WO2011021255A1 - 固体電解コンデンサ - Google Patents

固体電解コンデンサ Download PDF

Info

Publication number
WO2011021255A1
WO2011021255A1 PCT/JP2009/004035 JP2009004035W WO2011021255A1 WO 2011021255 A1 WO2011021255 A1 WO 2011021255A1 JP 2009004035 W JP2009004035 W JP 2009004035W WO 2011021255 A1 WO2011021255 A1 WO 2011021255A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor element
anode
electrode portion
terminal plate
cathode
Prior art date
Application number
PCT/JP2009/004035
Other languages
English (en)
French (fr)
Inventor
安藤進
白勢茂樹
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Priority to JP2011527495A priority Critical patent/JPWO2011021255A1/ja
Priority to CN2009801610416A priority patent/CN102483995A/zh
Priority to US13/388,166 priority patent/US8724295B2/en
Priority to PCT/JP2009/004035 priority patent/WO2011021255A1/ja
Publication of WO2011021255A1 publication Critical patent/WO2011021255A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon

Definitions

  • the present invention relates to a surface mount type solid electrolytic capacitor using a conductive polymer as a solid electrolyte and being surface mountable among capacitors used in various electronic devices.
  • solid electrolytic capacitors have been arranged around LSIs such as CPUs represented by computers, LSIs for image processing of televisions, memories that exchange data with these LSIs, etc. Used as a supply application.
  • This solid electrolytic capacitor (1) Small size and large capacity, (2) Low ESR (Equivalent Series Resistance) corresponding to high frequency, (3) Low ESL (equivalent series inductance) with excellent noise removal and transient response Is strongly demanded.
  • the following method is generally known as a method for reducing the ESL of a solid electrolytic capacitor.
  • (a) Make the current path length as short as possible.
  • (b) The magnetic field formed by the current path is canceled by the magnetic field formed by another current path.
  • (c) The current path is divided into n and the effective ESL is reduced to 1 / n.
  • a solid electrolytic capacitor disclosed in the following patent document is known as a solid electrolytic capacitor that achieves low ESR and low ESL of such a solid electrolytic capacitor.
  • the capacitance part of the solid electrolytic capacitor is the interface of the dielectric oxide film, and the distance from the interface of the dielectric oxide film to the anode electrode and the cathode electrode, which are current extraction ports, is Short is preferred.
  • the invention described in Patent Document 1 has a limit in shortening the distance between the two electrodes because the anode electrode and the cathode electrode are arranged with the thick substrate interposed therebetween. Further, since both electrodes of Patent Document 1 are provided through the substrate, it is necessary to form a through hole in the substrate for the arrangement, and it is difficult to shorten the distance between both electrodes due to the limitation of drilling processing. Met.
  • the object of the present invention is to reduce the internal resistance of the solid electrolytic capacitor to reduce the ESR, and to reduce the ESL by using the two ESL reducing elements described above, thereby quickly supplying power during a transient response. It is an object of the present invention to provide a solid electrolytic capacitor capable of performing the above.
  • the solid electrolytic capacitor of the present invention has the following configuration.
  • An anode electrode portion made of a thin metal plate and a cathode electrode portion made of the same thin metal plate are arranged on the same plane with a gap therebetween.
  • An insulating resin is interposed in the gap between the anode electrode portion and the cathode electrode portion.
  • the insulating resin electrically insulates the anode electrode portion and the cathode electrode portion and integrates both electrodes into a sheet shape to constitute a terminal plate.
  • An anode lead portion and a cathode lead portion are formed on the same surface of the capacitor element body, and the surfaces serve as connection surfaces with the terminal plate.
  • a metal plate constituting the anode electrode part of the terminal plate is formed on the anode lead part of the element, and a cathode electrode part of the terminal plate is constituted on the cathode lead part of the element. Electrically connect the metal plates.
  • the distance from the anode lead portion and the cathode lead portion of the capacitor element to the anode electrode portion and the cathode electrode portion of the terminal plate, which is the outlet of current This can be achieved only by the thickness, and the current path can be shortened.
  • the terminal plate only needs to have a gap sufficient to insulate the anode electrode portion from the cathode electrode portion, so that both electrode portions are brought close to each other and the gap size according to the desired electrical characteristics is appropriately set. It is possible to set.
  • FIG. 2 is a cross-sectional view and a plan view showing a configuration of a capacitor element in Example 1.
  • the top view and sectional drawing which show the structure of the terminal board in Example 1.
  • FIG. Sectional drawing which shows the state which mounted the capacitor
  • FIG. 3 is an enlarged cross-sectional view showing a current path in the first embodiment.
  • FIG. 6 is a plan view showing a configuration of a capacitor element in Example 2.
  • FIG. FIG. 10 is a perspective view illustrating a configuration of a capacitor element in Example 3.
  • FIG. 10 is a perspective view illustrating a configuration of a capacitor element in Example 4.
  • FIG. 10 is a perspective view illustrating a configuration of a capacitor element in Example
  • Capacitor element 10 used in Example 1 has a valve metal plate or valve metal foil made of substantially rectangular aluminum or the like having a thickness of about 100 to 500 ⁇ m as shown in FIG. Hereinafter, it is formed from the anode body 11). The central portion of the anode body 11 is enlarged by etching to form a porous etching layer 12 on one surface of the anode body 11 (FIG. 1-b).
  • a dielectric oxide film serving as a dielectric layer is formed on the etching layer 12, and a cathode lead portion 14 composed of a solid electrolyte layer, a graphite layer, and a silver paste layer is sequentially formed (FIG. 1-c).
  • the solid electrolyte layer formed on the dielectric oxide film is formed by sequentially immersing the anode body 11 in the polymerizable monomer solution and the oxidizing agent solution, and pulling up from each solution to advance the polymerization reaction.
  • the solid electrolyte layer may be formed by a method of applying or discharging a polymerizable monomer solution and an oxidant solution. Moreover, the method of immersing or apply
  • the solid electrolyte layer can also be formed by electrolytic polymerization used in the field of solid electrolytic capacitors, or by applying and drying a conductive polymer solution.
  • a solid electrolyte layer can be formed by combining these solid electrolyte formation methods.
  • the polymerizable monomer used for forming the solid electrolyte layer thiophene, pyrrole or derivatives thereof can be suitably used.
