WO2011016413A1 - 重質油水素化分解触媒及びそれを用いた重質油の水素化処理方法 - Google Patents

重質油水素化分解触媒及びそれを用いた重質油の水素化処理方法 Download PDF

Info

Publication number
WO2011016413A1
WO2011016413A1 PCT/JP2010/063010 JP2010063010W WO2011016413A1 WO 2011016413 A1 WO2011016413 A1 WO 2011016413A1 JP 2010063010 W JP2010063010 W JP 2010063010W WO 2011016413 A1 WO2011016413 A1 WO 2011016413A1
Authority
WO
WIPO (PCT)
Prior art keywords
heavy oil
mass
hydrocracking catalyst
alumina
crystalline aluminosilicate
Prior art date
Application number
PCT/JP2010/063010
Other languages
English (en)
French (fr)
Inventor
稲村 和浩
明 飯野
高橋 信行
洋二 砂川
渡部 光徳
雄一 山畑
慎哉 江浦
雄二 白浜
Original Assignee
出光興産株式会社
日揮触媒化成株式会社
財団法人石油産業活性化センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社, 日揮触媒化成株式会社, 財団法人石油産業活性化センター filed Critical 出光興産株式会社
Priority to US13/261,168 priority Critical patent/US8795513B2/en
Priority to EP10806412A priority patent/EP2463026A4/en
Priority to CN2010800345469A priority patent/CN102596404A/zh
Publication of WO2011016413A1 publication Critical patent/WO2011016413A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/18Crystalline alumino-silicate carriers the catalyst containing platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/106Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper

