WO2010137190A1 - 積層型固体電解コンデンサおよびその製造方法 - Google Patents

積層型固体電解コンデンサおよびその製造方法 Download PDF

Info

Publication number
WO2010137190A1
WO2010137190A1 PCT/JP2009/068415 JP2009068415W WO2010137190A1 WO 2010137190 A1 WO2010137190 A1 WO 2010137190A1 JP 2009068415 W JP2009068415 W JP 2009068415W WO 2010137190 A1 WO2010137190 A1 WO 2010137190A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
connecting portion
anode
electrolytic capacitor
terminal
Prior art date
Application number
PCT/JP2009/068415
Other languages
English (en)
French (fr)
Inventor
昭宏 角
浩正 上尾
崇 志村
幸治 稲澤
政樹 橋本
豊 吉田
Original Assignee
ニチコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチコン株式会社 filed Critical ニチコン株式会社
Publication of WO2010137190A1 publication Critical patent/WO2010137190A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/14Structural combinations or circuits for modifying, or compensating for, electric characteristics of electrolytic capacitors

Definitions

  • the present invention relates to a multilayer solid electrolytic capacitor and a method for manufacturing the same.
  • a solid electrolytic capacitor has a valve action metal such as aluminum or tantalum as an anode part, an oxide film layer formed on the surface thereof as a dielectric, and a solid electrolyte layer formed on the surface of the oxide film layer to form a cathode part.
  • a valve action metal such as aluminum or tantalum as an anode part
  • an oxide film layer formed on the surface thereof as a dielectric and a solid electrolyte layer formed on the surface of the oxide film layer to form a cathode part.
  • a solid electrolyte layer manganese dioxide or the like is generally known (for example, see Patent Document 1).
  • Solid electrolysis using a high-conductivity conductive polymer as the solid electrolyte Capacitors have been commercialized. This solid electrolytic capacitor is used in various fields because it can achieve a lower ESR than a solid electrolytic capacitor using manganese dioxide (see, for example, Patent Document 2).
  • the laminated structure of the multilayer solid electrolytic capacitor includes a single plate capacitor element having an anode part and a cathode part made of a solid electrolyte layer, with the anode part overlapping the anode part and the cathode part overlapping each other.
  • a configuration in which a plurality of layers are stacked and a potential extracting lead frame is connected to each electrode is known (for example, see Patent Document 3).
  • the applicant of the present invention as a laminated structure of a multilayer solid electrolytic capacitor, laminates flat capacitor elements alternately so that the anode part faces the center of the cathode part, and branches the anode part and the cathode part into a plurality of parts. And a structure in which a plurality of anode parts are electrically connected at the shortest distance to cancel the magnetic field and further lower the ESL (see, for example, Patent Document 4).
  • the present applicant has found that the ESR / ESL can be further reduced by directly connecting the anode terminals opposed to each other with a conductive member.
  • the heading and the structure which provides the connection part which bridge-connects anode terminals with an electroconductive member are proposed (for example, refer patent document 5).
  • the present applicant has also proposed a structure in which the connecting portions are arranged at the upper and lower portions of the laminate (see, for example, Patent Document 6).
  • the multilayer solid electrolytic capacitors described in Patent Document 5 and Patent Document 6 described above are side surfaces of a connecting portion that connects anode terminals to each other when a cathode portion and a cathode terminal of a capacitor element are connected with a conductive adhesive. And a conductive adhesive adheres to a bottom face, and the problem of causing an electrical short circuit arises.
  • the present invention has been conceived based on the above circumstances, and a multilayer solid electrolytic capacitor capable of reliably preventing an electrical short circuit between a cathode portion and a connecting portion of a capacitor element and a method for manufacturing the same
  • the main issue is to provide
  • the present invention employs the following technical means.
  • a solid electrolytic capacitor according to the present invention is a resin package comprising a laminate in which a plurality of capacitor elements each having an anode portion on one side and a cathode portion on the other side are stacked so that the protruding directions of the anode portions are alternately reversed.
  • a cathode body comprising a second anode terminal electrically connected to the anode section, a connecting section electrically connecting the first anode terminal and the second anode terminal, and a cathode section of the plurality of capacitor elements;
  • On the surface of the stacked body side of the connecting portion and the cathode terminal so as to cover the gap between the cathode terminal that is electrically connected and spaced apart from the connecting portion, and the connecting portion and the cathode terminal. Placed across Characterized in that it comprises a rim body.
  • the insulator is disposed over the surface of the connection part and the cathode terminal on the laminate side so as to cover the gap between the connection part and the cathode terminal,
  • the conductive adhesive adheres to the side surface and the bottom surface of the connecting portion, thereby reliably preventing an electrical short circuit between the negative electrode body and the connecting portion. it can.
  • the connecting portion is embedded in the resin package, and the exposed surfaces of the one-side anode terminal, the other-side anode terminal, and the cathode terminal exposed from the resin package are arranged on the same plane. It is characterized by that.
  • This configuration can provide a small multilayer solid electrolytic capacitor suitable for surface mounting.
  • the one-side anode terminal and the other-side anode terminal are arranged over the entire width direction of the resin package, and the connecting portion is a constant 20 to 70% of the width dimension of the resin package.
  • a pair of cathode terminals having a width dimension and being symmetrical with respect to the connecting portion are arranged, and the insulator is formed between the pair of cathode terminals arranged on both sides of the connecting portion. It arrange
  • the present invention is characterized in that, in the above configuration, the insulator is an insulating tape, an insulating film, or an insulating sheet.
  • the insulator can always be formed with a constant thickness, and can be easily disposed across the connecting portion and the cathode terminal.
  • the method for manufacturing a solid electrolytic capacitor according to the present invention includes a laminate in which a plurality of capacitor elements each having an anode part on one side and a cathode part on the other side are stacked so that the protruding directions of the anode part are alternately reversed.
  • a method for manufacturing a multilayer solid electrolytic capacitor which is sealed with a resin package, and electrically connects one side anode terminal, the other side anode terminal, the one side anode terminal and the other side anode terminal.
  • the multilayer solid electrolytic capacitor and the manufacturing method thereof according to the present invention it is possible to reliably prevent an electrical short circuit between the cathode portion and the connecting portion of the capacitor element.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a capacitor
  • FIG. 1 is a multilayer solid electrolytic capacitor according to the present invention, wherein (a) is a bottom view and (b) is a side view.
  • FIG. 1A is a top view of a capacitor element used in the multilayer solid electrolytic capacitor according to the present invention
  • the capacitor element C according to the present invention includes an anode element 1, a dielectric film 2, a solid electrolyte layer 3, a carbon layer 4, a silver layer 5, an anode portion 6, and a creeping prevention material 7.
  • the anode element 1 is a flat thin plate having a width (w) of 10 mm and a length (l) of 15 mm made of a valve metal having aluminum as a main component. One end of the anode element 1 constitutes an anode portion 6.
  • the dielectric film 2 is an oxide film layer formed on the surface of the anode element 1.
  • the solid electrolyte layer 3 is formed on the surface of the dielectric film 2, for example, a layer formed by chemical polymerization, electrolytic polymerization, or electrolyte impregnation of an electrolyte containing a conductive polymer such as polyethylenedioxythiophene (PEDT). is there.
  • the carbon layer 4 and the silver layer 5 are cathode lead layers sequentially formed on the surface of the solid electrolyte layer 3.
  • the creeping prevention material 7 is a film provided between the anode portion 6 and the solid electrolyte layer 3 and formed in a ring shape that insulates and isolates the anode portion 6 and the solid electrolyte layer 3.
  • the anode element 1 made of a long aluminum foil having a thickness of 0.1 mm whose surface was electrochemically roughened was anodized for about 60 minutes by applying a voltage of 10 V in an aqueous solution of ammonium adipate. Then, the dielectric film 2 which is an oxide film layer is formed. Next, after the anode element 1 on which the dielectric film 2 is formed is cut into a width (w) of 10 mm and a length (l) of 15 mm, an insulating resin is wound around an appropriate position in the circumferential direction. Thus, the scooping prevention material 7 is formed and divided into a region to be the anode portion 6 and a region to be the cathode portion.
