WO2011024882A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2011024882A1
WO2011024882A1 PCT/JP2010/064444 JP2010064444W WO2011024882A1 WO 2011024882 A1 WO2011024882 A1 WO 2011024882A1 JP 2010064444 W JP2010064444 W JP 2010064444W WO 2011024882 A1 WO2011024882 A1 WO 2011024882A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
display device
phosphor
light emitting
Prior art date
Application number
PCT/JP2010/064444
Other languages
English (en)
French (fr)
Inventor
向星 高橋
渡辺 昌規
哲也 花本
昌嗣 増田
賢二 寺島
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009200444A external-priority patent/JP5403607B2/ja
Priority claimed from JP2010138523A external-priority patent/JP2012003073A/ja
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/393,327 priority Critical patent/US20120162573A1/en
Priority to BR112012004505A priority patent/BR112012004505A2/pt
Priority to EP10811931.4A priority patent/EP2474856A4/en
Priority to CN2010800383761A priority patent/CN102483543A/zh
Publication of WO2011024882A1 publication Critical patent/WO2011024882A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Definitions

  • the present invention relates to a liquid crystal display device (LCD) using a light emitting device including a light emitting element that emits primary light and a wavelength conversion unit that absorbs primary light and emits secondary light as a backlight.
  • LCD liquid crystal display device
  • Light-emitting devices combining semiconductor light-emitting elements and phosphors are attracting attention as next-generation light-emitting devices that are expected to have low power consumption, small size, high brightness, and wide color reproducibility, and are actively researched and developed. .
  • the primary light emitted from the light emitting element is usually in the range of long wavelength ultraviolet to blue, that is, 380 to 480 nm.
  • wavelength converters using various phosphors suitable for this application have been proposed.
  • competition for development of backlights for large-sized LCDs as well as small-sized and medium-sized has intensified.
  • Various methods have been proposed in this field, but a method that satisfies both brightness and color reproducibility (NTSC ratio) at the same time has not been developed.
  • a blue light emitting element peak wavelength, around 450 nm
  • (Y, Gd) 3 Al, Ga) activated by trivalent cerium excited by the blue and emitting yellow light
  • a combination with 5 O 12 phosphor or (Sr, Ba) 2 SiO 4 phosphor activated with divalent europium is mainly used.
  • Green phosphor made of these technical problems with respect to Eu e Si f Al g O h N i with (also referred to as ⁇ -sialon) substantially represented by ⁇ -type SiAlON 2 divalent europium-activated oxynitride is It is known that a light-emitting device with good color reproducibility (NTSC ratio) and temperature characteristics can be obtained by using.
  • the peak wavelength of emission of the green phosphor made of the above-described ⁇ -type SIALON which is a divalent europium activated oxynitride
  • the peak wavelength of emission of the green phosphor made of the above-described ⁇ -type SIALON is about 530 to 540 nm, and in the case of a shorter wavelength (ie, 515 to 525 nm), the color Reproducibility (NTSC ratio) tends to be improved.
  • NTSC ratio color Reproducibility
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-121838 has focused on color reproducibility (NTSC ratio) in LCDs. Among them, it has a spectrum peak in the range of 505 to 535 nm as a backlight light source, and contains any of europium, tungsten, tin, antimony, and manganese as an activator for the green phosphor used in the light source. Furthermore, in the examples, it is described that MgGa 2 O 4 : Mn, Zn 2 SiO 4 : Mn is used as the green light emitting phosphor.
  • the peak wavelength of the light-emitting element is in the range of 430 to 480 nm
  • not all phosphors containing any of europium, tungsten, tin, antimony, and manganese are applied. That is, MgGa 2 O 4 : Mn and Zn 2 SiO 4 : Mn described in the examples have remarkably low luminous efficiency with excitation light in the range of 430 to 480 nm, and are therefore suitable for use in the present invention. is not.
  • Patent Document 2 As a backlight, in addition to an RGB-LED in which a red light emitting LED chip, a green light emitting LED chip, and a blue light emitting LED chip are combined in one package, a three-wavelength type It is described that there are a fluorescent tube, a combination of an ultraviolet LED and an RGB phosphor, an organic EL light source, and the like. However, there is no specific disclosure regarding an RG phosphor using blue light as an excitation source.
  • Patent Document 3 JP-A-2005-255895 (Patent Document 3) describes that ⁇ -type SiAlON belongs to the hexagonal system and has an emission peak wavelength of 525 to 546 nm. However, there is no disclosure regarding color reproducibility (NTSC ratio).
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2008-303331 (Patent Document 5) and Japanese Unexamined Patent Application Publication No. 2009-010315 (Patent Document 6), the crystal composition of ⁇ -type SiAlON
  • NTSC ratio color reproducibility
  • Patent Document 7 describes that SiAlON (M, R) AlSiON belongs to the orthorhombic system and has a peak emission wavelength of 511 to 524 nm.
  • Non-Patent Document 1 the peak wavelength of light emission in the SiAlON Sr 3 Si 13 Al 3 O 2 N 21 is around 520 nm, and this phosphor and a silicate red phosphor It is described that the average color rendering index (Ra) is 82 to 88 when. However, there is no description regarding color reproducibility (NTSC ratio).
  • An ordinary LCD uses CCFL (Cold Cathode Fluorescent Lamp) as a backlight, and transmits the light for each pixel of the liquid crystal.
  • CCFL Cold Cathode Fluorescent Lamp
  • Each pixel has three sub-pixels that transmit RGB (red, green, and blue), which are the three primary colors of light, and each sub-pixel is provided with a filter corresponding to RGB (red, green, and blue).
  • the color reproducibility (NTSC ratio) of the LCD is determined by the combination of the spectral characteristics of the light source and the transmission spectral characteristics of the filter.
  • RGB Red, green, and blue
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a liquid crystal display device having excellent color reproducibility (NTSC ratio) and high emission luminance.
  • the present invention is a liquid crystal display device including a backlight and a filter, wherein the backlight absorbs part of the primary light emitted from the light emitting element emitting blue light and the first secondary light. And a red phosphor that emits second secondary light, and the green phosphor is in a nitride or oxynitride crystal having a ⁇ -type Si 3 N 4 crystal structure.
  • the filter for each color of yellow (Y) is arranged on a plane (hereinafter, the liquid crystal display device of the present invention having such an aspect is referred to as “first liquid crystal display device”). .)
  • the oxygen concentration contained in the crystal of the green phosphor is preferably 0.1% by mass or more and 0.6% by mass or less.
  • the Al concentration in the crystal of the green phosphor is 0.13 mass% or more and 0.8 mass% or less.
  • the Eu concentration in the crystal of the green phosphor is 0.5 mass% or more and 4 mass% or less.
  • the emission peak wavelength of the green phosphor is preferably in the range of 520 to 537 nm.
  • the present invention is also a liquid crystal display device including a backlight and a filter, wherein the backlight absorbs part of the primary light emitted from the light emitting element emitting blue light and the first secondary light.
  • a light emitting device including a green phosphor emitting light and a red phosphor emitting second secondary light, wherein the green phosphor is represented by the general formula (1) (M1 1-x Eu x ) a Si b AlO c N d (1)
  • M1 represents at least one alkaline earth metal element selected from Ca, Sr and Ba, and 0.001 ⁇ x ⁇ 0.3, 0.9 ⁇ a ⁇ 1.5.
  • R red
  • G green
  • B blue
  • Y yellow
  • M1 in the general formula (1) is preferably Sr.
  • the emission peak wavelength of the green phosphor is preferably in the range of 510 to 530 nm.
  • the red phosphor has the general formula (2).
  • M2 is at least one alkaline earth metal element selected from Mg, Ca, Sr, and Ba
  • M3 is Al, Ga, In, Sc, Y, La, Gd
  • M3 is preferably at least one element selected from Al, Ga and In.
  • the present invention further relates to a liquid crystal display device comprising a backlight and a filter, wherein the backlight absorbs part of the primary light emitted from the light emitting element emitting blue light and the first secondary light.
  • a light emitting device including a green phosphor that emits light and a red phosphor that emits second secondary light, wherein the emission peak wavelength of the green phosphor is in a range of 510 to 537 nm
  • the filter includes the liquid crystal display device
  • a filter for each color of red (R), green (G), blue (B), and yellow (Y) is arranged on a plane for each sub-pixel arranged in each pixel.
  • a liquid crystal display device is also provided (hereinafter, the liquid crystal display device of the present invention having such an aspect is referred to as a “third liquid crystal display device”).
  • the emission peak wavelength of the red phosphor is preferably in the range of 630 to 680 nm.
  • the full width at half maximum of the emission spectrum of the green phosphor is in the range of 40 to 55 nm.
  • the green filter has a peak wavelength of transmittance at a wavelength of 490 to 530 nm.
  • the element is preferably a gallium nitride (GaN) -based semiconductor that emits primary light having a peak of 430 to 480 nm.
  • the green phosphor is a ⁇ -type SiAlON phosphor in which Eu and Al are dissolved in a nitride or oxynitride crystal having a ⁇ -type Si 3 N 4 crystal structure.
  • M1 represents at least one alkaline earth metal element selected from Ca, Sr and Ba, and 0.001 ⁇ x ⁇ 0.3, 0.9 ⁇ a ⁇ 1.5.
  • Divalent europium-activated oxynitriding It is preferable that it is a product phosphor.
  • the red phosphor has the general formula (2).
  • M2 is at least one alkaline earth metal element selected from Mg, Ca, Sr, and Ba
  • M3 is Al, Ga, In, Sc, Y, La, Gd
  • the third liquid crystal display device of the present invention it is preferable that the third liquid crystal display device is held in a casing together with a circuit for converting RGB signals into RGBY signals.
  • the refresh rate is 120 Hz or more, and local dimming driving is performed to change the brightness of the light emitting device that covers each area of the liquid crystal screen following the refresh rate. .
  • liquid crystal display device capable of obtaining a high-definition image with high color reproducibility (NTSC ratio). Further, according to the liquid crystal display device of the present invention, an unprecedented bright display image can be obtained by matching the phosphor with the transmission characteristics of the RGBY four-color sub-pixels and the emission spectrum of the light-emitting device.
  • FIG. 1 It is a perspective view which shows typically the principal part of the liquid crystal display device 1 of a preferable example of this invention. It is sectional drawing which shows typically the light-emitting device 11 used suitably as a backlight in the liquid crystal display device 1 of this invention. It is a graph which shows the emission spectrum of the light-emitting device obtained in Example 1, a vertical axis
  • Example 4 is a graph showing color gamuts of liquid crystal display devices manufactured in Example 1 and Comparative Example 1, respectively. It is a figure which shows typically the principal part of the liquid crystal display device 50 of the other preferable example of this invention. It is a graph which shows the emission spectrum characteristic of the light-emitting device used for the comparative example 1, a vertical axis
  • shaft is intensity
  • shaft is intensity
  • 6 is a graph showing color gamuts of liquid crystal display devices manufactured in Example 2 and Comparative Example 1, respectively.
  • FIG. 6 is an enlarged view of an emission spectrum distribution of the light emitting device used in Example 2.
  • shaft is intensity
  • shaft is intensity (arbitrary (arbitrary) Unit), and the horizontal axis represents wavelength (nm).
  • the chromaticity diagram which shows the color reproduction range 70 of the liquid crystal display device produced in Example 9, and the color reproduction range 60 of the liquid crystal display device produced in Example 4 is shown.
  • FIG. 1 is a perspective view schematically showing a main part of a liquid crystal display device 1 of a preferred example of the present invention.
  • FIG. 2 shows a light emitting device 11 that is preferably used as a backlight in the liquid crystal display device 1 of the present invention. It is sectional drawing shown typically.
  • the liquid crystal display device 1 of the present invention basically includes a backlight 2 and a filter.
  • the backlight 2 absorbs part of the primary light emitted from the light emitting element emitting blue light and the first light emitting element.
  • the light emitting device 11 includes a green phosphor that emits secondary light and a red phosphor that emits second secondary light.
  • the liquid crystal display device 1 of the present invention has a filter for each color of red (R), green (G), blue (B), and yellow (Y) for each subpixel arranged in each pixel of the liquid crystal display device. It is also characterized by having a filter arranged on a plane.
  • FIG. 1 schematically shows the main part of the liquid crystal display device 1 (edge light type LCD) of the present invention (the optical sheet associated with the inside of the liquid crystal cell, the polarizing plate, and the light guide plate). The light emitted from the backlight 2 is introduced into the light guide plate 3, and the light emitted upward from the light guide plate 3 passes through each pixel 5 of the liquid crystal cell 4.
  • One pixel 5 includes four sub-pixels red (R), green (G), blue (B), and yellow (Y), and each sub-pixel is driven individually.
  • FIG. 1 shows an example in which four subpixels are arranged vertically and horizontally to form one pixel, other arrangements such as arranging four subpixels in parallel in one pixel may of course be used.
  • a light-emitting device 11 suitably used as the backlight 2 in the first liquid crystal display device 1 of the present invention includes a light-emitting element 13 mounted on a package 12, for example, as shown in FIG.
  • a light-emitting element 13 used in the light-emitting device 11 a light-emitting element that emits blue light is used, but a gallium nitride (GaN) system that emits primary light having a peak of 430 to 480 nm (more preferably, a peak of 440 to 470 nm).
  • GaN gallium nitride
  • a semiconductor is particularly preferred, but is not limited thereto.
  • the light emitting device 11 includes a wavelength conversion unit 14 in which a green phosphor 15 and a red phosphor 16 are dispersed in a medium 17.
  • ⁇ -type SiAlON phosphor in which Eu and Al are dissolved in a nitride or oxynitride crystal having a ⁇ -type Si 3 N 4 crystal structure is used. Used. Since ⁇ -type SiAlON has a very narrow spectral line width among general rare-earth activated phosphors, in a liquid crystal display device using a light-emitting device using the same as described later, matching with a backlight filter is good. Wide color reproduction range.
  • the oxygen concentration in the green phosphor which is the ⁇ -type SiAlON phosphor as described above is preferably 0.1% by mass or more and 0.6% by mass or less, and is 0.2% by mass or more and 0.4% by mass or less. It is more preferable that When the oxygen concentration is less than 0.2% by mass, the phosphor particles are not sufficiently grown and the emission intensity tends to be weak. Further, by setting the oxygen concentration to 0.4 mass% or less, the uniformity of the coordination structure in the vicinity of the divalent Eu which is a luminescent ion is increased, and the spectral half width can be narrowed.
  • the oxygen concentration in the green phosphor indicates a value obtained by measuring the oxygen concentration using, for example, an infrared absorption method.
  • the Al concentration in the green phosphor which is the ⁇ -type SiAlON phosphor as described above is preferably 0.13% by mass or more and 0.8% by mass or less, and is 0.2% by mass or more and 0.7% by mass. % Or less is more preferable.
  • the Al concentration in the green phosphor indicates a value measured by, for example, ICP emission analysis.
  • the green phosphor which is a ⁇ -type SiAlON phosphor as described above, also preferably has an Eu concentration of 0.5% by mass or more and 4% by mass or less, and 0.5% by mass or more and 1% by mass or less. It is more preferable.
  • the Eu concentration By setting the Eu concentration to 0.5 mass% or more and 1 mass% or less, the charge balance around the Eu ions can be optimized. If the charge balance around the Eu ions is not appropriate, the concentration of trivalent Eu ions that do not contribute to light emission increases and the concentration of divalent Eu ions that contribute to green light emission decreases.
  • the Eu concentration in the green phosphor indicates a value measured by, for example, ICP emission analysis.
  • the particle size of the green phosphor which is a ⁇ -type SiAlON phosphor as described above, is not particularly limited.
  • median diameter 50% D
  • it is preferably in the range of 5 to 25 ⁇ m, and 8 to More preferably, it is in the range of 20 ⁇ m.
  • the particle size of the green phosphor is less than 5 ⁇ m, the crystal growth is not sufficient, so that not only the light emission efficiency is low, but also the scattering / absorption loss due to Mie scattering tends to increase. This is because when the particle size of the body exceeds 25 ⁇ m, the grain boundary phase due to abnormal crystal growth or sintering tends to increase and the luminous efficiency tends to decrease.
  • the above-mentioned green phosphor used in the first liquid crystal display device preferably has an emission peak wavelength in the range of 520 to 537 nm.
  • the emission peak wavelength of the green phosphor used in the first liquid crystal display device is less than 520 nm, the emission intensity on the long wavelength side is weak, so the yellow emission intensity tends to be low and the white luminance tends to be low.
  • the emission peak exceeds 537 nm, not only is the green color purity improved, but it is necessary to suppress the spectrum of the red phosphor in order to achieve white balance, so the red emission luminance tends to decrease.