Definitions

  • the present invention relates to a heavy oil hydrocracking catalyst, and more particularly to a heavy oil hydrocracking catalyst having excellent desulfurization activity and cracking activity, and a heavy oil hydrotreating method using the same.
  • Atmospheric distillation residue oil (AR) of crude oil is hydrodesulfurized in heavy oil direct desulfurization equipment (hereinafter referred to as “direct desulfurization equipment”), and distillate oil and desulfurized heavy oil such as desulfurized naphtha, desulfurized kerosene and desulfurized light oil. Is generated.
  • This desulfurized heavy oil is used as boiler fuel for electric power as a low sulfur C heavy oil.
  • desulfurized heavy oil is also used as a raw material for fluid catalytic cracking (FCC) equipment, catalytic cracking gasoline (hereinafter referred to as “FCC gasoline”), catalytic cracking light oil (hereinafter referred to as “LCO: light cycle oil”), LPG Light fractions such as fractions are produced.
  • FCC gasoline catalytic cracking gasoline
  • LCO catalytic cracking light oil
  • LPG Light fractions such as fractions are produced.
  • crude oil that can be used in oil refining has become heavier, and crude oil containing a large amount of heavy oil tends to increase.
  • the amount of heavy oil used is decreasing, such as a decrease in demand for heavy oil for power generation and boilers.
  • the demand for the LCO fraction from the fluid catalytic cracker is also decreasing.
  • a catalyst in which an active metal is supported on a carrier made of crystalline aluminosilicate is usually used as a heavy oil hydrocracking catalyst.
  • the decomposition activity is high, the desulfurization activity may be insufficient, and the boiling point in the raw material is a high boiling point such as a vacuum distillation residue oil (VR) having a boiling point of 525 ° C. or higher. In some cases, the decomposition activity on the components was insufficient.
  • V vacuum distillation residue oil
  • an active metal is applied to a support made of a mixture of a crystalline aluminosilicate such as zeolite that imparts decomposition activity and an inorganic oxide such as alumina that imparts desulfurization activity.
  • a supported catalyst Many hydrocracking catalysts for heavy hydrocarbon oils using a supported catalyst have been reported (see, for example, Patent Documents 1 to 3).
  • Patent Document 1 as a catalyst capable of increasing the yield of middle distillate in hydrocracking heavy oil, an active metal is supported on a support composed of 65% by mass of a specific iron-supported aluminosilicate and 35% by mass of alumina.
  • a heavy oil hydrocracking catalyst is disclosed.
  • Patent Document 2 a catalyst in which an active metal is supported on a carrier containing 2 to 35% by mass of zeolite and 65 to 98% by mass of specific alumina having an average pore diameter of 6 to 12.5 nm is used.
  • a heavy oil cracking catalyst is disclosed.
  • Patent Document 3 discloses that a catalyst in which an active metal is supported on a carrier produced by mixing a slurry of crystalline aluminosilicate and an aluminum compound is effective for a hydrocarbon conversion reaction.
  • the mixing ratio between the crystalline aluminosilicate slurry and the aluminum compound slurry is 65% by mass for the former, and the ratio of mesopores in the pore distribution is 49% or less.
  • the hydrocracking catalyst in which the support is made of crystalline aluminosilicate and alumina increases the decomposition activity when the ratio of the crystalline aluminosilicate in the support is increased.
  • Patent Document 2 when the ratio of crystalline aluminosilicate in the support is lowered and the ratio of alumina is increased as described in Patent Document 2, the desulfurization activity increases, but the decomposition activity becomes insufficient.
  • the hydrocracking catalyst for heavy oil which requires both high cracking activity and high desulfurization activity at the same time, none of these requirements can be satisfied sufficiently. Therefore, a heavy oil hydrocracking catalyst having both higher cracking activity and higher desulfurization activity has been desired.
  • the present invention has an object of providing a hydrocracking catalyst that achieves both cracking activity and desulfurization activity for heavy oil and is excellent in both functions under such circumstances.
  • the hydrocracking catalyst in which the support is composed of crystalline aluminosilicate and a porous inorganic oxide excluding the crystalline aluminosilicate, the mixing ratio of the crystalline aluminosilicate and the pore distribution of the catalyst are described in detail. We have found that the purpose can be achieved by optimization. The present invention has been completed based on such findings.
  • a heavy oil hydrocracking catalyst in which an active metal is supported on a carrier comprising a crystalline aluminosilicate and a porous inorganic oxide excluding the crystalline aluminosilicate, (A)
  • the carrier is 45% by mass or more and less than 60% by mass of the crystalline aluminosilicate based on the total amount of the crystalline aluminosilicate and the porous inorganic oxide excluding the crystalline aluminosilicate, and the crystalline aluminosilicate is excluded.
  • the active metal is at least one metal selected from Group 6, Group 8, Group 9, and Group 10 of the Periodic Table; and (C)
  • the pore distribution of the heavy oil hydrocracking catalyst is such that the total pore volume defined by pores having a pore diameter of 5 to 1,000 nm is 0.40 dm 3 / kg or more, and the pore diameter is 10 nm or more.
  • the ratio of the intermediate mesopore volume in which the pore diameter of the heavy oil hydrocracking catalyst is 10 nm or more and less than 20 nm to the mesopore volume (pore volume defined by pores having a pore diameter of 5 to 50 nm) is 65%.
  • the heavy oil hydrogenation according to any one of 1 to 4 wherein the carrier used for the heavy oil hydrocracking catalyst has an average pore diameter of 14 nm or more and a maximum value of mesopores of 13 to 15 nm. Cracking catalyst, 6).
  • the main component of the porous inorganic oxide excluding the crystalline aluminosilicate is alumina, and the alumina undergoes a step of obtaining alumina hydrate (boehmite gel) as an intermediate by neutralization reaction of an aqueous solution containing an aluminum salt. 7.
  • XRD X-ray diffraction analysis
  • the present invention relates to a heavy metal in which an active metal is supported on a carrier including a crystalline aluminosilicate and a porous inorganic oxide excluding the crystalline aluminosilicate (sometimes referred to simply as “porous inorganic oxide”). It is an oil hydrocracking catalyst.
  • a carrier including a crystalline aluminosilicate and a porous inorganic oxide excluding the crystalline aluminosilicate (sometimes referred to simply as “porous inorganic oxide”).
  • It is an oil hydrocracking catalyst.
  • crystalline aluminosilicate Various crystalline aluminosilicates can be used. Examples of suitable materials include hydrogen-type faujasite, ultra-stabilized Y-type zeolite (hereinafter sometimes referred to as “USY zeolite”), metal-supported USY zeolite, and the like.
  • USY zeolite and metal-supported USY zeolite are preferable, and metal-supported USY zeolite is particularly preferable.
  • the metal-supported USY zeolite is preferably a metal-supported USY zeolite in which one or more metals selected from Groups 3 to 16 of the periodic table are supported on the USY zeolite, and in particular, an iron-supported USY in which iron is supported as a metal. Zeolite is preferred.
  • the USY zeolite and metal-supported USY zeolite can be produced, for example, by the following method.
  • a raw material for USY zeolite the ratio of silica to alumina (molar ratio), that is, SiO 2 / Al 2 O 3 is 4.5 or more, preferably 5.0 or more, and Na 2 O is 2.4% by mass.
  • Y-type zeolite of 1.8% by mass or less is preferably used.
  • the above Y-type zeolite is steamed to form USY zeolite.
  • the conditions for the steaming treatment may be appropriately selected according to various situations, but the treatment is preferably performed in the presence of water vapor at a temperature of 510 to 810 ° C.
  • Water vapor may be introduced from the outside, or physically adsorbed water or crystal water contained in the Y-type zeolite may be used. Further, by adding an acid to the USY zeolite obtained by the steaming treatment and mixing and stirring, the aluminum falling from the zeolite structure skeleton is removed by washing and removal by steaming and acid treatment.
  • acids include various types of acids such as hydrochloric acid, nitric acid, and sulfuric acid.
  • Inorganic acids organic acids such as formic acid, trichloroacetic acid and trifluoroacetic acid can also be used.
  • the amount of acid to be added is 0.5 to 20 mol, preferably 3 to 16 mol, per kg of USY zeolite.
  • the acid concentration is 0.5 to 50% by mass, preferably 1 to 20% by mass.
  • the treatment temperature is room temperature to 100 ° C, preferably 50 to 100 ° C.
  • the processing time is 0.1 to 12 hours.
  • a metal salt solution is added to this system to support the metal on the USY zeolite.
  • the supporting method include mixed stirring treatment, dipping method, and impregnation method, and mixed stirring treatment is preferable.
  • metals include Group 3 yttrium, lanthanum, Group 4 zirconium, titanium, Group 5 vanadium, niobium, tantalum, Group 6 chromium, molybdenum, tungsten, Group 7 manganese, rhenium, Group 8 iron, ruthenium, osmium, Group 9 cobalt, rhodium, iridium, Group 10 nickel, palladium, platinum, Group 11 copper, Group 12 zinc, cadmium, Group 13 aluminum, gallium , Group 14 tin, Group 15 phosphorus, antimony, Group 16 selenium, and the like.
  • titanium, iron, manganese, cobalt, nickel, palladium, and platinum are preferable, and iron is particularly preferable.
  • the salts of various metals are preferable.
  • the treatment temperature is 30 to 100 ° C., preferably 50 to 80 ° C.
  • the treatment time is 0.1 to 12 hours, preferably 0.
  • the loading of these metals is preferably carried out simultaneously with dealumination from the zeolite structure skeleton, and is appropriately selected and carried out in the range of pH 2.0 or less, preferably pH 1.5 or less.
  • the iron salt include ferrous sulfate and ferric sulfate, and ferric sulfate is preferable. Although this iron sulfate can be added as it is, it is preferably added as a solution.
  • the solvent at this time may be any solvent that dissolves the iron salt, but water, alcohol, ether, ketone and the like are preferable.
  • the concentration of iron sulfate added is usually 0.02 to 10.0 mol / liter, preferably 0.05 to 5.0 mol / liter.
  • the slurry ratio that is, the treatment solution volume (liter) / zeolite weight (kg) is advantageously in the range of 1 to 50. 5 to 30 is preferred.
  • the iron-carrying zeolite obtained by the above treatment is further washed and dried as necessary. As described above, USY zeolite and metal-supported USY zeolite can be produced.
  • porous inorganic oxide excluding crystalline aluminosilicate examples include alumina, silica-alumina, silica, alumina-boria, alumina-zirconia, and alumina-titania. Is preferably mainly composed of alumina.
  • the main component means that the content is 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, based on the porous inorganic oxide (100% by mass).
  • alumina boehmite gel, alumina sol, and alumina produced from these are preferably used.
  • Alumina is preferable in that the active metal can be supported in a highly dispersed state, and alumina described below is particularly preferable in terms of facilitating optimization of pore distribution of the catalyst.
  • alumina is produced through a step of obtaining alumina hydrate (boehmite gel) as an intermediate by neutralization reaction of an aqueous solution containing an aluminum salt, and X-ray diffraction analysis of the alumina hydrate (The relative peak height of boehmite crystals by XRD) is 65 to 85. If the relative peak height is 65 or more, there is no fear that the desulfurization activity of the catalyst with respect to heavy oil due to excessive decrease in the average pore diameter of alumina will be reduced, and if it is 85 or less, the average pore diameter of alumina will be excessive. There is no possibility that the decomposition activity of the catalyst is lowered due to the increase.
  • the relative peak height of boehmite crystals of alumina hydrate is determined by using an X-ray diffractometer and 2 ⁇ of the standard material and alumina (boehmite) of the sample material: 10 ° to 20 ° peak high (peak height). ) Are measured and calculated from the following formula (1). Specifically, it is a value measured by the method described in the Example section.
  • a preferred method for producing alumina satisfying the above conditions is exemplified below. (1) reacting an aqueous solution containing an aluminum salt with a neutralizing agent to obtain an alumina hydrate (boehmite) having a pH of 6 to 11, and then (2) The alumina hydrate is subjected to a washing step, an aging step, a drying step, and a kneading step.
  • alumina hydrate aluminum sulfate, aluminum nitrate, aluminum chloride and the like are usually used as the aluminum salt, and sodium aluminate, potassium aluminate, caustic soda, ammonia and the like are used as the neutralizing agent.
  • the pH of the alumina hydrate is somewhat alkaline and more preferably 7 to 10 from the viewpoint of easily obtaining a hydrate having a preferable particle size.
  • the washing step (2) sufficient washing is performed.
  • the remaining amount of sulfate radical (SO 4 2 ⁇ ) in the alumina hydrate is 1% by mass or less. It is preferable to carry out so that it may become 0.7 mass% or less.
  • the temperature of the ripening step is 80 to 160 ° C., preferably 90 to 100 ° C., and the kneading time is 1 to 24 hours, preferably 2 to 12 hours.
  • the above-described alumina production method is preferably produced by the method described in Japanese Patent No. 3755826.
  • a mixture of crystalline aluminosilicate such as the above-mentioned USY zeolite and metal-supported USY zeolite and a porous inorganic oxide excluding the crystalline aluminosilicate is used. If the proportion of crystalline aluminosilicate in the mixture of crystalline aluminosilicate and porous inorganic oxide is too small, a high reaction temperature is required to obtain the desired decomposition rate, light fraction and middle fraction, and as a result Adversely affects the life of the catalyst.
  • the decomposition activity of the atmospheric distillation residue oil (hereinafter referred to as AR (343 + ° C.) fraction) is improved, but the heavier vacuum distillation residue oil (hereinafter referred to as “AR”).
  • AR the heavier vacuum distillation residue oil
  • the decomposition activity of the VR (referred to as 525 + ° C. fraction) is reduced, and the decomposition selectivity of the light fraction and middle fraction is lowered.
  • porous inorganic oxides such as alumina highly disperse the supported active metal, so that the proportion of porous inorganic oxides is large (that is, crystalline aluminosilicate is less than 45% by mass and porous inorganic oxides are When the oxide exceeds 55% by mass), the hydrogenation activity is high, and at least one of desulfurization activity, denitrogenation activity, decarburization activity, deasphaltenic activity, demetallation activity, etc. is improved. The ratio is reduced, the desired decomposition rate cannot be obtained, and it becomes difficult to obtain a light fraction and a middle fraction.
  • the proportion of the porous inorganic oxide is small (that is, when the crystalline aluminosilicate is 60% by mass or more and the porous inorganic oxide is 40% by mass or less), desulfurization activity, denitrogenation activity, decarbonized carbon.
  • at least one such as activity, deasphaltenic activity, demetalization activity, etc. is lowered. Therefore, the mixing ratio of the crystalline aluminosilicate and the porous inorganic oxide is 45% by mass or more and less than 60% by mass of the crystalline aluminosilicate based on the total amount of the crystalline aluminosilicate and the porous inorganic oxide. More than 40 mass% and 55 mass% or less are required, and what consists of crystalline aluminosilicate 47 mass% or more and 55 mass% or less and porous inorganic oxide 45 mass% or more and 53 mass% or less is more suitable.
  • the carrier of the heavy oil hydrocracking catalyst of the present invention is preferably composed only of the crystalline aluminosilicate and the porous inorganic oxide.
  • a third component such as clay mineral and phosphorus may be mixed. Also good.
  • the content of the third component is 1 to 30% by mass, particularly 3 to 25% by mass, where the total amount of the crystalline aluminosilicate, the porous inorganic oxide and the third component is 100% by mass. . If it exceeds 30% by mass, the surface area of the carrier may become small, and the catalytic activity may not be sufficiently exhibited. In the case of less than 1% by mass, there is a possibility that the effect of adding the third component cannot be expected.
  • crystalline aluminosilicates such as the above-mentioned USY zeolite and metal-supported USY zeolite may be used as a slurry containing water after washing with water.
  • the crystalline aluminosilicate and the porous inorganic oxide are sufficiently mixed with a kneader (kneader) under a sufficient water content.
  • the porous inorganic oxide is in the form of a gel or sol, but is mixed with the crystalline aluminosilicate in the form of a slurry by adding water in the same manner as in the crystalline aluminosilicate.
  • the amount of water in each slurry state is preferably 30 to 80% by mass for the crystalline aluminosilicate slurry, more preferably 40 to 70% by mass, and preferably 50 to 90% by mass for the porous inorganic oxide slurry. 85 mass% is more preferable.
  • After mixing and kneading the above crystalline aluminosilicate and porous inorganic oxide it is molded to a diameter of 1/12 inch to 1/32 inch and a length of 1.5 mm to 6 mm, and is cylindrical, three-leaf type, four-leaf type A molded product of the shape is obtained.
  • the molded product is dried at 30 to 200 ° C. for 0.1 to 24 hours, and then calcined at 300 to 750 ° C. (preferably 450 to 700 ° C.) for 1 to 10 hours (preferably 2 to 7 hours) to obtain a carrier. .
  • the hydrocracking catalyst of the present invention at least one metal of Group 6, Group 8, Group 9, and Group 10 metals of the periodic table is supported on the carrier as a hydrogenation active metal.
  • the metal belonging to Group 6 of the periodic table is preferably molybdenum or tungsten
  • the metal belonging to Groups 8 to 10 is preferably nickel or cobalt.
  • the combination of the two kinds of metals include nickel-molybdenum, cobalt-molybdenum, nickel-tungsten, cobalt-tungsten and the like. Of these, cobalt-molybdenum and nickel-molybdenum are preferable, and nickel-molybdenum is particularly preferable.
  • the loading amount of the metal as the active ingredient is not particularly limited, and may be appropriately selected according to various conditions such as the type of the raw material oil and the desired yield of the naphtha fraction. Is 0.5 to 30% by mass, preferably 5 to 20% by mass of the total catalyst, and the Group 8-10 metal is 0.1 to 20% by mass, preferably 1 to 10% by mass of the total catalyst.
  • the method for supporting the metal component on the carrier is not particularly limited, and for example, known methods such as an impregnation method, a kneading method, and a coprecipitation method can be employed.
