WO2011016199A1 - Dc/dc電力変換装置 - Google Patents

Dc/dc電力変換装置 Download PDF

Info

Publication number
WO2011016199A1
WO2011016199A1 PCT/JP2010/004746 JP2010004746W WO2011016199A1 WO 2011016199 A1 WO2011016199 A1 WO 2011016199A1 JP 2010004746 W JP2010004746 W JP 2010004746W WO 2011016199 A1 WO2011016199 A1 WO 2011016199A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
reactor
terminals
low
rectifier
Prior art date
Application number
PCT/JP2010/004746
Other languages
English (en)
French (fr)
Inventor
隆浩 浦壁
達也 奥田
優矢 田中
勝 小林
又彦 池田
博敏 前川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/382,231 priority Critical patent/US8773082B2/en
Priority to JP2011525752A priority patent/JP5325983B2/ja
Priority to DE112010003189T priority patent/DE112010003189T5/de
Priority to EP10806199A priority patent/EP2485376A1/en
Priority to CN201080034386.8A priority patent/CN102474180B/zh
Publication of WO2011016199A1 publication Critical patent/WO2011016199A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters

Definitions

  • the present invention relates to a DC / DC power converter that converts a DC voltage into a DC voltage that is stepped up or stepped down.
  • a conventional DC / DC power converter performs a voltage conversion from direct current to direct current by controlling the amount of energy stored in and discharged from a reactor by using an on / off operation of a switch element.
  • this reactor since this reactor has a problem that it is large and heavy, the voltage applied to the reactor is reduced using charging and discharging of the capacitor, and the reactor is reduced in size by reducing the inductance value necessary for the reactor.
  • a technique for reducing the weight is shown (for example, see Patent Documents 1 and 2).
  • the switching element is turned on and off at a certain switching frequency to control the accumulation and release of energy to the reactor, and the voltage is boosted or lowered to a predetermined voltage. Supply voltage.
  • the switching element generates a switching loss due to the on / off operation of the switching element, and the loss increases as the switching frequency increases. Also, if the switching frequency is lowered to suppress switching loss, the current ripple of the reactor will increase, and the radiated noise and conduction noise will increase due to the magnitude of the current and voltage change, causing malfunctions of surrounding devices and equipment. There is a problem that the loss of reactors and wiring increases due to the occurrence of problems and the increase in the effective current value.
  • the DC / DC power conversion apparatus may be configured in combination with an inverter that converts direct current into alternating current.
  • an inverter that converts direct current into alternating current.
  • the DC / DC power converters used in these systems have a power supply state (for example, the amount of irradiation of light from a solar battery of a solar power generation system) and a load state (for example, the rotational speed of a motor in an electric drive system of a hybrid vehicle ), The output voltage is controlled, and thus the voltage ratio related to the voltage conversion is controlled.
  • the switching frequency of the switching element is set in consideration of the fluctuation of the reactor current ripple due to the change in the voltage ratio. This is in conflict with the problems associated with the reactor current, and its setting was not easy. Accordingly, there has been a problem that it is not possible to sufficiently meet the recent demand for advanced energy saving that aims to reduce the average power consumption in a wide operating range.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a DC / DC power converter capable of reducing average power consumption in a wide range of DC voltage ratio. To do.
  • a DC / DC power conversion device is connected between a high voltage terminal, a low voltage terminal, and a high voltage terminal, and is an element series body in which a plurality of rectifier elements are connected in series with each other.
  • a switch element connected in parallel to all or part of each, a capacitor connected in parallel with a plurality of rectifier elements and holding a voltage obtained by dividing the voltage between the high voltage terminals, and one end connected to one of the low voltage terminals The other end is connected to the series connection point of the rectifying element and energized according to the switching operation of the switch element to store and release energy, and the voltage between the high voltage terminals is controlled by controlling the on / off operation of the switch element.
  • the control circuit includes a current flowing through the reactor. To pull the size is equal to or lower than a predetermined limit value regardless of the voltage ratio of the DC voltage converter, in which so as to vary the switching frequency for turning on and off the switching element in accordance with the voltage ratio.
  • the control circuit of the DC / DC power conversion device adjusts the voltage ratio so that the magnitude of the current ripple flowing through the reactor is not more than a predetermined limit value regardless of the voltage ratio of DC voltage conversion. Since the switching frequency for switching on and off the switching element is changed accordingly, the current ripple of the reactor is suppressed to a limit value or less, and therefore the voltage ratio is reduced while suppressing the loss and malfunction associated with this current ripple to a level below a certain level. The average value of the switching frequency over a wide range can be reduced, and the average power consumption can be reduced as compared with the conventional case where the switching frequency is constant regardless of the voltage ratio.
  • FIG. 5 is a diagram showing a relationship between a switching frequency and an output voltage at which the magnitude of the current ripple of reactor Lc is the same in the boosting operation according to the first embodiment of the present invention.
  • FIG. 10 is a diagram for explaining the boosting operation of the DC / DC power conversion device according to Embodiment 3 of the present invention, and shows the relationship between the output voltage and the current ripple when switching two types of switching frequencies in the entire range of the voltage ratio. It is.
  • FIG. 1 shows a circuit configuration of a DC / DC power conversion apparatus according to Embodiment 1 of the present invention.
  • the DC / DC power converter converts a voltage V1 input between the low voltage terminal VL and Vcom into a voltage V2 boosted to V1 or higher and converts the voltage V1 between the high voltage terminal VH and Vcom.
  • the voltage V2 input between the high voltage terminal VH and Vcom is converted to a voltage V1 stepped down to V2 or lower and output between the low voltage terminal VL and Vcom (step down operation) DC.
  • DC power conversion function As shown in FIG. 1, the DC / DC power converter converts a voltage V1 input between the low voltage terminal VL and Vcom into a voltage V2 boosted to V1 or higher and converts the voltage V1 between the high voltage terminal VH and Vcom.
  • the voltage V2 input between the high voltage terminal VH and Vcom is converted to a voltage V1 stepped down to V2 or lower and output between the low voltage terminal VL and Vcom (
  • the DC / DC power conversion apparatus includes a main circuit 110 and a control circuit 120.
  • the main circuit 110 includes smoothing capacitors CL and CH that smooth the input / output voltages V1 and V2, four IGBTs (Insulated Gate Bipolar Transistors) S1 to S4 (hereinafter abbreviated as S1 etc. as appropriate), and each of the switching elements.
  • IGBTs Insulated Gate Bipolar Transistors
  • Both terminals of the smoothing capacitor CL are connected to the low voltage terminals VL and Vcom, respectively, and the low voltage terminal Vcom is grounded.
  • the low voltage side terminal of the smoothing capacitor CH is connected to the high voltage terminal Vcom, and the high voltage terminal is connected to the high voltage terminal VH.
  • the emitter terminal of S1 is connected to the low voltage terminal Vcom, the collector terminal is connected to the emitter terminal of S2, and the collector terminal of S2 is connected to the emitter terminal of S3.
  • the collector terminal of S3 is connected to the emitter terminal of S4, and the collector terminal of S4 is connected to the high voltage terminal VH.
  • the anode terminal of D1 is connected to the emitter terminal of S1, the cathode terminal is connected to the collector terminal, the anode terminal of D2 is connected to the emitter terminal of S2, and the cathode terminal is connected to the collector terminal.
