WO2011030546A1 - ガス生成装置およびガス生成方法 - Google Patents

ガス生成装置およびガス生成方法 Download PDF

Info

Publication number
WO2011030546A1
WO2011030546A1 PCT/JP2010/005506 JP2010005506W WO2011030546A1 WO 2011030546 A1 WO2011030546 A1 WO 2011030546A1 JP 2010005506 W JP2010005506 W JP 2010005506W WO 2011030546 A1 WO2011030546 A1 WO 2011030546A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
photocatalyst
containing layer
cathode electrode
anode electrode
Prior art date
Application number
PCT/JP2010/005506
Other languages
English (en)
French (fr)
Inventor
上野恵司
貞本満
和知浩子
前川弘志
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to US13/394,994 priority Critical patent/US9528189B2/en
Priority to EP10815146.5A priority patent/EP2476782A4/en
Priority to IN2262DEN2012 priority patent/IN2012DN02262A/en
Priority to CN201080039759.0A priority patent/CN102482789B/zh
Priority to JP2011530752A priority patent/JP5456785B2/ja
Publication of WO2011030546A1 publication Critical patent/WO2011030546A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B5/00Electrogenerative processes, i.e. processes for producing compounds in which electricity is generated simultaneously
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a gas generation apparatus and a gas generation method using a photocatalyst.
  • Hydrogen is expected as a promising main energy in the face of fear of exhausting fossil fuels and the importance of environmental conservation.
  • direct hydrogen generation by sunlight using a photocatalyst is expected to be a technology with very little environmental impact.
  • Patent Document 1 describes an apparatus and a method for generating hydrogen using a photocatalyst. This document is characterized in that a photocatalyst layer is supported on the surface of the electrically conductive layer of the laminate, and platinum and / or transition metal oxide is disposed on the back surface.
  • the electrolysis apparatus described in Patent Document 2 has a structure in which a cathode electrode is provided below the anode electrode installed above.
  • This electrolysis apparatus does not have a function of separating hydrogen and chlorine, and has a configuration in which a depression is provided on the lower surface side of the cathode electrode and hydrogen generated in the depression is collected.
  • FIG. 1 is a general apparatus diagram having a conventional structure having a photocatalytic electrode and performing water electrolysis by irradiating light.
  • Non-Patent Document 1 discloses an n-type titanium oxide (TiO 2 ) electrode and platinum (Pt) immersed in an electrolyte solution in an electrolyte reservoir and further separated by a salt bridge of an ion exchange membrane. An apparatus is described in which the electrodes are connected by current carrying wires. When the surface of TiO 2 is irradiated with light having a wavelength shorter than 410 nm, a photocurrent flows through the wire, oxygen is generated on the surface of TiO 2 , and hydrogen is generated on the surface of Pt.
  • the reaction formula by this photocatalyst is expressed by the following formulas 101 to 103, where e ⁇ and h + are electrons and holes generated by photoexcitation, respectively.
  • Expression 103 is the sum of Expression 101 and Expression 102.
  • Patent Document 3 and Non-Patent Document 2 will be described later.
  • Patent Document 1 uses a proton-conductive expensive Nafion membrane to transport protons generated in the photocatalyst layer to the back surface of the laminate, which increases the cost of hydrogen generation. There's a problem.
  • the electrolysis apparatus described in Patent Document 2 has a problem that the movement distance of hydrogen ions generated in the photocatalyst layer is long and inefficient, and the current loss increases by the movement distance.
  • the apparatuses described in these known documents cannot solve the following problems inherent in gas generation in the photocatalyst. That is, when excitation light of the photocatalyst is irradiated on the surface of the photocatalyst, electrons and holes are generated, and water molecules in contact with the photocatalyst are oxidized by the holes to generate oxygen molecules and hydrogen ions (protons). Oxygen molecules associate with each other on the surface of the photocatalyst, grow into bubbles, and eventually leave the surface of the photocatalyst. At the same time, hydrogen ions (protons) generated on the surface of the photocatalyst dissolve in water and move to the cathode electrode.
  • the photocatalyst 42 include a titanium oxide powder 40 on which platinum fine particles 41 are supported.
  • the bubbles of hydrogen gas 33 formed on the supported platinum upon irradiation with light 7 are associated with the bubbles of oxygen gas 23 formed on the platinum-supported photocatalyst 42 on the platinum. This is because a reverse reaction that returns to water occurs.
  • Non-Patent Document 2 As shown in FIG. 4, the thickness of the liquid film layer covering the surface of the photocatalyst 42 is determined from the size of bubbles (oxygen gas 23 and hydrogen gas 33) formed by irradiation with light 7. It is also proposed to make it smaller. Thereby, the reverse reaction which returns to water by association of hydrogen and oxygen is inhibited, and the photocatalytic reaction is rapidly performed.
  • the cathode electrode for electrolysis since the anode electrode does not operate unless it is irradiated with light, if the cathode electrode for electrolysis is provided at a position facing the photocatalyst layer, the cathode electrode has a structure that blocks the irradiation light. . For this reason, as shown in Patent Document 2, it is necessary to install a cathode electrode on the back side of the surface on which the photocatalyst layer is provided in the anode electrode. As a result, the current density is reduced due to proton transfer loss.
  • the surface where the bubbles are attached is prevented from contacting the electrolyte, so that at least the surface does not undergo water electrolysis. This substantially reduces the electrode area, resulting in a reduction in the amount of gas generated.
  • Patent Document 3 the generation of bubbles is confirmed by performing electrolysis of a 1 wt% sulfuric acid aqueous solution using a microreactor. Furthermore, it is described that bubbles generated in water by electrolysis of water quickly moved to the gas flow path through the gas-liquid interface, and gas-liquid separation could be confirmed. However, no attempt has been made in the past to completely prevent the reverse reaction between hydrogen and oxygen generated by the photocatalyst using the gas-liquid interface in this manner.
  • the present invention has been made in view of these points, and it is an object of the present invention to provide a technique for efficiently generating a desired gas by photocatalytic action irradiated with light.
  • a gas generating device that generates oxygen gas and / or hydrogen gas from an electrolyte containing water, the photocatalyst containing layer including a photocatalyst that generates oxygen gas from the electrolyte by a photocatalytic reaction
  • a cathode electrode that generates hydrogen gas from hydrogen ions and electrons generated in the electrolytic solution by a photocatalytic reaction in the photocatalyst-containing layer, and at least one of the anode electrode or the cathode electrode,
  • a plurality of through-holes that allow the generated oxygen gas or hydrogen gas to pass therethrough without passing through an electrolyte, and a gas storage unit that stores the oxygen gas or hydrogen gas that has passed through the through-holes.
  • a gas generator is provided.
  • the oxygen gas generated at the anode electrode or the hydrogen gas generated at the cathode electrode is recovered from the opposite surface side of this electrode through the through hole. For this reason, the reverse reaction to water molecules due to the association of oxygen and hydrogen does not occur, and the electrolytic solution is efficiently decomposed.
  • the photocatalyst-containing layer may be a porous material including a large number of pores, and the photocatalyst may be exposed in the pores.
  • the said hole may be exposed to the inner wall face of the said through-hole.
  • the holes exposed on the inner wall surface of the through hole may communicate with other holes.
  • the plurality of through holes may be regularly arranged in the anode electrode or the cathode electrode.
  • the distance between the centers of gravity of the adjacent through holes may be not less than 0.1 ⁇ m and not more than 800 ⁇ m.
  • the distance between the centers of gravity of all the through holes with respect to the other adjacent through holes may be 0.1 ⁇ m or more and 800 ⁇ m or less.
  • the distance between the centers of gravity may be 1.5 to 5 times the opening diameter of the through hole.
  • the distance between adjacent edges of the adjacent through holes may be 0.1 ⁇ m or more and 400 ⁇ m or less.
  • the photocatalyst-containing layer may have a layer thickness of 0.25 ⁇ m to 100 ⁇ m.
  • the present invention may further include a light receiving window that transmits the excitation light of the photocatalyst and irradiates the excitation layer with the excitation light.
  • the anode electrode may include a base material that supports the photocatalyst-containing layer, and the base material may be made of a material that transmits the excitation light.
  • the light receiving window is disposed on the opposite side of the photocatalyst containing layer through the base material, and the excitation light transmitted through the light receiving window further passes through the base material and is
  • the photocatalyst containing layer may be irradiated.
  • the cathode electrode is made of a material that transmits the excitation light
  • the light receiving window is disposed to face the cathode electrode, so that the excitation light transmitted through the light receiving window is
  • the photocatalyst-containing layer may be irradiated through the cathode electrode.
  • the cathode electrode and the photocatalyst containing layer of the anode electrode may be arranged to face each other.
  • the said photocatalyst content layer of the said anode electrode may be formed in the position facing the said through-hole provided in the said cathode electrode.
  • the cathode electrode includes a promoter-containing layer that generates hydrogen gas by receiving excitation light of the photocatalyst, and is located at a position facing the through hole provided in the anode electrode.
  • the promoter-containing layer of the cathode electrode may be formed.
  • the through hole provided in the cathode electrode or the anode electrode may have a slit shape.
  • both the cathode electrode and the anode electrode have slit-shaped through holes, and the cathode electrode and the anode electrode are disposed so as to face each other.
  • the holes may be offset from each other.
  • an electrode pair composed of the cathode electrode and the anode electrode arranged in parallel with each other at a predetermined interval has flexibility that can be bent or bent in a perpendicular direction. Also good.
  • the cathode electrode includes a promoter-containing layer that generates hydrogen gas by receiving excitation light of the photocatalyst, and the photocatalyst-containing layer of the anode electrode and the assistant of the cathode electrode.
  • An electron transfer layer made of a conductive material and capable of transmitting the electrolyte solution may be provided between the catalyst-containing layer.
  • the cathode electrode and the anode electrode may be supported side by side on a common base material.
  • the plurality of cathode electrodes and the plurality of anode electrodes may be arranged adjacent to each other.
  • the hydrogen gas provided in the opening of the first through hole provided in the opening of the first through hole and containing the oxygen gas and the opening of the second through hole.
  • the second gas storage part In the present invention, the hydrogen gas provided in the opening of the first through hole provided in the opening of the first through hole and containing the oxygen gas and the opening of the second through hole. And the second gas storage part.
  • the cathode electrode includes a promoter-containing layer that generates hydrogen gas by receiving excitation light of the photocatalyst, and the photocatalyst-containing layer is disposed in the vicinity of the first through hole.
  • the promoter-containing layer may be disposed in the vicinity of the second through hole.
  • the photocatalyst-containing layer is provided in a ring shape at the periphery of the opening of the first through-hole, and the promoter-containing layer is a periphery of the opening of the second through-hole. It may be provided in a ring shape.
  • the cathode electrode and the anode electrode are provided side by side adjacent to each other through an electrically insulating material, and an interval between the cathode electrode and the anode electrode is 0.01 ⁇ m or more. There may be.
  • a light receiving window that transmits the excitation light of the photocatalyst and irradiates the photocatalyst containing layer with the excitation light.
  • the excitation light that is disposed at the opposite positions and transmitted through the light receiving window may be applied to the photocatalyst containing layer and the cocatalyst containing layer.
  • the anode electrode and the cathode electrode are each composed of a material that transmits the excitation light of the photocatalyst
  • the light receiving window that transmits the excitation light and irradiates the photocatalyst-containing layer includes The excitation light, which is disposed opposite to the photocatalyst containing layer and the cocatalyst containing layer so as to face the anode electrode and the cathode electrode and has passed through the light receiving window, further passes through the anode electrode and the cathode electrode. Then, the photocatalyst-containing layer and the promoter-containing layer may be irradiated.
  • At least one of the photocatalyst-containing layer or the promoter-containing layer may be disposed so as to be inclined with respect to the substrate.
  • the photocatalyst-containing layer or the promoter-containing layer may include a convex surface portion protruding from the base material.
  • the convex surface portion may have a box shape including a pair of elevations facing each other.
  • the said gas accommodating part may be formed in the inside of the said convex surface part.
  • the inner wall surface of the through hole may be subjected to a hydrophobic treatment.
  • the photocatalyst-containing layer and the cathode electrode may be lyophilic with respect to the electrolytic solution.
  • the back surface side in which the said gas accommodating part was provided among the said anode electrodes or the said cathode electrodes may be lyophobic with respect to the said electrolyte solution.
  • an electrolytic solution tank that stores the electrolytic solution and immerses the anode electrode and the cathode electrode in the electrolytic solution, and an electrolytic solution supply pipe that supplies the electrolytic solution to the electrolytic solution tank And an electrolytic solution discharge pipe for discharging the electrolytic solution subjected to the catalytic reaction from the electrolytic solution tank.
  • the photocatalyst contained in the photocatalyst-containing layer includes titanium oxide, vanadium oxide, nickel oxide, zinc oxide, gallium oxide, zirconia oxide, nebidium oxide, molybdenum oxide, tantalum oxide, tungsten oxide, gallium oxide.
  • oxides such as germanium oxide, indium oxide, tin oxide, antimony oxide, lead oxide and bismuth oxide, and at least one selected from the group consisting of nitrides and sulfides thereof may be used.
  • the promoter contained in the promoter-containing layer may be at least one selected from the group consisting of platinum, nickel, ruthenium, nickel oxide and ruthenium oxide.
  • a step of bringing the electrolytic solution into contact with an anode electrode comprising: a cathode electrode that generates hydrogen gas from hydrogen ions and electrons in the electrolytic solution generated by a photocatalytic reaction in the photocatalyst-containing layer; and A step of irradiating the layer with photocatalytic excitation light, and a plurality of the oxygen gas generated at the anode electrode or the hydrogen gas generated at the cathode electrode provided on the anode electrode or the cathode electrode. And a step of collecting through the through-holes.
  • the photocatalyst-containing layer is a porous material including a large number of pores from which the photocatalyst is exposed, and the oxygen gas or the hydrogen gas generated inside the pores is You may collect through a through-hole.
  • the oxygen gas or the hydrogen gas generated inside the hole is passed through the through hole via the other hole exposed on the inner wall surface of the through hole. May be collected.
  • the anode electrode includes a base material that supports the photocatalyst-containing layer, the base material is made of a material that transmits the excitation light, and transmits the base material. You may irradiate the said excitation light to the said photocatalyst content layer.
  • the cathode electrode may be made of a material that transmits the excitation light, and the photocatalyst-containing layer may be irradiated with the excitation light transmitted through the cathode electrode.
  • the cathode electrode includes a promoter-containing layer that generates hydrogen gas by receiving the excitation light, and the excitation light reflected by the anode electrode or the cathode electrode
  • the photocatalyst containing layer of the anode electrode or the promoter containing layer of the cathode electrode may be irradiated.
  • the cathode electrode includes a promoter-containing layer that generates hydrogen gas by receiving the excitation light, and has passed through the through-hole provided in the anode electrode or the cathode electrode.
  • the excitation light may be applied to the promoter-containing layer of the other cathode electrode or the photocatalyst-containing layer of the anode electrode.
  • the present invention it is possible to provide a gas generation apparatus and a gas generation method capable of efficiently generating hydrogen gas, oxygen gas, and mixed gas thereof by photocatalytic decomposition using sunlight or the like. Furthermore, since it is not necessary to use an expensive material for the electrode used in the present invention, it is possible to reduce the gas generation device and the manufacturing cost of the gas.
  • FIG. 1 It is a schematic diagram of a conventional general device diagram for performing water electrolysis by irradiating light to an anode electrode.
  • (A) (b) is explanatory drawing which shows the state at the time of irradiating ultraviolet light to electrolyte solution. It is explanatory drawing which shows the state which a hydrogen gas bubble and an oxygen gas bubble associate. It is explanatory drawing which shows the state which covered the photocatalyst surface with the liquid film layer.
  • (A)-(d) is a schematic diagram which shows the basic concept of the gas production
  • (A)-(c) is a figure explaining the Young-Laplace formula. It is a top view which shows the example of the hole processing part formed in the anode electrode.
  • (A) is a schematic diagram explaining the characteristic resulting from the structure of a photocatalyst containing layer and a co-catalyst layer, and each through-hole, (b) is an enlarged view.
  • the symbol X indicates the location where oxygen molecules are generated, and the arrow indicates the shortest distance between the generation location X and the through hole, that is, the interface-reaction point distance.
  • (A)-(d) is a schematic diagram which shows the basic composition of the gas generator of opposing arrangement type.
  • (A), (b) is explanatory drawing which shows the movement of a proton and an electron in a gas generator of a counter arrangement type.
  • (A) shows a state in which electrons move from the anode electrode to the cathode electrode via the lead wire.
  • (B) shows a state in which electrons move from the anode electrode to the cathode electrode through a mesh-like conductive material provided between the anode electrode and the cathode electrode.
  • A is side surface sectional drawing of a photocatalyst cell (anode cell),
  • (b) is a front view.
  • (A) is a front view of the anode electrode itself,
  • (b) is a side sectional view, and (c) is an enlarged view of (b). It is a top view which shows an example of the hole processing part formed in the anode electrode.
  • (A) is side surface sectional drawing of a promoter cell (cathode cell),
  • (b) is a front view.
  • FIG. 20 is a top view of the gas generating device of the third embodiment shown in FIGS. 18 and 19. It is an example which made the irradiation direction of light the cathode electrode side in the gas production
  • FIG. 28 is a cross-sectional view of the anode / cathode integrated electrode shown in FIG. 27, illustrating the generation and separation of hydrogen and oxygen.
  • FIG. 28 is a schematic front view of the anode-cathode integrated electrode of the eighth embodiment, showing an example of the positional relationship between the photocatalyst containing layer and the cocatalyst containing layer.
  • (A) is side surface sectional drawing of the gas production
  • (b) is the front view. It is a see-through
  • (A) is a top view of the gas generating apparatus provided with the anode / cathode integrated electrode in the tenth embodiment, (b) is a side sectional view on the short side, and (c) is a side sectional view on the long side. It is a figure and (d) is side surface sectional drawing of the gas production
  • FIG. 34 is a perspective top view of the gas generation device 100 shown in FIG. 33 and shows the positional relationship between the flow paths of hydrogen gas and oxygen gas.
  • (A) is a side view of the ridge type
  • (A) is a top view of the ridge type
  • (A), (b) is a perspective view of the slit type gas generating device of a 14th embodiment. It is a side view of the flexible type gas generating apparatus of 15th Embodiment.
  • FIG. 45 is an enlarged view of FIG. 44. It is a figure which shows the use condition of the flexible type gas generating apparatus of 15th Embodiment. It is a perspective view of the flexible type gas generating apparatus of 15th Embodiment. It is explanatory drawing of the production
  • the gas generation apparatus of this embodiment is an apparatus that generates oxygen gas and / or hydrogen gas from an electrolyte containing water.
  • the gas generation device of this embodiment includes an anode electrode, a cathode electrode, a plurality of through holes, and a gas storage unit.
  • the anode electrode photocatalyst-carrying electrode
  • the cathode electrode generates hydrogen gas from hydrogen ions and electrons generated in the electrolytic solution by the photocatalytic reaction in the photocatalyst containing layer.
  • the through hole (first and / or second through hole) is provided in at least one of the anode electrode and the cathode electrode, and does not allow the electrolytic solution to pass therethrough and allows the generated oxygen gas or hydrogen gas to pass therethrough.
  • a gas accommodating part (1st and / or 2nd gas accommodating part) accommodates the oxygen gas or hydrogen gas which passed the through-hole.
  • FIGS. 5A to 5D are schematic views showing the basic concept of the gas generating apparatus 100 of the present embodiment.
  • the gas generation device 100 includes an anode electrode 2 and a cathode electrode 3.
  • the anode electrode 2 includes a base material 25 and a photocatalyst containing layer 27 provided on one main surface of the base material 25 so as to be laminated.
  • the photocatalyst containing layer 27 includes a photocatalyst that generates oxygen gas from the electrolyte solution 12 in the electrolyte bath 10 by a photocatalytic reaction.
  • the cathode electrode 3 generates hydrogen gas in the electrolyte solution 12 from hydrogen ions and electrons generated by the photocatalytic reaction induced by the light 7 in the photocatalyst containing layer 27.
  • At least one of the anode electrode 2 and the cathode electrode 3 includes a plurality of through holes (first through hole 111 and / or second through hole 113).
  • the through hole does not allow the electrolytic solution 12 to pass through, but selectively allows the gas (oxygen gas or hydrogen gas) generated on the surface side of the electrode by irradiation of excitation light to the photocatalyst to pass to the back side.
  • the cathode electrode 3 of this embodiment includes a promoter-containing layer 43 that generates hydrogen gas by receiving excitation light of a photocatalyst.
  • the photocatalyst containing layer 27 is disposed in the vicinity of the first through hole 111, and the promoter containing layer 43 is disposed in the vicinity of the second through hole 113.
  • the gas generation device 100 includes a gas storage unit (the first gas storage unit 21 and / or the second gas storage unit 31) that surrounds the back surface where the through hole is open.
  • the gas generating device 100 is provided in the anode electrode 2 so as to allow the oxygen gas to pass without passing through the electrolyte solution 12 and the cathode electrode 3 as provided with the electrolyte solution. 12 and a second through-hole (second through-hole 113) that allows hydrogen gas to pass therethrough.
  • the gas generation device 100 is provided in the opening of the first through hole 111 to store oxygen gas, and the second gas generating unit 100 is provided in the opening of the second through hole 113 to store hydrogen gas.
  • the gas generating device 100 further includes a light receiving window that transmits the excitation light of the photocatalyst and irradiates the excitation light to the photocatalyst containing layer.
  • the figure is a side view of the gas generator 100.
  • Light 7 (ultraviolet light or visible light) passes through the light receiving window 4 and the electrolytic solution tank 10 and is irradiated to the photocatalyst containing layer 27, whereby a photocatalytic reaction occurs and oxygen and protons are formed in the electrolytic solution.
  • the formed protons change into hydrogen for the first time on the surface of the promoter-containing layer 43.
  • electrons are also required. There are several means for supplying the electrons, and typical examples thereof are described later in FIG. Protons reach from the photocatalyst-containing layer 27 to the cocatalyst-containing layer 43 through the electrolyte solution.
  • the proton conducting distance is short.
  • the important point shown in FIG. 5 (a) is that oxygen and hydrogen generated in the photocatalyst containing layer 27 and the cocatalyst containing layer 43 do not meet each other, in other words, oxygen and hydrogen associate with water by association.
  • the gas is separated by the through-holes 111 and 113 for the purpose of gas-liquid separation, and the chance of association is lost, whereby hydrogen gas is efficiently collected.
  • the light 7 is irradiated to the cathode electrode 3 including the promoter-containing layer 43.
  • the light receiving window 4 shown in FIG. 5A is arranged on the same side as the photocatalyst containing layer 27 with respect to the base material 25.
  • the light 7 is irradiated to the photocatalyst containing layer 27 without passing through the substrate 25.
  • the base material 25 can use either a translucent material or an opaque material.
  • an opaque substrate 29 is illustrated.
  • FIG. 5B is almost the same as FIG. 5A, but the irradiation direction of the light 7 is reversed.
  • the anode electrode 2 includes a base material 25 that supports the photocatalyst-containing layer 27.
  • the base material 25 is made of a translucent material that transmits the excitation light 7 (translucent base material 28).
  • the material which comprises the 1st gas accommodating part 21 is also translucent.
  • the second gas storage portion 31 provided between the cocatalyst containing layer 43 and the light receiving window 4 is also made of a translucent material.
  • the excitation light 7 that has passed through the light receiving window 4 enters the base material 25 (translucent base material 28) through the first gas storage unit 21 or the second gas storage unit 31, and further passes through the base material 25.
  • the photocatalyst containing layer 27 or the cocatalyst containing layer 43 is reached, and the electrolytic action is exerted on the electrolytic solution 12 stored in the electrolytic solution tank 10.
  • FIG. 5C shows a photocatalytic cell (anode cell) of the anode electrode 2 having the photocatalyst containing layer 27 shown in FIG. 5A.
  • the anode electrode 2 can be attached to the photocatalyst cell, and the cathode electrode can be replaced with a platinum plate, which is the same as the structure shown in FIG.
  • FIG. 5D shows a promoter cell (cathode cell) of the cathode electrode 3 having the promoter-containing layer 43 shown in FIG.
  • a structure in which the cathode electrode 3 is attached to the promoter cell can be used, which is the same as that shown in FIG.
  • FIG. 6A is a diagram for explaining the Young-Laplace equation, and is a description of the formation mechanism of the gas-liquid interface 52 between the gas phase and the electrolytic solution 12 in the through hole 111.
  • FIG. 6B shows a case where the opening 51 of the through hole 111 is rectangular
  • FIG. 6C shows a case where the opening 51 of the through hole 111 is substantially circular.
  • ⁇ p is Young-Laplace pressure
  • is the surface tension of the electrolyte solution 12
  • is the contact angle between the electrolyte solution 12 and the wall surface of the through hole 111 (or the through hole 113)
  • W is the through hole 111. Represents the diameter of the opening 51.
  • P1 and P2 are a liquid phase side pressure and a gas phase side pressure, respectively.
  • the force required to spread the electrolyte solution 12 in contact with the contact angle ⁇ in the depth direction of the through-hole 111 is ⁇ cos ⁇ .
  • the opening 51 of the through-hole 111 has a rectangular shape of W ⁇ W
  • the surface tension is applied to the surface in contact with the electrolytic solution 12. That is, the force required to push the electrolytic solution 12 into the through hole 111 at this time is ⁇ 4 W ⁇ cos ⁇ .
  • ⁇ p -2 ⁇ cos ⁇ / W ⁇ ⁇ ⁇ (2)
  • the opening width (corresponding to W) is 1000 ⁇ m or less, preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, and most preferably 50 ⁇ m or less.
  • the opening width of the through hole is preferably smaller as long as the generated gas can pass through.
  • the Young-Laplace pressure tends to be larger as the width W is smaller, and the force that suppresses the intrusion of the electrolytic solution 12 becomes stronger by increasing the Young-Laplace pressure. .
  • This result shows the limit of the opening width W of the expandable anode electrode 2 in the case of the vertical gas generator 100 in which the anode electrode 2 is installed in the vertical direction.
  • the restricted height from the upper surface of the anode electrode 2 installed above the cathode electrode 3 to the electrolyte surface is shown. is there.
  • FIG. 7 is a plan view observing the state in which the through holes 111 and 113 are formed, and shows the relationship between the hole diameter and the pitch of the through holes.
  • the pitch of the through holes is the distance between the centers (centers of gravity) of adjacent holes.
  • the plurality of through holes 111 and 113 are regularly arranged in the anode electrode 2 or the cathode electrode 3.
  • the one described in FIG. 7 has through holes arranged in a staggered pattern, and includes a through hole in which the hole diameter is described, a horizontal through hole adjacent to the through hole, and a through hole at a position inclined by 60 °.
  • the pitch is the same distance.
  • the through holes 111 and 113 may be arranged in a square lattice shape or an oblique lattice shape.
  • the distance between the centers of gravity of the adjacent through holes 111 and 113 is preferably 0.1 ⁇ m or more and 800 ⁇ m or less.
  • the distance between the centers of gravity with respect to other adjacent through holes is 0.1 ⁇ m or more and 800 ⁇ m or less in all the through holes 111 and 113.
  • the gas yield is improved regardless of the location of the anode electrode 2 or the cathode electrode 3.
  • the distance between the centers of gravity of the adjacent through holes 111 and 113 is preferably 1.5 to 5 times the opening diameter of the through holes 111 and 113.
  • the hole pitch interval is preferably such that the generated holes and electrons are as short as possible in their movement, so that when the hole pitch interval is within the above range, gas is efficiently generated.
  • the opening diameter of the through holes 111 and 113 is preferably 300 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the smaller pore size is based on Young-Laplace pressure and is more resistant to electrolyte leakage. Therefore, when the pore size is in the above range, only the gas is selectively passed without passing through the electrolyte. Can be passed through.
  • gas can be efficiently generated on the surface of the catalyst layer (photocatalyst-containing layer 27, promoter-containing layer 43). It efficiently moves to the back side through the through holes 111 and 113. That is, since the produced gas adheres to the surface of the catalyst layer and does not suppress the subsequent gas production, a desired gas can be efficiently produced from the electrolytic solution, and the produced gas can be separated and recovered.
  • FIG. 8A is a schematic diagram for explaining the characteristics resulting from the structures of the photocatalyst containing layer 27 and the cocatalyst containing layer 43 and the respective through holes (first through hole 111 and second through hole 113).
  • FIG. 2B is an enlarged view thereof.
  • the photocatalyst-containing layer 27 (promoter-containing layer 43) is a porous material containing a large number of pores, and the photocatalyst (promoter) is exposed in the pores.
  • the photocatalyst containing layer 27 and the cocatalyst containing layer 43 are substantially composed only of the photocatalyst and the cocatalyst.
  • the pores of the photocatalyst containing layer 27 are exposed on the inner wall surfaces of the through holes 111 and 113. That is, on the inner wall surfaces of the through holes 111 and 113 of the anode electrode 2 and the cathode electrode 3, a large number of holes made of a photocatalyst or a promoter are opened.
  • the holes of the photocatalyst containing layer 27 (promoter containing layer 43) exposed on the inner wall surfaces of the through holes 111 and 113 communicate with each other.
  • the photocatalyst containing layer 27 and the cocatalyst containing layer 43 are made of an open cell type porous material.
  • the electrolyte solution 12 having a Young-Laplace pressure or lower does not enter the through holes 111 and 113, the vicinity of the openings of the through holes 111 and 113 is a gas-liquid interface between the electrolyte solution 12 and the gas. Therefore, the gas generated inside the photocatalyst containing layer 27 (cocatalyst containing layer 43) reaches the through holes 111 and 113, and is separated from the electrolyte solution 12 to become bubbles, thereby forming a bubble in the anode electrode 2 (cathode electrode 3). It is collected on the opposite side.
  • a photoexcitation reaction occurs in the photocatalyst containing layer 27 in which the electrolytic solution 12 has been swallowed or in the photocatalyst containing layer 27 in a state where it is in contact with the electrolytic solution 12 by light irradiation.
  • electrons and holes are generated, and then oxygen molecules and protons are generated as shown in the above (Formula 101).
  • Oxygen molecules form bubbles only after they have gathered, but are still dissolved in the electrolyte as molecules at the initial stage of generation.
  • protons can only turn into hydrogen molecules when they have electrons.
  • the presence of a promoter is indispensable as shown in (Equation 102) above. Therefore, protons can be converted into hydrogen molecules only after reaching the promoter-containing layer 43 after diffusing in the photocatalyst-containing layer 27 and dissolving in the electrolyte solution 12.
  • the photocatalyst-containing layer 27 does not have the through-hole 111, oxygen molecules formed in the photocatalyst-containing layer 27 move to the cocatalyst-containing layer 43 due to the same diffusion movement as protons. Here, it disappears with protons by the reaction back to water.
  • the gas-liquid interface 52 formed by the through-hole 111 is present in the immediate vicinity of the photocatalyst containing layer 27 as in the present embodiment, the generated oxygen molecules are dissolved in the electrolyte solution 12 to form a through-hole by diffusion.
  • the gas molecules are gasified by reaching the gas-liquid interface, or can be separated and recovered after the generated oxygen molecules become oxygen bubbles. For this reason, the reverse reaction to water is inhibited, and as a result, the hydrogen collection efficiency is improved.
  • the through holes 113 formed in the promoter-containing layer 43 facilitate the separation and collection of hydrogen at the gas-liquid interface. Thereby, the hydrogen collection efficiency is improved as in the process of separating and collecting oxygen.
  • the distance between the gas-liquid interface 52 formed by the through holes 111 and 113 formed in the photocatalyst containing layer 27 and the cocatalyst containing layer 43 and the generation point of oxygen molecules and protons or the generation point of hydrogen molecules is closer. preferable. This distance is hereinafter referred to as an interface-reaction point distance.
  • the interface-reaction point distance is a distance necessary to make the gas-liquid separation process effective. As a result of repeated experiments using systems with different through-hole diameters and pitch distances, it has been found that the interface-reaction point distance is preferably within 400 ⁇ m.
  • the distance between adjacent edges of adjacent through holes 111 and 113 is preferably 0.1 ⁇ m or more and 400 ⁇ m or less. Therefore, even when the position farthest from the through holes 111 and 113, that is, the intermediate position between the through holes 111 and 113 becomes the proton generation point, the interface-reaction point distance can be set to 400 ⁇ m or less.
  • the distance between the centers of gravity of the adjacent through holes 111 and 113 is 100 ⁇ m or less.
  • the interface-reaction point distance can be satisfactorily reduced.
  • the inner wall surfaces of the through holes 111 and 113 are subjected to a hydrophobic treatment.
  • the back side of the anode electrode 2 or the cathode electrode 3 on which the gas storage portions 21 and 31 are provided is preferably lyophobic with respect to the electrolyte solution 12.
  • the electrolyte solution 12 is prevented from entering the through-holes 111 and 113, almost the entire inside of the through-holes 111 and 113 becomes a gas phase, and the gas-liquid interface 52 is in the vicinity of the opening of the through-holes 111 and 113. Formed. Therefore, the gas generated not only in the anode electrode 2 and the cathode electrode 3 but also in the vicinity of the surface reaches the through holes 111 and 113 and is immediately converted into a gas (vapor phase) and collected.
  • the photocatalyst-containing layer 27 and the cathode electrode 3 are preferably lyophilic with respect to the electrolytic solution 12. Thereby, the electrolytic solution 12 is in good contact with the photocatalyst containing layer 27 and the cathode electrode 3 (cocatalyst containing layer 43), and the photocatalytic reaction is performed.
  • the gas generation method according to the present embodiment (hereinafter sometimes referred to as the present method) will be described.
  • This method is a method for generating oxygen gas and / or hydrogen gas from an electrolyte containing water.
  • the method includes a liquid contact process, an irradiation process, and a collection process.
  • the anode electrode 2 having the photocatalyst containing layer 27 containing the photocatalyst that generates oxygen gas from the electrolytic solution by the photocatalytic reaction, and hydrogen ions and electrons in the electrolytic solution generated by the photocatalytic reaction in the photocatalyst containing layer 27
  • the electrolyte solution is brought into contact with the cathode electrode 3 that generates hydrogen gas from the cathode electrode 3.
  • the photocatalyst containing layer 27 is irradiated with excitation light of the photocatalyst.
  • the collection step at least one of oxygen gas generated at the anode electrode 2 or hydrogen gas generated at the cathode electrode 3 is passed through the plurality of through holes 111 and 113 provided in the anode electrode 2 or the cathode electrode 3. Collect through.
  • the photocatalyst-containing layer 27 is a porous material including a large number of pores from which the photocatalyst is exposed, and collects oxygen gas or hydrogen gas generated inside the pores through the through holes 111 and 113. To do.
  • FIG. 9 is a schematic diagram showing a basic configuration of a gas generator of the opposite arrangement type in which the anode electrode 2 and the cathode electrode 3 are installed to face each other.
  • the cathode electrode 3 and the photocatalyst containing layer 27 of the anode electrode 2 are disposed to face each other.
  • FIG. 9 (a) is a perspective view
  • FIG. 9 (b) is a side sectional view.
  • These drawings show the case where light 7 is irradiated from the back surface of the photocatalyst containing layer 27.
  • the light 7 passes through the light receiving window 4, the first gas storage portion 21, and the translucent substrate 28 and is irradiated to the photocatalyst containing layer 27.
  • FIGS. 9C and 9D are diagrams showing the basic configuration of the gas generator of the opposite arrangement type. These figures are a perspective view and a side sectional view, respectively.
  • the irradiation direction of the light 7 is opposite to that in the cases (a) and (b) of the figure, and is irradiated from the back surface of the promoter-containing layer 43.
  • the cathode electrode 3 is made of a material that transmits the excitation light 7.
  • the light receiving window 4 is disposed so as to face the cathode electrode 3, and the excitation light 7 transmitted through the light receiving window 4 further passes through the cathode electrode 3 and is irradiated onto the photocatalyst containing layer 27.
  • the cocatalyst-containing layer 43 needs to be translucent, and preferably has a layer thickness of 10 nm to 200 nm, and more preferably 30 nm to 150 nm.
  • the base material constituting the cathode electrode 3 is also preferably translucent, and the translucent base material 28 may be used.
  • the light receiving window 4 shown in FIGS. 9A and 9B is disposed on the opposite side of the photocatalyst containing layer 27 with the translucent substrate 28 interposed therebetween.
  • the excitation light that has passed through the light receiving window 4 further passes through the translucent substrate 28 and is irradiated onto the photocatalyst containing layer 27.
  • the advantages of the gas generator of the opposite arrangement type shown in FIG. 9 are that the structure is simple and the distance between the anode electrode 2 and the cathode electrode 3 can be made as narrow as possible. This leads to a reduction in proton movement distance and thus an improvement in hydrogen collection efficiency.
  • the anode electrode 2 includes a base material (translucent base material 28) that supports the photocatalyst-containing layer 27.