  • the end face portion where the anode element 1 is exposed by the cutting is subjected to an anodic oxidation treatment for about 30 minutes by applying a voltage of 7 V again in an aqueous solution of ammonium adipate to form the dielectric film 2 on the cut surface. . Thereafter, a solid electrolyte layer 3, a carbon layer 4, and a silver layer 5 are sequentially formed on the surface of the dielectric film 2 to constitute a cathode portion.
  • FIGS. 2A and 2B are a plan view and a side view of a laminated body in which four capacitor elements C1, C2, C3, and C4 manufactured by the above method are stacked, and FIG. 2C includes a terminal member. It is a side view of the state which has arranged the layered product on a lead frame.
  • the laminated body is formed by laminating capacitor elements C1, C2, C3, and C4 so that the protruding directions of the anode portions 6 and 6 ′ are alternately opposite, and the cathode portions are connected to each other by the conductive adhesive 8 (hereinafter, a plurality of the plurality of capacitor elements C1, C2, C3, C4)
  • the cathode part of the capacitor element is collectively referred to as “cathode body”).
  • the anode parts 6 and 6 ′ on both sides of the laminate are connected to the anode terminals 9 and 9 ′ by a method such as resistance welding, and the central cathode body and the cathode terminal 10 are connected via the conductive adhesive 8. And join.
  • the entire laminate is molded with the resin package 13 except for only the connection surfaces of the anode terminals 9 and 9 ′ and the cathode terminal 10 to the external circuit, so that a finished product is obtained.
  • the anode terminals 9, 9 'and the cathode terminal 10 are made of a copper-based alloy.
  • FIG. 3A is a plan view of a lead frame used in the multilayer solid electrolytic capacitor according to the present invention
  • FIG. 3B is a plan view of an insulator disposed on the lead frame
  • 4A is a plan view showing the state in which the laminate is disposed on the lead frame
  • FIG. 4B is a cross-sectional view taken along line A in FIG. 4A
  • FIG. 4C is cut along line B in FIG. It is sectional drawing.
  • FIG. 5A is a bottom view of the multilayer solid electrolytic capacitor according to the present invention sealed with a resin package
  • FIG. 5B is a side view.
  • the multilayer solid electrolytic capacitor according to the present invention has an insulator 12 disposed on a lead frame. Then, the laminate produced by the above method is arranged on the insulator 12 as shown in FIG. 4, and as shown in FIG. 5, the external circuits of the anode terminals 9 and 9 ′ and the cathode terminals 10 and 10 ′ The entire laminate is molded with the resin package 13 except for the connection surface, and a finished product is obtained.
  • the lead frame is composed of anode terminals 9 and 9 ', cathode terminals 10 and 10', and a connecting portion 11. If a is the width of the connecting portion 11 and W is the width of the resin package 13 (equal to the width b of the anode terminals 9 and 9 ′), the value of (a ⁇ W) ⁇ 100 is the connecting portion 11 with respect to the width of the resin package 13. The ratio of the width of.
  • the anode terminals 9 and 9 ' are arranged over the entire width direction of the resin package 13, and are connected to the anode portions 6 and 6' of the laminate by resistance welding.
  • the anode terminals 9 and 9 ′ are connected by a connecting portion 11 made of the same material as the anode terminals 9 and 9 ′ (for example, a copper alloy) and having a length of 12.6 mm.
  • an H-shaped lead frame in which the anode terminals 9, 9 'and the connecting portion 11 are integrated is used. As shown in FIGS. 4B and 4C, the cross section of the H-shaped lead frame is such that the anode terminals 9 and 9 'at both ends are thick and the connecting portion 11 is thin. Since the connecting portion 11 is embedded in the resin package 13, the anode terminals 9, 9 ′ and the connecting portion 11 are not easily removed from the resin package 13.
  • Each of the cathode terminals 10 and 10 ′ has a width (c) of 4.34 mm and a length (d) of 4.3 mm, and is symmetrical with respect to the connecting portion 11 with a gap of 0.5 mm from the connecting portion 11. It is arranged with (g) and is connected to a cathode body composed of cathode portions of a plurality of capacitor elements by a conductive adhesive 8 such as a silver paste.
  • the cathode terminals 10 and 10 ′ and the anode terminals 9 and 9 ′ are arranged so that the exposed surfaces from the resin package 13 are on the same plane.
  • the width (a) of the connecting portion 11 is 20% of the width (W) of the resin package 13, and the anode terminals 9 and 9 'are arranged so as to be connected in the shortest distance.
  • the insulator 12 connects the cathode body composed of the cathode portions of the plurality of capacitor elements and the cathode terminals 10 and 10 'with the conductive adhesive 8, the conductive adhesive 8 is connected between the anode terminals 9 and 9'.
  • the connecting portion 11 and the cathode terminals 10 and 10 ′ are disposed across the laminate side surface.
  • the insulator 12 is preferably an insulating tape, an insulating film, or an insulating sheet. In the present embodiment, as shown in FIG.
  • the insulator 12 is made of polyimide tape having a length of 12.6 mm, the entire surface of the connecting portion 11 on the laminated body side, and the connecting portion 11 side of the cathode terminals 10, 10 ′. Covers the width of 0.5 mm.
  • the method for manufacturing a multilayer solid electrolytic capacitor according to the present invention includes a step of stacking a plurality of capacitor elements to produce a laminate, a step of arranging a lead frame, and a step of arranging an insulator 12 on the lead frame. And a step of arranging the laminate on a lead frame on which the insulator 12 is arranged, and a step of sealing the laminate with a resin package 13.
  • the gap is formed in the gap between the cathode terminals 10 and 10 ′ and the connecting portion 11.
  • the liquid resin flows in, and it is very difficult to dispose the insulator across the cathode terminals 10, 10 ′ and the connecting portion 11.
  • the cathode terminals 10, 10 ′ and the connecting portion 11 can be easily used. It is possible to dispose the insulator 12 across. Therefore, when connecting the cathode body composed of the cathode portions of the plurality of capacitor elements and the cathode terminals 10, 10 ′ with the conductive adhesive 8, the conductive adhesive 8 adheres to the side surface and the bottom surface of the connecting portion 11. , Can prevent electrical short circuit.
  • Example 2 In the same configuration as in the first embodiment, the entire surface of the connecting portion 11 on the laminate side (hereinafter referred to as the upper surface of the connecting portion 11) and the portions having a width of 0.5 mm from the connecting portion 11 side of the two cathode terminals 10, 10 ′.
  • a polyimide tape having a length of 12.6 mm as the insulator 12, and a multilayer solid electrolytic capacitor having a structure in which the proportion of the width of the connecting portion 11 was 30% was produced.
  • each of the cathode terminals 10 and 10 ' has a width (c) of 3.735 mm and a length (d) of 4.3 mm.
  • the cathode terminals 10 and 10' are symmetrical about the connection part 11 and 0.5 mm from the connection part 11. They are spaced apart.
  • Example 3 In the same configuration as that of the first embodiment, the entire upper surface of the connecting portion 11 and a portion having a width of 0.5 mm from the connecting portion 11 side of the two cathode terminals 10 and 10 ′ are used as the insulator 12 and a polyimide having a length of 12.6 mm.
  • each of the cathode terminals 10 and 10 ' has a width (c) of 3.130 mm and a length (d) of 4.3 mm.
  • the cathode terminals 10 and 10' are symmetrical about the connection part 11 and 0.5 mm from the connection part 11. They are spaced apart.
  • Example 4 In the same configuration as that of the first embodiment, the entire upper surface of the connecting portion 11 and a portion having a width of 0.5 mm from the connecting portion 11 side of the two cathode terminals 10 and 10 ′ are used as the insulator 12 and a polyimide having a length of 12.6 mm.
  • each of the cathode terminals 10 and 10 ' has a width (c) of 2.525 mm and a length (d) of 4.3 mm.
  • the cathode terminals 10 and 10' are 0.5 mm from the connecting portion 11 in line symmetry with the connecting portion 11 in between. They are spaced apart.
  • Example 5 In the same configuration as that of the first embodiment, the entire upper surface of the connecting portion 11 and a portion having a width of 0.5 mm from the connecting portion 11 side of the two cathode terminals 10 and 10 ′ are used as the insulator 12 and a polyimide having a length of 12.6 mm.
  • each of the cathode terminals 10 and 10 ' has a width (c) of 1.920 mm and a length (d) of 4.3 mm.
  • the cathode terminals 10 and 10' are symmetrical about the connection part 11 and 0.5 mm from the connection part 11. They are spaced apart.
  • each of the cathode terminals 10 and 10 ' has a width (c) of 1.315 mm and a length (d) of 4.3 mm, and is 0.5 mm from the connecting portion 11 in line symmetry with the connecting portion 11 in between. They are spaced apart.
  • Example 7 In the same configuration as that of the first embodiment, the entire upper surface of the connecting portion 11 and the portions having a width of 0.5 mm from the connecting portion 11 side of the two cathode terminals 10 and 10 ′ are used as insulators 12 and 12.6 mm long Teflon.
  • each of the cathode terminals 10 and 10 ' has a width (c) of 4.340 mm and a length (d) of 4.3 mm.