  • the anode terminal of D3 is connected to the emitter terminal of S3, the cathode terminal is connected to the collector terminal, the anode terminal of D4 is connected to the emitter terminal of S4, and the cathode terminal is connected to the collector terminal.
  • Reactor Lc is connected between a series connection point of a parallel body of S2 and D2 and a parallel body of S3 and D3 and low voltage terminal VL.
  • the capacitor Cp is connected in parallel with a parallel body of S2 and D2 and a parallel body of S3 and D3 connected in series with each other.
  • the gate terminals of S1, S2, S3, and S4 and the voltage terminals VH, VL, and Vcom are connected to the control circuit 120. Gate signals based on the voltage at the emitter terminal of each IGBT are input to the gate terminals of S1, S2, S3, and S4.
  • the operation will be described.
  • the boosting operation will be described.
  • the operation of this DC / DC power converter differs depending on the input / output voltage, depending on whether V2 is 1 ⁇ V1 or more and less than 2 ⁇ V1 or greater than 2 ⁇ V1.
  • V2 is 1 ⁇ V1 or more and less than 2 ⁇ V1 or greater than 2 ⁇ V1.
  • an operation of boosting and outputting the voltage V2 between the high voltage terminals VH and Vcom to 1 ⁇ V1 ⁇ V2 ⁇ 2 ⁇ V1 will be described.
  • a DC power source of voltage V1 (smoothing capacitor CL may be regarded as a DC power source in operation within a predetermined time since the capacity is large) is connected between low voltage terminal VL-Vcom and high voltage terminal VH- A DC load is connected between Vcom, and energy is consumed by a route of VL-Vcom ⁇ VH-Vcom.
  • FIG. 2 shows the waveform of the gate signal voltage of the IGBTs 1 and S2 and the waveform of the current IL of the reactor Lc.
  • the IGBT is turned on when the gate signal is at a high voltage.
  • a voltage of 0.5 ⁇ V2 is accumulated in the capacitor Cp.
  • S3 and S4 are in an off state, and S1 and S2 perform an on / off operation.
  • the operation consists of the following four modes.
  • the input voltage V1 is boosted and adjusted as voltage V2 in the range of 1 ⁇ V1 ⁇ V2 ⁇ 2 ⁇ V1.
  • FIG. 3 shows the waveform of the gate signal voltage of the IGBTs 1 and S2 and the waveform of the current IL of the reactor Lc.
  • a voltage of 0.5 ⁇ V2 is accumulated in the capacitor Cp in a steady state.
  • S3 and S4 are in an off state, and S1 and S2 perform an on / off operation.
  • the operation consists of the following four modes.
  • the input voltage V1 is boosted and adjusted as V2 in the range of V2> 2 ⁇ V1.
  • step-down operation will be described. Even in the step-down operation, the operation differs depending on the relationship between the input and output voltages when V2 is 1 ⁇ V1 or more and less than 2 ⁇ V1 and when it is greater than 2 ⁇ V1.
  • V2 is 1 ⁇ V1 or more and less than 2 ⁇ V1 and when it is greater than 2 ⁇ V1.
  • the operation of stepping down and outputting the voltage V1 as 1 ⁇ V2 ⁇ V1> 0.5 ⁇ V2 between the low voltage terminals VL-Vcom will be described.
  • a DC power source of voltage V2 (smoothing capacitor CH may be regarded as a DC power source in operation within a predetermined time assuming that the capacity is large) is connected between high voltage terminal VH-Vcom and low voltage terminal VL- A DC load is connected between Vcom, and energy is consumed by a route of VH ⁇ Vcom ⁇ VL ⁇ Vcom.
  • FIG. 4 shows the waveform of the gate signal voltage of the IGBTs 3 and S4 and the waveform of the current IL of the reactor Lc. Since the current during the boosting operation is expressed as a positive direction, IL is expressed as a negative current here. In the steady state, a voltage of 0.5 ⁇ V2 is also stored in the capacitor Cp here. In the step-down operation, S1 and S2 are in an off state, and S3 and S4 perform an on / off operation. The operation consists of the following four modes.
  • the input voltage V2 is stepped down in the range of 1 ⁇ V2 ⁇ V1> 0.5 ⁇ V2 and output as the voltage V1.
  • V1 V2 corresponds to maintaining both S3 and S4 in the on state.
  • FIG. 5 shows the waveform of the gate signal voltage of the IGBTs 3 and S4 and the waveform of the current IL of the reactor Lc.
  • the current IL is represented as a negative current.
  • a voltage of 0.5 ⁇ V2 is accumulated in the capacitor Cp in a steady state.
  • S1 and S2 are in an off state, and S3 and S4 perform an on / off operation.
  • the operation consists of the following four modes.
  • the input voltage V2 is stepped down in the range of V1 ⁇ 0.5 ⁇ V2 and output as the voltage V1.
  • This DC / DC power conversion device can perform the step-up / step-down operation by operating as described above.
  • the current ripple of the reactor increases, the loss of the magnetic material constituting the reactor increases, and when the reactor generates heat, the temperature rises, the inductance value decreases, and the function of the reactor cannot be performed. Or damaged by heat.
  • the current ripple is increased, electromagnetic noise and noise radiated from the reactor are increased, and the surroundings are adversely affected. For this reason, the reactor current ripple must be below a certain magnitude.
  • the switching frequency for turning on and off the switching element and the inductance value of the reactor have been selected so that the current ripple can be allowed under any voltage ratio condition.
  • the DC / DC power conversion device of the present invention further changes the magnitude of the reactor current ripple by changing the switching frequency for turning on / off the switching element according to the input / output voltage ratio.
  • the switching loss of the switch element is reduced, and the power consumption is reduced in a wide operation range of the DC / DC power converter.
  • V1-V2 / 2 L x ⁇ I / Ton (1)
  • equation (2) holds.
  • V2-V1 L ⁇ ⁇ I / Toff (2)
  • the switching frequency f is represented by the equation (4).
  • V1 L ⁇ ⁇ I / Ton (5)
  • V2-V2 / 2-V1 L ⁇ ⁇ I / Toff (6)
  • the switching frequency f is expressed by the equation (7).
  • V2 ⁇ V1 L ⁇ ⁇ I / Ton (8)
  • V1 ⁇ V2 / 2 L ⁇ ⁇ I / Toff (9)
  • V2-V2 / 2-V1 L ⁇ ⁇ I / Ton (11)
  • V1 L ⁇ ⁇ I / Toff (12)
  • the switching frequency f is expressed by the equation (13).
  • the switching frequency f is expressed by the following equations (14) and (15) based on the range of the voltage ratio k.
  • the control circuit 120 inputs an allowable value as the reactor current ripple ⁇ I, and changes the switching frequency f to a value calculated by the equation (14) or (15) according to the voltage ratio k.
  • the switching loss of the switch element can be reduced without changing the magnitude of the reactor current ripple, and the power consumption can be reduced in the wide operating range of the DC / DC power converter.
  • the burden of cooling the device is reduced, the device is reduced in size and weight, and the durability of the device is improved.
  • the relationship between the output voltage V2 and the switching frequency at which the current ripple is the same is as shown in FIG.
  • the switching frequency can be reduced in the vicinity of the output of 500 V, and as a result, the switching loss of the IGBT is reduced, so that an operation with a small loss is possible.