  • a separation layer 15 is formed on the capacitor element 10 to divide the anode lead portion 13 and the cathode lead portion 14 of the capacitor element 10.
  • the separation layer 15 is formed by applying an insulating resin after the etching process is finished and penetrating the etching layer 12 to insulate the anode lead portion 13 from the etching layer 12.
  • the anode lead portion 13 and the cathode lead portion 14 of the capacitor element 10 are preferably on the same plane, so that the height of the anode lead portion 13 and the cathode lead portion 14 is adjusted.
  • a metal piece 16 such as aluminum can be bonded to the surface of the anode lead portion 13.
  • a recess is formed in advance in the anode body 11 as a starting material, and an etching layer, a dielectric oxide film, and a solid electrolyte layer are formed inside the recess. It is also possible to adjust the height by forming a graphite layer and a silver paste layer.
  • the terminal board 20 in the first embodiment is made of a thin copper plate (copper foil or copper alloy foil) as an example, and the anode of the capacitor element 10 It has a mounting land that substantially matches the lead portion 13 and the cathode lead portion 14, and the metal plate constituting the anode electrode portion 21 and the metal plate constituting the cathode electrode portion 22 are insulated by the insulating resin 23. .
  • the internal structure of the terminal plate 20 is such that the front and back of a metal plate made of a single copper plate are electrically connected, and the gap between the anode electrode portion 21 and the cathode electrode portion 22 is electrically connected.
  • Insulating resin 23 enters the part to insulate it, and integration is achieved by covering part of the surface of the copper plate continuously with the resin in the gap.
  • the anode electrode portion 21 made of a thin metal plate and the cathode electrode portion 22 also made of a thin metal plate are arranged on the same plane with a predetermined width gap, and an insulating property is provided in the gap portion between the two.
  • a resin 23 is interposed, the anode electrode portion 21 and the cathode electrode portion 22 are electrically insulated by the insulating resin 23, and both electrodes are integrated into a sheet shape.
  • the metal plate constituting the terminal plate 20 it is preferable to use a rolled copper foil having a thickness of 15 ⁇ m to 100 ⁇ m.
  • the insulating resin 23 has a thickness that protrudes at a predetermined height on both sides of the metal plate constituting the terminal plate, so that the anode electrode portion 21 and the cathode electrode portion 22 are surely integrated. This is desirable in terms.
  • the same thickness as that of the metal plate, or the joint portion with the metal plate may be a drum-shaped cross section having a thicker thickness than the metal plate and a thinner central portion.
  • a polyester resin or a polyimide resin is used, but is not necessarily limited thereto. Other resins can be used as long as the insulating properties, adhesion to the metal plate, strength, and the like are compatible with the solid electrolytic capacitor to be used.
  • a copper plate serving as an anode electrode portion of a terminal plate and a copper plate serving as a cathode electrode portion are disposed at predetermined positions in a state of being separated from each other.
  • Insulating resin is applied to a predetermined position including a gap between the copper plate serving as the anode electrode portion and the copper plate serving as the cathode electrode portion of the terminal plate, and thermally cured.
  • the application position of the insulating resin is applied to the gap between the anode electrode portion 21 and the cathode electrode portion 22 of the copper plate and the peripheral portion of the gap portion, and the thickness of the insulating resin is predetermined on both sides of the copper plate. It is preferable to apply so as to protrude with a thickness of 5 mm. Further, the shape of the exposed portion (mounting land) of the copper plate is made to match the anode lead portion 13 and the cathode lead portion 14 of the capacitor element.
  • the width of the gap portion can be arbitrarily set according to required characteristics. Specifically, the width of the gap can be made close to about 20 ⁇ m.
  • the solid electrolytic capacitor of Example 1 has the capacitor element 10 mounted on a terminal board 20.
  • a conductive adhesive 30 such as a silver paste.
  • the silver paste is applied to the capacitor element or the terminal plate for adhesion, but at this time, the silver paste may flow to cause a short circuit between the anode and the cathode.
  • the terminal plate 20 is formed so that the thickness of the insulating resin layer protrudes at a predetermined height on both sides of the copper plate.
  • the flow of the silver paste is blocked, and a short circuit between the anode electrode portion 21 and the cathode electrode portion 22 can be prevented.
  • the height of the protruding portion of the insulating resin is arbitrary, but if the protruding height is high, the effect of blocking the silver paste when the capacitor element is mounted becomes high.
  • Example 1 the gap between the anode electrode portion 21 and the cathode electrode portion 22 is insulated by the insulating resin 23, and the insulating resin 23 is also formed around the gap portion, thereby joining the anode and the cathode.
  • Strength is increased.
  • the mechanical strength of the terminal plate 20 is improved, and the distance between the anode electrode portion 21 and the cathode electrode portion 22 on the surface on which the capacitor element is mounted can be increased.
  • the anode electrode portion 21 and the cathode electrode portion 22 can be more reliably insulated.
  • Example 1 (4) Effects of Example 1 According to Example 1 having the above-described configuration, the anode electrode part 21 of the terminal plate 20 that is an outlet for current from the anode lead part 13 and the cathode lead part 14 of the capacitor element 10. And the distance to the cathode electrode part 22 can be achieved by a distance corresponding to the thickness of the terminal plate 20, and the current path can be shortened.
  • the cathode of the terminal plate from the cathode lead portion of the capacitor element is compared with the case where the capacitor element 10 is attached to the lead frame and resin molded.
  • the distance to the electrode part can be made extremely short.
  • the terminal plate 20 is a single copper plate whose front and back are integrated, and has more conductive paths than a flexible substrate that is connected through the through hole. Therefore, the electrical resistance between the front and back of the terminal board 20 is small, and the internal resistance of the solid electrolytic capacitor can be reduced.
  • the terminal board 20 of the present embodiment has a structure in which the anode electrode portion 21 and the cathode electrode portion 22 are close to each other with a predetermined interval, and particularly in the high frequency region, the anode electrode portion 21 and the cathode electrode portion 22 are close to each other.
  • the effect of canceling the induced magnetic field is large, and the ESL of the solid electrolytic capacitor can be reduced.