  • the cathode terminals 10 and 10' are symmetrical about the connection part 11 and 0.5 mm from the connection part 11. They are spaced apart.
  • Example 8 In the same configuration as that of the first embodiment, the entire upper surface of the connecting portion 11 and the portions having a width of 0.5 mm from the connecting portion 11 side of the two cathode terminals 10 and 10 ′ are used as insulators 12 and 12.6 mm long Teflon.
  • each of the cathode terminals 10 and 10 ' has a width (c) of 3.735 mm and a length (d) of 4.3 mm.
  • the cathode terminals 10 and 10' are symmetrical about the connection part 11 and 0.5 mm from the connection part 11. They are spaced apart.
  • Example 9 In the same configuration as that of the first embodiment, the entire upper surface of the connecting portion 11 and the portions having a width of 0.5 mm from the connecting portion 11 side of the two cathode terminals 10 and 10 ′ are used as insulators 12 and 12.6 mm long Teflon.
  • each of the cathode terminals 10 and 10 ' has a width (c) of 3.130 mm and a length (d) of 4.3 mm.
  • the cathode terminals 10 and 10' are symmetrical about the connection part 11 and 0.5 mm from the connection part 11. They are spaced apart.
  • Example 10 In the same configuration as that of the first embodiment, the entire upper surface of the connecting portion 11 and the portions having a width of 0.5 mm from the connecting portion 11 side of the two cathode terminals 10 and 10 ′ are used as insulators 12 and 12.6 mm long Teflon.
  • each of the cathode terminals 10 and 10 ' has a width (c) of 2.525 mm and a length (d) of 4.3 mm.
  • the cathode terminals 10 and 10' are 0.5 mm from the connecting portion 11 in line symmetry with the connecting portion 11 in between. They are spaced apart.
  • Example 11 In the same configuration as that of the first embodiment, the entire upper surface of the connecting portion 11 and the portions having a width of 0.5 mm from the connecting portion 11 side of the two cathode terminals 10 and 10 ′ are used as insulators 12 and 12.6 mm long Teflon.
  • each of the cathode terminals 10 and 10 ' has a width (c) of 1.920 mm and a length (d) of 4.3 mm.
  • the cathode terminals 10 and 10' are symmetrical about the connection part 11 and 0.5 mm from the connection part 11. They are spaced apart.
  • each of the cathode terminals 10 and 10 ' has a width (c) of 1.315 mm and a length (d) of 4.3 mm, and is 0.5 mm from the connecting portion 11 in line symmetry with the connecting portion 11 in between. They are spaced apart.
  • each of the cathode terminals 10 and 10 ' has a width (c) of 4.945 mm and a length (d) of 4.3 mm.
  • the cathode terminals 10 and 10' are 0.5 mm from the connecting portion 11 in line symmetry with the connecting portion 11 in between. They are spaced apart.
  • each of the cathode terminals 10, 10 ′ has a width (c) of 0.710 mm and a length (d) of 4.3 mm, and is symmetrical with respect to the connecting portion 11 so as to be 0.5 mm from the connecting portion 11. They are spaced apart.
  • each of the cathode terminals 10 and 10 ' has a width (c) of 4.945 mm and a length (d) of 4.3 mm.
  • the cathode terminals 10 and 10' are 0.5 mm from the connecting portion 11 in line symmetry with the connecting portion 11 in between. They are spaced apart.
  • each of the cathode terminals 10 and 10 ' has a width (c) of 4.340 mm and a length (d) of 4.3 mm.
  • the cathode terminals 10 and 10' are symmetrical about the connection part 11 and 0.5 mm from the connection part 11. They are spaced apart.
  • each of the cathode terminals 10 and 10 ' has a width (c) of 3.735 mm and a length (d) of 4.3 mm.
  • the cathode terminals 10 and 10' are symmetrical about the connection part 11 and 0.5 mm from the connection part 11. They are spaced apart.
  • each of the cathode terminals 10 and 10 ' has a width (c) of 3.130 mm and a length (d) of 4.3 mm.
  • the cathode terminals 10 and 10' are symmetrical about the connection part 11 and 0.5 mm from the connection part 11. They are spaced apart.
  • each of the cathode terminals 10 and 10 ' has a width (c) of 2.525 mm and a length (d) of 4.3 mm.
  • the cathode terminals 10 and 10' are 0.5 mm from the connecting portion 11 in line symmetry with the connecting portion 11 in between. They are spaced apart.
  • each of the cathode terminals 10 and 10 ' has a width (c) of 1.920 mm and a length (d) of 4.3 mm.
  • the cathode terminals 10 and 10' are symmetrical about the connection part 11 and 0.5 mm from the connection part 11. They are spaced apart.
  • each of the cathode terminals 10 and 10 ' has a width (c) of 1.315 mm and a length (d) of 4.3 mm, and is 0.5 mm from the connecting portion 11 in line symmetry with the connecting portion 11 in between. They are spaced apart.
  • each of the cathode terminals 10, 10 ′ has a width (c) of 0.710 mm and a length (d) of 4.3 mm, and is symmetrical with respect to the connecting portion 11 so as to be 0.5 mm from the connecting portion 11. They are spaced apart.
  • Examples 1 to 12 Comparative Examples 1 and 2, and Conventional Examples 1 to 8, stacked solid electrolysis having a rating of 2.5 V to 1200 ⁇ F, L dimension: 16 mm, W dimension: 12 mm, and H dimension: 2.5 mm, respectively.
  • a capacitor was produced.
  • Table 1 is a table showing the short-circuit occurrence rate and ESR of the multilayer solid electrolytic capacitors of Examples 1 to 12, Comparative Examples 1 and 2, and Conventional Examples 1 to 8.
  • FIG. 6 is a graph showing the relationship between the ratio of the width of the connecting portion of the multilayer solid electrolytic capacitors of Examples 1 to 6 and Comparative Examples 1 and 2 and ESR.
  • the ESR is measured at 100 KHz under the condition that the anodes of the land patterns of the substrate to be mounted are not connected so that a direct current passes only through the connecting portion.
  • the width of the connecting portion 11 is 20 to 70%
  • the width of the connecting portion 11 is 10%.
  • ESR was greatly reduced. Therefore, the width of the connecting portion 11 is more preferably 20 to 70%.
  • the entire upper surface of the connecting portion 11 and the portions having a width of 0.5 mm from the side of the connecting portion 11 of the cathode terminals 10 and 10 ′ were covered with the insulator 12. If the gap between 10 'is completely covered, the portion covering cathode terminal 10, 10' may be 0.5 mm or less.
  • the insulator 12 having a length of 12.6 mm which is the same length as the connecting portion 11 is used, but the insulator 12 is a length of a cathode body composed of cathode portions of a plurality of capacitor elements. Any length can be arbitrarily changed.
  • the insulator 12 may be covered with an insulator 12. According to this configuration, since the four corners of the insulator 12 are disposed and fixed on the anode terminals 9 and 9 ′, the shape of the insulator 12 is not easily deformed when sealed with the resin package 13, and the shape is stabilized.
  • Examples 1 to 12 polyimide tape and Teflon tape were used as the insulator 12, but insulating tape materials such as glass fiber-containing tape, polypropylene tape, polyethylene terephthalate tape, polytetrafluoroethylene tape, and polyester tape may be used. The same effect can be obtained with an insulating material such as a conductive resin.
  • valve metal In Examples 1 to 12, aluminum was used as the valve metal, but the same effect can be obtained by using tantalum, niobium foil, or a sintered body of these metal powders.
  • the conductive member of the connecting portion 11 is made of the same material as that of the anode terminals 9 and 9 ′, and is integrally formed.
  • the anode material is copper, silver other than aluminum, gold, niobium, tantalum, conductive polymer. Conductive materials such as can also be used effectively.
  • the cathode terminals 10 and 10 ′ are divided into two, a gap is provided between them, and the connecting portion 11 is disposed in the gap.
  • the cathode terminals 10 and 10 ′ and the anode terminal 9 are arranged. , 9 may not be aligned at the same height, the connecting portion 11 may be disposed below the cathode terminals 10 and 10 ′ along the surface thereof.
  • the lower surfaces of the cathode terminals 10 and 10 'and the anode terminals 9 and 9' are arranged at the same height, it is convenient to mount the multilayer solid electrolytic capacitor on a mother board or an IC substrate.
  • a connecting portion may be provided between the cathode terminals 10 and 10 'so as to intersect with the connecting portion 11 between the anode terminals 9 and 9', or the connecting portion 11 between the anode terminals 9 and 9 'is connected to the cathode. Even if it arrange
  • the terminal member joined to the laminate may use an insulating substrate provided with a through hole (conductive terminal hole) connected to an external circuit or a conductive layer, instead of the lead frame.
  • Examples 1 to 12 although the conductive polymer was used as the solid electrolyte layer 3, the same effect can be obtained by using manganese dioxide.
  • Examples 1 to 12 an example in which four capacitor elements are stacked has been described. However, if two or more capacitor elements are used, the same effect can be obtained regardless of the number of stacked layers. In Examples 1 to 12, although three terminals are used, the same effect can be obtained even if the number of terminals is increased.
  • Examples 1 to 12 the example in which the lead frame is disposed on the lower side of the multilayer body has been described.
  • the lead frame may be disposed on the upper surface of the multilayer body depending on the portion where the capacitor is mounted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

