WO2011019064A1 - セルロース誘導体、樹脂組成物、成形体及びその製造方法並びに電気電子機器用筐体 - Google Patents

セルロース誘導体、樹脂組成物、成形体及びその製造方法並びに電気電子機器用筐体 Download PDF

Info

Publication number
WO2011019064A1
WO2011019064A1 PCT/JP2010/063662 JP2010063662W WO2011019064A1 WO 2011019064 A1 WO2011019064 A1 WO 2011019064A1 JP 2010063662 W JP2010063662 W JP 2010063662W WO 2011019064 A1 WO2011019064 A1 WO 2011019064A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cellulose
cellulose derivative
chloride
acid
Prior art date
Application number
PCT/JP2010/063662
Other languages
English (en)
French (fr)
Inventor
上平 茂生
竹島 洋一郎
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP10808247.0A priority Critical patent/EP2465874B1/en
Priority to CN201080035806.4A priority patent/CN102471384B/zh
Priority to KR1020127003472A priority patent/KR101668902B1/ko
Priority to US13/389,988 priority patent/US9074020B2/en
Publication of WO2011019064A1 publication Critical patent/WO2011019064A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B13/00Preparation of cellulose ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/32Cellulose ether-esters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus

Definitions

  • the present invention relates to a cellulose derivative, a resin composition, a molded product and a method for producing the same, and a case for an electric and electronic device.
  • Various materials are used for members constituting an electric / electronic device such as a copying machine, a printer, etc. in consideration of characteristics, functions and the like required for the members.
  • a member (housing) that stores a drive machine or the like of electric and electronic equipment and protects the drive machine PC (Polycarbonate), ABS (Acrylonitrile-butadiene-styrene) resin, PC / ABS, etc. are generally used.
  • PC Polycarbonate
  • ABS Acrylonitrile-butadiene-styrene
  • PC / ABS etc.
  • These resins are produced by reacting compounds obtained using petroleum as a raw material.
  • fossil resources such as oil, coal and natural gas are mainly composed of carbon which has been fixed in the ground for many years.
  • carbon dioxide is released to the atmosphere by burning such fossil resources or products derived from fossil resources, carbon that was originally fixed deep in the ground without being present in the atmosphere
  • carbon dioxide in the atmosphere is greatly increased, which causes global warming. Therefore, polymers such as ABS and PC that use petroleum, which is a fossil resource, have excellent properties as materials for members for electric and electronic devices, but use petroleum that is a fossil resource as a raw material Therefore, it is desirable to reduce its use from the viewpoint of preventing global warming.
  • a plant-derived resin is originally produced by a photosynthetic reaction in which plants use carbon dioxide in the air and water as raw materials. Therefore, even if the plant-derived resin is incinerated to generate carbon dioxide, the carbon dioxide originally corresponds to the carbon dioxide that was in the atmosphere, so the balance of carbon dioxide in the atmosphere is plus or minus zero. In the end, there is an idea that the total amount of CO 2 in the atmosphere is not increased. From such a concept, plant-derived resins are referred to as so-called "carbon neutral" materials. The use of carbon-neutral materials in place of petroleum-derived resins is an urgent matter in preventing global warming in recent years.
  • Patent Document 2 a method of reducing petroleum-derived resources by using plant-derived resources such as starch as a part of petroleum-derived materials in PC polymers.
  • Patent Document 2 further improvement is required from the viewpoint of aiming at a more complete carbon neutral material.
  • An object of the present invention is to provide a cellulose derivative and a resin composition which have good thermoplasticity, strength and heat resistance and are suitable for molding and processing.
  • the present inventors have found that, by focusing on the molecular structure of cellulose and making the cellulose into a cellulose derivative of a specific structure, they exhibit good thermoplasticity, impact resistance and heat resistance, and complete the present invention It came to That is, the above-mentioned subject can be achieved by the following means.
  • -CO-R C A cellulose derivative having (R C represents a hydrocarbon group).
  • An electric / electronic device comprising a molded product obtained by heating and molding the cellulose derivative according to any one of the above (1) to (7) or the resin composition according to the above (9) Housing.
  • a method for producing a molded article comprising the step of heating and molding the cellulose derivative according to any one of the above (1) to (8) or the resin composition according to the above (9).
  • the cellulose derivative or resin composition of the present invention has excellent thermoplasticity and can be formed into a molded article. Moreover, the molded object formed with the cellulose derivative or resin composition of this invention has favorable impact resistance, heat resistance, etc., component parts, such as a motor vehicle, a household appliance, an electrical and electronic equipment, a machine part, a house -It can be suitably used as a building material and the like. In addition, since it is a plant-derived resin, it can be substituted for conventional petroleum-derived resins as a material that can contribute to the prevention of global warming. In addition, the cellulose derivative and the resin composition of the present invention exhibit biodegradability and are expected to be utilized as a material having a small environmental load.
  • the cellulose derivative of the present invention is A) hydrocarbon group, B) an acyl group: -CO-R B and ethyleneoxy group: -C is group (R B comprising 2 H 4 -O- and represents a hydrocarbon group), and C) an acyl group:. -CO-R C (R C represents a hydrocarbon group).
  • the cellulose derivative in the present invention at least a part of the hydrogen atoms of the hydroxyl groups contained in cellulose ⁇ (C 6 H 10 O 5 ) n ⁇ is the above A) hydrocarbon group, the above B) acyl group (—CO— A group containing R B ) and an ethyleneoxy group (—C 2 H 4 —O—), and C ) substituted with an acyl group (—CO—R C ).
  • the cellulose derivative in this invention has a repeating unit represented by following General formula (2).
  • R 2 , R 3 and R 6 each independently represent a hydrogen atom, A) a hydrocarbon group, B) an acyl group (—CO—R B ) and an ethyleneoxy group (—C 2 H 4 —O And-), or C) an acyl group (-CO-R C ).
  • R B and R C each independently represent a hydrocarbon group.
  • R 2, R 3, and at least a portion of the R 6 represents a hydrocarbon group
  • at least a part of R 2 , R 3 and R 6 represents an acyl group (-CO-R C ).
  • Cellulose derivatives of the present invention is a novel compound, at least part A of the hydroxyl groups of the ⁇ - glucose ring as described above) a hydrocarbon group, B) an acyl group (-CO-R B) ethylene oxy group ( It is possible to develop thermoplasticity by being etherified and esterified with a group containing —C 2 H 4 —O—) and C) an acyl group (—CO—R C ), and it is possible to mold and process it. It can be suitable. In addition, this cellulose derivative can exhibit excellent strength and heat resistance as a molded product, and is particularly useful as a thermoforming material. Furthermore, since cellulose is a complete plant-derived component, it is carbon neutral and can significantly reduce the burden on the environment.
  • cellulose refers to a polymer compound in which a large number of glucose are bonded by ⁇ -1,4-glycosidic bond, and carbon atoms at positions 2, 3 and 6 in the glucose ring of cellulose. It means that the hydroxyl group bonded to is unsubstituted.
  • hydroxyl group contained in cellulose refers to a hydroxyl group bonded to carbon atoms at positions 2, 3 and 6 in the glucose ring of cellulose.
  • hydrogen atoms of hydroxyl groups contained in cellulose are A) at least one group substituted with a hydrocarbon group, At least one said B) an acyl group (-CO-R B) (R B is substituted with a group containing a represents a hydrocarbon group.) With ethylene group (-C 2 H 4 -O-) group And C) at least one group substituted with an acyl group (—CO—R C ) (R C represents a hydrocarbon group).
  • the cellulose derivative of the present invention may have two or more different groups as the above A) to C).
  • the cellulose derivative is, the A) hydrocarbon group in any part of the whole, B) a group containing an acyl group (-CO-R B) and ethyleneoxy group (-C 2 H 4 -O-), And C ) as long as it contains an acyl group (-CO-R C ), it may be composed of the same repeating unit, or may be composed of a plurality of types of repeating units. Furthermore, the cellulose derivative does not have to contain all of the substituents A) to C) in one repeating unit. More specific embodiments include, for example, the following embodiments.
  • a part of the cellulose derivative may contain unsubstituted repeating units (that is, repeating units in which all of R 2 , R 3 and R 6 in the general formula (1) are hydrogen atoms).
  • the hydrocarbon group may be either an aliphatic group or an aromatic group. When it is an aliphatic group, it may be linear, branched or cyclic, and may have an unsaturated bond.
  • an aliphatic group an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group etc. are mentioned, for example.
  • an aromatic group a phenyl group, a naphthyl group, a phenanthryl group, an anthryl group etc. are mentioned.
  • the hydrocarbon group is preferably an aliphatic group, more preferably an alkyl group, and still more preferably an alkyl group having 1 to 4 carbon atoms (lower alkyl group).
  • methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, hexyl group, heptyl group, 2-ethylhexyl group, tert-butyl group, isoheptyl group and the like can be mentioned.
  • Preferred is a group or ethyl group.
  • R B represents a hydrocarbon group.
  • R B may be either an aliphatic group or an aromatic group.
  • R B may be linear, branched or cyclic, and may have an unsaturated bond.
  • R B preferably an alkyl group or an aryl group is mentioned.
  • the alkyl group or aryl group is preferably an alkyl group having 1 to 12 carbon atoms or an aryl group, more preferably an alkyl group having 1 to 12 carbon atoms, still more preferably an alkyl group having 1 to 4 carbon atoms, Most preferably, it is an alkyl group having 1 or 2 carbon atoms (ie, a methyl group or an ethyl group).
  • R B methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, hexyl group, heptyl group, 2-ethylhexyl group, tert-butyl group, isoheptyl group, etc.
  • R B is a methyl group, an ethyl group or a propyl group.
  • B) a group containing an acyl group (-CO-R B) and ethyleneoxy group (-C 2 H 4 -O-) may be a group containing a structure represented by the following general formula (1) preferable.
  • R B represents a hydrocarbon group.
  • the definition and the preferred range of R B in the general formula (1) are the same as described above.
  • the group B) may contain a plurality of ethyleneoxy groups or may contain only one ethyleneoxy group. More specifically, the group B) can be represented by the following general formula (1 ').
  • R B represents a hydrocarbon group.
  • n represents the number of repetitions and is a number of 1 or more.
  • the definition and the preferred range of R B in the general formula (1 ′) are the same as described above.
  • the upper limit of n is not particularly limited and changes depending on the introduction amount of ethyleneoxy group and the like, and is, for example, about 10.
  • a group of the above B) containing only one ethyleneoxy group (a group in which n is 1 in the above general formula (1 ′)) and the above B) containing two or more ethyleneoxy groups
  • a group (a group in which n is 2 or more in the above general formula (1 ′)) may be mixed and contained.
  • R C represents a hydrocarbon group.
  • the hydrocarbon group R C is represented, it is possible to apply the same as those described in the above R B.
  • the preferred range of R C is also the same as in the above R B.
  • the A) hydrocarbon group, the hydrocarbon group represented by the R B and R C , and the ethylene group may or may not have a further substituent, but are not substituted. Substitution is preferred.
  • R B and R C have a further substituent, it is preferable that the substituent which imparts water solubility, such as a sulfonic acid group or a carboxyl group, is not included. By not containing these groups, a cellulose derivative insoluble in water and a molding material comprising the cellulose derivative can be obtained.
  • the further substituent include a halogen atom (eg, fluorine atom, chlorine atom, bromine) An atom, an iodine atom), a hydroxy group, an alkoxy group (the carbon number of the alkyl group portion is preferably 1 to 5), an alkenyl group and the like can be mentioned.
  • a halogen atom eg, fluorine atom, chlorine atom, bromine
  • An atom, an iodine atom an atom, an iodine atom
  • a hydroxy group the carbon number of the alkyl group portion is preferably 1 to 5
  • an alkenyl group and the like can be mentioned.
  • said A) hydrocarbon group, R B or R C is other than an alkyl group, it may have an alkyl group (preferably having a carbon number of 1 to 5) as a substituent.
  • the resin when using the cellulose derivative in this invention as a molding material, it is preferable that it is water-insoluble. Therefore, it is preferable that the resin substantially does not have a water-soluble substituent such as a carboxyl group, a sulfonic acid group, and a salt thereof.
  • the cellulose derivative can be made water insoluble by having substantially no carboxyl group, and is more suitable for molding processing.
  • “having substantially no carboxyl group” refers not only to the case where the cellulose derivative in the present invention does not have any carboxyl group, but also to a slight amount of carboxyl groups within the range in which the cellulose derivative in the present invention is insoluble in water. The case where it has is included.
  • a cellulose which is a raw material may contain a carboxyl group, and a cellulose derivative into which a substituent of the above A) to C) is introduced using this may contain a carboxyl group.
  • water insoluble means that the solubility in 100 parts by mass of water at 25 ° C. (pH 3 to 11) is 5 parts by mass or less.
  • the preferable content of the carboxyl group contained in the cellulose derivative of the present invention is 1% by mass or less, more preferably 0.5% by mass or less with respect to the cellulose derivative.
  • cellulose derivative in the present invention examples include acetoxyethyl methyl acetyl cellulose, acetoxy ethyl ethyl acetyl cellulose, acetoxy ethyl propyl acetyl cellulose, acetoxy ethyl butyl acetyl cellulose, acetoxy ethyl pentyl acetyl cellulose, acetoxy ethyl hexyl acetyl cellulose and acetoxy ethyl cyclohexyl acetyl Cellulose, acetoxyethyl phenyl acetyl cellulose, acetoxy ethyl naphthyl acetyl cellulose,
  • Propionyloxyethylmethylpropionylcellulose propionyloxyethylethylpropionylcellulose, propionyloxyethylpropylpropionylcellulose, propionyloxyethylbutylpropionylcellulose, propionyloxyethylpentylpropionylcellulose, propionyloxyethylhexylpropionylcellulose, propionyloxyethylcyclohexylpropionylcellulose, propionyloxy Ethyl phenyl propionyl cellulose, propionyloxy ethyl naphthyl propionyl cellulose,
  • A) hydrocarbon groups in the cellulose derivative B) a group containing an acyl group (-CO-R B) and ethyleneoxy group (-C 2 H 4 -O-), and C) an acyl group (-CO-R
  • substitution position of C There are no particular limitations on the substitution position of C ), and the number (degree of substitution) of each substituent per ⁇ -glucose ring unit.
  • the substitution degree of the A) hydrocarbon group DSa (in the repeating unit, the number of A) hydrocarbon groups with respect to the hydroxyl group at the 2nd, 3rd and 6th positions of the ⁇ -glucose ring is 1.0 ⁇ DSa Is preferable, and 1.0 ⁇ DSa ⁇ 2.5 is more preferable.
  • the number of groups B) containing an acyl group and an ethyleneoxy group for the hydroxyl group at position 6 and 6 is preferably 0 ⁇ DSb. Since the melting start temperature can be lowered by satisfying 0 ⁇ DSb, thermoforming can be performed more easily.
  • the number of unsubstituted hydroxyl groups present in the cellulose derivative is also not particularly limited.
  • the degree of substitution DSh of hydrogen atoms (the proportion of 2-, 3- and 6-hydroxyl groups in the polymerized unit being unsubstituted) can be in the range of 0 to 1.5, preferably 0 to 0.6. can do. By setting DSh to 0.6 or less, it is possible to improve the flowability of the thermoforming material, to accelerate the thermal decomposition and to suppress the foaming due to the water absorption of the thermoforming material at the time of molding.
  • the cellulose derivative in the present invention the A) hydrocarbon group, B) an acyl group (-CO-R B) and ethyleneoxy group (-C 2 H 4 -O-) a base including, and C) acyl It may have a substituent other than the group (—CO—R C ).
  • the substituent which may be carried include, for example, hydroxyethyl group, hydroxyethoxyethyl group and hydroxyethoxyethoxyethyl group. Therefore, although the sum total of each substitution degree of all the substituents which a cellulose derivative has is 3, (DSa + DSb + DSc + DSh) is 3 or less.
  • the introduction amount of ethyleneoxy group in the group B) is represented by the degree of molar substitution (MS: introduced mole number of substituent per glucose residue) (Cellorite Society of Japan editorial, Cellulose Dictionary P 142).
  • the molar substitution degree MS of the ethyleneoxy group is preferably 0 ⁇ MS, more preferably 0 ⁇ MS ⁇ 1.5, and still more preferably 0 ⁇ MS ⁇ 1.0.
  • MS is 1.5 or less (MS ⁇ 1.5)
  • heat resistance, moldability and the like can be improved, and a cellulose derivative suitable for a thermoforming material can be obtained.
  • the molecular weight of the cellulose derivative is preferably in the range of 5 ⁇ 10 3 to 1000 ⁇ 10 3 , more preferably in the range of 10 ⁇ 10 3 to 800 ⁇ 10 3 , and further preferably in the range of 10 ⁇ 10 3 to 500 ⁇ 10 3. A range of 3 is most preferred.
  • the weight average molecular weight (Mw) is preferably in the range of 7 ⁇ 10 3 to 10000 ⁇ 10 3 , more preferably in the range of 100 ⁇ 10 3 to 5000 ⁇ 10 3 , and in the range of 500 ⁇ 10 3 to 5000 ⁇ 10 3 Is most preferred. By setting it as the average molecular weight of this range, the moldability of a molded object, mechanical strength, etc. can be improved.
  • the molecular weight distribution (MWD) is preferably in the range of 1.1 to 10.0, and more preferably in the range of 2.0 to 8.0. By setting it as molecular weight distribution of this range, moldability etc. can be improved.
  • the measurement of the number average molecular weight (Mn), the weight average molecular weight (Mw) and the molecular weight distribution (MWD) in the present invention can be performed using gel permeation chromatography (GPC). Specifically, N-methyl pyrrolidone can be used as a solvent, polystyrene gel can be used, and the molecular weight can be determined using a conversion molecular weight calibration curve previously obtained from the constitutive curve of standard monodispersed polystyrene.
  • the method for producing a cellulose derivative in the present invention is not particularly limited, and the cellulose derivative of the present invention can be produced by using cellulose as a raw material and etherifying and esterifying cellulose.
  • the raw material of cellulose is not limited, and examples thereof include cotton, linter, pulp and the like.
  • a preferred embodiment of the method for producing a cellulose derivative in the present invention is, for example, an ester by reacting a cellulose ether having a hydrocarbon group and a hydroxyethyl group: -C 2 H 4 -OH with, for example, an acid chloride or an acid anhydride. It is carried out by the method including the step of conversion (acylation).
  • cellulose ether for example, methyl cellulose, ethyl cellulose, etc.
  • cellulose is allowed to react with alkyl chloride / ethylene oxide such as methyl chloride, ethyl chloride, etc.
  • alkyl chloride / ethylene oxide such as methyl chloride, ethyl chloride, etc.
  • the method including the process of esterifying by making an acid anhydride etc. react is also mentioned.
  • a method of reacting the acid chloride for example, the method described in Cellulose 10; 283-296, 2003 can be used.
  • the cellulose derivative of the present invention can be obtained by esterification of hydroxyethyl alkyl cellulose. Since this esterification occurs with respect to the hydroxyl group of hydroxyethyl group and the hydroxyl group of cellulose, when the reaction is carried out using a plurality of esterifying agents (anhydride / acid chloride), a plurality of esterified hydroxy compounds are obtained. Ethyl groups and esterified cellulose are obtained.
  • cellulose ether having a hydrocarbon group and a hydroxyethyl group examples include hydroxyethyl methylcellulose, hydroxyethyl ethyl cellulose, hydroxyethyl propyl cellulose, hydroxyethyl allyl cellulose, hydroxyethyl benzyl cellulose and the like. Preferred are hydroxyethyl methylcellulose and hydroxyethyl ethyl cellulose.
  • hydroxyl ethyl methyl cellulose commercially available ones may be used. There are several substitution degree types in the commercial product, and there is a viscosity grade indicated by the viscosity value of a 2% aqueous solution at 20 ° C. for each substitution degree type, with a viscosity value of about 1 to 200,000. Generally, high viscosity grades have higher molecular weight (Mn, Mw) than low viscosity grades. The molecular weight of the produced cellulose derivative may be adjusted by changing the viscosity grade used.
  • carboxylic acid chlorides include acetyl chloride, propionyl chloride, butyryl chloride, isobutyryl chloride, pentanoyl chloride, 2-methylbutanoyl chloride, 3-methylbutanoyl chloride, pivaloyl chloride, hexanoyl chloride, 2-Methylpentanoyl chloride, 3-methylpentanoyl chloride, 4-methylpentanoyl chloride, 2,2-dimethylbutanoyl chloride, 2,3-dimethylbutanoyl chloride, 3,3-dimethylbutanoyl chloride, 2- Ethylbutanoyl chloride, heptanoyl chloride, 2-methylhexanoyl chloride, 3-methylhexanoyl chloride, 4-methylhexano
  • the acid anhydride it is possible to use, for example, an acyl group contained in the above B) and a carboxylic acid anhydride corresponding to the C) acyl group.
  • carboxylic acid anhydride for example, acetic acid anhydride, propionic acid anhydride, butyric acid anhydride, valeric acid anhydride, hexanoic acid anhydride, heptanoic acid anhydride, octanoic acid anhydride, 2-ethylhexanoic acid Anhydride, nonanoic acid anhydride, etc. are mentioned.
  • the cellulose derivative in the present invention does not have a carboxylic acid as a substituent, for example, a compound such as phthalic anhydride, dicarboxylic acid such as maleic anhydride, etc. is reacted with cellulose to generate a carboxyl group. It is preferable not to use
  • An acid may be used as a catalyst.
  • Preferred acids include, for example, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, perchloric acid, phosphoric acid, trifluoroacetic acid, trichloroacetic acid and the like. More preferred are sulfuric acid and methanesulfonic acid.
  • Bisulfates may also be used, and examples include lithium bisulfate, sodium bisulfate, and potassium bisulfate.
  • a solid acid catalyst may also be used, and for example, a solid polymer acid catalyst such as ion exchange resin, an inorganic oxide solid acid catalyst represented by zeolite, a carbon type such as used in JP 2009-67730
  • a Solid acid catalysts may be mentioned.
  • a Lewis acid catalyst may be used, and a titanate ester catalyst as used in US Pat. No. 2,976,277, zinc chloride and the like can be mentioned.
  • a base may be used as a catalyst.
  • a base examples thereof include pyridines, alkali metal salts of acetic acid such as sodium acetate, dimethylaminopyridine and anilines.
  • reaction systems in which the esterification reaction proceeds without using a catalyst.
  • a reaction system using N, N-dimethylacetamide as a solvent and acetyl chloride or propionyl chloride as an acetylating agent can be mentioned.
  • a general organic solvent can be used.
  • carboxylic acid and carboxamide solvents are preferable.
  • carboxylic acid for example, a carboxylic acid corresponding to the acyl group contained in B) and the acyl group contained in C) can be used.
  • carboxylic acid ethyl acetate or acetonitrile may be used in combination.
  • carboxamide solvents include those used in JP-A-10-5117129 and US Pat. No. 2,705,710, and examples thereof include N, N-dimethylacetamide.
  • dimethyl sulfoxide containing lithium chloride as used in JP-A-2003-41052 may be used.
  • a halogenated solvent may be used, preferably dichloromethane.
  • acid chloride used as an esterification agent may be used as a solvent.
  • Cellulose derivatives used as raw materials are produced from biomass resources such as cotton linter and wood pulp. Materials made from biomass resources may also be used as raw materials other than cellulose derivatives. For example, acetic acid and acetic anhydride produced by a fermentation method from ethanol produced from cellulosic biomass or starch biomass can be mentioned.
  • carboxylic acid or acetic acid containing a small amount of an acid catalyst may be added to the raw material cellulose derivative and mixed.
  • the raw material cellulose derivative may be dried before use to reduce the water content. Since the contained water causes a side reaction to react with acetic anhydride, the amount of acetic anhydride used can be reduced by reducing the contained water.
  • the rate of the esterification reaction may be controlled by adding the catalyst in divided portions, changing the addition rate, or combining them, as described in Japanese Patent No. 2,754,066.
  • the esterification reaction is a violent exothermic reaction, and since the reaction solution has a high viscosity, it is effective when heat removal becomes difficult.
  • the generated vapor is condensed to flow out to the reaction system.
  • the reaction product may be concentrated.
  • the heat of reaction generated by the esterification reaction can be removed by taking away the latent heat of vaporization of the volatile solvent.
  • the esterification reaction may be carried out in multiple steps as described in JP-A-2000-511588. For example, as a first step, after reacting cellulose with a first acetylating agent in the presence of a base catalyst, as a second step, reacting with a second acetylating agent in the presence of an acid catalyst, and the like.
  • the temperature of the esterification reaction is high, the esterification reaction rate is increased, and the reaction time can be shortened, but molecular weight reduction due to depolymerization reaction tends to occur.
  • the lower the temperature the slower the esterification reaction. It is preferable to adjust the reaction temperature and time depending on the target cellulose derivative structure and target molecular weight (Mn, Mw).
  • the reaction may be performed by irradiating ultrasonic waves.
  • the mixture in the reactor gradually becomes doped from the solid-liquid state, and the dope viscosity in the reaction system becomes very high.
  • the dope viscosity is further increased by a method in which the esterification reaction is performed under reduced pressure conditions while the gas phase components of the reaction system are distilled out of the reaction system.
  • a base usually in the form of an aqueous solution
  • water or an alcohol
  • the acid catalyst is neutralized, and when adding water, the acid catalyst is not neutralized. Generally, it is better to neutralize, but it does not have to be. When it is better to neutralize, for example, the thermal stability of the synthesized polymer is reduced due to the influence of the bound sulfuric acid bound to the cellulose derivative.