  • the width of the gap between the anode electrode portion 21 and the cathode electrode portion 22 of the terminal plate 20 can be arbitrarily set according to the required characteristics. In order to obtain the ESL reduction effect of the solid electrolytic capacitor The width of the gap is preferably set in the range of 20 to 200 ⁇ m.
  • the insulating resin 23 is formed around the gap between the anode electrode portion 21 and the cathode electrode portion 22, so that the bonding strength between the anode electrode portion 21 and the cathode electrode portion 22 is increased, and the mechanical properties of the terminal plate are increased. Strength is improved.
  • the insulating resin 23 By disposing the insulating resin 23 in the gap portion of the terminal plate 10, the distance between the anode electrode portion 21 and the cathode electrode portion 22 can be increased on the surface on which the capacitor element 10 is mounted. As a result, when the capacitor element 10 is mounted on the terminal board 20 and joined with the conductive adhesive 30, the anode electrode portion 21 and the cathode electrode portion 22 can be more reliably insulated.
  • the anode electrode portion 21 and the cathode electrode portion 22 are spaced apart from each other, but due to the skin effect when the high-frequency current flows through the conductor, the high-frequency current is generated between the anode electrode portion 21 and the cathode electrode portion 22 of the terminal plate 10. Since the current flows through the peripheral edge, the current paths themselves are close to each other. Therefore, in this embodiment, the ESL reduction effect is not reduced.
  • Example 2 as shown in FIG. 5, the square anode body 11 is subjected to surface enlargement treatment by etching treatment at the center portion except for the four sides, and a porous etching layer is formed on one surface of the anode body 11. .
  • the unetched portions at both ends of the anode body 11 have a “B” shape in plan view, and serve as the anode lead-out portion 13 of the capacitor element 10.
  • a dielectric oxide film to be a dielectric layer is formed on the etching layer in the same manner as in Example 1, and a cathode lead portion 14 comprising a solid electrolyte layer, a graphite layer, and a silver paste layer is sequentially formed.
  • the anode lead portion 13 and the cathode lead portion 14 of the capacitor element 10 are flush with each other, so that a metal piece 15 such as aluminum can be joined to the anode lead portion 13. Similar to Example 1.
  • the terminal board 20 of Example 2 has a configuration as shown in FIG. That is, the “mouth” -shaped copper plate having the same shape as that of the anode lead portion 13 of the capacitor element 10 maintains a gap around the square copper plate having substantially the same dimensions as the cathode lead portion 14 of the capacitor element 10 of FIG. Arrange.
  • the inner copper plate is the cathode electrode portion 22 of the terminal plate 20
  • the outer copper plate is the anode electrode portion 21.
  • the two copper plates are integrated with an insulating resin 23 provided so as to fill the gap therebetween, thereby obtaining the terminal plate of the second embodiment.
  • a conductive adhesive 30 such as a silver paste as in the first embodiment.
  • the sheet-like terminal board 10 can be mounted on one surface of the capacitor element 10, the same effect as the first embodiment can be expected.
  • FIGS. 7a to 7c show capacitor element pieces 10a constituting the capacitor element 10 used in Example 3 of the present invention.
  • this capacitor element piece 10a an etching layer 12 is formed on both surfaces of the capacitor element 10 used in Example 1, and a dielectric oxide film serving as a dielectric layer is formed on each of the etching layers 12 on both surfaces.
  • the cathode lead portion 14 made of a solid electrolyte layer, a graphite layer, and a silver paste layer is sequentially formed.
  • the capacitor element 10 according to the third embodiment has a rectangular capacitor element piece 10a having one end portion as the anode lead portion 14 and the other end portion as the cathode lead portion 13 as shown in FIGS.
  • the portions 14 are superposed so that the direction of the portion 14 becomes a direction of a right angle of rotation.
  • the central portion becomes the cathode lead portion 14, and the anode lead portion 13 is formed in four directions from the cathode lead portion 14.
  • the terminal plate 20 on which the capacitor element 10 of Example 3 is mounted has a cathode electrode portion 22 formed of a central rectangular copper plate, and four rectangular copper plates are arranged around it.
  • the anode electrode portion 21 is formed by these four copper plates.
  • a conductive adhesive 30 such as a silver paste as in the first embodiment.
  • the sheet-like terminal board 10 can be mounted on one surface of the capacitor element 10, the same effect as the first embodiment can be expected.
  • FIG. 10 shows a capacitor element 10 used in Example 4 of the present invention.
  • this capacitor element 10 is a rectangular capacitor element piece 10a having both ends as an anode lead part 14 and a central part as a cathode lead part 13, and the anode lead part 14 has an orientation of 180 °. Are superimposed so as to be in the direction of the rotation angle.
  • the cathode lead portions 14 are formed on both surfaces of the capacitor element piece 10a, as in the third embodiment.
  • the central portion becomes the cathode lead portion 14, and the anode lead portion 13 is formed in four directions from the cathode lead portion 14.
  • the terminal board 20 on which the capacitor element 10 of Example 4 is mounted As the terminal board 20 on which the capacitor element 10 of Example 4 is mounted, the one shown in FIG. 9 can be used. Further, in order to mount the capacitor element 10 of the fourth embodiment on the terminal board 20 of FIG. 9, both are bonded by a conductive adhesive 30 such as a silver paste as in the first embodiment.
  • the sheet-like terminal board 10 can be mounted on one surface of the capacitor element 10, the same effect as the first embodiment can be expected.
  • FIG. 11 shows a configuration of the capacitor element piece 10a according to the fifth embodiment of the present invention.
  • This capacitor element piece 10a has a valve metal foil or a valve metal plate made of aluminum or the like formed in a cross shape in advance to form an anode body 11, an end protruding in four directions is an anode lead portion 32, and a central portion is a cathode.
  • the lead portion 33 is used.
  • the etching layers 12 are formed on both surfaces of the anode body 11, and the dielectric oxide films serving as the dielectric layers are formed on the etching layers 12 on both surfaces.
  • a cathode lead portion 14 composed of a solid electrolyte layer, a graphite layer, and a silver paste layer is sequentially formed.
  • the capacitor element 10 of the fifth embodiment is configured by overlapping the capacitor element pieces 10a as described above. Moreover, the terminal board 20 which mounts the capacitor
  • the sheet-like terminal board 10 can be mounted on one surface of the capacitor element 10, the same effect as the first embodiment can be expected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