  • the translucent substrate 28 is made of a material that transmits the excitation light 7. 9A and 9B, the photocatalyst containing layer 27 is irradiated with the excitation light 7 transmitted through the translucent substrate 28.
  • the cathode electrode 3 is made of a material that transmits the excitation light 7. 9C and 9D, the photocatalyst containing layer 27 is irradiated with the excitation light 7 transmitted through the cathode electrode 3.
  • FIG. 10 is an explanatory view showing the movement of protons and electrons generated in the photocatalyst containing layer 27.
  • FIG. 10A shows a state in which the cathode electrode 3 and the anode electrode 2 are coupled by a lead wire 202 passing through the outside.
  • Electrons 8 (e ⁇ ) generated in the photocatalyst containing layer 27 (titanium oxide layer 19) can be efficiently transported to the cathode electrode 3 via the lead wire 202.
  • the proton 34 (H + ) moves in the electrolytic solution 12 and reaches the promoter-containing layer 43 of the cathode electrode 3.
  • the generated oxygen gas 23 is collected through the anode electrode 2, and the hydrogen gas 33 is collected through the cathode electrode 3.
  • the lead wire 202 passing through the outside is not necessarily required.
  • a material having a structure having good conductivity and material transportability (diffusibility) such as porous titanium 206 as shown in FIG. 10B is sandwiched between the anode electrode 2 and the cathode electrode 3. But you can. Thereby, it is possible to transport the electrons generated in the anode electrode 2 by the irradiation of the light 7 to the cathode electrode 3 without impairing the generation of hydrogen gas and oxygen gas.
  • the cathode electrode 3 includes a promoter-containing layer 43 that generates hydrogen gas by receiving the excitation light 7 of the photocatalyst, and the photocatalyst-containing layer 27 of the anode electrode 2 and the promoter-containing layer 43 of the cathode electrode 3
  • An electron transfer layer (porous titanium 206) made of a conductive material and capable of transmitting an electrolytic solution may be provided therebetween.
  • FIG. 11 is a schematic diagram showing the configuration of the photocatalytic cell (anode cell) 1 in the present embodiment.
  • FIG. 11A is a side sectional view of the photocatalyst cell 1
  • FIG. 11B is a front view of the photocatalyst cell 1.
  • the photocatalyst cell 1 includes the anode electrode 2 and is a member that constitutes the gas generation device 100 when used together with the promoter cell (cathode cell).
  • the photocatalyst cell 1 includes an anode electrode 2 fixed to the photocatalyst cell 1 by a current-carrying metal frame 201, a light receiving window 4, and a first gas containing oxygen gas.
  • the container 21 is provided with an oxygen gas discharge pipe 101, an inert gas supply pipe 102, and a current-carrying wire 202.
  • the anode electrode 2 is attached to the electrode holder 120.
  • the anode electrode 2 includes a base material 25 and a photocatalyst containing layer 27 formed on one surface of the base material 25. In addition, as will be described later, it is also possible to form the transparent conductive film 24 on the substrate 25.
  • the photocatalyst carrying surface 20 including the photocatalyst containing layer 27 is located on the back side of the surface that receives light from the light receiving window 4 in the anode electrode 2.
  • the photocatalyst containing layer 27 formed on the surface that comes into contact with the electrolytic solution is lyophilic with respect to the electrolytic solution.
  • the electrolytic solution contains water, and the photocatalyst-containing layer 27 is preferably hydrophilic.
  • examples of the shape of the base material 25 constituting the anode electrode 2 include a sheet shape, a substrate shape, and a film shape.
  • a translucent substrate 28 that is transparent to excitation light that excites the catalyst contained in the photocatalyst-containing layer 27 can also be used.
  • the photocatalyst can exhibit a gas generation function.
  • Excitation light incident from the light receiving window 4 passes through the anode electrode 2 and is irradiated from the back side to the photocatalyst containing layer 27 of the photocatalyst carrying surface 20 to exhibit a photocatalytic function.
  • alkali glass such as glass can be used, but a quartz plate is preferable if transparency to ultraviolet rays is required.
  • ceramic materials such as magnesium fluoride and calcium fluoride can also be used.
  • a plastic film can also be used, but those having transparency to ultraviolet rays are preferred. If it is a plastic film, it is easy to form many fine holes, and the cost of the gas generating device and the generated gas can be reduced.
  • polyester resin film such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyolefin resin film such as polyethylene, polypropylene, polymethylpentene, cyclic polyolefin copolymer, methacrylic resin film, polycarbonate resin film, A polystyrene resin film, a cellulose acetate resin film, a transparent polyimide resin film, a transparent fluororesin film, a silicone resin film, or some biodegradable polymers can be used.
  • stacked the base material 25 and the photocatalyst containing layer 27 is illustrated, this invention is not limited to this.
  • the anode electrode 2 may be composed of only the photocatalyst-containing layer 27, and the use of the substrate 25 is optional.
  • a base material on which the anode electrode 2 (photocatalyst-containing layer 27) or other member is placed A base may be used as a base when the gas generating apparatus 100 of the present embodiment is mounted on the ground or an installation stand (not shown).
  • the base material 25 is preferably conductive, but is generally insulative. In this case, as shown in FIG. 12C described later, by forming a transparent conductive film 24 between the base material 25 and the photocatalyst containing layer 27, it is possible to impart conductivity to the surface. .
  • the base material 25 does not need to be transparent with respect to excitation light.
  • the base material 25 used for the anode electrode 2 can be composed of a metal substrate, a graphite plate, or the like.
  • a mesh-shaped or weave-shaped material is used for the anode electrode 2
  • a metal or graphite fiber can be used. Since the base material 25 made of these materials is conductive, it is not necessary to provide the transparent conductive film 24.
  • the cathode electrode 3 facing the anode electrode 2 is formed from a material transparent to the excitation light, and the excitation light is applied to the photocatalyst containing layer 27. It is preferable that the irradiation is possible.
  • the transparent conductive film 24 can be formed from indium tin iron oxide (ITO), tin oxide (SnO 2 ), zinc oxide (ZnO), or the like.
  • the transparent conductive film 24 can be formed by a method such as vacuum deposition, chemical vapor deposition, ion plating, sputtering, sol-gel coating, or the like.
  • the photocatalyst contained in the photocatalyst-containing layer 27 includes titanium oxide, vanadium oxide, nickel oxide, zinc oxide, gallium oxide, zirconia, nebidium oxide, molybdenum oxide, tantalum oxide, tungsten oxide, gallium oxide, germanium oxide, indium oxide, and oxide.
  • An oxide such as tin, antimony oxide, lead oxide and bismuth oxide, and at least one selected from the group consisting of these nitrides and sulfides can be used. Further, these nitrides and sulfides can be used. Can be used. Of these, titanium oxide and derivatives thereof exhibiting high photocatalytic activity and excellent stability are preferred. Binary compounds can also be used.
  • silver compounds such as ArTiO 3 , AgNdO 3 , AgNbO 3 , Ga 2 O 3 —In 2 O 3 mixed compounds, AgTaO 3 , AgNbO 3 , AgInZS, In 2 O 3 —ZnO compounds, and BiVO 4 Such compounds are also preferred.
  • the material to be doped include chromium, manganese, iron, cobalt, nickel, zinc, gallium, germanium, HISO, selenium, molybdenum, palladium, silver, cadmium, indium, tin, antimony, tellurium, and tungsten.
  • the titanium oxide used as a photocatalyst is generally anatase type titanium oxide.
  • titanium oxide is effective for ultraviolet rays but has no photocatalytic effect for visible light.
  • Recently, the development of a catalyst that exhibits a photocatalytic function for visible light has been advanced.
  • As typical visible light photocatalysts research on titanium oxide supporting cerium oxide, sodium tantalate composite oxide, bismuth oxide and rhodium-doped strontium titanium oxide, etc. is underway.
  • a photocatalyst can also be used.
  • Examples of the method for forming the photocatalyst-containing layer 27 containing these photocatalysts include ion plating, chemical vapor deposition, vacuum vapor deposition, and sputtering.
  • a formation method such as a spin coating method, a screen printing method, or a spray method is suitably employed.
  • these photocatalysts are in an amorphous state, so that electrons and holes generated by photoexcitation are trapped by defects and disorder before reaching the reaction surface, and a catalytic function cannot be expected. Therefore, heat treatment is performed to advance crystallization.
  • the heating temperature is preferably in the range of 200 ° C to 700 ° C.
  • heat treatment is not required or heat treatment for removing the resin composition (binder) containing the photocatalyst as a catalyst dispersion solution at a temperature less than 200 ° C. It can be dealt with by doing.
  • a cast method in which a catalyst dispersion solution in which a photocatalyst is dispersed is poured into a mold, and the catalyst dispersion solution is removed by heating and baking or solvent treatment may be used.
  • a resin composition (binder) as a catalyst dispersion solution and heating and baking the resin composition, a porous material substantially consisting only of a photocatalyst can be produced.
  • an inverted mold of the photocatalyst containing layer 27 in which a portion corresponding to the through hole protrudes is used as the mold into which the catalyst dispersion solution is poured. The same applies to the production of the cocatalyst-containing layer 43.
  • the layer thickness of the photocatalyst containing layer 27 is preferably 0.01 ⁇ m or more and 100 ⁇ m or less, and more preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • the layer thickness of the photocatalyst containing layer 27 is preferably 0.01 ⁇ m or more and 100 ⁇ m or less, and more preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • the oxygen gas discharge pipe 101 communicates with the first gas storage unit 21 and can discharge the oxygen gas collected in the first gas storage unit 21.
  • the energizing wire 202 is connected to the energizing metal frame 201, and the electrons generated in the photocatalyst containing layer 27 can be supplied to the cathode electrode (not shown in the figure) via the energizing wire 202. it can.
  • FIG. 11B is a front view of the photocatalytic electrolysis cell 1.
  • support surface 20 side which performs electrolysis is made into the front, and the surface where excitation light is irradiated becomes a back surface.
  • the photocatalyst cell 1 includes an oxygen gas discharge pipe 101 and an inert gas supply pipe 102, which communicate with the first gas storage unit 21. By supplying an inert gas such as nitrogen gas from the inert gas supply pipe 102 to the gas storage unit 21, the recovery of the oxygen gas can be promoted.
  • FIG. 12 is a schematic diagram showing an example of the anode electrode 2 having a plurality of through holes 111 through which oxygen gas selectively passes.
  • the base material 25 may be comprised from the material transparent with respect to excitation light.
  • FIG. 12 (a) is a front view of the anode electrode 2
  • FIG. 12 (b) is a side sectional view of the anode electrode 2.
  • FIG. 12C is an enlarged view of the central portion of the anode electrode 2. The enlarged portion is a portion surrounded by a square broken line.
  • the anode electrode 2 has a structure in which a base material 25, a transparent conductive film 24, and a photocatalyst containing layer 27 are laminated in this order.
  • the anode electrode 2 is attached to an electrode holder 120 which is a support for fixing to the photocatalyst cell 1.
  • the electrode holder 120 is omitted from the drawings other than FIGS. 11 and 12.
  • a plurality of through holes 111 are formed in the anode electrode 2.
  • the shape of the through-hole 111 can be freely designed as long as the Young-Laplace equation is satisfied.
  • the anode electrode 2 itself has a porous structure including a plurality of through-holes 111, and may have a mesh shape or an interdigital shape. That is, the anode electrode 2 only needs to have a through hole that does not allow the electrolytic solution 12 to pass therethrough and allows the generated oxygen gas to selectively pass to the back side.
  • FIG. 13 is a plan view showing an example of a hole processing portion formed in the anode electrode 2.
  • the hole diameter of the through-hole 111 is 100 ⁇ m
  • the pitch interval (distance between the centers of gravity) of the holes is 150 ⁇ m.
  • the pore diameter and pitch interval can be appropriately determined, but as described above, the smaller the pore diameter is based on the Young-Laplace pressure, and the leakage of the electrolyte is further suppressed.
  • the transparent conductive film 24 and the photocatalyst containing layer 27 may be formed after the through hole 111 is formed, or the through hole 111 is formed after the transparent conductive film 24 and the photocatalyst containing layer 27 are formed on the substrate 25. Also good.
  • the inner wall surface of the through hole 111 is preferably lyophobic with respect to the electrolyte. Furthermore, it is desirable that the back surface of the photocatalyst carrying surface 20 of the anode electrode 2 is also lyophobic with respect to the electrolytic solution. Thereby, the penetration
  • the electrolytic solution contains water as a main component, and the inner wall surface of the through-hole 111 and the back surface of the anode electrode 2 are preferably hydrophobic.
  • a method of hydrophobizing the inner wall surface of the through-hole 111 a method of applying a hydrophobic coating agent in addition to using a hydrophobic substrate in advance can be used.
  • a hydrophobic coating agent such as CYTOP (manufactured by Asahi Glass).
  • Hydrophobization by plasma treatment using a fluorine-based gas is also possible.
  • the photocatalyst containing layer 27 of the anode electrode 2 is brought into contact with the electrolytic solution 12, and further, the photocatalyst containing layer 27 is irradiated with the excitation light of the photocatalyst that has passed through the light receiving window 4 through the substrate 25.
  • Oxygen gas is generated by the photocatalytic reaction in Note that no photocatalyst is supported on the inner wall surface of the through-hole 111 corresponding to the thickness portion of the base material 25, and oxygen gas is not generated at that location.
  • the through hole 111 is formed based on the Young-Laplace equation, and the electrolyte solution is prevented from entering the through hole 111 in depth.
  • a gas-liquid interface that is a boundary surface between the electrolyte solution surface and the gas phase is formed in the opening of the through hole 111.
  • This gas-liquid interface 52 is formed due to the aforementioned Young-Laplace pressure.
  • the inner wall surface of the through-hole 111 is hydrophobic, the penetration of the electrolyte into the through-hole 111 can be more effectively suppressed.
  • FIG. 14 is a schematic diagram of a cocatalyst cell (electrolysis cell for hydrogen gas generation) 6.
  • FIG. 14A is a side sectional view of the promoter cell.
  • FIG. 14B is a front view of the promoter cell.
  • the promoter cell 6 shown in FIGS. 14A and 14B includes a cathode electrode 3 fixed to the promoter cell 6 by a current-carrying metal frame 201, a light receiving window 4, and a gas storage unit 31 that stores hydrogen gas.
  • the cathode electrode 3 is formed on the substrate 25 and includes a promoter-containing layer 43.
  • the promoter contained in the promoter-containing layer 43 is preferably at least one selected from the group consisting of platinum, nickel, ruthenium, nickel oxide and ruthenium oxide.
  • the cathode electrode 3 is composed of a translucent substrate 28 (see FIG. 9), thereby transmitting the excitation light from the light receiving window 4, and the anode electrode 2 on the back surface of the cathode electrode 3 as viewed from the light receiving window 4.
  • excitation light can be irradiated to the photocatalyst containing layer 27.
  • the cathode electrode 3 When the cathode electrode 3 is irradiated with light from the anode electrode 2 side, the co-catalyst cell 6 does not necessarily need the light receiving window 4, and the cathode electrode 3 may not be transparent to the excitation light.
  • the cathode electrode 3 is preferably composed of platinum, nickel, or the like.
  • the base material 25 of the cathode electrode 3 has a sheet shape, a substrate shape, a film shape, or the like, and is provided with through holes similar to those shown in FIGS.
  • the cathode electrode 3 may also be a base material 25 having a plurality of electrode portions discretely arranged with through-holes, such as a mesh-shaped or a comb-shaped one.
  • the through-hole (second through-hole) in the cathode electrode 3 does not allow the electrolyte solution to pass therethrough, and selectively allows hydrogen gas generated on the surface of the cathode electrode 3 facing the anode electrode 2 to pass through the back surface side.
  • the energizing wire 202 is connected to the energizing metal frame 201.
  • hydrogen gas is generated by electrons supplied to the cathode electrode 3 through the energization wire 202 and hydrogen ions in the electrolytic solution generated by the photocatalytic reaction.
  • the energization wire 202 of the promoter cell 6 and the energization wire 202 of the photocatalyst cell 1 (see FIG. 11), the electrons generated in the photocatalyst containing layer 27 are supplied to the cathode electrode 3. Gas generation can be performed continuously.
  • the energization wire 202 is electrically connected to the energization metal frame 201 as shown in FIG. 14A, and can supply electrons from the anode electrode 2 through the inert gas supply pipe 102. It is configured.
  • FIG. 14B is a front view of the promoter cell 6.
  • the surface where electrolysis is performed is made into the front, and the surface where excitation light is irradiated becomes a back surface.
  • the hydrogen gas generating electrolytic cell 6 includes a hydrogen gas discharge pipe 103 and an inert gas supply pipe 102, which communicate with the second gas storage unit 31.
  • an inert gas such as nitrogen gas from the inert gas supply pipe 102 to the second gas storage unit 31
  • recovery of oxygen gas can be promoted.
  • the gas generating apparatus 100 of the present embodiment uses an apparatus in which the cathode electrode 3 is arranged in the photocatalytic cell 1 shown in FIG. More specifically, FIG. 15 is a side sectional view of the gas generation device 100 in which the photocatalyst cell 1 shown in FIG. 11 is mounted in the electrolytic solution tank 10, and FIG. 16 is a front view of the gas generation device 100.
  • a photocatalytic cell 1 having an anode electrode 2 is mounted in an electrolyte bath 10 having a platinum electrode as a cathode electrode 3 fixed to a support rod.
  • the electrolyte bath 10 is sealed by the lid member 11 so that hydrogen gas does not leak.
  • the oxygen gas discharge pipe 101 and the inert gas supply pipe 102 of the photocatalyst cell 1 penetrate, and the photocatalyst cell 1 is fixed thereby.
  • the inert gas supply pipe 102 includes a current-carrying wire insertion port 203 on the upper surface of the lid member 11.
  • the energizing wire 202 passes through the inert gas supply pipe 102 via the energizing wire insertion port 203. Further, the energizing wire 202 is electrically connected to the cathode electrode 3 through the support rod 301.
  • the support rod 301 penetrates the lid member 11.
  • the cathode 3 is fixed to the support bar 301 and faces the photocatalyst carrying surface 20 of the anode 2.
  • the lid member 11 includes an inert gas supply pipe 102 that supplies an inert gas to the space in the electrolytic solution tank 10 and a hydrogen gas discharge pipe 103.
  • the excitation light of the catalyst is irradiated from the back side of the photocatalyst carrying surface 20 in the anode electrode 2 through the light receiving window 4.
  • the electrolyte bath 10 itself is also made of a material that is transparent to excitation light.
  • the excitation light passes through the electrolytic solution tank 10 and the base material 25 and is irradiated to the photocatalyst containing layer 27 on the base material 25.
  • oxygen gas and hydrogen ions are generated on the surface of the photocatalyst containing layer 27 in contact with the electrolytic solution 12.
  • Oxygen gas moves from the photocatalyst carrying surface 20 to the back side through the through hole of the anode electrode 2, accumulates in the gas storage unit 21, and is collected through the oxygen gas discharge pipe 101 (see FIG. 11).
  • hydrogen ions are generated in the photocatalyst-containing layer 27 and then dissolved in the electrolytic solution 12 and reach the cathode electrode 3. Further, the electrons generated in the photocatalyst containing layer 27 similarly reach the cathode electrode 3 through the energizing wire 202. Hydrogen gas is generated from electrons and hydrogen ions on the surface of the cathode electrode 3. The generated hydrogen gas is separated from the cathode electrode 3 by buoyancy and is recovered through the hydrogen gas discharge pipe 103.
  • the electrolytic solution 12 contains water as a main component, such as a weak acid aqueous solution containing hydrochloric acid, sulfuric acid, nitric acid, acetic acid, oxalic acid, sodium peroxide, potassium peroxide, sodium carbonate, potassium carbonate, and the like.
  • a weak acid aqueous solution containing hydrochloric acid, sulfuric acid, nitric acid, acetic acid, oxalic acid, sodium peroxide, potassium peroxide, sodium carbonate, potassium carbonate, and the like.
  • a weak ant potassium solution, an aqueous solution of alcohols such as methanol, ethanol and propanol, and an aqueous solution of carboxylic acids such as acrylic acid and phthalic acid can be used.
  • the gas generation apparatus 100 of the present embodiment uses an apparatus in which the anode electrode 2 is inserted using the promoter cell 6 shown in FIG.
  • FIG. 17 is a side cross-sectional view of the gas generation device 100 in which the promoter cell 6 shown in FIG. 14 is mounted in the electrolytic solution tank 10.
  • a photocatalytic cell 1 having a cathode electrode 3 is mounted in an electrolytic solution tank 10 having an anode electrode 2.
  • the cathode electrode 3 has a second through hole, and the anode electrode 2 has no through hole.
  • a hydrogen gas discharge pipe 103 and an inert gas supply pipe 102 of the hydrogen gas generation electrolysis cell 6 pass through the lid member 11, thereby fixing the hydrogen gas generation electrolysis cell 6.
  • the inert gas supply pipe 102 includes an energization wire insertion opening on the upper surface of the lid member 11.
  • the energizing wire 202 passes through the inert gas supply pipe 102 through the energizing wire insertion port. Further, the energizing wire 202 is electrically connected to the anode electrode 2 through the support rod 301 (not shown).
  • the support rod 301 penetrates the lid member 11.
  • the anode electrode 2 is fixed to the support rod 301, and the photocatalyst carrying surface 20 of the anode electrode 2 is disposed so as to face the cathode electrode 3.
  • the lid member 11 includes an inert gas supply pipe 102 that supplies an inert gas to the space in the electrolytic solution tank 10 and an oxygen gas discharge pipe 101.
  • the excitation light of the catalyst passes through the light receiving window 4 and the cathode electrode 3 and is irradiated to the photocatalyst containing layer 27 of the anode electrode 2.
  • the electrolyte bath 10 itself is also made of a material that is transparent to excitation light.
  • the anode electrode 2 can be made of a material that is opaque to excitation light. Then, oxygen gas and hydrogen ions are generated on the surface of the photocatalyst containing layer 27 in contact with the electrolytic solution 12. The oxygen gas generated in the photocatalyst containing layer 27 is separated from the anode electrode 2 by buoyancy, and is recovered through the oxygen gas discharge pipe 101.
  • hydrogen ions are generated in the photocatalyst-containing layer 27 and then dissolved in the electrolytic solution 12 and reach the cathode electrode 3. Further, the electrons generated in the photocatalyst containing layer 27 similarly reach the cathode electrode 3 through the energizing wire 202. Hydrogen gas is generated from electrons and hydrogen ions on the surface of the cathode electrode 3. The generated hydrogen gas moves from the gas generation surface to the back surface side through the second through hole of the cathode electrode 3, accumulates in the gas storage unit 31, and is recovered through the hydrogen gas discharge pipe 103.
  • the gas generating apparatus 100 of the present embodiment is configured using the photocatalyst cell 1 shown in FIG. 11 and the cocatalyst cell 6 shown in FIG.
  • FIG. 18 is a side sectional view of the gas generating apparatus of the present embodiment
  • FIG. 19 is a front view from the cathode electrode 3 side
  • FIG. 20 is a top view.
  • the photocatalyst cell 1 and the co-catalyst cell 6 have a configuration in which the interelectrode spacer 61 is sandwiched and are arranged in parallel.
  • the photocatalyst carrying surface 20 of the anode electrode 2 by the inter-electrode spacer and the cathode electrode 3 are disposed facing each other.
  • a space (electrode gap portion) is formed by the anode electrode 2 and the cathode electrode 3, and the electrode gap portion is filled with the electrolyte solution 12.
  • an electrolyte solution supply tube 133 and an electrolyte solution supply tube 131 are arranged on one side of the gas generating device 100, and the electrolyte solution can be supplied to the space from the outside. it can.
  • an electrolytic solution discharge tube 134 and an electrolytic solution discharge tube 132 are arranged, and the electrolytic solution 12 subjected to the photocatalytic reaction can be discharged to the outside in the space (electrode gap portion). That is, the electrode gap formed by the anode electrode 2 and the cathode electrode 3 constitutes a part of the electrolyte flow path.
  • the gas generating device 100 stores the electrolyte solution 12 and brings the anode electrode 2 and the cathode electrode 3 into contact with the electrolyte solution 12 (electrode gap portion), and the electrolyte solution in the electrolyte solution storage portion.
  • 12 further includes an electrolyte solution supply pipe 131 that supplies the electrolyte solution 12 and an electrolyte solution discharge pipe 132 that discharges the electrolyte solution 12 subjected to the catalytic reaction from the electrolyte solution storage unit.
  • the excitation light of the catalyst is irradiated from the back side of the photocatalyst carrying surface 20 in the anode electrode 2 through the light receiving window 4.
  • the excitation light further passes through the substrate 25 and is irradiated to the photocatalyst containing layer 27 on the substrate 25.
  • oxygen gas and hydrogen ions are generated on the surface of the photocatalyst containing layer 27 in contact with the electrolytic solution 12.
  • the oxygen gas moves from the photocatalyst carrying surface 20 to the back side through the through hole of the anode electrode 2, accumulates in the first gas storage unit 21, and is collected through the oxygen gas discharge pipe 101.
  • hydrogen ions are generated in the photocatalyst-containing layer 27 and then dissolved in the electrolytic solution 12 and reach the cathode electrode 3. Further, the electrons generated in the photocatalyst containing layer 27 similarly reach the cathode electrode 3 through the energizing wire 202 as shown in FIG. Hydrogen gas is generated from electrons and hydrogen ions on the surface of the cathode electrode 3. The generated hydrogen gas moves from the gas generation surface to the back side through the second through hole of the cathode electrode 3, accumulates in the second gas storage unit 31, and is recovered through the hydrogen gas discharge pipe 103.
  • the oxygen gas generated at the anode electrode 2 and the hydrogen gas generated at the cathode electrode 3 are separately accumulated in the first gas storage unit 21 and the second gas storage unit 31 without intermingling with each other.
  • the distance between the anode electrode 2 and the cathode electrode 3 can be arranged close to the distance that cannot be achieved by the conventional electrode structure.
  • FIG. 21 shows a structure in which two electrolysis cells are connected in the same manner as FIG. 18, but light is irradiated from the light receiving window 4 on the cathode electrode 3 side in the opposite direction to FIG.
  • the cathode electrode 3 is transparent to the excitation light, and the irradiated light is irradiated to the photocatalyst containing layer 27 of the anode electrode 2.
  • the oxygen gas and the hydrogen gas are accumulated in the respective gas storage portions and then supplied to the outside through the respective gas discharge pipes.
  • the cathode electrode 3 can be made of a member that is opaque to the excitation light.
  • the anode electrode 2 is used for the excitation light. It can be composed of an opaque member.
  • the anode electrode 2 and the cathode electrode 3 are made of a member transparent to the excitation light from the viewpoint of efficiently performing excitation light irradiation.
  • the anode electrode 2 is disposed in parallel above the horizontally disposed cathode electrode 3 so as to be substantially perpendicular to the excitation light irradiated from above such as sunlight.
  • This is a gas generating device 100 (solar-compatible gas generating device) provided with an anode electrode 2.
  • the gas generating apparatus 100 of the present embodiment includes an anode electrode 2 installed horizontally and a cathode electrode 3 installed in parallel below the anode electrode 2.
  • FIG. 22 is a top view of the solar-powered gas generation apparatus 100 of the present embodiment
  • FIG. 23 is a side sectional view
  • FIG. 24 is a bottom view.
  • the anode electrode 2 is disposed above the cathode electrode 3 so as to be parallel to the cathode electrode 3.
  • the photocatalyst carrying surface 20 of the anode electrode 2 faces the cathode electrode 3.
  • a light receiving window 4 is disposed above the anode electrode 2 so that sunlight or the like can be received by the anode electrode 2 over a wide area.
  • the space between the anode electrode 2 and the cathode electrode 3 can be filled with the electrolyte solution 12.
  • the electrolytic solution 12 is supplied from the electrolytic solution supply pipe 131 to the electrolytic solution tank 10 and is further supplied to the space between the electrodes via the electrolytic solution supply thin tube 133. Then, the electrolytic solution 12 subjected to the photocatalytic reaction moves to the electrolytic solution tank 10 through the electrolytic solution discharge thin tube 134 and is discharged to the outside through the electrolytic solution discharge tube 132. In this manner, hydrogen and oxygen can be continuously generated by supplying the electrolytic solution 12 and irradiating with sunlight.
  • a first gas storage portion 21 is disposed so as to surround the back surface of the photocatalyst carrying surface 20.
  • a first through hole 111 is formed in the anode electrode 2, and oxygen gas moves from the photocatalyst carrying surface 20 to the back side through the first through hole 111 and is accumulated in the first gas storage unit 21. And it collect
  • a second gas accommodating portion 31 is disposed below the cathode electrode 3.
  • a second through hole is formed in the cathode electrode 3, and hydrogen gas moves from the gas generation surface to the back side through the second through hole and is accumulated in the second gas storage unit 31. Then, it is recovered through the hydrogen gas discharge pipe 103.
  • this solar-compatible gas generator can be used with a different inclination. However, it is indispensable to arrange the supply side so that the electrolyte flows from the supply side to the discharge side.
  • the cathode electrode 3 can be a platinum electrode, but can also be a carbon electrode or a thin film electrode formed by sputtering a platinum thin film.
  • FIG. 24 is a view of the solar-compatible gas generation device as viewed from below.
  • the fifth embodiment shown in FIG. 25 is a side cross-sectional view of the gas generator 100 for sunlight when the cathode electrode 3 is installed on the anode electrode 2, contrary to the fourth embodiment.
  • the gas generating apparatus 100 of this embodiment includes a cathode electrode 3 installed horizontally and an anode electrode 2 installed in parallel below the cathode electrode 3.
  • Sunlight passes through the cathode electrode 3 from the light receiving window 4 installed above and enters the photocatalyst containing layer 27 of the anode electrode 2.
  • the photocatalyst containing layer 27 of the anode electrode 2 is disposed upward.
  • the electrodes 12 are filled with the electrolyte solution 12.
  • a second gas storage portion 31 is disposed above the cathode electrode 3.
  • a second through hole is formed in the cathode electrode 3, and hydrogen gas moves from the gas generation surface to the back side through the second through hole and is accumulated in the second gas storage unit 31. Then, it is recovered through the hydrogen gas discharge pipe 103.
  • the first gas storage portion 21 is disposed so as to surround the back surface of the photocatalyst carrying surface 20.
  • a first through hole 111 is formed in the anode electrode 2, and oxygen gas moves from the photocatalyst carrying surface 20 to the back side through the first through hole 111 and is accumulated in the first gas storage unit 21. And it collect
  • FIGS. 26A and 26B are perspective views of the anode / cathode integrated electrode 50 of the sixth embodiment.
  • the cathode electrode 3 and the anode electrode 2 are supported side by side on a common base material 25.
  • the fact that the anode electrode 2 and the cathode electrode 3 are arranged side by side means that they are in a position shifted from each other in the plane direction, and it is not necessarily required that both electrodes are completely in the same plane.
  • the plurality of cathode electrodes 3 and the plurality of anode electrodes 2 are disposed adjacent to each other.
  • the cathode electrode 3 and the anode electrode 2 of the present embodiment each have a strip shape.
  • a plurality of first through holes 111 are formed in the anode electrode 2, and a plurality of second through holes 113 are formed in the cathode electrode 3.
  • the first through holes 111 and the second through holes 113 are regularly arranged in a staggered pattern.
  • the strip-shaped anode electrode 2 and cathode electrode 3 may each have through-holes (first through-hole 111 and second through-hole 113) as shown in FIG. 26 (a), or in FIG. 26 (b). As described above, a plurality of through holes may be provided.
  • the inner wall surfaces of the first through hole 111 and the second through hole 113 are preferably hydrophobic with respect to the electrolytic solution. Furthermore, it is desirable that the back surface of the light receiving surface composed of the photocatalyst containing layer 27 of the anode electrode 2 and the cocatalyst containing layer 43 of the cathode electrode 3 is hydrophobic. Thereby, it can suppress effectively that electrolyte solution moves to the back surface side via the 1st through-hole 111 and the 2nd through-hole 113.
  • the photocatalyst containing layer 27 is formed in a ring shape along the peripheral edge of the first through hole 111.
  • the width of the photocatalyst containing layer 27 formed in a ring shape is 1 ⁇ m or more.
  • the photocatalyst containing layer 27 (photocatalyst carrying surface 20) of the present embodiment is provided in a ring shape at the peripheral edge of the opening of the first through hole 111.
  • the cocatalyst-containing layer 43 is provided in a ring shape at the periphery of the opening of the second through hole 113.
  • the promoter-containing layer 43 is formed in a ring shape along the peripheral edge of the second through hole 113.
  • the width of the promoter-containing layer 43 formed in a ring shape is 1 ⁇ m or more.
  • the photocatalyst containing layer 27 and the cocatalyst containing layer 43 are not formed on the inner walls of the through holes 111 and 113 within the thickness range of the substrate 25.
  • the width of the photocatalyst containing layer 27 is 1 ⁇ m or more and the width of the cocatalyst containing layer 43 is 1 ⁇ m or more, gas generation is excellent.
  • the anode electrode 2 is constituted by the ring-shaped photocatalyst containing layer 27, and the cathode electrode 3 is constituted by the ring-shaped promoter-containing layer 43.
  • the cathode electrode 3 and the anode electrode 2 are provided side by side and adjacent to each other through an electrically insulating material (base material 25), and the adjacent interval between the cathode electrode 3 and the anode electrode 2 is 0.01 ⁇ m or more. .
  • FIG. 28 is a cross-sectional view taken along the broken line shown in FIG.
  • the photocatalyst containing layer 27 When the photocatalyst containing layer 27 receives the excitation light irradiated from the light receiving window 4, the photocatalyst containing layer 27 in contact with the electrolyte solution 12 (shown here as water: H 2 O) is positively converted to electrons e ⁇ by photoexcitation on the photocatalyst containing layer 27. Hole h + is generated. The two holes h + oxidize H 2 O to generate two H + (protons) and one-half O 2 (oxygen molecules) (formula 101 described as the background art). This O 2 immediately passes through the first through hole 111 in a gaseous state and moves to the back surface side. Water forms the gas-liquid interface 52 due to the aforementioned Young-Laplace pressure and does not enter the first through-hole 111 (see the above formula (2)).
  • the two H + generated in the photocatalyst-containing layer 27 diffuse in water and react with two electrons e ⁇ on the promoter-containing layer 43 to generate one H 2 (hydrogen molecule).
  • H 2 hydrogen molecule
  • This H 2 immediately passes through the second through hole 113 in the gaseous state and moves to the back surface side. Water forms the gas-liquid interface 52 due to the aforementioned Young-Laplace pressure, and does not enter the second through hole 113 (see the above formula (2)).
  • the first through hole 111 through which oxygen passes and the second through hole 113 through which hydrogen passes are spatially separated, and the probability of a reverse reaction in which oxygen and hydrogen return to water is very small.
  • the photocatalyst containing layer 27 is provided at the peripheral edge of the opening of the first through hole 111
  • the promoter containing layer 43 is provided at the peripheral edge of the opening of the second through hole 113. Is provided. Therefore, the gas generating apparatus of this embodiment improves the production efficiency of oxygen gas and hydrogen gas, and is excellent in the separability of these gases.
  • no photocatalyst is supported on the inner wall of the first through hole 111, and oxygen gas is not generated on the inner wall.
  • the inner wall of the 1st through-hole 111 is hydrophobic, the electrolyte solution 14 cannot penetrate
  • the mechanism by which the gas-liquid interface 52 is formed is due to the aforementioned Young-Laplace pressure.
  • oxygen molecules generated in the photocatalyst-containing layer 27 dissolve in the electrolyte solution 12 and reach the gas-liquid interface 52 by diffusion or contact with the gas-liquid interface 52 at the same time as growing into bubbles, and the first penetration by the bubble breaking phenomenon. It will be absorbed by the gas phase inside the hole 111. As a result, the phenomenon in which oxygen gas is generated and simultaneously sucked into the first through hole 111 and moves to the back surface side continues.
  • the oxygen gas generated in the gas generating device 100 is sent out from the first gas storage part provided on the back surface thereof through the oxygen gas discharge pipe 101. Thus, oxygen gas can be recovered via the oxygen gas discharge pipe 101 (see FIGS. 30A and 30B described later).
  • the photocatalyst containing layer 27 receives the excitation light from the light receiving window 4, the photocatalyst containing layer 27 generates H + and electrons e ⁇ by a photocatalytic reaction.
  • hydrogen gas is generated from H + and electrons e ⁇ in the electrolytic solution.
  • no promoter is supported on the inner wall of the second through hole 113, and no hydrogen gas is generated on the inner wall.
  • the electrolyte solution 12 cannot penetrate
  • the mechanism by which the gas-liquid interface 52 is formed is due to the aforementioned Young-Laplace pressure.
  • the hydrogen gas generated in the cocatalyst-containing layer 43 grows into bubbles and simultaneously contacts the gas-liquid interface 52 and is absorbed by the gas phase inside the second through-hole 113 due to the bubble breaking phenomenon.
  • the phenomenon in which hydrogen gas is generated and simultaneously sucked into the second through-hole 113 and moves to the back surface side continuously occurs.
  • the hydrogen gas generated in the gas generating device 100 is recovered from the second gas storage portion provided on the back surface of the hydrogen gas via the hydrogen gas discharge pipe 103 (see FIG. 30B). be able to.
  • the gas generation device 100 has a plurality of first through holes 111 opened in a region composed of the photocatalyst containing layer 27.
  • the promoter-containing layer 43 is formed in a ring shape along the peripheral edge of the second through hole 113.
  • the cocatalyst-containing layer 43 may be laminated on the photocatalyst-containing layer 27, and only the cocatalyst-containing layer 43 is the periphery of the second through-hole 113 from the viewpoint of suppressing a reverse reaction in which oxygen and hydrogen react and return to water. It may be formed in a ring shape along the part.
  • the photocatalyst containing layer 27 and the cocatalyst containing layer 43 are not formed on the inner wall of the through hole, and oxygen gas and hydrogen gas are not generated on the inner wall. And since the inner wall of the 2nd through-hole 113 is hydrophobic, the penetration
  • FIG. 30 is a schematic diagram showing a configuration of a gas generation device 100 including an anode / cathode integrated electrode in the present embodiment
  • FIG. 30 (a) is a side view of the gas generation device 100 including an anode / cathode integrated electrode. It is sectional drawing.
  • FIG. 30B is a front view of the gas generating apparatus 100 including the anode-cathode integrated electrode as viewed from the surface side where the electrolysis is performed (the surface side receiving light).
  • the gas generating device 100 including the anode-cathode integrated electrode includes a catalyst-containing layer 81 (the photocatalyst-containing layer 27 and the promoter-containing layer 43).
  • a catalyst-containing layer 81 the photocatalyst-containing layer 27 and the promoter-containing layer 43.