  • the above metal component supported on a carrier is usually dried at 30 to 200 ° C. for 0.1 to 24 hours, and then at 250 to 700 ° C. (preferably 300 to 650 ° C.) for 1 to 10 hours (preferably Is calcined for 2-7 hours and finished as a catalyst.
  • the heavy oil hydrocracking catalyst of the present invention needs to have the pore distribution shown in the following (1) and (2).
  • (1) Total pore volume The total pore volume defined by pores having a pore diameter of 5 to 1,000 nm of the catalyst needs to be 0.40 dm 3 / kg or more, and is 0.42 dm 3 / kg or more. Is preferable, and 0.43 dm 3 / kg or more is more preferable. If the total pore volume is 0.40 dm 3 / kg or more, the diffusion of heavy oil molecules such as vacuum residue oil can be enhanced.
  • the upper limit of the total pore volume is not particularly limited, but is usually 1.0 dm 3 / kg or less.
  • the total pore volume of the catalyst of the present invention having a diameter of 5 nm or more was measured by a mercury intrusion method defined in ASTM D4284-03.
  • the contact angle of mercury was 140 degrees and the surface tension was 480 dyne / cm.
  • the measurement method of each pore volume and average pore diameter described in the following (2) to (5) was also measured in the same manner.
  • the pore volume (intermediate mesopore volume) of the intermediate mesopore defined by pores having a pore diameter of 10 or more and less than 20 nm of the catalyst is 60% of the total pore volume. % Or more. An intermediate mesopore volume of less than 60% is not preferred because denitrification activity may be reduced.
  • the ratio of the mesopore volume to the mesopore volume is preferably more than 65% and 75% or less.
  • the mesopore volume is defined as the pore volume of pores having a pore diameter of 5 to 50 nm.
  • the atmospheric pressure residue decomposition activity and the reduced pressure residue decomposition activity can be increased, and the yield of the desired middle distillate can be increased.
  • nitrogen, sulfur, metal, asphaltenes, And the performance which removes at least 1 type among residual charcoal can be improved.
  • This catalyst has a ratio of the pore volume of macropores (macropore volume) defined by pores having a pore diameter of more than 50 nm and 1,000 nm or less to the total pore volume of 10%. The above is preferable. When the ratio of the macro pore volume to the total pore volume is less than 10%, the decomposition activity of the vacuum residue may be lowered.
  • the catalyst used for the hydrocracking of the present invention preferably satisfies the following requirements.
  • Expanded mesopore volume The pore volume (expanded mesopore volume) of the expanded mesopore defined by pores having a pore diameter of 20 to 50 nm of the catalyst is 10% or more and 20% of the total pore volume. The following is preferable. If it is in this range, denitrification activity and decarburization activity can be kept high.
  • Mesopore volume The proportion of mesopores defined by pores having a pore diameter of 5 to 50 nm of the catalyst (mesopore volume) in the total pore volume is 85 to 90%. It is preferable. When the proportion of the mesopore volume is within this range, there is no possibility that the desulfurization activity, the denitrogenation activity, and the decarburization activity are reduced.
  • the average pore diameter of the support used in the hydrocracking catalyst of the present invention is preferably 14 nm or more, more preferably 14.5 to 15.5 nm.
  • the mesopore maximum value of the carrier having a pore diameter of 5 to 50 nm is preferably in the range of 13 to 15 nm. It is preferable that the average pore diameter and mesopore maximum value of the support satisfy the above ranges in that the sulfur compound having a large molecular weight has good desulfurization performance and can maintain high catalytic activity.
  • the heavy oil hydrocracking catalyst of the present invention improves the hydrogenation activity of the heavy fraction, has a high cracking activity of a fraction having a boiling point of 525 ° C. or higher (VR fraction), and has a boiling point of 343 ° C. or higher.
  • Decomposition activity of the fraction having (AR fraction) is also relatively high.
  • it has high decarburization activity, desulfurization activity, and denitrification activity. Therefore, when hydrocracking using this catalyst, the properties of the obtained desulfurized heavy oil (desulfurized atmospheric residue: DSAR or desulfurized vacuum gas oil: DSVGO) become preferable as a raw material for a fluid catalytic cracker or the like. .
  • the hydrocracking treatment catalyst in the present invention is used for a hydrocracking reaction, and simultaneously with the hydrocracking reaction, hydrodesulfurization reaction, hydrodenitrogenation reaction, hydrodemetallation reaction, and the like are also performed. Perform under the following conditions.
  • a direct desorption device is usually used as a device for performing such a hydrocracking reaction under high pressure.
  • the conditions for hydrocracking using the heavy oil hydrocracking catalyst of the present invention are not particularly limited, and may be performed under the reaction conditions conventionally used in hydrocracking and hydrodesulfurization reactions of heavy oil,
  • the reaction temperature is preferably 320 to 550 ° C., more preferably 350 to 430 ° C.
  • the hydrogen partial pressure is preferably 1 to 30 MPa, more preferably 5 to 17 MPa
  • the hydrogen / oil ratio is preferably 100 to 2,000 Nm. 3 / kiloliter, more preferably 300 to 1,000 Nm 3 / kiloliter
  • the liquid hourly space velocity (LHSV) is preferably 0.1 to 5 h ⁇ 1 , more preferably 0.2 to 2.0 h ⁇ 1 .
  • heavy oil such as vacuum residue oil, coker oil, synthetic crude oil, extracted crude oil, heavy gas oil, vacuum gas oil, LCO, heavy cycle oil (HCO), clarified oil (CLO), gas-trickle oil (GTL oil), wax, etc.
  • a hydrocracking treatment can also be performed by mixing a quality oil with an atmospheric distillation residue oil.
  • the heavy oil hydrocracking catalyst of the present invention may be used alone or in combination with a general hydrotreating catalyst.
  • the demetallization catalyst is 10 to 40% by volume in the first stage
  • the desulfurization catalyst is 0 to 50% by volume in the second stage
  • the present invention is in the third stage with respect to the total catalyst charge.
  • 10 to 70% by volume of the heavy oil hydrocracking catalyst and 0 to 40% by volume as the finishing desulfurization catalyst in the fourth stage are preferable.
  • These can have various filling patterns depending on the properties of the feedstock.
  • a descaling catalyst for removing scales such as iron powder and inorganic oxide contained in the raw material oil may be filled before the first stage demetallation catalyst.
  • the heavy oil hydrocracking catalyst of the present invention can be used, for example, as follows. Using the heavy oil hydrocracking catalyst of the present invention, hydrocracking the atmospheric distillation residual oil, using the resulting residual oil of the product oil or a mixture of residual oil and distillate as a raw material, Treat with catalytic cracking.
  • the distillate oil a distillate oil having a boiling point of 120 to 400 ° C. is preferable, and one having a boiling point of 150 to 350 ° C. is more preferable. If it is in such a boiling range, the decomposition product of a favorable boiling range is obtained, and the effect which increases FCC gasoline etc. is acquired.
  • the mixing ratio of the distillate oil in the raw material for the fluid catalytic cracking treatment is preferably 1 to 30% by volume, and more preferably 3 to 20% by volume. Within such a range, the effect of increasing the amount of LPG fraction or FCC gasoline fraction is recognized.
  • the conditions for the catalytic cracking treatment are not particularly limited, and may be performed by known methods and conditions.
  • an amorphous catalyst such as silica-alumina or silica-magnesia or a zeolite catalyst such as faujasite type crystalline aluminosilicate is used, and the reaction temperature is 450 to 650 ° C., preferably 480 to 580 ° C., and the regeneration temperature is 550 to 760 ° C.
  • the reaction pressure may be appropriately selected within the range of 0.02 to 5 MPa, preferably 0.2 to 2 MPa.
  • the product of fluid catalytic cracking which is the final process, has a high ratio of FCC gasoline fraction and LPG fraction, which are useful as raw materials for fuel and petrochemical products, and demand is high.
  • the proportion of the small LCO fraction can be lowered.
  • it has a high yield of so-called middle distillate kerosene fraction and light fraction naphtha fraction in hydrocracked product oil by direct desulfurization equipment that is an intermediate process, and is a raw material for fuel and petrochemical products.
  • the contact angle of mercury was determined to be 150 degrees, and the surface tension was determined to be 480 dyne / cm.
  • the mesopore maximum value was defined as the pore diameter (nm) that becomes the maximum value in the distribution of mesopores (5 to 50 nm) in the pore size distribution obtained by the measurement.
  • Relative peak height of boehmite crystals of alumina hydrate Using an X-ray diffractometer, the alumina (boehmite) peak heights of the standard material and the sample material were measured, and the relative peak height was calculated by the following formula (1).
  • Relative peak high (B / A) ⁇ 100 (1)
  • A indicates the peak height of the standard substance (manufactured by Sasol, trade name: Catapal D)
  • B indicates the measured peak height of the sample substance.
  • the measurement conditions for X-ray diffraction are as follows.
  • ⁇ Measuring device Rigaku (RINT-2100) ⁇ Measurement condition : Target: Cu Filter: Ni Voltage: 30kV Current: 14 mA Scan speed: 1 ° / min, Full scale: 1000 cps, Number of smoothing points: 19 Scan angle (2 ⁇ ): 10 ° to 20 ° ⁇ Measurement method of peak high: In the polygonal line profile, a tangent line was drawn on the background on both sides of the peak, and then a perpendicular line was drawn from the peak top to obtain a height from the background to the peak top, and the value was defined as each peak height. (5) Total pore volume, intermediate mesopore volume, enlarged mesopore volume, macropore volume and average pore diameter These were measured by the methods described in the specification.
  • Example 1 Heavy oil hydrocracking catalyst I
  • Alumina Hydrate 44 kg of pure water was put into a 200 liter stainless steel tank, and 2.12 kg of an aqueous sodium aluminate solution containing 22.0% by mass of alumina was added thereto and heated to 60 ° C. did.
  • This aqueous solution was kept at 60 ⁇ 3 ° C. while stirring at high speed (about 40 rpm), 52.3 g of 26.8% by mass of sodium gluconate aqueous solution was added, and then 3.0% by mass of alumina heated to 60 ° C.
  • An aqueous aluminum sulfate solution (7.2 kg) was added over about 10 minutes to obtain a seed alumina slurry having a pH of 7.2.
  • 53.4 kg of seed alumina slurry (containing 0.68 kg of alumina) was put into an alumina production apparatus described in FIG. 2 of Japanese Patent No. 3755826 and stirred. While maintaining the seed alumina slurry at a temperature of 60 ° C., the seed alumina slurry was circulated at a flow rate of 2.0 m 3 / hr.
  • a sodium aluminate aqueous solution (containing 6.0% by mass of alumina) containing 0.18% by mass of sodium gluconate and sulfuric acid containing 3.0% by mass of alumina.
  • Aluminum was added over 3 hours while adjusting the respective addition speeds so that the temperature of the solution in the tank of the alumina production apparatus was maintained at 60 ⁇ 3 ° C. and pH 7.1 ⁇ 0.1. A slurry was obtained.
  • the amount of each aqueous solution added was 70.0 kg of a sodium aluminate aqueous solution containing 6.0% by mass of alumina to which sodium gluconate was added, and 72.7 kg of aluminum sulfate containing 3.0% by mass of alumina.
  • 17.0 kg of a sodium aluminate aqueous solution containing 6.0% by mass of alumina was added so that the circulating slurry had a pH of 9.9, and then a slurry prepared by washing to remove sodium and sulfate radicals was prepared.
  • the obtained blended slurry had a sodium content of 0.05 mass% as Na 2 O and a sulfate radical content of 0.2 mass% as SO 4 2- .
  • deionized water is added to the prepared slurry to make the Al 2 O 3 concentration 15% by mass, and further adjusted to pH 10.5 with 15% by mass ammonia water, and then 95% in an aging tank equipped with a reflux. Aging was carried out at a temperature of 4.5 ° C. for 4.5 hours to obtain an aging slurry. After completion of aging, the aging slurry was concentrated by evaporation using a double-arm kneader with a steam jacket, and then kneaded for an additional 0.5 hour to obtain alumina hydrate. About the said alumina hydrate, the relative peak height of the boehmite crystal
  • Example 2 Heavy oil hydrocracking catalyst II
  • Alumina Hydrate 53.4 kg (including 0.68 kg of alumina) of the same seed alumina slurry as in Example 1 was put into an alumina production apparatus and stirred. While maintaining the seed alumina slurry at a temperature of 60 ° C., the seed alumina slurry was circulated at a flow rate of 2.0 m 3 / hr. While stirring and circulating the seed alumina slurry, a sodium aluminate aqueous solution (containing 6.0% by mass of alumina) containing 0.18% by mass of sodium gluconate and sulfuric acid containing 3.0% by mass of alumina.
  • Aluminum was added over 3 hours while adjusting the respective addition speeds so that the temperature of the solution in the alumina production apparatus tank was maintained at 60 ⁇ 3 ° C. and pH 7.2 ⁇ 0.1. Got.
  • the amount of each aqueous solution added was 70.0 kg of a sodium aluminate aqueous solution containing 6.0% by mass of alumina to which sodium gluconate was added, and 70.8 kg of aluminum sulfate containing 3.0% by mass of alumina.
  • 11.9 kg of a sodium aluminate aqueous solution containing 6.0% by mass of alumina was added so that the circulating slurry had a pH of 9.8, and then a slurry prepared by washing to remove sodium and sulfate radicals was prepared.
  • the obtained prepared slurry contained 0.05% by mass of sodium as Na 2 O and 0.6% by mass of sulfate as SO 4 2 ⁇ .
  • deionized water is added to the prepared slurry to make the Al 2 O 3 concentration 15% by mass, and further adjusted to pH 10.5 with 15% by mass ammonia water, and then 95% in an aging tank equipped with a reflux. Aging was carried out at 8.5 ° C. for 8.5 hours to obtain an aging slurry.
  • the aging slurry was concentrated by evaporation using a double-arm kneader with a steam jacket, and then kneaded for an additional 0.5 hour to obtain alumina hydrate.
  • the relative peak height of boehmite crystals of this alumina hydrate was 78.
  • Aluminum was added over 3 hours while adjusting the respective addition speeds so that the temperature of the solution in the tank was maintained at 60 ⁇ 3 ° C. and pH 7.2 ⁇ 0.1 to obtain a circulating slurry. .
  • the amount of each aqueous solution added was 70.0 kg of a sodium aluminate aqueous solution containing 6.0% by mass of alumina to which sodium gluconate was added, and 70.8 kg of aluminum sulfate containing 3.0% by mass of alumina.
  • the aging slurry was concentrated by evaporation using a double-arm kneader with a steam jacket, and then kneaded for an additional 0.5 hour to obtain alumina hydrate.
  • the relative peak height of boehmite crystals of this alumina hydrate was 60.
  • Aluminum was added over 3 hours while adjusting the respective addition speeds so that the temperature circulating in the tank was maintained at 60 ⁇ 3 ° C. and pH 7.2 ⁇ 0.1 to obtain a circulating slurry. .
  • the amount of each aqueous solution added was 70.0 kg of a sodium aluminate aqueous solution containing 6.0% by mass of alumina to which sodium gluconate was added, and 70.8 kg of aluminum sulfate containing 3.0% by mass of alumina.
  • the aging slurry was concentrated by evaporation using a double-arm kneader with a steam jacket, and then kneaded for an additional 0.5 hour to obtain alumina hydrate.
  • the relative peak height of boehmite crystals of alumina hydrate was 60.
  • Aluminum is added over 3 hours while adjusting the respective addition speeds so that the temperature of the solution of the circulating slurry circulating in the tank is maintained at 60 ⁇ 3 ° C. and pH 7.5 ⁇ 0.1, A circulating slurry was obtained.
  • the amount of each aqueous solution added was 70.0 kg of a sodium aluminate aqueous solution containing 6.0% by mass of alumina to which sodium gluconate was added, and 69.2 kg of aluminum sulfate containing 3.0% by mass of alumina.
  • a sodium aluminate aqueous solution containing 6.0% by mass of alumina was added so that the circulating slurry had a pH of 9.6, and then a slurry prepared by washing to remove sodium and sulfate radicals was prepared.
  • the obtained prepared slurry contained 0.05% by mass of sodium as Na 2 O and 1.3% by mass of sulfate group as SO 4 2 ⁇ .
  • deionized water is added to the prepared slurry to make the Al 2 O 3 concentration 15% by mass, and further adjusted to pH 10.5 with 15% by mass ammonia water, and then 95% in an aging tank equipped with a reflux. Aging was carried out at 8.5 ° C. for 8.5 hours to obtain an aging slurry.
  • the aging slurry was concentrated by evaporation using a double-arm kneader with a steam jacket, and then kneaded for an additional 0.5 hour to obtain alumina hydrate.
  • the relative peak height of boehmite crystals of alumina hydrate was 50.
  • Aluminum was added over 3 hours while adjusting the respective addition speeds so that the temperature of the solution of the circulating slurry in the tank was maintained at 60 ⁇ 3 ° C. and pH 7.2 ⁇ 0.1. Got.
  • the amount of each aqueous solution added was 70.0 kg of a sodium aluminate aqueous solution containing 6.0% by mass of alumina to which sodium gluconate was added, and 71.3 kg of aluminum sulfate containing 3.0% by mass of alumina.
  • the aging slurry was concentrated by evaporation using a double-arm kneader with a steam jacket, and then kneaded for an additional 0.5 hour to obtain alumina hydrate.
  • the relative peak height of boehmite crystals of alumina hydrate was 65.
  • product oil obtained by the above hydrocracking treatment (hereinafter sometimes referred to simply as “product oil”) is analyzed by a chromatographic distillation method (ASTM D5307-97), and a fraction having a boiling point of more than 343 ° C. and less than 525 ° C. ( 343 + ° C.)
  • the yield of each fraction such as a fraction having a boiling point higher than 525 ° C. (boiling point 525 + ° C.) and a fraction having a boiling point range of 150 to 343 ° C. which is a kerosene oil fraction as an intermediate fraction was determined.
  • conversion ratios of 343 + ° C. and 525 + ° C. defined below were obtained. The results are shown in Table 3.
  • the feedstock oil in the definition below is an Arabian heavy atmospheric distillation residue oil in Table 2.
  • vanadium and nickel content was measured by fluorescent X-ray method (JPI-5S-62-2000), heptane (C7) insoluble matter was measured by UOP 614-80 method, and residual carbon content was measured by micro method (JIS K). 2270).
  • the Arabian heavy atmospheric distillation residue oil in Table 2 (hereinafter sometimes simply referred to as “raw oil”) was also the same except that the sulfur content was measured by the combustion tube air method (JIS K2541-3). evaluated.
  • the heavy oil hydrocracking catalyst of the present invention can provide a hydrocracking catalyst that has both cracking activity and desulfurization activity and is excellent in both functions. Therefore, it can be widely used as a useful hydrocracking catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)