 コンデンサ素子の陰極部と連結部との間の電気的短絡を防ぐことができる積層型固体電解コンデンサおよびその製造方法を提供する。 一方側に陽極部6、6'、他方側に陰極部を備えたコンデンサ素子を前記陽極部6、6'の突出方向が交互に反対になるように複数枚積み重ねた積層体を、樹脂パッケージ13で封止してなる積層型固体電解コンデンサであって、連結部11と陰極端子10、10'との隙間を覆うように、連結部11および陰極端子10、10'の積層体側の面上に跨って配置された絶縁体12を含むことを特徴とする。

Description

積層型固体電解コンデンサおよびその製造方法
 本発明は、積層型固体電解コンデンサおよびその製造方法に関する。
 従来、固体電解コンデンサは、アルミニウム、タンタルなどの弁作用金属を陽極部とし、その表面に形成した酸化皮膜層を誘電体とし、さらに、酸化皮膜層の表面に固体電解質層を形成して陰極部を構成したものが多く使われている。この固体電解質層としては一般的に二酸化マンガンなどが知られている(例えば、特許文献1参照)。
 近年、電子機器の小型・高周波化が進み、固体電解コンデンサに対しても高周波領域での低インピーダンス化が要求されるようになり、高導電率の導電性高分子を固体電解質に用いた固体電解コンデンサが商品化されている。この固体電解コンデンサは、二酸化マンガンを用いた固体電解コンデンサに比べて低ESR化を実現する事ができることから、様々な分野で使用されている(例えば、特許文献2参照)。
 また、コンピュータ等に使用されるCPUの低電圧化と高速化に伴い、固体電解コンデンサからCPUに電荷を供給する際、固体電解コンデンサは高速な充放電を求められるようになり、低ESR・ESLであることが必須条件となっている。
 この低ESR化を実現するための一つの方法として、コンデンサ素子を積層構造とし、その積層枚数を増やす手法がある。積層型固体電解コンデンサの積層構造としては、陽極部と、固体電解質層からなる陰極部とを備えた単板コンデンサ素子を、陽極部は陽極部同士、陰極部は陰極部同士が互いに重なり合うように複数枚積層し、各電極にそれぞれ電位取り出し用リードフレームを接続した構成のものが知られている(例えば、特許文献3参照)。
 また、本件出願人は、積層型固体電解コンデンサの積層構造として、平板状のコンデンサ素子を陽極部が陰極部を中心に対向するように交互に積層し、陽極部および陰極部を複数に分岐して引き出し、さらに複数の陽極部を最短距離で電気的に接続することで磁界を打ち消し、さらにESLを下げる構造のものを提案している(例えば、特許文献4参照)。
 この他、本件出願人は、積層型固体電解コンデンサの端子構造について実験を進めた結果、左右に対向配置した陽極端子同士を導電性部材で直接接続することによって、ESR・ESLをより低減できることを見出し、陽極端子同士を導電性部材で橋渡し接続する連結部を設ける構造を提案している(例えば、特許文献5参照)。さらに、本件出願人は、その連結部を積層体の上部と下部に配置する構造も提案している(例えば、特許文献6参照)。
特許第2969692号公報 特開2003-45753号公報 特開2000-68158号公報 特開2007-116064号公報 特開2007-180327号公報 特開2009-21355号公報
 しかしながら、上記特許文献5および特許文献6に記載の積層型固体電解コンデンサは、コンデンサ素子の陰極部と陰極端子とを導電性接着剤で接続する際に、陽極端子同士を接続する連結部の側面および底面に導電性接着剤が付着し、電気的に短絡を引き起こすといった問題が生じる。
 本発明は前記の事情をもとに考え出されたものであって、コンデンサ素子の陰極部と連結部との間の電気的短絡を確実に防ぐことができる積層型固体電解コンデンサおよびその製造方法を提供することをその主たる課題とする。
 前記の課題を解決するために本発明では次の技術的手段を採用している。
 本発明に係る固体電解コンデンサは、一方側に陽極部、他方側に陰極部を備えたコンデンサ素子を前記陽極部の突出方向が交互に反対になるように複数枚積み重ねた積層体を、樹脂パッケージで封止してなる積層型固体電解コンデンサであって、前記積層体の一方側から突出した前記陽極部に電気的に接続された一方側陽極端子と、前記積層体の他方側から突出した前記陽極部に電気的に接続された他方側陽極端子と、前記一方側陽極端子と前記他方側陽極端子とを電気的に接続する連結部と、前記複数のコンデンサ素子の陰極部からなる陰極体に電気的に接続され、前記連結部と離間して配置された陰極端子と、前記連結部と前記陰極端子との隙間を覆うように、前記連結部および前記陰極端子の前記積層体側の面上に跨って配置された絶縁体と、を含むことを特徴とする。
 この構成によれば、連結部と陰極端子との隙間を覆うように、絶縁体が連結部および陰極端子の積層体側の面上に跨って配置されているので、複数のコンデンサ素子の陰極部からなる陰極体と陰極端子とを導電性接着剤で接続する際に、導電性接着剤が連結部の側面および底面へ付着することによって陰極体と連結部との電気的短絡を確実に防ぐ事ができる。
 さらに本発明は、前記連結部は前記樹脂パッケージ内部に埋設され、前記樹脂パッケージから露出した前記一方側陽極端子、前記他方側陽極端子および前記陰極端子の露出面が同一平面になるよう配置されたことを特徴とする。
 この構成によれば、面実装に適した小型な積層型固体電解コンデンサを提供することができる。
 さらに本発明は、前記一方側陽極端子および前記他方側陽極端子は前記樹脂パッケージの幅方向全体に渡って配置され、前記連結部は前記樹脂パッケージの幅寸法に対し、20~70%の一定の幅寸法を有し、前記連結部を挟んで線対称になるよう一対の陰極端子が配置され、前記絶縁体は前記連結部の両側に配置された一対の前記陰極端子との間に形成された両方の隙間を覆うように配置されていることを特徴とする。
 この構成によれば、低ESRを維持したまま、連結部の側面および底面への導電性接着剤の付着により生じる電気的短絡を防ぐ事ができる。
 さらに本発明は、前記構成において、前記絶縁体は絶縁テープ、絶縁フィルムもしくは絶縁シートであることを特徴とする。
 この構成によれば、絶縁体を常に一定の厚さで形成することができ、かつ連結部と陰極端子とに跨って容易に配置することができる。
 さらに本発明に係る固体電解コンデンサの製造方法は、一方側に陽極部、他方側に陰極部を備えたコンデンサ素子を前記陽極部の突出方向が交互に反対になるように複数枚積み重ねた積層体を、樹脂パッケージで封止してなる積層型固体電解コンデンサの製造方法であって、一方側陽極端子、他方側陽極端子、前記一方側陽極端子と前記他方側陽極端子とを電気的に接続する連結部、および前記連結部と離間した陰極端子を含むリードフレームに、前記連結部と前記陰極端子との間の隙間を覆うように絶縁テープ、絶縁フィルムもしくは絶縁シートからなる絶縁体を配置する工程と、前記一方側陽極端子に前記積層体の一方側から突出した前記陽極部が電気的に接続され、前記他方側陽極端子に前記積層体の他方側から突出した前記陽極部が電気的に接続され、前記陰極端子に前記複数のコンデンサ素子の陰極部からなる陰極体が電気的に接続されるように、前記積層体を前記絶縁体上に配置する工程と、を含むことを特徴とする。
 この構成によれば、絶縁体を連結部と陰極端子とに跨って容易に配置することができ、かつその後の工程で導電性接着剤が連結部の側面および底面へ付着するのを確実に防ぐ事ができる。
 本発明に係る積層型固体電解コンデンサおよびその製造方法によれば、コンデンサ素子の陰極部と連結部との間の電気的短絡を確実に防ぐことができる。
本発明に係る積層型固体電解コンデンサで使用するコンデンサ素子であって、(a)は平面図、(b)は断面図である。 本発明に係る積層型固体電解コンデンサで使用する積層体であって、(a)は、平面図、(b)は側面図、(c)は、リードフレームに積層体を配置した状態を示す側面図である。 本発明に係る積層型固体電解コンデンサで使用するリードフレームであって、(a)は平面図、(b)は絶縁体を配置した状態を示す平面図である。 本発明に係る積層型固体電解コンデンサであって(a)は平面図、(b)は(a)を線Aで切断した断面図、(c)は(a)を線Bで切断した断面図である。 本発明に係る積層型固体電解コンデンサであって(a)は底面図、(b)は側面図である。 本発明に係る積層型固体電解コンデンサの樹脂パッケージの幅に対する連結部の幅の割合とESRとの関係を示すグラフである。 本発明に係る積層型固体電解コンデンサで使用するリードフレームの変形例を示す平面図である。 従来例の積層型固体電解コンデンサで使用するリードフレームを示す平面図である。