  • the light receiving window 4 provided facing the surface 20
  • the first gas storage part provided on the back side of the photocatalyst carrying surface 20 of the gas generating device 100
  • a second gas storage section provided.
  • the electrolytic solution tank 10 surrounding the photocatalyst carrying surface 20 is provided.
  • the gas generating apparatus 100 including the anode-cathode integrated electrode includes the light receiving window 4 that transmits the excitation light of the photocatalyst and irradiates the photocatalyst containing layer 27 with the excitation light.
  • the light receiving window 4 is disposed at a position facing both the photocatalyst containing layer 27 and the cocatalyst containing layer 43, and the photocatalyst containing layer 27 and the cocatalyst containing layer 43 are irradiated with excitation light transmitted through the light receiving window 4. Is done.
  • an irradiation light source for irradiating the light receiving window 4 with excitation light of the photocatalyst included in the photocatalyst containing layer 27 may be separately provided.
  • the irradiation light source a high-pressure mercury lamp, a xenon lamp, or the like can be used.
  • excitation light for the photocatalyst light having a wavelength of 250 nm or more can be used.
  • the gas generator 100 is provided with a catalyst layer on one surface of the substrate 25.
  • the gas generator 100 is mounted on the electrode holder 120 and is fixed to the photocatalyst cell 1.
  • the light receiving window 4 is made of a material that can transmit excitation light, and specifically, an inorganic material such as glass, a polymer such as polyimide resin, acrylic resin, polyethylene resin, polycarbonate resin, polyolefin resin, and epoxy resin. A material etc. can be used.
  • the light receiving window 4 forms a part of the side wall of the electrolyte container 12
  • excitation light may be transmitted between the light receiving window 4 and the gas generation device 100.
  • a partition wall constituting the side wall of the electrolytic solution tank 10 can be separately provided.
  • the photocatalyst cell 1 includes a bottom wall 26 and constitutes a gas storage portion 41 that surrounds the back side of the photocatalyst carrying surface 20 of the gas generation device 100.
  • the gas storage unit 30 is partitioned by a partition, and a first gas storage unit 21 (not shown) and a second gas storage unit 31 (not shown) are provided.
  • An electrolytic solution supply pipe 131 and an electrolytic solution discharge pipe 132 are connected to the electrolytic solution tank 10, and the electrolytic solution can be circulated by a circulation pump (not shown).
  • the electrolytic solution tank 10 is filled with the electrolytic solution 12.
  • FIG. 31 is a perspective view showing the internal structure of the gas generating apparatus 100 provided with the anode / cathode integrated electrode shown in FIG. 30 in a three-dimensional view.
  • the light 7 that has entered through the light receiving window 4 is applied to the anode / cathode integrated electrode shown in FIG. 29 and causes the gas storage unit 30 to collect oxygen gas and hydrogen gas.
  • FIG. 30 shows a case where the gas storage units 30 are alternately arranged with the first gas storage units 21 and the second gas storage units 31 side by side. Oxygen gas and hydrogen gas are stored in separate storage portions, and can be taken out to the outside through the oxygen gas discharge pipe 101 and the hydrogen gas discharge pipe 103.
  • the electrolytic solution 12 contains water as a main component, such as a weak acid aqueous solution containing hydrochloric acid, sulfuric acid, nitric acid, acetic acid, oxalic acid, sodium peroxide, potassium peroxide, sodium carbonate, potassium carbonate, and the like.
  • a weak acid aqueous solution containing hydrochloric acid, sulfuric acid, nitric acid, acetic acid, oxalic acid, sodium peroxide, potassium peroxide, sodium carbonate, potassium carbonate, and the like.
  • a weak ant potassium solution, an aqueous solution of alcohols such as methanol, ethanol and propanol, and an aqueous solution of carboxylic acids such as acrylic acid and phthalic acid can be used.
  • the first gas storage unit communicates with the first through hole of the gas generation device 100.
  • the oxygen gas generated in the photocatalyst-containing layer 27 moves to and is stored in the first gas storage section through the first through hole.
  • An oxygen gas discharge pipe 101 is connected to the first gas storage unit, and oxygen gas can be recovered through the oxygen gas discharge pipe 101.
  • the second gas storage unit communicates with the second through hole of the gas generation device 100.
  • the hydrogen gas generated in the cocatalyst-containing layer 43 moves to and is stored in the second gas storage section through the second through hole.
  • a hydrogen gas discharge pipe 103 is connected to the second gas storage unit, and hydrogen gas can be recovered through the hydrogen gas discharge pipe 103.
  • the oxygen gas discharge pipe 101 and the hydrogen gas discharge pipe 103 are installed, but these can also be used together. Further, an inert gas such as nitrogen gas or argon gas can be introduced from the oxygen gas discharge pipe 101 and the hydrogen gas discharge pipe 103 as needed, and the generated gas can be easily discharged.
  • an inert gas such as nitrogen gas or argon gas can be introduced from the oxygen gas discharge pipe 101 and the hydrogen gas discharge pipe 103 as needed, and the generated gas can be easily discharged.
  • the light receiving window 4 is disposed so as to face the photocatalyst carrying surfaces 20 (the photocatalyst containing layer 27 and the promoter containing layer 43) of the anode electrode 2 and the cathode electrode 3, but the present invention is not limited to this.
  • the base material 5 on which the anode electrode 2 and the cathode electrode 3 are mounted may be made of a material that transmits the excitation light 7, and the excitation light 7 may be irradiated from the back surfaces of the anode electrode 2 and the cathode electrode 3.
  • the anode electrode 2 and the cathode electrode 3 are respectively made of a material that transmits the excitation light 7, and the light receiving window 4 that transmits the excitation light 7 and irradiates the photocatalyst containing layer 27 is formed on the anode electrode 2 and the cathode electrode 3. It may be arranged opposite to the photocatalyst carrying surface 20. Then, the excitation light 7 transmitted through the light receiving window 4 may be further transmitted through the anode electrode 2 and the cathode electrode 3 to irradiate the photocatalyst containing layer 27 and the cocatalyst containing layer 43.
  • the gas generating device 100 in the present embodiment has a plurality of first through holes 111 opened in a region composed of the photocatalyst containing layer 27.
  • a plurality of second through holes 113 are opened in a region formed of the promoter-containing layer 43.
  • FIG. 32 (b) is a side sectional view on the short side of the photocatalyst cell 1 showing the positional relationship between the first through hole 111 and the second through hole 113
  • FIG. 32 (c) is a side sectional view on the long side. Indicates.
  • an oxygen gas discharge pipe 101 and a hydrogen gas discharge pipe 103 are provided on the back side of the gas generation apparatus 100. Furthermore, the electrolyte solution storage part 12 provided on the photocatalyst carrying surface 20 side of the gas generation device 100 is provided with an electrolyte solution supply pipe 131 and an electrolyte solution discharge pipe 132.
  • the gas generating apparatus 100 includes a photocatalyst cell housing surrounded and supported by a transparent glass plate (light receiving window) 71, a side wall plate 72, and a bottom plate 73 on the light irradiation side. It is fixed to.
  • a first gas storage unit 21 and a second gas storage unit 31 are provided on the back side of the gas generation device 100.
  • the first gas storage unit 21 shown in FIG. 32 (b) communicates, and oxygen gas stored in the first gas storage unit 21 through the first through hole 111 goes to the outside through the oxygen gas discharge pipe 101. Discharged.
  • the second gas storage unit 31 communicates with the hydrogen gas stored in the second gas storage unit 31 through the second through hole 113 and is discharged to the outside through the hydrogen gas discharge pipe 103.
  • the electrolytic solution is supplied from the electrolytic solution supply pipe 131 into the electrolytic solution tank 12, passes between the gas generator 100 and the glass plate 71, and is discharged from the electrolytic solution discharge pipe 132.
  • the electrolyte solution supply pipe 131 and the electrolyte solution discharge pipe 132 are connected to a circulation pump so that the electrolyte solution in the electrolyte container 12 can be circulated. It is configured. First, a new electrolytic solution is stored in a storage tank (not shown), and is passed through the opened water supply valve 137 and sent to the electrolytic solution filter tank 136 by the electrolytic solution pump 135 to remove foreign matters and the like.
  • the gas generation device 100 according to the present embodiment is different from the gas generation device 100 according to the tenth embodiment only in the arrangement of the first gas storage unit 21 and the second gas storage unit 31, and therefore only the differences will be described.
  • FIG. 33 (a) is a schematic top view of the photocatalyst cell 1 in the present embodiment when the gas generation device 100 is cut so as to be parallel to the surface of the gas generation device 100, and the flow of hydrogen gas and oxygen gas The positional relationship of the road is shown.
  • FIG. 33B is a side sectional view on the short side of the photocatalyst cell 1 showing the positional relationship between the first through hole 111 and the second through hole 113.
  • 34 is a transparent top view of the gas generation device 100 shown in FIG. 33, showing the positional relationship between the flow paths of hydrogen gas and oxygen gas.
  • the first gas storage portion 21 is provided in a comb-like shape below the first through-hole 111, and the second gas storage portion 31 is comb-toothed below the second through-hole 113. It is provided in the shape.
  • the first gas storage part 21 and the second gas storage part 31 are arranged in a mutually intricate manner.
  • the first gas storage unit 21 communicates with all the first through holes 111.
  • the first gas storage unit 21 is connected to the oxygen gas discharge pipe 101 and can recover oxygen gas.
  • the second gas storage unit 31 communicates with all the second through holes 113.
  • the second gas storage unit 31 is connected to the hydrogen gas discharge pipe 103 and can recover the hydrogen gas.
  • a method for producing the gas generating device 100 including the anode / cathode integrated electrode will be described.
  • a through hole is provided in the base material 5.
  • a method capable of periodically forming a uniform hole shape on the entire surface of the substrate can be used. For example, it is preferably formed by cutting with a rotary drill or an etching method.
  • the shape of the opening of the through hole is not particularly defined, but a circle is preferable in order for electrons and protons to move isotropically from the surrounding holes in any direction.
  • the diameter of the opening of the through hole is 300 ⁇ m or less, and the pitch interval of the opening is preferably 1.5 times or more and 5 times or less of the diameter.
  • Cocatalyst is required that protons and electrons are efficiently combined on its surface to generate hydrogen and that reverse reaction to water is difficult to occur.
  • the promoter included in the promoter-containing layer 43 provided in the cathode electrode 3 is preferably at least one selected from the group consisting of platinum, nickel, ruthenium, nickel oxide and ruthenium oxide.
  • the cocatalyst-containing layer 43 containing these cocatalysts is preferably formed around the second through hole 113 with a width of 1 ⁇ m or more.
  • the cocatalyst-containing layer 43 is formed by, for example, applying a positive photoresist on the entire surface of the sheet and fixing a photomask provided with a circular opening having a diameter 1 ⁇ m or more larger than the hole diameter so as to coincide with the position of the cocatalyst electrode. And by exposing with the light of the wavelength which a resist sensitizes, only the resist around the 2nd through-hole 113 becomes soluble, and is removed at the time of image development.
  • the promoter containing layer 43 is formed by ion plating, chemical vapor deposition, vacuum vapor deposition, sputtering, spin coating, screen printing, spraying, casting, etc.
  • the co-catalyst-containing layer 43 can be selectively patterned by peeling off the last remaining resist together with the co-catalyst attached to the resist portion.
  • the film thickness of the cocatalyst-containing layer 43 is preferably in the range of 20 nm to 200 nm so as not to be peeled off by the stress at the time of resist peeling during patterning.
  • electrolysis may be promoted by applying a voltage from the outside between the photocatalyst containing layer 27 and the cocatalyst containing layer 43.
  • Typical surface modification methods for controlling surface chemical properties such as dispersibility, wettability, adhesion, and adsorptivity of solid surfaces include (1) coupling agent modification methods and (2) polymer grafting. Examples thereof include a copolymerization method, (3) an encapsulation method, and (4) a sol-gel method.
  • Silane or titanium coupling agents are widely used in the coupling agent modification method, and the end of these molecules chemically react with the hydroxyl group on the solid surface, so that the other end is oriented monomolecular film facing the surface side. It is possible to introduce various functional groups onto the solid surface depending on the purpose.
  • HMDS hexamethyldisilazane
  • the polymer graft modification method is a method in which a polymer is grown on a solid surface by a chemical reaction between a functional group on the solid surface and a monomer.
  • a polymer may be grafted using a functional group introduced by a coupling agent, or a polymerization reaction may be induced using an electrolytic polymerization reaction, a mechanochemical reaction, radiation, or plasma.
  • the encapsulation method is a method in which solid particles are coated with a polymer film, and generally a thick film is formed as compared with the graft polymerization method, and a chemical bond must be formed between the film and the solid surface. There is no. In the sol-gel method, a solid surface is coated with inorganic glass using alkoxide as a raw material.
  • FIG. 35 is a side view of the gas generation device 100 of the present embodiment.
  • FIG. 36 is a plan view of the gas generation device 100.
  • At least one of the photocatalyst containing layer (anode electrode 2) or the cocatalyst containing layer (cathode electrode 3) is disposed so as to be inclined with respect to the substrate.
  • the photocatalyst containing layer (anode electrode 2) or the cocatalyst containing layer (cathode electrode 3) includes a convex portion protruding from the substrate.
  • the anode electrodes 2 and the cathode electrodes 3 are alternately arranged, the respective electrodes are angled, and the anode electrode 2 and the cathode electrode 3 face each other.
  • FIG. 35 shows the cross-sectional structure from the side
  • FIG. 36 shows the arrangement from the upper surface only in the electrode portion in order to show the arrangement of the anode electrode 2 and the cathode electrode 3.
  • FIGS. 35 (b) and 36 (b) are enlarged views of a portion surrounded by a broken line in FIG. 35 (a).
  • the anode electrode 2 and the cathode electrode 3 each form a ridge so as to surround the gas storage portions 21 and 31, and the electrolyte solution 12 is disposed on each electrode.
  • Through holes 111 and 113 are formed in each of the anode electrode 2 and the cathode electrode 3.
  • the inner walls of the through holes 111 and 113 are subjected to water repellency (liquid repellency) treatment so that the electrolyte does not squeeze into the through holes 111 and 113 and leak.
  • Oxygen gas can be taken out from the anode electrode 2 through the gas accommodating part 21 through the through hole 111.
  • hydrogen gas can be taken out from the cathode electrode 3 through the gas accommodating part 31 through the through hole 113.
  • the two anode electrodes 2 are paired to form one ridge.
  • the anode electrode 2 is disposed so as to be inclined with respect to the cathode electrode 3 which is formed as a pair of two adjacent ones to form one ridge.
  • the anode electrode 2 and the cathode electrode 3 are opposed to each other. This is shown in FIG. 35 (b).
  • the anode electrode 2 and the cathode electrode 3 face each other while being inclined with the electrolytic solution 12 interposed therebetween. This contributes to promoting the generation of oxygen and hydrogen in two ways. First, since the distance between the anode electrode 2 and the cathode electrode 3 is reduced, the movement distance of protons generated at the cathode electrode 3 can be reduced. For this reason, the collection efficiency of a proton improves.
  • FIG. 37 shows how this light is reflected.
  • Such a structure is particularly effective in the case of a condensing type, and the incident light can be effectively utilized to the maximum extent.
  • the electrode is heated, but since it is always immersed in the electrolytic solution, it has a feature that it is easy to suppress a temperature rise.
  • the cathode electrode 3 includes a promoter-containing layer 43 that generates hydrogen gas by receiving the excitation light 7.
  • the excitation light 7 reflected by the anode electrode 2 or the cathode electrode 3 is irradiated to the photocatalyst containing layer 27 of the other anode electrode 2 or the promoter containing layer 43 of the cathode electrode 3.
  • the one shown in FIG. 38 is configured such that the electrolytic solution is placed underneath and the generated oxygen or hydrogen gas is collected on the upper side. Also in this case, the anode electrode 2 and the cathode electrode 3 are opposed to each other while being inclined. However, although not shown, the photocatalyst containing layer of the anode electrode 2 and the cocatalyst layer of the cathode electrode are respectively facing downward, so that the light needs to pass through the base material and be irradiated to the photocatalyst containing layer. Therefore, it is a requirement that at least the base material constituting the cathode electrode 3 is translucent.
  • the angle formed between the surface of the photocatalyst containing layer of the anode electrode 2 and the surface of the cathode electrode 3 having the promoter containing layer is arranged at an angle of greater than 0 ° and less than 180 °.
  • the angle between the two is 0 °, it means that the anode electrode 2 and the cathode electrode 3 are arranged in parallel with each other.
  • the angle between the two is 180 °, it means that the anode electrode 2 and the cathode electrode 3 form a plane.
  • a more desirable angle between the photocatalyst containing layer of the anode electrode 2 and the promoter containing layer of the cathode electrode 3 is greater than 20 ° and less than 90 °.
  • FIG. 39 is a side view of the gas generation device 100 of the present embodiment.
  • FIG. 40 is a plan view of the gas generation device 100.
  • the photocatalyst-containing layer (anode electrode 2) and the cocatalyst-containing layer (cathode electrode 3) of the present embodiment include a convex surface portion protruding from the base material, and form a three-dimensional arrangement type (arch type).
  • This convex surface portion has a box shape including a pair of elevations facing each other. And the gas accommodating parts 21 and 31 are formed in the inside of this convex surface part.
  • each of the anode electrode 2 and the cathode electrode 3 has an arch shape, which should be said to be a modification of the configuration of the ridge type gas generating apparatus shown in FIGS. It is a gas generator.
  • the structure of this embodiment is more precise.
  • the anode electrode 2 having the through hole 111 has a rectangular structure in which one piece is opened. The opened piece communicates with the gas storage part 21 and forms a part of the gas storage part 21 in the rectangle.
  • the electrolytic solution 12 is disposed on the anode electrode 2 having an arch shape.
  • the inner wall surface of the through hole 111 is subjected to a hydrophobic treatment.
  • the cathode electrode 3 also has an arch shape, and has the same box-like structure as the anode electrode 2.
  • FIG. 40 is a top view of the arrangement of the anode electrode 2 and the cathode electrode 3.
  • each of the anode electrode 2 and the cathode electrode 3 has a box-like (rectangular) structure adjacent to each other, there are a surface facing the same direction as a facing surface.
  • the opposing surfaces can be widened, and the distance between the anode and the cathode becomes relatively short.
  • the arch type gas generating apparatus 100 of the present embodiment has a great advantage that the moving distance of protons generated at the anode electrode 2 can be shortened.
  • the arch type gas generating apparatus 100 of this embodiment is excellent in the light confinement effect.
  • Light incident between the arches formed by the respective electrodes is reflected on the side surfaces of the arches and irradiated again on the opposing surfaces. Since the cocatalyst-containing layer 43 of the cathode electrode 3 does not need to absorb light and only needs to be reflected, the reflected light is again irradiated to the photocatalyst-containing layer 27 (not shown in FIG. 39) of the anode electrode. Can do.
  • a base material (not shown) constituting the anode electrode 2 is translucent, it passes through the electrolytic solution 12 and enters the photocatalyst containing layer 27 of the anode electrode 2 existing on the back side from the back side. It is also possible to make effective use of light.
  • FIG. 41 shows a configuration in which the generated oxygen and hydrogen gas are collected on the upper side with the electrolytic solution placed below.
  • FIG. 42 is explanatory drawing of the gas production
  • the gas generating apparatus 100 of the present embodiment is a slit type in which a vertically long through slit 115 is formed in the anode electrode 2 and the through slit 115 has a gas-liquid separation function.
  • the through holes (through slits 115 and 117) provided in the cathode electrode 3 or the anode electrode 2 of the present embodiment have a slit shape.
  • Both the cathode electrode 3 and the anode electrode 2 are provided with slit-shaped through holes (through slits 117 and 115).
  • the slit-shaped through holes are shifted from each other in a state where the cathode electrode 3 and the anode electrode 2 are arranged to face each other.
  • the slit type gas generator 100 of the present embodiment effectively collects gas (oxygen) generated by the photocatalytic function by the through slits 115 and 117.
  • gas oxygen
  • the light 7 enters the anode electrode 2 having the translucent base material 28 through the gas collection unit 21.
  • oxygen and protons are generated in the electrolyte solution 12 by the light 7 incident from the back surface of the photocatalyst containing layer 27.
  • the generated oxygen is collected by the gas collection unit 21 through the first through slit 115.
  • FIG. 42A is a left side surface of FIG. 42B and shows a light irradiation surface viewed from the photocatalyst containing layer 27 side.
  • FIG. 42 (c) is a right side surface of FIG. 42 (b) and represents a light irradiation back surface viewed from the promoter-containing layer 43 side.
  • the cathode electrode 3 of this embodiment includes a promoter-containing layer 43 that generates hydrogen gas by receiving the excitation light 7.
  • the excitation light 7 that has passed through the through holes (through slits 115 and 117) provided in the anode electrode 2 or the cathode electrode 3 is converted into the promoter-containing layer 43 or the anode of the other cathode electrode 3.
  • the photocatalyst containing layer 27 of the electrode 2 is irradiated.
  • FIG. 43 is a perspective view of the gas generator shown in FIG. FIG. 43A shows a case where the light 7 is irradiated from the anode electrode 2 (photocatalyst containing layer 27) side with the structure shown in FIG.
  • FIG. 43 (b) shows an irradiation from the cathode electrode 3 (cocatalyst-containing layer 43) side.
  • the light that has passed through the through slit 117 is irradiated to the photocatalyst containing layer 27, thereby fulfilling a photocatalytic function for generating oxygen and hydrogen.
  • the photocatalyst containing layer 27 of the anode electrode 2 is formed at a position facing a through hole (through slit 117) provided in the cathode electrode 3.
  • the cathode electrode 3 includes a promoter-containing layer 43 that generates hydrogen gas by receiving excitation light of the photocatalyst.
  • a promoter containing layer 43 of the cathode electrode 3 is formed at a position facing a through hole (through slit 115) provided in the anode electrode 2.
  • FIG. 44 is a side view of the gas generation device 100 of the present embodiment.
  • the gas generation device 100 of the present embodiment is a flexible type that is formed in an arc shape and has flexibility.
  • the flexible gas generating apparatus 100 includes an electrode pair composed of a cathode electrode 3 and an anode electrode 2 arranged in parallel with each other at a predetermined interval. And this electrode pair has the flexibility which can be bent or bent in a perpendicular direction.
  • the anode electrode 2 of the flexible gas generator 100 is disposed on the outer peripheral side of the arc, and the cathode electrode 3 is disposed on the inner peripheral side. This is for releasing oxygen to the outer peripheral side and collecting hydrogen to be collected on the inner peripheral side, and a gas storage unit 31 for collecting hydrogen is provided on the inner peripheral side.
  • the anode electrode 2 may be disposed on the inner circumferential side of the arc and the cathode electrode 3 may be disposed on the outer circumferential side.
  • FIG. 45 is an enlarged view of a part surrounded by a broken line of the gas generator shown in FIG.
  • the anode electrode 2 is formed of a translucent base material 28 and a photocatalyst containing layer 27, and electrolysis sandwiched between cathode electrodes 3 formed of a cocatalyst containing layer 43 and an opaque base material 29. It is structured to generate oxygen and hydrogen by photolysis of liquid water. The generated oxygen is released to the outside through the first through hole 111, but the generated hydrogen passes through the second through hole 113 and is collected in the gas storage unit 31.
  • FIG. 46 is a diagram illustrating a usage state of the flexible gas generation apparatus 100 of the present embodiment.
  • FIG. 47 is a perspective view of the flexible gas generator 100 of this embodiment.
  • FIG. 46 shows a state in which the gas generation device 100 is arranged to generate hydrogen gas using sunlight outdoors.
  • the flexible gas generation apparatus 100 is disposed at an angle so that sunlight can be irradiated as vertically as possible.
  • This apparatus includes a water storage tank 138 serving as an electrolytic solution, a circulation pump 135 for sending water, and a filter tank 136 for maintaining the cleanliness of the water.
  • the gas generation device of the present embodiment can be used for a fuel cell, a hydrogen production device that is a raw material of the fuel cell, and the like.
  • the gas generating device in the present embodiment can be used by arranging not only one electrode pair of the anode electrode 2 and the cathode electrode 3 but also a plurality of electrode pairs in parallel. Furthermore, if both the anode electrode 2 and the cathode electrode 3 are transparent to the irradiation light, they can be used in series.
  • a light source for irradiating excitation light can be provided separately. That is, the gas generation device 100 may further include a light source that emits excitation light.
  • the anode electrode 2 and the cathode electrode 3 of the same size are arranged in parallel, and the photocatalyst carrying surface 20 and the gas generation surface of the cathode electrode 3 face each other.
  • the cathode electrode 3 may be changed in size, and a plurality of cathode electrodes 3 may be provided, or a plurality of cathode electrodes 3 may be arranged so as to be perpendicular to the anode electrode 2. In this case, the second through hole is not formed in the cathode electrode 3.
  • the gas generating apparatus of the present embodiment separates and collects oxygen gas and hydrogen gas, but may be configured to collect as a mixed gas. Moreover, although the gas generation apparatus of this embodiment collect
  • the gas generating apparatus is configured to include gas collecting means (gas phase side gas bag 307, liquid phase side gas bag 308) and a light source 310.
  • gas collecting means gas phase side gas bag 307, liquid phase side gas bag 308
  • a light source 310 A high pressure mercury lamp or a xenon lamp is preferably used as the light source 310.
  • the gas phase side gas bag 307 and the liquid phase side gas bag 308 may be any material having a high gas barrier property that blocks inorganic gas such as oxygen and hydrogen, but an aluminum bag is preferably used.
  • the photocatalyst cell is immersed in a beaker 309 containing the electrolytic solution 12 and the photocatalyst carrying surface 20 of the gas generation device 100 is The surface is in contact with the electrolytic solution 12.
  • the base material 25 is provided with through holes (first through hole 111, second through hole 113).
  • the first through hole 111 and the second through hole 113 are suppressed from entering the electrolyte solution 12 into the back surface side of the substrate 25 by the Laplace pressure described above.
  • Most of the oxygen / hydrogen gas generated when the catalyst-containing layer 81 of the gas generation device 100 receives excitation light from the light source 310 through the first through-hole 111 and the second through-hole 113, and the gas storage unit 30 on the back side. Collected in the gas phase side gas bag 307 through the gas phase side cell outlet 303 and the gas phase side exhaust pipe 305.
  • the gas that has not passed through the first through hole 111 and the second through hole 113 grows into bubbles on the liquid phase side, passes through the liquid phase side in-cell discharge port 304 and the liquid phase side discharge pipe 306, Collected and accumulated in the phase side gas bag 308.
  • the UV light is irradiated from the light source 310 to the gas generating device 100 for a predetermined time.
  • the gas phase side gas bag 307 and the liquid phase side gas bag 308 are removed from the gas generator 100 and connected to the gas chromatograph, and the retention time and peak area of the generated gas are measured. For calibration, the retention time and peak area of pure hydrogen and pure oxygen are measured in advance.
  • the concentration of hydrogen generated by photolysis is X and the peak area is A
  • the peak area of pure hydrogen (100% concentration) is Ap
  • X 100 * A / Ap Become.
  • Example 1 This is an example in which an anode electrode having a photocatalyst-containing layer having no through hole and a cathode electrode having a through hole and having a promoter layer are arranged to face each other.
  • An anatase-type photocatalytic titanium oxide coating paste (Pexcel Technologies, Inc.) was applied by spraying to a square area of 1 cm ⁇ 1 cm inside the film piece so as to have a thickness of 20 ⁇ m.
  • the photocatalyst-containing layer formed by coating was dried at 140 ° C. for 1 hour to evaporate residual organic matter and solvent. In this way, a photocatalyst anode electrode having the photocatalyst carrying surface 20 was formed.
  • the back surface of the anode electrode 2 made of a photocatalyst was subjected to water repellent treatment by vacuum plasma treatment using carbon tetrafluoride gas to complete the anode electrode 2 in which no through hole was formed.
  • a promoter cell 6 as shown in FIG. 14 was produced.
  • Acrylic was used as a basic material. However, there is no need to limit the material, and any material can be used as long as it is not soluble in the electrolytic solution. Quartz was used for the light receiving window.
  • a titanium wire was used for the energizing wire 202, and titanium was used for the energizing metal frame.
  • a gas generator 100 shown in FIG. 17 was completed by mounting the previously prepared anode electrode 2 with no through hole formed on the promoter cell 6 so as to face the cathode electrode having the through hole. . The facing distance between the anode electrode 2 having no through hole and the cathode electrode 3 having the through hole was set to 0.5 mm.
  • An electrolytic solution 12 in which 30 g of sodium carbonate was dissolved in 100 cc of distilled water was supplied from the electrolytic solution supply pipe 131.
  • the argon gas was supplied to the argon gas supply pipe 102 to sufficiently purge the insides of the first gas storage unit 21 and the second gas storage unit 31 and used after expelling unnecessary gas in the system. .
  • ultraviolet rays were irradiated from the light receiving window with a high-pressure mercury lamp.
  • the irradiation intensity of light was irradiated at 10 mW / cm 2 for 1 hour, and the generated hydrogen gas was collected from a hydrogen gas discharge tube 103 into a 10 cc gas tight syringe at a suction speed of 0.17 cc / min, and gas chromatography ( When the hydrogen concentration was analyzed by Shimadzu Corporation, model number GC-8A), it was 980 ppm. When this is converted into the amount of hydrogen generated per unit time, it becomes 0.44 ⁇ mol / hr, which corresponds to 112 ⁇ mol / g / hr per unit weight of the titanium oxide photocatalyst.
  • Example 2 Similar to Example 1, this is an example in which an anode electrode without a through-hole and a cathode electrode having a through-hole are arranged to face each other.
  • the cathode electrode 3 provided with through holes having a hole diameter of 30 ⁇ m and a hole pitch of 50 ⁇ m was formed by a chemical etching method.
  • a promoter cell 6 as shown in FIG. 14 was produced, and similarly to Example 1, an anode electrode 2 without a through hole was formed, and the gas generator 100 shown in FIG. Completed.
  • Example 3 Similar to Example 1 and Example 2, this is an example in which an anode electrode having no through hole and a cathode electrode having a through hole are arranged to face each other.
  • the cathode electrode 3 provided with through holes having a hole diameter of 10 ⁇ m and a hole pitch of 40 ⁇ m was formed by laser processing.
  • Example 1 a promoter cell 6 as shown in FIG. 14 was produced, and similarly to Example 1, an anode electrode 2 without a through hole was formed, and the gas generator 100 shown in FIG. Completed.
  • hydrogen gas was measured in the same manner as in Example 1 and Example 2 using the gas generating apparatus 100 in which the anode electrode without the through hole and the cathode electrode having the through hole were arranged to face each other, the hydrogen concentration was The amount of hydrogen generated per unit weight of the titanium oxide photocatalyst at 1310 ppm was 150 ⁇ mol / g / hr.
  • Example 4 This is an example in which an anode electrode having a through hole and a cathode electrode similarly having a through hole are arranged to face each other.
  • a through-hole was formed in an area of 1 cm ⁇ 1 cm with a hole diameter of 80 ⁇ m and a hole pitch of 160 ⁇ m on a PET film with ITO using an NC processing machine, and then the outer shape was cut into a square of 2 cm ⁇ 2 cm. It was set as the photocatalyst coating layer in consideration of the pore not being filled with titanium oxide by spray coating the titanium oxide paste from above while spraying nitrogen gas from the lower side. The coating thickness was adjusted to about 20 ⁇ m.
  • the cathode electrode 3 As for the cathode electrode 3, a porous film having a pore diameter of 30 ⁇ m and a pore pitch of 50 ⁇ m was used as in Example 2. Similarly, when hydrogen gas was measured by irradiating with ultraviolet rays for 1 hour, the hydrogen concentration was 212 ppm and the hydrogen generation amount per unit weight of the titanium oxide photocatalyst was 24 ⁇ mol / g / hr.
  • Example 5 In this embodiment, an anode electrode having a through hole and a cathode electrode similarly having a through hole are arranged to face each other, and an electron transport material is arranged between the electrodes instead of the lead wires.
  • the conducting wire 202 is removed, and as an alternative function, porous metal titanium (porous titanium manufactured by Osaka Titanium Technologies, model number: typo-45) is inserted between the anode electrode 2 and the cathode electrode 3 as an electron transport material.
  • porous metal titanium porous titanium manufactured by Osaka Titanium Technologies, model number: typo-45
  • Example 6 An anode electrode having a through hole and a cathode electrode similarly having a through hole are arranged to face each other, and the shape of the anode electrode is changed.
  • hydrogen gas was measured in the same manner as in Example 4 except that a porous film provided with through-holes having a pore diameter of 30 ⁇ m and a hole pitch of 60 ⁇ m was formed by laser processing.
  • the hydrogen concentration was 2226 ppm.
  • the amount of hydrogen generated per unit weight of the titanium oxide photocatalyst was 255 ⁇ mol / g / hr.
  • Example 7 An anode electrode having a through hole and a cathode electrode similarly having a through hole are arranged to face each other, and the shape of the anode electrode is changed.
  • hydrogen gas was measured in the same manner as in Example 4 except that a porous film provided with through-holes having a pore diameter of 10 ⁇ m and a hole pitch of 40 ⁇ m was formed by laser processing.
  • the hydrogen concentration was 1303 ppm.
  • the amount of hydrogen generated per unit weight of the titanium oxide photocatalyst was 149 ⁇ mol / g / hr.
  • Example 8 This is an embodiment using an anode / cathode integrated electrode.
  • a thin film sheet of polyimide (manufactured by Ube Industries, model number UPILEX, thickness 0.5 mm) is cut into a square test piece having a side of 15.4 mm as a base 25, and an NC processing machine (manufactured by FANUC, With the model number Series 21i-MB), 100 ⁇ m diameter holes were penetrated and formed at a pitch of 200 ⁇ m, and a base material having a first through hole 111 and a second through hole 113 was produced.
  • a photocatalyst-containing layer 27 was formed on one surface of the substrate by sputtering titanium dioxide with a thickness of 250 nm using a sputtering apparatus (manufactured by Shibaura Mechatronics, model number CFS-4ES). Argon gas and oxygen gas were used as the sputtering gas at a flow rate ratio of 1: 1.
  • the sputtering conditions were as follows: the sheet was heated to 300 ° C., an RF power source was used with a sputtering power of 300 W, and a gas pressure was 2.0 Pa (1.5 ⁇ 10 ⁇ 2 Torr).
  • a g-line positive photoresist for wavelength 436 nm (manufactured by JSR, model number PFR9005D18G) was spin-coated at a rotation speed of 3500 rpm, and preheated at 90 ° C. for 10 minutes to form a resist film.
  • the substrate is covered with a photomask having a plurality of circular openings with a diameter of 180 ⁇ m at intervals of 200 ⁇ m in the horizontal direction and 346.4 ⁇ m in the vertical direction (horizontal pitch ⁇ ⁇ 3), and a mask aligner (manufactured by Kyowa Riken, model number K- 400PS100), the hole of the sheet and the center of the circular opening of the mask were overlapped, and exposed for 10 seconds with a UV-visible light source for exposure (model number UIV-5100, manufactured by USHIO).
  • the substrate was heated at 110 ° C.
  • this base material was naturally dried at room temperature for 30 minutes, and then platinum was sputtered at a thickness of 50 nm by a sputtering apparatus (manufactured by Shimadzu Emit Co., model number HSM-521). Argon was used as the sputtering gas.
  • the sputtering conditions were a DC power supply with a voltage of 600 V, a current of 0.4 A, and a gas pressure of 0.074 Pa (5.6 ⁇ 10 ⁇ 4 Torr).
  • the resist remaining with acetone and platinum were peeled off to form a promoter-containing layer 43 made of a sputtered platinum film only on a 180 ⁇ m circular opening on the photocatalyst-containing layer 27 made of titanium dioxide.
  • the hydrophobic treatment was selectively performed on the inner wall and the back surface of the first through hole 111 and the second through hole 113.
  • SiO 2 was sputtered to a thickness of 10 nm on the back side of the sheet by a sputtering apparatus (manufactured by Shibaura Mechatronics, model number CFS-4ES). Argon gas was used as the sputtering gas.
  • the sputtering conditions were an RF power source with a sputtering power of 200 W and a gas pressure of 1.0 Pa (7.5 ⁇ 10 ⁇ 3 Torr).
  • the sheet was sealed in a sealed container in a hexamethyldisilazane vapor atmosphere, and a gas phase reaction was performed for about 10 hours.
  • the water contact angle on the back surface of the substrate was measured, it was 60 degrees before the treatment and then 100 degrees after the treatment. It was confirmed that the electrode was made hydrophobic, and an anode / cathode integrated electrode was completed.
  • this anode / cathode integrated electrode is incorporated into a gas generating device 100 as shown in FIG. 48, and a gas tube 30 is provided as a gas collection line in a gas storage section 30 provided on the back side of the anode electrode 2.
  • a gas collecting aluminum bag manufactured by GL Sciences, model number AAK-1, capacity 500 ml
  • This gas generator 100 is immersed in a beaker 309 containing a 2N sulfuric acid aqueous solution (electrolyte solution 14) adjusted to 2N.
  • the light source 310 is arranged at a distance of 1 cm from a UV light source (Ushio Electric, model UI-501C). Irradiated for about 7 hours. The light intensity on this irradiated surface was 70 mW / cm 2 .
  • a gas sampler of a gas chromatograph manufactured by Shimadzu Corporation, model number GC-8AIT
  • an inorganic gas analysis column manufactured by Shinwa Kako, model number: SHINCARBON ST.
  • Example 9 This is an embodiment using an anode / cathode integrated electrode.
  • a titanium dioxide paste manufactured by Pexel Technologies Co., Ltd. was formed to a film thickness of 20 ⁇ m by screen printing, and the photocatalyst-containing layer formed by coating was formed at 140 ° C.
  • the amount of generated hydrogen gas was measured under the same conditions as in Example 8 except that the porous film was formed by evaporating the remaining organic substances and the solvent, and the hydrogen concentration was 3040 ppm per unit weight of the titanium oxide photocatalyst.
  • the amount of hydrogen generated was 348 ⁇ mol / g / hr.
  • Comparative Example 2 This is a comparative example using an anode / cathode integrated electrode having no through hole.
  • hydrogen gas was formed under the same conditions as in Example 8 except that the through hole was not provided in either the photocatalyst electrode or the promoter electrode, and the gas collection port was provided on the liquid contact surface side.
  • the hydrogen concentration was 30 ppm
  • the hydrogen generation amount per unit weight of the titanium oxide photocatalyst was 3 ⁇ mol / g / hr.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