Abstract

 重質油に対する分解活性と脱硫活性とが両立し、両機能共に優れる結晶性アルミノシリケートと該結晶性アルミノシリケートを除く多孔性無機酸化物とを含む担体に活性金属を担持した重質油水素化分解触媒であって、 (a)前記担体が、結晶性アルミノシリケートと該結晶性アルミノシリケートを除く多孔性無機酸化物の合計量基準で、結晶性アルミノシリケート45質量%以上60質量%未満と該結晶性アルミノシリケートを除く多孔性無機酸化物40質量%超55質量%以下を含み、(b)前記活性金属が、周期表第6族、第8族、第9族、第10族金属のうち少なくとも一種の金属であり、かつ、(c)前記重質油水素化分解触媒の細孔分布が、細孔径5~1,000nmの細孔で定義される総細孔容積が0.40dm3/kg以上、細孔径が10nm以上20nm未満である中間メソ細孔容積の総細孔容積に占める割合が60%以上である、重質油水素化分解触媒である。

Description

重質油水素化分解触媒及びそれを用いた重質油の水素化処理方法
 本発明は、重質油水素化分解触媒に関し、詳しくは、優れた脱硫活性と分解活性を有する重質油水素化分解触媒及びそれを用いた重質油の水素化処理方法に関するものである。
 原油の常圧蒸留残渣油(AR)は、重油直接脱硫装置(以下、「直脱装置」と称する)にて水素化脱硫され、脱硫ナフサ、脱硫灯油、脱硫軽油などの留出油と脱硫重油を生成する。この脱硫重油は、低硫黄C重油として電力用のボイラー燃料などに用いられている。同時に脱硫重油は、流動接触分解(FCC)装置の原料としても使用され、接触分解ガソリン(以下、「FCCガソリン」と称する)、接触分解軽油(以下、「LCO:ライトサイクルオイル」と称する)、LPG留分等の軽質留分が生産されている。
 近年、石油精製において使用できる原油は重質化し、重質油を多量に含む原油が多くなる傾向にある。しかも、発電、ボイラー用の重油の需要が減少するなど重質油の利用量は減少しつつある。また、流動接触分解装置からのLCO留分の需要も減少しつつある。
 一方、ガソリン需要は拡大し、また、プロピレン、ブテンや、ベンゼン、トルエン、キシレンなどのBTX等の多数の石油化学製品の原料として使用されるLPG留分やナフサ留分の需要も増大してきている。したがって、常圧蒸留残渣油などの重質油からガソリンやナフサ留分、LPG留分などの軽質留分を多量に製造する技術開発が重要な課題となっている。
 このような状況から、重質油を直脱装置、間脱装置などの水素化脱硫装置にて水素化脱硫処理して得られる脱硫重油、脱硫重質軽油などをさらに分解して、脱硫ナフサ、脱硫灯油、脱硫軽油等を増産する水素化分解法の開発が進められている。また、流動接触分解装置にて前記脱硫重油、脱硫重質軽油を高い分解率で接触分解することにより、LPG留分、FCCガソリン留分、LCO留分などの軽質留分へ転換する方法についての研究・開発が行われている。そして、ここでは、通常、重質油水素化分解触媒として、結晶性アルミノシリケートからなる担体に活性金属を担持した触媒が使用されている。
 しかしながら、このような触媒を用いると、分解活性は高いものの、脱硫活性が不充分であることがあり、また、原料中の沸点が525℃以上の減圧蒸留残渣油(VR)のような高沸点成分に対する分解活性が不充分なことがあった。
 そこで、それらの欠点を解決すべく研究開発が進められ、例えば、分解活性を付与するゼオライト等の結晶性アルミノシリケートと脱硫活性を付与するアルミナなどの無機酸化物の混合物からなる担体に活性金属を担持した触媒を用いた重質炭化水素油の水素化分解触媒が多数報告されている(例えば、特許文献1~3参照)。
 特許文献1では、重質油の水素化分解において、中間留分の得率を高め得る触媒として、特定の鉄担持アルミノシリケート65質量%とアルミナ35質量%とからなる担体に活性金属を担持した重質油水素化分解触媒を開示している。
 また、特許文献2では、ゼオライトを2~35質量%と平均細孔直径が6~12.5nmである特定のアルミナを65~98質量%含有する担体に、活性金属を担持した触媒を用いた重質油分解触媒を開示している。
 また、特許文献3では、結晶性アルミノシリケートのスラリーとアルミニウム化合物のスラリーを混合して製造された担体に活性金属を担持した触媒が、炭化水素転換反応に有効であることを開示している。ここでは、結晶性アルミノシリケートのスラリーとアルミニウム化合物のスラリーとの混合比率は、前者が65質量%であり、細孔分布におけるメソ細孔の割合が49%以下のものが記載されている。
 しかしながら、担体が結晶性アルミノシリケートとアルミナなどからなる上記水素化分解触媒は、特許文献1及び3に記載されたように、担体における結晶性アルミノシリケートの比率を高めると分解活性が高まるものの、脱硫活性が不十分になり、特許文献2に記載されたように、担体における結晶性アルミノシリケートの比率を低くしアルミナの比率を高めると、脱硫活性が高まるものの、分解活性が不十分になってしまい、高い分解活性と高い脱硫活性とを同時要求される重質油の水素化分解触媒においては、いずれもそのような要求を充分に満たすことができない状況にあった。
 したがって、さらに高い分解活性と高い脱硫活性とを同時に備えた重質油の水素化分解触媒が切望されていた。
特開平2-289419号公報 特開平3-284354号公報 特開平6-285374号公報
 本発明は、このような状況で、重質油に対する分解活性と脱硫活性とを両立させ、両機能共に優れる水素化分解触媒を提供することを目的とするものである。
 本発明者らは、担体が結晶性アルミノシリケートと該結晶性アルミノシリケートを除く多孔性無機酸化物からなる水素化分解触媒において、結晶性アルミノシリケートの混合比率、及び触媒の細孔分布を詳細に最適化することによってその目的を達成し得ることを見出した。本発明はかかる知見に基づいて完成したものである。
 すなわち、本発明は、
1.結晶性アルミノシリケートと該結晶性アルミノシリケートを除く多孔性無機酸化物とを含む担体に活性金属を担持した重質油水素化分解触媒であって、
(a)前記担体が、結晶性アルミノシリケートと該結晶性アルミノシリケートを除く多孔性無機酸化物の合計量基準で、結晶性アルミノシリケート45質量%以上60質量%未満と該結晶性アルミノシリケートを除く多孔性無機酸化物40質量%超55質量%以下を含み、
(b)前記活性金属が、周期表第6族、第8族、第9族、第10族金属のうち少なくとも一種の金属であり、かつ、
(c)前記重質油水素化分解触媒の細孔分布が、細孔径5~1,000nmの細孔で定義される総細孔容積が0.40dm3/kg以上、かつ細孔径が10nm以上20nm未満である中間メソ細孔容積の総細孔容積に占める割合が60%以上である重質油水素化分解触媒、
2.前記重質油水素化分解触媒の細孔径が20~50nmである拡大メソ細孔容積の総細孔容積に占める割合が10%以上20%以下である、前記1に記載の重質油水素化分解触媒、
3.前記重質油水素化分解触媒の細孔径が10nm以上20nm未満である中間メソ細孔容積のメソ細孔容積(細孔径5~50nmの細孔で定義される細孔容積)に占める割合が65%超75%以下である、前記1又は2に記載の重質油水素化分解触媒、
4.前記重質油水素化分解触媒の前記メソ細孔容積の前記総細孔容積に占める割合が85~90%である、前記1~3のいずれかに記載の重質油水素化分解触媒、
5.さらに前記重質油水素化分解触媒に用いる担体の平均細孔径が14nm以上であり、メソ細孔の極大値が13~15nmである、前記1~4のいずれかに記載の重質油水素化分解触媒、
6.結晶性アルミノシリケートが、超安定化Y型ゼオライト又は金属担持超安定化Y型ゼオライトである前記1~5のいずれかに記載の重質油水素化分解触媒、
7.前記結晶性アルミノシリケートを除く多孔性無機酸化物の主成分がアルミナであり、該アルミナが、アルミニウム塩を含む水溶液の中和反応により中間体としてアルミナ水和物(ベーマイトゲル)を得る工程を経て製造されるものであり、かつ該アルミナ水和物のX線回折分析(XRD)によるベーマイト結晶の相対ピークハイが65~85のものである、前記1~6のいずれかに記載の重質油水素化分解触媒、
8.前記1~6のいずれかに記載の重質油水素化分解触媒を用いた重質油の水素化処理方法、
を提供するものである。
 本発明によれば、重質油に対する分解活性と脱硫活性とを両立させ、両機能共に優れる水素化分解触媒を提供することができる。
 本願発明は、結晶性アルミノシリケートと、該結晶性アルミノシリケートを除く多孔性無機酸化物(単に、「多孔性無機酸化物」と称することがある)とを含む担体に活性金属を担持した重質油水素化分解触媒である。
〔結晶性アルミノシリケート〕
 前記結晶性アルミノシリケートとしては、種々のものが使用できる。例えば、水素型フォージャサイト、超安定化Y型ゼオライト(以下、「USYゼオライト」と称することがある)、金属担持USYゼオライトなどが好適のものとして挙げられる。中でもUSYゼオライト、金属担持USYゼオライトが好ましく、特に、金属担持USYゼオライトが好ましい。
 当該金属担持USYゼオライトとしては、USYゼオライトに周期表第3~16族から選ばれる1種または2種以上の金属を担持した金属担持USYゼオライトが好ましく、特に、金属として鉄を担持した鉄担持USYゼオライトが好適である。
 前記USYゼオライト、金属担持USYゼオライトは、例えば、以下の方法によって製造することができる。
 USYゼオライトの原料として、アルミナに対するシリカの比率(モル比)、つまりSiO2/Al23が4.5以上、好ましくは5.0以上であり、また、Na2Oが2.4質量%以下、好ましくは1.8質量%以下のY型ゼオライトを用いる。
 まず、上記のY型ゼオライトをスチーミング処理してUSYゼオライトとする。ここでスチーミング処理の条件としては様々な状況に応じて適宜選定すればよいが、温度510~810℃の水蒸気の存在下で処理するのが好ましい。水蒸気は、外部から導入してもよいし、Y型ゼオライトに含まれる物理吸着水や結晶水を使用してもよい。また、スチーミング処理して得られたUSYゼオライトに酸を加え、混合攪拌処理することによって、ゼオライト構造骨格からの脱アルミニウムとスチーミングおよび酸処理により脱落アルミニウムの洗浄除去を行う。
 このような酸としては各種のものが挙げられるが、塩酸、硝酸、硫酸などが一般的であり、そのほかリン酸、過塩素酸、ペルオクソ二スルホン酸、二チオン酸、スルファミン酸、ニトロソスルホン酸等の無機酸、ギ酸、トリクロロ酢酸、トリフルオロ酢酸等の有機酸などを用いることもできる。添加すべき酸の量は、USYゼオライト1kgあたり0.5~20モルとし、好ましくは3~16モルとする。酸濃度は0.5~50質量%、好ましくは1~20質量%である。処理温度は、室温~100℃、好ましくは50~100℃である。処理時間は0.1~12時間である。
 続いてこの系に金属塩溶液を加えてUSYゼオライトに金属を担持する。担持する方法としては混合攪拌処理、浸漬法、含浸法が挙げられ、混合撹拌処理が好ましい。金属としては周期表第3族のイットリウム、ランタン、第4族のジルコニウム、チタン、第5族のバナジウム、ニオブ、タンタル、第6族のクロム、モリブデン、タングステン、第7族のマンガン、レニウム、第8族の鉄、ルテニウム、オスミウム、第9族のコバルト、ロジウム、イリジウム、第10族のニッケル、パラジウム、白金、第11族の銅、第12族の亜鉛、カドミウム、第13族のアルミニウム、ガリウム、第14族のスズ、第15族のリン、アンチモン、第16族のセレンなどが上げられる。この中で、チタン、鉄、マンガン、コバルト、ニッケル、パラジウム、白金が好ましく、特に鉄が好ましい。
 各種金属の塩としては硫酸塩、硝酸塩が好ましい。金属塩溶液処理を行う場合、状況により異なり一義的に決定することはできないが、通常は処理温度30~100℃、好ましくは50~80℃、処理時間0.1~12時間、好ましくは0.5~5時間とし、これらの金属の担持はゼオライト構造骨格から脱アルミニウムと同時に行うことが好ましく、pH2.0以下、好ましくはpH1.5以下の範囲で適宜選定し、実施する。鉄の塩の種類は、硫酸第一鉄、硫酸第二鉄を挙げることができるが、硫酸第二鉄が好ましい。この鉄の硫酸塩はそのまま加えることもできるが、溶液として加えることが好ましい。この際の溶媒は鉄塩を溶解するものであればよいが、水、アルコール、エーテル、ケトン等が好ましい。また、加える鉄の硫酸塩の濃度は、通常は0.02~10.0モル/リットル、好ましくは0.05~5.0モル/リットルである。
 なお、この酸と鉄の硫酸塩を加えてゼオライトを処理するにあたっては、そのスラリー比、すなわち、処理溶液容量(リットル)/ゼオライト重量(kg)は、1~50の範囲が好都合であり、特に5~30が好適である。
 上述の処理により得られる鉄担持ゼオライトは、さらに必要に応じて水洗、乾燥を行う。
 以上のようにして、USYゼオライト、金属担持USYゼオライトを製造することができる。
 〔結晶性アルミノシリケートを除く多孔性無機酸化物〕