 本発明の好ましい実施形態について、図面を参照して説明する。以下の図面の記載において、同一または類似の部分には同一または類似の符号を付している。
 まず、本発明に係るコンデンサ素子について以下に示す。
 図1(a)は本発明に係る積層型固体電解コンデンサで使用するコンデンサ素子の上面図、(b)は断面図である。本発明に係るコンデンサ素子Cは、陽極素子1、誘電体膜2、固体電解質層3、カーボン層4、銀層5、陽極部6、這い上がり防止材7から構成されている。
 陽極素子1はアルミニウムを主成分とする弁作用金属からなる幅(w)10mm、長さ(l)15mmの平板状の薄板である。陽極素子1の一端は陽極部6を構成している。誘電体膜2は前記陽極素子1の表面に形成された酸化皮膜層である。固体電解質層3は誘電体膜2の表面に形成され、例えば、ポリエチレンジオキシチオフェン(PEDT)などの導電性高分子を含む電解質を化学重合、電解重合、または電解質の含浸によって形成された層である。カーボン層4および銀層5は固体電解質層3の表面に順次形成された陰極引出層である。這い上がり防止材7は、陽極部6と固体電解質層3との間に設けられ、陽極部6と固体電解質層3を絶縁隔離するリング状に形成された膜である。
 次に、本発明に係るコンデンサ素子の作製方法の例を以下に示す。
 表面を電気化学的に粗面化した厚さ0.1mmの長尺のアルミニウム箔からなる陽極素子1を、アジピン酸アンモニウム水溶液中で10Vの電圧を印加して約60分間陽極酸化を行い、表面に酸化皮膜層である誘電体膜2を形成する。次に、誘電体膜2が形成された陽極素子1を幅(w)10mm、長さ(l)15mmの寸法に裁断した後、適切な位置に絶縁性樹脂を周方向に巻きつけるように塗布して這い上がり防止材7を形成し、陽極部6になる領域と陰極部になる領域とに区分する。続いて、前記裁断によって陽極素子1が露出した端面部を、再度アジピン酸アンモニウム水溶液中で7Vの電圧を印加して約30分間陽極酸化処理を行い、裁断面にも誘電体膜2を形成する。その後、誘電体膜2の表面に固体電解質層3、カーボン層4、銀層5を順次形成して陰極部を構成する。
 次に、前記コンデンサ素子Cを積層して構成した積層型固体電解コンデンサの作製方法を以下に示す。
 図2(a)(b)は、前記の方法で作製された4枚のコンデンサ素子C1、C2、C3、C4を積層した積層体の平面図および側面図、(c)は、端子部材を含むリードフレームに前記積層体を配置した状態の側面図である。
 積層体はコンデンサ素子C1、C2、C3、C4を陽極部6、6’の突出方向が交互に反対になるように積層し、陰極部同士を導電性接着剤8により接続する(以下、複数のコンデンサ素子の陰極部をまとめて「陰極体」と言う)。次に、積層体の両側の陽極部6、6’と陽極端子9、9’とを抵抗溶接等の方法で各々接続し、中央の陰極体と陰極端子10とを導電性接着剤8を介して接合する。続いて、陽極端子9、9’、陰極端子10の外部回路との接続面だけを除いて積層体全体を樹脂パッケージ13でモールドして完成品とする。なお、陽極端子9、9’、陰極端子10は銅系合金が使用される。
 次に本発明の実施例について以下に示す。
(実施例1)
 図3(a)は本発明に係る積層型固体電解コンデンサで使用するリードフレームの平面図、(b)は前記リードフレーム上に絶縁体を配置した状態の平面図である。図4(a)は前記リードフレームに前記積層体を配置した状態の平面図、(b)は(a)の線Aで切断した断面図、(c)は(a)の線Bで切断した断面図である。図5(a)は樹脂パッケージで封止した本発明に係る積層型固体電解コンデンサの底面図、(b)は側面図である。
 図3に示すように、本発明に係る積層型固体電解コンデンサは、リードフレーム上に絶縁体12を配置している。そして、前記の方法で作製した積層体を、図4に示すように絶縁体12上に配置し、図5に示すように、陽極端子9、9’、陰極端子10、10’の外部回路との接続面だけを除いて積層体全体を樹脂パッケージ13でモールドして完成品とする。
 図3(a)に示すように、リードフレームは陽極端子9、9’、陰極端子10、10’、連結部11から構成される。aを連結部11の幅、Wを樹脂パッケージ13の幅(陽極端子9、9’の幅bと等しい)とすると、(a÷W)×100の値が樹脂パッケージ13の幅に対する連結部11の幅の割合を示す。
 陽極端子9、9’は、樹脂パッケージ13の幅方向全体にわたって配置され、積層体の陽極部6、6’と抵抗溶接により各々接続されている。陽極端子9、9’間は陽極端子9、9’と同じ材質(例えば銅系合金)の長さ12.6mmの連結部11で接続されている。本実施例では、陽極端子9、9’と連結部11とが一体の、H形リードフレームを使用している。図4(b)、(c)に示すように、H形リードフレームの断面は両端の陽極端子9、9’が厚く、連結部11が薄くなっている。連結部11は樹脂パッケージ13内に埋設されているため、陽極端子9、9’および連結部11は樹脂パッケージ13から抜けにくくなっている。
 陰極端子10、10’は、それぞれ幅(c)4.34mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mmの隙間(g)をもって配置され、複数のコンデンサ素子の陰極部からなる陰極体と例えば銀ペーストなどの導電性接着剤8により接続されている。陰極端子10、10’および陽極端子9、9’は樹脂パッケージ13からの露出面が同一平面になるよう配置されている。
 連結部11の幅(a)は樹脂パッケージ13の幅(W)の20%となるように、かつ陽極端子9、9’間を最短で接続するように配置されている。
 絶縁体12は、複数のコンデンサ素子の陰極部からなる陰極体と陰極端子10、10’とを導電性接着剤8で接続する際に、導電性接着剤8が陽極端子9、9’間を接続する連結部11の側面、および底面に付着し、電気的に短絡するのを防ぐために、連結部11および陰極端子10、10’の積層体側の面上に跨って配置されている。絶縁体12は絶縁テープ、絶縁フィルムもしくは絶縁シートを用いるのが好ましい。本実施例では、絶縁体12として、図3(b)に示すように、長さ12.6mmのポリイミドテープが、連結部11の積層体側全面、および陰極端子10、10’の連結部11側からそれぞれ0.5mmの幅の部分を覆っている。
 次に、絶縁体12として絶縁テープ、絶縁フィルムもしくは絶縁シートを使用することの製造工程のメリットを以下に示す。
 本発明に係る積層型固体電解コンデンサの製造方法は、複数のコンデンサ素子を積層して積層体を作製する工程と、リードフレームを配置する工程と、前記リードフレーム上に絶縁体12を配置する工程と、前記絶縁体12を配置したリードフレーム上に前記積層体を配置する工程と、前記積層体を樹脂パッケージ13で封止する工程と、を含むことを特徴としている。
 リードフレーム上に絶縁体を配置する工程において、例えば、絶縁体としてシリコンやテフロン(登録商標)等の液状樹脂を用いた場合、陰極端子10、10’と連結部11との間の隙間に前記液状樹脂が流れ込んでしまい、陰極端子10、10’と連結部11とに跨って絶縁体を配置することは非常に困難である。
 また、連結部11全体を絶縁体で包むことにより電気的に短絡するのを防ぐことも考えられるが、連結部11の側面は厚さが薄く絶縁体で覆うのが困難であり、下面(積層体側と反対の面)を絶縁体で覆ってしまうと樹脂パッケージ13で封止する際に、連結部11の下面にパッケージ用樹脂が行き渡らず、形成が不十分になるという問題が生じる。
 これに対し、本発明ではリードフレーム上に絶縁体を配置する工程において、絶縁テープ、絶縁フィルムもしくは絶縁シートなど固体状態の絶縁体12を用いるため、容易に陰極端子10、10’と連結部11とに跨って絶縁体12を配置することが可能となる。よって、複数のコンデンサ素子の陰極部からなる陰極体と陰極端子10、10’とを導電性接着剤8で接続する際に、導電性接着剤8が連結部11の側面、および底面に付着し、電気的に短絡するのを防ぐことができる。