 水を含む電解液(12)から酸素ガスおよび/または水素ガスを生成するガス生成装置は、アノード電極(2)、カソード電極(3)、複数の貫通孔、およびガス収容部(21)を備えている。アノード電極(2)(光触媒担持電極)は、光触媒反応により電解液(12)から酸素ガスを生成する光触媒を含む光触媒含有層を有する。カソード電極(3)は、光触媒含有層における光触媒反応により電解液(12)で生成された水素イオンおよび電子から水素ガスを生成する。貫通孔は、アノード電極(2)またはカソード電極(3)の少なくとも一方に設けられ、電解液(12)を通過させず、かつ生成された酸素ガスまたは水素ガスを通過させる。そして、ガス収容部(21)は、貫通孔を通過した酸素ガスまたは水素ガスを収容する。

Description

ガス生成装置およびガス生成方法
 本発明は、光触媒を用いたガス生成装置およびガス生成方法に関する。
 水素は化石燃料の枯渇が懸念され、かつ環境保全の重要性が叫ばれる中で、有望な主力エネルギーとして期待されている。この中で、光触媒を用いた太陽光による直接水素発生は、環境面での影響が極めて小さい技術であると期待されている。
 例えば、特許文献1には、光触媒を用いて水素を発生する装置および方法が記載されている。当該文献には、積層体の電気導電層の表面に光触媒層を担持し、裏面に白金および/または遷移金属酸化物を配設したことを特徴としたものである。
 また、特許文献2に記載の電解装置は、上方に設置されたアノード電極に対し、下方にカソード電極が設けられた構造を有する。この電解装置は、水素と塩素を分離する機能はなく、カソード電極の下面側に窪みを設け、その窪みで発生した水素を捕集する構成となっている。
 図1は、従来の、光触媒電極を備えた構造を有し、光を照射することにより水電解を行なう一般的な装置図である。この種の装置として、非特許文献1には、電解液溜め中の電解液に浸され、さらにイオン交換膜の塩橋で隔てられた、n型酸化チタン(TiO)電極と白金(Pt)電極とが通電用ワイヤで接続された装置が記載されている。TiOの表面に410nmよりも短波長の光が照射されると、ワイヤに光電流が流れ、TiOの表面では酸素が発生し、Ptの表面では水素が発生する。酸素は酸素ガス気泡となり酸素ガス収容部に収集される。水素は水素ガス気泡となり水素ガス収容部に収集される。この光触媒による反応式はeとhをそれぞれ光励起で生成した電子と正孔として、以下の式101~式103で表される。式103は、式101と式102の和である。
2h++HO → (1/2)O+2H+(TiO上で)  (式101)
2e+2H+ → H(Pt上で)            (式102)
 HO 2hν → H+(1/2)O          (式103)
 特許文献3および非特許文献2に関しては後述する。
特開2006-256901号公報 特開2007-51318号公報 国際公開2007/049559号パンフレット
A.Fujishima,K.Honda Nature,vol.238,P37-38(1972) 「水分解光触媒技術」佐藤真理著、荒川裕則監修、シーエムシー出版、第2章「紫外光応答性一段光触媒による水分解の達成」、p11
 ここで、特許文献1に記載の装置は、プロトン伝導性の高価なナフィオン膜を用いて、光触媒層で発生したプロトンを積層体の裏面に輸送するものであり、水素発生のコストが高くなるという問題がある。
 また、特許文献2に記載の電解装置は、光触媒層において生成された水素イオンの移動距離が長く、非効率であるとともに、その移動距離の分、電流損失が大きくなってしまうという問題がある。
 その他、これらの公知文献に記載された装置では、光触媒におけるガス生成の本質的に内在されている以下の問題が解決されない。すなわち、光触媒の励起光が光触媒表面に照射された際に電子と正孔が発生し、光触媒に接している水分子は正孔によって酸化され、酸素分子と水素イオン(プロトン)を生成する。光触媒表面にて酸素分子同士が会合し気泡に成長しやがて光触媒表面から離脱して行く。また、同時に光触媒表面で発生した水素イオン(プロトン)は、水に溶けてカソード電極に移動していくが、残存する酸素分子と会合した場合には再び水に戻る逆反応を辿ることになる。
 例えば、白金担時した酸化チタン粉末を、ガラスセルに水を含む電解水中に分散させ、紫外光を照射して水素発生量を測定するという実験を行った場合、紫外光を照射する方向の違いにより、水素ガスの発生量が大きく異なることが確認されている。また、図2(a)に示すように、光触媒である白金担持酸化チタン粉体42が分散する電解液12に対して光7(紫外光)を下から照射すると水素ガス33の発生量は少ないが、逆に図2(b)に示すように光7を電解液12の表面側から照射すると水素ガス33の発生量が増加するということが知られている。光触媒42としては、酸化チタン粉体40に白金微粒子41を担持させたものが例示される。これは、図3に示すように、光7が照射されて担持白金上に形成された水素ガス33の気泡が、白金担持光触媒42の上に形成された酸素ガス23の気泡と白金上で会合することにより、水に戻ってしまう逆反応が生じるためである。
 従って、光触媒によって分解された水分子から発生した酸素分子と水素イオンを素早く分離することが必要である。例えば、非特許文献2には、図4に示すように、光触媒42の表面を覆う液膜層の厚みを、光7の照射により形成される気泡(酸素ガス23および水素ガス33)のサイズよりも小さくすることが提案されている。これにより、水素と酸素の会合により水に戻ってしまう逆反応が阻害され、光触媒反応が迅速に行われる。
 しかし、このような方法では、産業利用上、水分解を行う際に水に浸された電極上で、気泡のサイズよりも電極を覆う液膜を薄くするような工夫を行うことは極めて困難である。したがって、より迅速な光触媒反応を行うためには、発生した酸素ガスを何らかの方法で光触媒表面から素早く取り除くことが必要である。しかしながら、このような方法はこれまで開示されていない。
 また、アノード電極は、光を照射しなければ作動しないので、電気分解を行うためのカソード電極が光触媒層に対向する位置に設けられていると、カソード電極が照射光を妨げる構造になってしまう。このため、特許文献2に示されるように、アノード電極において光触媒層が設けられた面の裏面側にカソード電極を設置する必要がある。そのため、プロトンの移動損失に伴う電流密度の減少を招く結果になってしまう。
 また、電極に酸素や水素などの気泡が付着した場合、その気泡の付着面は電解液との接触が妨げられているため、少なくとも付着面で水の電解反応が生じない。これは実質的な電極面積の減少となり、発生ガス量の低減が生じてしまう。
 特許文献3では、マイクロリアクタを用いて1wt%の硫酸水溶液の電気分解を行い、気泡の発生を確認している。さらに、水の電気分解により水中に発生した気泡は、気液界面を通じて速やかに気体流路に移動し、気液分離を確認することができたことが記載されている。
 しかし、このような形で気液界面を利用して、光触媒により発生した水素と酸素の逆戻り反応を完全に阻止しようとする試みは過去になされてこなかった。
 本発明はこのような点に鑑みてなされたもので、光照射された光触媒作用により効率良く所望のガスを発生する技術の提供にある。
(1)本発明によれば、水を含む電解液から酸素ガスおよび/または水素ガスを生成するガス生成装置であって、光触媒反応により前記電解液から酸素ガスを生成する光触媒を含む光触媒含有層を有するアノード電極と、前記光触媒含有層における光触媒反応により前記電解液で生成された水素イオンおよび電子から水素ガスを生成するカソード電極と、前記アノード電極または前記カソード電極の少なくとも一方に設けられ、前記電解液を通過させず、かつ生成された前記酸素ガスまたは前記水素ガスを通過させる複数の貫通孔と、前記貫通孔を通過した前記酸素ガスまたは前記水素ガスを収容するガス収容部と、を備えるガス生成装置が提供される。
 上記発明によれば、アノード電極で生成された酸素ガスまたはカソード電極で生成された水素ガスが、貫通孔を通じてこの電極の反対面側より回収される。このため、酸素と水素との会合による水分子への逆反応が発生せず、効率的に電解液が分解される。
(2)本発明においては、前記光触媒含有層が多数の空孔を含む多孔質材料であり、前記光触媒が前記空孔に露出していてもよい。
(3)本発明においては、前記空孔が前記貫通孔の内壁面に露出していてもよい。
(4)本発明においては、前記貫通孔の内壁面に露出した前記空孔が、他の空孔と互いに連通していてもよい。
(5)本発明においては、複数の前記貫通孔が、前記アノード電極または前記カソード電極に規則的に配置されていてもよい。
(6)本発明においては、隣接する前記貫通孔の重心間距離が0.1μm以上800μm以下であってもよい。
(7)本発明においては、すべての前記貫通孔が、隣接する他の前記貫通孔との重心間距離が0.1μm以上800μm以下であってもよい。
(8)本発明においては、前記重心間距離が、前記貫通孔の開口直径の1.5倍以上5倍以下であってもよい。
(9)本発明においては、隣接する前記貫通孔の近接縁間距離が0.1μm以上400μm以下であってもよい。
(10)本発明においては、前記光触媒含有層の層厚が0.25μm以上100μm以下であってもよい。
(11)本発明においては、前記光触媒の励起光を透過させるとともに該励起光を前記光触媒含有層に照射する受光窓をさらに備えてもよい。
(12)本発明においては、前記アノード電極が、前記光触媒含有層を支持する基材を備え、前記基材が、前記励起光を透過する材料から構成されていてもよい。
(13)本発明においては、前記受光窓が、前記基材を介して前記光触媒含有層の反対側に配置され、前記受光窓を透過した前記励起光が、前記基材をさらに透過して前記光触媒含有層に照射されてもよい。
(14)本発明においては、前記カソード電極が前記励起光を透過する材料から構成され、かつ、前記受光窓が前記カソード電極に対向して配置されて、前記受光窓を透過した前記励起光が、前記カソード電極をさらに透過して前記光触媒含有層に照射されてもよい。
(15)本発明においては、前記カソード電極と、前記アノード電極の前記光触媒含有層と、が互いに対向して配置されてもよい。
(16)本発明においては、前記カソード電極に設けられた前記貫通孔と対向する位置に、前記アノード電極の前記光触媒含有層が形成されていてもよい。
(17)本発明においては、前記カソード電極が、前記光触媒の励起光を受光することにより水素ガスを生成する助触媒含有層を含み、前記アノード電極に設けられた前記貫通孔と対向する位置に、前記カソード電極の前記助触媒含有層が形成されていてもよい。
(18)本発明においては、前記カソード電極または前記アノード電極に設けられた前記貫通孔がスリット形状であってもよい。
(19)本発明においては、前記カソード電極および前記アノード電極がともにスリット形状の貫通孔を備え、かつ、前記カソード電極と前記アノード電極とが対向して配置された状態で、前記スリット形状の貫通孔が互いにずれあっていてもよい。
(20)本発明においては、所定の間隔をあけて互いに平行に配置された前記カソード電極および前記アノード電極からなる電極対が、面直方向に湾曲または屈曲可能な可撓性を有していてもよい。
(21)本発明においては、前記カソード電極が、前記光触媒の励起光を受光することにより水素ガスを生成する助触媒含有層を含み、前記アノード電極の前記光触媒含有層と前記カソード電極の前記助触媒含有層との間に、導電性の材料からなり、かつ前記電解液の透過が可能な電子移動層を備えてもよい。
(22)本発明においては、前記カソード電極と前記アノード電極とが、共通の基材に支持されて横並びに配置されていてもよい。
(23)本発明においては、複数の前記カソード電極と複数の前記アノード電極とが互いに隣接して配置されていてもよい。
(24)本発明においては、前記アノード電極に設けられて、前記電解液を通過させず前記酸素ガスを通過させる第一の貫通孔と、前記カソード電極に設けられて、前記電解液を通過させず前記水素ガスを通過させる第二の貫通孔と、を備えてもよい。
(25)本発明においては、前記第一の貫通孔の開口に設けられて前記酸素ガスを収容する第一の前記ガス収容部と、前記第二の貫通孔の開口に設けられて前記水素ガスを収容する第二の前記ガス収容部と、を備えてもよい。
(26)本発明においては、前記カソード電極が、前記光触媒の励起光を受光することにより水素ガスを生成する助触媒含有層を含み、前記光触媒含有層が前記第一の貫通孔の近傍に配置され、前記助触媒含有層が前記第二の貫通孔の近傍に配置されていてもよい。
(27)本発明においては、前記光触媒含有層が前記第一の貫通孔の開口部の周縁部にリング状に設けられ、前記助触媒含有層が前記第二の貫通孔の開口部の周縁部にリング状に設けられていてもよい。
(28)本発明においては、前記カソード電極と前記アノード電極とが電気絶縁性の材料を介して横並びに隣接して設けられ、前記カソード電極と前記アノード電極との隣接間隔が0.01μm以上であってもよい。
(29)本発明においては、前記光触媒の励起光を透過させるとともに該励起光を前記光触媒含有層に照射する受光窓を備え、前記受光窓が、前記光触媒含有層および前記助触媒含有層に対してともに対向する位置に配置されて、前記受光窓を透過した前記励起光が前記光触媒含有層および前記助触媒含有層に照射されてもよい。
(30)本発明においては、前記アノード電極および前記カソード電極が、前記光触媒の励起光を透過する材料からそれぞれ構成され、前記励起光を透過させるとともに前記光触媒含有層に照射する受光窓が、前記アノード電極および前記カソード電極に対向して、前記光触媒含有層および前記助触媒含有層の反対側に配置されて、前記受光窓を透過した前記励起光が、前記アノード電極および前記カソード電極をさらに透過して前記光触媒含有層および前記助触媒含有層に照射されてもよい。
(31)本発明においては、前記光触媒含有層または前記助触媒含有層の少なくとも一方が、前記基材に対して傾斜して配置されていてもよい。
(32)本発明においては、前記光触媒含有層または前記助触媒含有層が、前記基材から突出する凸面部を含んでもよい。
(33)本発明においては、前記凸面部が、互いに対向する一対の立面を含む箱状をなしていてもよい。
(34)本発明においては、前記ガス収容部が、前記凸面部の内部に形成されていてもよい。
(35)本発明においては、前記貫通孔の内壁面に疎水化処理が施されていてもよい。
(36)本発明においては、前記光触媒含有層および前記カソード電極が、前記電解液に対して親液性であってもよい。
(37)本発明においては、前記アノード電極または前記カソード電極のうち前記ガス収容部が設けられた裏面側が前記電解液に対して疎液性であってもよい。
(38)本発明においては、前記電解液を貯留して前記アノード電極および前記カソード電極を前記電解液に浸漬させる電解液槽と、前記電解液槽に前記電解液を供給する電解液供給管と、触媒反応に供された前記電解液を前記電解液槽から排出する電解液排出管と、をさらに備えてもよい。
(39)本発明においては、前記光触媒含有層に含まれる光触媒は、酸化チタン、酸化バナジウム、酸化ニッケル、酸化亜鉛、酸化ガリウム、酸化ジルコニア、酸化ネビジウム、酸化モリブデン、酸化タンタル、酸化タングステン、酸化ガリウム、酸化ゲルマニウム、酸化インジウム、酸化錫、酸化アンチモン、酸化鉛および酸化ビスマス等の酸化物、さらに、これらの窒化物、硫化物からなる群から選択される少なくとも1種であってもよい。
(40)本発明においては、前記助触媒含有層に含まれる助触媒は、白金、ニッケル、ルテニウム、酸化ニッケルおよび酸化ルテニウムよりなる群から選択される少なくとも1種であってもよい。
(41)本発明においては、前記励起光を照射する光源をさらに備えてもよい。
(42)また、本発明によれば、水を含む電解液から酸素ガスおよび/または水素ガスを生成する方法であって、光触媒反応により前記電解液から酸素ガスを生成する光触媒を含む光触媒含有層を有するアノード電極と、前記光触媒含有層における光触媒反応により生成された前記電解液中の水素イオンと電子とから水素ガスを生成するカソード電極と、に前記電解液を接触させる工程と、前記光触媒含有層に光触媒の励起光を照射する工程と、前記アノード電極で生成された前記酸素ガスまたは前記カソード電極で生成された前記水素ガスの少なくとも一方を、該アノード電極または該カソード電極に設けられた複数の貫通孔を通じて捕集する工程と、を含むガス生成方法が提供される。
(43)本発明においては、前記光触媒含有層が、前記光触媒が露出する多数の空孔を含む多孔質材料であり、前記空孔の内部で生成された前記酸素ガスまたは前記水素ガスを、前記貫通孔を通じて捕集してもよい。
(44)本発明においては、前記空孔の内部で生成された前記酸素ガスまたは前記水素ガスを、前記貫通孔の内壁面に露出している他の前記空孔を介して、前記貫通孔を通じて捕集してもよい。
(45)本発明においては、前記アノード電極が、前記光触媒含有層を支持する基材を備え、前記基材が、前記励起光を透過する材料から構成されており、前記基材を透過させた前記励起光を前記光触媒含有層に照射してもよい。
(46)本発明においては、前記カソード電極が、前記励起光を透過する材料から構成されており、前記カソード電極を透過させた前記励起光を前記光触媒含有層に照射してもよい。
(47)本発明においては、前記カソード電極が、前記励起光を受光することにより水素ガスを生成する助触媒含有層を含み、前記アノード電極または前記カソード電極で反射した前記励起光を、他の前記アノード電極の前記光触媒含有層または前記カソード電極の前記助触媒含有層に照射してもよい。
(48)本発明においては、前記カソード電極が、前記励起光を受光することにより水素ガスを生成する助触媒含有層を含み、前記アノード電極または前記カソード電極に設けられた前記貫通孔を通過した前記励起光を、他の前記カソード電極の前記助触媒含有層または前記アノード電極の前記光触媒含有層に照射してもよい。
 本発明によれば、太陽光等を用いた光触媒分解により、効率良く水素ガス、酸素ガス、これらの混成ガス等の生成が可能なガス生成装置およびガス生成方法を提供することができる。さらに、本発明に用いられる電極として高価な材料を用いる必要がないので、ガス生成装置や当該ガスの製造コストを低減することができる。
従来の、アノード電極に光を照射することにより水電解を行う一般的な装置図の模式図である。 (a)、(b)は電解液に紫外線光を照射した場合の状態を示す説明図である。 水素ガス気泡と酸素ガス気泡とが会合する状態を示す説明図である。 光触媒表面を液膜層で覆った状態を示す説明図である。 (a)~(d)は本実施形態のガス生成装置の基本概念を示す模式図である。 (a)~(c)はヤング-ラプラスの式を説明する図である。 アノード電極に形成した孔加工部の例を示す平面図である。 (a)は光触媒含有層および助触媒層と、夫々の貫通孔との構造に起因する特徴を説明する模式図であり、(b)は拡大図である。記号Xは、酸素分子の発生箇所を示したものであり、矢印は、発生箇所Xと貫通孔までの最短距離、すなわち界面-反応点距離を示したものである。 (a)~(d)は対向配置型のガス生成装置の基本構成を示す模式図である。 (a)、(b)は対向配置型のガス生成装置におけるプロトンと電子の移動を示す説明図である。(a)は、電子がリード線を介して、アノード電極からカソード電極に移動する様子を示したものである。(b)は、アノード電極とカソード電極間に設置されたメッシュ状の導電材料を介して電子がアノード電極からカソード電極に移動する様子を示したものである。 (a)は光触媒セル(アノードセル)の側面断面図であり、(b)は正面図である。 (a)はアノード電極自身の正面図であり、(b)は側面断面図であり、(c)は(b)の拡大図である。 アノード電極に形成した孔加工部の一例を示す平面図である。 (a)は助触媒セル(カソードセル)の側面断面図であり、(b)は正面図である。 第1実施形態のガス生成装置の側面断面図である。 図15に示される、第1実施形態のガス生成装置の正面図である。 第2実施形態のガス生成装置の側面断面図である。 第3実施形態のガス生成装置の側面断面図である。 図18に示される第3実施形態のガス生成装置の正面図である。 図18、図19に示される第3実施形態のガス生成装置の上面図である。 第3実施形態のガス生成装置における、光の照射方向をカソード電極側とした例である。 第4実施形態の太陽光対応ガス生成装置の上面図である。 第4実施形態の太陽光対応ガス生成装置の側面断面図であり、上面から光を照射している様子を示したものである。 第4実施形態の太陽光対応ガス生成装置の下面図である。 第5実施形態の太陽光対応ガス生成装置の側面断面図であり、上面から光を照射している様子を示したものである。 (a)、(b)は第6実施形態のアノードカソード一体型電極の斜視図である。 光触媒含有層と助触媒含有層との位置関係の一例を示す、第7実施形態のアノードカソード一体型電極の概略正面図である。 図27に示したアノードカソード一体型電極の断面図であり、水素と酸素の生成および分離の様子を図示したものである。 光触媒含有層と助触媒含有層との位置関係の一例を示す、第8実施形態のアノードカソード一体型電極の概略正面図である。 (a)は第9実施形態におけるアノードカソード一体型電極を備えたガス生成装置の側面断面図であり、(b)はその正面図である。 第9実施形態におけるアノードカソード一体型電極を備えたガス生成装置の透視立体図である。 (a)は第10実施形態におけるアノードカソード一体型電極を備えたガス生成装置の上面図であり、(b)は短辺側における側面断面図であり、(c)は長辺側における側面断面図であり、(d)は循環ポンプを接続したガス生成装置の側面断面図である。 (a)は、第11実施形態に用いられるアノードカソード一体型電極を備えたガス生成装置において、ガス生成装置を水平方向に切断した上面図であり、(b)は水素と酸素のガスの流路を側面から見た断面図である。 図33に示すガス生成装置100の透視上面図であり、水素ガスと酸素ガスの流路の位置関係を示している。 (a)は第12実施形態の尾根型ガス生成装置の側面図であり、(b)は拡大図である。 (a)は第12実施形態の尾根型ガス生成装置の平面図であり、(b)は拡大図である。 第12実施形態の尾根型ガス生成装置にて光を反射させる様子を示す図である。 第12実施形態の尾根型ガス生成装置にて電解液を下置きした状態を示す図である。 第13実施形態のアーチ型ガス生成装置の側面図である。 第13実施形態のアーチ型ガス生成装置の平面図である。 第13実施形態のアーチ型ガス生成装置にて電解液を下置きした状態を示す図である。 (a)~(c)は第14実施形態のスリット型ガス生成装置の説明図である。 (a)、(b)は第14実施形態のスリット型ガス生成装置の斜視図である。 第15実施形態のフレキシブル型ガス生成装置の側面図である。 図44の拡大図である。 第15実施形態のフレキシブル型ガス生成装置の使用状態を示す図である。 第15実施形態のフレキシブル型ガス生成装置の斜視図である。 第9実施形態におけるアノードカソード一体型電極を備えたガス生成装置を用いたガスの生成実験の説明図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宣説明を省略する。
 本実施形態のガス生成装置は、水を含む電解液から酸素ガスおよび/または水素ガスを生成する装置である。本実施形態のガス生成装置は、アノード電極、カソード電極、複数の貫通孔、およびガス収容部を備えている。
 アノード電極(光触媒担持電極)は、光触媒反応により電解液から酸素ガスを生成する光触媒を含む光触媒含有層を有する。カソード電極は、光触媒含有層における光触媒反応により電解液で生成された水素イオンおよび電子から水素ガスを生成する。貫通孔(第一および/または第二貫通孔)は、アノード電極またはカソード電極の少なくとも一方に設けられ、電解液を通過させず、かつ生成された酸素ガスまたは水素ガスを通過させる。そして、ガス収容部(第一および/または第二ガス収容部)は、貫通孔を通過した酸素ガスまたは水素ガスを収容する。
 図5(a)~(d)は、本実施形態のガス生成装置100の基本概念を示す模式図である。ガス生成装置100は、アノード電極2と、カソード電極3とを備える。アノード電極2は、基材25と、この基材25の一方の主面に積層して設けられた光触媒含有層27とからなる。光触媒含有層27は、光触媒反応により電解液槽10中の電解液12から酸素ガスを生成する光触媒を含む。
 カソード電極3は、光触媒含有層27において光7により誘起された光触媒反応で生成された水素イオンと電子とから、電解液12中で水素ガスを生成する。
 アノード電極2およびカソード電極3の少なくとも一方は、複数の貫通孔(第一貫通孔111および/または第二貫通孔113)を備えている。貫通孔は、電解液12を通過させず、光触媒への励起光の照射により電極の表面側で生成されたガス(酸素ガスまたは水素ガス)を、裏面側に選択的に通過させる。
 本実施形態のカソード電極3は、光触媒の励起光を受光することにより水素ガスを生成する助触媒含有層43を含む。光触媒含有層27は第一貫通孔111の近傍に配置され、助触媒含有層43は第二貫通孔113の近傍に配置されている。
 ガス生成装置100は、貫通孔が開口している裏面を囲繞するガス収容部(第一ガス収容部21および/または第二ガス収容部31)を備えている。
 すなわち、ガス生成装置100は、アノード電極2に設けられて電解液12を通過させず酸素ガスを通過させる第一の貫通孔(第一貫通孔111)と、カソード電極3に設けられて電解液12を通過させず水素ガスを通過させる第二の貫通孔(第二貫通孔113)と、を備えている。
 そして、ガス生成装置100は、第一貫通孔111の開口に設けられて酸素ガスを収容する第一ガス収容部21と、第二貫通孔113の開口に設けられて水素ガスを収容する第二ガス収容部31と、を備えている。
 また、ガス生成装置100は、光触媒の励起光を透過させるとともに該励起光を光触媒含有層に照射する受光窓をさらに備えている。
 図5(a)を用いて詳細に説明する。同図はガス生成装置100の側面図である。
 光7(紫外光または可視光)が受光窓4および電解液槽10を通過して、光触媒含有層27に照射されることにより、光触媒反応が生じて電解液に酸素とプロトンが形成される。ここで、形成されたプロトンは助触媒含有層43の表面にて初めて水素に変化する。
 このプロトンから水素に変化する際には電子も必要であるが、この電子の供給ルートはいくつかの手段があり、その代表的な例は図10に後述している。プロトンは、光触媒含有層27から助触媒含有層43に電解液中を泳導することにより到達する。従って、このプロトンの泳導距離は短い方が好ましい。しかし、図5(a)の示す重要な点は、光触媒含有層27および助触媒含有層43にて発生した酸素と水素が相互に出会うことがなく、言い換えると酸素と水素とが会合によって水に逆戻り反応してしまう前に、気液分離を目的とする貫通孔111、113によって分離され、会合する機会を失うことにより、効率よく水素ガスの捕集が行われることにある。なお、助触媒含有層43を含むカソード電極3に光7が照射されることは任意である。
 図5(a)に示す受光窓4は、基材25に対して光触媒含有層27と同じ側に配置されている。言い換えると、光7は基材25を透過することなく光触媒含有層27に照射される。このため、基材25は、透光性の材料または不透光性の材料のいずれを用いることもできる。同図では、不透光性の基材29を例示している。
 図5(b)は、図5(a)とほぼ同様であるが、光7の照射方向が逆向きになっている。アノード電極2は、光触媒含有層27を支持する基材25を備えている。この基材25は、励起光7を透過する透光性の材料(透光性基材28)から構成されている。また、第一ガス収容部21を構成する材料も透光性である。
 また、助触媒含有層43と受光窓4との間に設けられた第二ガス収容部31も同様に透光性の材料からなる。
 これにより、受光窓4を通過した励起光7は、第一ガス収容部21または第二ガス収容部31を通じて基材25(透光性基材28)に入射し、さらに基材25を通過して光触媒含有層27または助触媒含有層43に至り、電解液槽10に貯留された電解液12に対して電解作用を及ぼす。
 図5(c)は、図5(a)に示した光触媒含有層27を有するアノード電極2単独の光触媒セル(アノードセル)である。例えば、アノード電極2をこの光触媒セルに取り付け、カソード電極としては白金板にて代用するような構造とすることができ、後述する図15に示した構造と同一である
 また、図5(d)は、図5(a)に示した助触媒含有層43を有するカソード電極3単独の助触媒セル(カソードセル)である。例えば、カソード電極3をこの助触媒セルに取り付けた構造とすることができ、後述する図17に示した構造と同一である。
 ここで、電解液12に接した貫通孔に働くヤング-ラプラス圧について説明する。
 図6(a)は、ヤング-ラプラスの式を説明する図であり、貫通孔111におけるガス相と電解液12の気液界面52の形成機構についての説明である。図6(b)は貫通孔111の開口部51が矩形形状の場合を示し、図6(c)は貫通孔111の開口部51が略円形の場合を示している。
 ヤング-ラプラスの式は、以下の式(1)のように定義される。
ΔP(=P1-P2) ≦ -4γcosθ/W = Δp ・・・ (1)
 上記式(1)において、Δpはヤング-ラプラス圧、γは電解液12の表面張力、θは電解液12と貫通孔111(または貫通孔113)の壁面との接触角、Wは貫通孔111の開口部51の径を表す。P1とP2は、それぞれ液相側圧力と気相側圧力である。
 図6(a)に示すように、接触角θで接する電解液12を貫通孔111の深さ方向に広げるのに必要な力は、-γcosθとなる。ここで、図6(b)に示すように、貫通孔111の開口部51がW×Wの矩形形状の場合、表面張力は、電解液12と接している面にかかる。すなわち、このときに電解液12を貫通孔111に押し込むのに必要な力は、-4Wγcosθとなる。これを貫通孔111の面積(W)で除して圧力に換算すると、ヤング-ラプラスの式は上式(1)のようになる。
 同様に図6(c)に示すように、貫通孔111の開口部51が直径Wの円形状の場合、電解液12を貫通孔111の深さ方向に押し込むのに必要な力は、-πWγcosθとなる。これを貫通孔111の面積(π・W/4)で除して圧力に換算すると、この場合もヤング-ラプラスの式は上式(1)のようになる。
 なお、スリット状の貫通孔のように、一辺Lが他の一辺Wよりも遥かに長い場合(L≫W)のヤング-ラプラス圧Δpは、式(1)に類似する以下の式(2)によって表すことができる。
Δp = -2γcosθ/W ・・・ (2)
 ここで、貫通孔をスリット状とする場合、その開口幅(Wに相当)は、1000μm以下、好ましくは500μm以下、さらに好ましくは100μm以下、最も好ましくは50μm以下である。貫通孔の開口幅は、生成したガスが通過可能である限りにおいて、小さい方がより好ましい。式(1)に示すように、幅Wが小さい方がヤング-ラプラス圧はより大きくなる傾向にあり、ヤング-ラプラス圧がより大きくなることにより電解液12の侵入を抑制する力がより強くなる。