  • the output increases from 250V to 350V as the voltage increases, the frequency increases from 350V to 500V as the voltage increases, and above 500V, the frequency increases as the voltage increases. I am letting.
  • an operating region with a small loss can be formed in the operating region, so that the power consumption can be greatly reduced compared to the case where the device is operated at a constant frequency.
  • the power consumption can be greatly reduced by operating at the switching frequency determined according to the voltage ratio of the input and output from the above formula.
  • S3 and S4 are unnecessary when only the step-up operation is performed, and S1 and S2 are not necessary when only the step-down operation is performed. Therefore, when only a one-way function is required, a configuration in which unnecessary switch elements are omitted may be used.
  • FIG. A DC / DC power converter according to Embodiment 2 of the present invention will be described below.
  • the circuit configuration is partially different from that of the DC / DC power conversion device of the first embodiment, the control operation related to the step-up / step-down is not basically different.
  • FIG. 7 shows a circuit configuration of a DC / DC power converter according to Embodiment 2 of the present invention.
  • the DC / DC power converter converts a voltage V1 input between the low voltage terminal VL and VcomL into a voltage V2 boosted to V1 or higher and converts the voltage V1 between the high voltage terminal VH and VcomH.
  • the voltage V2 input between the high voltage terminals VH and VcomH is converted into a voltage V1 stepped down to V2 or lower and output between the low voltage terminals VL and VcomL (step-down operation) DC / DC power conversion function.
  • the DC / DC power conversion apparatus includes a main circuit 210 and a control circuit 220.
  • the main circuit 210 includes smoothing capacitors CL, CH1, and CH2 that smooth the input and output voltages V1 and V2, four IGBTs 1 to S4 (hereinafter, abbreviated as S1 as appropriate) as switching elements, and IGBTs in parallel with the IGBTs.
  • S1 four IGBTs 1 to S4
  • IGBTs in parallel with the IGBTs.
  • Four first to fourth rectifier elements D1 to D4 (hereinafter abbreviated as D1 etc. as appropriate) connected so as to conduct in the direction opposite to the conduction direction, low voltage terminal VL, IGBT and rectifier element.
  • a reactor Lc connected between the switch element groups to be configured.
  • the smoothing capacitors CH1 and CH2 also function as capacitors that hold a voltage obtained by dividing the voltage V2 between the high voltage terminal VH and VcomH.
  • Both terminals of the smoothing capacitor CL are connected to the low voltage terminals VL and VcomL, respectively.
  • the high voltage side terminal of the smoothing capacitor CH1 is connected to the high voltage terminal VH
  • the low voltage side terminal is connected to the high voltage side terminal of the smoothing capacitor CH2
  • the low voltage side terminal of the smoothing capacitor CH2 is connected to the high voltage terminal VcomH.
  • VcomH is grounded.
  • the emitter terminal of S1 is connected to the high voltage terminal VcomH, the collector terminal is connected to the emitter terminal of S2, and the low voltage terminal VcomL.
  • the collector terminal of S2 is connected to the emitter terminal of S3.
  • the collector terminal of S3 is connected to the emitter terminal of S4, and the collector terminal of S4 is connected to the high voltage terminal VH.
  • the anode terminal of D1 is connected to the emitter terminal of S1, the cathode terminal is connected to the collector terminal, the anode terminal of D2 is connected to the emitter terminal of S2, and the cathode terminal is connected to the collector terminal.
  • the anode terminal of D3 is connected to the emitter terminal of S3, the cathode terminal is connected to the collector terminal, the anode terminal of D4 is connected to the emitter terminal of S4, and the cathode terminal is connected to the collector terminal.
  • Reactor Lc is connected between a series connection point of a parallel body of S3 and D3 and a parallel body of S4 and D4 and low voltage terminal VL.
  • Smoothing capacitor CH1 is connected in parallel with a parallel body of S3 and D3 connected in series and a parallel body of S4 and D4, and smoothing capacitor CH2 is a parallel body of S1 and D1 connected in series with each other. And connected in parallel with a parallel body of S2 and D2.
  • the gate terminals of S1, S2, S3, and S4 and the voltage terminals VH, VL, VcomL, and VcomH are connected to the control circuit 220. Gate signals based on the voltage at the emitter terminal of each IGBT are input to the gate terminals of S1, S2, S3, and S4.
  • the operation will be described.
  • the boosting operation will be described.
  • the operation of this DC / DC power converter differs depending on the input / output voltage, depending on whether V2 is 1 ⁇ V1 or more and less than 2 ⁇ V1 or greater than 2 ⁇ V1.
  • V2 is 1 ⁇ V1 or more and less than 2 ⁇ V1 or greater than 2 ⁇ V1.
  • an operation for boosting and outputting the voltage V2 to 1 ⁇ V1 ⁇ V2 ⁇ 2 ⁇ V1 between the high voltage terminals VH and VcomH will be described.
  • a DC power source of voltage V1 (smoothing capacitor CL may be regarded as a DC power source in operation within a predetermined time assuming that the capacity is large) is connected between low voltage terminal VL-VcomL and high voltage terminal VH- A DC load is connected between VcomH, and energy is consumed by a route of VL-VcomL ⁇ VH-VcomH.
  • FIG. 8 shows the waveform of the gate signal voltage of the IGBTs 2 and S3 and the waveform of the current IL of the reactor Lc.
  • the IGBT is turned on when the gate signal is at a high voltage.
  • a voltage of 0.5 ⁇ V2 is accumulated in the smoothing capacitors CH1 and CH2.
  • S1 and S4 are in an off state, and S2 and S3 perform an on / off operation.
  • the operation consists of the following four modes.
  • the input voltage V1 is boosted and adjusted as voltage V2 in the range of 1 ⁇ V1 ⁇ V2 ⁇ 2 ⁇ V1.
  • V1 V2 corresponds to turning off both S2 and S3.
  • FIG. 9 shows the waveform of the gate signal voltage of the IGBTs 2 and S3 and the waveform of the current IL of the reactor Lc. Also in this case, in a steady state, a voltage of 0.5 ⁇ V2 is accumulated in the smoothing capacitors CH1 and CH2. Similarly, in the step-up operation, S1 and S4 are in an off state, and S2 and S3 perform an on / off operation. The operation consists of the following four modes.
  • the input voltage V1 is boosted and adjusted as V2 in the range of V2> 2 ⁇ V1.
  • step-down operation will be described. Even in the step-down operation, the operation differs depending on the relationship between the input and output voltages when V2 is 1 ⁇ V1 or more and less than 2 ⁇ V1 and when it is greater than 2 ⁇ V1.
  • V2 is 1 ⁇ V1 or more and less than 2 ⁇ V1 and when it is greater than 2 ⁇ V1.
  • the operation of stepping down and outputting 1 ⁇ V2 ⁇ V1> 0.5 ⁇ V2 as the voltage V1 between the low voltage terminals VL-VcomL will be described.
  • a DC power source of voltage V2 (smoothing capacitors CH1 and CH2 may be regarded as a DC power source in an operation within a predetermined time assuming that the capacity is large) is connected between the high voltage terminals VH and VcomH, and the low voltage terminal VL A DC load is connected between ⁇ VcomL, and energy is consumed by a route of VH ⁇ VcomH ⁇ VL ⁇ VcomL.
  • FIG. 10 shows the waveform of the gate signal voltage of the IGBTs 1 and S4 and the waveform of the current IL of the reactor Lc. Since the current during the boosting operation is expressed as a positive direction, IL is expressed as a negative current here.