(実施例2)
 実施例1と同様の構成において、連結部11の積層体側の面(以下、連結部11上面という)全体および2つの陰極端子10、10’の連結部11側からそれぞれ0.5mmの幅の部分を、絶縁体12として長さ12.6mmのポリイミドテープで覆い、連結部11の幅の割合を30%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)3.735mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(実施例3)
 実施例1と同様の構成において、連結部11上面全体および2つの陰極端子10、10’の連結部11側からそれぞれ0.5mmの幅の部分を、絶縁体12として長さ12.6mmのポリイミドテープで覆い、連結部11の幅の割合を40%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)3.130mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(実施例4)
 実施例1と同様の構成において、連結部11上面全体および2つの陰極端子10、10’の連結部11側からそれぞれ0.5mmの幅の部分を、絶縁体12として長さ12.6mmのポリイミドテープで覆い、連結部11の幅の割合を50%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)2.525mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(実施例5)
 実施例1と同様の構成において、連結部11上面全体および2つの陰極端子10、10’の連結部11側からそれぞれ0.5mmの幅の部分を、絶縁体12として長さ12.6mmのポリイミドテープで覆い、連結部11の幅の割合を60%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)1.920mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(実施例6)
 実施例1と同様の構成において、連結部11上面全体および2つの陰極端子10、10’の連結部11側からそれぞれ0.5mmの幅の部分を、絶縁体12として長さ12.6mmのポリイミドテープで覆い、連結部11の幅の割合を70%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)1.315mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(実施例7)
 実施例1と同様の構成において、連結部11上面全体および2つの陰極端子10、10’の連結部11側からそれぞれ0.5mmの幅の部分を、絶縁体12として長さ12.6mmのテフロンテープで覆い、連結部11の幅の割合を20%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)4.340mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(実施例8)
 実施例1と同様の構成において、連結部11上面全体および2つの陰極端子10、10’の連結部11側からそれぞれ0.5mmの幅の部分を、絶縁体12として長さ12.6mmのテフロンテープで覆い、連結部11の幅の割合を30%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)3.735mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(実施例9)
 実施例1と同様の構成において、連結部11上面全体および2つの陰極端子10、10’の連結部11側からそれぞれ0.5mmの幅の部分を、絶縁体12として長さ12.6mmのテフロンテープで覆い、連結部11の幅の割合を40%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)3.130mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(実施例10)
 実施例1と同様の構成において、連結部11上面全体および2つの陰極端子10、10’の連結部11側からそれぞれ0.5mmの幅の部分を、絶縁体12として長さ12.6mmのテフロンテープで覆い、連結部11の幅の割合を50%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)2.525mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(実施例11)
 実施例1と同様の構成において、連結部11上面全体および2つの陰極端子10、10’の連結部11側からそれぞれ0.5mmの幅の部分を、絶縁体12として長さ12.6mmのテフロンテープで覆い、連結部11の幅の割合を60%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)1.920mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(実施例12)
 実施例1と同様の構成において、連結部11上面全体および2つの陰極端子10、10’の連結部11側からそれぞれ0.5mmの幅の部分を、絶縁体12として長さ12.6mmのテフロンテープで覆い、連結部11の幅の割合を70%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)1.315mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(比較例1)
 実施例1と同様の構成において、連結部11上面全体および2つの陰極端子10、10’の連結部11側からそれぞれ0.5mmの幅の部分を、絶縁体12として長さ12.6mmのポリイミドテープで覆い、連結部11の幅の割合を10%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)4.945mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(比較例2)
 実施例1と同様の構成において、連結部11上面全体および2つの陰極端子10、10’の連結部11側からそれぞれ0.5mmの幅の部分を、絶縁体12として長さ12.6mmのポリイミドテープで覆い、連結部11の幅の割合を80%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)0.710mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(従来例1)
 実施例1と同様の構成において、図8に示すように、連結部11上面のみを、絶縁体12’として長さ12.6mmのポリイミドテープで覆い、連結部11の幅の割合を10%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)4.945mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(従来例2)
 実施例1と同様の構成において、図8に示すように、連結部11上面のみを、絶縁体12’として長さ12.6mmのポリイミドテープで覆い、連結部11の幅の割合を20%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)4.340mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(従来例3)
 実施例1と同様の構成において、図8に示すように、連結部11上面のみを、絶縁体12’として長さ12.6mmのポリイミドテープで覆い、連結部11の幅の割合を30%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)3.735mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(従来例4)