  • FIG. 3 is a graph showing an emission spectrum of the light-emitting device 11 obtained in Example 1 described later, where the vertical axis represents intensity (arbitrary unit) and the horizontal axis represents wavelength (nm).
  • the spectrum adjusted in accordance with the transmission characteristics of the liquid crystal display device 1 by using a specific phosphor that emits light with high efficiency by light in the range of 430 to 480 nm from the semiconductor light emitting element.
  • NTSC ratio color reproducibility
  • the NTSC ratio refers to red (0.670, 0.330), green (0%) Defined by NTSC (National Television System Committee) of the color reproduction range in the XYZ color system chromaticity diagram of the liquid crystal display device. 210, 0.710) and blue (0.140, 0.080) chromaticity coordinates are represented by the ratio to the area of the triangle obtained.
  • FIG. 4 is a graph showing transmission spectra of sub-pixel red (R), green (G), blue (B), and yellow (Y) filters used in Example 1 described later.
  • the axis is the wavelength (nm).
  • R red
  • G green
  • B blue
  • Y yellow
  • FIG. 5 is a graph showing the color gamut of the liquid crystal display devices produced in Example 1 and Comparative Example 1 described later.
  • the enlargement of the yellow region important in the liquid crystal display device was successfully realized by using the Y filter.
  • the transmittance of the yellow region is increased, it is necessary to lower the peak values of the green phosphor and the red phosphor of the light emitting device in order to achieve white balance.
  • the color reproduction range of green tends to decrease, a ⁇ -type SiAlON in which Eu and Al are dissolved in a nitride or oxynitride crystal having a ⁇ -type Si 3 N 4 crystal structure as a green phosphor.
  • the matching with the filter is good and the blue and green spectral separation is particularly strong, so that the color reproducibility in the green region is sufficiently ensured as compared with Comparative Example 1. Since the peak intensity of the light emitting element that emits blue light relatively increases, the blue color reproduction range also increases. As a result, the NTSC ratio of Example 1 is improved compared to the comparative example, and in particular, the brightness of the screen is improved by expanding the yellow color reproduction region (region 100 in FIG. 5) with high human visibility. The white brightness was also improved. This is presumably because the combination of the phosphors used in the present invention has a moderately yellow emission intensity.
  • a divalent europium activated oxynitride phosphor substantially represented by the following general formula (1) is used as the green phosphor 15.
  • M1 is at least one alkaline earth metal element selected from Ca, Sr and Ba, and among them, Sr is preferable.
  • x indicating the europium (Eu) concentration is a number satisfying 0.001 ⁇ x ⁇ 0.3. When x is less than 0.001, sufficient brightness cannot be obtained, and when x exceeds 0.3, the brightness is greatly reduced due to concentration quenching or the like.
  • the range of 0.005 ⁇ x ⁇ 0.1 is preferable from the viewpoint of stability of characteristics and homogeneity of the matrix.
  • a, b, c and d are 0.9 ⁇ a ⁇ 1.5, 4.0 ⁇ b ⁇ 6.0, 0.4 ⁇ c ⁇ 1.0, 6. If it is in the range of 0 ⁇ d ⁇ 11.0, the influence of the impurity phase can be ignored and good light emission characteristics (brightness) can be obtained.
  • the green phosphor made of the divalent europium activated oxynitride used in the second liquid crystal display device of the present invention is merely an example in which the above general formula (1) has an Al index of 1. Specifically, (Sr 0.99 Eu 0.01 ) 3 Si 13 Al 3 O 2 N 21 , (Sr 0.95 Eu 0.05 ) 5 Si 25 Al 5 O 4 N 39 , (Sr 0.98 Eu 0.02 ) 5 Si 20 Al 4 O 3 N 32 , (Sr 0.89 Ba 0.01 Eu 0.10 ) 4 Si 22 Al 4 O 3 N 34 , (Sr 0.989 Ca 0.01 Eu 0.001 ) 6 Si 23 Al 5 O 4 N 37 , (Sr 0.97 Eu 0.03 ) 16 Si 68 Al 14 O 11 N 108 , (Sr 0.96 Ba 0.02 Eu 0.02 ) 90 Si 315 Al 70 O 63 N 508 , (Sr 0.995 Eu 0.005 ) 3 Si 16 Al 3 O 2 N 25 , (Sr 0.87 Ca 0.03 Eu 0.10 ) 6
  • the particle size of the green phosphor 15 used in the second liquid crystal display device 1 of the present invention is not particularly limited, but when expressed in terms of median diameter (50% D), it is in the range of 10 to 30 ⁇ m. Is preferred. This is because when the particle size of the green phosphor 15 used in the second liquid crystal display device 1 of the present invention is less than 10 ⁇ m, crystal growth is insufficient and sufficient brightness tends not to be obtained, and 30 ⁇ m. This is because the number of abnormally grown particles increases and is not practical.
  • the green phosphor 15 used in the second liquid crystal display device 1 of the present invention preferably has an emission peak wavelength in the range of 510 to 530 nm, and more preferably in the range of 515 to 525 nm.
  • the emission peak wavelength of the green phosphor 15 used in the second liquid crystal display device 1 of the present invention is less than 510 nm, the brightness is significantly reduced due to the effect of visibility, and the valley between the blue peak is This is because the color reproduction range of the green region tends to be narrowed due to the decrease, and when it exceeds 530 nm, the chromaticity point of the green peak approaches the yellow side, so the color reproducibility of the green region is narrow. This is because not only the effect of improving the green color purity becomes poor, but also in order to obtain good backlight characteristics, it is necessary to suppress the spectrum of the red phosphor in order to achieve white balance.
  • a green phosphor having an emission peak wavelength in the range of 510 to 537 nm is used as the green phosphor 15.
  • the emission peak wavelength of the green phosphor 15 in the third liquid crystal display device is less than 510 nm, the brightness is remarkably lowered due to the effect of visibility, and the valley between the blue peak is reduced and the green region is reduced. This is because the color reproduction range tends to be narrow, and if it exceeds 537 mn, not only is the green color purity improved, but the spectrum of the red phosphor must be suppressed to achieve white balance. This is because the red emission luminance tends to be low.
  • the green phosphor in the third liquid crystal display device of the present invention is not particularly limited as long as the emission peak wavelength is in the range of 510 to 537 mn, but the ⁇ -type used in the first liquid crystal display device described above.
  • a ⁇ -type SiAlON phosphor in which Eu and Al are dissolved in a nitride or oxynitride crystal having a Si 3 N 4 crystal structure, or the above general formula (1) used in the second liquid crystal display device described above Is preferably a divalent europium-activated oxynitride phosphor substantially represented by
  • the red light emitter 16 used in the liquid crystal display device 1 of the present invention is not particularly limited, but a divalent europium activated phosphor substantially represented by the following general formula (2) is preferable.
  • M2 is at least one alkaline earth metal element selected from Mg, Ca, Sr and Ba, and among these, Ca or Sr is preferable.
  • M3 is at least one trivalent metal element selected from Al, Ga, In, Sc, Y, La, Gd, and Lu. Since it can emit light, it is preferably at least one selected from Al, Ga and In.
  • y indicating the europium (Eu) concentration is a number satisfying 0.001 ⁇ y ⁇ 0.10. If y is less than 0.001, sufficient brightness cannot be obtained, and if it exceeds 0.10, the brightness is greatly reduced due to concentration quenching or the like.
  • the range of 0.005 ⁇ y ⁇ 0.05 is preferable from the viewpoint of stability of characteristics and homogeneity of the matrix.
  • red phosphor 16 examples include (Ca 0.99 Eu 0.01 ) AlSiN 3 , (Ca 0.97 Mg 0.02 Eu 0.01 ) (Al 0.99 Ga 0.01 ) SiN 3 , (Ca 0.98 Eu 0.02 ) AlSiN 3 , (Ca 0.58 Sr 0.40 Eu 0.02 ) (Al 0.98 In 0.02 ) SiN 3 , (Ca 0.999 Eu 0.001 ) AlSiN 3 , (Ca 0.895 Sr 0.100 Eu 0.005 ) AlSiN 3 , (Ca 0.79 Sr 0.20 Eu 0.01 ) AlSiN 3 , (Ca 0.98 Eu 0.02 ) (Al 0.95 Ga 0.05 ) SiN 3 , (Ca 0.20 Sr 0.79 Eu 0.01 ) AlSiN 3 , (Ca 0.98 Sr 0.01 Eu 0.01 ) AlSiN 3 , (Ca 0.99 Eu 0.01 ) (Al 0.99 Ga 0.01 ) SiN 3, etc
  • the red phosphor 16 used in the liquid crystal display device 1 of the present invention preferably has an emission peak wavelength in the range of 630 to 680 nm, and more preferably in the range of 640 to 660 nm. This is because when the emission peak wavelength of the red phosphor 16 is less than 630 nm, the color reproduction range of the red region tends to be narrow, and when it exceeds 680 nm, the human visibility becomes low. This is because the emission luminance tends to decrease.
  • the particle diameter of the red phosphor 16 is not particularly limited, but when expressed in terms of median diameter (50% D), a range of 6 to 20 ⁇ m is preferable. This is because when the particle size of the red phosphor 16 is less than 6 ⁇ m, crystal growth is insufficient and sufficient brightness tends not to be obtained, and when the particle size of the red phosphor 16 exceeds 20 ⁇ m, abnormal This is because the number of grown particles increases and is not practical.
  • the wavelength conversion unit 14 is manufactured by dispersing the green phosphor 15 and the red phosphor 16 in the medium 17. Although it does not restrict
  • the green phosphor used in the liquid crystal display device 1 of the present invention preferably has a full width at half maximum of the emission spectrum in the range of 40 to 55 nm, and more preferably in the range of 40 to 52 nm. This is because when the full width at half maximum of the emission spectrum of the green phosphor is less than 40 nm, the emission intensity on the long wavelength side is weak, so that the yellow emission intensity tends to be low and the white luminance tends to be low. This is because the chromaticity point of the green peak approaches the white point and the color reproduction range of the green region tends to be narrow.
  • FIG. 6 is a diagram schematically showing the main part of a liquid crystal display device 50 of another preferred example of the present invention.
  • FIG. 1 shows an example of an edge light type liquid crystal display device using a light guide plate.
  • a light emitting device 11 is arranged on the back surface, and a back-illuminated liquid crystal without using a light guide plate.
  • the display device 50 may be used.
  • the back-illuminated liquid crystal display device is excellent in energy saving because it can modulate the brightness of the backlight for each pixel, and can increase the contrast ratio between light and dark.
  • the green filter is exemplified as having a peak wavelength of transmittance at a wavelength of 490 to 530 nm.
  • the liquid crystal display device of the present invention can be held in a casing together with a circuit that converts RGB signals into RGBY signals.
  • the liquid crystal display device preferably has a refresh rate of 120 Hz or more, and is implemented so as to perform local dimming driving that changes the brightness of the light emitting device that handles each area of the liquid crystal screen following the refresh rate.
  • a light emitting device 11 having a structure similar to that shown in FIG. 2 was prepared, which includes a light emitting element mounted on a package and a wavelength conversion unit in which a green phosphor and a red phosphor are dispersed in a medium.
  • a gallium nitride (GaN) -based semiconductor having a peak wavelength at 450 nm, which is blue, is used as the light emitting element, and an Eu-activated ⁇ -type SiAlON phosphor having a peak wavelength of about 540 nm is used as the green phosphor (in the crystal).
  • FIG. 3 is a graph showing the emission spectrum of the light-emitting device 11 obtained in this manner, where the vertical axis represents intensity (arbitrary unit) and the horizontal axis represents wavelength (nm). As shown in FIG.
  • the light emitting device 11 obtained in Example 1 has a spectral characteristic adjusted in accordance with the transmission characteristic of the liquid crystal display device to be manufactured.
  • this emission spectrum characteristic is shown as a characteristic normalized by the peak intensity of blue light, including the examples described in the following description.
  • FIG. 4 is a graph showing transmission spectra of the subpixel red (R), green (G), blue (B), and yellow (Y) filters used in Example 1, where the vertical axis represents the transmittance and the horizontal axis represents the transmittance. Wavelength (nm). As described above, it can be seen that by using the yellow (Y) filter, the brightness can be improved by capturing the entire broad spectrum of the light emitting device 11 using the light emitting element and the phosphor emitting blue light.
  • FIG. 7 is a graph showing emission spectrum characteristics of the light emitting device used in Comparative Example 1.
  • the vertical axis represents intensity (arbitrary unit) and the horizontal axis represents wavelength (nm).
  • FIG. 5 is a graph showing the color gamut of the liquid crystal display devices produced in Example 1 and Comparative Example 1 described above.
  • the color gamut of Example 1 the enlargement of the yellow region important in the LCD was successfully realized by using the Y filter.
  • Example 1 since ⁇ -type SiAlON was used, the matching with the filter was good, and the spectral separation of blue and green was particularly strong, and the color reproducibility in the green region was sufficiently ensured as compared with Comparative Example 1. Since the peak intensity of the light emitting element that emits blue light relatively increases, the blue color reproduction range also increases. As a result, the NTSC ratio of Example 1 was 85.8%, which was improved from 83.4% of Comparative Example 1.
  • the brightness of the screen has been improved due to the enlargement of the yellow color reproduction region (the region indicated by reference numeral 100 in the figure) with high human visibility.
  • White brightness was also improved by about 10%.
  • the Eu, Al, and oxygen concentrations in the green phosphor crystal were 0.6 mass%, 2 mass%, and 1.1 mass%, respectively, but the Eu concentration was 0.5 mass% or more. Equivalent light emission characteristics were obtained when 1.0 mass% or less, Al concentration was 1.5 mass% or more and 2.5 mass% or less, and acidity concentration was 0.8 mass% or more and 2.0 mass% or less.
  • Example 2 Eu-activated ⁇ -type SiAlON phosphor having a peak wavelength of 520 to 530 nm as a green phosphor (Eu concentration in the crystal: 0.5% by mass, Al concentration in the crystal: 0.6% by mass, oxygen concentration in the crystal: 0) .3% by mass), a red phosphor having a composition of (Ca 0.99 Eu 0.01 ) AlSiN 3, except that these green phosphor and red phosphor were mixed at a ratio of 1: 0.33.
  • a light emitting device 11 was produced in the same manner as in FIG. FIG.
  • Example 8 is a graph showing an emission spectrum of the light emitting device obtained in Example 2, where the vertical axis represents intensity (arbitrary unit) and the horizontal axis represents wavelength (nm). As shown in FIG. 8, the light emitting device obtained in Example 2 has a spectral characteristic adjusted in accordance with the transmission characteristic of the liquid crystal display device described below. A liquid crystal display device was produced in the same manner as in Example 1 using the light-emitting device thus obtained as a backlight.
  • FIG. 9 is a graph showing the color gamut of the liquid crystal display devices produced in Example 2 and Comparative Example 1 described above. Also in Example 2, it can be seen that by using the Y filter, enlargement of an important yellow region can be realized in the liquid crystal display device as in Example 1. Furthermore, in Example 2, the green color reproduction range could be dramatically increased by using ⁇ -type SiAlON having a peak wavelength of 520 to 530 nm as the green phosphor in the light emitting device. As described above, the ⁇ -type SiAlON phosphor has a very narrow spectral line width among general rare-earth activated phosphors, so that the matching with the backlight filter is good and the color reproduction range is widened.
  • the green color reproduction region (region indicated by reference numeral 101 in the figure) could be further expanded. This makes it possible to reproduce intermediate colors in the blue-green region, which has been difficult to reproduce with liquid crystal display devices.
  • the peak wavelength of the green phosphor is shortened, the separation from the blue peak tends to deteriorate and the blue color reproducibility tends to decrease.
  • the wavelength of the green phosphor is shortened. As a result, the spectrum is narrowed, so that the spectral separation of blue and green does not deteriorate, so that a blue color reproduction range can be secured.
  • Example 2 As a result, the NTSC ratio of Example 2 was 92.5%, which was significantly improved from 83.4% of Comparative Example 1. White brightness was also improved by about 5% compared to Comparative Example 1. Furthermore, in Example 2, since the emission intensity of the red phosphor was higher than that in Example 1, the display luminance in the red region was improved by about 10%. This is because the mixing ratio of the red phosphor can be increased to achieve white balance as the wavelength of the green phosphor is shortened. For the same reason, the color reproducibility in the red region was also improved from that in Example 1.
  • the oxygen concentration in the crystal of the Eu-activated ⁇ -type SiAlON phosphor is 0.1% by mass or more and 0.6% by mass or less, the Al concentration is 0.13% by mass or more and 0.8% by mass or less, and the Eu concentration. Is 0.5 mass% or more and 4 mass% or less, the emission peak wavelength is shortened in the range of 520 to 530 nm, high luminous efficiency is exhibited, and the spectral line width is narrowed.
  • the oxygen concentration in the Eu-activated ⁇ -type SiAlON phosphor is larger than 0.6% by mass, the full width at half maximum of the emission spectrum is about 53 to 55 nm, whereas the oxygen concentration is 0.
  • the amount is less than 6% by mass, the value is 45 to 52 nm, and the lower the oxygen concentration, the smaller the tendency. For this reason, when the subpixel in the liquid crystal display device is used for four colors of red (R), green (G), blue (B), and yellow (Y), as described later, the color purity of green As a result, the color reproduction area is greatly improved.