固体電解コンデンサの低ESR(等価直列抵抗)化及び低ESL(等価直列インダクタンス)化を達成する。薄い金属板によって構成された陽極電極部と、同じく薄い金属板によって構成された陰極電極部を同一平面上に間隙を保って配置する。陽極電極部と陰極電極部の間隙部分に絶縁性樹脂を介在させる。この絶縁性樹脂により陽極電極部と陰極電極部とを電気的に絶縁すると共に両電極をシート状に一体化して端子板を構成する。コンデンサ素子本体の同一面に陽極引出部と陰極引出部とを形成して、その面を前記端子板との接続面とする。コンデンサ素子の接続面に前記端子板を重ね合わせた状態で、素子の陽極引出部に端子板の陽極電極部を構成する金属板を、素子の陰極引出部に端子板の陰極電極部を構成する金属板を電気的に接続する。

Description

固体電解コンデンサ
 本発明は各種電子機器に使用されるコンデンサの中で、導電性高分子を固体電解質に用い、かつ、面実装対応にした表面実装型固体電解コンデンサに関するものである。
 電子機器の高周波化に伴って、電子部品の一つであるコンデンサにも従来よりも高周波領域でのインピーダンス特性に優れた製品が求められてきている。このような要求に応えるために電気伝導度が高い導電性高分子を固体電解質に用いた固体電解コンデンサが種々検討されている。
 近年、固体電解コンデンサは、コンピュータに代表されるCPU等のLSIやテレビジョンの画像処理用LSI、それらLSIとデータのやり取りを行うメモリー等の周辺に配置されて、これらのデバイスに対しての電力供給用途として使用される。
 この固体電解コンデンサには、
(1) 小型大容量化、
(2) 高周波化に対応した低ESR(等価直列抵抗)化、
(3) ノイズ除去や過渡応答性に優れた低ESL(等価直列インダクタンス)化、
が強く要求されている。
 固体電解コンデンサのESRを低減させる方法としては、コンデンサの静電容量形成部である誘電体酸化皮膜から、電力の取り出し口である端子部までの内部抵抗を低減させることが必要となる。このため、固体電解コンデンサを構成する材料として電気抵抗が低い材料が求められており、電解質材料としては電子伝導性で電気伝導率の高い導電性高分子が広く使用されている。特に、ピロール、チオフェンやそれらの誘導体を固体電解質とした固体電解コンデンサが実用化されている。
 また、固体電解コンデンサの構造の面でも、電解コンデンサ内部での電流経路を極力短くし、内部抵抗を低減させる試みがなされている。
 一方、固体電解コンデンサの低ESL化を図る手法として、一般的には、次の方法が知られている。
(a) 電流経路の長さを極力短くする。
(b) 電流経路によって形成される磁場を別の電流経路によって形成される磁場により相殺する。
(c) 電流経路をn個に分割して実効的なESLを1/nにする。
 このような固体電解コンデンサの低ESR化及び低ESL化を図った固体電解コンデンサとして、次の特許文献に開示された固体電解コンデンサが知られている。
特開2008-294012号 特開2008-135425号
 前述したように、固体電解コンデンサの低ESL化を図るためには、固体電解コンデンサの構造として電流経路の長さを極力短くする方法が有効である。すなわち、固体電解コンデンサの静電容量部となるのは、誘電体酸化皮膜の界面であるが、この誘電体酸化皮膜の界面から、電流の取り出し口である、陽極電極、陰極電極までの距離が短いことが好適である。しかし、前記特許文献1に記載の発明は、肉厚の基板を挟んで陽極電極と陰極電極が配置されているため、両電極の距離を短くするには限界があった。また、特許文献1の両電極は基板を貫通して設けているため、その配置に当たっては基板にスルーホールを形成する必要があり、穿孔加工の制限からも両電極の距離を短くすることが困難であった。
 また、電流経路によって形成される磁場を別の電流経路によって形成される磁場により相殺する方法を利用するためには、陽極電極と陰極電極を近接させて、誘導磁界の相殺効果を高めることが有効となる。特許文献2に記載の発明は、各電極間に流れる電流によって発生する磁束をお互いに打ち消してはいるものの、陰極電極と陽極電極がコンデンサ素子の異なる面に配置されていることから、両電極間の距離を近接させることができず、誘導磁界の相殺効果が低い欠点があった。
 この発明の目的は、固体電解コンデンサの内部抵抗を小さくすることで低ESR化を図るとともに、前述した二つのESL低減要素を利用して低ESL化を図ることで、過渡応答時に速やかに電力供給をすることができる固体電解コンデンサを提供することにある。
 本発明の固体電解コンデンサは、次のような構成を有する。薄い金属板によって構成された陽極電極部と、同じく薄い金属板によって構成された陰極電極部を同一平面上に間隙を保って配置する。陽極電極部と陰極電極部の間隙部分に絶縁性樹脂を介在させる。この絶縁性樹脂により陽極電極部と陰極電極部とを電気的に絶縁すると共に両電極をシート状に一体化して端子板を構成する。コンデンサ素子本体の同一面に陽極引出部と陰極引出部とを形成して、その面を前記端子板との接続面とする。コンデンサ素子の接続面に前記端子板を重ね合わせた状態で、素子の陽極引出部に端子板の陽極電極部を構成する金属板を、素子の陰極引出部に端子板の陰極電極部を構成する金属板を電気的に接続する。
