WO2011025002A1 - 航空燃料油基材の製造方法及び航空燃料油組成物 - Google Patents

航空燃料油基材の製造方法及び航空燃料油組成物 Download PDF

Info

Publication number
WO2011025002A1
WO2011025002A1 PCT/JP2010/064724 JP2010064724W WO2011025002A1 WO 2011025002 A1 WO2011025002 A1 WO 2011025002A1 JP 2010064724 W JP2010064724 W JP 2010064724W WO 2011025002 A1 WO2011025002 A1 WO 2011025002A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
aviation fuel
fuel oil
mass
catalyst
Prior art date
Application number
PCT/JP2010/064724
Other languages
English (en)
French (fr)
Inventor
和章 早坂
秀樹 尾野
成 小山
壱岐 英
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to EP10812048A priority Critical patent/EP2474596A4/en
Priority to AU2010287357A priority patent/AU2010287357B2/en
Priority to BR112012008160A priority patent/BR112012008160A2/pt
Priority to US13/391,727 priority patent/US9283552B2/en
Priority to SG2012012084A priority patent/SG178843A1/en
Priority to CN2010800386882A priority patent/CN102482595A/zh
Publication of WO2011025002A1 publication Critical patent/WO2011025002A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7484TON-type, e.g. Theta-1, ISI-1, KZ-2, NU-10 or ZSM-22
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7461MRE-type, e.g. ZSM-48
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7492MTT-type, e.g. ZSM-23, KZ-1, ISI-4 or EU-13
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a method for producing an aviation fuel oil base material and an aviation fuel oil composition.
  • biomass energy derived from plants can effectively use carbon immobilized from carbon dioxide in the atmosphere by photosynthesis during the growth of plants, so it does not lead to an increase in carbon dioxide in the atmosphere from the viewpoint of life cycle, so-called It has the property of being carbon neutral.
  • Biomass fuel is also considered promising as an alternative energy for oil from the viewpoint of depletion of petroleum resources and rising crude oil prices.
  • FAME fatty acid methyl ester oil
  • FAME is produced by transesterifying triglyceride, which is a general structure of animal and vegetable oils, with methanol by the action of an alkali catalyst or the like.
  • This FAME is considered to be used not only for diesel fuel but also for aviation fuel oil, so-called jet fuel.
  • Airplanes are heavily fueled and have been greatly affected by the recent rise in crude oil prices. Under such circumstances, biomass fuel has been attracting attention as a promising candidate for an alternative petroleum fuel as well as for preventing global warming. Under such circumstances, a plurality of airlines are currently experimenting with mixed use of FAME in petroleum-based jet fuel.
  • hydrocarbons obtained by this method do not contain oxygen or unsaturated bonds and have the same properties as petroleum hydrocarbon fuels.
  • aviation fuel can be used at a higher concentration than FAME. It is considered to be.
  • the present invention has been made in view of the above circumstances, and since it contains components derived from animal and vegetable oils and fats, it produces an aviation fuel oil base material having excellent life cycle characteristics and excellent low temperature characteristics in a high yield. It is an object of the present invention to provide a method for producing an aviation fuel base material that can be used. Another object of the present invention is to provide an aviation fuel oil composition having excellent life cycle characteristics and excellent low temperature characteristics.
  • the present invention has a function of dehydrogenating and hydrogenating a raw material oil containing an oxygen-containing hydrocarbon compound derived from animal and plant oils and fats, and comprises a group 6A metal and group 8 of the periodic table.
  • a method for producing an aviation fuel oil base is provided.
  • the raw material oil preferably contains 1 to 100 mass ppm of a sulfur-containing hydrocarbon compound in terms of sulfur atom.
  • the Group 6A metal of the periodic table in the first binary functional catalyst is molybdenum and / or tungsten, and the Group 8 metal of the periodic table in the first binary functional catalyst. Is cobalt and / or nickel, and preferably includes a preliminary sulfidation step of sulfiding the first dual-function catalyst before the first step.
  • the crystalline solid acidic substance in the second binary functional catalyst has a one-dimensional 10-membered ring aluminosilicate having an MEL structure, a TON structure, an MTT structure, and an MRE structure, and an AEL structure.
  • a crystalline substance containing at least one crystal selected from the group consisting of silicoaluminophosphates is preferred.
  • the second bifunctional catalyst contains a one-dimensional 10-membered ring aluminosilicate and / or silicoaluminophosphate, and the one-dimensional 10-membered ring aluminosilicate and the silicoaluminophos It is preferable that the total content of the fate is 65 to 85% by mass.
  • the one-dimensional 10-membered ring aluminosilicate preferably contains at least one selected from the group consisting of ZSM-11, ZSM-22, ZSM-23, and ZSM-48.
  • the silicoaluminophosphate preferably contains at least one selected from the group consisting of SAPO-11 and SAPO-34.
  • the hydroisomerization rate preferably exceeds 90% by mass.
  • the present invention also includes a first aviation fuel oil base material obtained by the above-described method for producing an aviation fuel oil base material, and a second aviation fuel oil base material produced from a petroleum-based raw material, Provided is an aviation fuel composition in which the content of the first aviation fuel base is 5 to 50% by mass and the content of the second aviation fuel base is 50 to 95% by mass.
  • the aviation fuel oil base which can manufacture the aviation fuel oil base material which is excellent in the low temperature characteristic while having the outstanding life cycle characteristic from including the component derived from animal and vegetable fats and oils with a high yield
  • a method for producing a material can be provided.
  • an aviation fuel oil composition having excellent life cycle characteristics and excellent low temperature characteristics can be provided.
  • the method for producing an aviation fuel oil base material of this embodiment has a dehydrogenation and hydrogenation function for a raw material oil containing an oxygen-containing hydrocarbon compound contained in animal and vegetable oils and fats, and has a function of group 6A metals,
  • a raw material oil containing an oxygen-containing hydrocarbon compound derived from animal and vegetable fats and oils is used.
  • animal and vegetable oils include beef tallow, rapeseed oil, camelina oil, soybean oil, palm oil, oils and hydrocarbons produced by specific algae, and the like.
  • the specific algae referred to here means algae having a property of converting a part of nutrients in the body into a hydrocarbon or oil and fat form.
  • Specific examples of specific algae include chlorella, squid damo, spirulina, euglena, botulococcus brownies, and pseudocollistis ellipsoidia. Of these, chlorella, squid damo, spirulina, and euglena produce oils and fats, while Botriococcus brownies and pseudocollistis ellipsoidia produce hydrocarbons.
  • any fats and oils may be used as the animal and plant fats and oils, and waste oils after using these fats and oils may be used.
  • the animal and plant fats and oils preferably include plant-derived fats and oils, and each fatty acid group having 10 to 14 carbon atoms in the fatty acid carbon chain from the viewpoint of jet fraction yield after hydrogenation treatment.
  • the plant oils and fats that are considered to be considered from this point of view are preferably coconut oil, palm kernel oil and camelina oil, and euglena is produced as fats and oils produced by specific microalgae. Oils and fats are preferred.
  • the fatty acid composition is based on the standard method for analyzing fats and oils (established by the Japan Oil Chemists' Society) (1991) “2.4.20.2-91, Preparation Method of Fatty Acid Methyl Ester (Boron Trifluoride-Methanol Method)”. Using the temperature rising gas chromatograph equipped with a flame ionization detector (FID), the standard fat and oil analysis test method (established by the Japan Oil Chemists' Society) (1993) “2.4.2.13-77 It is a value determined according to “Fatty acid composition (FID temperature rising gas chromatograph method)”, and indicates the constituent ratio (mass%) of each fatty acid group constituting the fat.
  • Fatty acid composition Fatty acid composition (FID temperature rising gas chromatograph method)
  • the feed oil preferably contains a sulfur-containing hydrocarbon compound.
  • the sulfur-containing hydrocarbon compound contained in the raw material oil is not particularly limited, and specific examples include sulfide, disulfide, polysulfide, thiol, thiophene, benzothiophene, dibenzothiophene, and derivatives thereof.
  • the sulfur-containing hydrocarbon compound contained in the feedstock oil may be a single compound or a mixture of two or more. Further, a petroleum hydrocarbon fraction containing a sulfur content may be used as the sulfur-containing hydrocarbon compound.
  • the sulfur content contained in the feedstock is preferably 1 to 100 ppm by mass, more preferably 5 to 50 ppm by mass, in terms of sulfur atoms, based on the total amount of the feedstock, and 10 to 20 ppm by mass. More preferably.
  • the sulfur content in terms of sulfur atom is less than 1 ppm by mass, it tends to be difficult to stably maintain the deoxygenation activity that is the main reaction in the first step.
  • the sulfur content in terms of sulfur atoms exceeds 50 ppm by mass, the sulfur concentration in the light gas discharged in the first step may increase and the catalytic activity in the second step may be reduced.
  • the sulfur content in this specification is the mass content of the sulfur content measured according to the method described in JIS K 2541 “Sulfur Content Test Method” or ASTM-5453.
  • the sulfur-containing hydrocarbon compound may be a mixture obtained by previously mixing with an oxygen-containing hydrocarbon compound derived from animal and vegetable oils and fats, or may be introduced into the first-stage reactor, or an oxygen-containing hydrocarbon derived from animal and vegetable oils and fats.
  • the compound When the compound is introduced into the reactor of the first step, it may be supplied before the reactor of the first step.
  • the raw material oil may contain a petroleum-based base material obtained by refining crude oil or the like in addition to the oxygen-containing hydrocarbon compound and sulfur-containing hydrocarbon compound derived from animal and plant oils and fats.
  • Petroleum base materials obtained by refining crude oil etc. are obtained by reactions such as fractions obtained by atmospheric distillation or vacuum distillation of crude oil, hydrodesulfurization, hydrocracking, fluid catalytic cracking, catalytic reforming, etc. Such as fractions. It is preferable to adjust the content of the petroleum-based base material in the raw material oil so that the sulfur content in the raw material oil satisfies the above-described concentration range.
  • the content of the petroleum-based base material in the feedstock is preferably 20 to 70% by volume, more preferably 30 to 60% by volume.
  • the above-mentioned petroleum-based substrates can be used alone or in combination of two or more.
  • the petroleum-based base material may be a chemical-derived compound or a synthetic oil obtained via a Fischer-Tropsch reaction.
  • the first step includes the following hydrotreatment step.
  • the hydrotreating process according to the present embodiment is performed under conditions where the hydrogen pressure is 1 to 13 MPa, the liquid space velocity is 0.1 to 3.0 h ⁇ 1 , and the hydrogen / oil ratio is 150 to 1500 NL / L. More preferably, the hydrogen pressure is 2 to 11 MPa, the liquid space velocity is 0.2 to 2.0 h ⁇ 1 , the hydrogen / oil ratio is 200 to 1200 NL / L, and the hydrogen pressure is 3 to 10.5 MPa. Even more preferred are conditions where the liquid hourly space velocity is 0.25 to 1.5 h ⁇ 1 and the hydrogen / oil ratio is 300 to 1000 NL / L.
  • the reaction temperature can be arbitrarily set in order to decompose the raw oil heavy fraction at the target decomposition rate or obtain each fraction at the target fraction yield.
  • the average temperature of the entire reactor is usually in the range of 150 to 480 ° C, preferably 200 to 400 ° C, more preferably 260 to 360 ° C.
  • the reaction temperature is lower than 150 ° C, the reaction may not proceed sufficiently.
  • the reaction temperature exceeds 480 ° C, the decomposition proceeds excessively, and the liquid product yield tends to decrease.
  • a carrier composed of a porous inorganic oxide composed of two or more elements selected from aluminum, silicon, zirconium, boron, titanium and magnesium is used.
  • a catalyst carrying a metal selected from Group 6A and Group 8 elements can be used.
  • an amorphous solid acidic substance is used as the carrier of the first dual-function catalyst.
  • a porous inorganic oxide containing two or more elements selected from aluminum, silicon, zirconium, boron, titanium and magnesium Is used.
  • it is a porous inorganic oxide containing alumina, and other carrier constituents include silica, zirconia, boria, titania, magnesia and the like.
  • a composite oxide containing at least one selected from alumina and other constituents is preferable.
  • phosphorus may be included as this other component.
  • the total content of components other than alumina in the carrier of the first binary functional catalyst is preferably 1 to 20% by mass, and more preferably 2 to 15% by mass.
  • the phosphorus content based on the whole carrier is preferably 1 to 5% by mass, more preferably 2 to 4% by mass in terms of oxide.
  • the raw material to be a precursor of silica, zirconia, boria, titania, and magnesia, which are carrier components other than alumina, is not particularly limited, and a solution containing general silicon, zirconium, boron, titanium, or magnesium can be used.
  • magnesium magnesium nitrate or the like can be used.
  • phosphorus phosphoric acid or an alkali metal salt of phosphoric acid can be used.
  • the raw materials for the carrier constituents other than alumina are added in any step prior to the firing of the carrier.
  • an aluminum hydroxide gel containing these components may be added to an aluminum aqueous solution in advance, or it may be added to a prepared aluminum hydroxide gel, or water or an acidic aqueous solution may be added to a commercially available alumina intermediate or boehmite powder.
  • a method of coexisting at the stage of preparing aluminum hydroxide gel is more preferable.
  • the mechanism of the effect of these carrier constituents other than alumina has not been elucidated, it seems to form a complex oxide state with aluminum. As a result, the surface area of the support is increased, and some interaction with the active metal is caused, thereby affecting the activity of the catalyst.
  • the first binary functional catalyst contains at least one metal element selected from Group 6A metal of the periodic table and at least one metal element selected from Group 8 metal as the active metal. That is, the first binary functional catalyst contains two or more kinds of metals selected from Group 6A metal of the periodic table and Group 8 metal of the periodic table as active metals.
  • the active metal include Co—Mo, Ni—Mo, Ni—Co—Mo, Ni—W, and the like, and these metals are used after being converted into a sulfide state in the hydrogenation treatment. By performing a preliminary sulfidation step before the first step, it can be converted to sulfide.
  • the total content (supported amount) of W and Mo in the first binary functional catalyst is preferably 12 to 35 mass in terms of oxide. %, More preferably 15 to 30% by mass.
  • the total content of W and Mo is less than 12% by mass, the activity tends to decrease due to a decrease in the number of active sites, and when it exceeds 35% by mass, the active metal is not effectively dispersed and the activity is reduced. It tends to decrease.
  • the total content (supported amount) of Co and Ni in the first binary functional catalyst based on the catalyst mass is preferably 1.5 to 5 in terms of oxide.
  • the amount is 10% by mass, more preferably 2 to 8% by mass.
  • the total content of Co and Ni is less than 1.5% by mass, a sufficient cocatalyst effect cannot be obtained and the activity tends to decrease.
  • the total content exceeds 10% by mass, the active metal is effective. It does not disperse and the activity tends to decrease.
  • the method for supporting the active metal on the carrier when preparing the first dual-function catalyst is not particularly limited, and a known method applied when producing an ordinary desulfurization catalyst can be used. Usually, a method of impregnating a catalyst carrier with a solution containing a salt of an active metal is preferably employed. Also, an equilibrium adsorption method, a pore-filling method, an incident-wetness method, and the like are preferably employed.
  • the pore-filling method is a method in which the pore volume of the support is measured in advance and impregnated with the same volume of the metal salt solution, but the impregnation method is not particularly limited, and the amount of metal supported Further, it can be impregnated by an appropriate method depending on the physical properties of the catalyst support.
