
直流電源を使用し、4台の金属電極構造体を直列に電気配線し、最大出力電流DC24A、最大出力電圧40Vとなるように極性を反転させながら通電し、通電時間はプラス、マイナス共25分とした。
(5)結果
この条件で被処理水の電気化学的処理を行い、開始前、開始後1ケ月後、6ヶ月後、及び12ケ月後の総菌数を測定したところ、開始前は105個/ml、それ以外は102個/ml以下であった。なお一般生菌数の測定は寒天培地培養JIS法に依った。又取り出された処理水中の白金及びイリジウム含有量はゼロであった。更に電解槽内の金属電極表面へのスケール析出量もゼロであった。
[比較例1]
電解槽を使用する替わりに金属電極構造体自体を直接冷却塔水内に浸漬させたこと以外は実施例1と同じ条件で被処理水の電気化学的処理を行った。
この条件で被処理水の電気化学的処理を行い、開始前、開始後1ヶ月後、2ヶ月後、3ヶ月後の総菌数を測定したところ、開始前は105個/ml、1ヶ月後及び2ヶ月後は102個/mlであったが、3ヶ月後には104個/mlに上昇していた。なお一般生菌数の測定は寒天培地培養JIS法に依った。
3ヶ月経過後に運転を停止し、金属電極に付着した硬度成分量を測定したところ、150g(乾燥総重量)であった。
[実施例2]
温泉水の殺菌処理を次の条件で行った。
(1)原泉
原泉貯水タンクの貯水量:30t
平均使用量:5t/hr
(2)原泉の水質
pH:7.2
電気伝導率:1370μs/cm
酸消費量(pH4.8):510mgCaCO3/L
全硬度:340mgCaCO3/L
カルシウム濃度:160mgCaCO3/L
シリカ濃度:48mgSiO2/L
塩素イオン(Cl-)濃度:135mg/L
鉄濃度:0.06mg/L
(3)電解槽
実施例1と同じ電解槽を使用した。
(4)電気化学的水処理条件
直流電源を使用し、最大出力電流DC24A、最大出力電圧40Vとなるように極性を反転させながら通電し、通電時間はプラス、マイナス共25分とした。
前記電解槽には、地下水に市販の精製塩化ナトリウムを溶解(0.1g/L)した原料水を5L/分で供給した。
(5)結果
この条件で被処理水の電気化学的処理を行い、温泉水の一般生菌数を、寒天培地培養JIS法で測定した結果、開始前は73個/mlで、開始後は菌は検出できなかった。1ヶ月後、6ヶ月後、12ヶ月後の測定でも同様に検出できなかった。又取り出された処理水中の白金及びイリジウム含有量はゼロであった。更に電解槽中の金属電極表面へのスケール析出量もゼロであった。
[比較例2]
電解槽を使用する替わりに金属電極構造体自体を直接冷却塔水内に浸漬させたこと以外は実施例2と同じ条件で被処理水の電気化学的処理を行った。
この結果、測定された一般生菌数は、開始前は86個/mlで、開始直後は39個/ml、1ヶ月後は45個/ml、6ヶ月後は53個/ml、12ヶ月後は72個/mlであった。
12ヶ月経過後に運転を停止し、金属電極に付着した硬度成分量を測定したところ、470g(乾燥総重量)であった。
[実施例3]
酢酸を含有する半導体スクラバーのタンク貯水の殺菌処理を次の条件で行った。
(1)スクラバー装置
保有水量:2t
循環水量:500L/min
補給水量:10L/min
(2)保有水の平均水質
pH:3.6
電気伝導率:810μs/cm
全硬度(CaCO3):210mg/L
塩化物イオン(Cl-):76mg/L
全リン(PO4 3-):0.5mg/L
酢酸:47mg/L
総菌数:約104個/ml
(3)電解槽
実施例1と同じ電解槽を使用した。
(4)電気化学的水処理条件
最大出力電流:30A
最大出力電圧:40V
原料水の種類:工業用水(NaClの添加無し)
原料水の流量:10L/min
(5)結果