  • the combined sulfuric acid is decomposed without neutralization at one time by a method such as adding a base continuously. It is possible to adopt a method of neutralizing in stages while maintaining easy liquid properties.
  • the base used as the neutralizing agent is not particularly limited as long as it is a base, but preferred examples thereof include alkali metal compounds and alkaline earth metal compounds. Specifically, sodium acetate, potassium acetate, calcium acetate, magnesium acetate, Calcium hydroxide, magnesium hydroxide and the like.
  • the method for separating the target cellulose derivative is not particularly limited. For example, methods such as precipitation, filtration, washing, drying, extraction, concentration, and column chromatography can be used alone or in combination of two or more as appropriate. From the viewpoint of the properties, purification efficiency, etc., a method of separating the cellulose derivative by a precipitation (reprecipitation) operation is preferable.
  • a solution containing the cellulose derivative is mixed with the poor solvent, for example, the reaction solution containing the cellulose derivative is charged into the poor solvent of the cellulose derivative, or the poor solvent is charged into a solution containing the cellulose derivative. It is done by doing.
  • any solvent having low solubility of the cellulose derivative may be used, and examples thereof include dilute acetic acid, water, alcohols and the like. Preferably, it is dilute acetic acid or water.
  • the solid-liquid separation method for the obtained precipitate is not particularly limited, and methods such as filtration and sedimentation can be used. It is preferably filtration, and various dehydrators using decompression, pressurization, gravity, squeezing, centrifugation and the like can be used. For example, a vacuum dehydrator, a pressure dehydrator, a belt press, a centrifugal filtration dehydrator, a vibrating screen, a roller press, a belt screen and the like can be mentioned.
  • the separated precipitate is often washed with water or the like to remove acetic acid, an acid used as an acid catalyst, a solvent, and a free metal component.
  • acetic acid and an acid used as an acid catalyst are preferably removed because they cause a decrease in molecular weight of the resin at the time of molding and a decrease in physical performance thereby.
  • a neutralizing agent may be added at the time of washing.
  • the base used as the neutralizing agent is not particularly limited as long as it is a base, but preferred examples thereof include alkali metal compounds and alkaline earth metal compounds. Specifically, sodium acetate, potassium acetate, calcium acetate, magnesium acetate, Calcium hydroxide, magnesium hydroxide and the like. Further, as described in Japanese Patent Publication No. 6-67961, a buffer may be used for washing.
  • the drying method is not particularly limited, and various dryers that perform drying under conditions such as air blowing and pressure reduction can be used.
  • the resin composition of the present invention contains the above-described cellulose derivative, and may contain other additives as needed.
  • the content ratio of the components contained in the thermoforming material is not particularly limited.
  • the cellulose derivative is contained 75% by mass or more, more preferably 80% by mass or more, still more preferably 80 to 100% by mass.
  • the thermoforming material of the present invention may contain, in addition to the cellulose derivative of the present invention, if necessary, various additives such as a filler and a flame retardant.
  • the resin composition of the present invention may contain a filler (reinforcement material).
  • the inclusion of the filler can enhance the mechanical properties of the formed article.
  • the shape of the filler may be any of fibrous, plate, granular, powder and the like. In addition, it may be inorganic or organic. Specifically, as the inorganic filler, glass fiber, carbon fiber, graphite fiber, metal fiber, potassium titanate whisker, aluminum borate whisker, magnesium whisker, silicon whisker, warasteite, sepiolite, slag fiber, zonolite, Fibrous inorganic fillers such as elestadite, gypsum fiber, silica fiber, silica / alumina fiber, zirconia fiber, boron nitride fiber, boron nitride fiber and boron fiber; Glass flakes, non-swelling mica, carbon black, graphite, metal foil , Ceramic beads, talc, clay, mica, sericite, zeolite, bentonite, dolomite, kaolin, finely divided silicic acid, feldspar powder, potassium
  • organic fillers synthetic fibers such as polyester fibers, nylon fibers, acrylic fibers, regenerated cellulose fibers, acetate fibers, etc., and kenaf, ramie, cotton, jute, hemp, sisal, manila hemp, flax, natural fibers such as linen, silk and wool
  • organic fillers synthetic fibers such as polyester fibers, nylon fibers, acrylic fibers, regenerated cellulose fibers, acetate fibers, etc., and kenaf, ramie, cotton, jute, hemp, sisal, manila hemp, flax, natural fibers such as linen, silk and wool
  • fibrous organic fillers obtained from microcrystalline cellulose, sugar cane, wood pulp, paper waste, waste paper and the like, and granular organic fillers such as organic pigments.
  • the resin composition contains a filler
  • its content is not limited, but it is usually 30 parts by mass or less, preferably 5 to 10 parts by mass, with respect to 100 parts by mass of the cellulose derivative.
  • the resin composition of the present invention may contain a flame retardant. This can improve the flame retardant effect such as the reduction or suppression of the combustion rate.
  • the flame retardant is not particularly limited, and a commonly used flame retardant can be used.
  • a commonly used flame retardant can be used.
  • brominated flame retardants, chlorinated flame retardants, phosphorus-containing flame retardants, silicon-containing flame retardants, nitrogen compound flame retardants, inorganic flame retardants and the like can be mentioned.
  • it does not cause thermal decomposition at the time of compounding with a resin or during molding processing to generate hydrogen halide and cause corrosion of processing machines and molds or deterioration of the working environment, and also at the time of incineration disposal.
  • Phosphorus-containing flame retardants and silicon-containing flame retardants are preferred because halogens are less likely to adversely affect the environment due to dispersal and decomposition to generate harmful substances such as dioxins.
  • phosphorus-containing flame retardant there is no particular limitation on the phosphorus-containing flame retardant, and commonly used ones can be used.
  • organic phosphorus compounds such as phosphoric acid ester, phosphoric acid condensed ester, polyphosphate and the like can be mentioned.
  • phosphoric acid esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris (isopropyl phenyl) Phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di (isopropylphenyl) phenyl phosphate, monoisodecyl phosphate, 2-acryloyloxyethyl Acid phosphate, 2-methacryloyloxyethyl acid phosphate, dipheny -2-Acryloyl
  • phosphoric acid condensation esters examples include resorcinol polyphenyl phosphate, resorcinol poly (di-2,6-xylyl) phosphate, bisphenol A polycresyl phosphate, hydroquinone poly (2,6-xylyl) phosphate and condensates thereof, etc. And aromatic phosphoric acid condensation esters and the like.
  • polyphosphates comprising salts of phosphoric acid, polyphosphoric acid, metals of Groups 1 to 14 of the periodic table, ammonia, aliphatic amines, and aromatic amines.
  • lithium salts as metal salts, sodium salts, calcium salts, barium salts, iron (II) salts, iron (III) salts, aluminum salts, etc.
  • methylamine salts as aliphatic amine salts
  • aromatic amine salts include pyridine salts, triazines and the like.
  • halogen-containing phosphate esters such as trischloroethyl phosphate, trisdichloropropyl phosphate, tris ( ⁇ -chloropropyl) phosphate and the like, and a structure in which a phosphorus atom and a nitrogen atom are connected by a double bond And phosphazene compounds having phosphoric acid and phosphoric acid ester amides.
  • phosphorus-containing flame retardants may be used alone or in combination of two or more.
  • an organosilicon compound having a two-dimensional or three-dimensional structure, polydimethylsiloxane, or a side chain or terminal methyl group of polydimethylsiloxane is a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, Those which are substituted or modified with aromatic hydrocarbon groups, so-called silicone oils or modified silicone oils are mentioned.
  • a substituted or unsubstituted aliphatic hydrocarbon group and an aromatic hydrocarbon group for example, an alkyl group, a cycloalkyl group, a phenyl group, a benzyl group, an amino group, an epoxy group, a polyether group, a carboxyl group, a mercapto group, Chloroalkyl group, alkyl higher alcohol ester group, alcohol group, aralkyl group, vinyl group, trifluoromethyl group and the like can be mentioned.
  • These silicon-containing flame retardants may be used alone or in combination of two or more.
  • the flame retardant other than the phosphorus-containing flame retardant or the silicon-containing flame retardant for example, magnesium hydroxide, aluminum hydroxide, antimony trioxide, antimony pentoxide, sodium antimonate, zinc hydroxystannate, zinc stannate, Metastannic acid, tin oxide, tin oxide salt, zinc sulfate, zinc oxide, ferrous oxide, ferric oxide, stannous oxide, stannic oxide, zinc borate, ammonium borate, ammonium octamolybdate, tungsten Inorganic flame retardants such as metal salts of acids, complex oxides of tungsten and metalloid, ammonium sulfamate, ammonium bromide, zirconium compounds, guanidine compounds, fluorine compounds, graphite, swelling graphite, etc. can be used . These other flame retardants may be used alone or in combination of two or more.
  • the content thereof is not limited, but usually 30 parts by mass or less, preferably 2 to 10 parts by mass with respect to 100 parts by mass of the cellulose derivative. By setting this range, impact resistance, brittleness and the like can be improved, and the occurrence of pellet blocking can be suppressed.
  • the resin composition of the present invention is, besides the above-mentioned cellulose derivative, filler and flame retardant, for the purpose of further improving various properties such as moldability and flame retardancy within the range not to inhibit the object of the present invention. It may contain ingredients. Other components include, for example, polymers other than the above-mentioned cellulose derivatives, plasticizers, stabilizers (antioxidants, UV absorbers, etc.), release agents (fatty acids, fatty acid metal salts, oxyfatty acids, fatty acid esters, aliphatic moieties) Saponified ester, paraffin, low molecular weight polyolefin, fatty acid amide, alkylene bis fatty acid amide, aliphatic ketone, fatty acid lower alcohol ester, fatty acid polyhydric alcohol ester, fatty acid polyglycol ester, modified silicone), antistatic agent, flame retardant auxiliary agent, Processing aids, anti-drip agents, antibacterial agents, anti-mold agents and the like can be mentioned. Furthermore, coloring agents including
  • thermoplastic polymer As polymers other than the said cellulose derivative, although a thermoplastic polymer and a thermosetting polymer can also be used, a thermoplastic polymer is preferable from the point of a moldability.
  • Specific examples of polymers other than cellulose derivatives include low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-propylene-non-conjugated diene copolymer, ethylene-butene- 1) Copolymers, polypropylene homopolymers, polypropylene copolymers (such as ethylene-propylene block copolymers), polyolefins such as polybutene-1 and poly-4-methylpentene-1, polybutylene terephthalate, polyethylene terephthalate and other aromatic polyesters Polyamides such as polyester, nylon 6, nylon 46, nylon 66, nylon 610, nylon 612, nylon 6 T, nylon 12 etc., polystyrene, high impact polys
  • various acrylic rubbers ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers and alkali metal salts thereof (so-called ionomers), ethylene-acrylic acid alkyl ester copolymers (for example, ethylene-ethyl acrylate co-weight) Combined, ethylene-butyl acrylate copolymer), diene rubber (eg, 1,4-polybutadiene, 1,2-polybutadiene, polyisoprene, polychloroprene), copolymer of diene and vinyl monomer (eg, , Styrene-butadiene random copolymer, styrene-butadiene block copolymer, styrene-butadiene-styrene block copolymer, styrene-isoprene random copolymer, styrene-isoprene block copolymer,
  • those having various degrees of crosslinking those having various microstructures, such as those having a cis structure, a trans structure, etc., those having a vinyl group, or those having various average particle sizes, or the core layer A so-called core-shell rubber multi-layer structure polymer or the like composed of one or more covering shell layers and adjacent layers comprising different polymers may also be used, and further, a core-shell rubber containing a silicone compound. Can also be used. These polymers may be used alone or in combination of two or more.
  • the content is preferably 30 parts by mass or less, and more preferably 2 to 10 parts by mass with respect to 100 parts by mass of the cellulose derivative.
  • the resin composition of the present invention may contain a plasticizer.
  • a plasticizer those commonly used in the formation of polymers can be used.
  • polyester plasticizers, glycerin plasticizers, polyvalent carboxylic acid ester plasticizers, polyalkylene glycol plasticizers, epoxy plasticizers and the like can be mentioned.
  • polyester plasticizers include acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, rosin, propylene glycol, 1,3-butanediol, 1,4 And polyesters comprising a diol component such as butanediol, 1,6-hexanediol, ethylene glycol and diethylene glycol, and polyesters comprising a hydroxycarboxylic acid such as polycaprolactone. These polyesters may be endcapped with a monofunctional carboxylic acid or monofunctional alcohol, or may be endcapped with an epoxy compound or the like.
  • acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, rosin, propylene glycol, 1,3-butanediol, 1,4
  • glycerin-based plasticizer examples include glycerin monoacetomonolaurate, glycerin diacetomonolaurate, glycerin monoacetomonostearate, glycerin diacetomonooleate, and glycerin monoacetomonomontanate.
  • polyvalent carboxylic acid plasticizers include phthalates such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate, diheptyl phthalate, dibenzyl phthalate, and butyl benzyl phthalate, and trimellitic acid Trimellitic esters such as tributyl, trioctyl trimellitate, trihexyl trimellitate, diisodecyl adipate, n-octyl-n-decyl adipate, methyl diglycol butyl diglycol adipate, benzyl methyl diglycol adipate, adipic acid Adipates such as benzyl butyl diglycol Citric acid esters such as triethyl acetyl citrate and tributyl acetyl citrate, azelaic acid esters such as di-2-ethylhexyl azelate
  • polyalkylene glycol plasticizers include polyethylene glycol, polypropylene glycol, poly (ethylene oxide / propylene oxide) block and / or random copolymer, polytetramethylene glycol, ethylene oxide addition polymers of bisphenols, bisphenols
  • propylene oxide addition polymers, polyalkylene glycols such as tetrahydrofuran addition polymers of bisphenols, or terminal epoxy-modified compounds thereof, terminal ester-modified compounds, terminal ether-modified compounds and the like can be mentioned.
  • Epoxy plasticizers generally refer to epoxy triglycerides and the like consisting of alkyl epoxy stearate and soybean oil, but also so-called epoxy resins mainly made from bisphenol A and epichlorohydrin. It can be used.
  • plasticizers include neopentyl glycol dibenzoate, diethylene glycol dibenzoate, benzoic acid esters of aliphatic polyols such as triethylene glycol di-2-ethyl butyrate, fatty acid amides such as stearic acid amide, oleic acid Aliphatic carboxylic acid esters such as butyl, methyl acetyl ricinoleate, oxy acid esters such as butyl acetyl ricinoleate, pentaerythritol, various sorbitols and the like.
  • the content thereof is usually 5 parts by mass or less, preferably 0.005 to 5 parts by mass, more preferably 0. 5 parts by mass with respect to 100 parts by mass of the cellulose derivative. It is 01 to 1 part by mass.
  • the molded object of this invention is obtained by shape
  • the application of the molded article of the present invention is not particularly limited, for example, interior or exterior parts of electric and electronic devices (home appliances, OA / media related devices, optical devices and communication devices etc.), automobiles, mechanical parts And materials for housing and construction.
  • electric and electronic devices home appliances, OA / media related devices, optical devices and communication devices etc.
  • automobiles mechanical parts And materials for housing and construction.
  • exterior components for electric and electronic devices such as copiers, printers, personal computers, televisions etc. Can be suitably used as
  • Synthesis Example 1 Synthesis of acetoxyethyl methyl acetyl cellulose (C-1) Weigh 45 g of hydroxyethyl methyl cellulose (trade name Marpolose ME-250T; made by Matsumoto Yushi) and 2250 mL of N, N-dimethylacetamide in a 5 L three-necked flask equipped with a mechanical stirrer, thermometer, condenser and dropping funnel and stir at room temperature. did. After confirming that the reaction system became clear and completely dissolved, 129 mL of acetyl chloride was slowly added dropwise to raise the temperature of the system to 80.degree. C. to 90.degree. After stirring for 3 hours, the temperature of the reaction system was cooled to room temperature.
  • C-1 acetoxyethyl methyl acetyl cellulose
  • the reaction solution was poured into 10 L of water while vigorously stirring to precipitate a white solid.
  • the white solid was filtered off by suction filtration and washed three times with a large amount of water.
  • the resulting white solid was vacuum dried at 100 ° C. for 6 hours to obtain the target cellulose derivative (C-1) (acetoxyethyl methyl acetyl cellulose, substitution degree described in Table 1) as a white powder (57. 8g).
  • the reaction solution was poured into 10 L of water while vigorously stirring to precipitate a white solid.
  • the white solid was filtered off by suction filtration and washed three times with a large amount of water.
  • the resulting white solid was vacuum dried at 100 ° C. for 6 hours to obtain the target cellulose derivative (C-2) (acetoxyethyl methyl acetyl cellulose, the degree of substitution is described in Table 1) as a white powder (58. 5g).
  • Synthesis Example 3 Synthesis of propionyloxyethylmethylpropionyl cellulose (C-3) Weigh 45 g of hydroxyethyl methyl cellulose (trade name Marpolose ME-350T; made by Matsumoto Yushi) and 2250 mL of N, N-dimethylacetamide in a 5 L three-necked flask fitted with a mechanical stirrer, thermometer, condenser and dropping funnel and stir at room temperature. did. After confirming that the reaction system became clear and completely dissolved, 158 mL of propionyl chloride was slowly added dropwise to raise the temperature of the system to 80.degree. C. to 90.degree. After stirring for 3 hours, the temperature of the reaction system was cooled to room temperature.
  • C-3 propionyloxyethylmethylpropionyl cellulose
  • the reaction solution was poured into 10 L of water while vigorously stirring to precipitate a white solid.
  • the white solid was filtered off by suction filtration and washed three times with a large amount of water.
  • the obtained white solid was vacuum dried at 100 ° C. for 6 hours to obtain the target cellulose derivative (C-3) (propionyloxyethylmethylpropionyl cellulose, the degree of substitution is described in Table 1) as a white powder (79 .2g).
  • Synthesis Example 4 Synthesis of propionyloxyethylmethylpropionyl cellulose (C-4) Weigh 45 g of hydroxyethyl methyl cellulose (trade name Marpolose ME-350T; made by Matsumoto Yushi) and 2250 mL of N, N-dimethylacetamide in a 5 L three-necked flask fitted with a mechanical stirrer, thermometer, condenser and dropping funnel and stir at room temperature. did. After confirming that the reaction system became clear and completely dissolved, 93.1 mL of propionyl chloride was slowly added dropwise, and the temperature of the system was raised to 80 ° C to 90 ° C.
  • C-4 propionyloxyethylmethylpropionyl cellulose
  • the temperature of the reaction system was cooled to room temperature, and 100 ml of methanol and 500 ml of water were added.
  • the reaction solution was poured into 10 L of water with vigorous stirring, and the white solid was filtered off by suction filtration and washed three times with a large amount of water.
  • the obtained white solid was vacuum dried at 100 ° C. for 6 hours to obtain the target cellulose derivative (C-4) (propionyloxyethylmethylpropionyl cellulose, the degree of substitution is described in Table 1) as a white powder (50 .5g).
  • Synthesis Example 6 Synthesis of acetoxyethylpropionyloxyethylmethylacetylpropionyl cellulose (C-6)> Weigh 45 g of hydroxyethyl methyl cellulose (trade name Marpolose ME-350T; made by Matsumoto Yushi) and 2250 mL of N, N-dimethylacetamide in a 5 L three-necked flask fitted with a mechanical stirrer, thermometer, condenser and dropping funnel and stir at room temperature. did.
  • Synthesis Example 7 Synthesis of acetoxyethyl butyryloxy ethyl methyl acetyl butyryl cellulose (C-7) Weigh 45 g of hydroxyethyl methyl cellulose (trade name Marpolose ME-350T; made by Matsumoto Yushi) and 2250 mL of N, N-dimethylacetamide in a 5 L three-necked flask fitted with a mechanical stirrer, thermometer, condenser and dropping funnel and stir at room temperature. did.
  • the types of functional groups substituted by hydroxyl groups (R 2 , R 3 and R 6 ) contained in cellulose, and DSa, MS, and DSb + DSc are Cellulose Communication 6,73-79 ( It was observed and determined by 1 H-NMR using the method described in 1999).
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the obtained cellulose derivative were measured.
  • the measurement methods of these are as follows.
  • the measurement of a number average molecular weight (Mn) and a weight average molecular weight (Mw) used gel permeation chromatography (GPC). Specifically, N-methyl pyrrolidone was used as a solvent, polystyrene gel was used, and it was determined using a conversion molecular weight calibration curve previously obtained from a constitutive curve of standard monodispersed polystyrene.
  • the GPC apparatus used was HLC-8220GPC (manufactured by Tosoh Corporation).
  • “B) group containing an acyl group and an ethyleneoxy group” in the cellulose derivatives C-1, C-2, C-9 and C-10 all includes the structure of the following formula (1-1)
  • the group "B) containing an acyl group and an ethyleneoxy group” in the cellulose derivatives C-3, C-4, and C-11 is any group including the structure of the following formula (1-2)
  • the “B) group containing an acyl group and an ethyleneoxy group” in the cellulose derivative C-5 is a group containing the structure of the following formula (1-3)
  • “a group containing a group” is a group containing a structure of the following formula (1-1) and a structure containing (1-2)
  • “B) an acyl group and an ethyleneoxy group in the cellulose derivative C-7 “Group containing” is a group containing the structure of the following formula (1-1) and (1 A group containing the structure of 3) and “a group
  • melting start temperature of cellulose derivative The melting start temperature of the obtained cellulose derivative and the raw material Marpolose was measured. The measurement methods of these are as follows. Melting start temperature (Tm) Using a flow tester (manufactured by Shimadzu Corporation), the outflow start temperature of the resin was measured when the temperature was raised at a temperature increase rate of 5 ° C./min under a load of 100 kg, and this was taken as the melting start temperature. The melting start temperature is shown in Table 2.
  • the thermal decomposition start temperature was measured about the obtained cellulose derivative and marpolose which is a raw material.
  • the measurement methods of these are as follows. [Thermal decomposition start temperature (Td)] Using a thermogravimetric / differential thermal analyzer (manufactured by Seiko Instruments Inc.), the 2% weight loss temperature of the sample was measured when the temperature was raised at 10 ° C./min in a nitrogen atmosphere, and this was taken as the thermal decomposition initiation temperature.
  • the thermal decomposition start temperature is shown in Table 2.
  • the obtained cellulose derivative has the melting start temperature significantly reduced relative to the raw material marporose.
  • the obtained cellulose derivative has a Td-Tm much larger than that of the raw material marpolose, which indicates that the molding utilizing thermoplasticity is facilitated.
  • solubility to water was measured about the obtained cellulose derivative and marporose which is a raw material.
  • the measurement method of solubility is as follows. [Solubility measurement in water] Each sample was added to 100 g of water at 25 ° C. and stirred to confirm the presence or absence of dissolution. The results are shown in Table 3 below. In Table 3 below, those having a dissolution amount of 5 g or less were regarded as “insoluble”, and those having an amount larger than 5 g were regarded as “dissolution”.
  • H-1 is ME-250T (Marpolose: manufactured by Matsumoto Yushi-Chemical)
  • H-2 is ME-350T (Marpolose: manufactured by Matsumoto Yushi-Chemical). It can be seen from Table 3 that while hydroxyethyl methylcellulose (H-1 and H-2) is soluble in water, the cellulose derivatives within the scope of the present invention are insoluble.
  • Example 1 Preparation of a Formed Article Made of a Cellulose Derivative
  • the cellulose derivative (C-1) obtained above is supplied to an injection molding machine (a semi-automatic injection molding machine manufactured by Imoto Machinery Co., Ltd.) to obtain a cylinder temperature of 200 ° C., a mold temperature of 30 ° C., and an injection pressure of 1.5 kgf / A 4 ⁇ 10 ⁇ 80 mm multi-purpose test specimen (impact test specimen and heat deformation test specimen) was formed in cm 2 .
  • an injection molding machine a semi-automatic injection molding machine manufactured by Imoto Machinery Co., Ltd.
  • Examples 2 to 11 and Comparative Examples 1 to 4 In the same manner as in Example 1, cellulose derivatives (C-2) to (C-11), as comparative compounds (H-1) ME-250T (Marpolose: manufactured by Matsumoto Yushi-Kagaku), (H-2) ME-350T (Merpolose: made by Matsumoto Yushi-Chemical), (H-3) (made by Dow Chemical: ethyl cellulose, degree of ethoxy substitution 2.6), (H-4) (made by Eastman Chemical: cellulose acetate propionate, degree of acetyl substitution 0 .1 using a propionyl substitution degree of 2.5) according to the molding conditions of Table 4 described later, to prepare test pieces.
  • the cellulose derivative or resin composition of the present invention has excellent thermoplasticity and can be formed into a molded article. Moreover, the molded object formed with the cellulose derivative or resin composition of this invention has favorable impact resistance, heat resistance, etc., component parts, such as a motor vehicle, a household appliance, an electrical and electronic equipment, a machine part, a house -It can be suitably used as a building material and the like. In addition, since it is a plant-derived resin, it can be substituted for conventional petroleum-derived resins as a material that can contribute to the prevention of global warming. In addition, the cellulose derivative and the resin composition of the present invention exhibit biodegradability and are expected to be utilized as a material having a small environmental load.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