  • the reactor type of the hydrotreating reaction in the first step may be a fixed bed system. That is, the molecular hydrogen can adopt either a countercurrent or a cocurrent flow with respect to the raw material oil, and may have a plurality of reaction towers and a combination of countercurrent and cocurrent. As a general format, it is a down flow, and a gas-liquid twin parallel flow format can be adopted. Further, the reactors may be used singly or in combination, and a structure in which one reactor is divided into a plurality of catalyst beds may be adopted.
  • the hydrotreated oil hydrotreated in the reactor is fractionated into predetermined fractions through a gas-liquid separation step, a rectification step, and the like.
  • gas-liquid separation equipment and other by-products are formed between the reactors and in the product recovery process.
  • a gas removal device may be installed.
  • a high-pressure separator or the like can be preferably exemplified.
  • Hydrogen gas which is molecular hydrogen, is introduced from the inlet of the first reactor so as to accompany the feedstock before or after the feedstock passes through a heating furnace for heating the feedstock. It may be introduced between the catalyst beds or between a plurality of reactors for the purpose of controlling the temperature in the reactor and maintaining the hydrogen pressure throughout the reactor as much as possible.
  • the hydrogen thus introduced is referred to as quench hydrogen.
  • the ratio of quench hydrogen to hydrogen introduced accompanying the feedstock is preferably 10 to 60% by volume, more preferably 15 to 50% by volume. When the ratio of quench hydrogen is less than 10% by volume, the reaction at the subsequent reaction site may not proceed sufficiently, and when it exceeds 60% by volume, the reaction near the reactor inlet may not proceed sufficiently.
  • the raw material oil when the raw material oil is hydrotreated, contains a specific amount of recycled oil in order to suppress the calorific value in the hydrotreating reactor. Can be made.
  • the content of the recycled oil in the raw material oil is preferably 0.5 to 5 times the mass of the oxygen-containing hydrocarbon compound derived from animal and vegetable oils and fats, depending on the maximum operating temperature of the hydrotreating reactor. The ratio can be adjusted as appropriate within the above range. Assuming that the specific heat of both is the same, if the two are mixed one-on-one, the temperature rise is half that of the case where the substance derived from animal and vegetable fats and oils is reacted alone. If it exists, it is because the reaction heat can fully be reduced.
  • the content of recycled oil is more than 5 times the mass of the oxygen-containing hydrocarbon compound, the concentration of the oxygen-containing hydrocarbon compound will decrease and the reactivity will decrease, and the flow rate of piping will increase and the load will increase. Tend to increase.
  • the content of the recycled oil is less than 0.5 times the mass of the oxygen-containing hydrocarbon compound, the temperature rise tends not to be sufficiently suppressed.
  • the mixing method of the raw material oil and the recycled oil is not particularly limited.
  • the raw material oil may be mixed in advance and the mixture may be introduced into the reactor of the hydrotreating apparatus, or when the raw material oil is introduced into the reactor, the reactor You may supply in the front
  • Recycled oil is a part of hydrotreated oil (first product oil) obtained by removing by-product water, carbon monoxide, carbon dioxide, hydrogen sulfide, etc. after hydrotreating raw material oil It is preferable to contain. Further, a fraction obtained by isomerizing each of the light fraction, middle fraction and heavy fraction fractionated from hydrotreated oil, or fractionated from further isomerized hydrotreated oil. It is preferable to contain a part of the middle distillate.
  • the manufacturing method of the aviation fuel oil base material of this embodiment has a second step of further hydroisomerizing the first product oil obtained in the hydrotreating step which is the first step.
  • the sulfur content contained in the first product oil that is the feed oil for the hydroisomerization reaction that is the second step is preferably 10 mass ppm or less, and more preferably 5 mass ppm. If the sulfur content exceeds 10 ppm by mass, the active metal of the second binary functional catalyst used in the second step may be poisoned by sulfur and hinder the progress of the hydroisomerization reaction. In addition, for the same reason, it is preferable that the sulfur concentration is sufficiently low for the reaction gas containing hydrogen introduced together with the hydrotreated oil. Specifically, the sulfur concentration in the reaction gas is preferably 10 ppm by volume or less, and more preferably 5 ppm by volume or less.
  • the second step is preferably performed in the presence of hydrogen under the conditions of a hydrogen pressure of 2 to 13 MPa, a liquid space velocity of 0.1 to 3.0 h ⁇ 1 , and a hydrogen / oil ratio of 250 to 1500 NL / L. More preferably, the pressure is 2.5 to 10 MPa, the liquid space velocity is 0.5 to 2.0 h ⁇ 1 , and the hydrogen / oil ratio is 380 to 1200 NL / L. The hydrogen pressure is 3 to 8 MPa, the liquid It is more preferable to carry out under the condition that the space velocity is 0.8 to 2.5 h ⁇ 1 and the hydrogen / oil ratio is 350 to 1000 NL / L.
  • the reaction temperature in the second step can be arbitrarily set in order to obtain the target decomposition rate or the target fraction yield of the heavy feed oil heavy fraction.
  • the reaction temperature is preferably 150 to 380 ° C., more preferably 240 to 380 ° C., and further preferably 250 to 365 ° C.
  • the reaction temperature is lower than 150 ° C., sufficient hydroisomerization reaction may not proceed.
  • the reaction temperature is higher than 380 ° C., excessive decomposition or other side reaction proceeds, resulting in a liquid product yield. There is a risk of lowering.
  • a porous inorganic oxide composed of a material selected from aluminum, silicon, zirconium, boron, titanium, and magnesium is used as a binder, and a one-dimensional 10-membered ring.
  • a catalyst is used in which one or more metals selected from Group 8 elements of the periodic table are supported on a support made of crystalline aluminosilicate and / or one-dimensional 10-membered ring aluminophosphate.
  • the second bifunctional catalyst contains a crystalline solid acidic substance as a support.
  • the crystalline solid acidic substance include porous inorganic oxides, and specifically include alumina, titania, zirconia, boria, and silica. In the present embodiment, among these, those composed of at least one of titania, zirconia, boria, and silica and alumina are preferable.
  • the method for producing the second dual-function catalyst is not particularly limited, and any preparation method can be adopted using raw materials in a state of various sols, salt compounds, etc. corresponding to each element. Furthermore, after preparing a composite hydroxide or composite oxide such as silica alumina, silica zirconia, alumina titania, silica titania, alumina boria, etc., it is prepared in the form of alumina gel or other hydroxides or in an appropriate solution state. You may add and prepare in arbitrary processes of a process.
  • the ratio of alumina and other oxides can be any ratio with respect to the support, but the ratio of alumina is preferably 90% by mass or less, more preferably, based on the total of alumina and other oxides. Is 60% by mass or less, more preferably 40% by mass or less, preferably 10% by mass or more, more preferably 20% by mass or more.
  • the crystalline solid acidic substance preferably contains a one-dimensional 10-membered ring aluminosilicate and / or a one-dimensional 10-membered silicoaluminophosphate.
  • the one-dimensional 10-membered ring aluminosilicate is preferably a zeolite having a TON, MTT, or MRE structure
  • the one-dimensional 10-membered silicoaluminophosphate is preferably a crystalline substance having an AEL structure.
  • one or more metals selected from Group 8 elements of the periodic table are used as the active metal of the second binary functional catalyst.
  • these metals it is preferable to use one or more metals selected from the group consisting of Pd, Pt, Rh, Ir, Au, and Ni, and it is preferable to use a combination of two or more metals selected from the group. More preferred.
  • Suitable combinations include, for example, Pd—Pt, Pd—Ir, Pd—Rh, Pd—Au, Pd—Ni, Pt—Rh, Pt—Ir, Pt—Au, Pt—Ni, Rh—Ir, Rh— Examples thereof include Au, Rh—Ni, Ir—Au, Ir—Ni, Au—Ni, Pd—Pt—Rh, Pd—Pt—Ir, and Pt—Pd—Ni.
  • the total active metal content (total supported amount) based on the catalyst mass is preferably 0.05 to 2% by mass, more preferably 0.1 to 1.5% by mass in terms of metal. Preferably, the content is 0.15 to 1.2% by mass.
  • the total content of the active metals based on the catalyst mass is less than 0.05 mass%, the active sites tend to decrease and sufficient activity cannot be obtained.
  • the total content exceeds 1.2% by mass, the metal is not effectively dispersed and the decomposition activity tends to be high.
  • the method for supporting the active metal on the support when preparing the second dual-function catalyst is not particularly limited, and a known method applied when producing an ordinary desulfurization catalyst can be used. Usually, a method of impregnating a catalyst carrier with a solution containing a salt of an active metal is preferably employed. Also, an equilibrium adsorption method, a pore-filling method, an incident-wetness method, and the like are preferably employed.
  • the pore-filling method is a method in which the pore volume of the support is measured in advance and impregnated with the same volume of the metal salt solution, but the impregnation method is not particularly limited, and the amount of metal supported Further, it can be impregnated by an appropriate method depending on the physical properties of the catalyst support.
  • the second bifunctional catalyst is preferably subjected to reduction treatment of the active metal contained in the catalyst before being subjected to the hydroisomerization reaction in the second step.
  • the reduction conditions are not particularly limited.
  • the reduction can be performed by treatment at 200 to 400 ° C., preferably 240 to 380 ° C. in a hydrogen stream.
  • the reduction temperature is less than 200 ° C., the reduction of the active metal does not proceed sufficiently and there is a possibility that the hydrotreatment and hydroisomerization activity cannot be exhibited.
  • the reduction temperature exceeds 400 ° C., the aggregation of the active metal proceeds, and there is a possibility that the activity cannot be exhibited similarly.
  • the reactor type in the second step may be a fixed bed method. That is, hydrogen can take either a countercurrent or a cocurrent flow with respect to the feed oil (first product oil), and has a plurality of reaction towers and a combination of countercurrent and cocurrent flow. It may be a thing. As a general format, it is a down flow, and a gas-liquid twin parallel flow format can be adopted. Further, the reactors may be used singly or in combination, and a structure in which one reactor is divided into a plurality of catalyst beds may be adopted.
  • hydrogen gas can be introduced from the inlet of the first reactor so that the first product oil is accompanied by the first product oil before or after passing through the heating furnace.
  • hydrogen gas may be introduced between the catalyst beds or between a plurality of reactors for the purpose of controlling the temperature in the reactor and maintaining the hydrogen pressure throughout the reactor as much as possible.
  • the hydrogen gas introduced in this way is called quench hydrogen.
  • the ratio of quench hydrogen to hydrogen introduced accompanying the first product oil is preferably 10 to 60% by volume, more preferably 15 to 50% by volume. When the ratio of quench hydrogen is less than 10% by volume, the reaction at the subsequent reaction site may not proceed sufficiently, and when it exceeds 60% by volume, the reaction near the reactor inlet may not proceed sufficiently.
  • the second product oil obtained by subjecting the hydroisomerization treatment in the second step may be fractionated into a plurality of fractions in a rectification tower as necessary.
  • it may be fractionated into light fractions such as gas and naphtha fractions, middle fractions such as kerosene and diesel oil fractions, and heavy fractions such as residues.
  • the cut temperature of the light fraction and the middle fraction is preferably 100 to 200 ° C, more preferably 120 to 180 ° C, further preferably 120 to 160 ° C, and particularly preferably 130 to 150 ° C.
  • the cut temperature of the middle fraction and the heavy fraction is preferably 250 to 360 ° C, more preferably 250 to 320 ° C, further preferably 250 to 300 ° C, and particularly preferably 250 to 280 ° C.
  • Hydrogen can be produced by reforming a part of the light fraction produced by fractional distillation in a steam reformer.
  • the hydrogen produced in this way has a characteristic of carbon neutral because the raw material used for steam reforming is a biomass-derived hydrocarbon, and can reduce the burden on the environment.
  • the middle distillate obtained by fractionating the second product oil can be suitably used particularly as an aviation fuel oil base material.
  • the aviation fuel oil base material (hereinafter referred to as “first aviation fuel oil base material”) obtained by obtaining the above steps may be used alone as aviation fuel oil, and is obtained by refining crude oil or the like.
  • the aviation fuel oil composition of the present invention may be produced by mixing with an aviation fuel oil base material (hereinafter referred to as “second aviation fuel oil base material”).
  • the second aviation fuel oil base material the aviation fuel oil fraction obtained in the general oil refining process, the synthesis gas composed of hydrogen and carbon monoxide is used as a raw material, via the Fischer-Tropsch reaction, etc. Examples thereof include synthetic fuel oil base materials to be obtained.
  • This synthetic fuel oil base material contains little aromatics, is characterized by saturated hydrocarbons as the main component and a high smoke point.
  • a well-known method can be used as a manufacturing method of synthesis gas, and it is not specifically limited.
  • an aviation fuel base material of the present embodiment it is possible to achieve both excellent low temperature performance by improving the degree of isomerization and excellent life cycle characteristics obtained from carbon neutral characteristics. .
  • an environment-friendly aviation fuel base material and aviation fuel oil that contribute to diversification of primary energy can be provided.
  • the aviation fuel oil composition of the present embodiment preferably contains 5 to 50% by mass of the first aviation fuel oil base material, more preferably 5 to 40% by mass, and even more preferably 8 to 30% by mass. contains.
  • the aviation fuel oil composition preferably contains 50 to 95% by mass of the second aviation fuel oil base material, more preferably 60 to 95% by mass, and even more preferably 70 to 92% by mass. .
  • additives that are conventionally added to aviation fuel oil can be added to the aviation fuel oil composition of the present embodiment.
  • the additive include one or more additives selected from an antioxidant, an antistatic agent, a metal deactivator, and an antifreezing agent.
  • Antioxidants include N, N-diisopropylparaphenylenediamine, 2,6-ditertiary butylphenol 75% or more in a range not exceeding 24.0 mg / l in order to suppress the generation of gum in aviation fuel oil.
  • tertiary and tritertiary butylphenol a mixture of 25% or less of tertiary and tritertiary butylphenol, a mixture of 72% or more of 2,4-dimethyl-6-tertiary butylphenol and 28% or less of monomethyl and dimethyl tertiary butylphenol, 2,4-dimethyl-6-tersia
  • a mixture of 55% or more of butylphenol and 45% or less of tertiary and ditertiary butylphenol, 2,6-ditertiary butyl-4-methylphenol and the like can be added.
  • the range does not exceed 3.0 mg / l in order to increase the electrical conductivity. Then, STADIS 450 manufactured by Octel Co., Ltd. can be added.
  • N, N-disalicylidene is used in a range not exceeding 5.7 mg / l so that the free metal component contained in the aviation fuel oil does not react and the fuel becomes unstable. 1,2-propanediamine and the like can be added.
  • ethylene glycol monomethyl ether or the like is added in the range of 0.1 to 0.15% by volume in order to prevent a minute amount of water contained in aviation fuel oil from freezing and blocking the piping. be able to.
  • the aviation fuel oil composition of the present embodiment can be appropriately mixed with optional additives such as an antistatic agent, a corrosion inhibitor and a bactericidal agent without departing from the present invention.
  • the aviation fuel oil composition of this embodiment satisfies the standard value of JIS K2209 “aviation turbine fuel oil”.
  • Density at 15 °C aviation fuel oil composition of the present embodiment is preferably 775 kg / m 3 or more, more preferably 780 kg / m 3 or more. On the other hand, from the viewpoint of flammability, it is preferably 839kg / m 3 or less, more preferably 830 kg / m 3 or less, and more preferably 820 kg / m 3 or less.