 実施例1と同様の構成において、図8に示すように、連結部11上面のみを、絶縁体12’として長さ12.6mmのポリイミドテープで覆い、連結部11の幅の割合を40%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)3.130mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(従来例5)
 実施例1と同様の構成において、図8に示すように、連結部11上面のみを、絶縁体12’として長さ12.6mmのポリイミドテープで覆い、連結部11の幅の割合を50%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)2.525mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(従来例6)
 実施例1と同様の構成において、図8に示すように、連結部11上面のみを、絶縁体12’として長さ12.6mmのポリイミドテープで覆い、連結部11の幅の割合を60%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)1.920mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(従来例7)
 実施例1と同様の構成において、図8に示すように、連結部11上面のみを、絶縁体12’として長さ12.6mmのポリイミドテープで覆い、連結部11の幅の割合を70%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)1.315mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
(従来例8)
 実施例1と同様の構成において、図8に示すように、連結部11上面のみを、絶縁体12’として長さ12.6mmのポリイミドテープで覆い、連結部11の幅の割合を80%とした構造の積層型固体電解コンデンサを作製した。ただし、陰極端子10、10’は、それぞれ幅(c)0.710mm、長さ(d)4.3mmの寸法を有し、連結部11を挟んで線対称に、連結部11から0.5mm離間して配置されている。
 尚、実施例1~12、比較例1~2、従来例1~8では、それぞれ定格2.5V-1200μF、L寸法:16mm、W寸法:12mm、H寸法:2.5mmの積層型固体電解コンデンサを作製した。
 表1は実施例1~12、比較例1~2、従来例1~8の積層型固体電解コンデンサのショート発生率、ESRを示す表である。また、図6は実施例1~6、比較例1~2の積層型固体電解コンデンサの連結部の幅の割合とESRとの関係を示すグラフである。前記ショート発生率は、以下の式で表わされる。
   ショート発生率=(ショート不良発生数/仕掛数)×100
前記ESRは、直流電流が連結部のみを通るように、実装する基板のランドパターンの陽極同士が繋がっていないという条件のもと100KHzで測定したものである。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~12、比較例1~2、従来例1~8でそれぞれ連結部11の幅の割合が同じもの(例えば実施例1と従来例2)を比較すると、実施例1~12、比較例1~2はショート発生率が大きく低減した。これは、連結部11上面全体および陰極端子10、10’の0.5mm幅の部分を絶縁体12で覆うことにより、複数のコンデンサ素子の陰極部からなる陰極体と陰極端子10、10’とを導電性接着剤8で接続する際に、連結部11の側面、および底面への導電性接着剤8のはみ出しにより生じる連結部11との電気的短絡を確実に防ぐ事ができたからである。
 また表1、図6に示すように、連結部11の幅が20~70%の積層型固体電解コンデンサ(実施例1~12、従来例2~7)は、連結部11の幅が10%、80%の積層型固体電解コンデンサ(比較例1~2、従来例1、8)と比べて、ESRが大きく低減した。よって、連結部11の幅は、20~70%とすることがより好ましい。
 実施例1~12では連結部11上面全体および陰極端子10、10’の連結部11側からそれぞれ0.5mmの幅の部分を絶縁体12で覆ったが、連結部11上面全体と陰極端子10、10’間の隙間を完全に覆っていれば、陰極端子10、10’を覆う部分は0.5mm以下でもよい。
 また、実施例1~12では、連結部11と同じ長さである12.6mmの長さの絶縁体12を使用したが、絶縁体12は複数のコンデンサ素子の陰極部からなる陰極体の長さ以上の長さであれば、任意に変更できる。例えば、図7に示すように、陽極端子9、9’のうち陽極部6、6’と接続される部分を除く連結部11側の少なくとも一部を絶縁体12で覆ってもよい。この構成によれば、絶縁体12の四隅が陽極端子9、9’上に配置され、固定されるため、樹脂パッケージ13で封止する際に、絶縁体12が変形しにくく形状が安定する。
 実施例1~12では絶縁体12として、ポリイミドテープ、テフロンテープを使用したが、ガラス繊維入りテープ、ポリプロピレンテープ、ポリエチレンテレフタレートテープ、ポリテトラフルオロエチレンテープ、ポリエステルテープなどの絶縁テープ材でもよく、絶縁性樹脂等の絶縁性のある材料であれば同じ効果が得られる。
 なお、実施例1~12では、弁作用金属としてアルミニウムを用いたが、タンタルやニオブ箔またはこれら金属粉末の焼結体を用いても同じ効果が得られる。
 また、連結部11の導電性部材は、陽極端子9、9’と同じ材料を使用し、一体に形成したが、陽極材の銅、アルミニウム以外の銀、金、ニオブ、タンタル、導電性高分子等の導電性材料なども有効に利用できる。
 さらに、実施例1~12では陰極端子10、10’を2分割し、その間に空隙部を設け、空隙部に連結部11を配置するようにしたが、陰極端子10、10’、陽極端子9、9の下面を同一高さに揃えなくてもよい場合は、連結部11を陰極端子10、10’の表面に沿ってその下に配置してもよい。しかし、陰極端子10、10’および陽極端子9、9’の下面を同一の高さに揃えた場合、積層型固体電解コンデンサをマザーボードやIC基盤に実装するのに好都合である。
 また、陰極端子10、10’間にも連結部を設け、陽極端子9、9’間の連結部11と交差するようにしてもよいし、陽極端子9、9’間の連結部11を陰極端子10、10’の中央に配置しても、一方側に寄せて配置してもよい。また、陽極端子9、9’間の連結部11を2本以上とし、その間に陰極端子を設置してもよい。この場合は、全ての陰極端子と連結部との間の隙間を覆う絶縁体を設置する必要がある。また、連結部の幅は2本以上の場合、全て連結部の幅の合計とする。
 さらに、積層体に接合される端子部材は、リードフレームに代えて、外部回路と接続される貫通孔(導通端子孔)や導電層を設けた絶縁基板を用いてもよい。
 また、実施例1~12では、固体電解質層3として導電性高分子を用いたが、二酸化マンガンを用いても同じ効果が得られる。
 実施例1~12では、コンデンサ素子を4枚積層した例について説明したが、コンデンサ素子は2枚以上であれば、積層枚数にかかわらず同じ効果が得られる。また、実施例1~12では3端子としたが、端子数を増やしても同じ効果が得られる。
 また、実施例1~12では、リードフレームを積層体の下側に配置した例について説明したが、コンデンサを実装する部分によっては積層体の上面にリードフレームを配置してもよい。
C、C1、C2、C3、C4 コンデンサ素子
1             陽極素子
2             誘電体膜
3             固体電解質層
4             カーボン層
5             銀層
6、6’          陽極部
7             這い上がり防止材
8             導電性接着剤
9、9’          陽極端子
10、10’        陰極端子
11            連結部
12、12’        絶縁体
13            樹脂パッケージ