  • the voltage of 0.5 ⁇ V2 is also stored in the smoothing capacitors CH1 and CH2 here.
  • S2 and S3 are in an off state, and S1 and S4 perform an on / off operation.
  • the operation consists of the following four modes.
  • the input voltage V2 is stepped down in the range of 1 ⁇ V2 ⁇ V1> 0.5 ⁇ V2 and output as the voltage V1.
  • V1 V2 corresponds to maintaining both S1 and S4 in the on state.
  • FIG. 11 shows the waveform of the gate signal voltage of the IGBTs 1 and S4 and the waveform of the current IL of the reactor Lc.
  • the current IL is represented as a negative current.
  • a voltage of 0.5 ⁇ V2 is accumulated in the smoothing capacitors CH1 and CH2.
  • S2 and S3 are in an off state, and S1 and S4 perform an on / off operation.
  • the operation consists of the following four modes.
  • the input voltage V2 is stepped down in the range of V1 ⁇ 0.5 ⁇ V2 and output as the voltage V1.
  • the DC / DC power conversion apparatus can perform the step-up / step-down operation by operating as described above, similarly to the first embodiment. Further, on the basis of the same principle as described in the first embodiment, the switching frequency f, the peak-peak value ⁇ I of the current ripple, the inductance L of the reactor, the voltages V1 and V2 related to the step-up / step-down operation, and the voltage ratio k The above equations (14) and (15) are established.
  • control circuit 220 inputs an allowable value as the reactor current ripple ⁇ I, and calculates the switching frequency f according to the equation (14) or (15) according to the voltage ratio k.
  • the switching loss of the switch element can be reduced without changing the magnitude of the reactor current ripple, and the power consumption can be reduced in the wide operating range of the DC / DC power converter. .
  • S1 and S4 are unnecessary when only the step-up operation is performed, and S2 and S3 are not necessary when only the step-down operation is performed. Therefore, when only a one-way function is required, a configuration in which unnecessary switch elements are omitted may be used.
  • Embodiment 3 FIG.
  • the switching frequency f it is necessary to continuously change the switching frequency f so that the magnitude of the current ripple is constant based on the equations (14) and (15). There is an aspect that becomes complicated.
  • the third embodiment of the present invention has been made in consideration of the above points.
  • the switching frequency f is changed by several fixed types,
  • the reactor inductance value L is not so large (the reactor size is not so large), the current ripple is suppressed to a certain value or less, and the power consumption can be reduced in the operation region where the switching frequency is low. .
  • the circuit configuration is the same as that shown in FIG. Similarly, as the DC / DC power converter, the voltage V1 input between the low voltage terminals VL and Vcom is converted into the voltage V2 boosted to V1 or higher and output between the high voltage terminals VH and Vcom. (Boosting operation) Voltage V2 input between high voltage terminals VH and Vcom is converted to voltage V1 stepped down to V2 or less and output between low voltage terminals VL and Vcom (stepping down operation) DC / DC power Has a conversion function.
  • Boosting operation Voltage V2 input between high voltage terminals VH and Vcom is converted to voltage V1 stepped down to V2 or less and output between low voltage terminals VL and Vcom
  • the step-up operation and the step-down operation are the same as described in the first embodiment, and a description thereof will be omitted.