  • the density at 15 ° C. in this specification means a value measured by JIS K2249 “Crude oil and petroleum products—Density test method and density / mass / capacity conversion table”.
  • the 10% by volume distillation temperature is preferably 204 ° C. or lower, more preferably 200 ° C. or lower, from the viewpoint of evaporation characteristics.
  • the end point is preferably 300 ° C. or less, more preferably 290 ° C. or less, and still more preferably 280 ° C. or less from the viewpoint of combustion characteristics (burn-out property).
  • the distillation property in the present specification means a value measured by JIS K2254 “Petroleum product-distillation test method”.
  • the actual gum content of the aviation fuel oil composition of the present embodiment is preferably 7 mg / 100 ml or less, more preferably 5 mg / 100 ml or less, from the viewpoint of preventing problems due to precipitate generation in the fuel introduction system and the like. Preferably, it is more preferably 3 mg / 100 ml or less.
  • the actual gum content in the present specification means a value measured by JIS K2261 “Testing method for actual gum of gasoline and aviation fuel oil”.
  • the true calorific value of the aviation fuel oil composition of the present embodiment is preferably 42.8 MJ / kg or more, and more preferably 45 MJ / kg or more from the viewpoint of fuel consumption rate.
  • the true calorific value in the present specification means a value measured by JIS K2279 “Crude oil and fuel oil calorific value test method”.
  • the kinematic viscosity at ⁇ 20 ° C. of the aviation fuel oil composition of the present embodiment is preferably 8 mm 2 / s or less, preferably 7 mm 2 / s or less, from the viewpoint of fluidity of the fuel piping and uniform fuel injection. More preferably, it is 5 mm 2 / s or less.
  • the kinematic viscosity in the present specification means a value measured by JIS K2283 “Kinematic viscosity test method for crude oil and petroleum products”.
  • the copper plate corrosion of the aviation fuel oil composition of the present embodiment is preferably 1 or less from the viewpoint of the corrosiveness of the fuel tank and piping.
  • the copper plate corrosion in this specification means a value measured by JIS K2513 “Petroleum products—Copper plate corrosion test method”.
  • the aromatic content of the aviation fuel oil composition of the present embodiment is preferably 25% by volume or less and more preferably 20% by volume or less from the viewpoint of flammability (preventing soot generation).
  • the aromatic content in this specification means a value measured by JIS K2536 “Fuel oil hydrocarbon component test method (fluorescent indicator adsorption method)”.
  • the smoke point of the aviation fuel oil composition of the present embodiment is preferably 25 mm or more, more preferably 27 mm or more, and still more preferably 30 mm or more from the viewpoint of flammability (preventing soot generation).
  • the smoke point in the present specification means a value measured by JIS K2537 “Fuel oil smoke point test method”.
  • the sulfur content of the aviation fuel oil composition of the present embodiment is preferably 0.3% by mass or less, more preferably 0.2% by mass or less, and 0.1% by mass from the viewpoint of corrosivity. More preferably, it is as follows. From the same corrosive viewpoint, the mercaptan sulfur content is preferably 0.003% by mass or less, more preferably 0.002% by mass or less, and 0.001% by mass or less. Further preferred.
  • the sulfur content here means a value measured by JIS K2541 “Crude oil and petroleum product sulfur content test method”. Unless otherwise specified, the mercaptan sulfur content in the present specification means a value measured by JIS K2276 “Mercaptan sulfur content test method (potentiometric titration method)”.
  • the flash point of the aviation fuel oil composition of the present embodiment is preferably 38 ° C. or higher, more preferably 40 ° C. or higher, and further preferably 45 ° C. or higher from the viewpoint of safety.
  • the flash point in this specification means a value obtained by JIS K2265 “Crude oil and petroleum products—flash point test method—tag sealed flash point test method”.
  • the total acid value of the aviation fuel oil composition of the present embodiment is preferably 0.1 mgKOH / g or less, more preferably 0.08 mgKOH / g or less, and 0.05 mgKOH / g from the viewpoint of corrosivity. More preferably, it is as follows. Unless otherwise specified, the total acid value in this specification means a value measured by JIS K2276 “Total Acid Value Test Method”.
  • the precipitation point of the aviation fuel oil composition of the present embodiment is preferably ⁇ 47 ° C. or less, preferably ⁇ 48 ° C. or less, from the viewpoint of preventing a decrease in fuel supply due to fuel freezing under low temperature exposure during flight. Is more preferable, and it is more preferable that the temperature is ⁇ 50 ° C. or lower.
  • the precipitation point in this specification means a value measured by JIS K2276 “Precipitation point test method”.
  • the thermal stability of the aviation fuel oil composition of the present embodiment is such that the pressure difference in method A is 10.1 kPa or less and the preheating tube deposit evaluation value is less than 3 from the viewpoint of preventing the fuel filter from being clogged due to the formation of precipitates at high temperature exposure
  • the pressure difference in the method B is preferably 3.3 kPa or less and the preheating tube deposit evaluation value is less than 3.
  • the thermal stability in this specification means a value measured by JIS K2276 “Thermal Stability Test Method A, Method B”.
  • the water solubility of the aviation fuel oil composition of the present embodiment is preferably a separation state of 2 or less and an interface state of 1b or less in order to prevent troubles due to precipitation of dissolved water during low temperature exposure.
  • the water solubility in the present specification means a value measured by JIS K2276 “Water solubility test method”.
  • the aviation fuel oil base material and the aviation fuel oil composition containing the environmentally low load base material manufactured using the animal and vegetable oils and fats of the present embodiment as raw materials are all flammability, oxidation stability, and life cycle CO 2 emission characteristics. It is excellent.
  • the cake-like slurry was transferred to a container equipped with a reflux condenser, 150 ml of distilled water and 10 g of 27 mass% aqueous ammonia solution were added to the container, and the mixture was heated and stirred at 75 ° C. for 20 hours. After stirring, the slurry was put into a kneading apparatus and kneaded while removing water by heating to 80 ° C. or higher to obtain a clay-like kneaded product. The obtained kneaded product was extruded into a shape of a cylinder having a diameter of 1.5 mm by an extrusion molding machine, dried at 110 ° C. for 1 hour, and then fired at 550 ° C. to obtain a molded carrier.
  • ZSM-48 zeolite was synthesized by the method described in non-patent literature (Appl. Catal. A, 299 (2006), pages 167-174). The synthesized ZSM-48 zeolite was dried at 95 ° C. for 3 hours under air flow, and then calcined at 550 ° C. for 3 hours in an air atmosphere to obtain a calcined zeolite.
  • a commercially available boehmite powder (trade name: Cataloid-AP) was prepared as an alumina binder.
  • a calcined zeolite and boehmite powder were sufficiently kneaded into a boehmite powder made into a slurry by adding an appropriate amount of water so that the ratio of zeolite: alumina was 70:30 (% by mass) to obtain a kneaded product.
  • This kneaded material was supplied to an extrusion molding machine to obtain a cylindrical shaped carrier (diameter: 1.5 mm, length: 1 cm). The obtained shaped carrier was dried at 95 ° C. for 3 hours under air flow, and then calcined at 550 ° C. for 3 hours in an air atmosphere.
  • ZSM-23 zeolite was synthesized by the method described in US Pat. No. 4,868,146. The synthesized ZSM-23 zeolite was dried at 95 ° C. for 3 hours under air flow, and then calcined at 550 ° C. for 3 hours in an air atmosphere to obtain a calcined zeolite.
  • a commercially available boehmite powder (trade name: Cataloid-AP) was prepared as an alumina binder.
  • a calcined zeolite and boehmite powder were sufficiently kneaded into a boehmite powder made into a slurry by adding an appropriate amount of water so that the calcined zeolite: alumina was 70:30 (mass%) to obtain a kneaded product.
  • This kneaded material was supplied to an extrusion molding machine to obtain a cylindrical shaped carrier (diameter: 1.5 mm, length: 1 cm). The obtained shaped carrier was dried at 95 ° C. for 3 hours under air flow, and then calcined at 550 ° C. for 3 hours in an air atmosphere.
  • ZSM-22 zeolite was synthesized by the method described in non-patent literature (Chem Commun., 3303, 2007). The synthesized ZSM-22 zeolite was dried at 95 ° C. for 3 hours under air flow, and then calcined at 550 ° C. for 3 hours in an air atmosphere to obtain a calcined zeolite.
  • a commercially available boehmite powder (trade name: Cataloid-AP) was prepared as an alumina binder.
  • a calcined zeolite and boehmite powder were sufficiently kneaded into a boehmite powder made into a slurry by adding an appropriate amount of water so that the ratio of calcined zeolite: alumina was 70:30 (mass%) to obtain a kneaded product.
  • This kneaded material was supplied to an extrusion molding machine to obtain a cylindrical shaped carrier (diameter: 1.5 mm, length: 1 cm). The obtained shaped carrier was dried at 95 ° C. for 3 hours under air flow, and then calcined at 550 ° C. for 3 hours in an air atmosphere.
  • a dinitrodiaminoplatinum aqueous solution is injected into the eggplant type flask while degassing with a rotary evaporator.
  • the impregnated sample was dried at 110 ° C. for 1 hour in an air atmosphere and then calcined at 350 ° C. to obtain Catalyst B-4.
  • the amount of platinum supported on catalyst B-4 was 0.3% by mass based on the total amount of the catalyst.
  • Table 1 shows the physical properties of Catalyst B-4.
  • Example 1 A reaction tube (inner diameter 20 mm) filled with catalyst A (100 ml) was attached to the fixed bed flow reactor in countercurrent. Thereafter, using straight-run gas oil (sulfur concentration: 3% by mass) to which dimethyl disulfide was added, the catalyst layer average temperature was 300 ° C., the hydrogen partial pressure was 6 MPa, the liquid space velocity was 1 h ⁇ 1 , and the hydrogen / oil ratio was 200 NL / L. Below, the catalyst was presulfided for 4 hours.
  • straight-run gas oil sulfur concentration: 3% by mass
  • dimethyl sulfide was added to a mixed oil of vegetable oil 1 and recycled oil having the properties shown in Table 2 to prepare a raw material oil, which was supplied to a reaction tube.
  • the recycled oil is a hydrotreated oil after introduction of a high-pressure separator described later, and the mass ratio of the recycled oil to the vegetable oil 1 was 1 (recycled amount: 1 mass times).
  • the amount of dimethyl sulfide added was such that the sulfur content (in terms of sulfur atoms) was 10 mass ppm based on the raw material oil.
  • the raw material oil was supplied to the fixed bed flow type reactor, and a hydrogenation treatment (first step) was performed.
  • the 15 ° C. density of the raw material oil was 0.900 g / ml, and the oxygen content was 11.5% by mass.
  • the conditions for the hydrotreating were as follows: the catalyst layer average temperature (reaction temperature) was 315 ° C., the hydrogen pressure was 4.8 MPa, the liquid space velocity was 1.25 h ⁇ 1 , and the hydrogen / oil ratio was 506 NL / L.
  • the treated oil hydrotreated in the reaction tube was introduced into the high pressure separator. In this high-pressure separator, hydrogen, hydrogen sulfide, carbon dioxide and water were removed from the treated oil.
  • Part of the treated oil introduced into the high-pressure separator is heat-exchanged with cooling water, cooled to 40 ° C., recycled as recycled oil to the raw material supply side as described above, and the reaction tube together with the vegetable oil 1 that is the raw oil Supplied to
  • reaction tube inner diameter 20 mm
  • catalyst B-1 150 ml
  • second step a hydroisomerization reaction
  • the catalyst B-1 Before supplying the treated oil to the fixed bed flow reactor, the catalyst B-1 is subjected to a reduction treatment under the conditions of an average catalyst layer temperature of 350 ° C., a hydrogen pressure of 4.8 MPa, and a hydrogen gas amount of 83 ml / min. did. Thereafter, the treated oil was supplied to a fixed bed flow type reactor, and the catalyst layer average temperature (reaction temperature): 320 ° C., hydrogen pressure: 4.8 MPa, liquid space velocity: 1 h ⁇ 1 , hydrogen / oil ratio: 506 NL / Isomerization treatment was performed under the condition of L to obtain an isomerization treatment oil (second product oil).
  • reaction temperature reaction temperature
  • hydrogen pressure 4.8 MPa
  • liquid space velocity 1 h ⁇ 1
  • hydrogen / oil ratio 506 NL / Isomerization treatment
  • the isomerized oil was introduced into a rectification column and fractionated into a light fraction having a boiling point range of less than 140 ° C, a middle fraction having a boiling point of 140 to 300 ° C, and a heavy fraction having a temperature exceeding 280 ° C.
  • This middle distillate can be used as an aviation fuel oil base material.
  • Table 3 shows the hydrotreating conditions in the second step, and Table 4 shows the properties of the obtained aviation fuel base material.
  • Example 2 It is the same as that of Example 1 except having used the vegetable oil and fat 2 which has the property shown in Table 2 instead of the vegetable oil and fat 1, and having performed the conditions of the 1st process and the 2nd process on the conditions of Table 3. Thus, an isomerized oil was obtained.
  • Table 3 shows the conditions of the first step and the second step
  • Table 4 shows the properties of the middle distillate (aviation fuel oil base material) obtained by fractional distillation of the obtained isomerized oil.
  • Example 3 The use of vegetable fats and oils 2 having the properties shown in Table 2 instead of vegetable fats and oils 1, the use of catalyst B-2 instead of catalyst B-1 in the second step, and the first and second steps An isomerized oil was obtained in the same manner as in Example 1 except that the above conditions were performed under the conditions shown in Table 3.
  • Table 3 shows the conditions of the first step and the second step
  • Table 4 shows the properties of the middle distillate (aviation fuel oil base material) obtained by fractional distillation of the obtained isomerized oil.
  • Example 4 The use of vegetable fats and oils 2 having the properties shown in Table 2 instead of vegetable fats and oils 1, the use of catalyst B-3 instead of catalyst B-1 in the second step, and the first and second steps An isomerized oil was obtained in the same manner as in Example 1 except that the above conditions were performed under the conditions shown in Table 3.
  • Table 3 shows the conditions of the first step and the second step
  • Table 4 shows the properties of the middle distillate (aviation fuel oil base material) obtained by fractional distillation of the obtained isomerized oil.
  • Examples 1 to 4 an aviation fuel oil base material excellent in low-temperature performance could be obtained with a high isomerization rate, a low decomposition rate, and a high base material yield.
  • the composition ratio of fatty acid groups is in accordance with the standard oil analysis method (established by the Japan Oil Chemists' Society) (1991) “2.4.20.2-91, fatty acid methyl ester preparation method (boron trifluoride-methanol method)”.
  • Isomerization rate (mass%) (total mass of isoparaffin contained in the product oil of the second step excluding decomposition) / total mass of normal paraffin contained in the feed oil of the second step) ⁇ 100
  • Decomposition rate (mass%) (total mass of hydrocarbons contained in the product oil of the second step having a carbon number smaller than that of hydrocarbons contained in the feed oil of the second step / of the second step) Total mass of raw oil) x 100
  • Substrate yield (% by mass) ⁇ (total amount of second-stage product oil ⁇ decomposed fraction ⁇ the fraction of boiling point of 300 ° C. or higher contained in the second-stage product oil) / second-step feedstock ⁇ ⁇ 100
  • “decomposition” means the total amount of hydrocarbons contained in the product oil of the second step, which has a carbon number smaller than that of the hydrocarbons contained in the feed oil of the second step.
  • the minimum carbon number of the hydrocarbons contained in the raw material oil in the second step is 7, and at this time, the decomposition is the carbon number contained in the product oil in the second step It means the total amount of hydrocarbons of 6 or less.
  • the aviation fuel oil compositions of Examples 5 to 10 produced using the aviation fuel oil base materials of Examples 1 to 4 were prepared using the aviation fuel oil base material of Comparative Example 1 (using a conventional isomerization catalyst). Compared with the manufactured aviation fuel oil composition of Comparative Example 2, it was confirmed that the precipitation point was low and the low temperature performance was excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