  • the emission spectrum unique to the Eu-activated ⁇ -type SiAlON phosphor having the above composition is due to the emission spectrum unique to the Eu-activated ⁇ -type SiAlON phosphor having the above composition.
  • the green emission spectrum of the Eu-activated ⁇ -type SiAlON phosphor having the above composition is obtained by superimposing several emission peaks when viewed in detail. An enlarged view of this part is shown in FIG. The emission peak has three sub-peaks around 514 nm, 527 nm and 537 nm.
  • the Eu-activated ⁇ -type SiAlON phosphor forms an emission spectrum by superimposing such a plurality of emission peaks, but when it has a special composition as described above, the entire emission spectrum half-value width decreases, Sub-peak becomes clear.
  • the emission peak wavelength at this time is a case where the peak at 527 nm of the above peaks becomes the main peak. Actually, a peak appears at 520 to 530 nm due to other compositional differences and competition with other peaks due to thermal energy. In this case, the best backlight characteristics can be obtained.
  • the emission spectrum as described above is such that the oxygen concentration contained in the crystal of the Eu-activated ⁇ -type SiAlON phosphor is 0.1 mass% or more and 0.6 mass% or less, and the Al concentration is 0.13 mass% or more. And 0.8% by mass or less, and the Eu concentration is 0.5% by mass or more and 4% by mass or less.
  • the oxygen concentration is 0.2% by mass or more and 0.4% by mass or less, and the Al concentration is More preferably, the content is 0.2% by mass to 0.7% by mass, and the Eu concentration is 0.5% by mass to 1% by mass.
  • the oxygen concentration is less than 0.2% by mass, the phosphor particles are not sufficiently grown and the emission intensity is weak.
  • the oxygen concentration 0.4% by mass or less
  • the uniformity of the coordination structure in the vicinity of the divalent Eu which is a luminescent ion is increased, and the spectral half width can be narrowed.
  • strength of the peak of 527 nm vicinity can be maximized by making Al concentration into 0.2 mass% or more and 0.7 mass% or less.
  • the charge balance around Eu ions can be optimized by setting the Eu concentration to 0.5 mass% or more and 1 mass% or less. If the charge balance around the Eu ions is not appropriate, the concentration of trivalent Eu ions that do not contribute to light emission increases and the concentration of divalent Eu ions that contribute to green light emission decreases.
  • fluorescent substance suitable for this invention was illustrated in the said Example, fluorescent substance other than description may be sufficient, and a red (R), green (G), blue (B), yellow (Y) filter and Other phosphors may be used as long as the phosphor has a wavelength excellent in matching.
  • Example 3 a light emitting device similar to that used in Example 1 is incorporated as a backlight light source except that the top light emitting type is used instead of the side light emitting type, and red (R), green (G), and blue (B).
  • Y yellow
  • an area where light emitting devices similar to those used in Example 1 are arranged in a matrix on the back surface of the liquid crystal display panel except that the top light emitting type is used instead of the side light emitting type, and the LED light is irradiated from the back surface.
  • a liquid crystal television having a screen size of 46 inches using a liquid crystal display device 81 which is an active (local dimming) liquid crystal panel was manufactured.
  • each pixel 82 is composed of red (R), green (G), blue (B), and yellow (Y) sub-pixels.
  • the liquid crystal television 80 in the example shown in FIG. 11 includes a circuit 84 that generates R 0 (red), G 0 (green), and B 0 (blue) signals based on a broadcast signal obtained from the external antenna 83.
  • R 0 (red), G 0 (green), B 0 (blue) signals from the circuit 85 for generating RGBY (red, green, blue, yellow) signals, and LCD drive signals based on the video signals
  • the Y (yellow) signal is in principle calculated from the G (green) signal and the R (red) signal, but the addition ratio is adjusted according to each signal level in order to optimize the overall display color. (For example, if you display only full green, the yellow light will be zero).
  • the refresh rate of the liquid crystal screen was set to 120 Hz or 240 Hz.
  • a drive signal to the light emitting device that handles each area is set in accordance with the necessary luminance information for each area generated for each refresh.
  • the drive signal was a 600 Hz PWM (Pulse width modulation) signal, which is a frequency higher than the refresh rate.
  • the response speed of the phosphor used in the light emitting device does not necessarily follow the PWM signal, but needs to follow the refresh rate.
  • the green phosphor ⁇ -type SiAlON has a 1 / e fluorescence lifetime of about 1 ⁇ sec
  • the red phosphor (Ca 0.99 Eu 0.01 ) AlSiN 3 also has a 1 / e fluorescence lifetime of about 1 ⁇ sec, so the refresh rate is 240 Hz. But I was able to follow the area active drive.
  • Example 3 was a liquid crystal television, a wide color reproduction range can be obtained as a liquid crystal monitor for a computer. Further, since the overall power consumption is relatively low even at a high NTSC ratio, it is suitable as an AC power cordless type liquid crystal monitor / liquid crystal television.
  • Example 4 A light emitting device 11 as shown in FIG. 2 including the light emitting element 13 mounted on the package 12 and the wavelength conversion unit 14 in which the green phosphor 15 and the red phosphor 16 are dispersed in the medium 17 was produced.
  • a gallium nitride (GaN) -based semiconductor having a peak wavelength at 450 nm which is blue is used as the light emitting element 13, and (Sr 0.99 Eu 0.01 ) 3 Si 13 Al having a peak wavelength of about 520 nm is used as the green phosphor 15.
  • As the 3 O 2 N 21 and the red phosphor 16 one having a composition of (Ca 0.99 Eu 0.01 ) AlSiN 3 was used.
  • a mixture of these green phosphor 15 and red phosphor 16 in a ratio of 1: 0.35 was dispersed in a silicone resin as a medium 17 to produce a wavelength conversion unit 14.
  • FIG. 12 shows an emission spectrum characteristic of the light-emitting device of Example 4.
  • Example 2 The same as in Example 4 except that (Sr 0.48 Ba 0.47 Eu 0.05 ) 2 SiO 4 (peak wavelength: around 520 nm) was used as the green phosphor and a composition of (Ca 0.99 Eu 0.01 ) AlSiN 3 was used as the red phosphor. Thus, a light emitting device was manufactured. The characteristics of the liquid crystal display device using this light emitting device as a backlight were evaluated. The results are shown in Table 1.
  • the temperature characteristics of the light emitting device of Example 4 are significantly improved as compared with Comparative Example 2, and the liquid crystal display device using the light emitting device of Example 4 as a backlight is compared with Comparative Example 2. It can be seen that the color reproducibility (NTSC ratio) is further improved. Thus, the obtained light emitting device has characteristics suitable as backlights for various (particularly large) liquid crystal display devices.
  • Example 5 A gallium nitride (GaN) -based semiconductor having a peak wavelength at 440 nm, which is blue, is used as the light-emitting element, and (Sr 0.95 Eu 0.05 ) 5 Si 21 Al 5 O 2 N 35 (peak wavelength: around 525 nm) as a green phosphor, A light emitting device 11 was produced in the same manner as in Example 4 except that a red phosphor having a composition of (Ca 0.98 Eu 0.02 ) AlSiN 3 was used. The characteristics of the light emitting device thus manufactured and a liquid crystal display device using the light emitting device as a backlight were evaluated. The results are shown in Table 2.
  • Example 3 A light emitting device was fabricated in the same manner as in Example 5 except that a green phosphor having a composition of (Sr 0.53 Ba 0.42 Eu 0.05 ) 2 SiO 4 (peak wavelength: around 525 nm) was used. The characteristics of the light emitting device thus manufactured and a liquid crystal display device using the light emitting device as a backlight were evaluated. The results are shown in Table 2.
  • Example 5 the temperature characteristics of the light emitting device of Example 5 are significantly improved as compared to Comparative Example 3, and the color reproducibility (NTSC ratio) of the liquid crystal display device using the light emitting device is further improved. You can see that That is, it has characteristics suitable as backlights for various (particularly large-sized) liquid crystal display devices.
  • Examples 6 to 8 Comparative Examples 4 to 6> A light emitting device was fabricated in the same manner as in Example 4 except that a light emitting element having a peak wavelength as shown in Table 3 below, a green phosphor, and a red phosphor were used. Table 4 shows the results of evaluating various characteristics of the respective light emitting devices and liquid crystal display devices using the light emitting devices.
  • the liquid crystal display devices using the light emitting devices manufactured in Examples 6 to 8 are more color reproducible than the liquid crystal display devices using the light emitting devices manufactured in Comparative Examples 4 to 6. It can be seen that (NTSC ratio) is further improved and the temperature characteristics are remarkably improved. This has characteristics suitable as backlights for various (particularly large) liquid crystal display devices.
  • a green light-emitting phosphor made of a divalent europium-activated oxynitride that is ⁇ -type SiAlON is used as an improvement in the temperature characteristics of the phosphor used.
  • a liquid crystal display device having good color reproducibility (NTSC ratio) and temperature characteristics can be obtained.
  • the divalent europium activated oxynitride phosphor substantially represented by the above general formula (1) it is possible to emit light with a shorter wavelength, that is, 515 to 525 nm.
  • a liquid crystal display device with high color reproducibility (NTSC ratio) can be provided.
  • FIG. 13 is a graph showing an emission spectrum of a light-emitting device used as a ⁇ -type SiAlON phosphor and a green phosphor, in which a wavelength conversion unit adjusted to have substantially the same emission chromaticity as in Example 4 is shown. Is the intensity (arbitrary unit), and the horizontal axis is the wavelength (nm).
  • the emission peak of the green band is approximately 530 to 540 nm, the emission of the green band is closer to the longer wavelength compared to FIG. 12, and at the same time, the emission of the red band is suppressed and balanced,
  • the emission chromaticity is the same as in Example 4.
  • FIG. 14 is a chromaticity diagram showing an example of the color reproducibility region of the liquid crystal display device of the present invention.
  • reference numeral 61 denotes a color gamut of a liquid crystal display device in which a light emitting device using europium-activated oxynitride ⁇ -type SiAlON green phosphor is incorporated as a backlight source
  • reference numeral 60 denotes the fourth embodiment.
  • the color gamut of the liquid crystal display device incorporating the produced light emitting device as a backlight light source is shown. It can be seen that the color gamut 60 of the liquid crystal display device fabricated in Example 4 is particularly improved in the reproducibility of the green range as compared with the color gamut 61 of the light emitting device using the ⁇ -type SiAlON phosphor.
  • Example 9 A liquid crystal having the structure shown in FIG. 1 in the same manner as in Example 4 except that subpixels having four colors of red (R), green (G), blue (B), and yellow (Y) are used.
  • a display device was produced. The light emitted from the light emitting device using the phosphor of Example 4 is introduced into the light guide plate, and the light emitted upward from the light guide plate is transmitted through each pixel of the liquid crystal cell.
  • One pixel consists of four sub-pixels red (R), green (G), blue (B), and yellow (Y), and each sub-pixel is driven individually.
  • One pixel has four subpixels arranged in the vertical and horizontal directions, but other arrangements such as arranging four subpixels in parallel in one pixel may be used.
  • FIG. 15 is a diagram schematically illustrating the transmission spectrum characteristics of the red (R), green (G), blue (B), and yellow (Y) filters used in Example 9. Since a light emitting device using a blue LED and a phosphor has a relatively broad spectrum, each of the three filters of red (R), green (G), and blue (B) tries to cover the area. Therefore, it is necessary to use a material having a wide transmission band, so that the color purity is lowered and the color reproduction range is lowered. By using the yellow (Y) filter, it is possible to improve the luminance by capturing the entire broad spectrum of a light emitting device using a blue LED and a phosphor.
  • FIG. 11 is a chromaticity diagram showing the color gamut 70 of the liquid crystal display device manufactured in Example 9 and the color gamut 60 of the liquid crystal display device manufactured in Example 4. From FIG. 11, not only the yellow sub-pixel is added, but the center transmission wavelength of the green sub-pixel which is an adjacent color is shifted to a short wavelength away from yellow, thereby improving the color reproducibility of the liquid crystal display device. I can see that I was able to spread it. That is, in this embodiment, by using a yellow (Y) filter, a green (G) filter having a short wavelength and a narrow band can be used. In this embodiment, the center wavelength of the green (G) filter is 520 nm.
  • the center wavelength of the green (G) filter is 530 nm or less, preferably 520 nm or less. However, in order to reduce the overlap with blue, it is 490 nm or more, preferably 500 nm or more.
  • a red filter is used on the liquid crystal display device side.
  • the wavelength may be 590 nm or more, and more preferably, the wavelength is 610 nm or more.
  • the upper limit is preferably 680 nm or less because of poor visibility at long wavelengths, and more preferably 660 nm or less.
  • the peak wavelength of the green phosphor is preferably from 510 nm to 530 nm, more preferably from 515 nm to 525 nm, considering that the color reproduction range can be improved by making the green filter shorter.
  • the edge light type liquid crystal display device using the light guide plate is used, but a light emitting device may be disposed on the back surface of the liquid crystal display device and a back irradiation type liquid crystal display device using no light guide plate may be used.
  • the back-illuminated liquid crystal display device is excellent in energy saving because it can modulate the brightness of the backlight for each pixel, and can increase the contrast ratio between light and dark.
  • Example 9 the phosphor used in Example 4 is used, but the phosphor used in Examples other than Example 4 may be used, and red (R), green (G), blue ( As long as the phosphor has a wavelength excellent in matching with B) and the yellow (Y) filter, the phosphor of each comparative example and other phosphors may be used.
  • Example 10 A light emitting device similar to that used in Example 4 is incorporated as a backlight light source except that the top light emitting type is used instead of the side light emitting type, and red (R), green ( A liquid crystal display device including G), blue (B), and yellow (Y) subpixels and a circuit for driving the liquid crystal display device were manufactured. Description of the same parts as those described in the third embodiment is omitted.
  • sample image was displayed on this television for subjective evaluation by humans.
  • sample images containing many green and yellow components such as fruits and skin colors, good evaluation results were obtained due to improved color reproducibility.
  • the refresh rate of the liquid crystal screen was set to 120 Hz or 240 Hz.
  • a drive signal to the light emitting device that handles each area is set in accordance with the necessary luminance information for each area generated for each refresh.
  • the drive signal was a 600 Hz PWM (Pulse width modulation) signal, which is a frequency higher than the refresh rate.
  • the response speed of the phosphor used in the light emitting device does not necessarily follow the PWM signal, but needs to follow the refresh rate.
  • the green phosphor (Sr 0.99 Eu 0.01 ) 3 Si 13 Al 3 O 2 N 21 (peak wavelength around 520 nm) has a 1 / e fluorescence lifetime of about 1 ⁇ sec
  • the red phosphor (Ca 0.99 Eu 0.01 ) AlSiN 3 is also 1 / e e Since the fluorescence lifetime is as high as about 1 ⁇ sec, it was possible to follow area active drive even at a refresh rate of 240 Hz.
  • red (R), green (G), blue (B), and yellow (Y) subpixels are used, but other subpixels such as white (W), cyan (C ), Adding one or more sub-pixels of magenta (M) has the same effect.
  • R red
  • G green
  • B blue
  • Y yellow
  • M magenta
  • Example 10 is a liquid crystal television, a computer having a wide color reproduction range can be obtained as a liquid crystal monitor for a computer. Further, since the overall power consumption is relatively low even at a high NTSC ratio, it is suitable as an AC power cordless type liquid crystal monitor / liquid crystal television.
  • the brightness was turned on at a forward current (IF) of 20 mA, and the light output (photocurrent) from the light emitting device was measured.
  • the chromaticity (x, y) was determined by measuring the light emitted from the light emitting device with MCPD-2000 manufactured by Otsuka Electronics. Further, the color reproducibility (NTSC ratio) was determined by measuring the value of the produced light emitting device as a backlight source of a liquid crystal display device using Bm5 manufactured by Topcon Co., Ltd.
  • the LCD has a high color reproducibility (NTSC ratio) and can obtain a high luminance and high definition image.
  • NTSC ratio color reproducibility
  • a specific phosphor is combined with a liquid crystal display device having RGBY four-color sub-pixels to provide high color reproducibility (NTSC ratio) and a bright display image. It can be applied to a liquid crystal display device.
  • Liquid crystal display device 1, 50, 81 Liquid crystal display device, 2 backlight, 3 light guide plate, 4 liquid crystal cell, 11 light emitting device, 12 package, 13 light emitting element, 14 wavelength converter, 15 green phosphor, 16 red phosphor, 17 medium, 5, 82 pixels, 51 mounting board, 80 liquid crystal television, 83 external antenna, 84 R 0 G 0 B 0 signal generation circuit, 85 RGBY signal generation circuit, 86 liquid crystal drive circuit, 87 housing.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