  • the range of the voltage ratio k is divided into a plurality of operation regions, two different types of switching frequencies are set in each operation region, and the switching frequency f is switched according to the operation region and accordingly according to the voltage ratio k. The method and its effect will be described.
  • FIG. 12 shows the relationship between the output voltage and the current ripple ⁇ I (difference between the maximum value and the minimum value) when the switching frequency f is constant at 10 kHz in the boosting operation.
  • V1 250 V
  • the reactor L 100 ⁇ H.
  • the current ripple has a maximum value at 375V (1.5 times 250V), the minimum value at 500V (2 times 250V), and the voltage value above 500V.
  • the maximum value is 30.3A at 660V.
  • f 5 kHz in the operating region 260 V to 280 V
  • f 10 kHz for 280 V to 440 V
  • f 5 kHz for 440 V to 560 V
  • output voltage and current ripple ⁇ I when operated at f 10 kHz for 560 V to 660 V.
  • the frequency switching point there are three frequency switching points in the entire operating voltage range. However, under the condition where the operating voltage range is 440V to 660V, the frequency switching point is two times. In the above example, two types of frequencies are set, but by increasing to three types and four types, current ripple can be further suppressed and power consumption can be reduced.
  • the step-up operation has been described.
  • the same operation is possible in the step-down operation, and the same effect can be obtained.
  • the DC / DC power conversion apparatus shown in the second embodiment can perform the same operation and can obtain the same effect.
  • an unnecessary switch element may be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

直流電圧比の広い範囲における平均的な電力消費量の低減を可能とするDC/DC電力変換装置を得ることを目的とする。制御回路(120)は、リアクトルLcに流れる電流リプルの大きさΔIが直流電圧変換の電圧比k(k=V2/V1)に拘わらず所定の一定値となるよう、下式に基づき電圧比kに応じてIGBTS1~S4をオンオフするスイッチング周波数fを変化させるようにした。 1≦k<2の場合: f=(V1/(2×L×ΔI))×(k-1)×(2-k)/k k>2の場合: f=(V1/(2×L×ΔI))×(k-2)/k

Description

DC/DC電力変換装置
 この発明は、直流電圧を昇圧あるいは降圧した直流電圧に変換する、DC/DC電力変換装置に関するものである。
 従来のDC/DC電力変換装置は、スイッチ素子のオンオフ動作を利用して、リアクトルへのエネルギの蓄勢と放勢の量をコントロールして直流から直流への電圧変換を行っている。また、このリアクトルは大形で重いという課題があることから、コンデンサの充放電を利用してリアクトルに印加される電圧を低減し、そのリアクトルに必要なインダクタンス値を低減することによりリアクトルを小形、軽量化する技術が示されている(例えば、特許文献1、2参照)。
特開昭61-92162号公報 特開2005-224060号公報
 これらの従来のDC/DC電力変換装置では、スイッチ素子をある一定のスイッチング周波数でオンオフ動作させることによりリアクトルへのエネルギの蓄勢と放勢をコントロールして所定の電圧に昇圧あるいは降圧し負荷に電圧を供給する。
 そして、このスイッチ素子のオンオフ動作により、スイッチ素子にはスイッチング損失が発生し、この損失はスイッチング周波数が高いほど大きくなる。また、スイッチング損失を抑制するためにスイッチング周波数を低くすると、リアクトルの電流リプルが大きくなり、その電流、電圧変化の大きさが原因となり放射ノイズや伝導ノイズが大きくなり周囲の装置、機器の誤動作といった問題の発生や、電流実効値が大きくなることからリアクトルや配線の損失が増大するという不具合がある。
 ところで、DC/DC電力変換装置は、直流を交流に変換するインバータと組み合わせてシステムが構成される場合がある。例えば、太陽光発電用電力変換システム、エアーコンディショナ、ハイブリッド自動車の電気駆動システム等がある。これらシステムに用いられるDC/DC電力変換装置は、電源の状態(例えば、太陽光発電システムの太陽電池の光の照射量)や負荷の状態(例えば、ハイブリッド自動車の電気駆動システムのモータの回転数)に応じて、その出力電圧をコントロール、従って、その電圧変換に係る電圧比を制御している。
 この電圧比の調整はスイッチ素子の通流率、いわゆるデューティファクタを制御して行われるので、これに伴いリアクトルの電流リプルの大きさも変化する。
 このため、従来のDC/DC電力変換装置では、これら電圧比の変化に伴うリアクトルの電流リプルの変動を加味してスイッチ素子のスイッチング周波数を設定することになるが、上述した通り、スイッチング損失とリアクトル電流に伴う不具合とは相反する関係にあり、その設定は容易ではなかった。
 従って、昨今の、広い動作範囲における平均的な電力消費量の低減を図るという高度な省エネ化要請に十分応えることができないという課題があった。
 この発明は、上記のような課題を解決するためになされたもので、直流電圧比の広い範囲における平均的な電力消費量の低減を可能とするDC/DC電力変換装置を得ることを目的とする。
 この発明に係るDC/DC電力変換装置は、高圧電圧端子、低圧電圧端子、高圧電圧端子間に接続され、整流素子を複数個互いに直列に接続してなる素子直列体、複数個の整流素子の全部または一部のそれぞれに並列に接続されたスイッチ素子、複数の整流素子と並列に接続され高圧電圧端子間の電圧を分圧した電圧を保持するコンデンサ、一端が低圧電圧端子の一方に接続され他端が整流素子の直列接続点に接続されスイッチ素子のスイッチング動作に応じて通電しエネルギの蓄勢放勢を行うリアクトル、およびスイッチ素子のオンオフ動作を制御することにより高圧電圧端子間の電圧と低圧電圧端子間の電圧との間の直流電圧変換の制御を行う制御回路を備えたDC/DC電力変換装置において、制御回路は、リアクトルに流れる電流リプルの大きさが直流電圧変換の電圧比に拘わらず所定の制限値以下となるよう、電圧比に応じてスイッチ素子をオンオフするスイッチング周波数を変化させるようにしたものである。
 以上のように、この発明に係るDC/DC電力変換装置の制御回路は、リアクトルに流れる電流リプルの大きさが直流電圧変換の電圧比に拘わらず所定の制限値以下となるよう、電圧比に応じてスイッチ素子をオンオフするスイッチング周波数を変化させるようにしたので、リアクトルの電流リプルを制限値以下に抑え、従って、この電流リプルに伴う損失や不具合を一定以下のレベルに抑制しつつ、電圧比の広い範囲でのスイッチング周波数の平均値を低減し、電圧比に拘わらずスイッチング周波数を一定とする従来の場合に比較して、平均的な電力消費量を低減することができる。