 動植物油脂に由来する含酸素炭化水素化合物を含有する原料油を、脱水素及び水素化機能を有し、周期律表第6A族金属、第8族金属及び非結晶性固体酸性物質を含む第1の二元機能触媒に水素共存下で接触させることによって、前記原料油を水素化処理して第1の生成油を得る第一工程と、第1の生成油を、脱水素及び水素化機能を有し、周期律表第8族金属及び結晶性固体酸性物質を含む第2の二元機能触媒に水素共存下で接触させることによって、第1の生成油を水素化異性化して航空燃料油基材を含む第2の生成油を得る第二工程と、を有する、航空燃料油基材の製造方法。

Description

航空燃料油基材の製造方法及び航空燃料油組成物
 本発明は、航空燃料油基材の製造方法及び航空燃料油組成物に関する。
 地球温暖化の防止対策として、バイオマスのもつエネルギーの有効利用に注目が集まっている。その中でも、植物由来のバイオマスエネルギーは、植物の成長過程で光合成により大気中の二酸化炭素から固定化された炭素を有効利用できるため、ライフサイクルの観点から大気中の二酸化炭素の増加につながらない、いわゆるカーボンニュートラルという性質を持つ。また、石油資源の枯渇、原油価格の高騰といった観点からも石油代替エネルギーとしてバイオマス燃料は有望視されている。
 輸送用燃料の分野においても、このようなバイオマスエネルギーを利用することが検討されている。例えば、ディーゼル燃料として動植物油由来の燃料を使用することが可能になると、ディーゼルエンジンの高いエネルギー効率との相乗効果により、二酸化炭素の排出量削減において有効な役割を果たすと期待されている。
 ディーゼル燃料に用いられる動植物油としては、脂肪酸メチルエステル油(Fatty Acid Methyl Ester の頭文字から「FAME」と略称される。)が知られている。FAMEは動植物油の一般的な構造であるトリグリセリドを、アルカリ触媒等の作用によりメタノールとエステル交換反応することによって製造される。このFAMEは、ディーゼル燃料だけではなく、航空燃料油、いわゆるジェット燃料にも利用することが検討されている。航空機は燃料使用量が膨大であることもあり、近年の原油価格高騰の影響を大きく受けている。このような情勢の中、バイオマス燃料は、地球温暖化防止としてだけでなく、石油代替燃料の有望な候補として注目されている。このような事情の下、現在、複数の航空会社において、FAMEの石油系ジェット燃料への混合利用が試験的に実施されている。
 しかしながら、FAMEを製造するプロセスにおいては、下記特許文献1に記載されている通り、副生するグリセリンの処理が必要である。また、生成油の洗浄などにコストやエネルギーを要する等の問題が指摘されている。
特開2005-154647号公報
 航空燃料油は、高い高度での飛行時に極低温に曝されることから、厳しい低温性能規格が設けられているが、FAMEは低温性能や酸化安定性が十分でないことから、FAMEを航空燃料油に配合する場合には、これらの低温性能や酸化安定性の低下が懸念される。このため、航空燃料油にFAMEを配合する場合には、石油由来の基材をFAMEとともに航空燃料油に混合することが必要であり、FAMEの混合割合もあまり高くすることができない。なお、航空燃料油の規格として酸化防止剤の添加が定められてはいるものの、基材そのものの安定性を考えると、低温性能と同様に、その混合割合は低濃度に限定せざるを得ない。
 これに対し、動植物油脂を原料とし、これらを分子状水素及び触媒の存在下で、高温高圧で反応させて炭化水素を得る製造技術が注目されている。この手法によって得られる炭化水素はFAMEとは異なり、酸素や不飽和結合を含まず石油系炭化水素燃料と同等の性状を有することから、例えば航空燃料としてFAMEよりも高濃度での使用が可能になると考えられる。
 本発明は、上記事情に鑑みてなされたものであり、動植物油脂由来の成分を含むことから優れたライフサイクル特性を有しつつも低温特性に優れる航空燃料油基材を、高い収率で製造することが可能な航空燃料油基材の製造方法を提供することを目的とする。また、ライフサイクル特性に優れ、且つ低温特性にも優れる航空燃料油組成物を提供することを目的とする。
 上記目的を達成するために、本発明は、動植物油脂に由来する含酸素炭化水素化合物を含有する原料油を、脱水素及び水素化機能を有し、周期律表第6A族金属、第8族金属及び非結晶性固体酸性物質を含む第1の二元機能触媒に水素共存下で接触させることによって、前記原料油を水素化処理して第1の生成油を得る第一工程と、前記第1の生成油を、脱水素及び水素化機能を有し、周期律表第8族金属及び結晶性固体酸性物質を含む第2の二元機能触媒に水素共存下で接触させることによって、前記第1の生成油を水素化異性化して航空燃料油基材を含む第2の生成油を得る第二工程と、を有する、航空燃料油基材の製造方法を提供する。
 本発明の製造方法は、前記原料油が、含硫黄炭化水素化合物を硫黄原子換算で1~100質量ppm含有することが好ましい。
 本発明の製造方法は、前記第1の二元機能触媒における前記周期律表第6A族金属がモリブデン及び/又はタングステンであり、前記第1の二元機能触媒における前記周期律表第8族金属がコバルト及び/又はニッケルであり、前記第一工程の前に、前記第1の二元機能触媒を硫化する予備硫化工程を有することが好ましい。
 本発明の製造方法は、前記第2の二元機能触媒における前記結晶性固体酸性物質が、MEL構造、TON構造、MTT構造、及びMRE構造を有する一次元10員環アルミノシリケート、並びにAEL構造を有するシリコアルミノフォスフェートからなる群より選ばれる少なくとも一種の結晶を含む結晶性物質であることが好ましい。
 本発明の製造方法は、前記第2の二元機能触媒が、一次元10員環アルミノシリケート及び/又はシリコアルミノフォスフェートを含有しており、前記一次元10員環アルミノシリケート及び前記シリコアルミノフォスフェートの含有量が合計で65~85質量%であることが好ましい。
 本発明の製造方法は、前記一次元10員環アルミノシリケートがZSM-11、ZSM-22、ZSM-23、及びZSM-48からなる群より選ばれる少なくとも一種を含むことが好ましい。また、前記シリコアルミノフォスフェートが、SAPO-11及びSAPO-34からなる群より選ばれる少なくとも一種を含むことが好ましい。
 本発明の製造方法は、水素化異性化率が90質量%を超えることが好ましい。
 本発明ではまた、上述の航空燃料油基材の製造方法によって得られた第1の航空燃料油基材と、石油系原料から製造された第2の航空燃料油基材とを含有し、前記第1の航空燃料油基材の含有量が5~50質量%であり、前記第2の航空燃料油基材の含有量が50~95質量%である航空燃料油組成物を提供する。
 本発明によれば、動植物油脂由来の成分を含むことから優れたライフサイクル特性を有しつつも低温特性に優れる航空燃料油基材を、高い収率で製造することが可能な航空燃料油基材の製造方法を提供することができる。また、ライフサイクル特性に優れ、且つ低温特性にも優れる航空燃料油組成物を提供することができる。
 以下、本発明の好適な実施形態について以下に説明する。本実施形態の航空燃料油基材の製造方法は、動植物油脂に含まれる含酸素炭化水素化合物を含有する原料油を、脱水素及び水素化機能を有し、周期律表第6A族金属、第8族金属及び非結晶性固体酸性物質を含む第1の二元機能触媒に水素共存下で接触させて水素化処理し、第1の生成油を得る第一工程と、第1の生成油を、脱水素及び水素化機能を有し、周期律表第8族金属及び結晶性固体酸性物質を含む第2の二元機能触媒に水素共存下で接触させて水素化異性化し、第2の生成油を得る第二工程と、を有する。以下、各工程の詳細について説明する。
 第一工程では、動植物油脂に由来する含酸素炭化水素化合物を含有する原料油を用いる。動植物油脂としては、例えば、牛脂、菜種油、カメリナ油、大豆油、パーム油、特定の藻類が生産する油脂又は炭化水素などが挙げられる。ここでいう特定の藻類とは、体内の栄養分の一部を炭化水素又は油脂の形に変換する性質を有する藻類を意味する。特定の藻類の具体例としては、クロレラ、イカダモ、スピルリナ、ユーグレナ、ボツリオコッカスブラウニー、シュードコリシスチスエリプソイディアを挙げることができる。このうち、クロレラ、イカダモ、スピルリナ、ユーグレナは油脂を、ボツリオコッカスブラウニー、シュードコリシスチスエリプソイディアは炭化水素を生産する。
 本実施形態では、動植物油脂として、いかなる油脂を用いてもよく、これら油脂を使用した後の廃油を用いてもよい。カーボンニュートラルの観点から、動植物油脂は、植物由来の油脂類を含むことが好ましく、水素化処理後のジェット留分収率の観点から、脂肪酸炭素鎖の炭素数が10から14である各脂肪酸基の構成比率(脂肪酸組成)の高いものが好ましく、この観点から考えられる植物油脂としては、ココナッツ油及びパーム核油及びカメリナ油が好ましく、特定の微細藻類が生産する油脂類としては、ユーグレナが生産する油脂類が好ましい。なお、上述の動植物油脂は1種を単独で又は2種以上を組み合わせて用いてもよい。
 なお、脂肪酸組成とは、基準油脂分析試験法(日本油化学会制定)(1991)「2.4.20.2-91 脂肪酸メチルエステルの調整方法(三フッ化ホウ素-メタノール法)」に準じて調製したメチルエステルを、水素炎イオン化検出器(FID)を備えた昇温ガスクロマトグラフを用い、基準油脂分析試験法(日本油化学会制定)(1993)「2.4.21.3-77脂肪酸組成(FID昇温ガスロマトグラフ法)」に準じて求められる値であり、油脂を構成する各脂肪酸基の構成比率(質量%)を指す。
 原料油は含硫黄炭化水素化合物を含有することが好ましい。原料油に含有される含硫黄炭化水素化合物は特に制限されないが、具体的には、スルフィド、ジスルフィド、ポリスルフィド、チオール、チオフェン、ベンゾチオフェン、ジベンゾチオフェン及びこれらの誘導体などが挙げられる。原料油に含まれる含硫黄炭化水素化合物は単一の化合物であってもよく、あるいは2種以上の混合物であってもよい。さらに、硫黄分を含有する石油系炭化水素留分を含硫黄炭化水素化合物として用いてもよい。
 原料油に含まれる硫黄分は、原料油全量を基準として、硫黄原子換算で1~100質量ppmであることが好ましく、5~50質量ppmであることがより好ましく、10~20質量ppmであることがさらに好ましい。硫黄原子換算の硫黄分の含有量が1質量ppm未満であると、第一工程での主反応である脱酸素活性を安定的に維持することが困難となる傾向にある。他方、硫黄原子換算の硫黄分の含有量が50質量ppmを超えると、第一工程で排出される軽質ガス中の硫黄濃度が増加して、第二工程の触媒活性を低下させる恐れがある。また、第二工程で得られる第2の生成油に含まれる硫黄分含有量が増加する傾向にあり、燃焼時の環境への悪影響が懸念される。なお、本明細書における硫黄分は、JIS K 2541「硫黄分試験方法」又はASTM-5453に記載の方法に準拠して測定される硫黄分の質量含有量である。
 含硫黄炭化水素化合物は、動植物油脂に由来する含酸素炭化水素化合物と予め混合して得られた混合物を第一工程の反応器に導入してもよく、又は動植物油脂に由来する含酸素炭化水素化合物を第一工程の反応器に導入する際に、第一工程の反応器の前段において供給してもよい。
 原料油は、動植物油脂に由来する含酸素炭化水素化合物及び含硫黄炭化水素化合物に加えて、原油等を精製して得られる石油系基材を含有してもよい。原油等を精製して得られる石油系基材とは、原油の常圧蒸留又は減圧蒸留によって得られる留分や水素化脱硫、水素化分解、流動接触分解、接触改質などの反応で得られる留分などが挙げられる。原料油における石油系基材の含有量は、原料油に含まれる硫黄分が前述の濃度範囲を満たすように調整することが好ましい。具体的には、原料油における石油系基材の含有量は、好ましくは20~70容量%であり、より好ましくは30~60容量%である。上述の石油系基材は1種を単独で又は2種類以上を組み合わせて用いることができる。また、石油系基材は、化学品由来の化合物やフィッシャー・トロプシュ反応を経由して得られる合成油であってもよい。
 第一工程は、以下の水素化処理工程を含む。本実施形態に係る水素化処理工程は、水素圧力が1~13MPa、液空間速度が0.1~3.0h-1、水素/油比が150~1500NL/Lである条件下で行われることが好ましく、水素圧力が2~11MPa、液空間速度が0.2~2.0h-1、水素/油比が200~1200NL/Lである条件がより好ましく、水素圧力が3~10.5MPa、液空間速度が0.25~1.5h-1、水素/油比が300~1000NL/Lである条件がさらにより好ましい。
 これらの条件はいずれも反応活性を左右する因子であり、例えば、水素圧力及び水素/油比が上記下限値に満たない場合には反応性の低下や急速な活性低下を招く恐れがあり、水素圧力及び水素/油比が前記上限値を超える場合には圧縮機等の過大な設備投資を要する恐れがある。液空間速度は低いほど反応に有利な傾向にあるが、上記下限値未満の場合は極めて大きな反応塔容積が必要となって過大な設備投資が必要となる傾向にあり、他方、上記上限値を超える場合は反応が十分進行しなくなる傾向にある。
 反応温度は、原料油重質留分を目的とする分解率で分解する、又は目的とする留分収率で各留分を得るために任意に設定することができる。反応器全体の平均温度としては、通常150~480℃、好ましくは200~400℃、より好ましくは260~360℃の範囲である。反応温度が150℃未満の場合には、反応が十分に進行しなくなる恐れがあり、480℃を超える場合には過度に分解が進行し、液生成物収率の低下を招く傾向にある。