 一方、結晶性アルミノシリケートと混合して担体を構成する多孔性無機酸化物としては、アルミナ、シリカ-アルミナ、シリカ、アルミナ-ボリア、アルミナ-ジルコニア、アルミナ-チタニアなどが挙げられるが、本発明においては、アルミナを主成分とするのが好ましい。ここで、主成分とは、含有量が前記多孔性無機酸化物を基準(100質量%)として、50質量%以上、好ましくは、70質量%以上、より好ましくは80質量%以上のものをいう。ここで、アルミナとしては、ベーマイトゲル、アルミナゾルおよびこれらから製造されるアルミナが好ましく用いられる。活性金属が高分散担持できる点でアルミナが好適であり、特に以下に述べるアルミナが触媒の細孔分布の最適化を容易にする点で好ましい。
 特に好ましいアルミナは、アルミニウム塩を含む水溶液の中和反応により中間体としてアルミナ水和物(ベーマイトゲル)を得る工程を経て製造されるものであり、かつそのアルミナ水和物のX線回折分析(XRD)によるベーマイト結晶の相対ピークハイが65~85のものである。相対ピークハイが65以上であれば、アルミナの平均細孔径が過剰に小さくなることによる触媒の重質油に対する脱硫活性が低下する虞がなく、85以下であれば、アルミナの平均細孔径が過剰に大きくなることによる、触媒の分解活性が低下する虞がない。
 なお、本発明における、アルミナ水和物のベーマイト結晶の相対ピークハイは、X線回折装置を用いて、標準物質及び試料物質のアルミナ(ベーマイト)の2θ:10°~20°のピークハイ(ピークの高さ)をそれぞれ測定し、後記の式(1)から算出したものである。具体的には、実施例の項に記載した方法で測定した値である。
 上記の条件を満たすアルミナの好適な製造方法を以下に例示する。
(1)アルミニウム塩を含む水溶液と中和剤を反応させ、pH6~11のアルミナ水和物(ベーマイト)を得る工程、次いで、
(2)アルミナ水和物について、洗浄工程、熟成工程、乾燥工程、及び捏和工程を実施する。
 上記方法において、アルミニウム塩としては、通常、硫酸アルミニウム、硝酸アルミニウム、塩化アルミニウムなどが、また、中和剤としては、アルミン酸ソーダ、アルミン酸カリ、苛性ソーダ、アンモニアなどが用いられる。
 また、アルミナ水和物のpHはややアルカリ性で7~10であることが、好ましい粒子径の水和物が得やすい点でより好ましい。
 (2)の洗浄工程では、充分な洗浄を行い、例えばアルミニウム塩として、硫酸アルミニウムを用いた場合は、アルミナ水和物中の硫酸根(SO4 2-)残量が1質量%以下、さらには0.7質量%以下になるように行うことが好ましい。また、熟成工程の温度は80~160℃、好ましくは90~100℃、捏和時間は、1~24時間、好ましくは2~12時間行うことが好ましい。
 なお、上記したアルミナの製造方法は、特許第3755826号公報に記載された方法で製造することが好ましい。
〔水素化分解触媒担体の製造方法〕
 本発明の重質油水素化分解触媒の担体は、前記のUSYゼオライトおよび金属担持USYゼオライトなどの結晶性アルミノシリケートと結晶性アルミノシリケートを除く多孔性無機酸化物とを混合したものを用いる。結晶性アルミノシリケートと多孔性無機酸化物との混合において結晶性アルミノシリケートの割合が少なすぎると、所望の分解率、軽質留分や中間留分を得るのに高い反応温度を必要とし、その結果、触媒の寿命に悪影響を与える。また、結晶性アルミノシリケートの割合が多すぎると、常圧蒸留残渣油(以下、AR(343+℃)留分と称す)の分解活性は向上するが、より重質な減圧蒸留残渣油(以下、VR(525+℃)留分と称す)の分解活性が低下するとともに軽質留分や中間留分の分解選択性が下がる。
 一方、アルミナなどの多孔性無機酸化物は担持される活性金属を高度に分散させるため、多孔性無機酸化物の割合が多い(すなわち、結晶性アルミノシリケートが45質量%未満、かつ、多孔性無機酸化物が55質量%を超える場合)と水素化活性が高く、脱硫活性、脱窒素活性、脱残炭活性、脱アスファルテン活性、脱メタル活性などの少なくとも一つが向上するが、結晶性アルミノシリケートの割合が少なくなり、所望の分解率が得られず、軽質留分や中間留分を得るのが困難になる。また、多孔性無機酸化物の割合が少ない(すなわち、結晶性アルミノシリケートが60質量%以上、かつ、多孔性無機酸化物が40質量%以下の場合)と脱硫活性、脱窒素活性、脱残炭活性、脱アスファルテン活性、脱メタル活性などの少なくとも一つ(所謂、水素化活性)が低下するという問題がある。
 そのため結晶性アルミノシリケートと多孔性無機酸化物の混合割合は、結晶性アルミノシリケートと多孔性無機酸化物の合計量基準で、結晶性アルミノシリケート45質量%以上60質量%未満と多孔性無機酸化物40質量%超55質量%以下からなることを要し、結晶性アルミノシリケート47質量%以上55質量%以下と多孔性無機酸化物45質量%以上53質量%以下からなるものがより好適である。
 本発明の重質油水素化分解触媒の担体は、前記結晶性アルミノシリケートと多孔性無機酸化物のみから成ることが好ましいが、必要に応じて粘土鉱物、リン等の第3成分を混合してもよい。その場合、第3成分の含有量は、結晶性アルミノシリケート、多孔性無機酸化物及び第3成分の合計量を100質量%として、1~30質量%であり、特に3~25質量%が好ましい。30質量%を超えると、担体の表面積が小さくなって触媒活性が十分に発現しない虞が有る。1質量%未満の場合は、第3成分を加える事による効果の発現が期待できない虞が有る。
 また、本発明の重質油水素化分解触媒の担体を製造するためには、上記USYゼオライトおよび金属担持USYゼオライトなどの結晶性アルミノシリケートは水洗後の水を含有したスラリー状態として使用することが好ましい。そして、上記結晶性アルミノシリケートと多孔性無機酸化物を十分な水分量のもとにニーダー(混練機)にて十分に混合する。
 多孔性無機酸化物はゲル状又はゾル状であるが、結晶性アルミノシリケートと同じように水を加えてスラリー状として結晶性アルミノシリケートと混合する。それぞれのスラリー状態での水分量は、結晶性アルミノシリケートスラリーでは30~80質量%が好ましく、40~70質量%がより好ましく、多孔性無機酸化物スラリーでは50~90質量%が好ましく、55~85質量%がより好ましい。
 上記の結晶性アルミノシリケートと多孔性無機酸化物を混合捏和したのち、1/12インチ~1/32インチの径、長さ1.5mm~6mmに成型し、円柱状、三つ葉型、四葉型の形状の成型物を得る。成型物は30~200℃、0.1~24時間乾燥させ、次いで、300~750℃(好ましくは450~700℃)で、1~10時間(好ましくは2~7時間)焼成し担体とする。
〔水素化分解触媒の製造〕
 本発明の水素化分解触媒は、上記担体に、水素化活性金属として、周期表第6族、第8族、第9族、第10族金属のうち少なくとも一種の金属を担持する。ここで周期表第6族に属する金属としては、モリブデン、タングステンが好ましく、また第8~10族に属する金属としては、ニッケル、コバルトが好ましい。二種類の金属の組み合わせとしては、ニッケル-モリブデン、コバルト-モリブデン、ニッケル-タングステン、コバルト-タングステンなどが挙げられ、なかでもコバルト-モリブデン、ニッケル-モリブデンが好ましく、特に、ニッケル-モリブデンが好ましい。
 上記活性成分である金属の担持量は、特に制限はなく原料油の種類や、所望するナフサ留分の得率などの各種条件に応じて適宜選定すればよいが、通常は第6族の金属は触媒全体の0.5~30質量%、好ましくは5~20質量%、第8~10族の金属は、触媒全体の0.1~20質量%、好ましくは1~10質量%である。
 上記金属成分を担体に担持する方法については特に制限はなく、例えば、含浸法,混練法,共沈法などの公知の方法を採用することができる。
 上記の金属成分を担体に担持したものは、通常30~200℃で、0.1~24時間乾燥し、次いで、250~700℃(好ましくは300~650℃)で、1~10時間(好ましくは2~7時間)焼成して、触媒として仕上げられる。
〔水素化分解触媒の細孔分布〕
 本発明の重質油水素化分解触媒は、以下の(1)及び(2)に示す細孔分布を有することを要する。
(1)総細孔容積
 本触媒の細孔径5~1,000nmの細孔で定義される総細孔容積は0.40dm3/kg以上であることを要し、0.42dm3/kg以上が好ましく、0.43dm3/kg以上がより好ましい。総細孔容積が0.40dm3/kg以上であれば減圧残渣油のような重質油分子の拡散を高めることができる。総細孔容積の上限は特に制限はないが、通常1.0dm3/kg以下である。
 なお、本発明の触媒の直径5nm以上の総細孔容積は、ASTM D4284-03に規定する水銀圧入法により測定した。本発明の触媒の場合、水銀の接触角(contact angle)は140度、表面張力(surface tension)は480dyne/cmとして求めた。
 以下の(2)~(5)で述べる各細孔容積、及び平均細孔径の測定方法についても、これと同様の方法で測定した。
(2)中間メソ細孔容積
 本触媒の細孔径10以上20nm未満の細孔で定義される中間メソ細孔の細孔容積(中間メソ細孔容積)は、総細孔容積に占める割合が60%以上であることを要する。中間メソ細孔容積が60%未満では、脱窒素活性が低下する虞があって好ましくない。
 中間メソ細孔容積については、メソ細孔容積に占める割合が65%超75%以下であることが好ましい。メソ細孔容積とは、細孔径5~50nmを持つ細孔の細孔容積で定義される。このような細孔分布であることによって、常圧残油分解活性、減圧残油分解活性が高まり、所望の中間留分の収率を高めることができ、同時に、窒素、硫黄、メタル、アスファルテン、及び残炭のうち少なくとも一種を除去する性能を高めることができる。
(3)マクロ細孔容積
 本触媒は、細孔径50nm超1,000nm以下の細孔で定義されるマクロ細孔の細孔容積(マクロ細孔容積)の総細孔容積に占める割合が10%以上であることが好ましい。マクロ細孔容積の総細孔容積に占める割合が10%未満の場合は、減圧残渣の分解活性が低下する虞が有る。
 本発明の水素化分解に用いる触媒は、さらに以下の要件を満たすものが好ましい。
(4)拡大メソ細孔容積
 本触媒の細孔径20~50nmの細孔で定義される拡大メソ細孔の細孔容積(拡大メソ細孔容積)が、総細孔容積の10%以上20%以下であることが好ましい。この範囲内であれば脱窒素活性、脱残炭活性を高く維持することができる。
(5)メソ細孔容積
 本触媒の細孔径5~50nmの細孔で定義されるメソ細孔の細孔容積(メソ細孔容積)の総細孔容積に占める割合が85~90%であることが好ましい。メソ細孔容積の割合がこの範囲内であれば、脱硫活性ならびに脱窒素活性、脱残炭活性が低下する虞がない。
(6)平均細孔径およびメソ細孔極大値
 また、本発明の水素化分解触媒に用いる担体の平均細孔径が14nm以上であることが好ましく、14.5~15.5nmであることがより好ましい。さらに、前記担体の細孔径5~50nmのメソ細孔極大値は13~15nmの範囲であることが好ましい。担体の平均細孔径やメソ細孔極大値が前記範囲を満たしていると、分子量が大きい硫黄化合物の脱硫性能も良く、触媒活性も高く維持できる点で好ましい。
 本発明の重質油水素化分解触媒は、重質留分の水素化活性が向上し、525℃以上の沸点を持つ留分(VR留分)の分解活性が高く、かつ343℃以上の沸点を持つ留分(AR留分)の分解活性も比較的高い。さらに脱残炭活性、脱硫活性、脱窒素活性が高い。したがって、この触媒を用いて水素化分解すれば、得られた脱硫重質油(脱硫常圧残油:DSARや脱硫減圧軽油:DSVGO)の性状が流動接触分解装置等の原料として好ましいものとなる。
 本発明における水素化分解処理触媒は、水素化分解反応に用いられるが、水素化分解反応と同時に水素化脱硫反応、水素化脱窒素反応、水素化脱メタル反応なども行われ、これらは水素高圧下の条件で行う。このような高圧下での水素化分解反応を実施する装置としては、通常、直脱装置が用いられる。
 本発明の重質油水素化分解触媒を用いる水素化分解の条件は、特に制限はなく、従来、重質油の水素化分解や水素化脱硫反応で行われている反応条件で行えばよく、通常は反応温度は、好ましくは320~550℃、より好ましくは350~430℃、水素分圧が好ましくは1~30MPa、より好ましくは5~17MPa、水素/油比が好ましくは100~2,000Nm3/キロリットル、より好ましくは300~1,000Nm3/キロリットル、液空間速度(LHSV)が好ましくは0.1~5h-1、より好ましくは0.2~2.0h-1の範囲で適宜選定すればよい。
 また、減圧残渣油、コーカー油、合成原油、抜頭原油、重質軽油、減圧軽油、LCO、ヘビーサイクルオイル(HCO)、クラリファイドオイル(CLO)、ガストゥリッキドオイル(GTL油)、ワックス等の重質油を常圧蒸留残渣油と混合して水素化分解処理をすることもできる。
 本発明の重質油水素化分解触媒は、これを単独で用いてもよいが、一般の水素化処理触媒と組み合わせたものを用いてもよい。組み合わせのパターンとしては、例えば全触媒充填量に対して第一段目に脱メタル触媒を10~40容量%、第二段目に脱硫触媒を0~50容量%、第三段目に本発明の重質油水素化分解触媒を10~70容量%、第四段目にフィニシングの脱硫触媒として0~40容量%の充填パターンが好ましい。これらは原料油の性状等によっては種々の充填パターンとすることができる。第一段目の脱メタル触媒の前に原料油中に含まれる鉄粉、無機酸化物等のスケールを除去する脱スケール触媒を充填しても良い。