Claims (5)

  1.  一方側に陽極部、他方側に陰極部を備えたコンデンサ素子を前記陽極部の突出方向が交互に反対になるように複数枚積み重ねた積層体を、樹脂パッケージで封止してなる積層型固体電解コンデンサであって、
    前記積層体の一方側から突出した前記陽極部に電気的に接続された一方側陽極端子と、
    前記積層体の他方側から突出した前記陽極部に電気的に接続された他方側陽極端子と、
    前記一方側陽極端子と前記他方側陽極端子とを電気的に接続する連結部と、
    前記複数のコンデンサ素子の陰極部からなる陰極体に電気的に接続され、前記連結部と離間して配置された陰極端子と、
    前記連結部と前記陰極端子との隙間を覆うように、前記連結部および前記陰極端子の前記積層体側の面上に跨って配置された絶縁体と、
    を含むことを特徴とする積層型固体電解コンデンサ。
  2.  前記連結部は前記樹脂パッケージ内部に埋設され、
    前記樹脂パッケージから露出した前記一方側陽極端子、前記他方側陽極端子および前記陰極端子の露出面が同一平面になるよう配置されたことを特徴とする請求項1に記載の積層型固体電解コンデンサ。
  3.  前記一方側陽極端子および前記他方側陽極端子は前記樹脂パッケージの幅方向全体に渡って配置され、
    前記連結部は前記樹脂パッケージの幅寸法に対し、20~70%の一定の幅寸法を有し、
    前記連結部を挟んで線対称に一対の前記陰極端子が配置され、
    前記絶縁体は前記連結部の両側に配置された一対の前記陰極端子との間に形成された両方の隙間を覆うように配置されていることを特徴とする請求項1または2に記載の積層型固体電解コンデンサ。
  4.  前記絶縁体は絶縁テープ、絶縁フィルムもしくは絶縁シートであることを特徴とする請求項1ないし3のいずれかに記載の積層型固体電解コンデンサ。
  5.  一方側に陽極部、他方側に陰極部を備えたコンデンサ素子を前記陽極部の突出方向が交互に反対になるように複数枚積み重ねた積層体を、樹脂パッケージで封止してなる積層型固体電解コンデンサの製造方法であって、
    一方側陽極端子、他方側陽極端子、前記一方側陽極端子と前記他方側陽極端子とを電気的に接続する連結部、および前記連結部と離間した陰極端子を含むリードフレームに、前記連結部と前記陰極端子との間の隙間を覆うように絶縁テープ、絶縁フィルムもしくは絶縁シートからなる絶縁体を配置する工程と、
    前記一方側陽極端子に前記積層体の一方側から突出した前記陽極部が電気的に接続され、前記他方側陽極端子に前記積層体の他方側から突出した前記陽極部が電気的に接続され、前記陰極端子に前記複数のコンデンサ素子の陰極部からなる陰極体が電気的に接続されるように、前記積層体を前記絶縁体上に配置する工程と、
    を含むことを特徴とする積層型固体電解コンデンサの製造方法。
PCT/JP2009/068415 2009-05-28 2009-10-27 積層型固体電解コンデンサおよびその製造方法 WO2010137190A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009128852A JP2010278203A (ja) 2009-05-28 2009-05-28 積層型固体電解コンデンサおよびその製造方法
JP2009-128852 2009-05-28

Publications (1)

Publication Number Publication Date
WO2010137190A1 true WO2010137190A1 (ja) 2010-12-02

Family

ID=43222325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068415 WO2010137190A1 (ja) 2009-05-28 2009-10-27 積層型固体電解コンデンサおよびその製造方法

Country Status (3)

Country Link
JP (1) JP2010278203A (ja)
TW (1) TW201108278A (ja)
WO (1) WO2010137190A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415149B (zh) * 2011-07-11 2013-11-11 Can improve the capacitance of the solid electrolytic capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123733A (ja) * 2005-10-31 2007-05-17 Showa Denko Kk 固体電解コンデンサ素子の製造方法
JP2009021355A (ja) * 2007-07-11 2009-01-29 Nichicon Corp 積層型固体電解コンデンサ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123733A (ja) * 2005-10-31 2007-05-17 Showa Denko Kk 固体電解コンデンサ素子の製造方法
JP2009021355A (ja) * 2007-07-11 2009-01-29 Nichicon Corp 積層型固体電解コンデンサ

Also Published As

Publication number Publication date
JP2010278203A (ja) 2010-12-09
TW201108278A (en) 2011-03-01

Similar Documents

Publication Publication Date Title
KR100356194B1 (ko) 고체 전해 콘덴서 및 그 제조방법
US7355835B2 (en) Stacked capacitor and method of fabricating the same
JP4688675B2 (ja) 積層型固体電解コンデンサ
JP2003133183A (ja) 固体電解コンデンサおよびその製造方法
JP2007116064A (ja) 積層型固体電解コンデンサ
TWI378482B (en) Solid electrolytic capacitor element and solid electrolytic capacitor
TW200937469A (en) Stacked solid electrolytic capacitor
US20110216475A1 (en) Stacked solid-state electrolytic capacitor with multi-directional product lead frame structure
US8018713B2 (en) Solid electrolytic capacitor having dual cathode plates surrounded by an anode body and a plurality of through holes
JP4986230B2 (ja) 積層型固体電解コンデンサ
JP4688676B2 (ja) 積層型固体電解コンデンサおよびコンデンサモジュール
WO2010137190A1 (ja) 積層型固体電解コンデンサおよびその製造方法
JP4671347B2 (ja) 固体電解コンデンサ
US8659875B2 (en) Capacitor and manufacturing method therefor
JPH07240351A (ja) 電解コンデンサ
JP2004088073A (ja) 固体電解コンデンサ
JP4936458B2 (ja) 積層型固体電解コンデンサ
JP2007258456A (ja) 積層型固体電解コンデンサ
JP5411047B2 (ja) 積層固体電解コンデンサ及びその製造方法
JP5371865B2 (ja) 3端子型コンデンサ
JP5051851B2 (ja) 積層型固体電解コンデンサ
US8310814B2 (en) Stacked capacitor with positive multi-pin structure
JP2008135424A (ja) チップ形固体電解コンデンサ
JP2008021772A (ja) チップ形固体電解コンデンサ
JP2003168627A (ja) コンデンサ、積層型コンデンサおよびコンデンサ内蔵基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845250

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845250

Country of ref document: EP

Kind code of ref document: A1