 第一工程で用いる第1の二元機能触媒としては、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる元素を2種以上含んで構成される多孔性無機酸化物からなる担体に周期律表第6A族及び第8族の元素から選ばれる金属を担持した触媒を用いることができる。
 第1の二元機能触媒の担体としては、非結晶性固体酸性物質が用いられ、例えば、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる元素を2種以上含む多孔性の無機酸化物が用いられる。通常は、アルミナを含む多孔性無機酸化物であり、その他の担体構成成分としてはシリカ、ジルコニア、ボリア、チタニア、マグネシアなどが挙げられる。好ましくはアルミナとその他構成成分から選ばれる少なくとも1種類以上を含む複合酸化物である。また、この他の成分として、リンを含んでいてもよい。第1の二元機能触媒の担体におけるアルミナ以外の成分の合計含有量は1~20質量%であることが好ましく、2~15質量%であることがより好ましい。アルミナ以外の成分の合計含有量が1質量%未満であると、十分な触媒表面積を得ることが困難となり、活性が低くなる傾向がある。一方、アルミナ以外の成分の合計含有量が20質量%を超えると、担体の酸性質が上昇し、コーク生成による活性低下を招く傾向がある。リンを担体構成成分として含む場合、担体全体基準のリン含有量は、酸化物換算で1~5質量%であることが好ましく、2~4質量%であることがより好ましい。
 アルミナ以外の担体構成成分である、シリカ、ジルコニア、ボリア、チタニア、マグネシアの前駆体となる原料は特に限定されず、一般的なケイ素、ジルコニウム、ボロン、チタン又はマグネシウムを含む溶液を用いることができる。例えば、ケイ素についてはケイ酸、水ガラス、シリカゾルなど、チタンについては硫酸チタン、四塩化チタンや各種アルコキサイド塩など、ジルコニウムについては硫酸ジルコニウム、各種アルコキサイド塩など、ボロンについてはホウ酸などを用いることができる。マグネシウムについては、硝酸マグネシウムなどを用いることができる。リンとしては、リン酸又はリン酸のアルカリ金属塩などを用いることができる。
 アルミナ以外の担体構成成分の原料は、担体の焼成より前のいずれかの工程において添加する方法が望ましい。例えば予めアルミニウム水溶液に添加した後にこれらの構成成分を含む水酸化アルミニウムゲルとしてもよく、調合した水酸化アルミニウムゲルに添加してもよく、或いは市販のアルミナ中間体やベーマイトパウダーに水又は酸性水溶液を添加して混練する工程に添加してもよいが、水酸化アルミニウムゲルを調合する段階で共存させる方法がより好ましい。これらのアルミナ以外の担体構成成分の効果発現機構は解明できていないが、アルミニウムと複合的な酸化物状態を形成していると思われる。これによって、担体表面積が増加して、活性金属となんらかの相互作用を生じることにより、触媒の活性に影響を及ぼしていることが考えられる。
 第1の二元機能触媒は、活性金属として、周期律表第6A族金属から選ばれる少なくとも一種類の金属元素、及び第8族金属から選ばれる少なくとも一種類の金属元素を含有する。すなわち、第1の二元機能触媒は、活性金属として、周期律表第6A族金属及び周期律表第8族金属から選択される二種類以上の金属を含有している。活性金属としては、例えば、Co-Mo、Ni-Mo、Ni-Co-Mo、Ni-Wなどが挙げられ、水素化処理に際しては、これらの金属を硫化物の状態に転換して使用する。第1工程の前に予備硫化工程を行うことによって、硫化物に転換することができる。
 例えば、活性金属としてW及び/又はMoを含む場合、第1の二元機能触媒におけるWとMoの触媒質量基準の合計含有量(担持量)は、酸化物換算で、好ましくは12~35質量%、より好ましくは15~30質量%である。WとMoの上記合計含有量が12質量%未満の場合、活性点数の減少により活性が低下する傾向にあり、35質量%を超える場合には、活性金属が効果的に分散せず、活性が低下する傾向にある。
 また、活性金属がCo及び/又はNiを含む場合、第1の二元機能触媒におけるCoとNiの触媒質量基準の合計含有量(担持量)は、酸化物換算で、好ましくは1.5~10質量%、より好ましくは2~8質量%である。CoとNiの上記合計含有量が1.5質量%未満の場合、十分な助触媒効果が得られず活性が低下してしまう傾向にあり、10質量%を超える場合には、活性金属が効果的に分散せず、活性が低下する傾向にある。
 第1の二元機能触媒を調製する際の活性金属を担体に担持させる方法は特に限定されず、通常の脱硫触媒を製造する際に適用される公知の方法を用いることができる。通常は、活性金属の塩を含む溶液を触媒担体に含浸する方法が好ましく採用される。また平衡吸着法、Pore-filling法、Incipient-wetness法なども好ましく採用される。例えば、Pore-filling法は、担体の細孔容積を予め測定しておき、これと同じ容積の金属塩溶液を含浸する方法であるが、含浸方法は特に限定されるものではなく、金属担持量や触媒担体の物性に応じて適当な方法で含浸することができる。
 第一工程における水素化処理反応の反応器形式は、固定床方式であってもよい。すなわち、分子状水素は原料油に対して向流又は並流のいずれの形式を採用することができ、また、複数の反応塔を有し向流、並流を組み合わせた形式のものでもよい。一般的な形式としてはダウンフローであり、気液双並流形式を採用することができる。また、反応器は単独又は複数を組み合わせてもよく、一つの反応器内部を複数の触媒床に区分した構造を採用してもよい。
 本実施形態の第一工程では、反応器内で水素化処理された水素化処理油は気液分離工程、精留工程等を経て所定の留分に分画される。このとき、反応に伴い生成する水、一酸化炭素、二酸化炭素、硫化水素などの副生ガスを除去するため、複数の反応器の間や生成物回収工程に気液分離設備やその他の副生ガス除去装置を設置してもよい。副生物を除去する装置としては、高圧セパレータ等を好ましく挙げることができる。
 分子状水素である水素ガスは、原料を加熱する加熱炉を原料が通過する前又は通過した後の原料油に随伴するように、最初の反応器の入口から導入するが、これとは別に、反応器内の温度を制御するとともに、できるだけ反応器内全体に渡って水素圧力を維持する目的で触媒床の間や複数の反応器の間に導入してもよい。このようにして導入される水素をクエンチ水素と呼称する。このとき、原料油に随伴して導入する水素に対するクエンチ水素との割合は望ましくは10~60容量%、より望ましくは15~50容量%である。クエンチ水素の割合が10容量%未満の場合には後段反応部位での反応が十分進行しない恐れがあり、60容量%を超える場合には反応器入口付近での反応が十分進行しない恐れがある。
 本実施形態の航空燃料油基材を製造する方法においては、原料油を水素化処理するに際し、水素化処理用の反応器における発熱量を抑制するために、原料油にリサイクル油を特定量含有させることができる。原料油におけるリサイクル油の含有量は、動植物油脂に由来する含酸素炭化水素化合物に対して0.5~5質量倍とすることが好ましく、水素化処理用の反応器の最高使用温度に応じて上述の範囲内で適宜比率を調整することができる。これは、両者の比熱が同じであると仮定した場合に、両者を1対1で混合すると温度上昇は動植物油脂に由来する物質を単独で反応させる場合の半分となることから、上記範囲内であれば反応熱を十分に低下させることができるとの理由による。なお、リサイクル油の含有量が含酸素炭化水素化合物の5質量倍よりも多いと、含酸素炭化水素化合物の濃度が低下して反応性が低下し、また、配管等の流量が増加して負荷が増大する傾向にある。他方、リサイクル油の含有量が含酸素炭化水素化合物の0.5質量倍より少ないと、温度上昇を十分に抑制できない傾向にある。
 原料油とリサイクル油の混合方法は特に限定されず、例えば予め混合してその混合物を水素化処理装置の反応器に導入してもよく、又は原料油を反応器に導入する際に、反応器の前段において供給してもよい。さらに、反応器を複数直列に繋げて反応器間に導入する、又は単独の反応器内で触媒層を分割して触媒層間に導入することも可能である。
 リサイクル油は、原料油の水素化処理を行った後、副生する水、一酸化炭素、二酸化炭素、硫化水素などを除去して得られる水素化処理油(第1の生成油)の一部を含有することが好ましい。さらに、水素化処理油から分留された軽質留分、中間留分若しくは重質留分のそれぞれについて異性化処理したものの一部、又は、水素化処理油をさらに異性化処理したものから分留される中間留分の一部を含有することが好ましい。
 本実施形態の航空燃料油基材の製造方法は、上記第一工程である水素化処理工程で得られた第1の生成油を、さらに水素化異性化する第二工程を有する。
 第二工程である水素化異性化反応の原料油である第1の生成油に含まれる硫黄分含有量は、10質量ppm以下であることが好ましく、5質量ppmであることがより好ましい。硫黄分含有量が10質量ppmを超えると第二工程で用いる第2の二元機能触媒の活性金属が硫黄により被毒され水素化異性化反応の進行が妨げられる恐れがある。加えて、同様の理由で、水素化処理油と共に導入される水素を含む反応ガスについても硫黄分濃度が十分に低いことが好ましい。具体的には、反応ガスにおける硫黄分濃度は10容量ppm以下であることが好ましく、5容量ppm以下であることがより好ましい。
 第二工程は、水素存在下、水素圧力が2~13MPa、液空間速度が0.1~3.0h-1、水素/油比が250~1500NL/Lである条件で行うことが好ましく、水素圧力が2.5~10MPa、液空間速度が0.5~2.0h-1、水素/油比が380~1200NL/Lである条件で行うことがより好ましく、水素圧力が3~8MPa、液空間速度が0.8~2.5h-1、水素/油比が350~1000NL/Lである条件で行うことがさらに好ましい。
 これらの条件は、いずれも反応活性を左右する因子であり、例えば水素圧力及び水素/油比が上記下限値に満たない場合には急速な活性低下や反応性の低下を招く恐れがあり、水素圧力及び水素/油比が前記上限値を超える場合には圧縮機等の過大な設備投資を要する恐れがある。液空間速度は低いほど反応に有利な傾向にあるが、上記下限値未満の場合は極めて大きな反応塔容積が必要となり過大な設備投資となる傾向にあり、他方、前記上限値を超える場合は反応が十分進行しなくなる傾向にある。
 第二工程における反応温度は原料油重質留分の目的とする分解率あるいは目的とする留分収率を得るために任意に設定することができる。例えば、上記反応温度は、150~380℃であることが好ましく、240~380℃であることがより好ましく、250~365℃であることがさらに好ましい。反応温度が150℃より低い場合には、十分な水素化異性化反応が進行しないおそれがあり、380℃より高い場合には、過度の分解又は他の副反応が進行し、液生成物収率の低下を招くおそれがある。
 第二工程で用いられる第2の二元機能触媒としては、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン、マグネシウムから選ばれる物質より構成される多孔性の無機酸化物をバインダーとして、1次元10員環結晶性アルミノシリケート及び/又は1次元10員環アルミノフォスフェートからなる担体に、周期律表第8族の元素から選ばれる金属を1種以上担持してなる触媒が用いられる。
 第2の二元機能触媒は、担体として結晶性固体酸性物質を含む。結晶性固体酸性物質としては、多孔性の無機酸化物が挙げられ、具体的にはアルミナ、チタニア、ジルコニア、ボリア、シリカが挙げられる。本実施形態では、これらのうち、チタニア、ジルコニア、ボリア、シリカのうち少なくとも1種類とアルミナによって構成されているものが好ましい。
 第2の二元機能触媒の製造法は特に限定されず、各元素に対応した各種ゾル、塩化合物などの状態の原料を用いて任意の調製法を採用することができる。さらには、一旦シリカアルミナ、シリカジルコニア、アルミナチタニア、シリカチタニア、アルミナボリアなどの複合水酸化物又は複合酸化物を調製した後に、アルミナゲルやその他水酸化物の状態又は適当な溶液の状態で調製工程の任意の工程で添加して調製してもよい。アルミナと他の酸化物との比率は担体に対して任意の割合を取り得るが、アルミナと他の酸化物の合計を基準としたときに、アルミナの比率は好ましくは90質量%以下、より好ましくは60質量%以下、さらに好ましくは40質量%以下であり、好ましくは10質量%以上、より好ましくは20質量%以上である。
 結晶性固体酸性物質は、1次元10員環アルミノシリケート及び/又は1次元10員環シリコアルミノフォスフェートを含むことが好ましい。1次元10員環アルミノシリケートは、TON、MTT、MRE構造のゼオライトであることが好ましく、1次元10員環シリコアルミノフォスフェートはAEL構造を有する結晶性物質であることが好ましい。これらは1種を単独で、又は2種以上を組み合わせて用いることができる。
 第2の二元機能触媒の活性金属としては、周期律表第8族の元素から選ばれる1種以上の金属が用いられる。これらの金属の中でも、Pd、Pt、Rh、Ir、Au及びNiからなる群より選ばれる1種以上の金属を用いることが好ましく、当該群より選ばれる2種以上の金属を組み合わせて用いることがより好ましい。好適な組み合せとしては、例えば、Pd-Pt、Pd-Ir、Pd-Rh、Pd-Au、Pd-Ni、Pt-Rh、Pt-Ir、Pt-Au、Pt-Ni、Rh-Ir、Rh-Au、Rh-Ni、Ir-Au、Ir-Ni、Au-Ni、Pd-Pt-Rh、Pd-Pt-Ir、Pt-Pd-Niなどが挙げられる。このうち、Pd-Pt、Pd-Ni、Pt-Ni、Pd-Ir、Pt-Rh、Pt-Ir、Rh-Ir、Pd-Pt-Rh、Pd-Pt-Ni、Pd-Pt-Irの組み合わせがより好ましく、Pd-Pt、Pd-Ni、Pt-Ni、Pd-Ir、Pt-Ir、Pd-Pt-Ni、Pd-Pt-Irの組み合わせがさらに好ましい。