A)炭化水素基、 B)アシル基:-CO-Rとエチレンオキシ基:-C-O-とを含む基(Rは炭化水素基を表す。)、及び C)アシル基:-CO-R(Rは炭化水素基を表す。)を有するセルロース誘導体。

Description

セルロース誘導体、樹脂組成物、成形体及びその製造方法並びに電気電子機器用筐体
 本発明は、セルロース誘導体、樹脂組成物、成形体及びその製造方法並びに電気電子機器用筐体に関する。
 コピー機、プリンター等の電気電子機器を構成する部材には、その部材に求められる特性、機能等を考慮して、各種の素材が使用されている。例えば、電気電子機器の駆動機等を収納し、当該駆動機を保護する役割を果たす部材(筐体)にはPC(Polycarbonate)、ABS(Acrylonitrile-butadiene-styrene)樹脂、PC/ABS等が一般的に多量に使用されている(特許文献1)。これらの樹脂は、石油を原料として得られる化合物を反応させて製造されている。
 ところで、石油、石炭、天然ガス等の化石資源は、長年月の間、地中に固定されてきた炭素を主成分とするものである。このような化石資源、又は化石資源を原料とする製品を燃焼させて、二酸化炭素が大気中に放出された場合には、本来、大気中に存在せずに地中深くに固定されていた炭素を二酸化炭素として急激に放出することになり、大気中の二酸化炭素が大きく増加し、これが地球温暖化の原因となっている。したがって、化石資源である石油を原料とするABS、PC等のポリマーは、電気電子機器用部材の素材としては、優れた特性を有するものであるものの、化石資源である石油を原料とするものであるため、地球温暖化の防止の観点からは、その使用量の低減が望ましい。
 一方、植物由来の樹脂は、元々、植物が大気中の二酸化炭素と水とを原料として光合成反応によって生成したものである。そのため、植物由来の樹脂を焼却して二酸化炭素が発生しても、その二酸化炭素は元々、大気中にあった二酸化炭素に相当するものであるから、大気中の二酸化炭素の収支はプラスマイナスゼロとなり、結局、大気中のCOの総量を増加させない、という考え方がある。このような考えから、植物由来の樹脂は、いわゆる「カーボンニュートラル」な材料と称されている。石油由来の樹脂に代わって、カーボンニュートラルな材料を用いることは、近年の地球温暖化を防止する上で急務となっている。
 このため、PCポリマーにおいて、石油由来の原料の一部としてデンプン等の植物由来資源を使用することにより石油由来資源を低減する方法が提案されている(特許文献2)。
 しかし、より完全なカーボンニュートラルな材料を目指す観点から、さらなる改良が求められている。
日本国特開昭56-55425号公報 日本国特開2008-24919号公報
 本発明者らは、カーボンニュートラルな樹脂として、セルロースを使用することに着目した。しかし、セルロースは一般的に熱可塑性を持たないため、加熱等により成形することが困難であるため、成形加工に適さない。また、たとえ熱可塑性を付与できたとしても、耐衝撃性等の強度が大きく衰える問題がある。更には、耐熱性の点でも改良の余地がある。
 本発明の目的は、良好な熱可塑性、強度及び耐熱性を有し、成形加工に適したセルロース誘導体及び樹脂組成物を提供することである。
 本発明者らは、セルロースの分子構造に着目し、当該セルロースを特定構造のセルロース誘導体にすることにより、良好な熱可塑性、耐衝撃性及び耐熱性を発現することを見出し、本発明を完成するに至った。
 すなわち、上記課題は以下の手段により達成することができる。
(1)A)炭化水素基、
 B)アシル基:-CO-Rとエチレンオキシ基:-C-O-とを含む基(Rは炭化水素基を表す。)、及び
 C)アシル基:-CO-R(Rは炭化水素基を表す。)を有するセルロース誘導体。
(2)前記A)炭化水素基が炭素数1~4のアルキル基である、上記(1)に記載のセルロース誘導体。
(3)前記A)炭化水素基がメチル基又はエチル基である、上記(1)に記載のセルロース誘導体。
(4)前記B)アシル基:-CO-Rとエチレンオキシ基:-C-O-とを含む基が、下記一般式(1)で表される構造を含む基である、上記(1)~(3)のいずれか1項に記載のセルロース誘導体。
Figure JPOXMLDOC01-appb-C000002
(式中、Rは炭化水素基を表す。)
(5)前記R及びRが、それぞれ独立に、アルキル基又はアリール基である、上記(1)~(4)のいずれか1項に記載のセルロース誘導体。
(6)前記R及びRが、それぞれ独立に、メチル基、エチル基、又はプロピル基である、上記(1)~(4)のいずれか1項に記載のセルロース誘導体。
(7)前記セルロース誘導体がカルボキシル基を実質的に有さない、上記(1)~(6)のいずれか1項に記載のセルロース誘導体。
(8)上記(1)~(7)のいずれか1項に記載のセルロース誘導体の製造方法であって、
  炭化水素基及びヒドロキシエチル基:-C-OHを有するセルロースエーテルをエステル化する工程を含む、セルロース誘導体の製造方法。
(9)上記(1)~(8)のいずれか1項に記載のセルロース誘導体を含有する樹脂組成物。
(10)上記(1)~(7)のいずれか1項に記載のセルロース誘導体又は上記(9)に記載の樹脂組成物を加熱し、成形して得られる成形体から構成される電気電子機器用筐体。
(11)上記(1)~(8)のいずれか1項に記載のセルロース誘導体又は上記(9)に記載の樹脂組成物を加熱し、成形する工程を備えた、成形体の製造方法。
 本発明のセルロース誘導体又は樹脂組成物は、優れた熱可塑性を有するため、成形体とすることができる。また、本発明のセルロース誘導体又は樹脂組成物によって形成された成形体は、良好な耐衝撃性、耐熱性等を有しており、自動車、家電、電気電子機器等の構成部品、機械部品、住宅・建築用材料等として好適に使用することができる。また、植物由来の樹脂であるため、温暖化防止に貢献できる素材として、従来の石油由来の樹脂に代替できる。また、本発明のセルロース誘導体及び樹脂組成物は生分解性を示し、環境負荷の小さい材料として活用が期待される。
 以下、本発明について詳細に説明する。
1.セルロース誘導体
 本発明のセルロース誘導体は、
 A)炭化水素基、
 B)アシル基:-CO-Rとエチレンオキシ基:-C-O-とを含む基(Rは炭化水素基を表す。)、及び
 C)アシル基:-CO-R(Rは炭化水素基を表す。)を有する。
 すなわち、本発明におけるセルロース誘導体は、セルロース{(C10}に含まれる水酸基の水素原子の少なくとも一部が、前記A)炭化水素基、前記B)アシル基(-CO-R)とエチレンオキシ基(-C-O-)とを含む基、及び前記C)アシル基(-CO-R)により置換されている。
 より詳細には、本発明におけるセルロース誘導体は、下記一般式(2)で表される繰り返し単位を有する。
Figure JPOXMLDOC01-appb-C000003
 上記式において、R、R及びRは、それぞれ独立に、水素原子、A)炭化水素基、B)アシル基(-CO-R)とエチレンオキシ基(-C-O-)とを含む基、又はC)アシル基(-CO-R)を表す。R及びRは、それぞれ独立に、炭化水素基を表す。但し、R、R、及びRの少なくとも一部が炭化水素基を表し、R、R、及びRの少なくとも一部がアシル基(-CO-R)とエチレンオキシ基(-C-O-)とを含む基を表し、R、R、及びRの少なくとも一部がアシル基(-CO-R)を表す。
 本発明のセルロース誘導体は、新規化合物であって、上記のようにβ-グルコース環の水酸基の少なくとも一部がA)炭化水素基、B)アシル基(-CO-R)とエチレンオキシ基(-C-O-)とを含む基、及びC)アシル基(-CO-R)によってエーテル化及びエステル化されていることにより、熱可塑性を発現することができ、成形加工に適したものとすることができる。
 また、このセルロース誘導体は、成形体としても優れた強度及び耐熱性を発現することができ、特に熱成形材料として有用である。更には、セルロースは完全な植物由来成分であるため、カーボンニュートラルであり、環境に対する負荷を大幅に低減することができる。
 なお、本発明にいう「セルロース」とは、多数のグルコースがβ-1,4-グリコシド結合によって結合した高分子化合物であって、セルロースのグルコース環における2位、3位、6位の炭素原子に結合している水酸基が無置換であるものを意味する。また、「セルロースに含まれる水酸基」とは、セルロースのグルコース環における2位、3位、6位の炭素原子に結合している水酸基を指す。
 本発明のセルロース誘導体は、セルロースに含まれる水酸基の水素原子が、
 前記A)炭化水素基で置換された基を少なくとも1つ、
 前記B)アシル基(-CO-R)(Rは炭化水素基を表す。)とエチレンオキシ基(-C-O-)とを含む基で置換された基を少なくとも1つ、及び
 前記C)アシル基(-CO-R)(Rは炭化水素基を表す。)で置換された基を少なくとも1つ含む。
 本発明のセルロース誘導体は、前記A)~C)として異なる2種以上の基を有していてもよい。
 前記セルロース誘導体は、その全体のいずれかの部分に前記A)炭化水素基、B)アシル基(-CO-R)とエチレンオキシ基(-C-O-)とを含む基、及びC)アシル基(-CO-R)を含んでいればよく、同一の繰り返し単位からなるものであってもよいし、複数の種類の繰り返し単位からなるものであってもよい。また、前記セルロース誘導体は、ひとつの繰り返し単位において前記A)~C)の置換基をすべて含有する必要はない。
 より具体的な態様としては、例えば以下の態様が挙げられる。
(1)R、R及びRの一部が、A)炭化水素基で置換されている繰り返し単位と、R、R及びRの一部が、B)アシル基(-CO-R)とエチレンオキシ基(-C-O-)とを含む基で置換されている繰り返し単位と、R、R及びRの一部が、C)アシル基(-CO-R)で置換されている繰り返し単位と、から構成されるセルロース誘導体。
(2)ひとつの繰り返し単位のR、R及びRのいずれかがA)炭化水素基、B)アシル基(-CO-R)とエチレンオキシ基(-C-O-)とを含む基、及びC)アシル基(-CO-R)で置換されている(すなわち、ひとつの繰り返し単位中に前記A)~C)の置換基をすべて有する)同種の繰り返し単位から構成されるセルロース誘導体。
(3)前記A)~C)の置換基の置換位置や置換基の種類が異なる繰り返し単位が、ランダムに結合しているセルロース誘導体。
 また、セルロース誘導体の一部には、無置換の繰り返し単位(すなわち、前記一般式(1)において、R、R及びRすべてが水素原子である繰り返し単位)を含んでいてもよい。
 A)炭化水素基は、脂肪族基及び芳香族基のいずれでもよい。脂肪族基である場合は、直鎖、分岐及び環状のいずれでもよく、不飽和結合を持っていてもよい。脂肪族基としては、例えば、アルキル基、シクロアルキル基、アルケニル基、アルキニル基等が挙げられる。芳香族基としては、フェニル基、ナフチル基、フェナントリル基、アントリル基等が挙げられる。
 A)炭化水素基は、脂肪族基が好ましく、より好ましくはアルキル基であり、更に好ましくは炭素数1~4のアルキル基(低級アルキル基)である。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、ヘプチル基、2-エチルヘキシル基、tert-ブチル基、イソヘプチル基等が挙げられ、メチル基又はエチル基が好ましい。
 前記B)におけるアシル基(-CO-R)において、Rは炭化水素基を表す。Rは、脂肪族基及び芳香族基のいずれでもよい。Rが脂肪族基である場合は、直鎖、分岐及び環状のいずれでもよく、不飽和結合を持っていてもよい。Rが表す脂肪族基及び芳香族基としては、前記A)炭化水素基において記載したものと同様のものが挙げられる。
 Rとしては、好ましくはアルキル基又はアリール基が挙げられる。アルキル基又はアリール基としては、炭素数1~12のアルキル基又はアリール基が好ましく、より好ましくは炭素数1~12のアルキル基であり、更に好ましくは炭素数1~4のアルキル基であり、最も好ましくは炭素数1又は2のアルキル基(すなわち、メチル基又はエチル基)である。
 具体的には、Rとしては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、ヘプチル基、2-エチルヘキシル基、tert-ブチル基、イソヘプチル基等が挙げられる。好ましくは、Rはメチル基、エチル基、プロピル基である。
 前記B)アシル基(-CO-R)とエチレンオキシ基(-C-O-)とを含む基は、下記一般式(1)で表される構造を含む基であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
 式中、Rは炭化水素基を表す。
 一般式(1)におけるRの定義及び好ましい範囲は前述のものと同様である。
 前記B)の基は、エチレンオキシ基を複数含んでいてもよいし、1つだけ含むものであってもよい。より具体的には前記B)の基は、下記一般式(1’)で表すことができる。
Figure JPOXMLDOC01-appb-C000005
 式中、Rは炭化水素基を表す。nは繰り返し数を表し、1以上の数である。
 一般式(1’)におけるRの定義及び好ましい範囲は前述のものと同様である。
 nの上限は特に限定されず、エチレンオキシ基の導入量等により変わるが、例えば10程度である。
 本発明のセルロース誘導体において、エチレンオキシ基を1つだけ含む前記B)の基(上記式一般式(1’)においてnが1である基)と、エチレンオキシ基を2以上含む前記B)の基(上記式一般式(1’)においてnが2以上である基)とが混合して含まれていてもよい。
 C)アシル基(-CO-R)において、Rは炭化水素基を表す。Rが表す炭化水素基としては、前記Rで挙げたものと同様のものを適用することができる。Rの好ましい範囲も前記Rと同様である。
 本発明のセルロース誘導体において、前記A)炭化水素基、前記R及び前記Rが表す炭化水素基、並びにエチレン基は、さらなる置換基を有していてもよいし無置換でもよいが、無置換であることが好ましい。
 特に、R及びRがさらなる置換基を有する場合、水溶性を付与するような置換基、例えば、スルホン酸基、カルボキシル基などを含まないことが好ましい。これらの基を含まないことにより、水に不溶なセルロース誘導体及び該セルロース誘導体からなる成形材料が得られる。
 本発明のセルロース誘導体において、前記A)炭化水素基、R、R、及びエチレン基がさらなる置換基を有する場合、さらなる置換基としては、例えば、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、ヒドロキシ基、アルコキシ基(アルキル基部分の炭素数は好ましくは1~5)、アルケニル基等が挙げられる。なお、前記A)炭化水素基、R、又はRがアルキル基以外である場合は、アルキル基(好ましくは炭素数1~5)を置換基として有することもできる。
 また、本発明におけるセルロース誘導体を成形材料として用いる場合は、水不溶性であることが好ましい。そのため、カルボキシル基、スルホン酸基、及びこれらの塩等の水溶性の置換基を実質的に有さないことが好ましい。セルロース誘導体がカルボキシル基を実質的に有さないことにより水不溶性とすることができ、より成形加工に適したものとなる。
 ここで「カルボキシル基を実質的に有さない」とは、本発明におけるセルロース誘導体が全くカルボキシル基を有さない場合のみならず、本発明におけるセルロース誘導体が水に不溶な範囲で微量のカルボキシル基を有する場合を包含するものとする。例えば、原料であるセルロースにカルボキシル基が含まれる場合があり、これを用いて前記A)~C)の置換基を導入したセルロース誘導体はカルボキシル基が含まれる場合があるが、これは「カルボキシル基を実質的に有さないセルロース誘導体」に含まれるものとする。
 また、「水不溶性である」とは、25℃の水(pH3~11)100質量部への溶解度が5質量部以下であることを意味する。
 本発明のセルロース誘導体に含まれるカルボキシル基の好ましい含有量としては、セルロース誘導体に対して1質量%以下、より好ましくは0.5質量%以下である。
 本発明におけるセルロース誘導体の具体例としては、アセトキシエチルメチルアセチルセルロース、アセトキシエチルエチルアセチルセルロース、アセトキシエチルプロピルアセチルセルロース、アセトキシエチルブチルアセチルセルロース、アセトキシエチルペンチルアセチルセルロース、アセトキシエチルヘキシルアセチルセルロース、アセトキシエチルシクロヘキシルアセチルセルロース、アセトキシエチルフェニルアセチルセルロース、アセトキシエチルナフチルアセチルセルロース、
アセトキシエチルメチルプロピオニルセルロース、アセトキシエチルエチルプロピオニルセルロース、アセトキシエチルプロピルプロピオニルセルロース、アセトキシエチルブチルプロピオニルセルロース、アセトキシエチルペンチルプロピオニルセルロース、アセトキシエチルヘキシルプロピオニルセルロース、アセトキシエチルシクロヘキシルプロピオニルセルロース、アセトキシエチルフェニルプロピオニルセルロース、アセトキシエチルナフチルプロピオニルセルロース、
アセトキシエチルメチルセルロース-2-エチルヘキサノエート、アセトキシエチルエチルセルロース-2-エチルヘキサノエート、アセトキシエチルプロピルセルロース-2-エチルヘキサノエート、アセトキシエチルブチルセルロース-2-エチルヘキサノエート、アセトキシエチルペンチルセルロース-2-エチルヘキサノエート、アセトキシエチルヘキシルセルロース-2-エチルヘキサノエート、アセトキシエチルシクロヘキシルセルロース-2-エチルヘキサノエート、アセトキシエチルフェニルセルロース-2-エチルヘキサノエート、アセトキシエチルナフチルセルロース-2-エチルヘキサノエート、
プロピオニルオキシエチルメチルアセチルセルロース、プロピオニルオキシエチルエチルアセチルセルロース、プロピオニルオキシエチルプロピルアセチルセルロース、プロピオニルオキシエチルブチルアセチルセルロース、プロピオニルオキシエチルペンチルアセチルセルロース、プロピオニルオキシエチルヘキシルアセチルセルロース、プロピオニルオキシエチルシクロヘキシルアセチルセルロース、プロピオニルオキシエチルフェニルアセチルセルロース、プロピオニルオキシエチルナフチルアセチルセルロース、