 バックライトとフィルタを備えた液晶表示装置であって、前記バックライトは、青色発光する発光素子と、前記発光素子から発する一次光の一部を吸収して第1の二次光を発する緑色蛍光体および第2の二次光を発する赤色蛍光体を含む発光装置を備え、前記緑色蛍光体が、β型Si34結晶構造を持つ窒化物または酸窒化物の結晶中にEuとAlが固溶したβ型SiAlON蛍光体であり、前記フィルタは、前記液晶表示装置の各ピクセルに配されたサブピクセル毎に、赤(R)、緑(G)、青(B)と黄(Y)の各色用のフィルタが平面上に配置されたものであることを特徴とする液晶表示装置によって、色再現性(NTSC比)が優れ、かつ発光輝度が高い液晶表示装置を提供することができる。

Description

液晶表示装置
 本発明は、一次光を発する発光素子と、一次光を吸収して二次光を発する波長変換部とを備えた発光装置をバックライトとして用いた液晶表示装置(LCD)に関する。
 半導体発光素子と蛍光体を組み合わせた発光装置は、低消費電力、小型、高輝度かつ広範囲な色再現性が期待される次世代の発光装置として注目され、活発に研究、開発が行われている。
 発光素子から発せられる一次光は通常長波長の紫外線から青色の範囲、すなわち380~480nmのものが用いられる。また、この用途に適合した様々な蛍光体を用いた波長変換部も提案されている。更に、近年には小型、中型のみならず大型のLCD用バックライトの開発競争が激化している。この分野においては、様々な方式が提案されているが、明るさと色再現性(NTSC比)とを同時に満足する方式は開発されていない。
 現在は白色の発光装置としては、青色発光の発光素子(ピーク波長、450nm前後)とその青色により励起され黄色発光を示す3価のセリウムで付活された(Y,Gd)3(Al,Ga)512蛍光体あるいは2価のユーロピウムで付活された(Sr,Ba)2SiO4蛍光体との組合せが主として用いられている。
 但し、これらの発光装置をバックライトとして用いたLCDでは、色再現性(NTSC比)は70%前後である。一方、近年各種のLCDにおいて、より色再現性の良好なものが求められている。
 さらには、最近この種の発光装置に対して変換効率(明るさ)のみならず、入力のエネルギーをより高くし、さらに明るくしようとする試みがなされている。入力エネルギーを高くした場合、波長変換部を含めた発光装置全体の効率的な放熱が必要となってくる。このために、発光装置全体の構造、材質などの開発も進められているが、動作時における発光素子および波長変換部の温度上昇は避けられないのが現状である。
 しかしながら、特に3価のセリウムで付活された(Y,Gd)3(Al,Ga)512蛍光体においては、25℃での輝度(明るさ)を100%とした場合に、100℃での輝度は85%前後に低下する。また、2価のユーロピウムで付活された(Sr,Ba)2SiO4蛍光体においても、同様に低下するために、入力エネルギーを高く設定できないという技術課題を有している。したがって、この種の発光装置に対して、用いられる蛍光体の温度特性の改善も急務となっている。
 これらの技術課題に対してEueSifAlghiで実質的に表されるβ型SiAlON(β型サイアロンともいう)である2価のユーロピウム付活酸窒化物よりなる緑色蛍光体を用いることにより、色再現性(NTSC比)および温度特性の良好な発光装置が得られることが知られている。
 一方、上述したβ型SIALONである2価のユーロピウム付活酸窒化物よりなる緑色蛍光体の発光のピーク波長は略530~540nmであり、より短波長(すなわち、515~525nm)の場合、色再現性(NTSC比)が改善される傾向にある。このような背景から小型、中型のみならず大型LCD用バックライトの色再現性(NTSC比)の改善も急務となっている。
 従来、LCDにおける色再現性(NTSC比)に着目したものとしては、特開2003-121838号公報(特許文献1)がある。そのなかで、バックライト光源として、505~535nmの範囲にスペクトルピークを有すること、およびその光源に使用する緑蛍光体の付活剤としてユウロピウム、タングステン、スズ、アンチモン、マンガンのいずれかを含むこと、更には実施例には緑色系発光蛍光体として、MgGa24:Mn、Zn2SiO4:Mnを用いることが記載されている。しかしながら、発光素子のピーク波長が430~480nmの範囲の場合には、ユーロピウム、タングステン、スズ、アンチモン、マンガンのいずれかを含む蛍光体が全て適用されるものではない。すなわち、実施例に記載されているMgGa24:Mn、Zn2SiO4:Mnは430~480nmの範囲の励起光では、その発光効率は著しく低く、そのために本発明の用途において適合するものではない。
 また、特開2004-287323号公報(特許文献2)では、バックライトとして、赤発光LEDチップと緑発光LEDチップと青発光LEDチップが1パッケージになったRGB-LEDの他に、3波長型蛍光管、紫外光LEDとRGB蛍光体の組合せ、有機EL光源などがあると記載されている。しかしながら、青色光を励起源とするRG蛍光体に関する具体的な開示はない。
 また、特開2005-255895号公報(特許文献3)では、β型SiAlONに関し、六方晶系に属し、発光のピーク波長が525~546nmにあることが、記載されている。しかしながら、色再現性(NTSC比)に関する開示はない。
 さらには、国際公開第2007/066733号(特許文献4)、特開2008-303331号公報(特許文献5)および特開2009-010315号公報(特許文献6)では、β型SiAlONの結晶組成により発光スペクトルを制御する方法が記載されており、これにより液晶表示装置の色再現性(NTSC比)を改善できることが記述されているが、表示装置の輝度に関しての具体的な開示はない。
 また国際公開第2007/105631号(特許文献7)では、(M,R)AlSiONなるSiAlONにおいて、斜方晶系に属し、発光のピーク波長が511~524nmにあることが記載されている。
 また、東芝レヴュー,Vol.64,No.4,pp60‐63(2009)(非特許文献1)では、SrSi13Al21なるSiAlONにおいて、発光のピーク波長が520nm付近にあり、この蛍光体とシリケート系の赤色蛍光体とを組み合わせた場合、平均演色評価数(Ra)は82~88であることが記載されている。しかしながら、色再現性(NTSC比)に関する記述はない。
 通常のLCDは、CCFL(Cold Cathode Fluorescent Lamp)をバックライトとして用い、その光を液晶の各ピクセル(画素)毎に透過させる。各ピクセルは、光の3原色であるRGB(赤・緑・青)を透過する3つのサブピクセルを有し、各サブピクセルにはRGB(赤・緑・青)に対応するフィルタが装着されている。したがって、LCDの色再現性(NTSC比)は光源のスペクトル特性とフィルタの透過スペクトル特性の組合せによって決まる。色再現性を向上させる、あるいは輝度を向上させる目的のため、フィルタとしてRGBとそれ以外の色の光を用いる例がある。たとえば特表2004-529396号公報(特許文献8)や特開2006-162706号公報(特許文献9)では、フィルタとして少なくとも4つの原色、たとえばRGB、Y(黄)およびC(シアン)を用いた例が報告されている。
特開2003-121838号公報 特開2004-287323号公報 特開2005-255895号公報 国際公開第2007/066733号 特開2008-303331号公報 特開2009-010315号公報 国際公開第2007/105631号 特表2004-529396号公報 特開2006-162706号公報
東芝レヴュー,Vol.64,No.4,pp60‐63(2009)
 本発明は、上記課題を解決するためになされたものであって、その目的とするところは、色再現性(NTSC比)に優れ、発光輝度が高い液晶表示装置を提供することである。
 本発明は、バックライトとフィルタを備えた液晶表示装置であって、前記バックライトは、青色発光する発光素子と、前記発光素子から発する一次光の一部を吸収して第1の二次光を発する緑色蛍光体および第2の二次光を発する赤色蛍光体を含む発光装置を備え、前記緑色蛍光体が、β型Si34結晶構造を持つ窒化物または酸窒化物の結晶中にEuとAlが固溶したβ型SiAlON蛍光体であり、前記フィルタは、前記液晶表示装置の各ピクセルに配されたサブピクセル毎に、赤(R)、緑(G)、青(B)と黄(Y)の各色用のフィルタが平面上に配置されたものであることを特徴とする(以下、このような態様の本発明の液晶表示装置を「第1の液晶表示装置」と呼称する。)。
 本発明の第1の液晶表示装置において、前記緑色蛍光体の結晶中に含まれる酸素濃度が0.1質量%以上かつ0.6質量%以下であることが好ましい。
 本発明の第1の液晶表示装置において、前記緑色蛍光体の結晶中のAl濃度が0.13質量%以上かつ0.8質量%以下であることが好ましい。
 また本発明の第1の液晶表示装置において、前記緑色蛍光体の結晶中のEu濃度が0.5質量%以上かつ4質量%以下であることが好ましい。
 本発明の第1の液晶表示装置において、前記緑色蛍光体の発光ピーク波長は520~537nmの範囲にあることが好ましい。
 本発明はまた、バックライトとフィルタを備えた液晶表示装置であって、前記バックライトは、青色発光する発光素子と、前記発光素子から発する一次光の一部を吸収して第1の二次光を発する緑色蛍光体および第2の二次光を発する赤色蛍光体を含む発光装置を備え、前記緑色蛍光体が、一般式(1)
  (M11-xEuxaSibAlOcd    (1)
(一般式(1)中、M1は、Ca、SrおよびBaから選ばれる少なくとも1種のアルカリ土類金属元素を示し、0.001≦x≦0.3、0.9≦a≦1.5、4.0≦b≦6.0、0.4≦c≦1.0、6.0≦d≦11.0を満足する数である。)で表される2価のユーロピウム付活酸窒化物蛍光体であり、前記フィルタは、前記液晶表示装置の各ピクセルに配されたサブピクセル毎に、赤(R)、緑(G)、青(B)と黄(Y)の各色用のフィルタが平面上に配置されたものであることを特徴とする液晶表示装置についても提供する(以下、このような態様の本発明の液晶表示装置を「第2の液晶表示装置」と呼称する。)。
 本発明の第2の液晶表示装置において、前記一般式(1)におけるM1はSrであることが好ましい。
 本発明の第2の液晶表示装置において、前記緑色蛍光体の発光ピーク波長が510~530nmの範囲にあることが好ましい。
 本発明の第1の液晶表示装置、第2の液晶表示装置において、前記赤色蛍光体は、一般式(2)
  (M21-yEuy)M3SiN3    (2)
(一般式(2)中、M2は、Mg、Ca、SrおよびBaから選ばれる少なくとも1種のアルカリ土類金属元素であり、M3は、Al、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の3価の金属元素を示し、0.001≦y≦0.10を満足する数である。)で表される2価のユーロピウム付活窒化物蛍光体であることが好ましい。
 前記一般式(2)におけるM3はAl、GaおよびInから選ばれる少なくとも1種の元素であることが好ましい。
 本発明はさらに、バックライトとフィルタを備えた液晶表示装置であって、前記バックライトは、青色発光する発光素子と、前記発光素子から発する一次光の一部を吸収して第1の二次光を発する緑色蛍光体および第2の二次光を発する赤色蛍光体を含む発光装置を備え、前記緑色蛍光体の発光ピーク波長が510~537nmの範囲にあり、前記フィルタは、前記液晶表示装置の各ピクセルに配されたサブピクセル毎に、赤(R)、緑(G)、青(B)と黄(Y)の各色用のフィルタが平面上に配置されたものであることを特徴とする液晶表示装置についても提供する(以下、このような態様の本発明の液晶表示装置を「第3の液晶表示装置」と呼称する。)。
 本発明の第3の液晶表示装置において、前記赤色蛍光体の発光ピーク波長は630~680nmの範囲にあることが好ましい。
 本発明の第1の液晶表示装置、第3の液晶表示装置において、緑色蛍光体の発光スペクトルの半値全幅が40~55nmの範囲にあることが、好ましい。
 本発明の第3の液晶表示装置において、前記緑色用のフィルタは、波長490~530nmに透過率のピーク波長を有することが好ましい。
 本発明の第1の液晶表示装置、第2の液晶表示装置、第3の液晶表示装置(以下、これらを区別しない場合には、「本発明の液晶表示装置」と総称する)において、前記発光素子は430~480nmのピークを有する一次光を発する窒化ガリウム(GaN)系半導体であることが好ましい。
 本発明の第3の液晶表示装置において、前記緑色蛍光体が、β型Si34結晶構造を持つ窒化物または酸窒化物の結晶中にEuとAlが固溶したβ型SiAlON蛍光体であるか、または、一般式(1)
  (M11-xEuxaSibAlOcd    (1)
(一般式(1)中、M1は、Ca、SrおよびBaから選ばれる少なくとも1種のアルカリ土類金属元素を示し、0.001≦x≦0.3、0.9≦a≦1.5、4.0≦b≦6.0、0.4≦c≦1.0、6.0≦d≦11.0を満足する数である。)で表される2価のユーロピウム付活酸窒化物蛍光体であることが好ましい。
 本発明の第3の液晶表示装置において、前記赤色蛍光体は、一般式(2)
  (M21-yEuy)M3SiN3    (2)
(一般式(2)中、M2は、Mg、Ca、SrおよびBaから選ばれる少なくとも1種のアルカリ土類金属元素であり、M3は、Al、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の3価の金属元素を示し、0.001≦y≦0.10を満足する数である。)で表される2価のユーロピウム付活窒化物蛍光体であることが好ましい。
 本発明の第3の液晶表示装置において、RGB信号をRGBY信号に変換する回路とともに筐体に保持されていることが好ましい。
 本発明の第3の液晶表示装置において、リフレッシュレートが120Hz以上であり、前記リフレッシュレートに追従して液晶画面の各エリアを受け持つ前記発光装置の明るさを変化させるローカルディミング駆動を行なうことが好ましい。
 本発明によれば、色再現性(NTSC比)が高く高精彩な画像を得ることができる液晶表示装置を提供することができる。また、本発明の液晶表示装置によれば、前記蛍光体をRGBYの4色のサブピクセルの透過特性と発光装置の発光スペクトルのマッチングにより従来にない明るい表示画像を得ることができる。