 触媒質量を基準とする活性金属の合計含有量(合計担持量)としては、金属換算で0.05~2質量%であることが好ましく、0.1~1.5質量%であることがより好ましく、0.15~1.2質量%であることがさらに好ましい。触媒質量を基準とする活性金属の合計含有量が0.05質量%未満であると、活性点が少なくなり、十分な活性が得られなくなる傾向がある。他方、当該合計含有量が1.2質量%を超えると、金属が効果的に分散せず、分解活性が高くなる傾向がある。
 第2の二元機能触媒を調製する際の活性金属を担体に担持させる方法は特に限定されず、通常の脱硫触媒を製造する際に適用される公知の方法を用いることができる。通常は、活性金属の塩を含む溶液を触媒担体に含浸する方法が好ましく採用される。また平衡吸着法、Pore-filling法、Incipient-wetness法なども好ましく採用される。例えば、Pore-filling法は、担体の細孔容積を予め測定しておき、これと同じ容積の金属塩溶液を含浸する方法であるが、含浸方法は特に限定されるものではなく、金属担持量や触媒担体の物性に応じて適当な方法で含浸することができる。
 第2の二元機能触媒は、第二工程における水素化異性化反応に供する前に触媒に含まれる活性金属を還元処理しておくことが好ましい。還元条件は特に限定されず、例えば、水素気流下、200~400℃、好ましくは240~380℃で処理することによって還元することができる。還元温度が200℃未満の場合、活性金属の還元が十分進行せず、水素化処理及び水素化異性化活性が発揮できない恐れがある。また、還元温度が400℃を超える場合、活性金属の凝集が進行し、同様に活性が発揮できなくなる恐れがある。
 第二工程の反応器形式は、固定床方式であってもよい。すなわち、水素は原料油(第1の生成油)に対して向流又は並流のいずれの形式をとることもでき、また、複数の反応塔を有し向流、並流を組み合わせた形式のものでもよい。一般的な形式としてはダウンフローであり、気液双並流形式を採用することができる。また、反応器は単独又は複数を組み合わせてもよく、一つの反応器内部を複数の触媒床に区分した構造を採用してもよい。
 第二工程では、水素ガスを、第1の生成油が加熱炉を通過する前又は通過した後の第1の生成油に随伴するように、最初の反応器の入口から導入することができる。また、これとは別に、反応器内の温度を制御するとともに、できるだけ反応器内全体に渡って水素圧力を維持する目的で触媒床の間や複数の反応器の間に水素ガスを導入してもよい。このようにして導入される水素ガスをクエンチ水素と呼称する。このとき、第1の生成油に随伴して導入する水素に対するクエンチ水素との割合は好ましくは10~60容量%、より好ましくは15~50容量%である。クエンチ水素の割合が10容量%未満の場合には後段反応部位での反応が十分進行しない恐れがあり、60容量%を超える場合には反応器入口付近での反応が十分進行しない恐れがある。
 第二工程で水素化異性化処理を施して得られる第2の生成油は、必要に応じて精留塔で複数留分に分留してもよい。例えば、ガス、ナフサ留分等の軽質留分、灯油、軽油留分等の中間留分、残渣分等の重質留分に分留してもよい。この場合、軽質留分と中間留分とのカット温度は100~200℃が好ましく、120~180℃がより好ましく、120~160℃がさらに好ましく、130~150℃が特に好ましい。中間留分と重質留分とのカット温度は250~360℃が好ましく、250~320℃がより好ましく、250~300℃がさらに好ましく、250~280℃が特に好ましい。分留によって生成する軽質留分の一部を水蒸気改質装置において改質することにより水素を製造することができる。このようにして製造された水素は、水蒸気改質に用いた原料がバイオマス由来炭化水素であることから、カーボンニュートラルという特徴を有しており、環境への負荷を低減することができる。なお、第2の生成油を分留して得られる中間留分は、特に航空燃料油基材として好適に用いることができる。
 上述の工程を得て得られる航空燃料油基材(以下、「第1の航空燃料油基材」という。)は、単独で航空燃料油として用いてもよく、原油等を精製して得られる航空燃料油基材(以下、「第2の航空燃料油基材」という。)と混合して、本発明の航空燃料油組成物を製造してもよい。第2の航空燃料油基材としては、一般的な石油精製工程で得られる航空燃料油留分、水素と一酸化炭素から構成される合成ガスを原料とし、フィッシャー・トロプシュ反応などを経由して得られる合成燃料油基材等が挙げられる。この合成燃料油基材は芳香族分をほとんど含有せず、飽和炭化水素を主成分とし、煙点が高いことが特徴である。なお、合成ガスの製造方法としては公知の方法を用いることができ、特に限定されるものではない。
 本実施形態の航空燃料油基材の製造方法によれば、異性化度を向上させることにより優れた低温性能を有することと、カーボンニュートラル特性から得られる優れたライフサイクル特性を両立させることができる。また、1次エネルギー多様化に資する環境低負荷型航空燃料油基材及び航空燃料油を提供することができる。
 次に、本発明の航空燃料油組成物の好適な実施形態について説明する。本実施形態の航空燃料油組成物は、第1の航空燃料油基材を、好ましくは5~50質量%含有し、より好ましくは5~40質量%含有し、さらに好ましくは8~30質量%含有する。一方、航空燃料油組成物は、第2の航空燃料油基材を、好ましくは50~95質量%含有し、より好ましくは60~95質量%含有し、さらに好ましくは70~92質量%含有する。
 本実施形態の航空燃料油組成物には、従来より、航空燃料油に添加される各種添加剤を添加することができる。この添加剤としては、酸化防止剤、静電気防止剤、金属不活性化剤及び氷結防止剤から選ばれる一つ以上の添加剤が挙げられる。
 酸化防止剤としては、航空燃料油中のガムの発生を抑止するために、24.0mg/lを超えない範囲で、N,N-ジイソプロピルパラフェニレンジアミン、2,6-ジターシャリーブチルフェノール75%以上とターシャリー及びトリターシャリーブチルフェノール25%以下の混合物、2,4-ジメチル-6-ターシャリーブチルフェノール72%以上とモノメチル及びジメチルターシャリーブチルフェノール28%以下の混合物、2,4-ジメチル-6-ターシャリーブチルフェノール55%以上とターシャリー及びジターシャリーブチルフェノール45%以下の混合物、2,6-ジターシャリーブチル-4-メチルフェノールなどを加えることができる。
 静電気防止剤としては、航空燃料油が高速で燃料配管系内部を流れる時に配管内壁との摩擦によって生じる静電気の蓄積を防止し、電気伝導度を高めるために、3.0mg/lを超えない範囲で、オクテル社製のSTADIS450などを加えることができる。
 金属不活性化剤としては、航空燃料油に含有する遊離金属成分が反応して燃料が不安定とならないようにするために、5.7mg/lを超えない範囲で、N,N-ジサリシリデン-1,2-プロパンジアミンなどを加えることができる。
 氷結防止剤としては、航空燃料油に含まれている微量の水が凍結して配管を塞ぐのを防止するために、0.1~0.15容量%の範囲でエチレングリコールモノメチルエーテルなどを加えることができる。
 本実施形態の航空燃料油組成物は、本発明を逸脱しない範囲で、さらに帯電防止剤、腐食抑制剤及び殺菌剤等の任意の添加剤を適宜配合することができる。
 本実施形態の航空燃料油組成物は、JIS K2209「航空タービン燃料油」の規格値を満足するものである。
 本実施形態の航空燃料油組成物の15℃における密度は、燃料消費率の観点から、775kg/m以上であることが好ましく、780kg/m以上であることがより好ましい。一方、燃焼性の観点から、839kg/m以下であることが好ましく、830kg/m以下であることがより好ましく、820kg/m以下であることが更に好ましい。なお、特に明示しない限り、本明細書における15℃における密度とは、JIS K2249「原油及び石油製品-密度試験方法並びに密度・質量・容量換算表」で測定される値を意味する。
 本実施形態の航空燃料油組成物の蒸留性状は、10容量%留出温度が、蒸発特性の観点から204℃以下であることが好ましく、200℃以下であることがより好ましい。終点は燃焼特性(燃え切り性)の観点から300℃以下であることが好ましく、290℃以下であることがより好ましく、280℃以下であることが更に好ましい。なお、特に明示しない限り、本明細書における蒸留性状とは、JIS K2254「石油製品-蒸留試験方法」で測定される値を意味する。
 本実施形態の航空燃料油組成物の実在ガム分は、燃料導入系統等での析出物生成による不具合防止の観点から、7mg/100ml以下であることが好ましく、5mg/100ml以下であることがより好ましく、3mg/100ml以下であることがさらに好ましい。なお、特に明示しない限り、本明細書における実在ガム分とは、JIS K2261「ガソリン及び航空燃料油実在ガム試験方法」で測定される値を意味する。
 本実施形態の航空燃料油組成物の真発熱量は、燃料消費率の観点から、42.8MJ/kg以上であることが好ましく、45MJ/kg以上であることがより好ましい。なお、特に明示しない限り、本明細書における真発熱量とは、JIS K2279「原油及び燃料油発熱量試験方法」で測定される値を意味する。
 本実施形態の航空燃料油組成物の-20℃における動粘度は、燃料配管の流動性や均一な燃料噴射実現の観点から、8mm/s以下であることが好ましく、7mm/s以下であることがより好ましく、5mm/s以下であることがさらに好ましい。なお、特に明示しない限り、本明細書における動粘度とは、JIS K2283「原油及び石油製品の動粘度試験方法」で測定される値を意味する。
 本実施形態の航空燃料油組成物の銅板腐食は、燃料タンクや配管の腐食性の観点から、1以下であることが好ましい。特に明示しない限り、本明細書における銅板腐食とは、JIS K2513「石油製品-銅板腐食試験方法」で測定される値を意味する。
 本実施形態の航空燃料油組成物の芳香族分は、燃焼性(煤発生防止)の観点から25容量%以下であることが好ましく、20容量%以下であることがより好ましい。特に明示しない限り、本明細書における芳香族分とは、JIS K2536「燃料油炭化水素成分試験方法(けい光指示薬吸着法)」で測定される値を意味する。
 本実施形態の航空燃料油組成物の煙点は、燃焼性(煤発生防止)の観点から25mm以上であることが好ましく、27mm以上であることがより好ましく、30mm以上であることが更に好ましい。なお、特に明示しない限り、本明細書における煙点とは、JIS K2537「燃料油煙点試験方法」で測定される値を意味する。
 本実施形態の航空燃料油組成物の硫黄分は、腐食性の観点から、0.3質量%以下であることが好ましく、0.2質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。また、同様の腐食性の観点より、メルカプタン硫黄分は、0.003質量%以下であることが好ましく、0.002質量%以下であることがより好ましく、0.001質量%以下であることが更に好ましい。なお、ここでいう硫黄分とは、JIS K2541「原油及び石油製品硫黄分試験方法」で測定された値を意味する。また、特に明示しない限り、本明細書におけるメルカプタン硫黄分は、JIS K2276「メルカプタン硫黄分試験方法(電位差滴定法)」で測定された値を意味する。
 本実施形態の航空燃料油組成物の引火点は、安全性の観点から38℃以上であることが好ましく、40℃以上であることがより好ましく、45℃以上であることがさらに好ましい。なお、特に明示しない限り、本明細書における引火点とは、JIS K2265「原油及び石油製品‐引火点試験方法‐タグ密閉式引火点試験方法」で求めた値を意味する。
 本実施形態の航空燃料油組成物の全酸価は、腐食性の観点から0.1mgKOH/g以下であることが好ましく、0.08mgKOH/g以下であることがより好ましく、0.05mgKOH/g以下であることが更に好ましい。なお、特に明示しない限り、本明細書における全酸価とは、JIS K2276「全酸価試験方法」で測定される値を意味する。
 本実施形態の航空燃料油組成物の析出点は、飛行時の低温暴露下での燃料凍結による燃料供給低下を防ぐ観点から、-47℃以下であることが好ましく、-48℃以下であることがより好ましく、-50℃以下であることが更に好ましい。なお、特に明示しない限り、本明細書における析出点とは、JIS K2276「析出点試験方法」により測定された値を意味する。
 本実施形態の航空燃料油組成物の熱安定度は、高温暴露時の析出物生成による燃料フィルタ閉塞防止等の観点から、A法における圧力差10.1kPa以下、予熱管堆積物評価値3未満、B法における圧力差3.3kPa以下、予熱管堆積物評価値3未満であることが好ましい。なお、特に明示しない限り、本明細書における熱安定度とは、JIS K2276「熱安定度試験方法A法、B法」により測定された値を意味する。
 本実施形態の航空燃料油組成物の水溶解度は、低温暴露時における溶解水の析出によるトラブル防止のため、分離状態2以下、界面状態1b以下であることが好ましい。なお、特に明示しない限り、本明細書における水溶解度とは、JIS K2276「水溶解度試験方法」により測定された値を意味する。