 水を主成分とする電解液の表面張力を70[mN/m]とし、電解液12と貫通孔111の内壁面との接触角を110°とした時の、想定した開口幅Wに対するヤング-ラプラス圧Δpの大きさを下に示す。
 W=1000μmにおける Δp=  96Pa = 0.9cm-水柱
 W= 500μmにおける Δp= 193Pa = 1.9cm-水柱
 W= 100μmにおける Δp= 957Pa = 9.6cm-水柱
 W=  50μmにおける Δp=1914Pa =19.2cm-水柱
 この結果は、アノード電極2を鉛直方向に設置する縦型のガス生成装置100の場合において、拡張可能なアノード電極2の開口幅Wの限界を示したものである。一方、アノード電極2を水平方向に設置する横型のガス生成装置100の場合には、カソード電極3の上方に設置されたアノード電極2の上面から電解液面までの制限高さを示したものである。貫通孔111の開口幅Wをより小さくすることにより、アノード電極2の設計の自由度と操作安定性の向上を達成することができる。
 図7は、貫通孔111、113が形成された状況を観察した平面図であり、貫通孔の孔径とピッチの関係を示したものである。ここで、貫通孔のピッチとは、隣接する孔の中心(重心)同士の距離である。
 本実施形態においては、複数の貫通孔111、113が、アノード電極2またはカソード電極3に規則的に配置されている。図7に記載したものは千鳥格子状に貫通孔を配したものであり、孔径を記載した貫通孔と、これに隣接する横の貫通孔、および60°傾いた位置にある貫通孔とのピッチは同距離である。なお、千鳥格子状に代えて、正方格子状や斜方格子状に貫通孔111、113を配置してもよい。
 隣接する貫通孔111、113の重心間距離は、0.1μm以上800μm以下が好ましい。隣接する他の貫通孔との距離がこの範囲にある貫通孔111、113を含むことで、光触媒反応により生じたガス(酸素ガスまたは水素ガス)を高い収率で捕集することができる。
 そして、本実施形態のガス生成装置100は、すべての貫通孔111、113において、隣接する他の貫通孔との重心間距離が0.1μm以上800μm以下であることが好ましい。これにより、アノード電極2またはカソード電極3の場所によらずガスの収率が良好となる。
 隣接する貫通孔111、113同士の重心間距離は、貫通孔111、113の開口直径の1.5倍以上かつ5倍以下が好ましい。孔ピッチ間隔は、後述するように、発生した正孔および電子がその移動における距離ができるだけ短いことが好ましいため、上記範囲にあると気体が効率良く生成する。
 また、貫通孔111、113の開口直径は300μm以下が好ましく、100μm以下がより好ましい。前述のように、孔径は小さい方がヤング-ラプラス圧に基づき、電解液の漏洩に対してより抗しやすくなるため、孔径が上記範囲にあると、電解液を通過せずガスのみを選択的に通過させることができる。
 したがって、これらの条件(孔径、孔ピッチ間隔)をいずれも満たすことにより、触媒層(光触媒含有層27、助触媒含有層43)の表面で効率よくガスを生成させることができ、さらに生成ガスが貫通孔111、113を介して裏面側に効率よく移動する。つまり、生成ガスが触媒層表面に付着し、後続のガス生成を抑制することがないので、電解液から所望のガスを効率よく生成することができ、さらに生成ガスの分離回収性にも優れる。
 図8(a)は、光触媒含有層27および助触媒含有層43と、夫々の貫通孔(第一貫通孔111と第二貫通孔113)との構造に起因する特徴を説明する模式図である。同図(b)はその拡大図である。
 光触媒含有層27(助触媒含有層43)は多数の空孔を含む多孔質材料であり、光触媒(助触媒)は空孔に露出している。光触媒含有層27および助触媒含有層43は、実質的に光触媒および助触媒のみからなる。
 光触媒含有層27(助触媒含有層43)の空孔は、貫通孔111、113の内壁面に露出して存在している。すなわち、アノード電極2およびカソード電極3の貫通孔111、113の内壁面には、光触媒または助触媒からなる多数の空孔が開口している。
 また、貫通孔111、113の内壁面に露出した光触媒含有層27(助触媒含有層43)の空孔は、他の空孔と互いに連通している。言い換えると、光触媒含有層27、助触媒含有層43は連続気泡タイプの多孔質材料からなる。これにより、光触媒含有層27(助触媒含有層43)に対して厚み方向に含浸した電解液12において発生したガスは、空孔を通じて、近接する貫通孔111、113に至る。貫通孔111、113には、ヤング-ラプラス圧以下の電解液12は侵入しないため、貫通孔111、113の開口近傍が電解液12とガスとの気液界面となっている。したがって、光触媒含有層27(助触媒含有層43)の内部で生じたガスは、貫通孔111、113に至ることで電解液12より離脱し、気泡となってアノード電極2(カソード電極3)の反対面側に捕集される。
 すなわち、図8のポイントXで示した位置において、電解液12が沁みこんだ光触媒含有層27中に、あるいは電解液12に触れた状態にある光触媒含有層27において、光照射によって光励起反応が生じて電子と正孔が発生し、次いで上述の(式101)に示したように酸素分子とプロトンが生成される。酸素分子は集合して初めて気泡を形成するが、発生初期の段階では分子として電解液に溶けたままの状態である。ポイントXで発生した酸素分子は、拡散により光触媒含有層27中および電解液12中を漂うが、やがて貫通孔111と電解液12が形成する気液界面52に到達し、気体に取り込まれるようにして酸素ガスを構成する分子になる。このようにして酸素分子は、酸素気体として捕集されていく。
 一方、プロトンは電子があって初めて水素分子に変化しうる。プロトンを水素分子に変化させるには、電子の存在の他に、上述の(式102)に示したように助触媒の存在が欠かせない。従って、プロトンは光触媒含有層27中を拡散し、電解液12に溶け出した後、助触媒含有層43に到達して初めて水素分子になりうる。
 しかし、もし光触媒含有層27に貫通孔111がない場合、光触媒含有層27中に形成された酸素分子はプロトンと同じ拡散による動きにより、気泡化できなかったものは助触媒含有層43に到達し、ここで水への逆戻り反応によってプロトンとともに消失してしまう。
 従って、本実施形態のように貫通孔111の形成する気液界面52が光触媒含有層27のすぐ近くに存在していることで、生成した酸素分子が電解液12に溶け込み拡散によって貫通孔が形成する気液界面に到達することによりガス化し、あるいは生成した酸素分子が酸素気泡となった後に分離回収することができる。このため、水への逆戻り反応を阻害し、その結果、水素の捕集効率を向上させる。
 また、助触媒含有層43に形成された貫通孔113により、水素が気液界面により分離捕集されることを促進する。これにより、酸素の分離捕集のプロセスと同様に水素の捕集効率を向上する。
 光触媒含有層27および助触媒含有層43に形成された貫通孔111、113が形成する気液界面52と、酸素分子とプロトンの発生ポイント、もしくは水素分子の発生ポイントとの距離は、近い方が好ましい。この距離を、以下、界面-反応点距離という。界面-反応点距離は、気液分離のプロセスを有効足らしめるのに必要な距離である。貫通孔の径およびピッチ距離の異なる系で繰り返し実験を行ったところ、界面-反応点距離は、400μm以内が望ましいことが明らかとなっている。
 したがって、隣接する貫通孔111、113の近接縁間距離は0.1μm以上400μm以下が好ましい。これにより、貫通孔111、113からもっとも遠い位置、すなわち貫通孔111、113同士の中間位置がプロトンの発生ポイントとなった場合でも、界面-反応点距離を400μm以下とすることができる。
 また、隣接する貫通孔111、113の重心間距離が100μm以下であることが更に好ましい。隣接する貫通孔同士の距離がこの範囲にあることで、界面-反応点距離を良好に低減することができる。
 ここで、貫通孔111、113の内壁面に疎水化処理が施されていることが好ましい。
 同様に、アノード電極2またはカソード電極3のうちガス収容部21、31が設けられた裏面側は、電解液12に対して疎液性であることが好ましい。
 これにより、貫通孔111、113に対して電解液12が侵入することが抑制されて貫通孔111、113の内部の略全体が気相となり、気液界面52が貫通孔111、113の開口近傍に形成される。このため、アノード電極2やカソード電極3の内部のみならず表面近傍で発生したガスに関しても、貫通孔111、113に至ることで、ただちにガス(気相)化されて捕集される。
 光触媒含有層27およびカソード電極3は、電解液12に対して親液性であることが好ましい。これにより、電解液12が光触媒含有層27およびカソード電極3(助触媒含有層43)と良好に接触して光触媒反応が行われる。
 ここで、本実施形態にかかるガス生成方法(以下、本方法という場合がある)を説明する。
 本方法は、水を含む電解液から酸素ガスおよび/または水素ガスを生成する方法である。
 本方法は、液接触工程と照射工程と捕集工程とを含む。
 液接触工程では、光触媒反応により電解液から酸素ガスを生成する光触媒を含む光触媒含有層27を有するアノード電極2と、光触媒含有層27における光触媒反応により生成された電解液中の水素イオンと電子とから水素ガスを生成するカソード電極3と、に電解液を接触させる。
 照射工程では、光触媒含有層27に光触媒の励起光を照射する。
 そして、捕集工程では、アノード電極2で生成された酸素ガスまたはカソード電極3で生成された水素ガスの少なくとも一方を、このアノード電極2またはカソード電極3に設けられた複数の貫通孔111、113を通じて捕集する。
 上記のように、光触媒含有層27は、光触媒が露出する多数の空孔を含む多孔質材料であり、空孔の内部で生成された酸素ガスまたは水素ガスを、貫通孔111、113を通じて捕集する。
 そして、空孔の内部で生成された酸素ガスまたは水素ガスを、貫通孔111、113の内壁面に露出している他の空孔を介して、貫通孔より捕集する。
 図9は、アノード電極2とカソード電極3とが対向して設置された、対向配置型のガス生成装置の基本構成を示す模式図である。カソード電極3と、アノード電極2の光触媒含有層27と、は互いに対向して配置されている。
 図9(a)は斜視図であり、図9(b)は側面断面図である。これらの図は、光触媒含有層27の背面から光7を照射した場合を示している。光7は、受光窓4、第一ガス収容部21、透光性基材28を通過して光触媒含有層27に照射される。
 一方、図9(c)、(d)は、同じく対向配置型のガス生成装置の基本構成を示す図である。これらの図は、それぞれ斜視図および側面断面図である。光7の照射方向は、同図(a)、(b)の場合とは逆であり、助触媒含有層43の背面から照射されている。
 このカソード電極3は、励起光7を透過する材料から構成されている。そして、受光窓4はカソード電極3に対向して配置されて、受光窓4を透過した励起光7が、カソード電極3をさらに透過して光触媒含有層27に照射される。この場合、助触媒含有層43は透光性である必要があり、10nm以上200nm以下の層厚であることが好ましく、さらに好ましくは30nm以上150nm以下である。また、カソード電極3を構成する基材もまた透光性が好ましく、透光性基材28を用いるとよい。
 図9(a)、(b)に示す受光窓4は、透光性基材28を介して光触媒含有層27の反対側に配置されている。受光窓4を透過した励起光は、透光性基材28をさらに透過して光触媒含有層27に照射される。
 図9に示す対向配置型のガス生成装置の利点は、構造が簡単であり、またアノード電極2とカソード電極3との間の距離を可能な限り狭くすることができる点にある。これにより、プロトンの移動距離の低減、ひいては水素の捕集効率の向上につながる。
 アノード電極2は、光触媒含有層27を支持する基材(透光性基材28)を備えている。透光性基材28は、励起光7を透過する材料から構成されている。そして、図9(a)、(b)に示す照射工程では、透光性基材28を透過させた励起光7を光触媒含有層27に照射する。
 カソード電極3は、励起光7を透過する材料から構成されている。そして、図9(c)、(d)に示す照射工程では、カソード電極3を透過させた励起光7を光触媒含有層27に照射する。
 図10は、光触媒含有層27で発生したプロトンおよび電子の移動を示す説明図である。具体的には、図10(a)は、カソード電極3とアノード電極2とを、これらの外部を通るリード線202で結合した状態を示している。光触媒含有層27(酸化チタン層19)にて発生した電子8(e)を効率よく、リード線202を介してカソード電極3に輸送することができる。プロトン34(H)は、電解液12内を移動して、カソード電極3の助触媒含有層43に至る。同じく発生した酸素ガス23はアノード電極2を貫通して捕集され、水素ガス33はカソード電極3を貫通して捕集される。
 なお、光触媒反応の機構を考察すれば、必ずしもこのような外部を通るリード線202は必要ではない。例えば、図10(b)に示すような多孔質チタン206のような、導電性かつ物質輸送性(拡散性)の良好な構造の材料を、アノード電極2とカソード電極3との間に挟みこんでもよい。これにより、水素ガスおよび酸素ガスの発生を損なうことなく、光7の照射によってアノード電極2で発生した電子をカソード電極3に輸送することが可能である。
 すなわち、カソード電極3が光触媒の励起光7を受光することにより水素ガスを生成する助触媒含有層43を含むとともに、アノード電極2の光触媒含有層27とカソード電極3の助触媒含有層43との間に、導電性の材料からなり、かつ電解液の透過が可能な電子移動層(多孔質チタン206)を備えてもよい。
<光触媒セル>
 図11は、本実施の形態における光触媒セル(アノードセル)1の構成を示した模式図である。図11(a)は光触媒セル1の側面断面図であり、図11(b)は光触媒セル1の正面図である。光触媒セル1は、アノード電極2を備え、助触媒セル(カソードセル)とともに用いることでガス生成装置100を構成する部材である。
 図11(a)、(b)に示すように、光触媒セル1は、通電用金属枠201によって光触媒セル1に固定されたアノード電極2と、受光窓4と、酸素ガスを収容する第一ガス収容部21と、酸素ガス排出管101と、不活性ガス供給管102と、通電用ワイヤ202とを備える。アノード電極2は電極ホルダー120に装着されている。
 アノード電極2は、基材25と、基材25の一方の面に形成された光触媒含有層27とからなる。また、後述するが、基材25上に透明導電膜24を形成することも可能である。光触媒含有層27を備える光触媒担持面20は、アノード電極2において受光窓4から光を受光する面の裏面側に位置する。電解液に接することとなる面に形成される光触媒含有層27は、電解液に対して親液性である。電解液は水を含むものであり、光触媒含有層27は親水性であることが好ましい。
 本実施形態において、アノード電極2を構成する基材25の形状としては、シート状、基板状、フィルム状等を挙げることができる。
 基材25は、光触媒含有層27に含まれる触媒を励起する励起光に対して透明である透光性基材28を用いることもできる。これにより、光触媒はガス生成機能を発揮することができる。受光窓4から入射した励起光は、アノード電極2を透過し、裏面側から光触媒担持面20の光触媒含有層27に照射されて、光触媒機能が発揮される。
 透光性基材25としては、ガラスなどのアルカリガラスも使用できるが、紫外線に対して透明性が必要であれば、石英板が好ましい。石英の他、フッ化マグネシウムやフッ化カルシウムなどのセラミックス材料を用いることもできる。またプラスチックフィルムを用いることも可能であるが、紫外線に対しても透明性を有するものが好ましい。プラスチックフィルムであれば、微細な孔を多数形成することは容易であり、ガス生成装置および生成ガスの低コスト化が可能になる。また、透明なプラスチックフィルムとして、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル系樹脂フィルム、ポリエチレン、ポリプロピレン、ポリメチルペンテン、環状ポリオレフィンコポリマーなどのポリオレフィン樹脂フィルム、メタクリル樹脂フィルム、ポリカーボネート樹脂フィルム、ポリスチレン樹脂フィルム、セルロースアセテート樹脂フィルム、透明性ポリイミド樹脂フィルム、透明性フッ素樹脂フィルム、シリコーン樹脂フィルム、また一部の生分解性ポリマーなどを用いることができる。
 なお、本実施形態においては、基材25と光触媒含有層27とを積層したアノード電極2を例示しているが、本発明はこれに限られない。光触媒含有層27のみでアノード電極2を構成してもよく、基材25の使用は任意である。なお、本実施形態のガス生成装置100を地面または設置台(図示せず)に搭載する際の土台として、アノード電極2(光触媒含有層27)または他の部材を載置するための基材(基台)を用いてもよい。
 また、基材25は、導電性を有するものであることが好ましいが、一般には絶縁性である。この場合、後述する図12(c)に示すように、基材25と光触媒含有層27との間に透明導電膜24を形成することによって、その表面に導電性を付与することも可能である。
 本実施形態においては、光触媒担持面20の裏面に対向する位置に設けられた受光窓4から、励起光が照射される例によって説明する。なお、励起光が光触媒担持面20側から直接照射される場合、基材25は励起光に対して透明である必要はない。この場合、アノード電極2に用いる基材25は、金属基板や黒鉛板などから構成することができる。また、メッシュ状やすだれ状のものをアノード電極2に用いる場合には、金属製や黒鉛製のファイバーなどを用いることも可能である。これらの材料からなる基材25は導電性であるので、透明導電膜24を設ける必要はない。
 なお、アノード電極2の基材25が励起光に対して不透明である場合、アノード電極2に対向するカソード電極3を励起光に対して透明な材料から形成し、光触媒含有層27に励起光を照射可能に構成することが好ましい。
 透明導電膜24は、インジウム錫酸化鉄(ITO)、酸化錫(SnO)、酸化亜鉛(ZnO)等から形成することができる。透明導電膜24は、真空蒸着、化学気相蒸着、イオンプレーティング、スパッタリング、ゾルゲルコーティング等の方法により形成することができる。
 光触媒含有層27に含まれる光触媒は、酸化チタン、酸化バナジウム、酸化ニッケル、酸化亜鉛、酸化ガリウム、酸化ジルコニア、酸化ネビジウム、酸化モリブデン、酸化タンタル、酸化タングステン、酸化ガリウム、酸化ゲルマニウム、酸化インジウム、酸化錫、酸化アンチモン、酸化鉛および酸化ビスマス等の酸化物、さらに、これらの窒化物、硫化物からなる群から選択される少なくとも1種以上を用いることができ、さらにこれらの窒化物や硫化物を用いることができる。また、これらの中でも、高い光触媒活性と優れた安定性を示す酸化チタン及びその誘導体が好ましい。
 また、二元の化合物なども用いることができる。例えば、ArTiO、AgNdOやAgNbO、Ga-In混合化合物、AgTaO、AgNbO、AgInZSなどの銀系化合物、In-ZnO系化合物や、BiVOのような化合物なども好ましい。
 また、これらの酸化物、窒化物、硫化物からなる化合物に対し、別の元素をドーピングすることも可能である。ドーピングする材料として、クロム、マンガン、鉄、コバルト、ニッケル、亜鉛、ガリウム、ゲルマニウム、ヒソ、セレン、モリブデン、パラジウム、銀、カドミウム、インジウム、錫、アンチモン、テルル、タングステンなどが挙げられる。
 光触媒として用いられる酸化チタンは、アナターゼ型の酸化チタンが一般的である。しかし、酸化チタンは紫外線に対しては有効であるが、可視光に対しては光触媒効果がない。最近になり、可視光に対しても光触媒機能を発揮する触媒の開発が進んでいる。代表的な可視光型光触媒としては、酸化セリウムを担持した酸化チタンや、タンタル酸ナトリウム複合酸化物、ビスマス酸化物系とロジウムをドーピングしたストロンチウム系酸化チタンなどの研究が進められており、これらの光触媒を用いることもできる。
 これらの光触媒を含む光触媒含有層27の形成方法としては、イオンプレーティング法、化学蒸着法、真空蒸着法、スパッタ法などが挙げられる。
 また、光触媒がシート基板を侵食しない溶剤に溶ける場合は、スピンコート法、スクリーン印刷法、スプレー法などの形成方法が好適に採用される。上記の形成直後、これらの光触媒はアモルファス状態であるので、光励起で生成した電子・正孔が反応表面に達する前に欠陥やディスオーダーで捕捉されてしまい、触媒機能が期待できない。そこで結晶化を進めるために、加熱処理が行なわれる。加熱温度は200℃~700℃の範囲が好ましい。また、結晶化が行われている光触媒を用いることにより、加熱処理が不要もしくは200℃に満たない温度での光触媒を触媒分散溶液として含まれる樹脂組成物(バインダ)を除去するための加熱処理を行うことで対処できる。
 このほか、光触媒含有層27の形成方法としては、光触媒を分散させた触媒分散溶液を金型に流し込み、これを加熱焼成または溶剤処理して触媒分散溶液を除去するキャスト法を用いてもよい。具体的には、触媒分散溶液として樹脂組成物(バインダ)を用い、これを加熱焼成することで、実質的に光触媒のみからなる多孔質材料を製造することができる。触媒分散溶液を流し込む金型には、貫通孔に対応する箇所が突出した、光触媒含有層27の反転金型を用いる。助触媒含有層43の製造に関しても同様である。
 光触媒含有層27の層厚は0.01μm以上100μm以下が好ましく、1μm以上かつ10μm以下の範囲がより好ましい。光励起で発生した正孔や電子が電解液と効率良く反応するためには光触媒の微粒子と電解液の接触面積を大きくする必要がある。そのため、表面だけでなく膜の深さ方向にも距離が長い方がより微粒子と接触する機会が増える。層厚が過小の場合は、触媒活性が低下することがあり、一方、層厚が過大の場合は電極膜の剥離が発生することがあり電解が中断する可能性がある。
 酸素ガス排出管101は、第一ガス収容部21に連通しており、この第一ガス収容部21内に回収された酸素ガスを排出することができる。通電用ワイヤ202は通電用金属枠201に接続しており、光触媒含有層27で生成された電子を、通電用ワイヤ202を介してカソード電極(同図には図示せず)に供給することができる。
 図11(b)は光触媒電解セル1の正面図である。図11(b)において、電解を行なう光触媒担持面20側を正面にしており、励起光が照射される面は裏面となる。図11(b)に示すように、光触媒セル1は、酸素ガス排出管101と不活性ガス供給管102を備え、これらは第一ガス収容部21に連通している。窒素ガス等の不活性ガスを、不活性ガス供給管102からガス収容部21に供給することにより、酸素ガスの回収を促進することもできる。
 図12は、酸素ガスを選択的に通過させる複数の貫通孔111を有するアノード電極2の一例を示す模式図である。なお、図12において、基材25は、励起光に対して透明な材料から構成されていてもよい。
 図12(a)は、アノード電極2の正面図であり、図12(b)は、アノード電極2の側面断面図である。さらに、図12(c)は、アノード電極2の中心部分を拡大した図である。拡大部分は正方形の破線で囲まれた部分である。アノード電極2は、基材25、透明導電膜24、光触媒含有層27が順に積層された構造を有する。
 アノード電極2は、光触媒セル1に固定するための支持具である電極ホルダー120に装着されている。なお、電極ホルダー120は図11および図12以外の図面においては記載を省略する。アノード電極2には、複数の貫通孔111が形成されている。貫通孔111の形状は、ヤング-ラプラスの式を満たす範囲において自由に設計することができる。また、アノード電極2自身が、複数の貫通孔111を備える多孔構造であるほか、メッシュ状のものや、すだれ状のものであってもよい。すなわち、アノード電極2は、電解液12を通過させず、かつ生成された酸素ガスを裏面側に選択的に通過させる貫通孔が形成されていればよい。
 図13は、アノード電極2に形成した孔加工部の一例を示す平面図である。本実施形態において、貫通孔111の孔径は100μmとし、孔のピッチ間隔(重心間距離)は150μmとしている。この孔径およびピッチ間隔は適宣決定することができるが、前述するように、孔径が小さい方がヤング-ラプラス圧に基づき、電解液の漏洩がより抑制される。
 基材25に貫通孔111を形成する方法としては、ドリル加工、レーザー加工、サンドブラスト加工等を用いることが可能である。なお、貫通孔111を形成した後に透明導電膜24および光触媒含有層27を形成してもよく、透明導電膜24および光触媒含有層27を基材25に形成した後に貫通孔111を穿設してもよい。
 貫通孔111の内壁面は、電解液に対して疎液性であることが好ましい。さらに、アノード電極2の光触媒担持面20の裏面も電解液に対して疎液性であることが望ましい。これにより、電解液の貫通孔111内への浸入をより効果的に抑制することができる。電解液は水を主成分として含むものであり、貫通孔111の内壁面とアノード電極2の裏面は疎水性であることが好ましい。
 貫通孔111の内壁面を疎水化する方法として、予め疎水性の基板を用いることの他、疎水性のコーティング剤を塗布する方法を用いることができる。例えば、CYTOP(旭硝子製)などのテフロン(登録商標)製樹脂コーティング剤等を用いることが可能である。また、フッ素系のガスを用いたプラズマ処理による疎水化も可能である。
 アノード電極2の光触媒含有層27を電解液12に接触させ、さらに受光窓4を透過した光触媒の励起光をさらに基材25を透過して光触媒含有層27に照射させることにより、光触媒含有層27における光触媒反応により酸素ガスを発生する。なお、貫通孔111のうち、基材25の厚み部分に対応する内壁面には光触媒が担持されておらず、当該箇所では酸素ガスは発生しない。貫通孔111はヤング-ラプラスの式に基づいて形成されており、電解液は貫通孔111への深さの侵入が抑制される。貫通孔111の開口部には、電解液面とガス相の境界面である気液界面が形成される。この気液界面52は、前述したヤング-ラプラス圧に起因して形成される。なお、貫通孔111の内壁面が疎水性である場合、貫通孔111内への電解液の浸入をより効果的に抑制することができる。
<助触媒セル(カソードセル)>
 図14は、助触媒セル(水素ガス生成用電解セル)6の模式図である。図14(a)は、助触媒セルの側面断面図である。図14(b)は助触媒セルの正面図である。
 図14(a)、(b)に示す助触媒セル6は、通電用金属枠201によって助触媒セル6に固定されたカソード電極3と、受光窓4と、水素ガスを収容するガス収容部31と、水素ガス排出管103と、通電用ワイヤ202とを備える。そして、カソード電極3は、基材25上に形成され助触媒含有層43とからなる。助触媒含有層43に含まれる助触媒は、白金、ニッケル、ルテニウム、酸化ニッケルおよび酸化ルテニウムよりなる群から選択される少なくとも1種が好ましい。
 カソード電極3は透光性基材28(図9を参照)にて構成することにより、受光窓4からの励起光を透過し、受光窓4から見てカソード電極3の背面に、アノード電極2を設けた場合に、光触媒含有層27に励起光を照射することができる。
 カソード電極3に、アノード電極2側から光を照射させる場合には、助触媒セル6に受光窓4は必ずしも必要ではなく、さらにカソード電極3は励起光に対して透明でなくてもよい。この場合、カソード電極3は、白金、ニッケル、等から構成されるとよい。
 カソード電極3の基材25は、シート状、基板状、フィルム状等の形状を有しており、図12(c)、図13に示すものと同様の貫通孔が設けられている。カソード電極3には、メッシュ状のもの、すだれ状のものなど、貫通孔を隔てて離散的に配置された複数の電極部分を備える基材25も用いることができる。カソード電極3における貫通孔(第二貫通孔)は、電解液を通過せず、カソード電極3におけるアノード電極2と対向する面において発生した水素ガスを、裏面側に選択的に通過させる。
 通電用ワイヤ202は通電用金属枠201に接続している。カソード電極3表面において、通電用ワイヤ202を介してカソード電極3に供給された電子と、光触媒反応により生成された電解液中の水素イオンとにより水素ガスが生成する。助触媒セル6の通電用ワイヤ202と、光触媒セル1(図11を参照)の通電用ワイヤ202とを電気的に接続することにより、光触媒含有層27において生成した電子をカソード電極3に供給し、ガス生成を連続的に行うことができる。通電用ワイヤ202は、図14(a)に示すように通電用金属枠201に電気的に接続されており、不活性ガス供給管102の中を通ってアノード電極2からの電子を供給可能に構成されている。
 図14(b)は助触媒セル6の正面図である。図14(b)において、電解が行われる面を正面にしており、励起光が照射される面は裏面となる。図14(b)に示すように、水素ガス生成用電解セル6は、水素ガス排出管103と不活性ガス供給管102を備え、これらは第二ガス収容部31に連通している。窒素ガス等の不活性ガスを、不活性ガス供給管102から第二ガス収容部31に供給することにより、酸素ガスの回収を促進することもできる。
 以下、上記の光触媒セルおよび/または上記の助触媒セルを用いたガス生成装置の実施形態について、図面を用いて説明する。
[第1実施形態]
 本実施形態のガス生成装置100は、図11に示した光触媒セル1にカソード電極3を配した装置を用いている。さらに詳しく説明すると、図15は、図11に示した光触媒セル1を電解液槽10内に装着したガス生成装置100の側面断面図であり、図16はガス生成装置100の正面図である。本実施形態のガス生成装置100は、アノード電極2を有する光触媒セル1を、支持棒に固定したカソード電極3として白金電極を有する電解液槽10内に装着したものである。
 電解液槽10は、蓋部材11により水素ガスが漏洩しないように密閉されている。蓋部材11には、光触媒セル1の酸素ガス排出管101および不活性ガス供給管102が貫通しており、これにより光触媒セル1が固定されている。不活性ガス供給管102は、蓋部材11の上面において通電用ワイヤ挿入口203を備える。通電用ワイヤ挿入口203を介して、不活性ガス供給管102内に通電用ワイヤ202が通っている。さらに、通電用ワイヤ202は支持棒301内を通ってカソード電極3と電気的に接続されている。
 蓋部材11には、支持棒301が貫通している。支持棒301にはカソード電極3が固定されており、アノード電極2の光触媒担持面20と対向している。蓋部材11には、電解液槽10内の空間に不活性ガスを供給する不活性ガス供給管102と、水素ガス排出管103とを備える。
 触媒の励起光は、受光窓4を介してアノード電極2における光触媒担持面20の裏面側から照射される。本実施形態においては、電解液槽10自体も励起光に対して透明な材料から構成される。励起光は、電解液槽10および基材25を透過し、基材25上の光触媒含有層27に照射される。そして、電解液12と接する光触媒含有層27の表面にて酸素ガスと水素イオンが発生する。酸素ガスは、アノード電極2の貫通孔を通って光触媒担持面20から裏面側に移動してガス収容部21に蓄積され、酸素ガス排出管101を介して回収される(図11を参照)。