本発明の好ましい一例の液晶表示装置1の要部を模式的に示す斜視図である。 本発明の液晶表示装置1においてバックライトとして好適に用いられる発光装置11を模式的に示す断面図である。 実施例1で得られた発光装置の発光スペクトルを示すグラフであり、縦軸は強度(任意単位)、横軸は波長(nm)である。 実施例1に用いたサブピクセル赤(R)、緑(G)、青(B)、黄(Y)フィルタの透過スペクトルを示すグラフであり、縦軸は透過率、横軸は波長(nm)である。 実施例1および比較例1でそれぞれ作製した液晶表示装置の色再現域を示すグラフである。 本発明の好ましい他の例の液晶表示装置50の要部を模式的に示す図である。 比較例1に用いた発光装置の発光スペクトル特性を示すグラフであり、縦軸は強度(任意単位)、横軸は波長(nm)である。 実施例2で得られた発光装置の発光スペクトルを示すグラフであり、縦軸は強度(任意単位)、横軸は波長(nm)である。 実施例2および比較例1でそれぞれ作製した液晶表示装置の色再現域を示すグラフである。 実施例2に用いた発光装置の発光スペクトル分布の拡大図である。 サイド発光型でなく上面発光型としたこと以外は実施例1で用いたのと同様の発光装置をバックライト光源として組み込み、赤(R)、緑(G)、青(B)、黄(Y)のサブピクセルを備えたLCDおよびそれを駆動する回路を備える液晶テレビジョン80の構成図を示す。 実施例4で得られた発光装置11の発光スペクトルを示すグラフであり、縦軸は強度(任意単位)、横軸は波長(nm)である。 実施例4と略同じ発光色度となるよう調整した波長変換部を作製した、β型SiAlON蛍光体と緑色蛍光体として用いた発光装置の発光スペクトルを示すグラフであり、縦軸は強度(任意単位)、横軸は波長(nm)である。 本発明の液晶表示装置の色再現性領域の例を示す色度図である。 実施例9に用いた赤(R)、緑(G)、青(B)、黄(Y)フィルタの透過スペクトル特性を模式的に示す図である。 実施例9で作製した液晶表示装置の色再現域70および実施例4で作製した液晶表示装置の色再現域60を示す色度図を示す。
 図1は、本発明の好ましい一例の液晶表示装置1の要部を模式的に示す斜視図であり、図2は、本発明の液晶表示装置1においてバックライトとして好適に用いられる発光装置11を模式的に示す断面図である。本発明の液晶表示装置1は、バックライト2とフィルタとを基本的に備え、バックライト2は、青色発光する発光素子と、前記発光素子から発する一次光の一部を吸収して第1の二次光を発する緑色蛍光体および第2の二次光を発する赤色蛍光体を含む発光装置11を備えることを特徴の1つとする。
 また本発明の液晶表示装置1は、液晶表示装置の各ピクセルに配されたサブピクセル毎に、赤(R)、緑(G)、青(B)、黄(Y)の各色用のフィルタが平面上に配置されたフィルタを備えることもその特徴とする。上述のように図1には、このような本発明の液晶表示装置1(エッジライト型LCD)の要部を模式的に示しており(液晶セル内部、偏光板、導光板に付随する光学シートなど通常用いるLCD要素部材は示していない)、バックライト2から発せられた光は導光板3に導入され、導光板3から上に出射した光は液晶セル4の各ピクセル5を透過する。1つのピクセル5は、4つのサブピクセル赤(R)、緑(G)、青(B)、黄(Y)からなり、各サブピクセルは個別に駆動される。なお、図1には、サブピクセルを上下左右に4つ並べて1つのピクセルとした例を示したが、1つのピクセルにサブピクセルを4つ並列に配置するなど他の配置でも勿論良い。
 本発明の第1の液晶表示装置1にバックライト2として好適に用いられる発光装置11は、たとえば図2に示すように、パッケージ12に搭載された発光素子13を備える。発光装置11に用いられる発光素子13としては、青色発光する発光素子が用いられるが、430~480nmのピーク(より好適には440~470nmのピーク)を有する一次光を発する窒化ガリウム(GaN)系半導体が特に好ましいが、これに限定されるものではない。発光素子13の一次光のピークが430nm未満である場合には、ヒトの視感度が低くなるため発光輝度が低下する傾向にあるためであり、また、480nmを超える場合には、青色領域の色再現域が狭くなる傾向にあるためである。本発明における発光装置11は、媒質17中に緑色蛍光体15および赤色蛍光体16が分散された波長変換部14を備える。
 <第1の液晶表示装置>
 本発明の第1の液晶表示装置では、緑色蛍光体15として、β型Si34結晶構造を持つ窒化物または酸窒化物の結晶中にEuとAlが固溶したβ型SiAlON蛍光体が用いられる。β型SiAlONは、一般の希土類付活蛍光体の中でも非常にスペクトル線幅が狭いため、後述するようにこれを用いた発光装置を適用した液晶表示装置において、バックライトフィルタとのマッチングがよく、色再現域が広くなる。
 上述したようなβ型SiAlON蛍光体である緑色蛍光体における酸素濃度は0.1質量%以上かつ0.6質量%以下であることが好ましく、0.2質量%以上かつ0.4質量%以下であることがより好ましい。当該酸素濃度が0.2質量%未満の場合、蛍光体粒子の成長が不十分で発光強度が弱い傾向にある。また、当該酸素濃度を0.4質量%以下とすることにより発光イオンである2価Euの近傍の配位構造の均一性が高まりスペクトル半値幅を狭くできる。なお、緑色蛍光体における酸素濃度は、たとえば赤外線吸収法を用いた酸素濃度測定で得られた値を指す。
 また、上述したようなβ型SiAlON蛍光体である緑色蛍光体におけるAl濃度は0.13質量%以上かつ0.8質量%以下であることが好ましく、0.2質量%以上かつ0.7質量%以下であることがより好ましい。当該Al濃度を0.2質量%以上かつ0.7質量%以下とすることで、サブピークの内の527nm付近のピークの強度を最大とすることができる。なお、緑色蛍光体におけるAl濃度は、たとえばICP発光分析法により測定された値を指す。
 上述したようなβ型SiAlON蛍光体である緑色蛍光体はまた、Eu濃度が0.5質量%以上かつ4質量%以下であることが好ましく、0.5質量%以上かつ1質量%以下であることがより好ましい。当該Eu濃度を0.5質量%以上かつ1質量%以下とすることで、Euイオン周辺の電荷バランスを最適にできる。Euイオン周辺の電荷バランスが適切でないと、発光に寄与しない3価のEuイオン濃度が増大し緑色発光に寄与する2価のEuイオン濃度が低くなってしまう。なお、緑色蛍光体におけるEu濃度は、たとえばICP発光分析法により測定された値を指す。
 上述したようなβ型SiAlON蛍光体である緑色蛍光体の粒径は特に制限されないが、たとえばメディアン径(50%D)で表した場合、5~25μmの範囲内であることが好ましく、8~20μmの範囲内であることがより好ましい。緑色蛍光体の粒径が5μm未満である場合には、結晶成長が十分でないため発光効率が低いのみならず、ミー散乱による散乱・吸収損失が多くなる傾向にあるためであり、また、緑色蛍光体の粒径が25μmを超える場合には、結晶の異常成長や焼結による粒界相が増大し発光効率が低下する傾向にあるためである。
 第1の液晶表示装置に用いられる上述した緑色蛍光体は、発光ピーク波長が520~537nmの範囲にあることが好ましい。第1の液晶表示装置に用いられる緑色蛍光体の発光ピーク波長が520nm未満である場合には、長波長側の発光強度が弱いため、黄色の発光強度が低く、白色輝度が低くなる傾向にある。また発光ピークが537nmを超える場合、緑の色純度改善が乏しいだけでなく、ホワイトバランスを取るために赤色蛍光体のスペクトルを抑制する必要があるため、赤色発光輝度が低くなる傾向にある。
 ここで、図3は、後述する実施例1で得られた発光装置11の発光スペクトルを示すグラフであり、縦軸は強度(任意単位)、横軸は波長(nm)である。このように、本発明では、半導体発光素子からの430~480nmの範囲の光によって、高効率に発光する特定の蛍光体を用いることで、液晶表示装置1の透過特性に併せて調整されたスペクトル特性を有する発光装置11を用いることにより、色再現性(NTSC比)が優れ、かつ発光輝度が高い液晶表示装置が実現できる。ここでNTSC比とは、該液晶表示装置のXYZ表色系色度図における色再現域の、NTSC(National Television System Committee)が定めた赤(0.670,0.330)、緑(0.210,0.710)、青(0.140,0.080)の色度座標を結んで得られる三角形の面積に対する比率を表している。
 図4は、後述する実施例1に用いたサブピクセル赤(R)、緑(G)、青(B)、黄(Y)フィルタの透過スペクトルを示すグラフであり、縦軸は透過率、横軸は波長(nm)である。図4から分かるように、青色発光する発光素子と蛍光体を用いた発光装置は比較的ブロードなスペクトルを有するので、赤(R)、緑(G)、青(B)の3つのフィルタだけでその領域をカバーしようとするとそれぞれのフィルタとして透過帯域の広いものを用いる必要があり、そのため色純度が低下し色再現域が低下する。このため、本発明の液晶表示装置1では、黄(Y)フィルタを用いることにより、青色発光する発光素子と蛍光体を用いた発光装置のブロードなスペクトル全体を捉えて輝度を向上することができる。
 また図5は、後述する実施例1および比較例1でそれぞれ作製した液晶表示装置の色再現域を示すグラフである。図5から分かるように、実施例1の色再現域は、Yフィルタを用いたことにより、液晶表示装置で重要な黄色の領域の拡大が良好に実現できた。一般に黄色領域の透過率を増大させた場合、白色バランスを取るために発光装置の緑色蛍光体および赤色蛍光体のピーク値を低くする必要がある。このため、緑色の色再現域が低下する傾向があるが、緑色蛍光体としてβ型Si34結晶構造を持つ窒化物または酸窒化物の結晶中にEuとAlが固溶したβ型SiAlON蛍光体を用いた場合、フィルタとのマッチングが良好であり、特に青色と緑色のスペクトル分離が強いため、比較例1に比べても緑色領域の色再現性が充分確保できている。相対的に青色発光する発光素子のピーク強度が強くなるため、青色の色再現域も増大している。この結果、実施例1のNTSC比は比較例より向上が見られ、特にヒトの視感度の高い黄色の色再現域(図5中の領域100)が拡大したことにより画面の明るさが向上し、白色輝度も向上した。これは、本発明で用いる蛍光体の組み合わせが、適度に黄色領域の発光強度を持っているためであると考えられる。
 <第2の液晶表示装置>
 本発明の第2の液晶表示装置1では、緑色蛍光体15として、下記一般式(1)で実質的に表わされる2価のユーロピウム付活酸窒化物蛍光体が用いられる。
  (M11-xEuxaSibAlOcd    (1)
 一般式(1)中、M1は、Ca、SrおよびBaから選ばれる少なくとも1種のアルカリ土類金属元素であり、中でも、Srが好ましい。また一般式(1)中、ユーロピウム(Eu)濃度を示すxは、0.001≦x≦0.3を満足する数である。xが0.001未満の場合、十分な明るさが得られず、xが0.3を超えると、濃度消光などにより、明るさが大きく低下する。特性の安定性、母体の均質性から、0.005≦x≦0.1の範囲が好ましい。
 また一般式(1)中、a、b、cおよびdは、それぞれ0.9≦a≦1.5、4.0≦b≦6.0、0.4≦c≦1.0、6.0≦d≦11.0の範囲内であれば、不純物相の影響を無視でき、良好な発光特性(明るさ)を得ることができる。
 このような本発明の第2の液晶表示装置に用いられる2価のユーロピウム付活酸窒化物よりなる緑色蛍光体は、上記一般式(1)はAlの指数を1とした、あくまで一例であり、具体的には、(Sr0.99Eu0.013Si13Al3221、(Sr0.95Eu0.055Si25Al5439、(Sr0.98Eu0.025Si20Al4332、(Sr0.89Ba0.01Eu0.104Si22Al4334、(Sr0.989Ca0.01Eu0.0016Si23Al5437、(Sr0.97Eu0.0316Si68Al1411108、(Sr0.96Ba0.02Eu0.0290Si315Al7063508、(Sr0.995Eu0.0053Si16Al3225、(Sr0.87Ca0.03Eu0.106Si26Al5441、(Sr0.99Eu0.015Si21Al5235、(Sr0.95Eu0.055Si21Al5235、(Sr0.995Eu0.0055Si23Al5337、(Sr0.97Eu0.0319Si90Al2013192などを挙げることができるが、これらに限定されるものではない。
 本発明の第2の液晶表示装置1に用いられる緑色蛍光体15は、その粒径については特に制限されるものではないが、メディアン径(50%D)で表した場合、10~30μmの範囲が好ましい。本発明の第2の液晶表示装置1に用いられる緑色蛍光体15の粒径が10μm未満の場合、結晶成長が十分ではなく、十分な明るさが得られない傾向にあるためであり、また30μmを超えると、異常成長した粒子が多くなり実用的ではないためである。
 本発明の第2の液晶表示装置1に用いられる緑色蛍光体15は、その発光ピーク波長が510~530nmの範囲内であることが好ましく、515~525nmの範囲内であることがより好ましい。本発明の第2の液晶表示装置1に用いられる緑色蛍光体15の発光ピーク波長が510nm未満である場合、視感度の影響から明るさが著しく低下し、かつ、青色ピークとの間の谷間が少なくなるために緑色領域の色再現範囲が狭くなる傾向にあるためであり、また、530nmを超える場合には、緑色ピークの色度点が黄色側に近づくため、緑色領域の色再現性が狭くなり、緑色の色純度改善効果が乏しくなるだけでなく、良好なバックライト特性を得るためには、ホワイトバランスをとるために赤色蛍光体のスペクトルを抑制する必要があるためである。
 <第3の液晶表示装置>
 本発明の第3の液晶表示装置1では、緑色蛍光体15として、発光ピーク波長が510~537nmの範囲にある緑色蛍光体を用いる。第3の液晶表示装置における緑色蛍光体15の発光ピーク波長が510nm未満である場合、視感度の影響から明るさが著しく低下し、かつ、青色ピークとの間の谷間が少なくなるために緑色領域の色再現範囲が狭くなる傾向にあるためであり、537mnを超える場合には、緑の色純度改善が乏しいだけでなく、ホワイトバランスを取るために赤色蛍光体のスペクトルを抑制する必要があるため、赤色発光輝度が低くなる傾向にあるためである。
 本発明の第3の液晶表示装置における緑色蛍光体は、発光ピーク波長が510~537mnの範囲内であれば特に制限されるものではないが、上述した第1の液晶表示装置に用いたβ型Si34結晶構造を持つ窒化物または酸窒化物の結晶中にEuとAlが固溶したβ型SiAlON蛍光体、または、上述した第2の液晶表示装置に用いた上記一般式(1)で実質的に表わされる2価のユーロピウム付活酸窒化物蛍光体であることが好ましい。