 本実施形態の動植物油脂を原料として製造された環境低負荷型基材を含有する航空燃料油基材、及び航空燃料油組成物は、燃焼性、酸化安定性、ライフサイクルCO排出特性の全てに優れるものである。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。
 実施例及び比較例を参照しつつ本発明の内容をより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
[触媒の調製]
<触媒A>
 アルミン酸ナトリウムを5質量%含有するアルミン酸ナトリウム水溶液3000gに水ガラス3号を18.0gを加え、65℃に保温した容器に入れた(これを溶液aとする)。これとは別に、65℃に保温した別の容器に、硫酸アルミニウムを2.5質量%含有する硫酸アルミニウム水溶液3000gにリン酸(濃度:85質量%)6.0gを加えて溶液を調製し、これに前述の溶液aを滴下して混合溶液を調製した。混合溶液のpHが7.0になる時点を終点とし、スラリー状の生成物を得た。この生成物をフィルターで濾過して固形物を濾取し、ケーキ状のスラリーを得た。
 このケーキ状のスラリーを還流冷却器を取り付けた容器に移し、当該容器に蒸留水150mlと27質量%アンモニア水溶液10gを加え、75℃で20時間加熱攪拌した。攪拌後、該スラリーを混練装置に入れ、80℃以上に加熱して水分を除去しながら混練し、粘土状の混練物を得た。得られた混練物を押出し成形機によって直径1.5mmシリンダーの形状に押し出して、110℃で1時間乾燥した後、550℃で焼成し、成形担体を得た。
 得られた成形担体50gをナス型フラスコに入れ、ロータリーエバポレーターで脱気しながら、三酸化モリブデン17.3g、硝酸ニッケル(II)6水和物13.2g、リン酸(濃度:85質量%)3.9g及びリンゴ酸4.0gを配合して得られた含浸溶液を上記ナス型フラスコ内に注入した。成形担体を含浸溶液で含浸して得られた試料を、120℃で1時間乾燥した後、空気雰囲気下、550℃で焼成して、触媒Aを得た。触媒Aの物性は表1に示す通りであった。
<触媒B-1> 
 非特許文献(Appl. Catal.A, 299(2006)、167-174頁)に記載された方法により、ZSM-48ゼオライトを合成した。合成したZSM-48ゼオライトを、空気流通下、95℃で3時間乾燥した後、空気雰囲気下、550℃で3時間焼成して焼成ゼオライトを得た。
 アルミナバインダーとして、市販のベーマイトパウダー(商品名:カタロイド-AP)を準備した。適当量の水を加えてスラリー状にしたベーマイトパウダーに、ゼオライト:アルミナが70:30(質量%)になるように、焼成ゼオライトとベーマイトパウダーとを十分混練して混練物を得た。この混練物を押し出し成型機に供給して、シリンダー状(直径:1.5mm、長さ:1cm)の成形担体を得た。得られた成形担体を、空気流通下、95℃で3時間乾燥した後、空気雰囲気下、550℃で3時間焼成した。
 焼成した成形担体50gをナス型フラスコに入れ、ロータリーエバポレーターで脱気しながらジニトロジアミノ白金、ジニトロジアミノパラジウムを加えて、成形担体にこれらを含浸させて含浸試料を得た。含浸量は、得られる触媒を基準として、白金及びパラジウムの担持量がそれぞれ0.3質量%及び0.3質量%になるように調整した。含浸試料を空気雰囲気下、120℃で1時間乾燥した後、空気雰囲気下、550℃で焼成し、触媒B-1を得た。触媒B-1の物性を表1に示す。
<触媒B-2>
 米国特許第4,868,146号に記載された方法により、ZSM-23ゼオライトを合成した。合成したZSM-23ゼオライトを、空気流通下、95℃で3時間乾燥した後、空気雰囲気下、550℃で3時間焼成して焼成ゼオライトを得た。
 アルミナバインダーとして、市販のベーマイトパウダー(商品名:カタロイド-AP)を準備した。適当量の水を加えてスラリー状にしたベーマイトパウダーに、焼成ゼオライト:アルミナが70:30(質量%)になるように、焼成ゼオライトとベーマイトパウダーとを十分混練して混練物を得た。この混練物を押し出し成型機に供給して、シリンダー状(直径:1.5mm、長さ:1cm)の成形担体を得た。得られた成形担体を、空気流通下、95℃で3時間乾燥した後、空気雰囲気下、550℃で3時間焼成した。
 焼成した成形担体50gをナス型フラスコに入れ、ロータリーエバポレーターで脱気しながらジニトロジアミノ白金及びジニトロジアミノパラジウムを加えて、成形担体にこれらを含浸させて含浸試料を得た。含浸量は、得られる触媒を基準として、白金及びパラジウムの担持量がそれぞれ0.3質量%及び0.3質量%になるように調整した。含浸試料を空気雰囲気下、120℃で1時間乾燥した後、引き続いて空気流通下、550℃で焼成し、触媒B-2を得た。触媒B-2の物性を表1に示す。
<触媒B-3>
 非特許文献(Chem Commun.,3303,2007)に記載された方法により、ZSM-22ゼオライトを合成した。合成したZSM-22ゼオライトを、空気流通下、95℃で3時間乾燥した後、空気雰囲気下、550℃で3時間焼成して焼成ゼオライトを得た。
 アルミナバインダーとして、市販のベーマイトパウダー(商品名:カタロイド-AP)を準備した。適当量の水を加えてスラリー状にしたベーマイトパウダーに、焼成ゼオライト:アルミナが70:30(質量%)になるように、焼成ゼオライトとベーマイトパウダーとを十分混練して混練物を得た。この混練物を押し出し成型機に供給して、シリンダー状(直径:1.5mm、長さ:1cm)の成形担体を得た。得られた成形担体を、空気流通下、95℃で3時間乾燥した後、空気雰囲気下、550℃で3時間焼成した。
 焼成した成形担体50gをナス型フラスコに入れ、ロータリーエバポレーターで脱気しながらジニトロジアミノ白金、ジニトロジアミノパラジウムを加えて、成形担体にこれらを含浸させて含浸試料を得た。含浸量は、得られる触媒を基準として、白金及びパラジウムの担持量がそれぞれ0.3質量%及び0.3質量%になるように調整した。含浸試料を空気雰囲気下、120℃で1時間乾燥した後、空気雰囲気下、550℃で焼成して触媒B-3を得た。触媒B-3の物性を表1に示す。
<触媒B-4>
 シリカ-アルミナ比(質量比)が70:30であるシリカアルミナ担体50gをナス型フラスコに入れ、ロータリーエバポレーターで脱気しながらジニトロジアミノ白金水溶液を当該ナス型フラスコ内に注入して、シリカアルミナ担体にジニトロジアミノ白金水溶液を含浸させて含浸試料を得た。含浸試料を、空気雰囲気下、110℃で1時間乾燥した後、350℃で焼成して触媒B-4を得た。触媒B-4における白金の担持量は、触媒全量を基準として0.3質量%であった。触媒B-4の物性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[航空燃料油基材の製造]
(実施例1)
 触媒A(100ml)を充填した反応管(内径20mm)を固定床流通式反応装置に向流に取り付けた。その後、ジメチルジサルファイドを加えた直留軽油(硫黄濃度:3質量%)を用いて触媒層平均温度300℃、水素分圧6MPa、液空間速度1h-1、水素/油比200NL/Lの条件下で、4時間触媒の予備硫化を行った。
 予備硫化後、表2に示す性状を有する植物油脂1及びリサイクル油の混合油に、ジメチルサルファイドを添加して原料油を調製し、反応管に供給した。なお、リサイクル油は、後述の高圧セパレータ導入後の水素化処理油であり、植物油脂1に対するリサイクル油の質量比を1(リサイクル量:1質量倍)とした。また、ジメチルサルファイドの添加量は、原料油を基準として硫黄分含有量(硫黄原子換算)が10質量ppmになるような量とした。
 その後、原料油を上記固定床流通式反応装置に供給して、水素化処理(第一工程)を行った。原料油の15℃密度は0.900g/ml、酸素分含有量は11.5質量%であった。また、水素化処理の条件は、触媒層平均温度(反応温度)を315℃、水素圧力を4.8MPa、液空間速度を1.25h-1、水素/油比を506NL/Lとした。反応管内で水素化処理された処理油は高圧セパレータに導入された。この高圧セパレータでは、処理油から水素、硫化水素、二酸化炭素及び水が除去された。
 高圧セパレータに導入された処理油の一部は、冷却水と熱交換して40℃まで冷却されて、前述の通り原料供給側にリサイクル油としてリサイクルされ、原料油である植物油脂1とともに反応管に供給された。
 次に、触媒B-1(150ml)を充填した反応管(内径20mm)を固定床流通式反応装置(異性化装置)に設置し、リサイクル油以外の残りの処理油(第1の生成油)を当該固定床流通式反応装置に供給することによって、以下の通り、水素化異性化反応(第二工程)を行った。
 処理油を固定床流通式反応装置に供給する前に、触媒B-1に、触媒層平均温度350℃、水素圧力:4.8MPa、水素ガス量:83ml/分の条件下で還元処理を施した。その後、処理油を固定床流通式反応装置に供給して、触媒層平均温度(反応温度):320℃、水素圧力:4.8MPa、液空間速度:1h-1、水素/油比:506NL/Lの条件で異性化処理を行って異性化処理油(第2の生成油)を得た。異性化処理油は精留塔に導入して、沸点範囲140℃未満の軽質留分、140~300℃の中間留分、280℃を超える重質留分に分留した。この中間留分を航空燃料油基材として用いることができる。第二工程における水素化処理条件を表3に、得られた航空燃料油基材の性状を表4にそれぞれ示す。
(実施例2)
 植物油脂1の代わりに、表2に示す性状を有する植物油脂2を用いたこと、及び第一工程及び第二工程の条件を表3に記載の条件で行なったこと以外は実施例1と同様にして異性化処理油を得た。第一工程及び第二工程の条件を表3に、得られた異性化処理油を分留して得た中間留分(航空燃料油基材)の性状を表4にそれぞれ示す。
(実施例3)
 植物油脂1の代わりに、表2に示す性状を有する植物油脂2を用いたこと、第二工程で触媒B-1の代わりに触媒B-2を用いたこと、及び第一工程及び第二工程の条件を表3に記載の条件で行なったこと以外は実施例1と同様にして異性化処理油を得た。第一工程及び第二工程の条件を表3に、得られた異性化処理油を分留して得た中間留分(航空燃料油基材)の性状を表4にそれぞれ示す。
(実施例4)
 植物油脂1の代わりに、表2に示す性状を有する植物油脂2を用いたこと、第二工程で触媒B-1の代わりに触媒B-3を用いたこと、及び第一工程及び第二工程の条件を表3に記載の条件で行なったこと以外は実施例1と同様にして異性化処理油を得た。第一工程及び第二工程の条件を表3に、得られた異性化処理油を分留して得た中間留分(航空燃料油基材)の性状を表4にそれぞれ示す。
(比較例1)
 植物油脂1の代わりに、表2に示す性状を有する植物油脂2を用いたこと、第二工程で触媒B-1の代わりに触媒B-4を用いたこと、及び第一工程及び第二工程の条件を表3に記載の条件で行なったこと以外は実施例1と同様にして異性化処理油を得た。第一工程及び第二工程の条件を表3に、得られた異性化処理油を分留して得た中間留分(航空燃料油基材)の性状を表4にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1~4では、高異性化率、低分解率、高い基材収率で、低温性能に優れた航空燃料油基材を得ることができた。脂肪酸基の構成比率は、基準油脂分析試験法(日本油化学会制定)(1991)「2.4.20.2-91 脂肪酸メチルエステルの調整方法(三フッ化ホウ素-メタノール法)」に準じて調製したメチルエステルを、水素炎イオン化検出器(FID)を備えた昇温ガスクロマトグラフを用い、基準油脂分析試験法(日本油化学会制定)(1993)「2.4.21.3-77脂肪酸組成(FID昇温ガスロマトグラフ法)」に準じて求めた。また、表4における異性化率、分解率及び基材収率は、下記の式で求めた。
 異性化率(質量%)=(分解分を除いた第二工程の生成油中に含まれるイソパラフィンの総質量/第二工程の原料油中に含まれるノルマルパラフィンの総質量)×100
 分解率(質量%)=(第二工程の原料油に含まれる炭化水素の炭素数よりも小さい炭素数を有する、第二工程の生成油中に含まれる炭化水素の総質量/第二工程の原料油の総質量)×100
 基材収率(質量%)={(第二工程生成油全量-分解分-第二工程の生成油中に含まれる沸点300℃以上留分量)/第二工程原料油}×100
 なお、ここで「分解分」とは、第二工程の原料油に含まれる炭化水素の炭素数よりも小さい炭素数を有する、第二工程の生成油中に含まれる炭化水素の総量をいう。例えば、植物油脂1を処理した場合、第二工程の原料油に含まれる炭化水素の最小の炭素数は7であり、このとき分解分とは第二工程の生成油中に含まれる、炭素数6以下の炭化水素の総量を意味する。
[航空燃料油組成物の製造]
(実施例5~10、及び比較例2)
 表5に示す配合量で航空燃料油基材1~5、及び石油系航空燃料油基材(原油の常圧蒸留装置から得られる直留灯油を、反応温度320℃、水素圧力3MPa、LHSV3.0h-1、水素/油比150NL/Lで処理した水素化脱硫基材:表2に性状を示す。)を配合して、実施例5~10及び比較例2の航空燃料油組成物を得た。
Figure JPOXMLDOC01-appb-T000005
 実施例1~4の航空燃料油基材を用いて製造した実施例5~10の航空燃料油組成物は、比較例1(従来の異性化触媒を使用)の航空燃料油基材を用いて製造した比較例2の航空燃料油組成物に比べて析出点が低く、低温性能に優れていることが確認された。