 本発明の重質油水素化分解触媒は、例えば次のように利用することができる。
 本発明の重質油水素化分解触媒を用いて、常圧蒸留残渣油を水素化分解処理し、得られた生成油の残渣油、若しくは残油と留出油との混合物を原料とし、流動接触分解処理する。
 この場合、留出油としては、沸点120~400℃の留出油が好適であり、150~350℃のものがより好ましい。このような沸点範囲のものであれば、良好な沸点範囲の分解生成物が得られ、FCCガソリンなどを増量する効果が得られる。また、流動接触分解処理の原料における留出油の混合割合は、1~30容量%であることが好ましく、3~20容量%がより好ましい。このような範囲であれば、良好にLPG留分やFCCガソリン留分を増量する効果が認められる。
 なお、接触分解処理の条件は、特に制限はなく、公知の方法、条件で行えばよい。例えば、シリカ-アルミナ、シリカ-マグネシアなどのアモルファス触媒や、フォージャサイト型結晶性アルミノシリケートなどのゼオライト触媒を用い、反応温度450~650℃、好ましくは480~580℃、再生温度550~760℃、反応圧力0.02~5MPa、好ましくは0.2~2MPaの範囲で適宜選定すればよい。
 上記常圧蒸留残渣油の分解処理においては、最終工程である流動接触分解の生成油が、燃料や石油化学製品の原料として有用な、FCCガソリン留分およびLPG留分の割合を高く、需要が少ないLCO留分の割合を低くすることができる。
 さらに、中間工程である直脱装置などによる水素化分解生成油におけるいわゆる中間留分である灯軽油留分や軽質留分であるナフサ留分などの得率が高く、燃料や石油化学製品の原料として活用できる。
 次に、本発明を実施例により具体的に説明するが、これらの実施例になんら制限されるものではない。なお、実施例、比較例で用いた触媒などの物性は、以下の方法で測定した。
(1)全細孔容積
 ASTM D4222-03、D4641-94に規定する窒素吸着・脱着等温線から算出した(N2吸着法)。ここでは、窒素吸着等温線のP/P0=0.99の時の窒素吸着量を容量に換算して求めた。
 測定にあたっては、予備前処理として400℃で3時間の真空加熱排気処理にて、充分に含有する水分を除去した後測定した。
(2)比表面積
 比表面積は、BET窒素吸着法(ASTM D4365-95)に従って測定し解析した。BETブロットから比表面積を算出するP/P0の範囲は、0.01~0.10の間の5点を直線に補間して、算出した。
 なお、予備前処理として400℃で3時間の真空加熱排気処理にて、充分に含有する水分を除去した後測定した。
(3)平均細孔径およびメソ細孔極大値
 担体の平均細孔径およびメソ細孔極大値は、ASTM D4284-03に規定される水銀圧入法により測定される値より解析して求めた。
 本発明の担体の場合、水銀の接触角(contact angle)は150度、表面張力(surface tension)は480dyne/cmとして求めた。平均細孔径(APD(nm))は、当該測定によって得られる全細孔容積(PV(dm3/kg))と同じく全表面積(SA(m2/g))から、APD=4×PV/SA×103から計算される。また、メソ細孔極大値は、当該測定によって得られた細孔径分布のうち、メソ細孔(5~50nm)領域の分布で極大値となる細孔径(nm)とした。
(4)アルミナ水和物のベーマイト結晶の相対ピークハイ
 X線回折装置を用いて、標準物質及び試料物質のアルミナ(ベーマイト)ピークハイをそれぞれ測定し、下記の式(1)により相対ピークハイを算出した。
   相対ピークハイ=(B/A)×100     (1)
 但し、式中、Aは標準物質(サソール社製、商品名:CatapalD)のピークハイ、Bは試料物質のピークハイの測定値を示す。
 なお、X線回折の測定条件は、以下のとおりである。
  ・測定装置  :リガク(RINT-2100)
  ・測定条件  :
      Target:Cu
      Filter:Ni
      Voltage:30kV
      Current:14mA
      Scan speed:1°/min,
      Full scale:1000cps,
      平滑化点数  :19
      Scan angle(2θ):10°~20°
  ・ピークハイの計測方法:
      折線プロファイルで、ピークの両側のバックグラウンドに接線を引き、次にピークトップから垂線を引き、バックグラウンドからピークトップまでの高さを求め、その値をそれぞれのピークハイとした。
(5)総細孔容積、中間メソ細孔容積、拡大メソ細孔容積、マクロ細孔容積及び平均細孔径
 これらは、明細書に記載した方法で測定した。
〔実施例1:重質油水素化分解触媒I〕
(1)アルミナ水和物の調製
 44kgの純水を200リットルのステンレス製タンクに張り込み、これに22.0質量%のアルミナを含むアルミン酸ナトリウム水溶液2.12kgを添加し、60℃に加温した。この水溶液を高速(約40rpm)で攪拌しながら60±3℃に保持し、26.8質量%のグルコン酸ナトリウム水溶液52.3gを加え、次いで60℃に加温した3.0質量%のアルミナを含む硫酸アルミニウム水溶液7.2kgを約10分間で添加して、pH7.2の種子アルミナスラリーを得た。
 種子アルミナスラリー53.4kg(0.68kgのアルミナを含む)を、特許第3755826号特許公報の図2に記載されるアルミナ製造装置に張り込み攪拌した。種子アルミナスラリーを温度60℃に保ちながら、2.0m3/hrの流量で種子アルミナスラリーを循環させた。種子アルミナスラリーを攪拌及び循環させながら、これにグルコン酸ナトリウムを0.18質量%含有するアルミン酸ナトリウム水溶液(6.0質量%のアルミナを含む)と、3.0質量%のアルミナを含む硫酸アルミニウムとを、アルミナ製造装置のタンク内の溶液の温度が60±3℃、かつ、pH7.1±0.1を保つように、それぞれの添加速度を調整しながら3時間かけて添加し、循環スラリーを得た。各水溶液の添加量は、グルコン酸ナトリウムを添加した6.0質量%のアルミナを含むアルミン酸ナトリウム水溶液が70.0kg、3.0質量%のアルミナを含む硫酸アルミニウム72.7kgであった。
 次に循環スラリーがpH9.9になるように、6.0質量%のアルミナを含むアルミン酸ナトリウム水溶液を17.0kg添加した後、洗浄してナトリウム及び硫酸根を除去した調合スラリーを調製した。
 得られた調合スラリーの、ナトリウム含有量は、Na2Oとして0.05質量%、硫酸根含有量は、SO4 2-として0.2質量%であった。
 次にこの調合スラリーに脱イオン水を加えてAl23濃度で15質量%とし、更に、15質量%アンモニア水にてpH10.5に調整した後、還流器の付いた熟成タンクにて95℃で4.5時間熟成し、熟成スラリーを得た。熟成終了後、熟成スラリーをスチームジャケット付き双腕型ニーダーにより蒸発濃縮した後、さらに0.5時間捏和し、アルミナ水和物を得た。
 上記アルミナ水和物について、下記の方法でベーマイト結晶の相対ピークハイを測定した。結果は、73であった。
(2)結晶性アルミノシリケートの調製
 合成NaY型ゼオライト(Na2O含量13.5質量%、SiO2/Al23モル比5.2、結晶格子定数2.466nm)をアンモニウムイオン交換し、引き続きスチ-ミング処理を650℃で施しUSY型ゼオライト(Na2O含量1.0質量%以下、結晶格子定数2.435nm)を得た。
 次に、10kgのUSY型ゼオライトを純水115リットルに懸濁させた後、懸濁液を75℃に昇温し30分間攪拌した。次いで、この懸濁液に10質量%硫酸溶液13.7kgを35分間で添加し、更に濃度0.57モル/リットルの硫酸第二鉄溶液11.5kgを10分間で添加し、添加後更に30分間攪拌した後、濾過、洗浄し、固形分濃度30質量%の鉄担持結晶性アルミノシリケートのスラリーを得た。この鉄担持結晶性アルミノシリケートのX線回折法によって求めた格子定数は2.432nmであった。
(3)重質油水素化分解触媒の調製
 乾燥重量として1.50kgのアルミナ水和物と、鉄担持結晶性アルミノシリケートのスラリーを乾燥重量として1.50kg分とをニーダーに加え、加熱、攪拌しながら押し出し成形可能な濃度に濃縮した後、1/18インチサイズの四葉型ペレット状に押し出し成型した。
 得られた成型品は、110℃で16時間乾燥した後、550℃で3時間焼成し、鉄担持結晶性アルミノシリケート/アルミナ(固形分換算質量比)で50/50の触媒担体Aを得た。
 次に、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを90℃に加熱した後、リンゴ酸を添加し溶解させた溶解液を、触媒担体Aにそれぞれ触媒全体に対してMoO3として10.6質量%、NiOとして4.2質量%になるように含浸した後、250℃で乾燥させて、550℃で1時間焼成し、重質油水素化分解触媒Iを得た。
 重質油水素化分解触媒Iの物性を第1表に示した。
〔実施例2:重質油水素化分解触媒II〕
(1)アルミナ水和物の調製
 実施例1と同じ種子アルミナスラリー53.4kg(0.68kgのアルミナを含む)を、アルミナ製造装置に張り込み攪拌した。種子アルミナスラリーを温度60℃に保ちながら、2.0m3/hrの流量で種子アルミナスラリーを循環した。種子アルミナスラリーを攪拌及び循環させながら、これにグルコン酸ナトリウムを0.18質量%含有するアルミン酸ナトリウム水溶液(6.0質量%のアルミナを含む)と、3.0質量%のアルミナを含む硫酸アルミニウムとを、アルミナ製造装置タンク内の溶液の温度が60±3℃、かつ、pH7.2±0.1を保つように、それぞれの添加速度を調整しながら3時間かけて添加し、循環スラリーを得た。各水溶液の添加量は、グルコン酸ナトリウムを添加した6.0質量%のアルミナを含むアルミン酸ナトリウム水溶液が70.0kg、3.0質量%のアルミナを含む硫酸アルミニウム70.8kgであった。
 次に循環スラリーがpH9.8になるように、6.0質量%のアルミナを含むアルミン酸ナトリウム水溶液を11.9kg添加した後、洗浄してナトリウム及び硫酸根を除去した調合スラリーを調製した。得られた調合スラリーは、ナトリウムがNa2Oとして0.05質量%、また、硫酸根がSO4 2-として0.6質量%含有されていた。
 次にこの調合スラリーに脱イオン水を加えてAl23濃度で15質量%とし、更に、15質量%アンモニア水にてpH10.5に調整した後、還流器の付いた熟成タンクにて95℃で8.5時間熟成し、熟成スラリーを得た。熟成終了後、熟成スラリーをスチームジャケット付き双腕型ニーダーにより蒸発濃縮した後、さらに0.5時間捏和し、アルミナ水和物を得た。このアルミナ水和物のベーマイト結晶の相対ピークハイは、78であった。
(2)重質油水素化分解触媒の調製
 乾燥重量として1.44kgのアルミナ水和物と、実施例1と同様な方法で調製した鉄担持結晶性アルミノシリケートのスラリーを乾燥重量として1.56kg分とをニーダーに加え、加熱、攪拌しながら押し出し成形可能な濃度に濃縮した後、1/18インチサイズの四葉型ペレット状に押し出し成型した。
 得られた成型品は、110℃で16時間乾燥した後、550℃で3時間焼成し、鉄担持結晶性アルミノシリケート/アルミナ(固形分換算質量比)で52/48の触媒担体Bを得た。
 次に、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを90℃に加熱した後、リンゴ酸を添加し溶解させた溶解液を、触媒担体Bにそれぞれ触媒全体に対してMoO3として10.6質量%、NiOとして4.2質量%になるように含浸した後、250℃で乾燥させて、550℃で1時間焼成し、重質油水素化分解触媒IIを得た。
 重質油水素化分解触媒IIの物性を第1表に示した。
〔比較例1:重質油水素化分解触媒III〕
(1)アルミナ水和物の調製
 実施例1と同じ種子アルミナスラリー53.4kg(0.68kgのアルミナを含む)を、アルミナ製造装置に張り込み攪拌した。種子アルミナスラリーを温度60℃に保ちながら、2.0m3/hrの流量で種子アルミナスラリーを循環した。種子アルミナスラリーを攪拌及び循環させながら、これにグルコン酸ナトリウムを0.18質量%含有するアルミン酸ナトリウム水溶液(6.0質量%のアルミナを含む)と、3.0質量%のアルミナを含む硫酸アルミニウムとを、タンク内の溶液の温度が60±3℃、かつ、pH7.2±0.1を保つように、それぞれの添加速度を調整しながら3時間かけて添加し、循環スラリーを得た。各水溶液の添加量は、グルコン酸ナトリウムを添加した6.0質量%のアルミナを含むアルミン酸ナトリウム水溶液が70.0kg、3.0質量%のアルミナを含む硫酸アルミニウム70.8kgであった。
 次に循環スラリーがpH9.6になるように、6.0質量%のアルミナを含むアルミン酸ナトリウム水溶液を9.3kg添加した後、洗浄してナトリウム及び硫酸根を除去した調合スラリーを調製した。得られた調合スラリーは、ナトリウムがNa2Oとして0.05質量%、また、硫酸根がSO4 2-として1.2質量%含有されていた。