プロピオニルオキシエチルメチルプロピオニルセルロース、プロピオニルオキシエチルエチルプロピオニルセルロース、プロピオニルオキシエチルプロピルプロピオニルセルロース、プロピオニルオキシエチルブチルプロピオニルセルロース、プロピオニルオキシエチルペンチルプロピオニルセルロース、プロピオニルオキシエチルヘキシルプロピオニルセルロース、プロピオニルオキシエチルシクロヘキシルプロピオニルセルロース、プロピオニルオキシエチルフェニルプロピオニルセルロース、プロピオニルオキシエチルナフチルプロピオニルセルロース、
プロピオニルオキシエチルメチルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルエチルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルプロピルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルブチルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルペンチルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルヘキシルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルシクロヘキシルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルフェニルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルナフチルセルロース-2-エチルヘキサノエート、などが挙げられる。
 セルロース誘導体中のA)炭化水素基、B)アシル基(-CO-R)とエチレンオキシ基(-C-O-)とを含む基、及びC)アシル基(-CO-R)の置換位置、並びにβ-グルコース環単位当たりの各置換基の数(置換度)は特に限定されない。
 例えば、A)炭化水素基の置換度DSa(繰り返し単位中、β-グルコース環の2位、3位及び6位の水酸基に対するA)炭化水素基の数)は、1.0<DSaであることが好ましく、1.0<DSa<2.5がより好ましい。
 B)アシル基(-CO-R)とエチレンオキシ基(-C-O-)とを含む基の置換度DSb(繰り返し単位中、β-グルコース環のセルロース構造の2位、3位及び6位の水酸基に対するB)アシル基とエチレンオキシ基を含む基の数)は、0<DSbであることが好ましい。0<DSbであることにより、溶融開始温度を低くできるので、熱成形をより容易に行うことができる。
 C)アシル基(-CO-R)の置換度DSc(繰り返し単位中、β-グルコース環のセルロース構造の2位、3位及び6位の水酸基に対するC)アシル基の数)は、0.1<DScであることが好ましく、0.1<DSc<2.0であることがより好ましい。
 また、セルロース誘導体中に存在する無置換の水酸基の数も特に限定されない。水素原子の置換度DSh(重合単位中、2位、3位及び6位の水酸基が無置換である割合)は0~1.5の範囲とすることができ、好ましくは0~0.6とすることができる。DShを0.6以下とすることにより、熱成形材料の流動性を向上させたり、熱分解の加速・成形時の熱成形材料の吸水による発泡等を抑制させたりできる。
 また、本発明におけるセルロース誘導体は、前記A)炭化水素基、B)アシル基(-CO-R)とエチレンオキシ基(-C-O-)とを含む基、及びC)アシル基(-CO-R)以外の置換基を有しても良い。有してもよい置換基の例としては、例えばヒドロキシエチル基、ヒドロキシエトキシエチル基、ヒドロキシエトキシエトキシエチル基、が挙げられる。よって、セルロース誘導体が有するすべての置換基の各置換度の総和は3であるが、(DSa+DSb+DSc+DSh)は3以下である。
 また、前記B)の基におけるエチレンオキシ基の導入量はモル置換度(MS:グルコース残基あたりの置換基の導入モル数)で表される(セルロース学会編集、セルロース辞典P142)。エチレンオキシ基のモル置換度MSは、0<MSであることが好ましく、0<MS≦1.5であることがより好ましく、0<MS<1.0であることが更に好ましい。MSが1.5以下(MS≦1.5)であることにより、耐熱性・成形性等を向上させることができ、熱成形材料に好適なセルロース誘導体が得られる。
 セルロース誘導体の分子量は、数平均分子量(Mn)が5×10~1000×10の範囲が好ましく、10×10~800×10の範囲が更に好ましく、10×10~500×10の範囲が最も好ましい。また、重量平均分子量(Mw)は、7×10~10000×10の範囲が好ましく、100×10~5000×10の範囲が更に好ましく、500×10~5000×10の範囲が最も好ましい。この範囲の平均分子量とすることにより、成形体の成形性、力学強度等を向上させることができる。
 分子量分布(MWD)は1.1~10.0の範囲が好ましく、2.0~8.0の範囲が更に好ましい。この範囲の分子量分布とすることにより、成形性等を向上させることができる。
 本発明における、数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(MWD)の測定は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用いて行うことができる。具体的には、N-メチルピロリドンを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求めることができる。
2.セルロース誘導体の製造方法
 本発明におけるセルロース誘導体の製造方法は特に限定されず、セルロースを原料とし、セルロースに対しエーテル化及びエステル化することにより本発明のセルロース誘導体を製造することができる。セルロースの原料としては限定的でなく、例えば、綿、リンター、パルプ等が挙げられる。
 本発明におけるセルロース誘導体の製造方法の好ましい態様は、例えば、炭化水素基とヒドロキシエチル基:-C-OHを有するセルロースエーテルに例えば酸クロライド又は酸無水物等を反応させることにより、エステル化(アシル化)する工程を含む方法によって行うものである。
 また、別の態様として、セルロースエーテル(例えばメチルセルロース、エチルセルロース等)にエチレンオキサイド等によりエーテル化するか、又はセルロースにメチルクロライド、エチルクロライド等のアルキルクロライド/エチレンオキサイドを作用させた後、更に酸クロライド又は酸無水物等を反応させることにより、エステル化する工程を含む方法も挙げられる。
 酸クロライドを反応させる方法としては、例えばCellulose 10;283-296,2003に記載の方法を用いることができる。
 本発明のセルロース誘導体はヒドロキシエチルアルキルセルロースのエステル化にて得ることができる。このエステル化はヒドロキシエチル基の水酸基及びセルロースの水酸基に対して起こることから、複数のエステル化剤(無水物/酸クロライド)を用いて反応を行った際は、複数種のエステル化されたヒドロキシエチル基及びエステル化セルロースが得られる。
 炭化水素基とヒドロキシエチル基を有するセルロースエーテルとしては、具体的には、ヒドロキシエチルメチルセルロース、ヒドロキシエチルエチルセルロース、ヒドロキシエチルプロピルセルロース、ヒドロキシエチルアリルセルロース、ヒドロキシエチルベンジルセルロース等が挙げられる。好ましくは、ヒドロキシエチルメチルセルロース、ヒドロキシエチルエチルセルロースである。
 ヒドロキシルエチルメチルセルロースの場合、市販されているものを用いても良い。市販品には複数の置換度タイプがあり、各置換度タイプに対して、20℃における2%水溶液の粘度値で表示される粘度グレードがあり、約1~200,000の粘度値である。一般的に高粘度グレードは低粘度のグレードに対して、分子量(Mn、Mw)が大きい。使用する粘度グレードを変えることにより、生成するセルロース誘導体の分子量を調整しても良い。
 酸クロリドとしては、前記B)に含まれるアシル基及びC)アシル基に対応したカルボン酸クロライドを使用することができる。カルボン酸クロリドとしては、例えば、アセチルクロライド、プロピオニルクロライド、ブチリルクロリド、イソブチリルクロリド、ペンタノイルクロリド、2-メチルブタノイルクロリド、3-メチルブタノイルクロリド、ピバロイルクロリド、ヘキサノイルクロリド、2-メチルペンタノイルクロリド、3-メチルペンタノイルクロリド、4-メチルペンタノイルクロリド、2,2-ジメチルブタノイルクロリド、2,3-ジメチルブタノイルクロリド、3,3-ジメチルブタノイルクロリド、2-エチルブタノイルクロリド、ヘプタノイルクロリド、2-メチルヘキサノイルクロリド、3-メチルヘキサノイルクロリド、4-メチルヘキサノイルクロリド、5-メチルヘキサノイルクロリド、2,2-ジメチルペンタノイルクロリド、2,3-ジメチルペンタノイルクロリド、3,3-ジメチルペンタノイルクロリド、2-エチルペンタノイルクロリド、シクロヘキサノイルクロリド、オクタノイルクロリド、2-メチルヘプタノイルクロリド、3-メチルヘプタノイルクロリド、4-メチルヘプタノイルクロリド、5-メチルヘプタノイルクロリド、6-メチルヘプタノイルクロリド、2,2-ジメチルヘキサノイルクロリド、2,3-ジメチルヘキサノイルクロリド、3,3-ジメチルヘキサノイルクロリド、2-エチルヘキサノイルクロリド、2-プロピルペンタノイルクロリド、ノナノイルクロリド、2-メチルオクタノイルクロリド、3-メチルオクタノイルクロリド、4-メチルオクタノイルクロリド、5-メチルオクタノイルクロリド、6-メチルオクタノイルクロリド、2,2-ジメチルヘプタノイルクロリド、2,3-ジメチルヘプタノイルクロリド、3,3-ジメチルヘプタノイルクロリド、2-エチルヘプタノイルクロリド、2-プロピルヘキサノイルクロリド、2-ブチルペンタノイルクロリド、デカノイルクロリド、2-メチルノナノイルクロリド、3-メチルノナノイルクロリド、4-メチルノナノイルクロリド、5-メチルノナノイルクロリド、6-メチルノナノイルクロリド、7-メチルノナノイルクロリド、2,2-ジメチルオクタノイルクロリド、2,3-ジメチルオクタノイルクロリド、3,3-ジメチルオクタノイルクロリド、2-エチルオクタノイルクロリド、2-プロピルヘプタノイルクロリド、2-ブチルヘキサノイルクロリド等が挙げられる。
 酸無水物としては、例えば前記B)に含まれるアシル基及びC)アシル基に対応したカルボン酸無水物を使用することができる。このようなカルボン酸無水物としては、例えば、酢酸無水物、プロピオン酸無水物、酪酸無水物、吉草酸無水物、ヘキサン酸無水物、ヘプタン酸無水物、オクタン酸無水物、2-エチルヘキサン酸無水物、ノナン酸無水物等が挙げられる。
 なお、前述したとおり、本発明におけるセルロース誘導体は置換基としてカルボン酸を有さないことが好ましいため、例えば無水フタル酸、無水マレイン酸等のジカルボン酸等、セルロースと反応させてカルボキシル基が生じる化合物を用いないことが好ましい。
 触媒として、酸を用いても良い。好ましい酸としては、例えば硫酸、メタンスルホン酸、p-トルエンスルホン酸、過塩素酸、リン酸、トリフルオロ酢酸、トリクロロ酢酸等がある。更に好ましくは硫酸とメタンスルホン酸である。また、重硫酸塩も用いても良く、例えば、重硫酸リチウム、重硫酸ナトリウム、重硫酸カリウムが挙げられる。また、固体酸触媒も用いても良く、例えばイオン交換樹脂等の高分子固体酸触媒、ゼオライトに代表される無機酸化物固体酸触媒、特開2009-67730号公報で用いられるようなカーボン形の固体酸触媒が挙げられる。また、ルイス酸触媒も用いても良く、米国特許2,976,277号明細書で用いられるようなチタン酸エステル触媒、塩化亜鉛などが挙げられる。
 触媒としては、塩基を用いても良い。例えば、ピリジン類、酢酸ナトリウムなどの酢酸のアルカリ金属塩、ジメチルアミノピリジン、アニリン類が挙げられる。
 触媒を用いなくてもエステル化反応が進行する反応系もある。例えば、溶媒としてN,N―ジメチルアセトアミド、アセチル化剤としてアセチルクロライド或いはプロピオニルクロライドを使用する反応系が挙げられる。
 溶剤としては、一般的な有機溶剤を使用することができる。中でも、カルボン酸やカルボキサミド系の溶剤が好ましい。カルボン酸としては、例えば前記B)に含まれるアシル基及びC)に含まれるアシル基に対応したカルボン酸を用いることができる。カルボン酸を用いる場合には、酢酸エチルやアセトニトリルを併用しても良い。カルボキサミド系の溶剤としては、特表10-5117129号や米国特許第2705710号明細書で用いられるようなものがあり、例えばN,N-ジメチルアセトアミドが挙げられる。また、特開2003-41052号公報で用いられるような塩化リチウムを含むジメチルスルホキサイドを用いても良い。また、ハロゲン化溶剤を使用しても良く、好ましくはジクロロメタンである。また塩基として用いることが可能なピリジンを溶剤として用いても良い。また特開平9-157301号公報で用いられるように、エステル化剤として用いる酸クロリドを溶剤として用いても良い。  
 原料として用いるセルロース誘導体(セルロースを含む)は、綿花リンタ及び木材パルプ等のバイオマス資源から作られる。セルロース誘導体以外の原料についてもバイオマス資源から作られたものを用いても良い。例えば、セルロース系バイオマス又はデンプン系バイオマスから生成されたエタノールから発酵法により生成された酢酸や無水酢酸を挙げることができる。
 前処理として、特許2754066号公報にあるように、カルボン酸又は少量の酸触媒を含んだ酢酸を、原料のセルロース誘導体に添加して、混合しても良い。
 原料のセルロース誘導体を使用前に乾燥して、含有水分を低減しても良い。含有水分は、無水酢酸と反応する副反応の原因となるため、含有水分を減らすことで、使用する無水酢酸量の低減が可能である。
 特許第2754066号公報にあるように、触媒を分割して添加する、或いは添加速度をかえること、又はそれらを組み合わせることで、エステル化反応の速度を制御しても良い。エステル化反応は激しい発熱反応であり、かつ反応液が高粘となるため、除熱が困難となる場合には、有効である。
 特開昭60-139701号公報にあるように、エステル化反応の全期間或いは初期を含む一部の期間、反応系内を減圧にし、発生する蒸気を凝縮させ、反応系害に流出させることにより反応生成物の濃縮を行っても良い。この方法では、エステル化反応によって発生する反応熱を揮発性溶媒の蒸発潜熱で奪うことにより除熱をすることができる。
 特表2000-511588号公報にあるように多段階でエステル化反応を行っても良い。例えば、第1段階として、塩基触媒の存在下でセルロースを第1アセチル化剤と反応させた後で、第2段階として、酸触媒の存在下で第2アセチル化剤と反応するなどである。
 エステル化反応の温度は、高ければエステル化反応速度が早まり、反応時間短縮が可能となるが、解重合反応による分子量低下が起き易くなる。温度が低ければエステル化反応が遅くなる。目的のセルロース誘導体の構造、目標の分子量(Mn、Mw)により、反応温度及び時間の調整することが好ましい。
 エステル化反応を行う際に、国際公開第01/070820号にあるように、超音波を照射して反応しても良い。
 エステル化反応では、反応の進行に伴って、反応器内の混合物は固液状態から次第にドープ状を呈するようになり、反応系内のドープ粘度が非常に高くなる。特公平2-5761号公報に記載されているように、反応系の気相成分を反応系外に留去しつつ、減圧条件でエステル化反応する方法では、更にドープ粘度が高くなる。これらのようにドープ粘度が非常に高くなる場合には、エステル化反応器として二軸のニーダーを用いるのが望ましい。ただし、溶媒のカルボン酸を増量する、或いは他の有機溶媒を併用することにより、反応液の濃度を下げることにより、ドープ粘度を下げることで、汎用のグラスラインニング製反応釜 等を使用することもできる
 エステル化工程が終了した後、塩基(通常は水溶液の形態)、又は水(アルコールでも良い)を加えて、未反応の無水酢酸を分解して反応を停止する。塩基を加える場合には、酸触媒が中和され、水を加える場合には酸触媒は中和されない。一般的には中和した方が良いが、中和しなくても良い。中和した方が良い場合は、例えばセルロース誘導体に結合した結合硫酸の影響により、合成したポリマーの熱安定性が低下する場合である。また、結合硫酸量を低減させるための方法として、特開2006-89574号公報にあるように、塩基を連続的に添加するなどの方法により、一度に中和せずに、結合硫酸が分解しやすい液性を保ちつつ、段階的に中和する方法をとることができる。中和剤として用いられるものとしては、塩基であれば特に限定されないが、好ましくはアルカリ金属化合物やアルカリ土類金属化合物が挙げられ、具体的には酢酸ナトリウム、酢酸カリウム、酢酸カルシウム、酢酸マグネシウム、水酸化カルシウム、水酸化マグネシウムなどである。
 目的のセルロース誘導体の分離方法としては、特に限定されず、例えば沈殿、濾過、洗浄、乾燥、抽出、濃縮、カラムクロマトグラフィーなどの方法を単独で、又は2以上を適宜組み合わせて使用できるが、操作性、精製効率等の観点で、沈殿(再沈殿)操作により該セルロース誘導体を分離する方法が好ましい。沈殿操作は、該セルロース誘導体を含む反応液を該セルロース誘導体の貧溶媒中に投入する、又は該セルロース誘導体を含む溶液に貧溶媒を投入するなど、該セルロース誘導体を含む溶液を該貧溶媒と混合することにより行われる。
 目的のセルロース誘導体の貧溶媒としては、該セルロース誘導体の溶解度の低い溶媒であれば良く、例えば、希酢酸、水、アルコール類などが挙げられる。好ましくは、希酢酸或いは水である。
 得られた沈殿の固液分離方法としては、特に限定されず、濾過、沈降などの方法が使用できる。好ましくは濾過であり、減圧、加圧、重力、圧搾、遠心などを用いる各種脱水機を使用することができる。例えば、真空脱水機、加圧脱水機、ベルトプレス、遠心濾過脱水機、振動スクリーン、ローラープレス、ベルトスクリーンなどが挙げられる。
 分離された沈殿物は、水洗などの洗浄により酢酸、酸触媒として使用した酸、溶媒、遊離の金属成分を除去する場合が多い。特に酢酸、酸触媒として使用した酸は、成形時における樹脂の分子量低下とそれによる物理性能の低下の原因となるため、除くことが好ましい。
 洗浄の際に中和剤を加えても良い。中和剤として用いられるものとしては、塩基であれば特に限定されないが、好ましくはアルカリ金属化合物やアルカリ土類金属化合物が挙げられ、具体的には酢酸ナトリウム、酢酸カリウム、酢酸カルシウム、酢酸マグネシウム、水酸化カルシウム、水酸化マグネシウムなどである。また、特公平6-67961号公報にあるように、緩衝液を洗浄に用いても良い。