この発明の実施の形態1によるDC/DC電力変換装置の回路構成を示す図である。 この発明の実施の形態1による昇圧動作において、1×V1≦V2<2×V1に調整する時のゲート電圧波形と、リアクトルLcの電流ILの波形を示す図である。 この発明の実施の形態1による昇圧動作において、2×V1<V2に調整する時のゲート電圧波形と、リアクトルLcの電流ILの波形を示す図である。 この発明の実施の形態1による、降圧動作において、1×V2≧V1>0.5×V2に調整する時のゲート電圧波形と、リアクトルLcの電流ILの波形を示す図である。 この発明の実施の形態1による降圧動作において、0.5×V2>V1に調整する時のゲート電圧波形と、リアクトルLcの電流ILの波形を示す図である。 この発明の実施の形態1による昇圧動作において、リアクトルLcの電流リプルの大きさが同じとなるスイッチング周波数と出力電圧との関係を示す図である。 この発明の実施の形態2によるDC/DC電力変換装置の回路構成を示す図である。 この発明の実施の形態2による昇圧動作において、1×V1≦V2<2×V1に調整する時のゲート電圧波形と、リアクトルLcの電流ILの波形を示す図である。 この発明の実施の形態2による昇圧動作において、2×V1<V2に調整する時のゲート電圧波形と、リアクトルLcの電流ILの波形を示す図である。 この発明の実施の形態2による降圧動作において、1×V2≧V1>0.5×V2に調整する時のゲート電圧波形と、リアクトルLcの電流ILの波形を示す図である。 この発明の実施の形態2による降圧動作において、0.5×V2>V1に調整する時のゲート電圧波形と、リアクトルLcの電流ILの波形を示す図である。 この発明の実施の形態3によるDC/DC電力変換装置の昇圧動作を説明する前提として、電圧比の全範囲でスイッチング周波数を一定とした場合における、出力電圧と電流リプルとの関係を示す図である。 この発明の実施の形態3によるDC/DC電力変換装置の昇圧動作を説明するもので、電圧比の全範囲で2種類のスイッチング周波数を切り替える場合における、出力電圧と電流リプルとの関係を示す図である。
実施の形態1.
 以下、この発明の実施の形態1によるDC/DC電力変換装置について説明する。
 図1は、この発明の実施の形態1によるDC/DC電力変換装置の回路構成を示す。図1に示すように、DC/DC電力変換装置は、低圧電圧端子VLとVcom間に入力された電圧V1を、V1以上に昇圧された電圧V2に変換して高圧電圧端子VHとVcom間に出力したり(昇圧動作)、高圧電圧端子VHとVcom間に入力された電圧V2を、V2以下に降圧された電圧V1に変換して低圧電圧端子VLとVcom間に出力する(降圧動作)DC/DC電力変換機能を有する。
 DC/DC電力変換装置は、主回路110と制御回路120とから構成される。主回路110は、入出力電圧V1、V2を平滑化する平滑コンデンサCL、CHと、スイッチ素子として4つのIGBT(Insulated Gate Bipolar Transistor)S1~S4(以下、適宜S1等と略記する)と、各IGBTと並列にIGBTの導通方向と逆方向に導通するように接続された4つの第1~第4の整流素子D1~D4(以下、適宜D1等と略記する)と、低圧電圧端子VLとIGBTおよび整流素子で構成されるスイッチ素子群との間に接続されたリアクトルLcと、スイッチ素子群の間に接続されたコンデンサCpと、から構成される。
 更に、回路の接続の詳細について説明する。平滑コンデンサCLの両端子は、それぞれ低圧電圧端子VLとVcomに接続され、低圧電圧端子Vcomは接地されている。平滑コンデンサCHの低圧側端子は高圧電圧端子Vcomに接続され、高圧側端子は高圧電圧端子VHに接続されている。
 S1のエミッタ端子は低圧電圧端子Vcomに、コレクタ端子はS2のエミッタ端子に接続され、S2のコレクタ端子はS3のエミッタ端子に接続されている。S3のコレクタ端子はS4のエミッタ端子に接続され、S4のコレクタ端子は高圧電圧端子VHに接続されている。D1のアノード端子はS1のエミッタ端子に、カソード端子はコレクタ端子に接続され、D2のアノード端子はS2のエミッタ端子に、カソード端子はコレクタ端子に接続されている。D3のアノード端子はS3のエミッタ端子に、カソード端子はコレクタ端子に接続され、D4のアノード端子はS4のエミッタ端子に、カソード端子はコレクタ端子に接続されている。
 リアクトルLcは、S2とD2との並列体およびS3とD3との並列体の直列接続点と低圧電圧端子VLとの間に接続されている。コンデンサCpは、互いに直列に接続されたS2とD2との並列体およびS3とD3との並列体と並列に接続されている。
 S1、S2、S3、S4のゲート端子と、電圧端子VH、VL、Vcomは、制御回路120に接続されている。S1、S2、S3、S4のゲート端子には、各IGBTのエミッタ端子の電圧を基準としたゲート信号が入力されている。
 次に、動作について説明する。まず、昇圧動作について述べる。このDC/DC電力変換装置は、入出力電圧の関係において、V2が1×V1以上で2×V1より小さい場合と2×V1より大きい場合とで動作が異なる。始めに、高圧電圧端子VH-Vcom間に、電圧V2として1×V1≦V2<2×V1に昇圧して出力する動作について説明する。
 この場合は、電圧V1の直流電源(平滑コンデンサCLは容量が大きいとして所定の時間内の動作では直流電源とみなしてもよい)が低圧電圧端子VL-Vcom間に接続され、高圧電圧端子VH-Vcom間には直流負荷が接続され、エネルギをVL-Vcom→VH-Vcomの経路で消費している状態である。
 図2に、IGBTS1とS2のゲート信号電圧波形と、リアクトルLcの電流ILの波形を示している。なお、IGBTはゲート信号がハイ電圧でオンする。定常状態において、コンデンサCpには電圧0.5×V2の電圧が蓄積されている。昇圧動作において、S3とS4とはオフした状態でありS1とS2とがオンオフの動作を行う。動作は下記の4つのモードから成る。
 S1のゲート電圧がハイ電圧、S2のゲート電圧がロウ電圧の状態(図2の時間帯(1))では、S1がオン、S2がオフであることから、以下の経路でエネルギがリアクトルLcとコンデンサCpに移行する。
 CL→Lc→D3→Cp→S1→CL
 即ち、リアクトルLcによるエネルギの蓄勢動作が、平滑コンデンサCL、従って低圧電圧端子VL、Vcom間にコンデンサCpを介して接続されるリアクトルLcへの通電により行われる。
 S1のゲート電圧がロウ電圧、S2のゲート電圧がロウ電圧の状態(図2の時間帯(2))では、S1がオフ、S2がオフであることから、以下の経路でLcに蓄積されたエネルギがコンデンサCHに移行する。
 CL→Lc→D3→D4→CH→CL
 S1のゲート電圧がロウ電圧、S2のゲート電圧がハイ電圧の状態(図2の時間帯(3))では、S1がオフ、S2がオンであることから、以下の経路でCpに蓄積されたエネルギがコンデンサCHに移行するとともに、リアクトルLcにエネルギを蓄積する。
 CL→Lc→S2→Cp→D4→CH→CL
 即ち、ここでも、リアクトルLcによるエネルギの蓄勢動作が、低圧電圧端子VL、Vcom間にコンデンサCpを介して接続されるリアクトルLcへの通電により行われる。
 S1のゲート電圧がロウ電圧、S2のゲート電圧がロウ電圧の状態(図2の時間帯(4))では、S1がオフ、S2がオフであることから、以下の経路でLcに蓄積されたエネルギがコンデンサCHに移行する。
 CL→Lc→D3→D4→CH→CL
 この一連の動作の繰り返しにより、1×V1≦V2<2×V1の範囲で、入力された電圧V1を昇圧調整して、電圧V2として出力する。
 なお、上記範囲の内、V1=V2となるのは、S1、S2を共にオフの状態を維持することに相当する。
 次に、高圧電圧端子VH-Vcom間に、電圧V2としてV2>2×V1に昇圧して出力する動作について説明する。この場合も同様に、高圧電圧端子VH-Vcom間には直流負荷が接続され、エネルギをVL-Vcom→VH-Vcomの経路で消費している状態である。
 図3に、IGBTS1とS2のゲート信号電圧波形と、リアクトルLcの電流ILの波形を示している。この場合も定常状態において、コンデンサCpには電圧0.5×V2の電圧が蓄積されている。同様に、昇圧動作において、S3とS4とはオフした状態でありS1とS2とがオンオフの動作を行う。動作は下記の4つのモードから成る。
 S1のゲート電圧がハイ電圧、S2のゲート電圧がハイ電圧の状態(図3の時間帯(5))では、S1がオン、S2がオンであることから、以下の経路でエネルギがリアクトルLcに移行する。