この条件で被処理水の電気化学的処理を行い、開始前、開始後1ケ月後、6ヶ月後、及び12ケ月後の総菌数を測定したところ、開始前は104個/ml、それ以外は102個/ml以下であり、電解槽を流れる電流は30Aで安定していた。なお一般生菌数の測定は寒天培地培養JIS法に依った。
12ヶ月後に金属電極を取り出して観察したところ、使用前と同じイリジウム、白金の被覆色を呈し、被覆厚さは僅か10〜20%減少している程度であった。
[比較例3]
電解槽を使用する替わりに金属電極構造体自体を直接冷却塔水内に浸漬させたこと以外は実施例3と同じ条件で被処理水の電気化学的処理を行った。
この条件で被処理水の電気化学的処理を行い、開始前、開始後1ケ月後、2ヶ月、3ケ月後の装置出口の総菌数を測定したところ、開始前は104個/ml、1ヶ月後は103個/ml、2ヵ月後及び3ヶ月後は共に104個/mlに上昇していた。
電解槽を流れる電流は開始時は30Aであったが、1ケ月後には18A、2ケ月後には7A、3ケ月後には2Aに低下していた。
3ヶ月後に電解槽から金属電極を取り出して観察したところ、開始時のイリジウム、白金色はほとんど認められず、チタン基材の色を呈していた。念の為、被覆厚さを測定したところ、ほとんどゼロであった。
[実施例4]
シアンを含有するメッキ用回収純水の殺菌処理を次の条件で行った。
(1)回収純水
平均水量:7t/hr
(2)回収純水の水質
pH:7.9
電気伝導率:31μs/cm
シアン濃度:36mg/L
(3)電解槽
図1の活性種製造用電解装置を使用したこと以外は実施例1と同様とした。金属電極は、厚さ1mm、幅500mm、長さ600mmの多孔性チタン板(チタンラス)の表面を酸化イリジウムと白金で被覆(被覆厚さ1μm)した電極2枚を使用し、2枚の金属電極を1枚の厚さ1mmの額縁状スペーサーで電気絶縁し、金属電極構造体とした。
(4)電気化学的水処理条件
直流電源を使用、最大出力電流を20Aに、最大出力電圧を80Vになるように極性を反転させながら通電し、通電時間はプラス、マイナス共120分とした。
前記電解装置に供給される原料水はシアンイオンを含まない平均電気伝導率が24μs/cmの回収純水を2t/hrで供給した。この原料水にはNaClを添加しなかった。
(5)結果
この条件で被処理水の電気化学的処理を行い、開始前、開始後1ケ月後、6ヶ月後、12ケ月後の総菌数を測定したところ、開始前は103個/mlであったが、1ケ月後、6ヶ月後、12ケ月後は共に102個/ml以下に低下していた。なお一般生菌数の測定は寒天培地培養JIS法に依った。電解槽を流れる電流は20Aで安定していた。
12ヶ月後に金属電極を取り出して観察したところ、使用前と同じイリジウム、白金の被覆色を呈し、被覆厚さはほとんど変化が認められなかった。
[比較例4]
電解槽を使用する替わりに金属電極構造体自体を直接冷却塔水内に浸漬させたこと以外は実施例4と同じ条件で被処理水の電気化学的処理を行った。
この条件で被処理水の電気化学的処理を行い、開始前、開始後1ケ月後、2ヶ月、3ケ月後の装置出口の総菌数を測定したところ、開始前は103個/ml、1ヶ月後は102個/mlに低下したが、2ヵ月後、3ヶ月後は103個/mlに上昇していた。なお一般生菌数の測定は寒天培地培養JIS法に依った。
電解槽を流れる電流は開始時は20Aであったが、1ヵ月後には14Aに、2ヵ月後には7Aに、3ヵ月後には4Aに低下していた。
3ヶ月後に電解槽から金属電極を取り出して観察したところ、開始時のイリジウム、白金色はほとんど認められず、チタン基材の色を呈していた。念の為、被覆厚さを測定したところ、ゼロであった。
本発明の電気化学的水処理装置の第1実施形態例を示す縦断正面図。 本発明の電気化学的水処理装置の第2実施形態例を示す縦断正面図。
符号の説明
11 被処理水チャンバー
12 被処理水
13 上面開口部
14 電解チャンバー
16 金属電極
18 金属電極構造体
19 原料水供給管
20 電解水