 本発明の液晶表示装置1に用いられる赤色発光体16としては、特に制限されるものではないが、下記一般式(2)で実質的に表わされる2価のユーロピウム付活蛍光体が好ましい。
  (M21-yEuy)M3SiN3   (2)
 一般式(2)中、M2は、Mg、Ca、SrおよびBaから選ばれる少なくとも1種のアルカリ土類金属元素であり、中でもCaまたはSrが好ましい。一般式(2)中、M3は、Al、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の3価の金属元素であり、中でも、より一層高効率に赤色系を発光することができることから、Al、GaおよびInから選ばれる少なくとも1種であることが好ましい。
 一般式(2)において、ユーロピウム(Eu)濃度を示すyは、0.001≦y≦0.10を満足する数である。yが0.001未満の場合、十分な明るさが得られず、0.10を超えると濃度消光などにより、明るさが大きく低下する。特性の安定性、母体の均質性から、0.005≦y≦0.05の範囲が好ましい。
 このような赤色蛍光体16としては、具体的には、(Ca0.99Eu0.01)AlSiN3、(Ca0.97Mg0.02Eu0.01)(Al0.99Ga0.01)SiN3、(Ca0.98Eu0.02)AlSiN3、(Ca0.58Sr0.40Eu0.02)(Al0.98In0.02)SiN3、(Ca0.999Eu0.001)AlSiN3、(Ca0.895Sr0.100Eu0.005)AlSiN3、(Ca0.79Sr0.20Eu0.01)AlSiN3、(Ca0.98Eu0.02)(Al0.95Ga0.05)SiN3、(Ca0.20Sr0.79Eu0.01)AlSiN3、(Ca0.98Sr0.01Eu0.01)AlSiN3、(Ca0.99Eu0.01)(Al0.99Ga0.01)SiN3などを挙げることができるが、勿論これらに限定されるものではない。
 本発明の液晶表示装置1に用いられる赤色蛍光体16は、発光ピーク波長が630~680nmの範囲内にあることが好ましく、640~660nmの範囲にあることがより好ましい。赤色蛍光体16の発光ピーク波長が630nm未満である場合には、赤色領域の色再現域が狭くなる傾向にあるためであり、また、680nmを超える場合には、ヒトの視感度が低くなるため発光輝度が低下する傾向にあるためである。
 また、赤色蛍光体16の粒径についても特に制限されないが、メディアン径(50%D)で表した場合、6~20μmの範囲が好ましい。赤色蛍光体16の粒径が6μm未満の場合、結晶成長が十分ではなく、十分な明るさが得られない傾向にあるためであり、また赤色蛍光体16の粒径が20μmを超えると、異常成長した粒子が多くなり、実用的ではないためである。
 本発明の液晶表示装置1においてバックライト2として用いられる発光装置11においては、緑色蛍光体15および赤色蛍光体16を媒質17に分散させて波長変換部14を作製する。媒質17としては特に制限されるものではないが、透光性を有する樹脂材料であるエポキシ樹脂、シリコーン樹脂、尿素樹脂などを用いることができる。
 また、本発明の液晶表示装置1に用いられる緑色蛍光体は、発光スペクトルの半値全幅が40~55nmの範囲にあることが好ましく、40~52nmの範囲にあることがより好ましい。緑色蛍光体の発光スペクトルの半値全幅が40nm未満である場合には、長波長側の発光強度が弱いため、黄色の発光強度が低く、白色輝度が低くなる傾向にあるためであり、また、55nmを超える場合には、緑色ピークの色度点が白色点に近づくため緑色領域の色再現域が狭くなる傾向にあるためである。
 また図6は、本発明の好ましい他の例の液晶表示装置50の要部を模式的に示す図である。図1には、導光板を用いたエッジライト型の液晶表示装置とした例を示したが、図6に示すように背面に発光装置11を配置し、導光板を用いない背面照射型の液晶表示装置50としてもよい。図6には、図1に示した例と同様の構成を有する部分については同一の参照符を付して説明を省略する。なお、図6において、発光装置11は実装基板51に実装されている。背面照射型の液晶表示装置は、画素毎にバックライトの明るさを変調することができるため省エネルギーに優れ、また明・暗のコントラスト比を増大させることができる。
 本発明の液晶表示装置において、緑色用のフィルタは波長490~530nmに透過率のピーク波長を有することが好適な場合として例示される。
 本発明の液晶表示装置は、RGB信号をRGBY信号に変換する回路とともに筐体に保持することができる。また液晶表示装置はリフレッシュレートが120Hz以上であり、前記リフレッシュレートに追従して液晶画面の各エリアを受け持つ前記発光装置の明るさを変化させるローカルディミング駆動を行なうように実現することが好ましい。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 <実施例1>
 まず、パッケージに搭載された発光素子と、緑色蛍光体および赤色蛍光体を媒質中に分散させた波長変換部とを備える図2に示したのと同様の構造の発光装置11を作製した。発光装置11において、発光素子としては青色である450nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用い、緑色蛍光体としてはピーク波長540nm前後のEu付活β型SiAlON蛍光体(結晶中のEu濃度:0.6質量%、結晶中のAl濃度:2質量%、結晶中の酸度濃度:1.1質量%)、赤色蛍光体としては(Ca0.99Eu0.01)AlSiN3なる組成のものを用いた。これらの緑色蛍光体と赤色蛍光体とを1:0.25の割合で混合したものを、媒質であるシリコーン樹脂中に分散させて波長変換部を作製した。図3は、このようにして得られた発光装置11の発光スペクトルを示すグラフであり、縦軸は強度(任意単位)、横軸は波長(nm)である。図3に示されるように、実施例1で得られた発光装置11は、作製する液晶表示装置の透過特性に併せて調整されたスペクトル特性を有する。また、この発光スペクトル特性は、以下の説明に出てくる例も含めて、青色光のピーク強度により規格化した特性として示されている。
 得られた発光装置11をバックライト2として用いて、図1に示したような液晶表示装置1を作製した。4つのサブピクセル赤(R)、緑(G)、青(B)、黄(Y)は個別に駆動されるように構成され、上下左右に4つ並べて1つのピクセルとした。図4は、実施例1に用いたサブピクセル赤(R)、緑(G)、青(B)、黄(Y)フィルタの透過スペクトルを示すグラフであり、縦軸は透過率、横軸は波長(nm)である。上述のように黄(Y)フィルタを用いることにより、青色発光する発光素子と蛍光体を用いた発光装置11のブロードなスペクトル全体を捉えて輝度を向上することができることが分かる。
 <比較例1>
 従来の赤(R)、緑(G)、青(B)の3つのフィルタのみを用い、発光装置における緑色蛍光体と赤色蛍光体との比率をフィルタ特性に併せて1:0.35としたこと以外は実施例1と同様にして液晶表示装置を作製した。図7は、比較例1に用いた発光装置の発光スペクトル特性を示すグラフであり、縦軸は強度(任意単位)、横軸は波長(nm)である。
 また、図5は、上述した実施例1および比較例1でそれぞれ作製した液晶表示装置の色再現域を示すグラフである。図5から分かるように、実施例1の色再現域は、Yフィルタを用いたことにより、LCDで重要な黄色の領域の拡大が良好に実現できた。実施例1ではβ型SiAlONを用いたため、フィルタとのマッチングが良好であり、特に青色と緑色のスペクトル分離が強く、比較例1に比べても緑色領域の色再現性が充分確保できた。相対的に青色発光する発光素子のピーク強度が強くなるため、青色の色再現域も増大している。結果、実施例1のNTSC比は、85.8%であり、比較例1の83.4%より向上が見られた。特にヒトの視感度の高い黄色の色再現域(図中符号100で示した領域)が拡大したことにより画面の明るさが向上した。白色輝度も約10%向上した。なお、本実施例では、緑色蛍光体の結晶中のEu、Al、酸素濃度はそれぞれ0.6質量%、2質量%、1.1質量%としたが、Eu濃度は0.5質量%以上1.0質量%以下、Al濃度は1.5質量%以上2.5質量%以下、酸度濃度は0.8質量%以上2.0質量%以下のとき、同等の発光特性が得られた。
 <実施例2>
 緑色蛍光体としてピーク波長520~530nmのEu付活β型SiAlON蛍光体(結晶中のEu濃度:0.5%質量、結晶中のAl濃度:0.6質量%、結晶中の酸素濃度:0.3質量%)、赤色蛍光体として(Ca0.99Eu0.01)AlSiN3なる組成のものを用い、これら緑色蛍光体と赤色蛍光体とを1:0.33の割合で混合したこと以外は実施例1と同様に発光装置11を作製した。図8は、実施例2で得られた発光装置の発光スペクトルを示すグラフであり、縦軸は強度(任意単位)、横軸は波長(nm)である。図8に示されるように、実施例2で得られた発光装置は、以下に説明する液晶表示装置の透過特性に併せて調整されたスペクトル特性を有するものである。このようにして得られた発光装置をバックライトとして用い、実施例1と同様に液晶表示装置を作製した。
 図9は、上述した実施例2および比較例1でそれぞれ作製した液晶表示装置の色再現域を示すグラフである。実施例2でも、Yフィルタを用いたことにより、実施例1と同様に液晶表示装置で重要な黄色の領域の拡大が実現できたことがわかる。さらに、実施例2では、発光装置における緑色蛍光体としてピーク波長520~530nmのβ型SiAlONを用いたことにより緑色の色再現域を飛躍的に増大できた。上述したようにβ型SiAlON蛍光体は、一般の希土類付活蛍光体の中でも非常にスペクトル線幅が狭いため、バックライトフィルタとのマッチチングが良く、色再現域が広くなるが、実施例2のように更にピーク波長が短く、スペクトル線幅が狭い組成を採用することにより、さらに緑色の色再現域(図中符号101で示した領域)を拡大できた。これにより、これまで液晶表示装置で再現困難であった青緑領域の中間色が再現可能となった。また、通常、緑色蛍光体のピーク波長を短波長化した場合、青色ピークとの分離が悪化し青色の色再現性が低下する傾向があるが、実施例2では、緑色蛍光体の短波長化に伴い、スペクトルの狭小化するため、青色と緑色のスペクトル分離が低下しないため、青色の色再現域も確保できている。この結果、実施例2のNTSC比は、92.5%であり、比較例1の83.4%より大幅に向上が見られた。白色輝度も比較例1に比べ約5%向上した。さらに実施例2では、実施例1に比べ、赤色蛍光体の発光強度が高いため、赤色領域の表示輝度が約10%向上した。これは、緑色蛍光体の短波長化に伴いホワイトバランスをとるために赤色蛍光体の混合比率を高くできるためである。これと同様の理由により、赤色領域の色再現性も実施例1より改善が見られた。
 なお、Eu付活β型SiAlON蛍光体の結晶中の酸素濃度が0.1質量%以上かつ0.6質量%以下、Al濃度が0.13質量%以上かつ0.8質量%以下、Eu濃度が0.5質量%以上かつ4質量%以下である場合、発光ピーク波長が520~530nmの範囲に短波長化し、かつ高い発光効率を示し、またスペクトル線幅が狭小化した。またEu付活β型SiAlON蛍光体の結晶中の酸素濃度の0.6質量%より大きい場合は、発光スペクトルの半値全幅は、53~55nm程度の値であったのに対し、酸素濃度が0.6質量%以下の場合、45~52nmの値となり、酸素濃度が低いほど狭い傾向がみられる。このため、液晶表示装置におけるサブピクセルが赤(R)、緑(G)、青(B)、黄(Y)の4色となっているものに用いた場合、後述するように緑色の色純度が高まることにより色再現領域が大幅に向上する。
 これは、上記組成のEu付活β型SiAlON蛍光体特有の発光スペクトルによるものである。図8に示したように上記組成のEu付活β型SiAlON蛍光体の緑色発光スペクトルは、詳細に見るといくつかの発光ピークが重畳したものである。この部分を拡大した図を図10に示す。発光ピークは、514nm、527nmおよび537nm付近の3つのサブピークを有する。Eu付活β型SiAlON蛍光体はこのような複数の発光ピークの重畳で発光スペクトルを形成しているが、上記のような特別な組成を有する場合に、全体の発光スペクトル半値幅が減少し、サブピークが明瞭になる。このため、実施例1の場合に比べ半値幅が狭く、発光ピークが短波長化し、緑色の色純度の高い発光が得られる。このときの発光ピーク波長は上記ピークの内の527nmのピークが主ピークとなった場合である。実際には、他の組成の違いや、熱エネルギーによる他のピークとの競合により、520~530nmにピークが現れるが、この場合が最も良好なバックライト特性が得られる。
 なお、上記のような発光スペクトルは、Eu付活β型SiAlON蛍光体の結晶中に含まれる酸素濃度が0.1質量%以上かつ0.6質量%以下、Al濃度が0.13質量%以上かつ0.8質量%以下、Eu濃度が0.5質量%以上かつ4質量%以下である場合に得られるが、酸素濃度が0.2質量%以上かつ0.4質量%以下、Al濃度が0.2質量%以上かつ0.7質量%以下、Eu濃度が0.5質量%以上かつ1質量%以下とすることがさらに望ましい。酸素濃度が0.2質量%未満の場合、蛍光体粒子の成長が不十分で発光強度が弱い。また酸素濃度を0.4質量%以下とすることにより発光イオンである2価Euの近傍の配位構造の均一性が高まりスペクトル半値幅を狭くできる。また、Al濃度を0.2質量%以上かつ0.7質量%以下とすることでサブピークの内の527nm付近のピークの強度を最大とすることができる。また、Eu濃度を0.5質量%以上かつ1質量%以下とすることでEuイオン周辺の電荷バランスを最適にできる。Euイオン周辺の電荷バランスが適切でないと、発光に寄与しない3価のEuイオン濃度が増大し緑色発光に寄与する2価のEuイオン濃度が低くなってしまう。
 なお、上記実施例では本発明に適した蛍光体を例示したが、記載以外の蛍光体であってもよく、赤(R)、緑(G)、青(B)、黄(Y)フィルタとのマッチングに優れた波長を有する蛍光体であれば、その他の蛍光体であってもよい。
 <実施例3>
 図11に、サイド発光型でなく上面発光型としたこと以外は実施例1で用いたのと同様の発光装置をバックライト光源として組み込み、赤(R)、緑(G)、青(B)、黄(Y)のサブピクセルを備えた液晶表示装置およびそれを駆動する回路を備える液晶テレビジョン80の構成図を示す。ここで、サイド発光型でなく上面発光型としたこと以外は実施例1で用いたのと同様の発光装置を液晶表示装置パネルの背面にマトリクス状に配列し、背面からLED光を照射するエリアアクティブ型(ローカルディミング型)の液晶パネルである液晶表示装置81を用いた画面サイズ46インチの液晶テレビジョンを作製した。液晶表示装置81は、各ピクセル82が赤(R)、緑(G)、青(B)、黄(Y)のサブピクセルからなっている。