 CL→Lc→S2→S1→CL
 即ち、リアクトルLcによるエネルギの蓄勢動作が、低圧電圧端子VL、Vcom間にコンデンサCpを介さず直接接続されるリアクトルLcへの通電により行われる。
 S1のゲート電圧がハイ電圧、S2のゲート電圧がロウ電圧の状態(図3の時間帯(6))では、S1がオン、S2がオフであることから、以下の経路でLcに蓄積されたエネルギがコンデンサCpに移行する。
 CL→Lc→D3→Cp→S1→CL
 S1のゲート電圧がハイ電圧、S2のゲート電圧がハイ電圧の状態(図3の時間帯(7))では、S1がオン、S2がオンであることから、以下の経路でエネルギがリアクトルLcに移行する。
 CL→Lc→S2→S1→CL
 即ち、ここでも、リアクトルLcによるエネルギの蓄勢動作が、低圧電圧端子VL、Vcom間にコンデンサCpを介さず直接接続されるリアクトルLcへの通電により行われる。
 S1のゲート電圧がロウ電圧、S2のゲート電圧がハイ電圧の状態(図3の時間帯(8))では、S1がオフ、S2がオンであることから、以下の経路でLcに蓄積されたエネルギとコンデンサCpに蓄積されたエネルギがコンデンサCHに移行する。
 CL→Lc→S2→Cp→D4→CH→CL
 この一連の動作の繰り返しにより、V2>2×V1の範囲で、入力された電圧V1を昇圧調整して、電圧V2として出力する。
 次に、降圧動作について述べる。降圧動作でも、入出力電圧の関係において、V2が1×V1以上で2×V1より小さい場合と2×V1より大きい場合とで動作が異なる。まず、低圧電圧端子VL-Vcom間に、電圧V1として1×V2≧V1>0.5×V2に降圧して出力する動作について説明する。
 この場合は、電圧V2の直流電源(平滑コンデンサCHは容量が大きいとして所定の時間内の動作では直流電源とみなしてもよい)が高圧電圧端子VH-Vcom間に接続され、低圧電圧端子VL-Vcom間には直流負荷が接続され、エネルギをVH-Vcom→VL-Vcomの経路で消費している状態である。
 図4に、IGBTS3とS4のゲート信号電圧波形と、リアクトルLcの電流ILの波形を示している。昇圧動作時の電流を正の方向として表したので、ここではILを負の電流として表している。定常状態において、ここでもコンデンサCpには電圧0.5×V2の電圧が蓄積されている。降圧動作において、S1とS2とはオフした状態でありS3とS4とがオンオフの動作を行う。動作は下記の4つのモードから成る。
 S3のゲート電圧がハイ電圧、S4のゲート電圧がハイ電圧の状態(図4の時間帯(9))では、S3がオン、S4がオンであることから、以下の経路でエネルギがリアクトルLcとコンデンサCLに移行する。
 CH→S4→S3→Lc→CL→CH
 即ち、リアクトルLcによるエネルギの蓄勢動作が、高圧電圧端子VH、Vcom間にコンデンサCpを介さず直接接続されるリアクトルLcへの通電により行われる。
 S3のゲート電圧がハイ電圧、S4のゲート電圧がロウ電圧の状態(図4の時間帯(10))では、S3がオン、S4がオフであることから、以下の経路でLcとCpに蓄積されたエネルギがコンデンサCLに移行する。
 Cp→S3→Lc→CL→D1→Cp
 S3のゲート電圧がハイ電圧、S4のゲート電圧がハイ電圧の状態(図4の時間帯(11))では、S3がオン、S4がオンであることから、以下の経路でエネルギがリアクトルLcとコンデンサCLに移行する。
 CH→S4→S3→Lc→CL→CH
 即ち、ここでも、リアクトルLcによるエネルギの蓄勢動作が、高圧電圧端子VH、Vcom間にコンデンサCpを介さず直接接続されるリアクトルLcへの通電により行われる。
 S3のゲート電圧がロウ電圧、S4のゲート電圧がハイ電圧の状態(図4の時間帯(12))では、S3がオフ、S4がオンであることから、以下の経路でリアクトルLcのエネルギがコンデンサCHに移行するとともに、コンデンサCpにエネルギを蓄積する。
 CH→S4→Cp→D2→Lc→CL→CH
 この一連の動作の繰り返しにより、1×V2≧V1>0.5×V2の範囲で、入力された電圧V2を降圧調整して、電圧V1として出力する。
 なお、上記範囲の内、V1=V2となるのは、S3、S4を共にオンの状態を維持することに相当する。
 次に、低圧電圧端子VL-Vcom間に、電圧V1としてV1<0.5×V2に降圧して出力する動作について説明する。この場合も同様に、低圧電圧端子VL-Vcom間には直流負荷が接続され、エネルギをVH-Vcom→VL-Vcomの経路で消費している状態である。
 図5に、IGBTS3とS4のゲート信号電圧波形と、リアクトルLcの電流ILの波形を示している。ここでもまた、電流ILを負の電流として表している。この場合も定常状態において、コンデンサCpには電圧0.5×V2の電圧が蓄積されている。同様に、降圧動作において、S1とS2とはオフした状態でありS3とS4とがオンオフの動作を行う。動作は下記の4つのモードから成る。
 S3のゲート電圧がハイ電圧、S4のゲート電圧がロウ電圧の状態(図5の時間帯(13))では、S3がオン、S4がオフであることから、以下の経路でCpのエネルギがCLに移行するとともに、リアクトルLcにエネルギを蓄積する。
 Cp→S3→Lc→CL→D1→Cp
 コンデンサCpは、高圧電圧端子VH-Vcom間の電圧V2を分圧した電圧(0.5×V2)を蓄積しているものであることから、上記した経路により、リアクトルLcによるエネルギの蓄勢動作は、高圧電圧端子VH、Vcom間にコンデンサCpを介して接続されるリアクトルLcへの通電により行われる、と言える。
 S3のゲート電圧がロウ電圧、S4のゲート電圧がロウ電圧の状態(図5の時間帯(14))では、S3がオフ、S4がオフであることから、以下の経路でLcに蓄積されたエネルギがコンデンサCLに移行する。
 Lc→CL→D1→D2→Lc
 S3のゲート電圧がロウ電圧、S4のゲート電圧がハイ電圧の状態(図5の時間帯(15))では、S3がオフ、S4がオンであることから、以下の経路でCHのエネルギがCLに移行するとともに、リアクトルLcとコンデンサCpに蓄積される。
 CH→S4→Cp→D2→Lc→CL→CH
 即ち、ここでも、リアクトルLcによるエネルギの蓄勢動作は、高圧電圧端子VH、Vcom間にコンデンサCpを介して接続されるリアクトルLcへの通電により行われる。
 S3のゲート電圧がロウ電圧、S4のゲート電圧がロウ電圧の状態(図5の時間帯(16))では、S3がオフ、S4がオフであることから、以下の経路でLcに蓄積されたエネルギがコンデンサCLに移行する。
 Lc→CL→D1→D2→Lc
 この一連の動作の繰り返しにより、V1<0.5×V2の範囲で、入力された電圧V2を降圧調整して、電圧V1として出力する。
 本DC/DC電力変換装置は、以上説明したように動作することにより昇降圧の動作ができる。
 ところで、既述したように、リアクトルの電流リプルが大きくなると、リアクトルを構成する磁性体の損失が大きくなり、リアクトルが発熱することにより温度が上昇しインダクタンス値が低下しリアクトルの機能を果たさなくなったり、熱で破損したりする。また、電流リプルが大きくなると、リアクトルから放射される電磁ノイズや騒音が大きくなり、その周辺に悪影響を及ぼしたりする。このようなことから、リアクトルの電流リプルは、ある大きさ以下にしなければならない。この為、従来はどんな電圧比の条件においても電流リプルが許容できる値になるように、スイッチ素子をオンオフするスイッチング周波数とリアクトルのインダクタンス値が選ばれていた。
 これに対し、本発明のDC/DC電力変換装置は、さらに、スイッチ素子をオンオフするスイッチング周波数を入出力電圧比に応じて変化させることで、リアクトルの電流リプルの大きさを変化させること無しにスイッチ素子のスイッチング損失を低減し、DC/DC電力変換装置の広い動作範囲において電力消費量を低減するものである。
 次に、このスイッチング周波数を変化させる要領を明らかにするため、スイッチング周波数f、電流リプルのピーク-ピーク値ΔI、リアクトルのインダクタンスL、および昇降圧動作に係る電圧V1、V2の間に成立する関係式を求める。
 この関係式は、先の図2~図5で説明した、昇圧動作または降圧動作、およびそれらの電圧変換範囲により異なるので、以下、これら各ケース毎に求める。
 先ず、先の図2の、1×V1≦V2<2×V1の範囲で、入力された電圧V1を昇圧調整して、電圧V2として出力する場合について説明する。