Claims (3)

  1. 開口部を有しかつ供給される原料水を金属電極により電解して殺菌能力を有する活性種を含有する電解水を生成させる電解装置を被処理水中に浸漬し、前記電解水を前記開口部からオーバーフローさせることにより、前記被処理水と接触させることを特徴とする電気化学的水処理装置。
  2. 活性種が、次亜塩素酸イオン、オゾン、過酸化水素及び活性酸素から選択される少なくとも一種である請求項1記載の電気化学的水処理装置。
  3. 被処理水が、スクラバー水、クーリングタワー水、洗浄水、温泉水、漁業用水及び工場循環水から選択される少なくとも一種である請求項1又は2に記載の電気化学的水処理装置。
JP2004096020A 2004-03-29 2004-03-29 電気化学的水処理装置 Pending JP2005279417A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004096020A JP2005279417A (ja) 2004-03-29 2004-03-29 電気化学的水処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004096020A JP2005279417A (ja) 2004-03-29 2004-03-29 電気化学的水処理装置

Publications (1)

Publication Number Publication Date
JP2005279417A true JP2005279417A (ja) 2005-10-13

Family

ID=35178375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004096020A Pending JP2005279417A (ja) 2004-03-29 2004-03-29 電気化学的水処理装置

Country Status (1)

Country Link
JP (1) JP2005279417A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237168A (ja) * 2007-03-28 2008-10-09 Institute Of National Colleges Of Technology Japan 観賞魚用水槽の水質制御装置
JP2012086167A (ja) * 2010-10-20 2012-05-10 Toshiba Corp 過酸化水素水の生成装置および除菌システム
JP2012101185A (ja) * 2010-11-10 2012-05-31 Kobe Steel Ltd 水溶液の電解方法
CN105284712A (zh) * 2015-11-27 2016-02-03 通威股份有限公司 一种水产养殖用高压脉冲电场杀菌装置
JP2017510459A (ja) * 2014-04-12 2017-04-13 大連双迪創新科技研究院有限公司Dalian Shuangdi Innovative Technology Research Institute Co.,Ltd. 洗浄用水製造装置
WO2021132708A1 (ja) * 2019-12-28 2021-07-01 株式会社Hbコーポレーション 電解水の生成方法、生成噴霧器及び生成噴霧装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237168A (ja) * 2007-03-28 2008-10-09 Institute Of National Colleges Of Technology Japan 観賞魚用水槽の水質制御装置
JP2012086167A (ja) * 2010-10-20 2012-05-10 Toshiba Corp 過酸化水素水の生成装置および除菌システム
JP2012101185A (ja) * 2010-11-10 2012-05-31 Kobe Steel Ltd 水溶液の電解方法
JP2017510459A (ja) * 2014-04-12 2017-04-13 大連双迪創新科技研究院有限公司Dalian Shuangdi Innovative Technology Research Institute Co.,Ltd. 洗浄用水製造装置
CN105284712A (zh) * 2015-11-27 2016-02-03 通威股份有限公司 一种水产养殖用高压脉冲电场杀菌装置
WO2021132708A1 (ja) * 2019-12-28 2021-07-01 株式会社Hbコーポレーション 電解水の生成方法、生成噴霧器及び生成噴霧装置
JP2021107574A (ja) * 2019-12-28 2021-07-29 株式会社Hbコーポレーション 電解水の生成方法、生成噴霧器及び生成噴霧装置
JP2021107069A (ja) * 2019-12-28 2021-07-29 株式会社Hbコーポレーション オゾン水の生成方法、生成噴霧器及び生成噴霧装置

Similar Documents

Publication Publication Date Title
JP3364518B2 (ja) 廃水処理法
US5256268A (en) Water treatment method and apparatus
US4100052A (en) Electrolytic generation of halogen biocides
JP3716042B2 (ja) 酸性水の製造方法及び電解槽
US6287450B1 (en) Apparatus and method for purifying water with an immersed galvanic cell
JP2012081448A (ja) 殺菌水製造装置および殺菌水の製造方法
JP2005246279A (ja) 電気化学的水処理方法及び装置
US4202738A (en) Electrolytic generation of halogen biocides
JP2006289304A (ja) 電気化学的水処理電極ユニット、電気化学的水処理電極構造体及び電気化学的水処理装置
JP2000140849A (ja) 電気化学的水処理装置及び方法
JP2004132592A (ja) 電気化学的水処理方法及び水処理システム
JP2005279417A (ja) 電気化学的水処理装置
JP2005224691A (ja) 電気化学的水処理方法
JP2000325958A (ja) 電気化学的水処理方法
JP2000233185A (ja) 電気化学的水処理装置
JPH11114571A (ja) 電気化学的水処理装置及び方法
JP2001293474A (ja) 海水の浄化方法及び海水の浄化装置
WO2005077831A1 (ja) 電気化学的水処理方法及び装置
JPH08164390A (ja) 被処理水の電気化学的処理方法
JP2004066200A (ja) 電気化学的水処理装置
CN212315715U (zh) 一种水循环在线水质稳定设备
JP3020553B2 (ja) 固定床型三次元電極式電解槽
JPH10128334A (ja) 水処理装置及び方法とそれに用いる複極式固定床型電極電解槽とアース電極の設置方法
JP2012152695A (ja) 電気分解式塩水滅菌方法及び電気分解式塩水滅菌装置
JPH0663558A (ja) 被処理水の電気化学的処理方法