 図11に示す例の液晶テレビジョン80は、外部アンテナ83から得られた放送信号を元に、R0(赤)、G0(緑)、B0(青)の信号を生成する回路84と、R0(赤)、G0(緑)、B0(青)の信号よりRGBY(赤、緑、青、黄)の信号を生成する回路85と、映像信号を元にLCD駆動信号を生成する液晶駆動回路86と、LCD81と、LCD81および各回路を支持する筐体87を備えている。回路86において、Y(黄)信号は原則としてG(緑)信号とR(赤)信号より演算されるが、全体の表示色を最適化するためその加算比率を各信号レベルに応じて調整している(たとえば完全な緑のみを表示する場合は、黄信号はゼロになる)。
 本テレビジョンにサンプル画像を表示して人間による主観的な評価を行った。特に、果物・肌色など緑色・黄色成分を多く含むサンプル画像に関して、色再現性の向上により良好な評価結果が得られた。動画像を滑らかに表示するため、液晶画面のリフレッシュレートは120Hzまたは240Hzとした。エリアアクティブ駆動でこのような高速のリフレッシュレートによる画像表示を行うため、各リフレッシュ毎に生成されるエリア毎の必要輝度情報に応じて、各エリアを受け持つ発光装置への駆動信号を設定する。駆動信号は、リフレッシュレートよりも高い周波数である600HzのPWM(Pulse width modulation)信号とした。
 発光装置に用いる蛍光体の応答速度はPWM信号には必ずしも追従する必要はないが、リフレッシュレートには追従する必要がある。緑色蛍光体β型SiAlONの1/e蛍光寿命が約1μsec、赤色蛍光体(Ca0.99Eu0.01)AlSiN3も同じく、1/e蛍光寿命が約1μsecと高速であるので、240Hzのリフレッシュレートであってもエリアアクティブ駆動に追従することができた。
 なお、実施例3は液晶テレビジョンとしたが、コンピュータ用液晶モニタとしても色再現域の広いものが得られる。また、全体として高NTSC比であっても比較的低消費電力であるため、AC電源コードレスタイプの液晶モニタ・液晶テレビジョンとして好適である。
 <実施例4>
 パッケージ12に搭載された発光素子13と、緑色蛍光体15および赤色蛍光体16を媒質17中に分散させた波長変換部14とを備える図2に示したような発光装置11を作製した。発光装置11において、発光素子13としては青色である450nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用い、緑色蛍光体15としてはピーク波長520nm前後の(Sr0.99Eu0.013Si13Al3221、赤色蛍光体16としては(Ca0.99Eu0.01)AlSiN3なる組成のものを用いた。これらの緑色蛍光体15と赤色蛍光体16とを1:0.35の割合で混合したものを、媒質17であるシリコーン樹脂中に分散させて波長変換部14を作製した。
 この波長変換部14を組み込んだ発光装置11およびこの発光装置11をバックライトとして用いた液晶表示装置1について、その特性を評価した。その結果を表1に示す。また、実施例4の発光装置の発光スペクトル特性を図12に示す。
 <比較例2>
 緑色蛍光体として(Sr0.48Ba0.47Eu0.052SiO4(ピーク波長:520nm前後)、赤色蛍光体として(Ca0.99Eu0.01)AlSiN3なる組成のものを用いたこと以外は実施例4と同様にして発光装置を作製した。この発光装置をバックライトとして用いた液晶表示装置について、その特性を評価した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から判るように、実施例4の発光装置は比較例2に比し、温度特性が著しく向上し、また、実施例4の発光装置をバックライトとして用いた液晶表示装置は比較例2に比し、色再現性(NTSC比)が更に向上することが判る。このように、得られた発光装置は、各種(特に大型)液晶表示装置用バックライトとして好適な特性を有している。
 <実施例5>
 発光素子として、青色である440nmにピーク波長を有する窒化ガリウム(GaN)系半導体を用い、緑色蛍光体として(Sr0.95Eu0.055Si21Al5235(ピーク波長:525nm前後)、赤色蛍光体として(Ca0.98Eu0.02)AlSiN3なる組成のものを用いたこと以外は実施例4と同様にして発光装置11を作製した。このようにして作製した発光装置およびこの発光装置をバックライトとして用いた液晶表示装置について、その特性を評価した。結果を表2に示す。
 <比較例3>
 緑色蛍光体として(Sr0.53Ba0.42Eu0.052SiO4(ピーク波長:525nm前後)なる組成のものを用いたこと以外は実施例5と同様にして発光装置を作製した。このようにして作製した発光装置およびこの発光装置をバックライトとして用いた液晶表示装置について、その特性を評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から判るように、実施例5の発光装置は比較例3に比し、温度特性が著しく向上するとともに、当該発光装置を用いた液晶表示装置は、色再現性(NTSC比)がさらに向上していることが判る。すなわち、各種(特に大型)液晶表示装置用のバックライトとして好適な特性を有している。
 <実施例6~8、比較例4~6>
 下記表3に示すようなピーク波長の発光素子、緑色蛍光体、赤色蛍光体をそれぞれ用いたこと以外は実施例4と同様にして発光装置を作製した。それぞれ作製した発光装置およびそれを用いた液晶表示装置について種々の特性を評価した結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3、4から判るように、実施例6~8で作製した発光装置を用いた液晶表示装置は、比較例4~6で作製した発光装置を用いた液晶表示装置に比し、色再現性(NTSC比)がさらに向上し、温度特性が著しく向上することが判る。このことは、各種(特に大型)液晶表示装置用バックライトとして好適な特性を有している。
 なお、この種の発光装置に対して、用いられる蛍光体の温度特性の改善を成したものとして、β型SiAlONである2価のユーロピウム付活酸窒化物よりなる緑色系発光蛍光体を用いることにより、色再現性(NTSC比)および温度特性の良好な液晶表示装置が得られることが知られている。これに対し、上述した一般式(1)で実質的に表わされる2価のユーロピウム付活酸窒化物蛍光体を用いた場合には、より短波長即ち515~525nmの発光が可能となり、このような蛍光体を用いることで、色再現性(NTSC比)の高い液晶表示装置を提供することができる。
 図13は、実施例4と略同じ発光色度となるよう調整した波長変換部を作製した、β型SiAlON蛍光体と緑色蛍光体として用いた発光装置の発光スペクトルを示すグラフであり、縦軸は強度(任意単位)、横軸は波長(nm)である。図13において、緑色帯域の発光のピークが略530~540nmであり、図12と比較して緑色帯域の発光が長波長に寄っており、また同時に、赤色帯域の発光が抑えられてバランスし、実施例4と同じ発光色度となる。
 図14は、本発明の液晶表示装置の色再現性領域の例を示す色度図を示す。図14において、参照符号61は、ユーロピウム付活酸窒化物β型SiAlON緑色蛍光体を用いた発光装置をバックライト光源として組み込んだ液晶表示装置の色再現域、参照符号60は、実施例4で作製した発光装置をバックライト光源として組み込んだ液晶表示装置の色再現域を示している。実施例4で作製した液晶表示装置の色再現域60がβ型SiAlON蛍光体を用いた発光装置の色再現域61と比較して特に緑色域の再現性が向上していることが分かる。
 <実施例9>
 赤(R)、緑(G)、青(B)、黄(Y)の4色となっているサブピクセルを用いたこと以外は実施例4と同様にして、図1に示した構造の液晶表示装置を作製した。実施例4の蛍光体を用いた発光装置から発した光は導光板に導入され、導光板から上に出射した光は液晶セルの各ピクセルを透過する。1つのピクセルは、4つのサブピクセル赤(R)、緑(G)、青(B)、黄(Y)からなり、各サブピクセルは個別に駆動される。なお、1つのピクセルは、サブピクセルを上下左右に4つ並べたが、一つのピクセルにサブピクセルを4つ並列に配置するなど他の配置でも良い。
 図15は、実施例9に用いた赤(R)、緑(G)、青(B)、黄(Y)フィルタの透過スペクトル特性を模式的に示す図である。青色LEDと蛍光体を用いた発光装置は比較的ブロードなスペクトルを有するので、赤(R)、緑(G)、青(B)の3つのフィルタだけでその領域をカバーしようとするとそれぞれのフィルタとして透過帯域の広いものを用いる必要があり、そのため色純度が低下し色再現域が低下する。黄(Y)フィルタを用いることにより、青色LEDと蛍光体を用いた発光装置のブロードなスペクトル全体を捉えて輝度を向上することができる。
 図11は、実施例9で作製した液晶表示装置の色再現域70および実施例4で作製した液晶表示装置の色再現域60を示す色度図を示す。図11から、単に黄色のサブピクセルを加えただけでなく、それにより隣接する色である緑のサブピクセルの中心透過波長を黄色から離れるように短波長にずらし、液晶表示装置の色再現性を広げることができたことが分かる。つまり、本実施例では黄(Y)フィルタを用いることにより、緑(G)フィルタとして短波長かつ狭帯域のものを用いることができた。また本実施例においては、緑(G)フィルタの中心波長を520nmとした。色再現域を広くするためには、緑(G)フィルタの中心波長としては530nm以下、好ましくは520nm以下が適当である。ただし青色との重なりを少なくするためには490nm以上、好ましくは500nm以上が良い。
 なお、赤(R)、緑(G)、青(B)、黄(Y)フィルタとの組合せに適した赤色蛍光体のピーク波長としては、液晶表示装置側で赤色フィルタを用い、蛍光体のスペクトルが長波長側にテールを引くことを考えると、波長590nm以上であれば良く、波長610nm以上であればなお良い。一方上限としては、長波長では視感度が悪いため680nm以下が適当であり、660nm以下であればなお良い。また、緑色蛍光体のピーク波長としては、緑色フィルタを短波長にして色再現域を向上できることを考えると、波長510nm以上530nm以下が良く、さらに好ましくは波長515nm以上525nm以下が良い。
 本実施例においては、導光板を用いたエッジライト型液晶表示装置としたが、液晶表示装置の背面に発光装置を配置し導光板を用いない背面照射型液晶表示装置としてもよい。背面照射型液晶表示装置は、画素毎にバックライトの明るさを変調することができるため省エネルギーに優れ、また明・暗のコントラスト比を増大させることができる。
 実施例9においては、実施例4に用いた蛍光体を用いているが、実施例4以外の実施例に用いた蛍光体を用いてもよく、赤(R)、緑(G)、青(B)、黄(Y)フィルタとのマッチングに優れた波長を有する蛍光体であれば、各比較例の蛍光体、その他の蛍光体であってもよい。
 <実施例10>
 サイド発光型でなく上面発光型としたこと以外は実施例4で用いたのと同様の発光装置をバックライト光源として組み込み、図11に示したのと同様の構成の赤(R)、緑(G)、青(B)、黄(Y)のサブピクセルを備えた液晶表示装置およびそれを駆動する回路を備える液晶テレビジョン80を作製した。実施例3で説明したのと同様の部分については説明を省略する。
 本テレビジョンにサンプル画像を表示して人間による主観的な評価を行った。特に、果物・肌色など緑色・黄色成分を多く含むサンプル画像に関して、色再現性の向上により良好な評価結果が得られた。
 動画像を滑らかに表示するため、液晶画面のリフレッシュレートは120Hzまたは240Hzとした。エリアアクティブ駆動でこのような高速のリフレッシュレートによる画像表示を行うため、各リフレッシュ毎に生成されるエリア毎の必要輝度情報に応じて、各エリアを受け持つ発光装置への駆動信号を設定する。駆動信号は、リフレッシュレートよりも高い周波数である600HzのPWM(Pulse width modulation)信号とした。
 発光装置に用いる蛍光体の応答速度はPWM信号には必ずしも追従する必要はないが、リフレッシュレートには追従する必要がある。緑色蛍光体(Sr0.99Eu0.013Si13Al3221(ピーク波長520nm前後)の1/e蛍光寿命が約1μsec、赤色蛍光体(Ca0.99Eu0.01)AlSiN3も同じく、1/e蛍光寿命が約1μsecと高速であるので、240Hzのリフレッシュレートであってもエリアアクティブ駆動に追従することができた。
 液晶表示装置としては、赤(R)、緑(G)、青(B)、黄(Y)のサブピクセルを用いた場合としたが、別のサブピクセル、例えば白(W)、シアン(C)、マゼンダ(M)のうち1つまたは複数のサブピクセルを加えても、同様の効果を有する。他の色が加わる場合には、R0、G0、B0の信号よりその色の信号も生成する必要がある。
 なお、実施例10は液晶テレビジョンとしたが、コンピュータ用液晶モニタとしても色再現域の広いものが得られる。また、全体として高NTSC比であっても比較的低消費電力であるため、AC電源コードレスタイプの液晶モニタ・液晶テレビジョンとして好適である。
 なお、以上の各実施例における発光装置の評価にあたっては、明るさに関しては順電流(IF)20mAにて点灯し、発光装置からの光出力(光電流)を測定した。また、色度(x,y)については、発光装置から放射された光を大塚電子製MCPD-2000にて測定し、その値を求めた。また、色再現性(NTSC比)は、作製した発光装置を液晶表示装置のバックライト光源として組み込み、(株)トプコン製Bm5にて測定し、その値を求めた。
 本発明における、LCDは色再現性(NTSC比)が高く高輝度、高精彩な画像を得ることができる。特に本発明においては特定の蛍光体は、RGBYの4色のサブピクセルを有する液晶表示装置と組み合わせることで、色再現性(NTSC比)が高く、表示画像が明るいため、小型、中型および大型の液晶表示装置に適用できる。
 1,50,81 液晶表示装置、2 バックライト、3 導光板、4 液晶セル、11 発光装置、12 パッケージ、13 発光素子、14 波長変換部、15 緑色蛍光体、16 赤色蛍光体、17 媒質、5,82 ピクセル、51 実装基板、80 液晶テレビジョン、83 外部アンテナ、84 R000信号生成回路、85 RGBY信号生成回路、86 液晶駆動回路、87 筐体。