 一方、水素イオンは、光触媒含有層27で発生した後、電解液12に溶け込み、カソード電極3に到達する。また、光触媒含有層27で発生した電子は、通電用ワイヤ202を介して同じくカソード電極3に到達する。カソード電極3の表面において、電子と水素イオンとから水素ガスが生成する。生成した水素ガスは、浮力によってカソード電極3から離脱し、水素ガス排出管103を経て回収される。
 本実施形態において、電解液12は水を主成分として含むものであり、塩酸、硫酸、硝酸、酢酸、シュウ酸等を含む弱酸水溶液、過酸化ナトリウム、過酸化カリウム、炭酸ナトリウム、炭酸カリウム等の弱アリカリ水溶液、メタノールやエタノール、プロパノールなどのアルコール類の水溶液、アクリル酸、フタル酸などのカルボン酸類等の水溶液を用いることができる。
[第2実施形態]
 本実施形態のガス生成装置100は、図14に示した助触媒セル6を用いアノード電極2を挿入した装置を用いている。図17は、図14に示した助触媒セル6を電解液槽10内に装着したガス生成装置100の側面断面図である。本実施形態のガス生成装置100は、カソード電極3を有する光触媒セル1を、アノード電極2を有する電解液槽10内に装着したものである。
 第1実施形態と異なり、カソード電極3に第二貫通孔が形成され、アノード電極2には貫通孔が形成されていない。蓋部材11には、水素ガス生成用電解セル6の水素ガス排出管103および不活性ガス供給管102が貫通しており、これにより水素ガス生成用電解セル6が固定されている。不活性ガス供給管102は、蓋部材11の上面において通電用ワイヤ挿入口を備える。通電用ワイヤ挿入口を介して、不活性ガス供給管102内に通電用ワイヤ202が通っている。さらに、通電用ワイヤ202は支持棒301内を通ってアノード電極2と電気的に接続されている(図示せず)。
 蓋部材11には、支持棒301が貫通している。支持棒301にはアノード電極2が固定されており、アノード電極2の光触媒担持面20がカソード電極3と対向するように配置されている。蓋部材11には、電解液槽10内の空間に不活性ガスを供給する不活性ガス供給管102と、酸素ガス排出管101とを備える。
 触媒の励起光は、受光窓4およびカソード電極3を透過し、アノード電極2の光触媒含有層27に照射される。本実施形態においては、電解液槽10自体も励起光に対して透明な材料から構成される。本実施形態において、アノード電極2は励起光に対して不透明な材料から構成することができる。そして、電解液12と接する光触媒含有層27の表面にて酸素ガスと水素イオンが発生する。光触媒含有層27で生成した酸素ガスは、浮力によってアノード電極2から離脱し、酸素ガス排出管101を経て回収される。
 一方、水素イオンは、光触媒含有層27で発生した後、電解液12に溶け込み、カソード電極3に到達する。また、光触媒含有層27で発生した電子は、通電用ワイヤ202を介して同じくカソード電極3に到達する。カソード電極3の表面において、電子と水素イオンとから水素ガスが生成する。生成した水素ガスは、カソード電極3の第二貫通孔を通ってガス生成面から裏面側に移動し、ガス収容部31に蓄積され、水素ガス排出管103を介して回収される。
[第3実施形態]
 本実施形態のガス生成装置100は、図11に示した光触媒セル1と、図14に示した助触媒セル6とを用いて構成されている。
 図18は本実施形態のガス生成装置の側面断面図であり、図19はカソード電極3側からの正面図であり、図20は上面図である。
 図18に示すように、光触媒セル1と、助触媒セル6とは、電極間スペーサー61を挟んだ構成で、平行に設置された構成となっている。電極間スペーサーによるアノード電極2の光触媒担持面20と、カソード電極3とは対向して設置されている。アノード電極2と、カソード電極3とにより、空間(電極間隙部)が形成され、その電極間隙部には電解液12が満たされた状態になっている。
 図19の正面図に示すように、ガス生成装置100の一方には、電解液供給細管133と電解液供給管131とが配置されており、上記の空間に外部より電解液を供給することができる。そして、他方には電解液排出細管134と電解液排出管132とが配置されており、上記の空間(電極間隙部)において光触媒反応に供された電解液12を外部に排出することができる。つまり、アノード電極2と、カソード電極3とにより形成された電極間隙部は、電解液流路の一部を構成する。
 言い換えると、ガス生成装置100は、電解液12を貯留してアノード電極2およびカソード電極3をこの電解液12に接触させる電解液貯留部(電極間隙部)と、この電解液貯留部に電解液12を供給する電解液供給管131と、触媒反応に供された電解液12を電解液貯留部から排出する電解液排出管132と、をさらに備えている。
 触媒の励起光は、受光窓4を介してアノード電極2における光触媒担持面20の裏面側から照射される。励起光は基材25をさらに透過し、基材25上の光触媒含有層27に照射される。そして、電解液12と接する光触媒含有層27の表面にて酸素ガスと水素イオンが発生する。酸素ガスは、アノード電極2の貫通孔を通って光触媒担持面20から裏面側に移動し、第一ガス収容部21に蓄積され、酸素ガス排出管101を介して回収される。
 一方、水素イオンは、光触媒含有層27で発生した後、電解液12に溶け込み、カソード電極3に到達する。また、光触媒含有層27で発生した電子は、図20に示すように、通電用ワイヤ202を介して同じくカソード電極3に到達する。カソード電極3の表面において、電子と水素イオンとから水素ガスが生成する。生成した水素ガスは、カソード電極3の第二貫通孔を通ってガス生成面から裏面側に移動し、第二ガス収容部31に蓄積され、水素ガス排出管103を介して回収される。
 このように、アノード電極2で発生した酸素ガスと、カソード電極3で発生した水素ガスは、互いに交じり合うことなく、第一ガス収容部21と第二ガス収容部31に別々に蓄積される。これにより、アノード電極2とカソード電極3との間隔は従来の電極構造では達成し得ない間隔にまで近接配置することが可能になる。
 また、酸素ガス、水素ガスの移動は、後述するように重力によらない表面張力によって行なわれるので、上下左右の配置を気にせず、自由に電極配置を行なうことができるようになる。例えば、アノード電極2とカソード電極3とを上下に向き合うように水平に配置することも可能になる。
 図21は、図18と同じく二つの電解セルを連結させたものであるが、光の照射は図17とは正反対にカソード電極3側の受光窓4より照射される。この場合、カソード電極3は励起光に対して透明であり、照射された光はアノード電極2の光触媒含有層27に照射される。この場合も、図18に示すガス生成装置100と同様に、酸素ガスと水素ガスは夫々のガス収容部に蓄積された後、夫々のガス排出管によって外部に供出される。
 図18に示すガス生成装置100においては、カソード電極3を励起光に対して不透明な部材から構成することができ、図21に示すガス生成装置100においては、アノード電極2を励起光に対して不透明な部材から構成することができる。本実施形態においては、励起光の照射を効率よく行う観点から、アノード電極2およびカソード電極3を励起光に対して透明な部材から構成することも好ましい。
[第4実施形態](太陽光対応ガス生成装置)
 本実施形態のガス生成装置100は、水平に配置されたカソード電極3の上方にアノード電極2を平行に配置し、太陽光等の上方向から照射される励起光に対して略直角になるようにアノード電極2を設けられたガス生成装置100(太陽光対応ガス生成装置)である。本実施形態のガス生成装置100は、水平に設置されたアノード電極2と、その下方に平行に設置されたカソード電極3とを備えている。
 図22は本実施形態の太陽光対応のガス生成装置100の上面図であり、図23は側面断面図であり、図24は下面図である。
 図23に示すように、カソード電極3の上方に、カソード電極3と平行となるようにアノード電極2が配置されている。アノード電極2の光触媒担持面20が、カソード電極3と対向している。図22、23に示すように、アノード電極2の上方には受光窓4が配置されており、広い面積にて太陽光等をアノード電極2に受光できる構造になっている。
 アノード電極2とカソード電極3との間の空間に、電解液12を満たすことができる。電解液12は、電解液供給管131より電解液槽10に供給され、さらに電解液供給細管133を介して、電極間の空間に供給される。そして、光触媒反応に供された電解液12は、電解液排出細管134を介して電解液槽10に移動し、電解液排出管132により外部に放出される。このようにして、電解液12の供給と太陽光の照射により、水素と酸素を継続して発生することができるようになる。
 アノード電極2の上方には、光触媒担持面20の裏面を囲繞するように第一ガス収容部21が配置されている。アノード電極2には第一貫通孔111が形成されており、酸素ガスは第一貫通孔111を通って光触媒担持面20から裏面側に移動し、第一ガス収容部21に蓄積される。そして、酸素ガス排出管101を介して回収される。
 一方、カソード電極3の下方には第二ガス収容部31が配置されている。カソード電極3には第二貫通孔が形成されており、水素ガスは第二貫通孔を通ってガス生成面から裏面側に移動し、第二ガス収容部31に蓄積される。そして、水素ガス排出管103を介して回収される。
 なお、この太陽光対応ガス生成装置は、傾きを替えて使用することが可能である。ただし、電解液が供給側から排出側に流れるように供給側が高くなるように配置することは不可欠である。
 カソード電極3には、白金電極を用いることは可能であるが、その他炭素電極、白金薄膜をスパッタ等により形成した薄膜電極を用いることも可能である。図24は、太陽光対応ガス生成装置を下面から見た図である。
[第5実施形態]
 図25に示す第5実施形態は、第4実施形態とは逆に、カソード電極3をアノード電極2の上に設置した場合の太陽光対応のガス生成装置100の側面断面図である。本実施形態のガス生成装置100は、水平に設置されたカソード電極3と、その下方に平行に設置されたアノード電極2とを備える。
 太陽光は、上方に設置された受光窓4よりカソード電極3を透過して、アノード電極2の光触媒含有層27に入射される。アノード電極2の光触媒含有層27は、上向きに配置されている。相互の電極に電解液12が満たされた状態になっている。
 カソード電極3の上方には第二ガス収容部31が配置されている。カソード電極3には第二貫通孔が形成されており、水素ガスは第二貫通孔を通ってガス生成面から裏面側に移動し、第二ガス収容部31に蓄積される。そして、水素ガス排出管103を介して回収される。
 一方、アノード電極2の下方には、光触媒担持面20の裏面を囲繞するように第一ガス収容部21が配置されている。アノード電極2には第一貫通孔111が形成されており、酸素ガスは第一貫通孔111を通って光触媒担持面20から裏面側に移動し、第一ガス収容部21に蓄積される。そして、酸素ガス排出管101を介して回収される。
[第6実施形態](アノードカソード一体型電極)
 図26(a)、(b)は、第6実施形態のアノードカソード一体型電極50の斜視図である。
 本実施形態のアノードカソード一体型電極50においては、カソード電極3とアノード電極2とが、共通の基材25に支持されて横並びに配置されている。
 ここで、アノード電極2とカソード電極3とが横並びであるとは、平面方向に互いにずれあった位置にあることをいい、両電極が完全に同一平面内にあることを必ずしも要するものではない。
 複数のカソード電極3と複数のアノード電極2とは、互いに隣接して配置されている。
 本実施形態のカソード電極3およびアノード電極2は、それぞれ帯状をなしている。アノード電極2には複数の第一貫通孔111がそれぞれ形成され、またカソード電極3には複数の第二貫通孔113がそれぞれ形成されている。第一貫通孔111と第二貫通孔113とは千鳥格子状などに規則配置されている。
 帯状のアノード電極2およびカソード電極3は、図26(a)のように貫通孔(第一貫通孔111、第二貫通孔113)をそれぞれ一列ずつ有してもよく、または図26(b)のように貫通孔をそれぞれ複数列ずつ有してもよい。
 また、第一貫通孔111および第二貫通孔113の内壁面は、電解液に対して疎水性であることが好ましい。さらに、アノード電極2の光触媒含有層27およびカソード電極3の助触媒含有層43からなる受光面に対して、その裏面は疎水性であることが望ましい。これにより、電解液が第一貫通孔111および第二貫通孔113を介して裏面側に移動するのを効果的に抑制することができる。
[第7実施形態](アノードカソード一体型電極)
 本実施形態におけるアノードカソード一体型電極50は、図27の概略上面図に示すように、光触媒含有層27が第一貫通孔111の周縁部に沿ってリング状に形成されている。リング状に形成された光触媒含有層27の幅は1μm以上である。
 すなわち、本実施形態の光触媒含有層27(光触媒担持面20)は第一貫通孔111の開口部の周縁部にリング状に設けられている。また、助触媒含有層43は第二貫通孔113の開口部の周縁部にリング状に設けられている。
 また、助触媒含有層43が第二貫通孔113の周縁部に沿ってリング状に形成されている。リング状に形成された助触媒含有層43の幅は1μm以上である。ただし光触媒含有層27と助触媒含有層43は、基材25の厚み範囲内においては、貫通孔111、113の内壁には形成されていない。光触媒含有層27の幅が1μm以上であり、助触媒含有層43の幅が1μm以上であることにより、ガス生成に優れる。
 すなわち、アノード電極2はリング状の光触媒含有層27によって構成され、カソード電極3はリング状の助触媒含有層43によって構成されている。そして、カソード電極3とアノード電極2とは電気絶縁性の材料(基材25)を介して横並びに隣接して設けられ、カソード電極3とアノード電極2との隣接間隔は0.01μm以上である。
 図28を参照して、光触媒含有層27および助触媒含有層43におけるガス生成、さらに生成ガスの収集方法について説明する。まず、光触媒含有層27における酸素ガスの発生および収集方法について説明する。なお、図28は、図27中に示した破線における断面図である。
 光触媒含有層27が、受光窓4から照射された励起光を受光すると、電解液12(ここでは水:HOとして示す)に接している光触媒含有層27上で光励起によって電子eと正孔hが生成される。
 2個の正孔hは、HOを酸化し2個のH(プロトン)と2分の1個のO(酸素分子)を生成する(背景技術として説明した式101)。このOは気体状態のまま直ちに第一貫通孔111を通過し、裏面側に移動する。水は前述するヤング-ラプラス圧のために気液界面52を形成し第一貫通孔111内部へは侵入しない(上式(2)を参照)。
 一方、光触媒含有層27において生成された2個のHは、水中を拡散して2個の電子eと助触媒含有層43上で反応し1個のH(水素分子)を生成する(背景技術として説明した式102)。このHは気体状態のまま直ちに第二貫通孔113を通過し、裏面側に移動する。水は前述するヤング-ラプラス圧のために気液界面52を形成し第二貫通孔113内部へは侵入しない(上式(2)を参照)。
 酸素を通過させる第一貫通孔111と水素を通過させる第二貫通孔113とは空間的に隔てられており、酸素と水素が水へ戻る逆反応の確率は非常に小さくなる。水素と酸素が逆反応によって水に戻るのは、水素を発生する助触媒上で生じるので、助触媒上に酸素が存在しない条件にすることにより、水に戻る逆反応を抑制することができる。
 本実施形態のアノードカソード一体型電極50において、光触媒含有層27は第一貫通孔111の開口部の周縁部に設けられ、助触媒含有層43は第二貫通孔113の開口部の周縁部に設けられている。したがって、本実施形態のガス生成装置は、酸素ガスおよび水素ガスの生産効率が向上するとともにこれらのガスの分離性に優れる。
 本実施形態においては、第一貫通孔111の内壁に光触媒が担持されておらず、内壁において酸素ガスは発生しない。そして、第一貫通孔111の内壁が疎水性であるので、電解液14は侵入することができず、第一貫通孔111の開口部に電解液12面とガス相の面である気液界面52が形成される。この気液界面52が形成される機構は、前述するヤング-ラプラス圧によるものである。
 したがって、光触媒含有層27にて発生した酸素分子は、電解液12に溶け込み拡散によって気液界面52に達するか、もしくは気泡に成長すると同時に気液界面52に接触し、破泡現象によって第一貫通孔111内部のガス相に吸収されることになる。この結果、酸素ガスが発生すると同時に第一貫通孔111に吸い込まれ、裏面側に移動する現象が継続して生じることなる。ガス生成装置100にて発生した酸素ガスは、その背面に設けられた第1ガス収容部から酸素ガス排出管101を介して送出されることになる。このように、酸素ガス排出管101(後述する図30(a)および(b)を参照)を介して酸素ガスを回収することができる。
 次に、助触媒含有層43における水素ガスの発生および収集方法について説明する。
 受光窓4からの励起光を光触媒含有層27が受光すると、光触媒含有層27は光触媒反応により、Hと電子eを生成する。そして、助触媒含有層43には、電解液中のHと電子eから水素ガスを生成する。本実施形態において、第二貫通孔113の内壁には助触媒が担持されておらず、内壁において水素ガスは発生しない。そして、第二貫通孔113の内壁が疎水性であるので、電解液12は侵入することができず、貫通孔の開口部に電解液14面とガス相の面である気液界面52(図28を参照)が形成される。この気液界面52が形成される機構は、前述するヤング-ラプラス圧によるものである。
 したがって、助触媒含有層43にて発生した水素ガスは、気泡に成長すると同時に気液界面52に接触し、破泡現象によって第二貫通孔113内部のガス相に吸収されることになる。この結果、水素ガスが発生すると同時に第二貫通孔113に吸い込まれ、裏面側に移動する現象が継続して生じることなる。このようにして、ガス生成装置100にて発生した水素ガスがその裏面に設けられた第2ガス収容部から水素ガス排出管103(図30(b)を参照)を介して水素ガスを回収することができる。
[第8実施形態](アノードカソード一体型電極)
 本実施形態のガス生成装置を、図29を参照して説明する。なお、本実施形態においては、ガス生成装置が光触媒セルに装着された例を省略しているが、本明細書に記載のいずれの光触媒セルにも用いることができる。
 本実施形態におけるガス生成装置100は、図29の概略上面図に示すように、光触媒含有層27からなる領域に、複数の第一貫通孔111が開口している。一方、助触媒含有層43は、第二貫通孔113の周縁部に沿ってリング状に形成されている。助触媒含有層43は光触媒含有層27上に積層されていてもよく、酸素と水素が反応し水に戻る逆反応を抑制する観点から、助触媒含有層43のみが第二貫通孔113の周縁部に沿ってリング状に形成されていてもよい。
 なお、光触媒含有層27と助触媒含有層43は貫通孔の内壁には形成されておらず、内壁において酸素ガスおよび水素ガスは発生しない。そして、第二貫通孔113の内壁が疎水性であるので、電解液14の侵入を抑制することができる。
[第9実施形態](アノードカソード一体型電極を備えたガス生成装置)
 図30は、本実施の形態におけるアノードカソード一体型電極を備えたガス生成装置100の構成を示す模式図であり、図30(a)はアノードカソード一体型電極を備えたガス生成装置100の側面断面図である。図30(b)は、電解が行なわれる面側(光を受光する面側)から見たアノードカソード一体型電極を備えたガス生成装置100の正面図である。
 図30(a)および(b)に示すアノードカソード一体型電極を備えたガス生成装置100は、触媒含有層81(光触媒含有層27および助触媒含有層43)を備えるガス生成装置100の光触媒担持面20に対向して設けられた受光窓4と、ガス生成装置100の光触媒担持面20の裏面側に設けられた第一ガス収容部と、ガス生成装置100の光触媒担持面20の裏面側に設けられた第二ガス収容部と、を備える。本実施形態においては、光触媒担持面20を囲繞する電解液槽10を備える。
 すなわち、本実施形態のアノードカソード一体型電極を備えたガス生成装置100は、光触媒の励起光を透過させるとともにこの励起光を光触媒含有層27に照射する受光窓4を備えている。そして、受光窓4は、光触媒含有層27および助触媒含有層43に対してともに対向する位置に配置されて、受光窓4を透過した励起光が光触媒含有層27および助触媒含有層43に照射される。
 また、受光窓4に対して光触媒含有層27に含まれる光触媒の励起光を照射する照射光源が別途設けられていてもよい。照射光源としては、高圧水銀ランプやキセノンランプ等を用いることができる。光触媒の励起光としては、波長250nm以上の光を用いることができる。
 ガス生成装置100は、基材25の一方の面に触媒層が設けられている。ガス生成装置100は電極ホルダー120に装着され、光触媒セル1に固定されている。受光窓4は、励起光を透過することができる材料から構成され、具体的には、ガラス等の無機材料、ポリイミド樹脂、アクリル樹脂、ポリエチレン樹脂、ポリカーボネート樹脂、ポリオレフィン樹脂、エポキシ樹脂等の高分子材料などを用いることができる。
 本実施形態においては、受光窓4が電解液収容部12の側壁の一部を構成している例によって示すが、受光窓4とガス生成装置100との間に、励起光を透過することができ、電解液槽10の側壁を構成する隔壁を別途設けることもできる。
 光触媒セル1は底壁26を備え、ガス生成装置100の光触媒担持面20の裏面側を囲繞するガス収容部41を構成する。ガス収容部30は、隔壁により区画されており、第一ガス収容部21(不図示)と、第二ガス収容部31(不図示)とが設けられている。
 電解液槽10には、電解液供給管131および電解液排出管132が接続され、図示しない循環ポンプ等により電解液を循環可能に構成することができる。図30(a)においては、電解液槽10に電解液12が充填されている。
 図31は図30で示したアノードカソード一体型電極を備えたガス生成装置100の内部の構造を透視図で立体的に示したものである。受光窓4を介して侵入した光7は、図29に示したアノードカソード一体型電極に照射され、酸素ガスと水素ガスを背後のガス収容部30に収集させる。図30は、ガス収容部30が交互に第一ガス収容部21と第二ガス収容部31が並んで配置されている場合を示している。酸素ガス、水素ガスは別々の収容部に収容され、酸素ガス排出管101と水素ガス排出管103にて、外部に取り出すことができる。
 本実施形態において、電解液12は水を主成分として含むものであり、塩酸、硫酸、硝酸、酢酸、シュウ酸等を含む弱酸水溶液、過酸化ナトリウム、過酸化カリウム、炭酸ナトリウム、炭酸カリウム等の弱アリカリ水溶液、メタノールやエタノール、プロパノールなどのアルコール類の水溶液、アクリル酸、フタル酸などのカルボン酸類等の水溶液を用いることができる。
 第一ガス収容部は、ガス生成装置100の第一貫通孔と連通している。光触媒含有層27で生成された酸素ガスは、第一貫通孔を介して第一ガス収容部に移動し収容される。第一ガス収容部には、酸素ガス排出管101が接続されており、酸素ガス排出管101を介して酸素ガスを回収することができる。
 第二ガス収容部は、ガス生成装置100の第二貫通孔と連通している。助触媒含有層43で生成された水素ガスは、第二貫通孔を介して第二ガス収容部に移動し収容される。第二ガス収容部には、水素ガス排出管103が接続されており、水素ガス排出管103を介して水素ガスを回収することができる。
 本実施形態においては、酸素ガス排出管101と水素ガス排出管103とが設置されているが、これらを併用することも可能である。また、窒素ガスやアルゴンガスなどのイナートガスを、必要に応じて酸素ガス排出管101および水素ガス排出管103から導入して、生成ガスを容易に排出することができる。
 本実施形態では、アノード電極2およびカソード電極3の光触媒担持面20(光触媒含有層27、助触媒含有層43)に対向させて受光窓4を配置したが、本発明はこれに限られない。アノード電極2およびカソード電極3を装着する基材5を、励起光7の透過性材料で構成し、アノード電極2およびカソード電極3の裏面から励起光7を照射してもよい。
 すなわち、アノード電極2およびカソード電極3を、励起光7を透過する材料からそれぞれ構成し、励起光7を透過させるとともに光触媒含有層27に照射する受光窓4を、アノード電極2およびカソード電極3に対向して、光触媒担持面20の反対側に配置してもよい。そして、受光窓4を透過した励起光7を、アノード電極2およびカソード電極3をさらに透過させて光触媒含有層27および助触媒含有層43に照射してもよい。
[第10実施形態](アノードカソード一体型電極を備えた太陽光対応ガス生成装置)
 本実施形態におけるガス生成装置100は、図32(a)の光触媒セル1の概略上面図に示すように、光触媒含有層27からなる領域に、複数の第一貫通孔111が開口しており、助触媒含有層43からなる領域に、複数の第二貫通孔113が開口している。図32(b)は、第一貫通孔111および第二貫通孔113の位置関係を示す光触媒セル1の短辺側における側面断面図を示し、図32(c)は長辺側における側面断面図を示す。
 図32(a)~(c)に示すように、ガス生成装置100の裏面側に酸素ガス排出管101と、水素ガス排出管103を備える。さらに、ガス生成装置100の光触媒担持面20側に設けられた電解液収容部12に電解液供給管131、電解液排出管132を備える。
 図32(b)、(c)に示すように、ガス生成装置100は、光照射側の透明ガラス板(受光窓)71と側壁板72と底板73で囲まれ支持された光触媒セル筐体内部に固定されている。ガス生成装置100の裏面側に、第一ガス収容部21と、第二ガス収容部31が設けられている。図32(b)に示される第一ガス収容部21は連通しており、第一貫通孔111を介して第一ガス収容部21内に収容された酸素ガスは酸素ガス排出管101を通して外部へ排出される。同様に、第二ガス収容部31は連通しており第二貫通孔113を介して第二ガス収容部31内に収容された水素ガスは水素ガス排出管103を通して外部へ排出される。
 電解液は電解液供給管131から電解液槽12内に供給され、ガス生成装置100とガラス板71の間を通過し、電解液排出管132から排出される。
 図32(d)の光触媒セルは、図32(c)とは異なり、電解液供給管131と電解液排出管132が循環ポンプに接続され、電解液収容部12内の電解液が循環可能に構成されている。
 まず、新しい電解液は図示しない貯留槽に保管されており、開けられた保給水バルブ137を通り電解液ポンプ135によって電解液フィルタ槽136に送液され、異物などが除去される。
 次に、電解液フィルタ槽136の液面が一定値まで達すると、その圧力によって電解液供給管131を介して電解液収容部12内部へ送液される。ガス生成装置100上で反応が終了した電解液は電解液排出管132へ送液されポンプ135に戻る。空になった電解液フィルタ槽136の液面が一定値に達するとこのサイクルが再び繰り返される。
 電解液が消費されるとバルブ137を通して排液され、再度新しい電解液が供給される。
 なお、図32(b)と、図32(c)、(d)とでは、酸素ガス排出管101および水素ガス排出管103の接続位置が異なるが、装置の構成に合わせて適宜変更することができる。
[第11実施形態]
 本実施形態におけるガス生成装置100は、第10実施形態におけるガス生成装置100に比べ、第一ガス収容部21および第二ガス収容部31の配置のみが異なるため、相違点のみ説明する。
 図33(a)は、本実施形態における光触媒セル1において、ガス生成装置100の面と平行となるようにガス生成装置100を切断した場合の概略上面図であり、水素ガスと酸素ガスの流路の位置関係を示している。図33(b)は、第一貫通孔111および第二貫通孔113の位置関係を示す光触媒セル1の短辺側の側面断面図である。図34は、水素ガスと酸素ガスの流路の位置関係を示す、図33に示すガス生成装置100の透視上面図である。
 ガス生成装置100の裏面側において、第一貫通孔111の下方に第一ガス収容部21が櫛歯状に設けられており、第二貫通孔113の下方に第二ガス収容部31が櫛歯状に設けられている。第一ガス収容部21と第二ガス収容部31は、相互に入り組んで配置されている。第一ガス収容部21は全ての第一貫通孔111と連通している。第一ガス収容部21は、酸素ガス排出管101に接続され、酸素ガスを回収することができる。第二ガス収容部31は全ての第二貫通孔113と連通している。第二ガス収容部31は、水素ガス排出管103に接続され、水素ガスを回収することができる。
<アノードカソード一体型電極を備えたガス生成装置の製造方法>
 次に、アノードカソード一体型電極を備えたガス生成装置100の作成方法について説明する。
 まず、基材5に貫通孔を設ける。加工方法は、基材一面に均一な孔形状を周期的に形成できる方法を用いることができる。例えば回転ドリルによる切削やエッチング法などで好適に形成される。
 貫通孔の開口部の形状は、特に規定しないが周囲の孔から電子、プロトンがどの方向からも等方的に相互移動するためには円形が好ましい。この貫通孔の開口部の直径は300μm以下であり、開口部のピッチ間隔は直径の1.5倍以上5倍以下であることが好ましい。
 助触媒はその表面でプロトンと電子が効率良く結合して水素を発生させて、また水への逆反応が起き難いことが要求される。
 カソード電極3が備える助触媒含有層43に含まれる助触媒は、白金、ニッケル、ルテニウム、酸化ニッケルおよび酸化ルテニウムよりなる群から選択される少なくとも1種が好ましい。これらの助触媒を含む助触媒含有層43は、第二貫通孔113の周囲に1μm以上の幅で形成されることが好ましい。
 助触媒含有層43の形成方法は、例えばポジ型フォトレジストをシート全面に塗布し、孔直径より1μm以上大きい直径の円形開口を設けたフォトマスクを助触媒電極の位置と一致させて固定する。そして、レジストが感光する波長の光で露光することで、第二貫通孔113周囲のレジストだけが可溶になり、現像時に除去される。
 次に光触媒含有層27と同様にイオンプレーティング法、化学蒸着法、真空蒸着法、スパッタ法、スピンコート法、スクリーン印刷法、スプレー法、キャスト法などで助触媒含有層43を成膜し、最後に残ったレジストをレジスト部分に付着した助触媒と共に剥離することで助触媒含有層43を選択的にパターニングすることが可能になる。
 またスパッタ膜用のマスクを用いてスパッタしても同様のパターニングが可能である。この助触媒含有層43の膜厚は、パターニングの際のレジスト剥離時の応力で剥離しないように、20nm~200nmの範囲が好ましい。また、光触媒含有層27と助触媒含有層43との間に外部から電圧を印加して電解を促進しても良い。