 前記のような構成を有する本発明の固体電解コンデンサでは、コンデンサ素子の陽極引出部及び陰極引出部から、電流の出口である端子板の陽極電極部及び陰極電極部までの距離は、端子板の厚さだけの距離で達成することができ、電流経路の短縮化を図ることができる。また、本発明において、端子板には陽極電極部と陰極電極部を絶縁するだけの間隙が存在すればよいので、両電極部を近接させ、また望まれる電気的特性に応じた間隙寸法に適宜設定することが可能である。両電極部を近接させた結果、特に高周波領域において、陽極電極部と陰極電極部が近接することによる誘導磁界の相殺効果が大きく、固体電解コンデンサのESLの低減を図ることができる。
実施例1におけるコンデンサ素子の構成を示す断面図及び平面図。 実施例1における端子板の構成を示す平面図及び断面図。 実施例1におけるコンデンサ素子を端子板に実装した状態を示す断面図。 実施例1における電流経路を示す拡大断面図。 実施例2におけるコンデンサ素子の構成を示す平面図。 実施例2における端子板の構成を示す平面図及び断面図。 実施例3におけるコンデンサ素子個片の構成を示す断面図。 実施例3におけるコンデンサ素子の構成を示す斜視図。 実施例3における端子板の構成を示す平面図及び断面図。 実施例4におけるコンデンサ素子の構成を示す斜視図。 実施例5におけるコンデンサ素子の構成を示す斜視図。
(1)コンデンサ素子10の構成
 実施例1で用いるコンデンサ素子10は、図1-aに示すような、厚さが100~500μm程度の略長方形状のアルミニウム等の弁金属板または弁金属箔(以下、陽極体11という)から形成される。この陽極体11の中央部をエッチング処理により拡面化処理し、陽極体11の片面に多孔質のエッチング層12を形成する(図1-b)。
 陽極体11の両端部の未エッチング部は、コンデンサ素子10の陽極引出部13となる。エッチング層12には誘電体層となる誘電体酸化皮膜を形成し、固体電解質層、グラファイト層及び銀ペースト層からなる陰極引出部14を順次形成する(図1-c)。
 この場合、誘電体酸化皮膜の上に形成する固体電解質層は、陽極体11を重合性モノマー溶液と酸化剤溶液に順次浸漬し、各液より引き上げて重合反応を進めることにより形成する。固体電解質層の形成は、重合性モノマー溶液と酸化剤溶液を塗布または吐出する方法によって形成してもよい。また、重合性モノマー溶液と酸化剤を混合した混合溶液に陽極体11を浸漬したり、塗布する方法であってもよい。また、固体電解コンデンサの分野で用いられる電解重合による方法や、導電性高分子溶液の塗布・乾燥によって固体電解質層を形成することもできる。さらに、これらの固体電解質の形成方法を組み合わせて固体電解質層を形成することもできる。固体電解質層の形成に用いる重合性モノマーとしてはチオフェン、ピロールまたはそれらの誘導体を好適に使用することができる。
 このコンデンサ素子10には分離層15が形成されており、コンデンサ素子10の陽極引出部13と陰極引出部14を区分している。分離層15は、エッチング処理が終了した後に、絶縁性の樹脂を塗布してエッチング層12に浸透させることで形成されており、陽極引出部13とエッチング層12の絶縁を図っている。
 また、後述する端子板に搭載する際、コンデンサ素子10の陽極引出部13と陰極引出部14は同一面にあることが好ましいため、陽極引出部13と陰極引出部14の高さを調整するために、陽極引出部13の表面にアルミニウム等の金属片16を接合することができる。
 なお、陽極引出部13と陰極引出部14の高さを調整するために、出発材料である陽極体11に予め凹部を形成し、この凹部の内部にエッチング層、誘電体酸化皮膜、固体電解質層、グラファイト層、銀ペースト層を形成して、高さを調整することも可能である。
(2)端子板20の構成
 実施例1における端子板20は、図2-aの平面図に示すように、一例として薄い銅板(銅箔や銅合金箔)を材料とし、コンデンサ素子10の陽極引出部13と陰極引出部14とほぼ合致する搭載ランドを有し、陽極電極部21を構成する金属板と陰極電極部22を構成する金属板が、絶縁性樹脂23によって絶縁されたものである。
 端子板20の内部構造は、図2-bの断面図に示すように、一枚の銅板から成る金属板の表裏は電気的に導通しており、陽極電極部21と陰極電極部22の間隙部に絶縁性樹脂23が入り込み絶縁を図るとともに、間隙部の樹脂と連続して銅板の表面の一部を覆うことで一体化を図っている。
 すなわち、薄い金属板によって構成された陽極電極部21と、同じく薄い金属板によって構成された陰極電極部22を同一平面上に所定の幅の間隙を保って配置し、両者の間隙部分に絶縁性樹脂23を介在させ、この絶縁性樹脂23により陽極電極部21と陰極電極部22とを電気的に絶縁すると共に両電極をシート状に一体化したものである。
 端子板20を構成する金属板としては、厚さが15μm~100μmの圧延銅箔を使用することが好ましい。また、絶縁性樹脂23は、端子板を構成する金属板よりも、その両面とも所定の高さで突出した厚さとすることが陽極電極部21と陰極電極部22とを確実に一体化するという点では望ましい。しかし、金属板と同一の厚さ、あるいは金属板との接合部は金属板よりも厚く中央部は薄くなった鼓型の断面としても良い。絶縁性樹脂23の材質としては、ポリエステル樹脂やポリイミド樹脂を使用するが、必ずしもこれに限定されるものではない。絶縁性、金属板との密着性、強度などが、使用する固体電解コンデンサに適合するものであれば他の樹脂も使用可能である。