Claims (20)

  1.  バックライトとフィルタを備えた液晶表示装置であって、
     前記バックライトは、青色発光する発光素子と、前記発光素子から発する一次光の一部を吸収して第1の二次光を発する緑色蛍光体および第2の二次光を発する赤色蛍光体を含む発光装置を備え、
     前記緑色蛍光体が、β型Si34結晶構造を持つ窒化物または酸窒化物の結晶中にEuとAlが固溶したβ型SiAlON蛍光体であり、
     前記フィルタは、前記液晶表示装置の各ピクセルに配されたサブピクセル毎に、赤(R)、緑(G)、青(B)と黄(Y)の各色用のフィルタが平面上に配置されたものであることを特徴とする液晶表示装置。
  2.  前記緑色蛍光体の結晶中に含まれる酸素濃度が0.1質量%以上かつ0.6質量%以下であることを特徴とする請求の範囲第1項に記載の液晶表示装置。
  3.  前記緑色蛍光体の結晶中のAl濃度が0.13質量%以上かつ0.8質量%以下であることを特徴とする請求の範囲第1項に記載の液晶表示装置。
  4.  前記緑色蛍光体の結晶中のEu濃度が0.5質量%以上かつ4質量%以下であることを特徴とする請求の範囲第1項に記載の液晶表示装置。
  5.  前記緑色蛍光体の発光ピーク波長が520~537nmの範囲にあることを特徴とする請求の範囲第1項に記載の液晶表示装置。
  6.  バックライトとフィルタを備えた液晶表示装置であって、
     前記バックライトは、青色発光する発光素子と、前記発光素子から発する一次光の一部を吸収して第1の二次光を発する緑色蛍光体および第2の二次光を発する赤色蛍光体を含む発光装置を備え、
     前記緑色蛍光体が、一般式(1)
      (M11-xEuxaSibAlOcd    (1)
    (一般式(1)中、M1は、Ca、SrおよびBaから選ばれる少なくとも1種のアルカリ土類金属元素を示し、0.001≦x≦0.3、0.9≦a≦1.5、4.0≦b≦6.0、0.4≦c≦1.0、6.0≦d≦11.0を満足する数である。)
    で表される2価のユーロピウム付活酸窒化物蛍光体であり、
     前記フィルタは、前記液晶表示装置の各ピクセルに配されたサブピクセル毎に、赤(R)、緑(G)、青(B)と黄(Y)の各色用のフィルタが平面上に配置されたものであることを特徴とする液晶表示装置。
  7.  前記一般式(1)におけるM1はSrであることを特徴とする請求の範囲第6項に記載の発光装置。
  8.  前記緑色蛍光体の発光ピーク波長が510~530nmの範囲にあることを特徴とする請求の範囲第6項に記載の発光装置。
  9.  前記赤色蛍光体が、一般式(2)
      (M21-yEuy)M3SiN3    (2)
    (一般式(2)中、M2は、Mg、Ca、SrおよびBaから選ばれる少なくとも1種のアルカリ土類金属元素であり、M3は、Al、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の3価の金属元素を示し、0.001≦y≦0.10を満足する数である。)
    で表される2価のユーロピウム付活窒化物蛍光体であることを特徴とする請求の範囲第1項または第6項に記載の発光装置。
  10.  前記一般式(2)におけるM3はAl、GaおよびInから選ばれる少なくとも1種の元素であることを特徴とする請求の範囲第9項に記載の発光装置。
  11.  バックライトとフィルタを備えた液晶表示装置であって、
     前記バックライトは、青色発光する発光素子と、前記発光素子から発する一次光の一部を吸収して第1の二次光を発する緑色蛍光体および第2の二次光を発する赤色蛍光体を含む発光装置を備え、
     前記緑色蛍光体の発光ピーク波長が510~537nmの範囲にあり、
     前記フィルタは、前記液晶表示装置の各ピクセルに配されたサブピクセル毎に、赤(R)、緑(G)、青(B)と黄(Y)の各色用のフィルタが平面上に配置されたものであることを特徴とする液晶表示装置。
  12.  前記赤色蛍光体の発光ピーク波長が630~680nmの範囲にあることを特徴とする請求の範囲第11項に記載の発光装置。
  13.  前記緑色蛍光体の発光スペクトルの半値全幅が40~55nmの範囲にあることを特徴とする請求の範囲第1項または第11項に記載の液晶表示装置。
  14.  前記緑色用のフィルタは、波長490~530nmに透過率のピーク波長を有することを特徴とする請求の範囲第11項に記載の液晶表示装置。
  15.  前記発光素子が430~480nmのピークを有する一次光を発する窒化ガリウム(GaN)系半導体であることを特徴とする、請求の範囲第1項、第6項または第11項に記載の発光装置。
  16.  前記緑色蛍光体が、β型Si34結晶構造を持つ窒化物または酸窒化物の結晶中にEuとAlが固溶したβ型SiAlON蛍光体である、請求の範囲第11項に記載の発光装置。
  17.  前記緑色蛍光体が、一般式(1)
      (M11-xEuxaSibAlOcd    (1)
    (一般式(1)中、M1は、Ca、SrおよびBaから選ばれる少なくとも1種のアルカリ土類金属元素を示し、0.001≦x≦0.3、0.9≦a≦1.5、4.0≦b≦6.0、0.4≦c≦1.0、6.0≦d≦11.0を満足する数である。)
    で表される2価のユーロピウム付活酸窒化物蛍光体であることを特徴とする請求の範囲第11項に記載の発光装置。
  18.  前記赤色蛍光体が、一般式(2)
      (M21-yEuy)M3SiN3    (2)
    (一般式(2)中、M2は、Mg、Ca、SrおよびBaから選ばれる少なくとも1種のアルカリ土類金属元素であり、M3は、Al、Ga、In、Sc、Y、La、GdおよびLuから選ばれる少なくとも1種の3価の金属元素を示し、0.001≦y≦0.10を満足する数である。)
    で表される2価のユーロピウム付活窒化物蛍光体であることを特徴とする請求の範囲第11項に記載の液晶表示装置。
  19.  RGB信号をRGBY信号に変換する回路とともに筐体に保持されていることを特徴とする請求の範囲第11項に記載の液晶表示装置。
  20.  リフレッシュレートが120Hz以上であり、前記リフレッシュレートに追従して液晶画面の各エリアを受け持つ前記発光装置の明るさを変化させるローカルディミング駆動を行なうことを特徴とする請求の範囲第11項に記載の液晶表示装置。
PCT/JP2010/064444 2009-08-31 2010-08-26 液晶表示装置 WO2011024882A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/393,327 US20120162573A1 (en) 2009-08-31 2010-08-26 Liquid crystal display
BR112012004505A BR112012004505A2 (pt) 2009-08-31 2010-08-26 dispositivo de cristal líquido
EP10811931.4A EP2474856A4 (en) 2009-08-31 2010-08-26 LIQUID CRYSTAL DISPLAY
CN2010800383761A CN102483543A (zh) 2009-08-31 2010-08-26 液晶显示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-200444 2009-08-31
JP2009200444A JP5403607B2 (ja) 2009-08-31 2009-08-31 液晶表示装置
JP2010-138523 2010-06-17
JP2010138523A JP2012003073A (ja) 2010-06-17 2010-06-17 液晶表示装置

Publications (1)

Publication Number Publication Date
WO2011024882A1 true WO2011024882A1 (ja) 2011-03-03

Family

ID=43627982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064444 WO2011024882A1 (ja) 2009-08-31 2010-08-26 液晶表示装置

Country Status (6)

Country Link
US (1) US20120162573A1 (ja)
EP (1) EP2474856A4 (ja)
CN (1) CN102483543A (ja)
BR (1) BR112012004505A2 (ja)
TW (1) TWI456307B (ja)
WO (1) WO2011024882A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110156575A1 (en) * 2009-12-30 2011-06-30 Au Optronics Corporation Display Device with Quantum Dot Phosphor and Manufacturing Method Thereof
EP2497814A1 (en) * 2011-03-09 2012-09-12 Kabushiki Kaisha Toshiba Fluorescent substance and light-emitting device employing the same
US20130241397A1 (en) * 2010-09-28 2013-09-19 Mitsubishi Chemical Corporation Phosphor and light-emitting device using same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101177480B1 (ko) * 2011-02-14 2012-08-24 엘지전자 주식회사 조명 장치 및 이를 포함하는 디스플레이 장치
KR101794653B1 (ko) * 2011-07-05 2017-11-08 엘지디스플레이 주식회사 광변환층을 포함한 액정표시패널 및 액정표시장치
JP2013037165A (ja) * 2011-08-08 2013-02-21 Sony Corp 表示装置およびその製造方法、ならびに電子機器
US10035952B2 (en) 2012-10-25 2018-07-31 Lumileds Llc PDMS-based ligands for quantum dots in silicones
WO2014064555A1 (en) 2012-10-25 2014-05-01 Koninklijke Philips N.V. Pdms-based ligands for quantum dots in silicones
US9835897B2 (en) 2012-11-14 2017-12-05 Innolux Corporation Display module
CN103809325B (zh) * 2012-11-14 2016-09-07 群康科技(深圳)有限公司 显示模块
CN103207489A (zh) 2013-03-27 2013-07-17 京东方科技集团股份有限公司 一种像素结构及其驱动方法、显示装置
KR20150106029A (ko) * 2014-03-10 2015-09-21 삼성디스플레이 주식회사 백라이트 어셈블리 및 이를 포함하는 표시 장치
EP3116974B1 (en) 2014-03-13 2017-05-10 Koninklijke Philips N.V. Supertetrahedron phosphor for solid-state lighting
JP5878579B2 (ja) * 2014-03-31 2016-03-08 シャープ株式会社 表示装置及びテレビ受信装置
CN104133320A (zh) * 2014-08-20 2014-11-05 深圳市华星光电技术有限公司 彩色液晶显示模组结构及其背光模组
US10261360B2 (en) * 2014-10-10 2019-04-16 Sharp Kabushiki Kaisha Liquid crystal display apparatus
CN105633253A (zh) * 2014-11-21 2016-06-01 有研稀土新材料股份有限公司 白光led、背光源及液晶显示装置
WO2016104185A1 (ja) * 2014-12-26 2016-06-30 シャープ株式会社 表示装置
US10381528B2 (en) * 2015-08-31 2019-08-13 Sharp Kabushiki Kaisha Image display apparatus
US9966266B2 (en) * 2016-04-25 2018-05-08 United Microelectronics Corp. Apparatus for semiconductor wafer treatment and semiconductor wafer treatment
JP6879211B2 (ja) 2016-10-04 2021-06-02 東レ株式会社 光源ユニット、ならびにそれを用いたディスプレイおよび照明装置
US20190064595A1 (en) * 2017-08-28 2019-02-28 Radiant Choice Limited Display system
JP7173130B2 (ja) * 2018-03-30 2022-11-16 Jsr株式会社 表示装置及びその作製方法、並びに液晶配向剤及び硬化性組成物

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001209047A (ja) * 2000-01-25 2001-08-03 Sharp Corp 液晶表示装置
JP2003121838A (ja) 2001-08-06 2003-04-23 Toray Ind Inc 液晶表示装置
JP2004529396A (ja) 2001-06-11 2004-09-24 ゲノア・テクノロジーズ・リミテッド カラーディスプレイ用の装置、システム、および方法
JP2004287323A (ja) 2003-03-25 2004-10-14 Seiko Instruments Inc 半透過型液晶表示装置
JP2005255895A (ja) 2004-03-12 2005-09-22 National Institute For Materials Science 蛍光体とその製造方法
JP2006162706A (ja) 2004-12-02 2006-06-22 Sharp Corp カラーフィルタ、表示パネル、表示装置、ならびにカラーフィルタの製造方法
WO2007066733A1 (ja) 2005-12-08 2007-06-14 National Institute For Materials Science 蛍光体とその製造方法および発光器具
WO2007105631A1 (ja) 2006-03-10 2007-09-20 Kabushiki Kaisha Toshiba 蛍光体および発光装置
JP2008287118A (ja) * 2007-05-18 2008-11-27 Semiconductor Energy Lab Co Ltd 液晶表示装置およびその駆動方法
JP2008303331A (ja) 2007-06-08 2008-12-18 Sharp Corp 蛍光体、発光装置および画像表示装置
JP2009010315A (ja) 2007-05-30 2009-01-15 Sharp Corp 蛍光体の製造方法、発光装置および画像表示装置
WO2009008250A1 (ja) * 2007-07-09 2009-01-15 Sharp Kabushiki Kaisha 蛍光体粒子群およびそれを用いた発光装置
WO2009031495A1 (ja) * 2007-09-03 2009-03-12 Showa Denko K.K. 蛍光体及びその製造方法、並びにそれを用いた発光装置
JP2009167328A (ja) * 2008-01-18 2009-07-30 National Institute For Materials Science 蛍光体とその製造方法および発光器具

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006015175D1 (de) * 2005-03-22 2010-08-12 Nat Inst For Materials Science Leuchtstoff und herstellungsverfahren dafür
US7916245B2 (en) * 2006-03-20 2011-03-29 Sharp Kabushiki Kaisha Display device
JP5016848B2 (ja) * 2006-05-19 2012-09-05 キヤノン株式会社 多原色ディスプレイ
WO2007148519A1 (ja) * 2006-06-19 2007-12-27 Sharp Kabushiki Kaisha 表示装置
US9279079B2 (en) * 2007-05-30 2016-03-08 Sharp Kabushiki Kaisha Method of manufacturing phosphor, light-emitting device, and image display apparatus
JP2009019163A (ja) * 2007-07-13 2009-01-29 Sharp Corp 発光装置用蛍光体粒子集合体、発光装置、および液晶表示用バックライト装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001209047A (ja) * 2000-01-25 2001-08-03 Sharp Corp 液晶表示装置
JP2004529396A (ja) 2001-06-11 2004-09-24 ゲノア・テクノロジーズ・リミテッド カラーディスプレイ用の装置、システム、および方法
JP2003121838A (ja) 2001-08-06 2003-04-23 Toray Ind Inc 液晶表示装置
JP2004287323A (ja) 2003-03-25 2004-10-14 Seiko Instruments Inc 半透過型液晶表示装置
JP2005255895A (ja) 2004-03-12 2005-09-22 National Institute For Materials Science 蛍光体とその製造方法
JP2006162706A (ja) 2004-12-02 2006-06-22 Sharp Corp カラーフィルタ、表示パネル、表示装置、ならびにカラーフィルタの製造方法
WO2007066733A1 (ja) 2005-12-08 2007-06-14 National Institute For Materials Science 蛍光体とその製造方法および発光器具
WO2007105631A1 (ja) 2006-03-10 2007-09-20 Kabushiki Kaisha Toshiba 蛍光体および発光装置
JP2008287118A (ja) * 2007-05-18 2008-11-27 Semiconductor Energy Lab Co Ltd 液晶表示装置およびその駆動方法
JP2009010315A (ja) 2007-05-30 2009-01-15 Sharp Corp 蛍光体の製造方法、発光装置および画像表示装置
JP2008303331A (ja) 2007-06-08 2008-12-18 Sharp Corp 蛍光体、発光装置および画像表示装置
WO2009008250A1 (ja) * 2007-07-09 2009-01-15 Sharp Kabushiki Kaisha 蛍光体粒子群およびそれを用いた発光装置
WO2009031495A1 (ja) * 2007-09-03 2009-03-12 Showa Denko K.K. 蛍光体及びその製造方法、並びにそれを用いた発光装置
JP2009167328A (ja) * 2008-01-18 2009-07-30 National Institute For Materials Science 蛍光体とその製造方法および発光器具

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2474856A4
TOSHIBA REVIEW, vol. 64, no. 4, 2009, pages 60 - 63

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110156575A1 (en) * 2009-12-30 2011-06-30 Au Optronics Corporation Display Device with Quantum Dot Phosphor and Manufacturing Method Thereof
US8269411B2 (en) * 2009-12-30 2012-09-18 Au Optronics Corporation Display device with quantum dot phosphor and manufacturing method thereof
US20130241397A1 (en) * 2010-09-28 2013-09-19 Mitsubishi Chemical Corporation Phosphor and light-emitting device using same
US9120974B2 (en) * 2010-09-28 2015-09-01 Mitsubishi Chemical Corporation Phosphor and light-emitting device using same
EP2497814A1 (en) * 2011-03-09 2012-09-12 Kabushiki Kaisha Toshiba Fluorescent substance and light-emitting device employing the same

Also Published As

Publication number Publication date
EP2474856A4 (en) 2013-08-14
EP2474856A1 (en) 2012-07-11
TW201207504A (en) 2012-02-16
CN102483543A (zh) 2012-05-30
US20120162573A1 (en) 2012-06-28
BR112012004505A2 (pt) 2016-03-29
TWI456307B (zh) 2014-10-11

Similar Documents

Publication Publication Date Title
WO2011024882A1 (ja) 液晶表示装置
US9455381B2 (en) Light-emitting device
US20150022998A1 (en) White Light Illumination System with Narrow Band Green Phosphor and Multiple-Wavelength Excitation
JP6212589B2 (ja) 発光装置および画像表示装置
JP6670804B2 (ja) 発光装置及び画像表示装置
JP2010093132A (ja) 半導体発光装置およびそれを用いた画像表示装置、液晶表示装置
CN106479489B (zh) 发光装置和图像显示装置
JP6082833B1 (ja) 発光装置および画像表示装置
JP5403607B2 (ja) 液晶表示装置
US20140218658A1 (en) Phosphor, light emitting apparatus, and liquid crystal display apparatus using the same
JP2012003073A (ja) 液晶表示装置
JP6122528B2 (ja) 発光装置および画像表示装置
JP2016207817A (ja) 発光装置および画像表示装置
JP2009218422A (ja) 半導体発光装置および画像表示装置
JP4979020B2 (ja) 画像表示装置
JP6122527B2 (ja) 発光装置および画像表示装置
JP2009081187A (ja) 半導体発光装置および画像表示装置
KR100665221B1 (ko) 백색 발광 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080038376.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811931

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010811931

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13393327

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012004505

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012004505

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120229