 乾燥方法は特に限定されず、送風や減圧などの条件下乾燥を行う、各種乾燥機を使用することができる。
 そのほかの具体的な製造条件等は、常法に従うことができる。例えば、「セルロースの事典」131頁~164頁(朝倉書店、2000年)等に記載の方法を参考にすることができる。
3.樹脂組成物及び成型体
 本発明の樹脂組成物は、上記で説明したセルロース誘導体を含有しており、必要に応じてその他の添加剤を含有することができる。
 熱成形材料に含まれる成分の含有割合は、特に限定されない。好ましくはセルロース誘導体を75質量%以上、より好ましくは80質量%以上、更に好ましくは80~100質量%含有する。
 本発明の熱成形材料は、本発明のセルロース誘導体のほか、必要に応じて、フィラー、難燃剤等の種々の添加剤を含有していてもよい。
 本発明の樹脂組成物は、フィラー(強化材)を含有してもよい。フィラーを含有することにより、形成される成形体の機械的特性を強化することができる。
 フィラーとしては、公知のものを使用できる。フィラーの形状は、繊維状、板状、粒状、粉末状等いずれでもよい。また、無機物でも有機物でもよい。
 具体的には、無機フィラーとしては、ガラス繊維、炭素繊維、グラファイト繊維、金属繊維、チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカー、マグネシウム系ウイスカー、珪素系ウイスカー、ワラステナイト、セピオライト、スラグ繊維、ゾノライト、エレスタダイト、石膏繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化硅素繊維及び硼素繊維等の繊維状の無機フィラーや;ガラスフレーク、非膨潤性雲母、カーボンブラック、グラファイト、金属箔、セラミックビーズ、タルク、クレー、マイカ、セリサイト、ゼオライト、ベントナイト、ドロマイト、カオリン、微粉ケイ酸、長石粉、チタン酸カリウム、シラスバルーン、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化カルシウム、酸化アルミニウム、酸化チタン、酸化マグネシウム、ケイ酸アルミニウム、酸化ケイ素、水酸化アルミニウム、水酸化マグネシウム、石膏、ノバキュライト、ドーソナイト、白土等の板状や粒状の無機フィラーが挙げられる。
 有機フィラーとしては、ポリエステル繊維、ナイロン繊維、アクリル繊維、再生セルロース繊維、アセテート繊維等の合成繊維、ケナフ、ラミー、木綿、ジュート、麻、サイザル、マニラ麻、亜麻、リネン、絹、ウール等の天然繊維、微結晶セルロース、さとうきび、木材パルプ、紙屑、古紙等から得られる繊維状の有機フィラーや、有機顔料等の粒状の有機フィラーが挙げられる。
 樹脂組成物がフィラーを含有する場合、その含有量は限定的でないが、セルロース誘導体100質量部に対して、通常30質量部以下、好ましくは5~10質量部とすればよい。
 本発明の樹脂組成物は、難燃剤を含有してもよい。これによって、その燃焼速度の低下又は抑制といった難燃効果を向上させることができる。
 難燃剤は、特に限定されず、常用のものを用いることができる。例えば、臭素系難燃剤、塩素系難燃剤、リン含有難燃剤、ケイ素含有難燃剤、窒素化合物系難燃剤、無機系難燃剤等が挙げられる。これらの中でも、樹脂との複合時や成形加工時に熱分解してハロゲン化水素が発生して加工機械や金型を腐食させたり、作業環境を悪化させたりすることがなく、また、焼却廃棄時にハロゲンが気散したり、分解してダイオキシン類等の有害物質の発生等によって環境に悪影響を与える可能性が少ないことから、リン含有難燃剤及びケイ素含有難燃剤が好ましい。
 リン含有難燃剤としては、特に限定されることはなく、常用のものを用いることができる。例えば、リン酸エステル、リン酸縮合エステル、ポリリン酸塩などの有機リン系化合物が挙げられる。
 リン酸エステルの具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリ(2-エチルヘキシル)ホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、トリス(イソプロピルフェニル)ホスフェート、トリス(フェニルフェニル)ホスフェート、トリナフチルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、ジフェニル(2-エチルヘキシル)ホスフェート、ジ(イソプロピルフェニル)フェニルホスフェート、モノイソデシルホスフェート、2-アクリロイルオキシエチルアシッドホスフェート、2-メタクリロイルオキシエチルアシッドホスフェート、ジフェニル-2-アクリロイルオキシエチルホスフェート、ジフェニル-2-メタクリロイルオキシエチルホスフェート、メラミンホスフェート、ジメラミンホスフェート、メラミンピロホスフェート、トリフェニルホスフィンオキサイド、トリクレジルホスフィンオキサイド、メタンホスホン酸ジフェニル、フェニルホスホン酸ジエチルなどを挙げることができる。
 リン酸縮合エステルとしては、例えば、レゾルシノールポリフェニルホスフェート、レゾルシノールポリ(ジ-2,6-キシリル)ホスフェート、ビスフェノールAポリクレジルホスフェート、ハイドロキノンポリ(2,6-キシリル)ホスフェート並びにこれらの縮合物などの芳香族リン酸縮合エステル等を挙げることができる。
 また、リン酸、ポリリン酸と周期律表1族~14族の金属、アンモニア、脂肪族アミン、芳香族アミンとの塩からなるポリリン酸塩を挙げることもできる。ポリリン酸塩の代表的な塩として、金属塩としてリチウム塩、ナトリウム塩、カルシウム塩、バリウム塩、鉄(II)塩、鉄(III)塩、アルミニウム塩など、脂肪族アミン塩としてメチルアミン塩、エチルアミン塩、ジエチルアミン塩、トリエチルアミン塩、エチレンジアミン塩、ピペラジン塩などがあり、芳香族アミン塩としてはピリジン塩、トリアジン等が挙げられる。
 また、前記以外にも、トリスクロロエチルホスフェート、トリスジクロロプロピルホスフェート、トリス(β-クロロプロピル)ホスフェート)などの含ハロゲンリン酸エステル、また、リン原子と窒素原子が二重結合で結ばれた構造を有するホスファゼン化合物、リン酸エステルアミドを挙げることができる。
 これらのリン含有難燃剤は、1種単独でも2種以上を組み合わせて用いてもよい。
 ケイ素含有難燃剤としては、二次元又は三次元構造の有機ケイ素化合物、ポリジメチルシロキサン、又はポリジメチルシロキサンの側鎖又は末端のメチル基が、水素原子、置換又は非置換の脂肪族炭化水素基、芳香族炭化水素基で置換又は修飾されたもの、いわゆるシリコーンオイル、又は変性シリコーンオイルが挙げられる。
 置換又は非置換の脂肪族炭化水素基、芳香族炭化水素基としては、例えば、アルキル基、シクロアルキル基、フェニル基、ベンジル基、アミノ基、エポキシ基、ポリエーテル基、カルボキシル基、メルカプト基、クロロアルキル基、アルキル高級アルコールエステル基、アルコール基、アラルキル基、ビニル基、又はトリフロロメチル基等が挙げられる。
 これらのケイ素含有難燃剤は1種単独でも2種以上を組み合わせて用いてもよい。
 また、前記リン含有難燃剤又はケイ素含有難燃剤以外の難燃剤としては、例えば、水酸化マグネシウム、水酸化アルミニウム、三酸化アンチモン、五酸化アンチモン、アンチモン酸ソーダ、ヒドロキシスズ酸亜鉛、スズ酸亜鉛、メタスズ酸、酸化スズ、酸化スズ塩、硫酸亜鉛、酸化亜鉛、酸化第一鉄、酸化第二鉄、酸化第一錫、酸化第二スズ、ホウ酸亜鉛、ホウ酸アンモニウム、オクタモリブデン酸アンモニウム、タングステン酸の金属塩、タングステンとメタロイドとの複合酸化物、スルファミン酸アンモニウム、臭化アンモニウム、ジルコニウム系化合物、グアニジン系化合物、フッ素系化合物、黒鉛、膨潤性黒鉛等の無機系難燃剤を用いることができる。これらの他の難燃剤は、1種単独で用いても、2種以上を併用して用いてもよい。
 本発明の樹脂組成物が難燃剤を含有する場合、その含有量は限定的でないが、セルロース誘導体100質量部に対して、通常30質量部以下、好ましくは2~10質量部とすればよい。この範囲とすることにより、耐衝撃性・脆性等を改良させたり、ペレットブロッキングの発生を抑制できる。
 本発明の樹脂組成物は、前記のセルロース誘導体、フィラー及び難燃剤以外にも、本発明の目的を阻害しない範囲で、成形性・難燃性等の各種特性をより一層改善する目的で他の成分を含んでいてもよい。
 他の成分としては、例えば、前記セルロース誘導体以外のポリマー、可塑剤、安定剤(酸化防止剤、紫外線吸収剤など)、離型剤(脂肪酸、脂肪酸金属塩、オキシ脂肪酸、脂肪酸エステル、脂肪族部分鹸化エステル、パラフィン、低分子量ポリオレフィン、脂肪酸アミド、アルキレンビス脂肪酸アミド、脂肪族ケトン、脂肪酸低級アルコールエステル、脂肪酸多価アルコールエステル、脂肪酸ポリグリコールエステル、変成シリコーン)、帯電防止剤、難燃助剤、加工助剤、ドリップ防止剤、抗菌剤、防カビ剤等が挙げられる。更に、染料や顔料を含む着色剤などを添加することもできる。
 前記セルロース誘導体以外のポリマーとしては、熱可塑性ポリマー、熱硬化性ポリマーのいずれも用い得るが、成形性の点から熱可塑性ポリマーが好ましい。セルロース誘導体以外のポリマーの具体例としては、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-プロピレン-非共役ジエン共重合体、エチレン-ブテン-1共重合体、ポリプロピレンホモポリマー、ポリプロピレンコポリマー(エチレン-プロピレンブロックコポリマーなど)、ポリブテン-1及びポリ-4-メチルペンテン-1等のポリオレフィン、ポリブチレンテレフタレート、ポリエチレンテレフタレート及びその他の芳香族ポリエステル等のポリエステル、ナイロン6、ナイロン46、ナイロン66、ナイロン610、ナイロン612、ナイロン6T、ナイロン12等のポリアミド、ポリスチレン、ハイインパクトポリスチレン、ポリアセタール(ホモポリマー及び共重合体を含む)、ポリウレタン、芳香族及び脂肪族ポリケトン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、熱可塑性澱粉樹脂、ポリメタクリル酸メチルやメタクリル酸エステル-アクリル酸エステル共重合体などのアクリル樹脂、AS樹脂(アクリロニトリル-スチレン共重合体)、ABS樹脂、AES樹脂(エチレン系ゴム強化AS樹脂)、ACS樹脂(塩素化ポリエチレン強化AS樹脂)、ASA樹脂(アクリル系ゴム強化AS樹脂)、ポリ塩化ビニル、ポリ塩化ビニリデン、ビニルエステル系樹脂、無水マレイン酸-スチレン共重合体、MS樹脂(メタクリル酸メチル-スチレン共重合体)、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエーテルスルホン、フェノキシ樹脂、ポリフェニレンエーテル、変性ポリフェニレンエーテル、ポリエーテルイミド等の熱可塑性ポリイミド、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン-ヘキサフルオロプロピレン-パーフルオロアルキルビニルエーテル共重合体などのフッ素系ポリマー、酢酸セルロース、ポリビニルアルコール、不飽和ポリエステル、メラミン樹脂、フェノール樹脂、尿素樹脂、ポリイミドなどを挙げることができる。
 また、各種アクリルゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体及びそのアルカリ金属塩(いわゆるアイオノマー)、エチレン-アクリル酸アルキルエステル共重合体(例えば、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸ブチル共重合体)、ジエン系ゴム(例えば、1,4-ポリブタジエン、1,2-ポリブタジエン、ポリイソプレン、ポリクロロプレン)、ジエンとビニル単量体との共重合体(例えば、スチレン-ブタジエンランダム共重合体、スチレン-ブタジエンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレンランダム共重合体、スチレン-イソプレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、ポリブタジエンにスチレンをグラフト共重合させたもの、ブタジエン-アクリロニトリル共重合体)、ポリイソブチレン、イソブチレンとブタジエン又はイソプレンとの共重合体、ブチルゴム、天然ゴム、チオコールゴム、多硫化ゴム、アクリルゴム、ニトリルゴム、ポリエーテルゴム、エピクロロヒドリンゴム、フッ素ゴム、シリコーンゴム、その他ポリウレタン系やポリエステル系、ポリアミド系などの熱可塑性エラストマー等が挙げられる。
 更に、各種の架橋度を有するものや、各種のミクロ構造、例えばシス構造、トランス構造等を有するもの、ビニル基などを有するもの、あるいは各種の平均粒径を有するものや、コア層とそれを覆う1以上のシェル層から構成され、また隣接し合った層が異種の重合体から構成されるいわゆるコアシェルゴムと呼ばれる多層構造重合体なども使用することができ、更にシリコーン化合物を含有したコアシェルゴムも使用することができる。
 これらのポリマーは、1種単独で用いても、2種以上を併用してもよい。
 本発明の樹脂組成物がセルロース誘導体以外のポリマーを含有する場合、その含有量は、セルロース誘導体100質量部に対して30質量部以下が好ましく、2~10質量部がより好ましい。
 本発明の樹脂組成物は、可塑剤を含有してもよい。これにより、難燃性及び成形性をより一層向上させることができる。可塑剤としては、ポリマーの成形に常用されるものを用いることができる。例えば、ポリエステル系可塑剤、グリセリン系可塑剤、多価カルボン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤及びエポキシ系可塑剤等が挙げられる。
 ポリエステル系可塑剤の具体例としては、アジピン酸、セバチン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、ロジンなどの酸成分と、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、エチレングリコール、ジエチレングリコールなどのジオール成分からなるポリエステルや、ポリカプロラクトンなどのヒドロキシカルボン酸からなるポリエステル等が挙げられる。これらのポリエステルは単官能カルボン酸若しくは単官能アルコールで末端封鎖されていてもよく、またエポキシ化合物などで末端封鎖されていてもよい。
 グリセリン系可塑剤の具体例としては、グリセリンモノアセトモノラウレート、グリセリンジアセトモノラウレート、グリセリンモノアセトモノステアレート、グリセリンジアセトモノオレート及びグリセリンモノアセトモノモンタネート等が挙げられる。
 多価カルボン酸系可塑剤の具体例としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジオクチル、フタル酸ジヘプチル、フタル酸ジベンジル、フタル酸ブチルベンジルなどのフタル酸エステル、トリメリット酸トリブチル、トリメリット酸トリオクチル、トリメリット酸トリヘキシルなどのトリメリット酸エステル、アジピン酸ジイソデシル、アジピン酸n-オクチル-n-デシル、アジピン酸メチルジグリコールブチルジグリコール、アジピン酸ベンジルメチルジグリコール、アジピン酸ベンジルブチルジグリコールなどのアジピン酸エステル、アセチルクエン酸トリエチル、アセチルクエン酸トリブチルなどのクエン酸エステル、アゼライン酸ジ-2-エチルヘキシルなどのアゼライン酸エステル、セバシン酸ジブチル、及びセバシン酸ジ-2-エチルヘキシル等が挙げられる。
 ポリアルキレングリコール系可塑剤の具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリ(エチレンオキサイド・プロピレンオキサイド)ブロック及び/又はランダム共重合体、ポリテトラメチレングリコール、ビスフェノール類のエチレンオキシド付加重合体、ビスフェノール類のプロピレンオキシド付加重合体、ビスフェノール類のテトラヒドロフラン付加重合体などのポリアルキレングリコールあるいはその末端エポキシ変性化合物、末端エステル変性化合物、及び末端エーテル変性化合物等が挙げられる。
 エポキシ系可塑剤とは、一般にはエポキシステアリン酸アルキルと大豆油とからなるエポキシトリグリセリドなどを指すが、その他にも、主にビスフェノールAとエピクロロヒドリンを原料とするような、いわゆるエポキシ樹脂も使用することができる。
 その他の可塑剤の具体例としては、ネオペンチルグリコールジベンゾエート、ジエチレングリコールジベンゾエート、トリエチレングリコールジ-2-エチルブチレートなどの脂肪族ポリオールの安息香酸エステル、ステアリン酸アミドなどの脂肪酸アミド、オレイン酸ブチルなどの脂肪族カルボン酸エステル、アセチルリシノール酸メチル、アセチルリシノール酸ブチルなどのオキシ酸エステル、ペンタエリスリトール、各種ソルビトール等が挙げられる。
 本発明の樹脂組成物が可塑剤を含有する場合、その含有量は、セルロース誘導体100質量部に対して通常5質量部以下であり、0.005~5質量部が好ましく、より好ましくは0.01~1質量部である。
 本発明の成形体は、前記セルロース誘導体を含む樹脂組成物を成形することにより得られる。
 より具体的には、前記セルロース誘導体、又は、前記セルロース誘導体及び必要に応じて各種添加剤等を含む樹脂組成物を加熱し、各種の成形方法により成形する工程を含む製造方法によって得られる。
 成形方法としては、例えば、射出成形、押し出し成形、ブロー成形等が挙げられる。
 加熱温度は、通常160~300℃であり、好ましくは180~260℃である。
 本発明の成形体の用途は、とくに限定されるものではないが、例えば、電気電子機器(家電、OA・メディア関連機器、光学用機器及び通信機器等)の内装又は外装部品、自動車、機械部品、住宅・建築用材料等が挙げられる。これらの中でも、優れた耐熱性及び耐衝撃性を有しており、環境への負荷が小さい観点から、例えば、コピー機、プリンター、パソコン、テレビ等といった電気電子機器用の外装部品(特に筐体)として好適に使用することができる。
<合成例1:アセトキシエチルメチルアセチルセルロース(C-1)の合成>