 以下、このような構成を有する端子板20の製造方法の一例を示す。
(a)端子板の陽極電極部となる銅板と陰極電極部となる銅板を離間させた状態で所定位置に配置する。
(b) 絶縁性樹脂を端子板の陽極電極部となる銅板と陰極電極部となる銅板の間隙部を含む所定位置に塗布し、熱硬化する。この方法により陽極電極部と陰極電極部の絶縁を図るとともに、分離した陽極電極部と陰極電極部の一体化を図り、端子板とする。この場合、絶縁性樹脂の塗布位置は、銅板の陽極電極部21と陰極電極部22の間隙部、および間隙部の周囲部に塗布し、絶縁性樹脂の厚さが、銅板よりも両面とも所定の高さの厚みで突出するように塗布すると好適である。また、銅板の露出部(搭載ランド)の形状は、コンデンサ素子の陽極引出部13及び陰極引出部14に合致させた形状とする。
 端子板の陽極電極部と陰極電極部を所定位置に配置する際、その間隙部の幅は求められる特性に応じて任意に設定することができる。具体的には間隙部の幅は20μm程度にまで近接させて製造することが可能である。
(3)コンデンサ素子の端子板への搭載
 図3に示すように、実施例1の固体電解コンデンサは、前記コンデンサ素子10を端子板20に搭載して成る。コンデンサ素子10を端子板20に搭載するには銀ペースト等の導電性接着剤30により、接着を行うと好適である。この銀ペーストをコンデンサ素子または端子板に塗布して接着を図るが、この際に銀ペーストが流動して、陽極と陰極の短絡を引き起こすおそれもある。しかし、実施例1では、端子板20には絶縁性樹脂層の厚さが銅板よりも両面とも所定の高さで突出するように形成されているため、この絶縁性樹脂層の突出部が、銀ペーストの流動を堰き止めるようになり、陽極電極部21と陰極電極部22の短絡を防止することができる。絶縁性樹脂の突出部の高さは任意であるが、突出する高さが高ければ、コンデンサ素子を搭載した際の銀ペーストを堰き止める効果が高くなる。
 さらに、実施例1では、陽極電極部21と陰極電極部22の間隙部を絶縁性樹脂23によって絶縁するとともに、間隙部の周囲にも絶縁性樹脂23を形成することで、陽極と陰極の接合強度を高めている。その結果、端子板20の機械的強度が向上するとともに、コンデンサ素子を搭載する面での陽極電極部21と陰極電極部22の距離を離すことができる。その結果、端子板20にコンデンサ素子10を搭載し導電性接着剤30で接合した際に、陽極電極部21と陰極電極部22の絶縁をより確実に図ることができる。
(4)実施例1の効果
 前記のような構成を有する実施例1によれば、コンデンサ素子10の陽極引出部13及び陰極引出部14から、電流の出口である端子板20の陽極電極部21及び陰極電極部22までの距離は、端子板20の厚さだけの距離で達成することができ、電流経路の短縮化を図ることができる。
 特に、端子板20の厚さは、15μm程度の銅板を用いることが可能なことから、コンデンサ素子10をリードフレームに取付けて樹脂モールドした場合に比べ、コンデンサ素子の陰極引出部から端子板の陰極電極部までの距離を極めて短くすることができる。また、端子板20は表裏が一体となった一枚の銅板であり、スルーホールによって表裏を連絡したフレキシブル基板よりも導通経路が多い。そのため、端子板20の表裏の間の電気抵抗は小さく、固体電解コンデンサの内部抵抗の低減が可能となる。
 また、固体電解コンデンサを高周波回路の中で使用した場合、図4の拡大断面図に示すように、表皮効果によって、電流の高周波成分は端子板20の陽極電極部21と陰極電極部22の周縁部を流れる。本実施例の端子板20は陽極電極部21と陰極電極部22が所定の間隔をもって近接した構造となっており、特に高周波領域においては、陽極電極部21と陰極電極部22が近接することによる誘導磁界の相殺効果が大きく、固体電解コンデンサのESLの低減を図ることができる。この端子板20の陽極電極部21と陰極電極部22との間隙部の幅は、求められる特性に応じて任意に設定することが可能であるが、固体電解コンデンサのESL低減効果を得るためには、間隙部の幅は20~200μmの範囲に設定することが好適である。
 本実施例では、陽極電極部21と陰極電極部22の間隙部の周囲に絶縁性樹脂23を形成することで、陽極電極部21と陰極電極部22の接合強度が高まり、端子板の機械的強度が向上する。絶縁性樹脂23を端子板10の間隙部に配置することで、コンデンサ素子10を搭載する面において陽極電極部21と陰極電極部22の距離を離すことができる。これにより、端子板20にコンデンサ素子10を搭載し導電性接着剤30で接合した際に、陽極電極部21と陰極電極部22の絶縁をより確実に図ることができる。
 なお、陽極電極部21と陰極電極部22は離間した形状となっているが、高周波電流が導体を流れる際の表皮効果によって、高周波電流は端子板10の陽極電極部21と陰極電極部22の周縁部を流れるため、両者の電流路自体は近接している。そのため、本実施例において、ESL低減効果が減少することはない。
 この実施例2は、図5に示すように、正方形の陽極体11を、四辺を残して中央部をエッチング処理により拡面化処理し、陽極体11の片面に多孔質のエッチング層を形成する。陽極体11の両端部の未エッチング部は、平面形状が「ロ」の字型をなし、コンデンサ素子10の陽極引出部13となっている。エッチング層の部分には、実施例1と同様の方法で誘電体層となる誘電体酸化皮膜を形成し、固体電解質層、グラファイト層及び銀ペースト層からなる陰極引出部14を順次形成する。