 次にこの調合スラリーに脱イオン水を加えてAl23濃度で15質量%とし、更に、15質量%アンモニア水にてpH10.5に調整した後、還流器の付いた熟成タンクにて95℃で8.5時間熟成し、熟成スラリーを得た。熟成終了後、熟成スラリーをスチームジャケット付き双腕型ニーダーにより蒸発濃縮した後、さらに0.5時間捏和し、アルミナ水和物を得た。このアルミナ水和物のベーマイト結晶の相対ピークハイは、60であった。
(2)重質油水素化分解触媒の調製
 乾燥重量として1.20kgのアルミナ水和物と、実施例1と同様な方法で調製した鉄担持結晶性アルミノシリケートのスラリーを乾燥重量として1.80kg分とをニーダーに加え、加熱、攪拌しながら押し出し成形可能な濃度に濃縮した後、1/18インチサイズの四葉型ペレット状に押し出し成型した。
 得られた成型品は、110℃で16時間乾燥した後、550℃で3時間焼成し、鉄担持結晶性アルミノシリケート/アルミナ(固形分換算質量比)で60/40の触媒担体Cを得た。
 次に、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを90℃に加熱した後、リンゴ酸を添加し溶解させた溶解液を、触媒担体Cにそれぞれ触媒全体に対してMoO3として10.6質量%、NiOとして4.2質量%になるように含浸した後、250℃で乾燥させて、550℃で1時間焼成し、重質油水素化分解触媒IIIを得た。
 重質油水素化分解触媒IIIの物性を第1表に示した。
〔比較例2:重質油水素化分解触媒IV〕
(1)アルミナ水和物の調製
 実施例1と同じ種子アルミナスラリー53.4kg(0.68kgのアルミナを含む)を、アルミナ製造装置に張り込み攪拌した。種子アルミナスラリーを温度60℃に保ちながら、2.0m3/hrの流量で種子アルミナスラリーを循環した。種子アルミナスラリーを攪拌及び循環させながら、これにグルコン酸ナトリウムを0.18質量%含有するアルミン酸ナトリウム水溶液(6.0質量%のアルミナを含む)と、3.0質量%のアルミナを含む硫酸アルミニウムとを、タンク内で循環する温度が60±3℃、かつ、pH7.2±0.1を保つように、それぞれの添加速度を調整しながら3時間かけて添加し、循環スラリーを得た。各水溶液の添加量は、グルコン酸ナトリウムを添加した6.0質量%のアルミナを含むアルミン酸ナトリウム水溶液が70.0kg、3.0質量%のアルミナを含む硫酸アルミニウム70.8kgであった。
 次に循環スラリーがpH9.6になるように、6.0質量%のアルミナを含むアルミン酸ナトリウム水溶液を9.3kg添加した後、洗浄してナトリウム及び硫酸根を除去した調合スラリーを調製した。得られた調合スラリーは、ナトリウムがNa2Oとして0.05質量%、また、硫酸根がSO4 2-として1.2質量%含有されていた。
 次にこの調合スラリーに脱イオン水を加えてAl23濃度で15質量%とし、更に、15質量%アンモニア水にてpH10.5に調整した後、還流器の付いた熟成タンクにて95℃で8.5時間熟成し、熟成スラリーを得た。熟成終了後、熟成スラリーをスチームジャケット付き双腕型ニーダーにより蒸発濃縮した後、さらに0.5時間捏和し、アルミナ水和物を得た。アルミナ水和物のベーマイト結晶の相対ピークハイは、60であった。
(2)重質油水素化分解触媒の調製
 乾燥重量として1.50kgのアルミナ水和物と、実施例1と同様な方法で調製した鉄担持結晶性アルミノシリケートのスラリーを乾燥重量として1.50kg分とをニーダーに加え、加熱、攪拌しながら押し出し成形可能な濃度に濃縮した後、1/18インチサイズの四葉型ペレット状に押し出し成型した。
 得られた成型品は、110℃で16時間乾燥した後、550℃で3時間焼成し、鉄担持結晶性アルミノシリケート/アルミナ(固形分換算質量比)で50/50の触媒担体Dを得た。
 次に、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを90℃に加熱した後、リンゴ酸を添加し溶解させた溶解液を、触媒担体Aにそれぞれ触媒全体に対してMoO3として10.6質量%、NiOとして4.2質量%になるように含浸した後、250℃で乾燥させて、550℃で1時間焼成し、重質油水素化分解触媒IVを得た。
 重質油水素化分解触媒IVの物性を第1表に示した。
〔比較例3:重質油水素化分解触媒V〕
(1)アルミナ水和物の調製
 実施例1と同じ種子アルミナスラリー53.4kg(0.68kgのアルミナを含む)を、アルミナ製造装置に張り込み攪拌した。種子アルミナスラリーを温度60℃に保ちながら、2.0m3/hrの流量で種子アルミナスラリーを循環した。種子アルミナスラリーを攪拌及び循環させながら、これにグルコン酸ナトリウムを0.18質量%含有するアルミン酸ナトリウム水溶液(6.0質量%のアルミナを含む)と、3.0質量%のアルミナを含む硫酸アルミニウムとを、タンク内で循環する循環スラリーの溶液の温度が60±3℃、かつ、pH7.5±0.1を保つように、それぞれの添加速度を調整しながら3時間かけて添加し、循環スラリーを得た。各水溶液の添加量は、グルコン酸ナトリウムを添加した6.0質量%のアルミナを含むアルミン酸ナトリウム水溶液が70.0kg、3.0質量%のアルミナを含む硫酸アルミニウム69.2kgであった。
 次に循環スラリーがpH9.6になるように、6.0質量%のアルミナを含むアルミン酸ナトリウム水溶液を6.8kg添加した後、洗浄してナトリウム及び硫酸根を除去した調合スラリーを調製した。得られた調合スラリーは、ナトリウムがNa2Oとして0.05質量%、また、硫酸根がSO4 2-として1.3質量%含有されていた。
 次にこの調合スラリーに脱イオン水を加えてAl23濃度で15質量%とし、更に、15質量%アンモニア水にてpH10.5に調整した後、還流器の付いた熟成タンクにて95℃で8.5時間熟成し、熟成スラリーを得た。熟成終了後、熟成スラリーをスチームジャケット付き双腕型ニーダーにより蒸発濃縮した後、さらに0.5時間捏和し、アルミナ水和物を得た。アルミナ水和物のベーマイト結晶の相対ピークハイは、50であった。
(2)重質油水素化分解触媒の調製
 乾燥重量として1.35kgのアルミナ水和物と、実施例1と同様な方法で調製した鉄担持結晶性アルミノシリケートのスラリーを乾燥重量として1.65kg分とをニーダーに加え、加熱、攪拌しながら押し出し成形可能な濃度に濃縮した後、1/18インチサイズの四葉型ペレット状に押し出し成型した。
 得られた成型品は、110℃で16時間乾燥した後、550℃で3時間焼成し、鉄担持結晶性アルミノシリケート/アルミナ(固形分換算質量比)で45/55の触媒担体Eを得た。
 次に、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを90℃に加熱した後、リンゴ酸を添加し溶解させた溶解液を、触媒担体Eにそれぞれ触媒全体に対してMoO3として10.6質量%、NiOとして4.2質量%になるように含浸した後、250℃で乾燥させて、550℃で1時間焼成し、重質油水素化分解触媒Vを得た。
 重質油水素化分解触媒Vの物性を第1表に示した。
〔比較例4:重質油水素化分解触媒VI〕
(1)アルミナ水和物の調製
 実施例1と同じ種子アルミナスラリー53.4kg(0.68kgのアルミナを含む)を、アルミナ製造装置に張り込み攪拌した。種子アルミナスラリーを温度60℃に保ちながら、2.0m3/hrの流量で種子アルミナスラリーを循環した。種子アルミナスラリーを攪拌及び循環させながら、これにグルコン酸ナトリウムを0.18質量%含有するアルミン酸ナトリウム水溶液(6.0質量%のアルミナを含む)と、3.0質量%のアルミナを含む硫酸アルミニウムとを、タンク内の循環スラリーの溶液の温度が60±3℃、かつ、pH7.2±0.1を保つように、それぞれの添加速度を調整しながら3時間かけて添加し、循環スラリーを得た。各水溶液の添加量は、グルコン酸ナトリウムを添加した6.0質量%のアルミナを含むアルミン酸ナトリウム水溶液が70.0kg、3.0質量%のアルミナを含む硫酸アルミニウム71.3kgであった。
 次に循環スラリーがpH9.7になるように、6.0質量%のアルミナを含むアルミン酸ナトリウム水溶液を13.9kg添加した後、洗浄してナトリウム及び硫酸根を除去した調合スラリーを調製した。得られた調合スラリーは、ナトリウムがNa2Oとして0.05質量%、また、硫酸根がSO4 2-として0.8質量%含有されていた。
 次にこの調合スラリーに脱イオン水を加えてAl23濃度で15質量%とし、更に、15質量%アンモニア水にてpH10.5に調整した後、還流器の付いた熟成タンクにて95℃で8.5時間熟成し、熟成スラリーを得た。熟成終了後、熟成スラリーをスチームジャケット付き双腕型ニーダーにより蒸発濃縮した後、さらに0.5時間捏和し、アルミナ水和物を得た。アルミナ水和物のベーマイト結晶の相対ピークハイは、65であった。
(2)重質油水素化分解触媒の調製
 乾燥重量として1.20kgのアルミナ水和物と、実施例1と同様な方法で調製した鉄担持結晶性アルミノシリケートのスラリーを乾燥重量として1.80kg分とをニーダーに加え、加熱、攪拌しながら押し出し成形可能な濃度に濃縮した後、1/18インチサイズの四葉型ペレット状に押し出し成型した。
 得られた成型品は、110℃で16時間乾燥した後、550℃で3時間焼成し、鉄担持結晶性アルミノシリケート/アルミナ(固形分換算質量比)で40/60の触媒担体Fを得た。
 次に、三酸化モリブデンと炭酸ニッケルを純水に懸濁したものを90℃に加熱した後、リンゴ酸を添加し溶解させた溶解液を、触媒担体Fにそれぞれ触媒全体に対してMoO3として10.6質量%、NiOとして4.2質量%になるように含浸した後、250℃で乾燥させて、550℃で1時間焼成し、重質油水素化分解触媒VIを得た。
 重質油水素化分解触媒VIの物性を第1表に示した。
Figure JPOXMLDOC01-appb-T000001
〔実施例3,4、比較例5~8:重質油の水素化分解処理方法〕
 上記重質油水素化分解触媒I~VIの水素化分解処理性能を評価した。結果を第3表に示す。
 なお、水素化分解処理方法は、重質油水素化分解触媒I~VIを高圧固定床反応器に100cc充填し、硫化処理した後、第2表に示す性状のアラビアンヘビーの常圧蒸留残渣油を原料油として、以下の条件で水素化分解処理を行った。
《水素化分解条件》
 反応温度(WAT:Weight Average Temperature,重量平均温度)     400℃
 液空間速度(LHSV)  0.3h-1
 水素分圧         13MPa
 水素/油比        1,000Nm3/キロリットル
 上記水素化分解処理によって得られた生成油(以下、単に生成油と呼ぶ場合も有る)をクロマトグラフィー蒸留法(ASTM D5307-97)により分析を行い、沸点343℃超525℃以下の留分(343+℃)、525℃より高い沸点の留分(沸点525+℃)、中間留分として灯軽油留分である沸点範囲150~343℃の留分等各留分の収率を求めた。更に下記定義の343+℃及び525+℃の転化率を求めた。結果を第3表に示す。中間留分得率、転化率は値が大きいほど、重質油水素化分解触媒の水素化分解活性が高いことを意味する。
 下記定義中の原料油は、第2表のアラビアンヘビーの常圧蒸留残渣油である。
 343+℃転化率(質量%)=(原料油中の残油留分-生成油中の残油留分)/原料油中の残油留分
 525+℃転化率(質量%)=(原料油中の減圧残油留分-生成油中の残油留分)/原料油中の減圧残油留分
 また、脱硫活性、脱窒素活性、脱残炭活性、脱アスファルテン活性、及び脱メタル活性を下記測定法及び定義に従って評価し、通常の方法にて算出した。結果を第3表に示す。
 また、上記水素化分解処理によって得られた生成油(以下、単に生成油と呼ぶ場合も有る)中の硫黄分を放射線式励起法(JIS K 2541-4)で、窒素分を化学発光法(JIS K 2609)で、バナジウムとニッケル分を蛍光X線法(JPI-5S-62-2000)で、ヘプタン(C7)不溶解分をUOP 614-80法で、残留炭素分をミクロ法(JIS K 2270)で測定した。第2表のアラビアンヘビーの常圧蒸留残渣油(以下、単に原料油と呼ぶ場合も有る)も、硫黄分を燃焼管式空気法(JIS K 2541-3)で行った以外は、同じ方法で評価した。
 脱硫活性(質量%)=(原料油中の硫黄分-生成油中の硫黄分)/原料油中の硫黄分
 脱窒素活性(質量%)=(原料油中の窒素分-生成油中の窒素分)/原料油中の窒素分
 脱残炭活性(質量%)=(原料油中の残留炭素分-生成油中の残留炭素分)/原料油中の残留炭素分
 脱アスファルテン活性(質量%)=(原料油中のC7不溶解分-生成油中のC7不溶解分)/原料油中のC7不溶解分
 脱メタル活性(質量%)=(原料油中のVとNiの和-生成油中のVとNiの和)/原料油中のVとNiの和
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明の重質油水素化分解触媒は、分解活性と脱硫活性とを両立させ、両機能共に優れる水素化分解触媒を提供することができるものである。したがって、有用な水素化分解触媒として広く利用することができる。