 メカニカルスターラー、温度計、冷却管、滴下ロートをつけた5Lの三ツ口フラスコにヒドロキシエチルメチルセルロース(商品名マーポローズME-250T;松本油脂製)45g、N,N-ジメチルアセトアミド2250mLを量り取り、室温で攪拌した。反応系が透明になり完溶したことを確認した後、アセチルクロライド129mLをゆっくりと滴下し、系の温度を80℃~90℃に昇温した。このまま3時間攪拌した後、反応系の温度を室温まで冷却した。反応溶液を水10Lへ激しく攪拌しながら投入すると、白色固体が析出した。白色固体を吸引ろ過によりろ別し、大量の水で3回洗浄を行った。得られた白色固体を100℃で6時間真空乾燥することにより目的のセルロース誘導体(C-1)(アセトキシエチルメチルアセチルセルロース、置換度は表1に記載)を白色粉体として得た(57.8g)。
<合成例2:アセトキシエチルメチルアセチルセルロース(C-2)の合成>
 メカニカルスターラー、温度計、冷却管、滴下ロートをつけた5Lの三ツ口フラスコにヒドロキシエチルメチルセルロース(商品名マーポローズME-350T;松本油脂製)45g、N,N-ジメチルアセトアミド2250mLを量り取り、室温で攪拌した。反応系が透明になり完溶したことを確認した後、アセチルクロライド129mLをゆっくりと滴下し、系の温度を80℃~90℃に昇温した。このまま3時間攪拌した後、反応系の温度を室温まで冷却した。反応溶液を水10Lへ激しく攪拌しながら投入すると、白色固体が析出した。白色固体を吸引ろ過によりろ別し、大量の水で3回洗浄を行った。得られた白色固体を100℃で6時間真空乾燥することにより目的のセルロース誘導体(C-2)(アセトキシエチルメチルアセチルセルロース、置換度は表1に記載)を白色粉体として得た(58.5g)。
<合成例3:プロピオニルオキシエチルメチルプロピオニルセルロース(C-3)の合成>
 メカニカルスターラー、温度計、冷却管、滴下ロートをつけた5Lの三ツ口フラスコにヒドロキシエチルメチルセルロース(商品名マーポローズME-350T;松本油脂製)45g、N,N-ジメチルアセトアミド2250mLを量り取り、室温で攪拌した。反応系が透明になり完溶したことを確認した後、プロピオニルクロライド158mLをゆっくりと滴下し、系の温度を80℃~90℃に昇温した。このまま3時間攪拌した後、反応系の温度を室温まで冷却した。反応溶液を水10Lへ激しく攪拌しながら投入すると、白色固体が析出した。白色固体を吸引ろ過によりろ別し、大量の水で3回洗浄を行った。得られた白色固体を100℃で6時間真空乾燥することにより目的のセルロース誘導体(C-3)(プロピオニルオキシエチルメチルプロピオニルセルロース、置換度は表1に記載)を白色粉体として得た(79.2g)。
<合成例4:プロピオニルオキシエチルメチルプロピオニルセルロース(C-4)の合成>
 メカニカルスターラー、温度計、冷却管、滴下ロートをつけた5Lの三ツ口フラスコにヒドロキシエチルメチルセルロース(商品名マーポローズME-350T;松本油脂製)45g、N,N-ジメチルアセトアミド2250mLを量り取り、室温で攪拌した。反応系が透明になり完溶したことを確認した後、プロピオニルクロライド93.1mLをゆっくりと滴下し、系の温度を80℃~90℃に昇温した。このまま3時間攪拌した後、反応系の温度を室温まで冷却し、メタノール100ml、水500mlを添加した。反応溶液を水10Lへ激しく攪拌しながら投入し、白色固体を吸引ろ過によりろ別し、大量の水で3回洗浄を行った。得られた白色固体を100℃で6時間真空乾燥することにより目的のセルロース誘導体(C-4)(プロピオニルオキシエチルメチルプロピオニルセルロース、置換度は表1に記載)を白色粉体として得た(50.5g)。
<合成例5:ブチリルオキシエチルメチルブチリルセルロース(C-5)の合成>
 メカニカルスターラー、温度計、冷却管、滴下ロートをつけた5Lの三ツ口フラスコにヒドロキシエチルメチルセルロース(商品名マーポローズME-350T;松本油脂製)45g、N,N-ジメチルアセトアミド2250mLを量り取り、室温で攪拌した。反応系が透明になり完溶したことを確認した後、ブチリルクロライド112.3mLをゆっくりと滴下し、系の温度を80℃~90℃に昇温した。このまま3時間攪拌した後、反応系の温度を室温まで冷却し、メタノール100ml、水500mlを添加した。反応溶液を水10Lへ激しく攪拌しながら投入し、白色固体を吸引ろ過によりろ別し、大量の水で3回洗浄を行った。得られた白色固体を100℃で6時間真空乾燥することにより目的のセルロース誘導体(C-5)(ブチリルオキシエチルメチルブチリルセルロース、置換度は表1に記載)を白色粉体として得た(55.2g)。
<合成例6:アセトキシエチルプロピオニルオキシエチルメチルアセチルプロピオニルセルロース(C-6)の合成>
 メカニカルスターラー、温度計、冷却管、滴下ロートをつけた5Lの三ツ口フラスコにヒドロキシエチルメチルセルロース(商品名マーポローズME-350T;松本油脂製)45g、N,N-ジメチルアセトアミド2250mLを量り取り、室温で攪拌した。反応系が透明になり完溶したことを確認した後、アセチルクロライド38.7ml、プロピオニルクロライド46.6mLの混合液をゆっくりと滴下し、系の温度を80℃~90℃に昇温した。このまま3時間攪拌した後、反応系の温度を室温まで冷却し、メタノール100ml、水500mlを添加した。反応溶液を水10Lへ激しく攪拌しながら投入し、白色固体を吸引ろ過によりろ別し、大量の水で3回洗浄を行った。白色固体をメタノールで溶解させ、その溶液を水に落とすことで得られた白色固体を100℃で6時間真空乾燥することにより目的のセルロース誘導体(C-6)(アセトキシエチルプロピオニルオキシエチルメチルアセチルプロピオニルセルロース、置換度は表1に記載)を白色粉体として得た(59.1g)。
<合成例7:アセトキシエチルブチリルオキシエチルメチルアセチルブチリルセルロース(C-7)の合成>
 メカニカルスターラー、温度計、冷却管、滴下ロートをつけた5Lの三ツ口フラスコにヒドロキシエチルメチルセルロース(商品名マーポローズME-350T;松本油脂製)45g、N,N-ジメチルアセトアミド2250mLを量り取り、室温で攪拌した。反応系が透明になり完溶したことを確認した後、アセチルクロライド38.7ml、ブチリルクロライド56.2mLの混合液をゆっくりと滴下し、系の温度を80℃~90℃に昇温した。このまま3時間攪拌した後、反応系の温度を室温まで冷却し、メタノール100ml、水500mlを添加した。反応溶液を水10Lへ激しく攪拌しながら投入し、白色固体を吸引ろ過によりろ別し、大量の水で3回洗浄を行った。白色固体をメタノールで溶解させ、その溶液を水に落とすことで得られた白色固体を100℃で6時間真空乾燥することにより目的のセルロース誘導体(C-7)(アセトキシエチルブチリルオキシエチルメチルアセチルブチリルセルロース、置換度は表1に記載)を白色粉体として得た(60.2g)。
<合成例8:ブチリルオキシエチルプロピオニルオキシエチルメチルブチリルプロピオニルセルロース(C-8)の合成>
 メカニカルスターラー、温度計、冷却管、滴下ロートをつけた5Lの三ツ口フラスコにヒドロキシエチルメチルセルロース(商品名マーポローズME-350T;松本油脂製)45g、N,N-ジメチルアセトアミド2250mLを量り取り、室温で攪拌した。反応系が透明になり完溶したことを確認した後、プロピオニルクロライド46.6ml、ブチリルクロライド56.2mLの混合液をゆっくりと滴下し、系の温度を80℃~90℃に昇温した。このまま3時間攪拌した後、反応系の温度を室温まで冷却し、メタノール100ml、水500mlを添加した。反応溶液を水10Lへ激しく攪拌しながら投入し、白色固体を吸引ろ過によりろ別し、大量の水で3回洗浄を行った。得られた白色固体を100℃で6時間真空乾燥することにより目的のセルロース誘導体(C-8)(ブチリルオキシエチルプロピオニルオキシエチルメチルブチリルプロピオニルセルロース、置換度は表1に記載)を白色粉体として得た(55.9g)。
<合成例9:アセトキシエチルメチルアセチルセルロース(C-9)の合成>
 1Lのニーダー(攪拌機としてシグマブレードを有する二軸のウェルナー型ニーダー)にヒドロキシエチルメチルセルロース(商品名マーポローズME-250T;松本油脂製)30g、メタンスルホン酸0.74g、無水酢酸57.4mlを量り取り、室温で10分攪拌の後、反応系の温度を35℃まで昇温し、酢酸120mlを30分かけて滴下した後、更に2時間保持し、アセチル化を行った。撹拌しながら水180mlをゆっくり滴下した。このドープ溶液を10%希酢酸420ml中に攪拌下投入すると、白色固体が析出した。白色固体を吸引ろ過によりろ別し、大量の水で洗浄を行った。得られた白色固体を100℃で6時間真空乾燥することにより、目的のセルロース誘導体(C-9)(アセトキシエチルメチルアセチルセルロース、置換度は表1に記載)を白色粉体として得た(35.1g)。
<合成例10:アセトキシエチルメチルアセチルセルロース(C-10)の合成>
 1Lのニーダー(攪拌機としてシグマブレードを有する二軸のウェルナー型ニーダー)にヒドロキシエチルメチルセルロース(商品名マーポローズME-250T;松本油脂製)30g硫酸0.37g、無水酢酸57.4mlを量り取り、室温で10分攪拌の後、反応系の温度を35℃まで昇温し、酢酸120mlを30分かけて滴下した後、更に2時間保持し、アセチル化を行った。撹拌しながら水180mlをゆっくり滴下した。このドープ溶液を10%希酢酸420ml中に攪拌下投入すると、白色固体が析出した。白色固体を吸引ろ過によりろ別し、大量の水で洗浄を行った。得られた白色固体を100℃で6時間真空乾燥することにより、目的のセルロース誘導体(C-10)(アセトキシエチルメチルアセチルセルロース、置換度は表1に記載)を白色粉体として得た(36.9g)。
<合成例11:プロピオニルオキシエチルメチルプロピオニルセルロース(C-11)の合成>
 1Lのニーダー(攪拌機としてシグマブレードを有する二軸のウェルナー型ニーダー)にヒドロキシエチルメチルセルロース(商品名マーポローズME-250T;松本油脂製)30g、メタンスルホン酸0.74g、無水プロピオン酸77.2mlを量り取りを量り取り、室温で10分攪拌の後、反応系の温度を35℃まで昇温し、プロピオン酸120mlを30分かけて滴下した後、更に2時間保持し、アセチル化を行った。撹拌しながら水180mlをゆっくり滴下した。このドープ溶液を10%希酢酸420ml中に攪拌下投入すると、白色固体が析出した。白色固体を吸引ろ過によりろ別し、大量の水で洗浄を行った。得られた白色固体を100℃で6時間真空乾燥することにより、目的のセルロース誘導体(C-11)((プロピオニルオキシエチルメチルプロピオニルセルロース、置換度は表1に記載)を白色粉体として得た(37.6g)。
 なお、以上で得られた化合物について、セルロースに含まれる水酸基(R、R及びR)に置換された官能基の種類、並びにDSa、MS、DSb+DScは、Cellulose Communication 6,73-79(1999)に記載の方法を利用して、H-NMRにより観測及び決定した。
<セルロース誘導体の分子量測定>
 得られたセルロース誘導体について、数平均分子量(Mn)、重量平均分子量(Mw)、を測定した。これらの測定方法は以下の通りである。
[分子量及び分子量分布]
 数平均分子量(Mn)、重量平均分子量(Mw)の測定は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用いた。具体的には、N-メチルピロリドンを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求めた。GPC装置は、HLC-8220GPC(東ソー社製)を使用した。
 数平均分子量(Mn)、重量平均分子量(Mw)及び置換度をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000006
 上記表中、セルロース誘導体C-1、C-2、C-9、C-10における“B)アシル基とエチレンオキシ基とを含む基”はいずれも下記式(1-1)の構造を含む基であり、セルロース誘導体C-3、C-4、C-11における“B)アシル基とエチレンオキシ基とを含む基”はいずれも下記式(1-2)の構造を含む基であり、セルロース誘導体C-5における“B)アシル基とエチレンオキシ基とを含む基”は下記式(1-3)の構造を含む基であり、セルロース誘導体C-6における“B)アシル基とエチレンオキシ基とを含む基”は下記式(1-1)の構造を含む基と(1-2)の構造を含む基であり、セルロース誘導体C-7における“B)アシル基とエチレンオキシ基とを含む基”は下記式(1-1)の構造を含む基と(1-3)の構造を含む基であり、セルロース誘導体C-8における“B)アシル基とエチレンオキシ基とを含む基”は下記式(1-2)の構造を含む基と(1-3)の構造を含む基である。
Figure JPOXMLDOC01-appb-C000007
<セルロース誘導体の溶融開始温度測定>
 得られたセルロース誘導体及び原料であるマーポローズについて、溶融開始温度を測定した。これらの測定方法は以下の通りである。
[溶融開始温度(Tm)]
 フローテスター(島津製作所製)において荷重100kgにて、昇温速度5℃/minで昇温したときの樹脂の流出開始温度を測定し、溶融開始温度とした。溶融開始温度を表2に示す。
<セルロース誘導体の熱分解開始温度測定>
 得られたセルロース誘導体及び原料であるマーポローズについて、熱分解開始温度を測定した。これらの測定方法は以下の通りである。
[熱分解開始温度(Td)]
 熱重量/示差熱分析装置(Seiko Instruments Inc.製)を用い、窒素雰囲気下にて10℃/minで昇温したときのサンプルの2%重量減少温度を測定し、熱分解開始温度とした。熱分解開始温度を表2に示す。
Figure JPOXMLDOC01-appb-T000008
 表2からわかるように、得られたセルロース誘導体は、原料であるマーポローズに対して大幅に溶融開始温度が低減されることがわかる。また、得られたセルロース誘導体は、原料であるマーポローズに対して、Td-Tmが大幅に大きくなっており、このことは熱可塑性を利用した成形がしやすくなっていることを示している。
 得られたセルロース誘導体及び原料であるマーポローズについて、水への溶解度を測定した。溶解度の測定方法は以下の通りである。
[水への溶解度測定]
 25℃の水100gに対して各試料を加えて攪拌し、溶解の有無を確認した。結果を下記表3に示す。なお、以下の表3において、溶解量が5g以下のものを「不溶」とし、5gより多い量であったものを「溶解」とした。
Figure JPOXMLDOC01-appb-T000009
 表3において、H-1は、ME-250T(マーポローズ:松本油脂化学製)であり、H-2は、ME-350T(マーポローズ:松本油脂化学製)である。
 表3から、ヒドロキシエチルメチルセルロース(H-1及びH-2)は水に対して溶解するのに対し、本発明の範囲のセルロース誘導体は不溶であることがわかる。
<実施例1:セルロース誘導体からなる成形体の作製>
[試験片作製]
 上記で得られたセルロース誘導体(C-1)を射出成形機((株)井元製作所製、半自動射出成形機)に供給してシリンダー温度200℃、金型温度30℃、射出圧力1.5kgf/cmにて4×10×80mmの多目的試験片(衝撃試験片及び熱変形試験片)を成形した。
<実施例2~11、比較例1~4>
 実施例1と同様にして、セルロース誘導体(C-2)~(C-11)、比較化合物として(H-1)ME-250T(マーポローズ:松本油脂化学製)、(H-2)ME-350T(マーポローズ:松本油脂化学製)、(H-3)(ダウケミカル製:エチルセルロース、エトキシ置換度2.6)、(H-4)(イーストマンケミカル製:セルロースアセテートプロピオネート、アセチル置換度0.1、プロピオニル置換度2.5)を用いて、後述の表4の成形条件に従って成形し試験片を作製した。
<試験片の物性測定>
 得られた試験片について、下記の方法にしたがってシャルピー衝撃強度及び熱変形温度(HDT)を測定した。結果を表4に示す。
[シャルピー衝撃強度]
 ISO179に準拠して、射出成形にて成形した試験片に入射角45±0.5°、先端0.25±0.05mmのノッチを形成し、23℃±2℃、50%±5%RHで48時間以上静置した後、シャルピー衝撃試験機((株)東洋精機製作所製)によってエッジワイズにて衝撃強度を測定した。
[熱変形温度(HDT)]
 ISO75に準拠して、試験片の中央に一定の曲げ荷重(1.8MPa)を加え(フラットワイズ方向)、等速度で昇温させ、中央部のひずみが0.34mmに達したときの温度を測定した。
Figure JPOXMLDOC01-appb-T000010
 上記表4の結果から明らかなように、ヒドロキシエチルメチルセルロース(H-1)、(H-2)が熱可塑性を発現しないのに対し、これらにアシル基を修飾した本実施例1~11のセルロース誘導体(C-1)~(C-11)は、好適な熱可塑性が付与され成形可能になったうえ、高い耐衝撃性及び耐熱性を発現していることがわかる。また、比較例3、4の(H-3)、(H-4)は熱成形可能であったが、これらと比較しても本実施例1~11のセルロース誘導体(C-1)~(C-11)は、低い温度で成形できかつシャルピー衝撃強度、HDTともに同等若しくはそれ以上の結果を与えていることがわかる。
 本発明のセルロース誘導体又は樹脂組成物は、優れた熱可塑性を有するため、成形体とすることができる。また、本発明のセルロース誘導体又は樹脂組成物によって形成された成形体は、良好な耐衝撃性、耐熱性等を有しており、自動車、家電、電気電子機器等の構成部品、機械部品、住宅・建築用材料等として好適に使用することができる。また、植物由来の樹脂であるため、温暖化防止に貢献できる素材として、従来の石油由来の樹脂に代替できる。また、本発明のセルロース誘導体及び樹脂組成物は生分解性を示し、環境負荷の小さい材料として活用が期待される。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2009年8月12日出願の日本特許出願(特願2009-187416)、及び2009年12月25日出願の日本特許出願(特願2009-295059)に基づくものであり、それらの内容はここに参照して組み込まれる。