 また、端子板20に搭載する際、コンデンサ素子10の陽極引出部13と陰極引出部14を同一面とするため、陽極引出部13にアルミニウム等の金属片15を接合することができることも、実施例1と同様である。
 実施例2の端子板20は、図6に示すような構成を有する。すなわち、図5のコンデンサ素子10の陰極引出部14とほぼ同一寸法の正方形の銅板の周囲に、コンデンサ素子10の陽極引出部13とほぼ同一形状の「口」の字型の銅板が間隙を保って配置する。2枚の銅板のうち、内側の銅板が端子板20の陰極電極部22であり、外側の銅板が陽極電極部21である。この2枚の銅板を、その間隙を埋めるように設けられた絶縁性樹脂23により一体化して、実施例2の端子板を得る。この端子板20にコンデンサ素子10を搭載するには、実施例1と同様に、銀ペースト等の導電性接着剤30により両者を接着する。
 このような構成を有する実施例2においても、コンデンサ素子10の一面にシート状をした端子板10を装着することができるため、前記実施例1と同様な作用効果が期待できる。
 図7a-cは、本発明の実施例3に使用するコンデンサ素子10を構成するコンデンサ素子個片10aを示すものである。このコンデンサ素子個片10aは、前記実施例1の使用したコンデンサ素子10の両面にエッチング層12を形成し、両面のエッチング層12に、それぞれ誘電体層となる誘電体酸化皮膜を形成し、更に、固体電解質層、グラファイト層及び銀ペースト層からなる陰極引出部14を順次形成したものである。
 実施例3のコンデンサ素子10は、図7及び図8-aに示すような一端部を陽極引出部14、他端部を陰極引出部13とした矩形状のコンデンサ素子個片10aを、陽極引出部14の向きが直角の回転角度の向きとなるように重ね合わせたものである。このコンデンサ素子10では、図8-bに示すように、中央部が陰極引出部14となり、陰極引出部14から4方向に陽極引出部13が形成される。
 この実施例3のコンデンサ素子10を搭載する端子板20は、図9に示すように、中央の四角形の銅板によって陰極電極部22を形成すると共に、その周囲に4枚の長方形の銅板を配置し、これら4枚の銅板によって陽極電極部21を形成する。この端子板20に図7のコンデンサ素子10を搭載するには、実施例1と同様に、銀ペースト等の導電性接着剤30により両者を接着する。
 このような構成を有する実施例3においても、コンデンサ素子10の一面にシート状をした端子板10を装着することができるため、前記実施例1と同様な作用効果が期待できる。
 図10は、本発明の実施例4に使用するコンデンサ素子10である。このコンデンサ素子10は、陰極引出部14の周囲に4枚の陽極引出部13を十字型に形成したものである。このコンデンサ素子10は、図10-aに示すような両端部を陽極引出部14、中央部を陰極引出部13とした矩形状のコンデンサ素子個片10aを、陽極引出部14の向きが180°の回転角度の向きとなるように重ね合わせたものである。この場合、コンデンサ素子個片10aの両面に陰極引出部14が形成されていることは、前記実施例3と同様である。このコンデンサ素子10では、図10-bに示すように、中央部が陰極引出部14となり、陰極引出部14から4方向に陽極引出部13が形成される。
 この実施例4のコンデンサ素子10を搭載する端子板20は、前記図9に示すものが使用できる。また、図9の端子板20に実施例4のコンデンサ素子10を搭載するには、実施例1と同様に、銀ペースト等の導電性接着剤30により両者を接着する。
 このような構成を有する実施例4においても、コンデンサ素子10の一面にシート状をした端子板10を装着することができるため、前記実施例1と同様な作用効果が期待できる。
 図11は、本発明の実施例5におけるコンデンサ素子個片10aの構成を示すものである。このコンデンサ素子個片10aは、アルミニウム等からなる弁金属箔または弁金属板を予め十字型に形成して陽極体11とし、4方向に突出した端部を陽極引出部32、その中央部を陰極引出部33としたものである。この場合、図7に示したコンデンサ素子個片10aと同様に、陽極体11の両面にエッチング層12を形成し、両面のエッチング層12に、それぞれ誘電体層となる誘電体酸化皮膜を形成し、更に、固体電解質層、グラファイト層及び銀ペースト層からなる陰極引出部14を順次形成する。
 この実施例5のコンデンサ素子10は、前記のようなコンデンサ素子個片10aを重ね合わせて構成する。また、実施例5のコンデンサ素子10を搭載する端子板20は、前記図9に示すものを使用する。端子板20に実施例5のコンデンサ素子10を搭載するには、実施例1と同様に、銀ペースト等の導電性接着剤30により両者を接着する。
 このような構成を有する実施例5においても、コンデンサ素子10の一面にシート状をした端子板10を装着することができるため、前記実施例1と同様な作用効果が期待できる。
10…コンデンサ素子
10a…コンデンサ素子個片
11…陽極体
12…エッチング層
13…陽極引出部
14…陰極引出部
15…分離層
20…端子板
21…陽極電極部
22…陰極電極部
23…絶縁性樹脂
30…導電性接着剤