Claims (8)

  1.  動植物油脂に由来する含酸素炭化水素化合物を含有する原料油を、脱水素及び水素化機能を有し、周期律表第6A族金属、第8族金属及び非結晶性固体酸性物質を含む第1の二元機能触媒に水素共存下で接触させることによって、前記原料油を水素化処理して第1の生成油を得る第一工程と、
     前記第1の生成油を、脱水素及び水素化機能を有し、周期律表第8族金属及び結晶性固体酸性物質を含む第2の二元機能触媒に水素共存下で接触させることによって、前記第1の生成油を水素化異性化して航空燃料油基材を含む第2の生成油を得る第二工程と、
    を有する、航空燃料油基材の製造方法。
  2.  前記原料油が、含硫黄炭化水素化合物を硫黄原子換算で1~100質量ppm含有する、請求項1に記載の航空燃料油基材の製造方法。
  3.  前記第1の二元機能触媒における前記周期律表第6A族金属がモリブデン及び/又はタングステンであり、
     前記第1の二元機能触媒における前記周期律表第8族金属がコバルト及び/又はニッケルであり、
     前記第一工程の前に、前記第1の二元機能触媒を硫化する硫化工程を有する、請求項1又は2に記載の航空燃料油基材の製造方法。
  4.  前記第2の二元機能触媒における前記結晶性固体酸性物質が、MEL構造、TON構造、MTT構造、及びMRE構造を有する一次元10員環アルミノシリケート、並びにAEL構造を有するシリコアルミノフォスフェートからなる群より選ばれる少なくとも一種の結晶を含む結晶性物質である、請求項1~3のいずれか一項に記載の航空燃料油基材の製造方法。
  5.  前記第2の二元機能触媒における前記結晶性固体酸性物質が、一次元10員環アルミノシリケート及び/又はシリコアルミノフォスフェートを含有しており、
     前記一次元10員環アルミノシリケート及び前記シリコアルミノフォスフェートの含有量が合計で65~85質量%である、請求項1~4のいずれか一項に記載の航空燃料油基材の製造方法。
  6.  前記一次元10員環アルミノシリケートがZSM-11、ZSM-22、ZSM-23、及びZSM-48からなる群より選ばれる少なくとも一種を含み、
     前記シリコアルミノフォスフェートが、SAPO-11及びSAPO-34からなる群より選ばれる少なくとも一種を含む、請求項4又は請求項5に記載の航空燃料油基材の製造方法。
  7.  水素化異性化率が90質量%を超える、請求項1~6のいずれか一項に記載の航空燃料油基材の製造方法。
  8.  請求項1~7のいずれか一項に記載の航空燃料油基材の製造方法によって得られた第1の航空燃料油基材と、石油系原料から製造された第2の航空燃料油基材とを含有し、
     前記第1の航空燃料油基材の含有量が5~50質量%であり、前記第2の航空燃料油基材の含有量が50~95質量%である航空燃料油組成物。
PCT/JP2010/064724 2009-08-31 2010-08-30 航空燃料油基材の製造方法及び航空燃料油組成物 WO2011025002A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10812048A EP2474596A4 (en) 2009-08-31 2010-08-30 PROCESS FOR PRODUCING BASIC FUEL FOR AVIATION AND FUEL COMPOSITION FOR AVIATION
AU2010287357A AU2010287357B2 (en) 2009-08-31 2010-08-30 Method for producing aviation fuel oil base, and aviation fuel oil composition
BR112012008160A BR112012008160A2 (pt) 2009-08-31 2010-08-30 método para a produção de base de óleo combustível para aviação e composição de óleo combustível para aviação
US13/391,727 US9283552B2 (en) 2009-08-31 2010-08-30 Method for producing aviation fuel oil base and aviation fuel oil composition
SG2012012084A SG178843A1 (en) 2009-08-31 2010-08-30 Method for producing aviation fuel oil base and aviation fuel oil composition
CN2010800386882A CN102482595A (zh) 2009-08-31 2010-08-30 航空燃料油基材的制造方法及航空燃料油组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-200918 2009-08-31
JP2009200918A JP5330935B2 (ja) 2009-08-31 2009-08-31 航空燃料油基材の製造方法及び航空燃料油組成物

Publications (1)

Publication Number Publication Date
WO2011025002A1 true WO2011025002A1 (ja) 2011-03-03

Family

ID=43628093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064724 WO2011025002A1 (ja) 2009-08-31 2010-08-30 航空燃料油基材の製造方法及び航空燃料油組成物

Country Status (11)

Country Link
US (1) US9283552B2 (ja)
EP (1) EP2474596A4 (ja)
JP (1) JP5330935B2 (ja)
KR (1) KR20120083345A (ja)
CN (1) CN102482595A (ja)
AU (1) AU2010287357B2 (ja)
BR (1) BR112012008160A2 (ja)
MY (1) MY156853A (ja)
SG (1) SG178843A1 (ja)
TW (1) TW201120203A (ja)
WO (1) WO2011025002A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120926A1 (ja) * 2011-03-07 2012-09-13 Jx日鉱日石エネルギー株式会社 炭化水素燃料の製造方法
CN103059901A (zh) * 2011-10-24 2013-04-24 中国石油化工股份有限公司 一种动植物油脂制备柴油组分或喷气燃料组分的方法
WO2013073528A1 (ja) * 2011-11-15 2013-05-23 公益財団法人北九州産業学術推進機構 燃料油の製造方法
WO2013073529A1 (ja) * 2011-11-15 2013-05-23 公益財団法人北九州産業学術推進機構 燃料油の製造方法
KR101578459B1 (ko) 2014-10-10 2015-12-17 한국화학연구원 식물성오일로부터 바이오 항공유분의 선택적 제조를 위한 백금 담지 실리카-알루미나 촉매
JP2016089095A (ja) * 2014-11-07 2016-05-23 株式会社ユーグレナ 燃料油及びその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5525786B2 (ja) 2009-08-31 2014-06-18 Jx日鉱日石エネルギー株式会社 航空燃料油基材の製造方法及び航空燃料油組成物の製造方法
SG10201404952VA (en) * 2009-09-08 2014-10-30 Exxonmobil Res & Eng Co Fuel Production From Feedstock Containing Lipidic Material
RO130351B1 (ro) * 2013-11-21 2017-09-29 Institutul Naţional De Cercetare-Dezvoltare Pentru Chimie Şi Petrochimie - Icechim Procedeu de obţinere a biocombustibilului pentru aviaţie din biomasă microalgală
JP6478206B2 (ja) * 2013-12-11 2019-03-06 出光興産株式会社 水素化分解処理用触媒および炭化水素の製造方法
WO2019016375A1 (en) * 2017-07-21 2019-01-24 Albemarle Europe Sprl HYDROTREATMENT CATALYST WITH TITANIUM-CONTAINING MEDIUM AND ORGANIC ADDITIVE CONTAINING SULFUR
KR102487444B1 (ko) * 2018-05-18 2023-01-10 잇판샤단호징 에이치아이비디 겡큐쇼 바이오제트 연료의 제조 방법
CN111978984A (zh) * 2020-08-25 2020-11-24 西北大学 一种航空煤油及煤焦油加氢生产航空煤油的方法
CN114522716B (zh) * 2022-03-10 2023-11-28 福州大学 一种双金属负载型催化剂及其制备方法和在棕榈油加氢转化制备生物航空煤油中的应用
CN114669323B (zh) * 2022-04-21 2023-03-24 中国科学院广州能源研究所 一种生物基航空燃油加氢精制催化剂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868146A (en) 1987-12-23 1989-09-19 Mobil Oil Corporation Zeolite catalyst composition and synthesis method
JP2005154647A (ja) 2003-11-27 2005-06-16 Rebo International:Kk 油脂からのデイーゼル燃料油製造プロセス
JP2009001722A (ja) * 2007-06-22 2009-01-08 Nippon Oil Corp 炭化水素油の製造方法
JP2009161669A (ja) * 2008-01-08 2009-07-23 Nippon Oil Corp 軽油組成物

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300009A (en) 1978-12-28 1981-11-10 Mobil Oil Corporation Conversion of biological material to liquid fuels
US4992605A (en) * 1988-02-16 1991-02-12 Craig Wayne K Production of hydrocarbons with a relatively high cetane rating
US5766274A (en) 1997-02-07 1998-06-16 Exxon Research And Engineering Company Synthetic jet fuel and process for its production
GB2355725A (en) 1999-10-29 2001-05-02 Exxon Research Engineering Co Jet fuels with improved flow properties
US20030158272A1 (en) * 2002-02-19 2003-08-21 Davis Burtron H. Process for the production of highly branched Fischer-Tropsch products and potassium promoted iron catalyst
US7232935B2 (en) 2002-09-06 2007-06-19 Fortum Oyj Process for producing a hydrocarbon component of biological origin
EP1396531B2 (en) * 2002-09-06 2016-11-30 Neste Oil Oyj Process for producing a hydrocarbon component of biological origin
WO2007027955A2 (en) * 2005-08-29 2007-03-08 Brazen Biofuels Inc Fuel composition
JP4878824B2 (ja) 2005-11-30 2012-02-15 Jx日鉱日石エネルギー株式会社 環境低負荷型燃料の製造方法および環境低負荷型燃料
JP4832871B2 (ja) 2005-11-30 2011-12-07 Jx日鉱日石エネルギー株式会社 水素化精製方法
JP4916219B2 (ja) 2006-05-17 2012-04-11 Jx日鉱日石エネルギー株式会社 A重油組成物の製造方法
JP5189740B2 (ja) 2006-05-17 2013-04-24 Jx日鉱日石エネルギー株式会社 水素化精製方法
JP4914643B2 (ja) 2006-05-17 2012-04-11 Jx日鉱日石エネルギー株式会社 水素化精製方法及び環境低負荷型ガソリン基材
JP5142588B2 (ja) 2006-05-17 2013-02-13 Jx日鉱日石エネルギー株式会社 ガソリン組成物の製造方法
JP5757603B2 (ja) 2006-06-30 2015-07-29 ユニヴァーシティー オブ ノースダコタ 低温で安定なバイオジェット燃料の製造方法
WO2008117856A1 (ja) 2007-03-28 2008-10-02 Nippon Oil Corporation 軽油組成物
JP5117089B2 (ja) 2007-03-28 2013-01-09 Jx日鉱日石エネルギー株式会社 軽油組成物の製造方法
US7846323B2 (en) 2007-04-06 2010-12-07 Syntroleum Corporation Process for co-producing jet fuel and LPG from renewable sources
JP5072444B2 (ja) 2007-06-11 2012-11-14 Jx日鉱日石エネルギー株式会社 軽油組成物の製造方法
US8143469B2 (en) 2007-06-11 2012-03-27 Neste Oil Oyj Process for producing branched hydrocarbons
US8742183B2 (en) 2007-12-21 2014-06-03 Uop Llc Production of aviation fuel from biorenewable feedstocks
US8039682B2 (en) * 2008-03-17 2011-10-18 Uop Llc Production of aviation fuel from renewable feedstocks
US20090300971A1 (en) * 2008-06-04 2009-12-10 Ramin Abhari Biorenewable naphtha
US7968757B2 (en) 2008-08-21 2011-06-28 Syntroleum Corporation Hydrocracking process for biological feedstocks and hydrocarbons produced therefrom
JP5530134B2 (ja) * 2009-08-31 2014-06-25 Jx日鉱日石エネルギー株式会社 航空燃料油組成物
JP5525786B2 (ja) 2009-08-31 2014-06-18 Jx日鉱日石エネルギー株式会社 航空燃料油基材の製造方法及び航空燃料油組成物の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868146A (en) 1987-12-23 1989-09-19 Mobil Oil Corporation Zeolite catalyst composition and synthesis method
JP2005154647A (ja) 2003-11-27 2005-06-16 Rebo International:Kk 油脂からのデイーゼル燃料油製造プロセス
JP2009001722A (ja) * 2007-06-22 2009-01-08 Nippon Oil Corp 炭化水素油の製造方法
JP2009161669A (ja) * 2008-01-08 2009-07-23 Nippon Oil Corp 軽油組成物

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"2.4.21.3-77 Fatty Acid Composition (FID Programmed Temperature Gas Chromatography", 1993, JAPAN OIL CHEMISTS' SOCIETY
"2.4.2-91 Fatty Acid Methyl Ester Preparation Method (boron trifluoride-methanol method", 1991, JAPAN OIL CHEMISTS' SOCIETY
"Standard Test Method of Analysis of Oils and Fats", 1991, JAPAN OIL CHEMISTS' SOCIETY, article "2.4.20.2-91 Method for Preparing Fatty Acid Methyl Ester (Boron Trifluoride-Methanol Method"
"Standard Test Method of Analysis of Oils and Fats", 1993, JAPAN OIL CHEMISTS' SOCIETY, article "2.4.21.3-77 Fatty Acid Composition (FID Programmed Temperature Gas Chromatograph Method"
"The Path to a Jet Fuel Alternative: Airbus Initiatives and the Steps Ahead", ICAO JOURNAL, vol. 63, no. 4, 2008, pages 22, 24, XP008139975 *
APPL. CATAL. A, vol. 299, 2006, pages 167 - 174
CHEM. COMMUN., 2007, pages 3303
HITOSHI FUJIWARA: "Kokuki no Nenryo Shohi to Daika Nenryo no Doko", PETROTECH, 2009 NEN 6 GATSU, vol. 32, no. 7, 2009, pages 481 - 486 *
See also references of EP2474596A4 *
YASUNORI ABE: "Bio Nenryo ni yoru Demo Flight no Jisshi", AVIATION ENGINEERING, 2009 NEN 6 GATSU, vol. 651, 2009, pages 24 - 28 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120926A1 (ja) * 2011-03-07 2012-09-13 Jx日鉱日石エネルギー株式会社 炭化水素燃料の製造方法
JP2012184356A (ja) * 2011-03-07 2012-09-27 Jx Nippon Oil & Energy Corp 炭化水素燃料の製造方法
CN103415593A (zh) * 2011-03-07 2013-11-27 吉坤日矿日石能源株式会社 烃燃料的制造方法
CN103059901A (zh) * 2011-10-24 2013-04-24 中国石油化工股份有限公司 一种动植物油脂制备柴油组分或喷气燃料组分的方法
CN103059901B (zh) * 2011-10-24 2015-11-25 中国石油化工股份有限公司 一种动植物油脂制备柴油组分或喷气燃料组分的方法
WO2013073528A1 (ja) * 2011-11-15 2013-05-23 公益財団法人北九州産業学術推進機構 燃料油の製造方法
WO2013073529A1 (ja) * 2011-11-15 2013-05-23 公益財団法人北九州産業学術推進機構 燃料油の製造方法
JPWO2013073529A1 (ja) * 2011-11-15 2015-04-02 公益財団法人北九州産業学術推進機構 燃料油の製造方法
JPWO2013073528A1 (ja) * 2011-11-15 2015-04-02 公益財団法人北九州産業学術推進機構 燃料油の製造方法
KR101578459B1 (ko) 2014-10-10 2015-12-17 한국화학연구원 식물성오일로부터 바이오 항공유분의 선택적 제조를 위한 백금 담지 실리카-알루미나 촉매
JP2016089095A (ja) * 2014-11-07 2016-05-23 株式会社ユーグレナ 燃料油及びその製造方法

Also Published As

Publication number Publication date
SG178843A1 (en) 2012-04-27
JP5330935B2 (ja) 2013-10-30
AU2010287357B2 (en) 2016-03-31
US20120216449A1 (en) 2012-08-30
KR20120083345A (ko) 2012-07-25
AU2010287357A1 (en) 2012-03-08
JP2011052077A (ja) 2011-03-17
BR112012008160A2 (pt) 2016-03-01
MY156853A (en) 2016-04-15
TW201120203A (en) 2011-06-16
EP2474596A1 (en) 2012-07-11
CN102482595A (zh) 2012-05-30
EP2474596A4 (en) 2013-03-06
US9283552B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
JP5330935B2 (ja) 航空燃料油基材の製造方法及び航空燃料油組成物
US9505986B2 (en) Fuel oil base and aviation fuel composition containing same
JP5339863B2 (ja) 航空燃料油組成物の製造方法
JP5530134B2 (ja) 航空燃料油組成物
JP5317644B2 (ja) 航空燃料油基材の製造方法
KR101452793B1 (ko) 수소화 정제방법
JP5022117B2 (ja) 炭化水素油の製造方法
JP5349213B2 (ja) 航空燃料油基材の製造方法および航空燃料油組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080038688.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10812048

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010287357

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12012500345

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 1714/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201000829

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2010287357

Country of ref document: AU

Date of ref document: 20100830

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127007156

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010812048

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010812048

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13391727

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012008160

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012008160

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120228