Claims (11)

  1.  A)炭化水素基、
     B)アシル基:-CO-Rとエチレンオキシ基:-C-O-とを含む基(Rは炭化水素基を表す。)、及び
     C)アシル基:-CO-R(Rは炭化水素基を表す。)を有するセルロース誘導体。
  2.  前記A)炭化水素基が炭素数1~4のアルキル基である、請求項1に記載のセルロース誘導体。
  3.  前記A)炭化水素基がメチル基又はエチル基である、請求項1に記載のセルロース誘導体。
  4.  前記B)アシル基:-CO-Rとエチレンオキシ基:-C-O-とを含む基が、下記一般式(1)で表される構造を含む基である、請求項1~3のいずれか1項に記載のセルロース誘導体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは炭化水素基を表す。)
  5.  前記R及びRが、それぞれ独立に、アルキル基又はアリール基である、請求項1~4のいずれか1項に記載のセルロース誘導体。
  6.  前記R及びRが、それぞれ独立に、メチル基、エチル基、又はプロピル基である、請求項1~4のいずれか1項に記載のセルロース誘導体。
  7.  前記セルロース誘導体がカルボキシル基を実質的に有さない、請求項1~6のいずれか1項に記載のセルロース誘導体。
  8.  請求項1~7のいずれか1項に記載のセルロース誘導体の製造方法であって、
     炭化水素基及びヒドロキシエチル基:-C-OHを有するセルロースエーテルをエステル化する工程を含む、セルロース誘導体の製造方法。
  9.  請求項1~8のいずれか1項に記載のセルロース誘導体を含有する樹脂組成物。
  10.  請求項1~7のいずれか1項に記載のセルロース誘導体又は請求項9に記載の樹脂組成物を加熱し、成形して得られる成形体から構成される電気電子機器用筐体。
  11.  請求項1~8のいずれか1項に記載のセルロース誘導体又は請求項9に記載の樹脂組成物を加熱し、成形する工程を備えた、成形体の製造方法。
PCT/JP2010/063662 2009-08-12 2010-08-11 セルロース誘導体、樹脂組成物、成形体及びその製造方法並びに電気電子機器用筐体 WO2011019064A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10808247.0A EP2465874B1 (en) 2009-08-12 2010-08-11 Cellulose derivative, resin composition, molded article and process for production thereof, and housing for electric and electronic device
CN201080035806.4A CN102471384B (zh) 2009-08-12 2010-08-11 纤维素衍生物、树脂组合物、成型体及其制备方法,以及用于电气和电子装置的壳体
KR1020127003472A KR101668902B1 (ko) 2009-08-12 2010-08-11 셀룰로오스 유도체, 수지 조성물, 성형체 및 그 제조 방법 그리고 전기 전자기기용 케이싱
US13/389,988 US9074020B2 (en) 2009-08-12 2010-08-11 Cellulose derivative, resin composition, molded body, method for preparation thereof, and case for electric and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009187416 2009-08-12
JP2009-187416 2009-08-12
JP2009-295059 2009-12-25
JP2009295059A JP5757681B2 (ja) 2009-08-12 2009-12-25 セルロース誘導体、樹脂組成物、成形体及びその製造方法並びに電気電子機器用筐体