Claims (3)

  1.  薄い金属板によって構成された陽極電極部と、同じく薄い金属板によって構成された陰極電極部を同一平面上に間隙を保って配置し、陽極電極部と陰極電極部の間隙部分に絶縁性樹脂を介在させ、この絶縁性樹脂により陽極電極部と陰極電極部とを電気的に絶縁すると共に両電極をシート状に一体化して端子板を構成し、
     コンデンサ素子本体の同一面に陽極引出部と陰極引出部とを形成して、その面を前記端子板との接続面とし、
     前記コンデンサ素子の接続面に前記端子板を重ね合わせた状態で、素子の陽極引出部に端子板の陽極電極部を構成する金属板を、素子の陰極引出部に端子板の陰極電極部を構成する金属板を電気的に接続することを特徴とする固体電解コンデンサ。
  2.  前記絶縁性樹脂が金属板の表面よりも突出していることを特徴とする請求項1に記載の固体電解コンデンサ。
  3.  前記陽極電極部と陰極電極部の間隙部の周囲に絶縁性樹脂を形成したことを特徴とする請求項2に記載の固体電解コンデンサ。
PCT/JP2009/004035 2009-08-21 2009-08-21 固体電解コンデンサ WO2011021255A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011527495A JPWO2011021255A1 (ja) 2009-08-21 2009-08-21 固体電解コンデンサ
CN2009801610416A CN102483995A (zh) 2009-08-21 2009-08-21 固体电解电容器
US13/388,166 US8724295B2 (en) 2009-08-21 2009-08-21 Solid electrolytic capacitor
PCT/JP2009/004035 WO2011021255A1 (ja) 2009-08-21 2009-08-21 固体電解コンデンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004035 WO2011021255A1 (ja) 2009-08-21 2009-08-21 固体電解コンデンサ

Publications (1)

Publication Number Publication Date
WO2011021255A1 true WO2011021255A1 (ja) 2011-02-24

Family

ID=43606723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004035 WO2011021255A1 (ja) 2009-08-21 2009-08-21 固体電解コンデンサ

Country Status (4)

Country Link
US (1) US8724295B2 (ja)
JP (1) JPWO2011021255A1 (ja)
CN (1) CN102483995A (ja)
WO (1) WO2011021255A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015233046A (ja) * 2014-06-09 2015-12-24 日本ケミコン株式会社 固体電解コンデンサの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158042A (ja) * 2001-11-21 2003-05-30 Japan Carlit Co Ltd:The 三端子薄型アルミ固体電解コンデンサ
JP2004281715A (ja) * 2003-03-17 2004-10-07 Nichicon Corp チップ状固体電解コンデンサ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4201623B2 (ja) * 2002-11-19 2008-12-24 三洋電機株式会社 固体電解コンデンサ
JP4354227B2 (ja) * 2003-07-23 2009-10-28 Tdk株式会社 固体電解コンデンサ
US7457103B2 (en) * 2005-05-11 2008-11-25 Nec Tokin Corporation Solid electrolytic capacitor which can easily be lowered in ESL
JP4811091B2 (ja) * 2006-03-31 2011-11-09 日本ケミコン株式会社 電解コンデンサ
JP4431548B2 (ja) 2006-04-25 2010-03-17 株式会社日立製作所 光ディスク及び光ディスクへの視認可能な図形の書き込み方法
JP2008135425A (ja) 2006-11-27 2008-06-12 Matsushita Electric Ind Co Ltd チップ形固体電解コンデンサ
JP4803744B2 (ja) * 2007-05-22 2011-10-26 Necトーキン株式会社 薄型固体電解コンデンサ
JP4952456B2 (ja) * 2007-09-07 2012-06-13 日本ケミコン株式会社 固体電解コンデンサの実装基板への接続構造

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158042A (ja) * 2001-11-21 2003-05-30 Japan Carlit Co Ltd:The 三端子薄型アルミ固体電解コンデンサ
JP2004281715A (ja) * 2003-03-17 2004-10-07 Nichicon Corp チップ状固体電解コンデンサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015233046A (ja) * 2014-06-09 2015-12-24 日本ケミコン株式会社 固体電解コンデンサの製造方法

Also Published As

Publication number Publication date
CN102483995A (zh) 2012-05-30
JPWO2011021255A1 (ja) 2013-01-17
US8724295B2 (en) 2014-05-13
US20120154986A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
KR101119053B1 (ko) 고체 전해 콘덴서 및 그 제조 방법
EP3226270B1 (en) Solid electrolytic capacitor
JP2007116064A (ja) 積層型固体電解コンデンサ
JP4508193B2 (ja) 実装基板、実装体とそれを用いた電子機器
JP2007180327A (ja) 積層型固体電解コンデンサ
JP4839824B2 (ja) コンデンサ内蔵基板およびその製造方法
TW200303564A (en) Solid electrolytic capacitor and manufacturing method for the same
WO2011021255A1 (ja) 固体電解コンデンサ
JP2006190925A (ja) 固体電解コンデンサ及びその製造方法
JP5526949B2 (ja) 固体電解コンデンサ
JP5376134B2 (ja) 固体電解コンデンサ
JP4337423B2 (ja) 回路モジュール
WO2019058535A1 (ja) 固体電解コンデンサおよびその製造方法
JP2004095816A (ja) チップ形コンデンサ
JP5210672B2 (ja) コンデンサ部品
JP5051851B2 (ja) 積層型固体電解コンデンサ
JP5411047B2 (ja) 積層固体電解コンデンサ及びその製造方法
JP5445737B2 (ja) 固体電解コンデンサ
JP5371865B2 (ja) 3端子型コンデンサ
JP6790628B2 (ja) 固体電解コンデンサおよびその製造方法
WO2010137190A1 (ja) 積層型固体電解コンデンサおよびその製造方法
WO2010113978A1 (ja) 固体電解コンデンサ
JP2009253136A (ja) コンデンサ内蔵基板とその製造方法およびこれを用いた電子機器
JP2010239090A (ja) 固体電解コンデンサ
JP2010239089A (ja) 固体電解コンデンサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161041.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848458

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011527495

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13388166

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09848458

Country of ref document: EP

Kind code of ref document: A1