 次に貫通孔の内壁と基材25裏面の疎水化の方法について述べる。
 固体表面の分散性や濡れ性、接着性、吸着性などの界面化学的性質を制御するための代表的な表面修飾の方法として、(1)カップリング剤修飾法、(2)高分子のグラフト共重合法、(3)カプセル化法、(4)ゾル-ゲル法、などが挙げられる。
 カップリング剤修飾法ではシラン系またはチタン系カップリング剤が広く用いられており、これらの分子の末端が固体表面の水酸基と化学反応することで、他端が表面側に向いた配向単分子膜を形成することを利用しており目的に応じて様々な官能基を固体表面に導入できる。特に、HMDS(ヘキサメチルジシラザン)は好適に樹脂表面を疎水化することができる。
 高分子のグラフト修飾法は、固体表面の官能基とモノマーとの化学反応により、高分子を固体表面で成長させる方法である。カップリング剤で導入された官能基を利用して高分子をグラフトしたり、電解重合反応やメカノケミカル反応、放射線、プラズマを利用して重合反応を誘起したりすることもある。
 カプセル化法は、固体粒子を高分子膜で被覆する方法で、一般にグラフト重合化法に比べて厚い膜が形成されるのが特徴であり、膜と固体表面間に化学結合が形成される必要はない。
 ゾル-ゲル法では、アルコキシドを原料として固体表面を無機ガラスによって被覆する。
[第12実施形態](尾根型ガス生成装置)
 図35は、本実施形態のガス生成装置100の側面図である。図36は、このガス生成装置100の平面図である。
 光触媒含有層(アノード電極2)または助触媒含有層(カソード電極3)の少なくとも一方は、基材に対して傾斜して配置されている。
 さらに、光触媒含有層(アノード電極2)または助触媒含有層(カソード電極3)は、基材から突出する凸面部を含む。
 本実施形態のガス生成装置100は、アノード電極2およびカソード電極3を交互に配置するとともに、夫々の電極に相互の角度がつけられて、かつアノード電極2とカソード電極3とが向き合うような位置で折りたたむように配置された、立体配置型(尾根型)をなしている。
 また、本実施形態のガス生成装置100には、ガス収容部21、31が夫々の電極に設置されている。これにより、受光窓4を介して入射する光7を有効に捕捉するとともに、発生する酸素と水素の分離回収を効率よく行うことが可能である。
 図35は、側面からその断面構造を見たものであり、図36はアノード電極2およびカソード電極3の配置を表すため、電極部分に限ってその上面からの配置を示したものである。また、図35(b)および図36(b)は、各図(a)の破線で囲った部分を拡大して図示したものである。
 アノード電極2およびカソード電極3は、夫々がガス収容部21,31を取り囲むように、かつ尾根を形成しており、夫々の電極の上に電解液12が配置されている。アノード電極2およびカソード電極3の夫々には、貫通孔111、113が形成されている。貫通孔111、113の内壁は撥水化(疎液化)処理が施されており、貫通孔111、113に電解液が沁み込んで漏洩することはない。アノード電極2からは貫通孔111を介してガス収容部21を経て酸素ガスを取り出すことができる。一方、カソード電極3からは貫通孔113を介してガス収容部31を経て水素ガスを取り出すことができる。
 アノード電極2は2つで一組になって一つの尾根を形成している。アノード電極2は、隣接する同じく2つ一組になって一つの尾根を形成しているカソード電極3とは傾いて配置されている。アノード電極2とカソード電極3とは相対向している。その様子を示したものが図35(b)である。アノード電極2とカソード電極3とは、電解液12を挟んで傾きながらも対向している。これは2つの意味で、酸素および水素の発生を促進することに貢献している。一つ目はアノード電極2とカソード電極3との距離が近くなることで、カソード電極3にて発生したプロトンの移動距離を低減させることができる。このため、プロトンの捕集効率が向上する。2つ目は、入射してきた光を反射させることで、対向する電極に照射し、さらに反射させることにより、入射光の有効利用を図ることができる。この光を反射させる様子を図37に示す。このような構造は、特に集光タイプの場合に有効であり、入射光を最大限に有効活用することができるようになる。また、集光型の場合に、電極が加熱されるという問題があるが、常に電解液に浸されているので、温度上昇を抑制しやすいという特徴も有している。
 すなわち、カソード電極3は、励起光7を受光することにより水素ガスを生成する助触媒含有層43を含んでいる。そして、本方法の照射工程では、アノード電極2またはカソード電極3で反射した励起光7を、他のアノード電極2の光触媒含有層27またはカソード電極3の助触媒含有層43に照射する。
 図38に示したものは、電解液が下置きで、発生した酸素や水素ガスを上側に捕集する構成となっているものである。この場合にも、アノード電極2とカソード電極3は、傾いた配置を取りながらも相対する構成となっている。但し、図示していないが、アノード電極2の有する光触媒含有層およびカソード電極の有する助触媒層は夫々下向きになっているので、光は基材を通過して光触媒含有層に照射される必要があることから、少なくともカソード電極3を構成する基材は透光性であることが要件である。
 アノード電極2の光触媒含有層の面と、カソード電極3の助触媒含有層を有した面とがなす角度が、0°より大きく180°未満の角度にて配置されていることが望ましい。両者のなす角度が0°の場合にはアノード電極2とカソード電極3とが互いに平行に向き合う形で配置されていることを意味する。同じく、両者のなす角度が180°の場合にはアノード電極2とカソード電極3とが平面を構成していることを意味する。なお、本実施形態において、アノード電極2の光触媒含有層とカソード電極3の助触媒含有層とのさらに望ましい角度は、20°よりも大きく90°未満である。
[第13実施形態](アーチ型ガス生成装置)
 図39は、本実施形態のガス生成装置100の側面図である。図40は、このガス生成装置100の平面図である。
 本実施形態の光触媒含有層(アノード電極2)と助触媒含有層(カソード電極3)は、基材から突出する凸面部を含み、立体配置型(アーチ型)をなしている。
 この凸面部は、互いに対向する一対の立面を含む箱状をなしている。そして、ガス収容部21、31は、この凸面部の内部に形成されている。
 本実施形態のアーチ型ガス生成装置100は、アノード電極2およびカソード電極3の夫々がアーチ形状を有しており、図35から図38に示した尾根型ガス生成装置の構成の変形とも言うべきガス生成装置である。本実施形態の構造はより緻密なものとなっている。図39に示すように、貫通孔111を有したアノード電極2は、一片が開いた矩形の構造を有している。開いた一片はガス収容部21と連通しており、かつ矩形の中もガス収容部21の一部を形成している。電解液12はアーチ形状を有したアノード電極2の上部に配置されている。貫通孔111の内壁面は疎水化処理が施されている。このため、上部にある電解液12がガス収容部21に漏洩することはない。また、カソード電極3も同じくアーチ形状を有しており、アノード電極2と同様の箱状構造を有している。図40は、アノード電極2およびカソード電極3の配置を上から見たものである。
 アノード電極2およびカソード電極3は、夫々が隣接した箱状(矩形)構造を有しているので、対向する面と同じ方向を向いている面とが存在する。しかし、アーチ形状の高さ方向を高くとることで、対向する面を広く取ることができ、かつアノード-カソード間距離が相対的に短くなる。このため本実施形態のアーチ型ガス生成装置100は、アノード電極2で発生するプロトンの移動距離を短く取ることができるという大きな利点がある。
 さらに、本実施形態のアーチ型ガス生成装置100は、光の閉じ込め効果に優れている。夫々の電極が構成するアーチの狭間に入射した光はアーチ側面に反射され、対向面に再び照射される。カソード電極3の有する助触媒含有層43は光を吸収する必要はなく反射させるだけでいいので、反射光を再びアノード電極の有する光触媒含有層27(図39には図示せず)に照射させることができる。また、アノード電極2を構成する基材(図示せず)が透光性である場合には、電解液12を通過して裏側に存在する同じくアノード電極2の光触媒含有層27に裏側から入射することも可能であり、光の有効利用を図ることができるようになる。
 図41は、電解液が下置きで、発生した酸素や水素ガスを上側に捕集する構成となっているものである。
[第14実施形態](スリット型ガス生成装置)
 図42各図は、本実施形態のガス生成装置100の説明図である。本実施形態のガス生成装置100は、アノード電極2に縦長の貫通スリット115を形成し、この貫通スリット115に気液分離機能を持たせたスリット型である。
 すなわち、本実施形態のカソード電極3またはアノード電極2に設けられた貫通孔(貫通スリット115、117)はスリット形状である。
 カソード電極3およびアノード電極2は、ともにスリット形状の貫通孔(貫通スリット117、115)を備えている。そして、カソード電極3とアノード電極2とが対向して配置された状態で、スリット形状の貫通孔は互いにずれあっている。
 本実施形態のスリット型ガス生成装置100は、光触媒機能により発生したガス(酸素)を、貫通スリット115、117により有効に捕集するものである。図42(b)に示すように、光7は、ガス収集部21を経て、透光性基材28を有したアノード電極2に入射する。これにより、光触媒含有層27の裏面から入射した光7によって、電解液12に酸素とプロトンが発生する。発生した酸素は、第一貫通スリット115を介してガス収集部21に回収される。一方、発生したプロトンは電解液12を泳道して助触媒含有層43に到達し、水素ガスとなり、基材29に形成された第二貫通スリット117を通って、ガス収容部31に捕集される。図42(a)は図42(b)の左側面であり、光触媒含有層27側からみた光照射面を表している。また、図42(c)は図42(b)の右側面であり、助触媒含有層43側からみた光照射背面を表している。
 すなわち、本実施形態のカソード電極3は、励起光7を受光することにより水素ガスを生成する助触媒含有層43を含んでいる。そして、本方法の照射工程では、アノード電極2またはカソード電極3に設けられた貫通孔(貫通スリット115、117)を通過した励起光7を、他のカソード電極3の助触媒含有層43またはアノード電極2の光触媒含有層27に照射する。
 これにより、光7の一部は光触媒含有層27に照射され、他の一部は貫通スリット115を通過して助触媒含有層43にて反射され、再び光触媒含有層27の電解液に接している面に照射される。このようにして、光7は有効利用される。
 図43は、図42にて示したガス生成装置の斜視図である。図43(a)は、図42に示した構造のまま、アノード電極2(光触媒含有層27)の側から光7を照射したものである。一方、図43(b)は、逆にカソード電極3(助触媒含有層43)の側から照射したものである。同図の場合、貫通スリット117をすり抜けた光は、光触媒含有層27に照射されることにより、酸素と水素を発生する光触媒機能を果たすことになる。
 すなわち、本実施形態のガス生成装置100は、カソード電極3に設けられた貫通孔(貫通スリット117)と対向する位置に、アノード電極2の光触媒含有層27が形成されている。カソード電極3は、光触媒の励起光を受光することにより水素ガスを生成する助触媒含有層43を含んでいる。そして、アノード電極2に設けられた貫通孔(貫通スリット115)と対向する位置に、カソード電極3の助触媒含有層43が形成されている。
[第15実施形態](フレキシブル型ガス生成装置)
 図44は、本実施形態のガス生成装置100の側面図である。本実施形態のガス生成装置100は、円弧状に形成されて可撓性を有するフレキシブル型である。
 フレキシブル型ガス生成装置100は、所定の間隔をあけて互いに平行に配置されたカソード電極3およびアノード電極2からなる電極対を備えている。そして、この電極対は、面直方向に湾曲または屈曲可能な可撓性を有している。
 フレキシブル型ガス生成装置100のアノード電極2は、円弧の外周側に配置され、カソード電極3は内周側に配置されている。これは外周側に酸素を放出し、内周側に捕集すべき水素を集めるためであり、内周側に水素を捕集するためのガス収容部31を設置している。但し、外周側に水素を捕集する機能を持たせる場合には、アノード電極2は円弧の内周側に配置し、カソード電極3は外周側に配置しても良い。
 図45は、図44に示したガス生成装置の破線で囲んだ一部を拡大したものである。アノード電極2は透光性基材28と光触媒含有層27とから形成されており、助触媒含有層43と不透光過性基材29とから形成されているカソード電極3に挟まれた電解液である水を光分解して酸素と水素を発生する構造となっている。発生した酸素は、第一貫通孔111を通って外に放出されるが、同じく発生した水素は第二貫通孔113を通過してガス収容部31に捕集される。
 図46は、本実施形態のフレキシブル型ガス生成装置100の使用状態を示す図である。図47は、本実施形態のフレキシブル型ガス生成装置100の斜視図である。図46では、ガス生成装置100を、屋外で太陽光を利用して水素ガスを発生させるように配した様子を示している。フレキシブル型ガス生成装置100は、太陽光をできるだけ垂直に照射できるよう、傾けて配置されている。この装置は、電解液となる貯水槽138、水を送り出す循環ポンプ135、水の清浄さを維持するためのフィルタ槽136を備えている。
 本実施形態のガス生成装置は、燃料電池や、燃料電池の原料となる水素製造装置などに利用することができる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 例えば、本実施形態におけるガス生成装置は、アノード電極2とカソード電極3の1組の電極対だけでなく、並列に複数組の電極対を配置して使用することも可能である。さらに、アノード電極2、カソード電極3ともに照射光に対して透明であれば、直列に配置して使用することも可能である。
 また、本実施形態においては励起光を照射する光源を別途設けることもできる。すなわち、ガス生成装置100は、励起光を照射する光源をさらに備えてもよい。
 また、本実施形態においては、同サイズのアノード電極2とカソード電極3とを平行に配置し、光触媒担持面20とカソード電極3のガス生成面とが対向する例によって示したが、アノード電極2およびカソード電極3のサイズを変更し、カソード電極3を複数設けてもよく、アノード電極2に対しカソード電極3を垂直となるように複数配置してもよい。なお、この場合、カソード電極3には第二貫通孔は形成されない。
 本実施形態のガス生成装置は、酸素ガスと水素ガスを分離回収しているが、混成ガスとして回収するように構成されていてもよい。また、本実施形態のガス生成装置は、酸素ガスと水素ガスのいずれも回収しているが、一方の生成ガスのみを回収するように構成されていてもよい。
(発生ガスの定量方法)
 第9実施形態に示したアノードカソード一体型電極を備えたガス生成装置100(図30および図31参照)を例にとり、生成されたガスの発生量を、以下のように測定することができる。なお、図48に示すような簡易的に構成されたガス生成装置を用いて説明する。
 図48に示すように、ガス生成装置は、ガス収集手段(気相側ガスバッグ307,液相側ガスバッグ308)と、光源310とを設けて構成されている。光源310には高圧水銀ランプやキセノンランプが好適に採用される。気相側ガスバッグ307,液相側ガスバッグ308としては酸素・水素などの無機ガスを遮断するガスバリア性の高い材質であれば何でも良いが、アルミニウムバッグが好適に採用される。
 本実施形態のガス生成装置100の固定・支持と酸素ガスと水素ガスの収集を兼ねた光触媒セルであり、電解液12を入れたビーカー309に浸され、ガス生成装置100の光触媒担持面20の表面が電解液12に接する。
 基材25には貫通孔(第一貫通孔111,第二貫通孔113)が設けられている。第一貫通孔111,第二貫通孔113は、前述したラプラス圧により基材25裏面側への電解液12の侵入が抑制される。光源310からの励起光を、ガス生成装置100の触媒含有層81が受光して発生した酸素・水素ガスの大半は、第一貫通孔111,第二貫通孔113を通じて裏面側のガス収容部30に溜まり、気相側セル内排出口303及び気相側排出管305を通過し、気相側ガスバッグ307に収集・蓄積される。
 一方、第一貫通孔111,第二貫通孔113を通過しなかった気体は、液相側で気泡に成長し、液相側セル内排出口304及び液相側排出管306を通過し、液相側ガスバッグ308に収集・蓄積される。
 このガス生成装置100に対し、光源310からUV光を一定時間照射する。気相側ガスバッグ307,液相側ガスバッグ308をガス生成装置100から外してガスクロマトグラフに接続し、発生気体のリテンションタイムとピーク面積を測定する。尚、校正のために予め純水素と純酸素のそれぞれリテンションタイムとピーク面積を測定しておく。
 例えば水素発生量を定量化する場合、光分解による発生水素の濃度をX、ピーク面積をAとすれば、純水素(100%濃度)のピーク面積をApとして、X=100*A/Apとなる。
 容器の体積をVとすれば、発生水素の体積Vは、V=V*Xとなる。従って、この発生水素の気体発生量(分子数)は、気体の状態方程式:P*V=n*R*T(P:圧力、V:体積、n:分子数、R:気体定数、T:絶対温度)から求めることができる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
(実施例1)
 貫通孔のない光触媒含有層を有したアノード電極と、貫通孔を有しかつ助触媒層を有するカソード電極とを対向配置させた実施例である。
 透明導電膜であるITO(インジウム錫酸化物)膜をスパッタ法で形成した厚さ50μmのポリエチレンテレフタレート(PET)フィルムを透光性基材28として用意し、外形を2cm×2cmの正方形にカットした。
 このフィルム片の内側の1cm×1cmの正方形の領域に、アナターゼ型光触媒酸化チタン塗工用ペースト(ペクセルテクノロジーズ社製)をスプレー法で厚さが20μmになるように塗布し、光触媒含有層27とした。そして、塗布形成した光触媒含有層を140℃で1時間乾燥させて残存有機物や溶媒を蒸発させた。このようにして光触媒担持面20を有する光触媒アノード電極を形成した。次いで、四フッ化炭素ガスを用いた真空プラズマ処理により、光触媒からなるアノード電極2の背面を撥水処理し貫通孔の形成されていないアノード電極2を完成させた。
 次いで、ポリイミドフィルムにNC加工機で孔開口径100μm、孔ピッチ300μmの貫通孔を1cm×1cmの領域に形成させて多孔フィルムとした後、白金を10nmの厚みでスパッタしてから外形を2cm×2cmの正方形にカットしカソード電極3を完成させた。
 完成したカソード電極3を用い、図14に示すような助触媒セル6を作製した。基本的な材料として、アクリルを用いた。しかし、材料について限定する必要はなく、電解液に対して溶解性がなければあらゆる材料を用いることができる。そして、受光窓には石英を用いた。通電用ワイヤ202にはチタン線を用い、かつ通電用金属枠にはチタンを用いた。
 この助触媒セル6に、先に作成した貫通孔の形成されていないアノード電極2を、貫通孔を有するカソード電極に対向するように装着して、図17に示すガス生成装置100を完成させた。
 貫通孔のないアノード電極2と貫通孔を有するカソード電極3の対向間隔を0.5mmに設定した。電解液供給管131から炭酸ナトリウム30gを蒸留水100ccに溶解させた電解液12を供給した。尚、装着後にアルゴンガス供給管102にアルゴンガスを流して、第一ガス収容部21および第二ガス収容部31の内部を十分にパージして、系内の不要なガスを追い出してから使用した。
 次いで、受光窓から高圧水銀ランプにより紫外線を照射した。光の照射強度は、10mW/cmで1時間照射し、発生した水素ガスを水素ガス排出管103から10ccのガスタイトシリンジに0.17cc/minの吸引速度で採取して、ガスクロマトグラフィー(島津製作所製、型番GC-8A)で水素濃度を分析したところ、980ppmであった。
 これを単位時間当たりの水素発生量に換算すると、0.44μmol/hrになり、酸化チタン光触媒の単位重量当たりでは112μmol/g/hrに相当する。
 同様に、酸素ガス排出管101に含まれるガスをガスクロマトグラフィーを用いて分析したところ、酸素が含まれていることを確認した。
(実施例2)
 実施例1と同じく、貫通孔のないアノード電極と、貫通孔を有するカソード電極とを対向配置させた実施例である。
 カソード電極3の製法において、化学エッチング法を用いて孔径を30μm、孔ピッチを50μmの貫通孔を設けたカソード電極3を形成した。実施例1と同じように、図14に示すような助触媒セル6を作製し、同じく実施例1と同じように貫通孔のないアノード電極2を形成し、図17に示すガス生成装置100を完成させた。このような貫通孔のないアノード電極と、貫通孔を有するカソード電極を対向配置させたガス生成装置100を用いて水素ガスを測定したところ、水素濃度は1436ppmで酸化チタン光触媒の単位重量当たりの水素発生量は164μmol/g/hrであった。
(実施例3)
 実施例1および実施例2と同じく、貫通孔のないアノード電極と、貫通孔を有するカソード電極とを対向配置させた実施例である。
カソード電極3の製法において、レーザー加工法を用いて孔径を10μm、孔ピッチを40μmの貫通孔を設けたカソード電極3を形成した。実施例1と同じように、図14に示すような助触媒セル6を作製し、同じく実施例1と同じように貫通孔のないアノード電極2を形成し、図17に示すガス生成装置100を完成させた。このような貫通孔のないアノード電極と、貫通孔を有するカソード電極を対向配置させたガス生成装置100を用いて実施例1および実施例2と同じように水素ガスを測定したところ、水素濃度は1310ppmで酸化チタン光触媒の単位重量当たりの水素発生量は150μmol/g/hrであった。
(実施例4)
 貫通孔を有するアノード電極と、同じく貫通孔を有するカソード電極とを対向配置させた実施例である。
 光触媒からなるアノード電極2の製法において、ITO付きPETフィルムにNC加工機を用い孔径80μm、孔ピッチ160μmで貫通孔を1cm×1cmの領域に形成した後、外形を2cm×2cmの正方形にカットし多孔フィルムとし、下側から窒素ガスを吹き当てながら上方から酸化チタンペーストをスプレー塗布することで、孔が酸化チタンで埋まらないように配慮して光触媒塗布層とした。塗布厚みは約20μmに調整した。
 カソード電極3に関しては、実施例2と同じく孔径を30μm、孔ピッチを50μmの多孔フィルムにした。
 同様に紫外線を1時間照射して水素ガスを測定したところ、水素濃度は212ppmで酸化チタン光触媒の単位重量当たりの水素発生量は24μmol/g/hrであった。
(実施例5)
 貫通孔を有するアノード電極と、同じく貫通孔を有するカソード電極とを対向配置させ、かつリード線の代わりに電極間に電子輸送材を配した構成の実施例である。
 通電用ワイヤ202を取り除き、その代替機能として電子輸送材としての金属多孔質チタン(大阪チタニウムテクノロジーズ製の多孔質チタン、型番:タイポラス-45)をアノード電極2とカソード電極3の間に挿入した以外は実施例4と同様にして水素ガスを測定したところ、水素濃度は359ppmで酸化チタン光触媒の単位重量当たりの水素発生量は41μmol/g/hrであった。
(実施例6)
 貫通孔を有するアノード電極と、同じく貫通孔を有するカソード電極とを対向配置させ、かつアノード電極の形状を変化させたものである。
 アノード電極2の製法において、レーザー加工法で孔径を30μm、孔ピッチを60μmの貫通孔を設けた多孔フィルムにした以外は実施例4と同様にして水素ガスを測定したところ、水素濃度は2226ppmで酸化チタン光触媒の単位重量当たりの水素発生量は255μmol/g/hrであった。
(実施例7)
 貫通孔を有するアノード電極と、同じく貫通孔を有するカソード電極とを対向配置させ、かつアノード電極の形状を変化させたものである。
 アノード電極2の製法において、レーザー加工法で孔径を10μm、孔ピッチを40μmの貫通孔を設けた多孔フィルムにした以外は実施例4と同様にして水素ガスを測定したところ、水素濃度は1303ppmで酸化チタン光触媒の単位重量当たりの水素発生量は149μmol/g/hrであった。
(実施例8)
 アノードカソード一体型電極を用いた実施例である。
 ポリイミド(宇部興産製、型番UPILEX、厚さ0.5mm)の薄膜シートを基材25として1辺が15.4mmの正方形の試験片に切り出し、この試験片に対してNC加工機(FANUC製、型番Series 21i-MB)で100μm直径の孔を200μmピッチで貫通・形成し、第一貫通孔111および第二貫通孔113を有する基材を作成した。基材の片方の表面にスパッタ装置(芝浦メカトロニクス製、型番CFS-4ES)を用いて二酸化チタンを厚さ250nmでスパッタし、光触媒含有層27を形成した。スパッタガスにはアルゴンガスと酸素ガスを1対1の流量割合で用いた。
 スパッタ条件は、シートを300℃に加熱してRF電源にてスパッタパワー300W、ガス圧は2.0Pa(1.5×10-2 Torr)で行った。この二酸化チタン膜試料をX線回折法で分析したところ、2θ=25.4°にアナターゼ単結晶の(101)面の回折ピークを検出し、この二酸化チタンのスパッタ膜がアナターゼ結晶形であることを確認した。
 次に波長436nm用g線ポジ型フォトレジスト(JSR製、型番 PFR9005D18G)を回転数3500rpmでスピンコートし、90℃で10分間予備加熱してレジスト膜を形成した。横方向ピッチが200μm、縦方向ピッチが346.4μm(横ピッチ×√3)の間隔で直径180μmの円形開口を複数設けたフォトマスクで基材を覆い、マスクアライナー(共和理研製、型番K-400PS100)でシートの孔とマスクの円形開口の中心とを重ね合わせ、露光用のUV-可視光源(ウシオ電機製、型番UIV-5100)で10秒間露光した。この基材を110℃で10分間加熱してレジスト膜中モノマーを安定化させた後、テトラメチルアンモニウムヒドロキシ2.4%水溶液で1分間曝しイオン交換水で20秒間水洗して現像を行った。これでUV-可視光源に感光した直径180μmの円形開口部のみレジストが現像液に溶解して除去され露出した状態になった。
 次にこの基材を室温で30分自然乾燥させた後、スパッタ装置(島津エミット社製、型番HSM-521)で白金を厚さ50nmでスパッタした。スパッタガスはアルゴンを用いた。スパッタ条件は、DC電源にて電圧600Vで電流0.4A、ガス圧は0.074Pa(5.6×10-4 Torr)で行った。
 この後、アセトンで残ったレジストと白金を剥離することで、二酸化チタンからなる光触媒含有層27上に、180μmの円形開口部のみ白金スパッタ膜からなる助触媒含有層43として形成された。
 次に、第一貫通孔111および第二貫通孔113の内壁と裏面に対して選択的に疎水化処理を行なった。まず前処理としてスパッタ装置(芝浦メカトロニクス製、型番CFS-4ES)でSiOをシート裏面側に厚さ10nmスパッタした。スパッタガスにはアルゴンガスを用いた。スパッタ条件は、RF電源にてスパッタパワー200W、ガス圧は1.0Pa(7.5×10-3 Torr)で行った。次にヘキサメチルジシラザンの蒸気雰囲気にした密閉容器中にシートを封入し、約10時間気相反応を行った。基材裏面の水接触角を測定したところ処理前では60度であったのが処理後で100度になり、疎水化されたことを確認し、アノードカソード一体型電極を完成した。
 次にこのアノードカソード一体型電極を、図48に示すようなガス生成装置100に組み込んで、アノード電極2の裏面側に設けたガス収容部30に、ガス捕集用ラインとしてシリコンチューブ(内径2.0mm、長さ15cm)を接続し、その上方に、気相側ガスバッグ307としてアルゴンガスを充填したガス収集用のアルミニウムバッグ(ジーエルサイエンス製、型番AAK-1、容量500ml)に接続した。このガス生成装置100を2規定に調整した硫酸水溶液(電解液14)の入ったビーカー309に浸し、光源310としてUV光源(ウシオ電機製、UI-501C型番)から1cmの距離を隔てて配置し約7時間照射した。この照射面での光強度は70mW/cm2であった。この気体を収集したアルミニウムバッグをガス生成装置100から外して、無機ガス分析用カラム(信和化工製、型番:SHINCARBON ST)を取り付けたガスクロマトグラフ(島津製作所製、型番GC-8AIT)のガスサンプラーに接続し、オーブン・検出器温度が50℃及び電流70mAの分析条件で発生気体のリテンションタイムとピーク面積を測定し、リテンションタイムが4.2分に水素ピークを検出し、水素濃度は880ppmで酸化チタン光触媒の単位重量当たりの水素発生量は101μmol/g/hrであった。
(実施例9)
 アノードカソード一体型電極を用いた実施例である。
 アノードカソード一体型電極の製造方法において、ペクセルテクノロジーズ社(株)製の二酸化チタンペーストをスクリーン印刷法で膜厚20μmになるように膜を形成し、塗布形成した光触媒含有層を140℃で1時間乾燥させて残存有機物や溶媒を蒸発させて、多孔質膜にした以外は実施例8と同じ条件で、水素の気体発生量を測定したところ水素濃度は3040ppmで酸化チタン光触媒の単位重量当たりの水素発生量は348μmol/g/hrであった。
(比較例1)
 図1に示す従来型の光触媒電解装置を用いて実験を行った。電解質として、0.1Nに相当する硫酸を水道水に入れて紫外線照射量1600mW/cmを照射した実験を行ったところ、光触媒含有層27を含むアノード電極2および助触媒含有層43を含むカソード電極3から僅かな気泡の付着を確認した。しかし、発生した気泡は僅かのために、酸素ガス検知管、水素ガス検知管を用いて確認するに至らなかった。次いで、1Nの希硫酸液に入れ替えて実験を行ったが、気泡が夫々の電極に付着と、時々電極から離脱しているのを確認できる程度で、明確なガスの発生を確認することができなかった。さらに、水道水を用いて実験を行ったところ、気泡の発生は全く確認することができなかった。
(比較例2)
 貫通孔を有さないアノードカソード一体型電極を用いた比較例である。
 アノードカソード一体型電極の製造方法において、貫通孔を光触媒電極と助触媒電極のどちらにも設けず、ガス収集口を接液面側に設けた以外は実施例8と同じ条件で、水素の気体発生量を測定したところ、水素濃度は30ppmで酸化チタン光触媒の単位重量当たりの水素発生量は3μmol/g/hrであった。また、電極表面に気泡が大量に付着した。
 上記実施例1~9および比較例1~2の結果を下表1に示す。
Figure JPOXMLDOC01-appb-T000001
 この出願は、2009年9月9日に出願された日本出願特願2009-207777および2009年9月16日に出願された日本出願特願2009-214484を基礎とする優先権を主張し、その開示の総てをここに取り込む。