Claims (8)

  1.  結晶性アルミノシリケートと該結晶性アルミノシリケートを除く多孔性無機酸化物とを含む担体に活性金属を担持した重質油水素化分解触媒であって、
    (a)前記担体が、結晶性アルミノシリケートと該結晶性アルミノシリケートを除く多孔性無機酸化物の合計量基準で、結晶性アルミノシリケート45質量%以上60質量%未満と該結晶性アルミノシリケートを除く多孔性無機酸化物40質量%超55質量%以下を含み、
    (b)前記活性金属が、周期表第6族、第8族、第9族、第10族金属のうち少なくとも一種の金属であり、かつ、
    (c)前記重質油水素化分解触媒の細孔分布が、細孔径5~1,000nmの細孔で定義される総細孔容積が0.40dm3/kg以上、細孔径が10nm以上20nm未満である中間メソ細孔容積の総細孔容積に占める割合が60%以上である、
    重質油水素化分解触媒。
  2.  前記重質油水素化分解触媒の細孔径が20~50nmである拡大メソ細孔容積の総細孔容積に占める割合が10%以上20%以下である、請求項1に記載の重質油水素化分解触媒。
  3.  前記重質油水素化分解触媒の細孔径が10nm以上20nm未満である中間メソ細孔容積のメソ細孔容積(細孔径5~50nmの細孔で定義される細孔容積)に占める割合が65%超75%以下である、請求項1又は2に記載の重質油水素化分解触媒。
  4.  前記重質油水素化分解触媒の前記メソ細孔容積の前記総細孔容積に占める割合が85~90%である、請求項1~3のいずれかに記載の重質油水素化分解触媒。
  5.  さらに前記重質油水素化分解触媒に用いる担体の平均細孔径が14nm以上であり、メソ細孔の極大値が13~15nmである、請求項1~4のいずれかに記載の重質油水素化分解触媒。
  6.  結晶性アルミノシリケートが、超安定化Y型ゼオライト又は金属担持超安定化Y型ゼオライトである請求項1~5のいずれかに記載の重質油水素化分解触媒。
  7.  前記結晶性アルミノシリケートを除く多孔性無機酸化物は、主成分がアルミナであり、該アルミナが、アルミニウム塩を含む水溶液の中和反応により中間体としてアルミナ水和物(ベーマイトゲル)を得る工程を経て製造されるものであり、かつ該アルミナ水和物のX線回折分析(XRD)によるベーマイト結晶の相対ピークハイが65~85のものである、請求項1~6のいずれかに記載の重質油水素化分解触媒。
  8.  請求項1~6のいずれかに記載の重質油水素化分解触媒を用いた重質油の水素化処理方法。
PCT/JP2010/063010 2009-08-03 2010-08-02 重質油水素化分解触媒及びそれを用いた重質油の水素化処理方法 WO2011016413A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/261,168 US8795513B2 (en) 2009-08-03 2010-08-02 Hydrocracking catalyst for heavy oil and method for hydrotreating heavy oil using same
EP10806412A EP2463026A4 (en) 2009-08-03 2010-08-02 HYDROCRACKING CATALYST FOR HEAVY OIL AND METHOD FOR HYDROGEN TREATMENT OF HEAVY OIL
CN2010800345469A CN102596404A (zh) 2009-08-03 2010-08-02 重油加氢裂化催化剂和使用其的重油的加氢处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-180946 2009-08-03
JP2009180946A JP5547923B2 (ja) 2009-08-03 2009-08-03 重質油水素化分解触媒及びそれを用いた重質油の水素化処理方法

Publications (1)

Publication Number Publication Date
WO2011016413A1 true WO2011016413A1 (ja) 2011-02-10

Family

ID=43544309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063010 WO2011016413A1 (ja) 2009-08-03 2010-08-02 重質油水素化分解触媒及びそれを用いた重質油の水素化処理方法

Country Status (5)

Country Link
US (1) US8795513B2 (ja)
EP (1) EP2463026A4 (ja)
JP (1) JP5547923B2 (ja)
CN (1) CN102596404A (ja)
WO (1) WO2011016413A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5406629B2 (ja) * 2009-08-20 2014-02-05 出光興産株式会社 高芳香族炭化水素油の製造方法
JP5660957B2 (ja) * 2011-03-31 2015-01-28 独立行政法人石油天然ガス・金属鉱物資源機構 再生水素化分解触媒及び炭化水素油の製造方法
JP5660956B2 (ja) * 2011-03-31 2015-01-28 独立行政法人石油天然ガス・金属鉱物資源機構 水素化分解触媒及び炭化水素油の製造方法
CN103059915B (zh) * 2011-10-21 2015-04-29 中国石油化工股份有限公司 一种劣质重油的加氢改质方法
JP6267414B2 (ja) * 2012-03-30 2018-01-24 出光興産株式会社 結晶性アルミノシリケート、重質油水素化分解触媒及びその製造方法
CN104560116B (zh) * 2013-10-29 2017-04-26 中国石油化工股份有限公司 一种劣质重油接触剂及其制备方法和应用
US20160121313A1 (en) * 2014-10-31 2016-05-05 Chevron U.S.A. Inc. Middle distillate hydrocracking catalyst containing highly a stabilized y zeolite with enhanced acid site distribution
US20160121312A1 (en) * 2014-10-31 2016-05-05 Chevron U.S.A. Inc. Middle distillate hydrocracking catalyst containing highly nanoporous stabilized y zeolite
US9956553B2 (en) * 2016-06-28 2018-05-01 Chevron U.S.A. Inc. Regeneration of an ionic liquid catalyst by hydrogenation using a macroporous noble metal catalyst
EP3892375A4 (en) * 2018-12-03 2022-08-24 National University Corporation Hokkaido University FUNCTIONAL STRUCTURE
CN111822034B (zh) * 2019-04-15 2022-07-12 中国石油化工股份有限公司 一种加氢裂化催化剂的制法
CN114534774A (zh) * 2020-11-25 2022-05-27 中国石油化工股份有限公司 复合材料、催化裂化催化剂及其制备方法
FR3116832B1 (fr) * 2020-11-27 2023-11-03 Ifp Energies Now Procede d’hydrodesulfuration de finition en presence d’un catalyseur sur support meso-macroporeux
CN116162491B (zh) * 2021-11-25 2024-08-16 中国科学院宁波材料技术与工程研究所 一种热解催化劣质重油生产清洁燃料油的方法及系统
US11992829B2 (en) 2022-03-08 2024-05-28 Saudi Arabian Oil Company Peptization agent and solid catalyst manufacturing method
US11878291B2 (en) 2022-05-16 2024-01-23 Saudi Arabian Oil Company Peptization agent and solid catalyst manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128121A (ja) * 1996-10-29 1998-05-19 Catalysts & Chem Ind Co Ltd 炭化水素接触分解用触媒組成物およびその製造方法
JPH11192437A (ja) * 1997-10-20 1999-07-21 Inst Fr Petrole 炭化水素留分の水素化クラッキング触媒および方法
JP2007526119A (ja) * 2004-03-03 2007-09-13 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 触媒担体と触媒組成物、それらの調製方法およびそれらの使用方法
JP2008297471A (ja) * 2007-05-31 2008-12-11 Idemitsu Kosan Co Ltd 接触改質ガソリンの製造方法
JP2009160496A (ja) * 2007-12-28 2009-07-23 Jgc Catalysts & Chemicals Ltd 炭化水素油の接触分解用触媒組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995015920A1 (fr) * 1993-12-09 1995-06-15 Catalysts & Chemicals Industries Co., Ltd. Procede et dispositif de production d'oxyde d'aluminium
US20020011429A1 (en) * 1997-09-30 2002-01-31 Akira Iino Iron-containing crystalline aluminosilicate
EP2258476A4 (en) 2008-03-28 2017-02-22 Petroleum Energy Center, A Juridical Incorporated Foundation Hydrocracking catalyst for heavy oil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128121A (ja) * 1996-10-29 1998-05-19 Catalysts & Chem Ind Co Ltd 炭化水素接触分解用触媒組成物およびその製造方法
JPH11192437A (ja) * 1997-10-20 1999-07-21 Inst Fr Petrole 炭化水素留分の水素化クラッキング触媒および方法
JP2007526119A (ja) * 2004-03-03 2007-09-13 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 触媒担体と触媒組成物、それらの調製方法およびそれらの使用方法
JP2008297471A (ja) * 2007-05-31 2008-12-11 Idemitsu Kosan Co Ltd 接触改質ガソリンの製造方法
JP2009160496A (ja) * 2007-12-28 2009-07-23 Jgc Catalysts & Chemicals Ltd 炭化水素油の接触分解用触媒組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2463026A4 *

Also Published As

Publication number Publication date
EP2463026A4 (en) 2013-03-27
US20120193270A1 (en) 2012-08-02
CN102596404A (zh) 2012-07-18
US8795513B2 (en) 2014-08-05
EP2463026A1 (en) 2012-06-13
JP5547923B2 (ja) 2014-07-16
JP2011031194A (ja) 2011-02-17

Similar Documents

Publication Publication Date Title
JP5547923B2 (ja) 重質油水素化分解触媒及びそれを用いた重質油の水素化処理方法
WO2009119390A1 (ja) 重質油水素化分解触媒
JP6134334B2 (ja) シリカ含有アルミナ担体、それから生じさせた触媒およびそれの使用方法
EP2484745B1 (en) Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method
JP5231735B2 (ja) 鉄含有結晶性アルミノシリケート及び該アルミノシリケートを含む水素化分解触媒並びに該触媒を用いる水素化分解法
KR102197525B1 (ko) 탄화수소 전환 촉매의 제조
WO2013061913A1 (ja) 水素化処理触媒及びその製造方法
US9925533B2 (en) Method of preparing a catalyst usable in hydroconversion comprising at least one zeolite NU-86
JP2003226519A (ja) 修飾ゼオライトおよびそれを用いた水素化処理触媒
JP2022141714A (ja) 高いナノ細孔の安定化yゼオライトを含有する中間留分水素化分解触媒
JP2008297471A (ja) 接触改質ガソリンの製造方法
JP2002363575A (ja) 重質炭化水素油の2段階水素化処理方法
JP2017006921A (ja) 炭化水素油用水素化分解触媒、水素化分解触媒の製造方法、及び水素化分解触媒を用いた炭化水素油の水素化分解方法
JP5220456B2 (ja) 常圧蒸留残渣油の分解方法
JP6267414B2 (ja) 結晶性アルミノシリケート、重質油水素化分解触媒及びその製造方法
JP2000086233A (ja) 鉄含有結晶性アルミノシリケート
JP5340101B2 (ja) 炭化水素油の水素化精製方法
JP2009242507A (ja) 超低硫黄燃料油の製造方法およびその製造装置
JP5852892B2 (ja) 重質油の水素化処理方法
JP2010221117A (ja) 水素化精製用触媒およびその製造方法、炭化水素油の水素化精製方法
JP2013213107A (ja) 水素化分解触媒を用いた水素化脱硫装置及び重質油の水素化処理方法
JP2022011038A (ja) 触媒システム、これを用いた重質軽油留分を含む原料油の水素化分解方法及び水素化分解装置
JPH0628738B2 (ja) 水素化脱硫・水素化分解触媒
EP4454755A1 (en) Middle distillate hydrocracking catalyst containing highly a stabilized y zeolite with enhanced acid site distribution
JP2017113715A (ja) 水素化処理触媒及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034546.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806412

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010806412

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13261168

Country of ref document: US