Publications (1)

Publication Number Publication Date
WO2011019064A1 true WO2011019064A1 (ja) 2011-02-17

Family

ID=43586239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063662 WO2011019064A1 (ja) 2009-08-12 2010-08-11 セルロース誘導体、樹脂組成物、成形体及びその製造方法並びに電気電子機器用筐体

Country Status (7)

Country Link
US (1) US9074020B2 (ja)
EP (1) EP2465874B1 (ja)
JP (1) JP5757681B2 (ja)
KR (1) KR101668902B1 (ja)
CN (1) CN102471384B (ja)
TW (1) TWI494321B (ja)
WO (1) WO2011019064A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157602A1 (ja) * 2011-05-17 2012-11-22 富士フイルム株式会社 樹脂組成物及び成形体

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101837634B1 (ko) * 2011-12-20 2018-03-13 롯데정밀화학 주식회사 아세틸화 셀룰로오스 에테르와 그의 제조방법, 및 상기 아세틸화 셀룰로오스 에테르를 포함하는 물품
KR101837635B1 (ko) * 2011-12-30 2018-03-13 롯데정밀화학 주식회사 아세틸화 셀룰로오스 에테르의 제조방법, 및 그 방법에 의해 제조된 아세틸화 셀룰로오스 에테르
KR101562094B1 (ko) * 2012-12-28 2015-10-20 제일모직주식회사 셀룰로오스계 수지 및 그 제조방법
US9850512B2 (en) 2013-03-15 2017-12-26 The Research Foundation For The State University Of New York Hydrolysis of cellulosic fines in primary clarified sludge of paper mills and the addition of a surfactant to increase the yield
US9951363B2 (en) 2014-03-14 2018-04-24 The Research Foundation for the State University of New York College of Environmental Science and Forestry Enzymatic hydrolysis of old corrugated cardboard (OCC) fines from recycled linerboard mill waste rejects
US10362705B2 (en) * 2014-06-09 2019-07-23 Dell Products, L.P. Lightweight server chassis configured for modular insertion of customer selectable components for downstream assembly of information handling system at customer locations
JP6731064B2 (ja) * 2016-10-14 2020-07-29 旭化成株式会社 生分解性不織布
JP2019534367A (ja) * 2016-11-11 2019-11-28 イーストマン ケミカル カンパニー セルロースから誘導されるポリマーベースの樹脂組成物及びこれらの組成物を用いて製造される物品

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2705710A (en) 1952-02-08 1955-04-05 Du Pont Acid catalyzed esterification of cellulose pretreated with an nu, nu-dialkyl amide
US2976277A (en) 1959-04-09 1961-03-21 Eastman Kodak Co Method of preparing cellulose esters
US4226981A (en) * 1977-09-28 1980-10-07 Shin-Etsu Chemical Co., Ltd. Ether-ester derivatives of cellulose and their applications
JPS5655425A (en) 1979-09-22 1981-05-16 Bayer Ag Thermoplastic polycarbonate* its manufacture and product and its use as film
JPS60139701A (ja) 1983-12-28 1985-07-24 Daicel Chem Ind Ltd 酢酸セルロ−スの製造方法
JPH0286638A (ja) * 1988-09-21 1990-03-27 Shin Etsu Chem Co Ltd 酸素不透過性の水溶性フィルム
JPH03149705A (ja) * 1989-11-02 1991-06-26 Fuji Photo Film Co Ltd 高分子固体電解質
JPH09157301A (ja) 1995-12-08 1997-06-17 Bio Polymer Res:Kk 高重合度アセチルセルロースの製造方法
JP2754066B2 (ja) 1990-01-08 1998-05-20 ダイセル化学工業株式会社 酢酸セルロースの製造方法
JPH11249301A (ja) * 1998-03-02 1999-09-17 Taiyo Ink Mfg Ltd 感光性組成物及びそれを用いて得られる焼成物パターン
JP2000511588A (ja) 1997-03-19 2000-09-05 ローディア アセトウ アクチェンゲゼルシャフト セルロースアセテートの製造方法
JP2000319311A (ja) * 1999-05-11 2000-11-21 Toray Ind Inc 感光性ペーストおよびそれを用いたディスプレイ用部材、プラズマディスプレイ並びにディスプレイ部材の製造方法
JP2001506692A (ja) * 1996-12-17 2001-05-22 ワーナー−ランバート・カンパニー カプセル用のポリマーフィルム組成物
WO2001070820A1 (fr) 2000-03-23 2001-09-27 Hokkaido Technology Licensing Office Co.,Ltd. Procede de preparation d'esters cellulosiques
JP2003041052A (ja) 2001-07-26 2003-02-13 Toray Ind Inc セルロース溶液及び熱可塑性セルロースエステルの製造方法
JP2004163452A (ja) * 2002-11-08 2004-06-10 Nippon Kayaku Co Ltd 液晶性配合組成物およびこれを用いた位相差フィルム
JP2006089574A (ja) 2004-09-22 2006-04-06 Daicel Chem Ind Ltd セルロースエステル及びその製造方法
JP2006152276A (ja) * 2004-11-02 2006-06-15 Shin Etsu Chem Co Ltd 水溶性セルロースエーテルの分離方法
JP2008024919A (ja) 2006-06-19 2008-02-07 Mitsubishi Chemicals Corp ポリカーボネート共重合体及びその製造方法
JP2009035515A (ja) * 2007-08-02 2009-02-19 Nippon Soda Co Ltd シルセスキオキサンを含有する組成物及びシルセスキオキサン含有ヒドロキシアルキルセルロース樹脂組成物
JP2009067730A (ja) 2007-09-14 2009-04-02 Tokyo Institute Of Technology 無水糖、有機酸、及びフルフラール類の生産方法
JP2009187416A (ja) 2008-02-08 2009-08-20 Nec Corp Ltl式確認システム、ltl式確認方法及びltl式確認プログラム
JP2009295059A (ja) 2008-06-09 2009-12-17 Pfu Ltd 特典情報提供装置、特典情報提供システム、特典情報提供方法、及びプログラム
JP2010517129A (ja) 2007-01-22 2010-05-20 トタル イメルシオン ビデオストリームにおいて、マーク無しに、テクスチャー化平面幾何学的オブジェクトをリアルタイムで自動追跡するリアリティ向上方法および装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB396796A (en) 1932-02-12 1933-08-14 Henry Dreyfus Process for the production of ethers of cellulose esters
JPS6128537A (ja) * 1984-07-18 1986-02-08 Kao Corp ポリオレフイン樹脂用帯電防止剤
DE4404840A1 (de) 1994-02-16 1995-08-17 Wolff Walsrode Ag Thermoplastische biologisch abbaubare Polysaccharidderivate, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19714059A1 (de) 1997-04-05 1998-10-08 Wolff Walsrode Ag Thermoplastischer Werkstoff auf der Basis von Polysacchariden sowie ein Verfahren zu dessen Herstellung und Verwendung desselben
DE60039379D1 (de) * 1999-02-10 2008-08-21 Pfizer Prod Inc Pharmazeutische feste Dispersionen
GT200100039A (es) 2000-03-16 2001-12-31 Pfizer Inhibidor de la glucogeno fosforilasa.
EP1269994A3 (en) 2001-06-22 2003-02-12 Pfizer Products Inc. Pharmaceutical compositions comprising drug and concentration-enhancing polymers
JP2005162876A (ja) * 2003-12-02 2005-06-23 Sony Corp 樹脂組成物及びその製造方法、成形品並びに電気製品
JP4610187B2 (ja) * 2003-12-26 2011-01-12 ダイセル化学工業株式会社 セルロースエステル系樹脂組成物
KR101137639B1 (ko) 2004-11-02 2012-04-19 신에쓰 가가꾸 고교 가부시끼가이샤 수용성 셀룰로오스 에테르의 분리 방법
US20070048384A1 (en) * 2005-08-26 2007-03-01 Joerg Rosenberg Pharmaceutical compositions
KR101357473B1 (ko) 2006-06-19 2014-02-03 미쓰비시 가가꾸 가부시키가이샤 폴리카보네이트 공중합체 및 그 제조 방법

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2705710A (en) 1952-02-08 1955-04-05 Du Pont Acid catalyzed esterification of cellulose pretreated with an nu, nu-dialkyl amide
US2976277A (en) 1959-04-09 1961-03-21 Eastman Kodak Co Method of preparing cellulose esters
US4226981A (en) * 1977-09-28 1980-10-07 Shin-Etsu Chemical Co., Ltd. Ether-ester derivatives of cellulose and their applications
JPS5655425A (en) 1979-09-22 1981-05-16 Bayer Ag Thermoplastic polycarbonate* its manufacture and product and its use as film
JPS60139701A (ja) 1983-12-28 1985-07-24 Daicel Chem Ind Ltd 酢酸セルロ−スの製造方法
JPH025761B2 (ja) 1983-12-28 1990-02-05 Daicel Chem
JPH0286638A (ja) * 1988-09-21 1990-03-27 Shin Etsu Chem Co Ltd 酸素不透過性の水溶性フィルム
JPH03149705A (ja) * 1989-11-02 1991-06-26 Fuji Photo Film Co Ltd 高分子固体電解質
JP2754066B2 (ja) 1990-01-08 1998-05-20 ダイセル化学工業株式会社 酢酸セルロースの製造方法
JPH09157301A (ja) 1995-12-08 1997-06-17 Bio Polymer Res:Kk 高重合度アセチルセルロースの製造方法
JP2001506692A (ja) * 1996-12-17 2001-05-22 ワーナー−ランバート・カンパニー カプセル用のポリマーフィルム組成物
JP2000511588A (ja) 1997-03-19 2000-09-05 ローディア アセトウ アクチェンゲゼルシャフト セルロースアセテートの製造方法
JPH11249301A (ja) * 1998-03-02 1999-09-17 Taiyo Ink Mfg Ltd 感光性組成物及びそれを用いて得られる焼成物パターン
JP2000319311A (ja) * 1999-05-11 2000-11-21 Toray Ind Inc 感光性ペーストおよびそれを用いたディスプレイ用部材、プラズマディスプレイ並びにディスプレイ部材の製造方法
WO2001070820A1 (fr) 2000-03-23 2001-09-27 Hokkaido Technology Licensing Office Co.,Ltd. Procede de preparation d'esters cellulosiques
JP2003041052A (ja) 2001-07-26 2003-02-13 Toray Ind Inc セルロース溶液及び熱可塑性セルロースエステルの製造方法
JP2004163452A (ja) * 2002-11-08 2004-06-10 Nippon Kayaku Co Ltd 液晶性配合組成物およびこれを用いた位相差フィルム
JP2006089574A (ja) 2004-09-22 2006-04-06 Daicel Chem Ind Ltd セルロースエステル及びその製造方法
JP2006152276A (ja) * 2004-11-02 2006-06-15 Shin Etsu Chem Co Ltd 水溶性セルロースエーテルの分離方法
JP2008024919A (ja) 2006-06-19 2008-02-07 Mitsubishi Chemicals Corp ポリカーボネート共重合体及びその製造方法
JP2010517129A (ja) 2007-01-22 2010-05-20 トタル イメルシオン ビデオストリームにおいて、マーク無しに、テクスチャー化平面幾何学的オブジェクトをリアルタイムで自動追跡するリアリティ向上方法および装置
JP2009035515A (ja) * 2007-08-02 2009-02-19 Nippon Soda Co Ltd シルセスキオキサンを含有する組成物及びシルセスキオキサン含有ヒドロキシアルキルセルロース樹脂組成物
JP2009067730A (ja) 2007-09-14 2009-04-02 Tokyo Institute Of Technology 無水糖、有機酸、及びフルフラール類の生産方法
JP2009187416A (ja) 2008-02-08 2009-08-20 Nec Corp Ltl式確認システム、ltl式確認方法及びltl式確認プログラム
JP2009295059A (ja) 2008-06-09 2009-12-17 Pfu Ltd 特典情報提供装置、特典情報提供システム、特典情報提供方法、及びプログラム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Dictionary of Cellulose", 2000, ASAKURA PUBLISHING CO., LTD., pages: 131 - 164
CELLULOSE COMMUNICATION, vol. 6, 1999, pages 73 - 79
CELLULOSE, vol. 10, 2003, pages 283 - 296
See also references of EP2465874A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157602A1 (ja) * 2011-05-17 2012-11-22 富士フイルム株式会社 樹脂組成物及び成形体
CN103635520A (zh) * 2011-05-17 2014-03-12 富士胶片株式会社 树脂组合物和成型体
US8927629B2 (en) 2011-05-17 2015-01-06 Fujifilm Corporation Resin composition and molded article

Also Published As

Publication number Publication date
KR101668902B1 (ko) 2016-10-24
JP2011057958A (ja) 2011-03-24
TWI494321B (zh) 2015-08-01
US20120146468A1 (en) 2012-06-14
JP5757681B2 (ja) 2015-07-29
KR20120041217A (ko) 2012-04-30
TW201107347A (en) 2011-03-01
CN102471384A (zh) 2012-05-23
EP2465874B1 (en) 2015-02-25
US9074020B2 (en) 2015-07-07
EP2465874A4 (en) 2013-10-02
CN102471384B (zh) 2015-06-17
EP2465874A1 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP5470032B2 (ja) セルロース誘導体、熱成形材料、成形体及びその製造方法並びに電気電子機器用筐体
JP5757681B2 (ja) セルロース誘導体、樹脂組成物、成形体及びその製造方法並びに電気電子機器用筐体
WO2010047351A1 (ja) セルロース誘導体、樹脂組成物、セルロース誘導体からなる成型体、及びこの成型体から構成される電気電子機器用筺体
WO2011132745A1 (ja) セルロース誘導体、樹脂組成物、成形材料、成形体、成形体の製造方法、及び電気電子機器用筐体
JP5412191B2 (ja) セルロース樹脂組成物、成形体および電気電子機器用筐体
WO2012073661A1 (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP5486918B2 (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
WO2012108234A1 (ja) セルロース誘導体、樹脂組成物、成形体及びその製造方法並びに電気電子機器用筐体
JP5470031B2 (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2010241848A (ja) セルロース樹脂組成物、成形体及び電気電子機器用筺体
JP2011132443A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011132454A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
WO2010038711A1 (ja) セルロース誘導体及びその製造方法、樹脂組成物、成形体及びその製造方法、電子機器用筐体
JP2011132455A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
WO2011078281A1 (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2010235904A (ja) 溶融成形用セルロース樹脂組成物、成形体および電気電子機器用筺体
JP2011132456A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
WO2011078276A1 (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011132452A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011132442A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011132441A (ja) 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035806.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127003472

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1323/CHENP/2012

Country of ref document: IN

Ref document number: 2010808247

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13389988

Country of ref document: US