Claims (48)

  1.  水を含む電解液から酸素ガスおよび/または水素ガスを生成するガス生成装置であって、
     光触媒反応により前記電解液から酸素ガスを生成する光触媒を含む光触媒含有層を有するアノード電極と、
     前記光触媒含有層における光触媒反応により前記電解液で生成された水素イオンおよび電子から水素ガスを生成するカソード電極と、
     前記アノード電極または前記カソード電極の少なくとも一方に設けられ、前記電解液を通過させず、かつ生成された前記酸素ガスまたは前記水素ガスを通過させる複数の貫通孔と、
     前記貫通孔を通過した前記酸素ガスまたは前記水素ガスを収容するガス収容部と、
    を備えるガス生成装置。
  2.  前記光触媒含有層が多数の空孔を含む多孔質材料であり、前記光触媒が前記空孔に露出している請求項1に記載のガス生成装置。
  3.  前記空孔が前記貫通孔の内壁面に露出している請求項2に記載のガス生成装置。
  4.  前記貫通孔の内壁面に露出した前記空孔が、他の空孔と互いに連通している請求項3に記載のガス生成装置。
  5.  複数の前記貫通孔が、前記アノード電極または前記カソード電極に規則的に配置されている請求項1から4のいずれか一項に記載のガス生成装置。
  6.  隣接する前記貫通孔の重心間距離が0.1μm以上800μm以下である請求項5に記載のガス生成装置。
  7.  すべての前記貫通孔が、隣接する他の前記貫通孔との重心間距離が0.1μm以上800μm以下である請求項6に記載のガス生成装置。
  8.  前記重心間距離が、前記貫通孔の開口直径の1.5倍以上5倍以下である請求項6または7に記載のガス生成装置。
  9.  隣接する前記貫通孔の近接縁間距離が0.1μm以上400μm以下である請求項5から8のいずれか一項に記載のガス生成装置。
  10.  前記光触媒含有層の層厚が0.25μm以上100μm以下である請求項1から9のいずれか一項に記載のガス生成装置。
  11.  前記光触媒の励起光を透過させるとともに該励起光を前記光触媒含有層に照射する受光窓をさらに備える請求項1から10のいずれか一項に記載のガス生成装置。
  12.  前記アノード電極が、前記光触媒含有層を支持する基材を備え、
     前記基材が、前記励起光を透過する材料から構成されている請求項11に記載のガス生成装置。
  13.  前記受光窓が、前記基材を介して前記光触媒含有層の反対側に配置され、
     前記受光窓を透過した前記励起光が、前記基材をさらに透過して前記光触媒含有層に照射されることを特徴とする請求項12に記載のガス生成装置。
  14.  前記カソード電極が前記励起光を透過する材料から構成され、かつ、
     前記受光窓が前記カソード電極に対向して配置されて、前記受光窓を透過した前記励起光が、前記カソード電極をさらに透過して前記光触媒含有層に照射されることを特徴とする請求項11から13のいずれか一項に記載のガス生成装置。
  15.  前記カソード電極と、前記アノード電極の前記光触媒含有層と、が互いに対向して配置されている請求項1から14のいずれか一項に記載のガス生成装置。
  16.  前記カソード電極に設けられた前記貫通孔と対向する位置に、前記アノード電極の前記光触媒含有層が形成されている請求項15に記載のガス生成装置。
  17.  前記カソード電極が、前記光触媒の励起光を受光することにより水素ガスを生成する助触媒含有層を含み、
     前記アノード電極に設けられた前記貫通孔と対向する位置に、前記カソード電極の前記助触媒含有層が形成されている請求項15に記載のガス生成装置。
  18.  前記カソード電極または前記アノード電極に設けられた前記貫通孔がスリット形状である請求項16または17に記載のガス生成装置。
  19.  前記カソード電極および前記アノード電極がともにスリット形状の貫通孔を備え、かつ、前記カソード電極と前記アノード電極とが対向して配置された状態で、前記スリット形状の貫通孔が互いにずれあっている請求項18に記載のガス生成装置。
  20.  所定の間隔をあけて互いに平行に配置された前記カソード電極および前記アノード電極からなる電極対が、面直方向に湾曲または屈曲可能な可撓性を有している請求項15から19のいずれか一項に記載のガス生成装置。
  21.  前記カソード電極が、前記光触媒の励起光を受光することにより水素ガスを生成する助触媒含有層を含み、
     前記アノード電極の前記光触媒含有層と前記カソード電極の前記助触媒含有層との間に、導電性の材料からなり、かつ前記電解液の透過が可能な電子移動層を備える請求項15から20のいずれか一項に記載のガス生成装置。
  22.  前記カソード電極と前記アノード電極とが、共通の基材に支持されて横並びに配置されている請求項1から14のいずれか一項に記載のガス生成装置。
  23.  複数の前記カソード電極と複数の前記アノード電極とが互いに隣接して配置されている請求項22に記載のガス生成装置。
  24.  前記アノード電極に設けられて、前記電解液を通過させず前記酸素ガスを通過させる第一の貫通孔と、
     前記カソード電極に設けられて、前記電解液を通過させず前記水素ガスを通過させる第二の貫通孔と、を備える請求項23に記載のガス生成装置。
  25.  前記第一の貫通孔の開口に設けられて前記酸素ガスを収容する第一の前記ガス収容部と、前記第二の貫通孔の開口に設けられて前記水素ガスを収容する第二の前記ガス収容部と、を備える請求項24に記載のガス生成装置。
  26.  前記カソード電極が、前記光触媒の励起光を受光することにより水素ガスを生成する助触媒含有層を含み、
     前記光触媒含有層が前記第一の貫通孔の近傍に配置され、前記助触媒含有層が前記第二の貫通孔の近傍に配置されている請求項24または25に記載のガス生成装置。
  27.  前記光触媒含有層が前記第一の貫通孔の開口部の周縁部にリング状に設けられ、前記助触媒含有層が前記第二の貫通孔の開口部の周縁部にリング状に設けられている請求項26に記載のガス生成装置。
  28.  前記カソード電極と前記アノード電極とが電気絶縁性の材料を介して横並びに隣接して設けられ、前記カソード電極と前記アノード電極との隣接間隔が0.01μm以上である請求項26または27に記載のガス生成装置。
  29.  前記光触媒の励起光を透過させるとともに該励起光を前記光触媒含有層に照射する受光窓を備え、
     前記受光窓が、前記光触媒含有層および前記助触媒含有層に対してともに対向する位置に配置されて、前記受光窓を透過した前記励起光が前記光触媒含有層および前記助触媒含有層に照射される請求項26から28のいずれか一項に記載のガス生成装置。
  30.  前記アノード電極および前記カソード電極が、前記光触媒の励起光を透過する材料からそれぞれ構成され、
     前記励起光を透過させるとともに前記光触媒含有層に照射する受光窓が、前記アノード電極および前記カソード電極に対向して、前記光触媒含有層および前記助触媒含有層の反対側に配置されて、
     前記受光窓を透過した前記励起光が、前記アノード電極および前記カソード電極をさらに透過して前記光触媒含有層および前記助触媒含有層に照射される請求項26から28のいずれか一項に記載のガス生成装置。
  31.  前記光触媒含有層または前記助触媒含有層の少なくとも一方が、前記基材に対して傾斜して配置されている請求項26から30のいずれか一項に記載のガス生成装置。
  32.  前記光触媒含有層または前記助触媒含有層が、前記基材から突出する凸面部を含む請求項31に記載のガス生成装置。
  33.  前記凸面部が、互いに対向する一対の立面を含む箱状をなしている請求項32に記載のガス生成装置。
  34.  前記ガス収容部が、前記凸面部の内部に形成されている請求項32または33に記載のガス生成装置。
  35.  前記貫通孔の内壁面に疎水化処理が施されている請求項1から34のいずれか一項に記載のガス生成装置。
  36.  前記光触媒含有層および前記カソード電極が、前記電解液に対して親液性である請求項1から35のいずれか一項に記載のガス生成装置。
  37.  前記アノード電極または前記カソード電極のうち前記ガス収容部が設けられた裏面側が前記電解液に対して疎液性である請求項1から36のいずれか一項に記載のガス生成装置。
  38.  前記電解液を貯留して前記アノード電極および前記カソード電極を前記電解液に接触させる電解液貯留部と、
     前記電解液貯留部に前記電解液を供給する電解液供給管と、
     触媒反応に供された前記電解液を前記電解液貯留部から排出する電解液排出管と、をさらに備える請求項1から37のいずれか一項に記載のガス生成装置。
  39.  前記光触媒含有層に含まれる光触媒は、酸化チタン、酸化バナジウム、酸化ニッケル、酸化亜鉛、酸化ガリウム、酸化ジルコニア、酸化ネビジウム、酸化モリブデン、酸化タンタル、酸化タングステン、酸化ガリウム、酸化ゲルマニウム、酸化インジウム、酸化錫、酸化アンチモン、酸化鉛および酸化ビスマス等の酸化物、さらに、これらの窒化物、硫化物からなる群から選択される少なくとも1種である請求項1から38のいずれか一項に記載のガス生成装置。
  40.  前記助触媒含有層に含まれる助触媒は、白金、ニッケル、ルテニウム、酸化ニッケルおよび酸化ルテニウムよりなる群から選択される少なくとも1種である請求項17、21または26~34のいずれか一項に記載のガス生成装置。
  41.  前記励起光を照射する光源をさらに備えることを特徴とする請求項1から40のいずれか一項に記載のガス生成装置。
  42.  水を含む電解液から酸素ガスおよび/または水素ガスを生成する方法であって、
     光触媒反応により前記電解液から酸素ガスを生成する光触媒を含む光触媒含有層を有するアノード電極と、前記光触媒含有層における光触媒反応により生成された前記電解液中の水素イオンと電子とから水素ガスを生成するカソード電極と、に前記電解液を接触させる工程と、
     前記光触媒含有層に光触媒の励起光を照射する工程と、
     前記アノード電極で生成された前記酸素ガスまたは前記カソード電極で生成された前記水素ガスの少なくとも一方を、該アノード電極または該カソード電極に設けられた複数の貫通孔を通じて捕集する工程と、
    を含むガス生成方法。
  43.  前記光触媒含有層が、前記光触媒が露出する多数の空孔を含む多孔質材料であり、前記空孔の内部で生成された前記酸素ガスまたは前記水素ガスを、前記貫通孔を通じて捕集することを特徴とする請求項42に記載のガス生成方法。
  44.  前記空孔の内部で生成された前記酸素ガスまたは前記水素ガスを、前記貫通孔の内壁面に露出している他の前記空孔を介して、前記貫通孔より捕集することを特徴とする請求項43に記載のガス生成方法。
  45.  前記アノード電極が、前記光触媒含有層を支持する基材を備え、
     前記基材が、前記励起光を透過する材料から構成されており、
     前記基材を透過させた前記励起光を前記光触媒含有層に照射することを特徴とする請求項42から44のいずれか一項に記載のガス生成方法。
  46.  前記カソード電極が、前記励起光を透過する材料から構成されており、
     前記カソード電極を透過させた前記励起光を前記光触媒含有層に照射することを特徴とする請求項42から45のいずれか一項に記載のガス生成方法。
  47.  前記カソード電極が、前記励起光を受光することにより水素ガスを生成する助触媒含有層を含み、
     前記アノード電極または前記カソード電極で反射した前記励起光を、他の前記アノード電極の前記光触媒含有層または前記カソード電極の前記助触媒含有層に照射することを特徴とする請求項42から46のいずれか一項に記載のガス生成方法。
  48.  前記カソード電極が、前記励起光を受光することにより水素ガスを生成する助触媒含有層を含み、
     前記アノード電極または前記カソード電極に設けられた前記貫通孔を通過した前記励起光を、他の前記カソード電極の前記助触媒含有層または前記アノード電極の前記光触媒含有層に照射することを特徴とする請求項42から46のいずれか一項に記載のガス生成方法。
PCT/JP2010/005506 2009-09-09 2010-09-08 ガス生成装置およびガス生成方法 WO2011030546A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/394,994 US9528189B2 (en) 2009-09-09 2010-09-08 Gas generating device and method for generating gas
EP10815146.5A EP2476782A4 (en) 2009-09-09 2010-09-08 GAS GENERATOR AND PROCESS FOR PRODUCING GAS
IN2262DEN2012 IN2012DN02262A (ja) 2009-09-09 2010-09-08
CN201080039759.0A CN102482789B (zh) 2009-09-09 2010-09-08 气体生成装置以及气体生成方法
JP2011530752A JP5456785B2 (ja) 2009-09-09 2010-09-08 ガス生成装置およびガス生成方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-207777 2009-09-09
JP2009207777 2009-09-09
JP2009-214484 2009-09-16
JP2009214484 2009-09-16

Publications (1)

Publication Number Publication Date
WO2011030546A1 true WO2011030546A1 (ja) 2011-03-17

Family

ID=43732225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005506 WO2011030546A1 (ja) 2009-09-09 2010-09-08 ガス生成装置およびガス生成方法

Country Status (8)

Country Link
US (1) US9528189B2 (ja)
EP (1) EP2476782A4 (ja)
JP (1) JP5456785B2 (ja)
KR (1) KR20120064101A (ja)
CN (1) CN102482789B (ja)
IN (1) IN2012DN02262A (ja)
TW (1) TWI473913B (ja)
WO (1) WO2011030546A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110220515A1 (en) * 2010-03-09 2011-09-15 Toyota Jidosha Kabushiki Kaisha Water splitting apparatus and method of using the same
CN102758212A (zh) * 2011-04-29 2012-10-31 谭延泰 电解水制氢的装置及其方法
WO2016052002A1 (ja) * 2014-09-29 2016-04-07 富士フイルム株式会社 人工光合成モジュール
JPWO2016114063A1 (ja) * 2015-01-13 2017-09-28 富士フイルム株式会社 水素発生電極
JP2019039048A (ja) * 2017-08-25 2019-03-14 富士通株式会社 光化学電極、及びその製造方法、並びに光電気化学反応装置
JP2019136650A (ja) * 2018-02-09 2019-08-22 株式会社東芝 固定層反応装置及び固定層反応方法
WO2020230530A1 (ja) * 2019-05-13 2020-11-19 国立大学法人新潟大学 触媒、電極、水電解方法および触媒の製造方法
WO2021153406A1 (ja) * 2020-01-27 2021-08-05 住友電気工業株式会社 金属多孔体シート及び水電解装置
JP7571351B2 (ja) 2019-05-13 2024-10-23 国立大学法人 新潟大学 触媒、電極、水電解方法および触媒の製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5719555B2 (ja) * 2010-09-28 2015-05-20 シャープ株式会社 水素製造装置および水素製造方法
CN104760931B (zh) * 2015-03-17 2016-08-17 北京化工大学 一种光催化水制氢反应装置及应用
EP3356576A1 (en) 2015-09-29 2018-08-08 King Abdullah University Of Science And Technology Scalable photoreactor for hydrogen production
JP6405475B2 (ja) * 2015-11-30 2018-10-17 富士フイルム株式会社 人工光合成モジュール
CN105679880A (zh) * 2016-01-19 2016-06-15 新疆中兴能源有限公司 一种光解水用大面积钒酸铋薄膜的简易制备方法
BE1023865B1 (fr) * 2016-02-23 2017-08-24 H2Win S.A. Dispositif photo-catalytique pour la production d'hydrogene gazeux
WO2017212842A1 (ja) * 2016-06-07 2017-12-14 富士フイルム株式会社 光触媒電極、人工光合成モジュール及び人工光合成装置
JP6535818B2 (ja) * 2016-06-23 2019-06-26 富士フイルム株式会社 人工光合成モジュール及び人工光合成装置
EP3647467B1 (en) 2017-06-30 2022-04-06 Showa Denko K.K. Anode mounting member of fluorine electrolytic cell, fluorine electrolytic cell, and method for producing fluorine gas
CN107740134A (zh) * 2017-10-19 2018-02-27 杭州泰博科技有限公司 一种光催化阳极电极分解水制氧气的装置及其方法
KR102050206B1 (ko) * 2017-12-29 2019-11-29 인천대학교 산학협력단 광 촉매 전극, 그 제조 방법 및 광 촉매 장치
US11447878B2 (en) * 2018-03-13 2022-09-20 James Bartkowiak Hydrogen generating cell
CN110745778A (zh) * 2019-06-18 2020-02-04 重庆大学 激光分解水蒸汽系统
CN110694567A (zh) * 2019-10-29 2020-01-17 佛山市金净创环保技术有限公司 一种二氧化钛光催化反应器
CN111530254A (zh) * 2020-04-17 2020-08-14 苏州庚泽新材料科技有限公司 气体处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176835A (ja) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd 水電解装置の製造方法
JP2006256901A (ja) 2005-03-17 2006-09-28 Nissan Motor Co Ltd 水素発生装置、水素発生方法及び水素発生システム
JP2007049559A (ja) 2005-08-11 2007-02-22 Sony Corp 情報機器、情報ネットワーク装置および放送ネットワーク装置
JP2007051318A (ja) 2005-08-17 2007-03-01 Nissan Motor Co Ltd 食塩水電解装置
WO2008132818A1 (ja) * 2007-04-20 2008-11-06 Mitsui Chemicals, Inc. 電気分解装置、それに用いる電極および電気分解方法
JP2009207777A (ja) 2008-03-06 2009-09-17 Omron Corp 台間機のロック解除装置
JP2009214484A (ja) 2008-03-12 2009-09-24 Toppan Printing Co Ltd カードの製造方法およびカード

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4240882A (en) * 1979-11-08 1980-12-23 Institute Of Gas Technology Gas fixation solar cell using gas diffusion semiconductor electrode
GB2081307A (en) * 1980-07-08 1982-02-17 Engelhard Min & Chem Use of electrocatalytic anodes in photolysis
US4439301A (en) * 1982-10-07 1984-03-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Photoelectrochemical cells including chalcogenophosphate photoelectrodes
US5137607A (en) * 1990-04-27 1992-08-11 Wisconsin Alumni Research Foundation Reactor vessel using metal oxide ceramic membranes
JPH1043764A (ja) * 1996-08-06 1998-02-17 First Ocean Kk 水電気分解用電極及びそれを用いて水を滅菌する方法
US5863491A (en) * 1997-01-31 1999-01-26 Wang; Chi S. Photocatalytic reactor for metal recovery from industrial waste streams
US7485799B2 (en) * 2002-05-07 2009-02-03 John Michael Guerra Stress-induced bandgap-shifted semiconductor photoelectrolytic/photocatalytic/photovoltaic surface and method for making same
CN1328151C (zh) * 2003-03-26 2007-07-25 松下电器产业株式会社 水的光分解装置和光分解方法
JP2004292284A (ja) 2003-03-28 2004-10-21 Showa Electric Wire & Cable Co Ltd 水素発生装置
GB2414243A (en) * 2004-03-15 2005-11-23 Hydrogen Solar Ltd Photoelectrochemical system
FR2871478B1 (fr) * 2004-06-15 2006-12-22 Arash Mofakhami Systeme d'intrusion et de collision cation-electrons dans un materiau non conducteur
US7967958B2 (en) * 2005-05-20 2011-06-28 Ecolab Inc. Electrode for water electrolysis
JP2007107043A (ja) 2005-10-13 2007-04-26 Japan Science & Technology Agency 光触媒用集電電極、光反応素子および光触媒反応装置、並びに光電気化学反応実行方法
US8323587B2 (en) 2005-10-24 2012-12-04 Mitsui Chemicals, Inc. Microchip device
CN1900366A (zh) * 2006-01-10 2007-01-24 四川大学 利用太阳能直接分解水制氢的离子隔膜光电解池
US8388818B1 (en) * 2007-07-16 2013-03-05 Shalini Menezes Photoelectrochemical generation of hydrogen
CN102596823A (zh) * 2009-05-20 2012-07-18 湖首大学 结合光催化和电化学的废水处理方法和系统
US8574421B2 (en) * 2010-03-09 2013-11-05 Toyota Jidosha Kabushiki Kaisha Water splitting apparatus and method of using the same
US8398828B1 (en) * 2012-01-06 2013-03-19 AquaMost, Inc. Apparatus and method for treating aqueous solutions and contaminants therein

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176835A (ja) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd 水電解装置の製造方法
JP2006256901A (ja) 2005-03-17 2006-09-28 Nissan Motor Co Ltd 水素発生装置、水素発生方法及び水素発生システム
JP2007049559A (ja) 2005-08-11 2007-02-22 Sony Corp 情報機器、情報ネットワーク装置および放送ネットワーク装置
JP2007051318A (ja) 2005-08-17 2007-03-01 Nissan Motor Co Ltd 食塩水電解装置
WO2008132818A1 (ja) * 2007-04-20 2008-11-06 Mitsui Chemicals, Inc. 電気分解装置、それに用いる電極および電気分解方法
JP2009207777A (ja) 2008-03-06 2009-09-17 Omron Corp 台間機のロック解除装置
JP2009214484A (ja) 2008-03-12 2009-09-24 Toppan Printing Co Ltd カードの製造方法およびカード

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. FUJISHIMA; K. HONDA, NATURE, vol. 238, 1972, pages 37 - 38
MARI SATO; HIRONORI ARAKAWA: "Photocatalytic Technology for Direct Water Splitting", SIEMUSHI SHUPPAN, article "Achievement of One-step Water Splitting by Ultraviolet Light-Responsive Photocatalyst", pages: 11
See also references of EP2476782A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110220515A1 (en) * 2010-03-09 2011-09-15 Toyota Jidosha Kabushiki Kaisha Water splitting apparatus and method of using the same
US8574421B2 (en) * 2010-03-09 2013-11-05 Toyota Jidosha Kabushiki Kaisha Water splitting apparatus and method of using the same
CN102758212A (zh) * 2011-04-29 2012-10-31 谭延泰 电解水制氢的装置及其方法
CN102758212B (zh) * 2011-04-29 2014-10-15 谭延泰 电解水制氢的装置及其方法
WO2016052002A1 (ja) * 2014-09-29 2016-04-07 富士フイルム株式会社 人工光合成モジュール
JPWO2016052002A1 (ja) * 2014-09-29 2017-07-20 富士フイルム株式会社 人工光合成モジュール
JPWO2016114063A1 (ja) * 2015-01-13 2017-09-28 富士フイルム株式会社 水素発生電極
JP2019039048A (ja) * 2017-08-25 2019-03-14 富士通株式会社 光化学電極、及びその製造方法、並びに光電気化学反応装置
JP6989762B2 (ja) 2017-08-25 2022-02-03 富士通株式会社 光化学電極、及びその製造方法、並びに光電気化学反応装置
JP2019136650A (ja) * 2018-02-09 2019-08-22 株式会社東芝 固定層反応装置及び固定層反応方法
JP7086629B2 (ja) 2018-02-09 2022-06-20 株式会社東芝 固定層反応装置及び固定層反応方法
WO2020230530A1 (ja) * 2019-05-13 2020-11-19 国立大学法人新潟大学 触媒、電極、水電解方法および触媒の製造方法
JP7571351B2 (ja) 2019-05-13 2024-10-23 国立大学法人 新潟大学 触媒、電極、水電解方法および触媒の製造方法
WO2021153406A1 (ja) * 2020-01-27 2021-08-05 住友電気工業株式会社 金属多孔体シート及び水電解装置

Also Published As

Publication number Publication date
EP2476782A4 (en) 2016-06-01
IN2012DN02262A (ja) 2015-08-21
KR20120064101A (ko) 2012-06-18
US9528189B2 (en) 2016-12-27
TWI473913B (zh) 2015-02-21
TW201113396A (en) 2011-04-16
JP5456785B2 (ja) 2014-04-02
CN102482789B (zh) 2014-10-01
US20120168318A1 (en) 2012-07-05
CN102482789A (zh) 2012-05-30
JPWO2011030546A1 (ja) 2013-02-04
EP2476782A1 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5456785B2 (ja) ガス生成装置およびガス生成方法
Pan et al. Efficient photocatalytic fuel cell via simultaneous visible-photoelectrocatalytic degradation and electricity generation on a porous coral-like WO3/W photoelectrode
Song et al. Highly efficient degradation of persistent pollutants with 3D nanocone TiO2-based photoelectrocatalysis
JP2012188683A (ja) ガス生成装置およびガス生成方法
Reichert et al. Au/TiO2 photo (electro) catalysis: the role of the Au cocatalyst in photoelectrochemical water splitting and photocatalytic H2 evolution
JP6034151B2 (ja) 光化学反応装置
JP2006265697A (ja) 水分解用半導体光電極
US20130248349A1 (en) Photocatalytic water splitting
Luo et al. Self-driven photoelectrochemical splitting of H2S for S and H2 recovery and simultaneous electricity generation
EP2556183A1 (en) Photo-electrochemical cell
JP5641501B2 (ja) 水素製造装置
JP2014101550A (ja) 光化学反応システム
Ta et al. A macroporous-structured WO3/Mo-doped BiVO4 photoanode for vapor-fed water splitting under visible light irradiation
JP6371854B2 (ja) 人工光合成モジュール
WO2014192364A1 (ja) 光化学反応装置および薄膜
JP2008104899A (ja) 光触媒膜、光触媒膜の製造方法およびこれを用いた水素発生装置
JP2007252974A (ja) 光触媒膜、水分解用半導体光電極およびこれを用いた水分解装置
JP2007528935A (ja) 水素を直接発生し、収集するための光電池
Wang et al. Prospects and Promises in Two-Electron Water Oxidation for Hydrogen Peroxide Generation
Yu et al. Effective utilization of visible light (including λ> 600 nm) in phenol degradation with p-silicon nanowire/TiO2 core/shell heterojunction array cathode
US7985397B2 (en) Method of treating hydrogen sulfide, method of producing hydrogen, and photocatalytic-reaction apparatus
Chowdhury Solar and visible light driven photocatalysis for sacrificial hydrogen generation and water detoxification with chemically modified Ti02
JP2001286749A (ja) 化学変換装置
Centi et al. Nano-architecture and reactivity of titania catalytic materials. Part 2. Bidimensional nanostructured films
Dzik et al. All-printed planar photoelectrochemical cells with digitated cathodes for the oxidation of diluted aqueous pollutants

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039759.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815146

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011530752

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13394994

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010815146

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2262/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127008612

Country of ref document: KR

Kind code of ref document: A