 S1、S2のいずれかのゲート電圧がハイの期間(図2の時間帯(1)、(3)の期間)をTon、S1がオフしてS2がオンするまでの期間(図2の時間帯(2)の期間)、S2がオフしてS1がオンするまでの期間(図2の時間帯(4)の期間)をToffとすると、コンデンサCpの電圧が0.5×V2であることから、Tonの期間では、(1)式が成り立つ。
 V1-V2/2=L×ΔI/Ton        ・・・ (1)
 また、Toffの期間では、(2)式が成り立つ。
 V2-V1=L×ΔI/Toff         ・・・ (2)
 スイッチ素子のスイッチング周期T=1/fは各期間の和であるから(3)式が成り立つ。
 T=1/f=2×(Ton+Toff)      ・・・ (3)
 (1)~(3)式から、スイッチング周波数fは、(4)式で表される。
 f=(V2-V1)×(2V1-V2)/(2×L×ΔI×V2)  ・・・ (4)
 次に、先の図3の、V2>2×V1の範囲で、入力された電圧V1を昇圧調整して、電圧V2として出力する場合について説明する。
 S1、S2のゲート電圧が同時にハイの期間(両方ともオンしている期間)で、S1がオンしてからS2がオフするまでの期間(図3の時間帯(5)の期間)、S2がオンしてからS1がオフするまでの期間(図3の時間帯(7)の期間)をTon、S1、S2のいずれかがオフしている期間(図3の時間帯(6)、(8)の期間)をToffとすると、Tonの期間では、(5)式が成り立つ。
 V1=L×ΔI/Ton              ・・・ (5)
 コンデンサCpの電圧が0.5×V2であることから、Toffの期間では、(6)式が成り立つ。
 V2-V2/2-V1=L×ΔI/Toff     ・・・ (6)
 (5)、(6)、(3)式から、スイッチング周波数fは、(7)式で表される。
 f=V1×(V2-2×V1)/(2×L×ΔI×V2)  ・・・ (7)
 次に、先の図4の、1×V2≧V1>0.5×V2の範囲で、入力された電圧V2を降圧調整して、電圧V1として出力する場合について説明する。
 S3、S4のゲート電圧が同時にハイの期間(両方ともオンしている期間)で、S3がオンしてからS4がオフするまでの期間(図4の時間帯(9)の期間)、S4がオンしてからS3がオフするまでの期間(図4の時間帯(11)の期間)をTon、S3、S4のいずれかがオフしている期間(図4の時間帯(10)、(12)の期間)をToffとすると、Tonの期間では、(8)式が成り立ち、Toffの期間では、(9)式が成り立つ。
 V2-V1=L×ΔI/Ton          ・・・ (8)
 V1-V2/2=L×ΔI/Toff       ・・・ (9)
 (8)、(9)、(3)式から、スイッチング周波数fは、(10)式で表される。
 f=(V2-V1)×(2V1-V2)/(2×L×ΔI×V2) ・・・ (10)
 次に、先の図5の、V1<0.5×V2の範囲で、入力された電圧V2を降圧調整して、電圧V1として出力する場合について説明する。
 S3、S4のいずれかのゲート電圧がハイの期間(図5の時間帯(13)、(15)の期間)をTon、S3がオフしてS4がオンするまでの期間(図5の時間帯(14)の期間)、S4がオフしてS3がオンするまでの期間(図5の時間帯(16)の期間)をToffとすると、Tonの期間では、(11)式が成り立ち、Toffの期間では(12)式が成り立つ。
 V2-V2/2-V1=L×ΔI/Ton     ・・・ (11)
 V1=L×ΔI/Toff            ・・・ (12)
 (11)、(12)、(3)式から、スイッチング周波数fは、(13)式で表される。
 f=V1×(V2-2×V1)/(2×L×ΔI×V2)  ・・・ (13)
 電圧比(V2/V1)をkとすると、(4)式と(10)式とが、また、(7)式と(13)式とがそれぞれ同一であることに着目すると、昇降圧動作の区別無く、スイッチング周波数fは、電圧比kの範囲に基づき、以下の(14)式と(15)式で表される。
 1≦k<2の場合:
 f=(V1/(2×L×ΔI))×(k-1)×(2-k)/k ・・・ (14)
 k>2の場合:
 f=(V1/(2×L×ΔI))×(k-2)/k       ・・・ (15)
 従って、制御回路120は、リアクトルの電流リプルΔIとして許容される値を入力し、スイッチング周波数fを、電圧比kに応じて(14)式または(15)式で算出される値に変化させることにより、リアクトルの電流リプルの大きさを変化させること無しにスイッチ素子のスイッチング損失を低減し、DC/DC電力変換装置の広い動作範囲において電力消費量を低減することができるわけである。
 電力消費量が低減することで、装置を冷却する負担が軽減して装置の小形軽量化も実現し、装置の耐久性も向上する。
 例えば、具体例として、昇圧動作において、V1=250V、ΔI=24A、L=100μHとした場合、出力電圧V2と電流リプルが同じとなるスイッチング周波数の関係は、図6に示すようになる。図からわかるように、電圧350Vを出力する場合は9kHz程度のスイッチング周波数が必要となるが、520Vを出力する場合は2kHz程度のスイッチング周波数でよいことになる。
 よって、出力500V付近ではスイッチング周波数を小さくすることができ、その結果、IGBTのスイッチング損失が小さくなることから、損失の小さい動作が可能となる。
 この電圧条件では、出力250Vから350Vまでは電圧の増加に応じて周波数を増加させ、350Vから500Vまでは電圧の増加に応じて周波数を減少させ、500V以上は電圧の増加に応じて周波数を増加させている。このように動作させることで、動作領域の中で損失の小さな動作領域ができることから、一定の周波数で動作させた場合と比較して、電力消費量を大幅に削減することができる。
 同様に、降圧動作においても上記式から、入出力の電圧比に応じて決まるスイッチング周波数で動作することにより、電力消費量を大幅に削減することができる。
 なお、(14)式、(15)式では、数式の適用上、電圧比k=2の場合が除かれるが、電圧比k=2で出力したい場合は、実際には、例えば、fとして、数100Hzまたは1kHz程度の十分小さい値に設定することにより、電流リプルを大きくすることなく低損失での運転が可能となる。
 上記で説明したように、昇圧動作のみの場合はS3、S4は不要であり、降圧動作のみの場合はS1、S2は不要となる。よって、片方向の機能のみでよい場合、不要なスイッチ素子を省いた構成とすればよい。
実施の形態2.
 以下、この発明の実施の形態2によるDC/DC電力変換装置について説明する。先の実施の形態1のDC/DC電力変換装置に対して回路構成は一部異なるが昇降圧に係る制御動作は基本的に異なるものではない。
 図7は、この発明の実施の形態2によるDC/DC電力変換装置の回路構成を示す。図7に示すように、DC/DC電力変換装置は、低圧電圧端子VLとVcomL間に入力された電圧V1を、V1以上に昇圧された電圧V2に変換して高圧電圧端子VHとVcomH間に出力したり(昇圧動作)、高圧電圧端子VHとVcomH間に入力された電圧V2を、V2以下に降圧された電圧V1に変換して低圧電圧端子VLとVcomL間に出力する(降圧動作)DC/DC電力変換機能を有する。
 DC/DC電力変換装置は、主回路210と制御回路220とから構成される。主回路210は、入出力電圧V1、V2を平滑化する平滑コンデンサCL、CH1、CH2と、スイッチ素子として4つのIGBTS1~S4(以下、適宜S1等と略記する)と、各IGBTと並列にIGBTの導通方向と逆方向に導通するように接続された4つの第1~第4の整流素子D1~D4(以下、)適宜D1等と略記する)と、低圧電圧端子VLとIGBTおよび整流素子で構成されるスイッチ素子群との間に接続されたリアクトルLcと、から構成される。
 なお、平滑コンデンサCH1、CH2は、高圧電圧端子VHとVcomH間の電圧V2を分圧した電圧を保持するコンデンサとしても機能する。
 更に、回路の接続の詳細について説明する。平滑コンデンサCLの両端子は、それぞれ低圧電圧端子VLとVcomLに接続されている。平滑コンデンサCH1の高圧側端子は高圧電圧端子VHに接続され、低圧側端子は平滑コンデンサCH2の高圧側端子に接続され、平滑コンデンサCH2の低圧側端子は高圧電圧端子VcomHに接続されている。VcomHは接地されている。
 S1のエミッタ端子は高圧電圧端子VcomHに、コレクタ端子はS2のエミッタ端子に接続されるとともに、低圧電圧端子VcomLに接続されている。S2のコレクタ端子はS3のエミッタ端子に接続されている。S3のコレクタ端子はS4のエミッタ端子に接続され、S4のコレクタ端子は、高圧電圧端子VHに接続されている。D1のアノード端子はS1のエミッタ端子に、カソード端子はコレクタ端子に接続され、D2のアノード端子はS2のエミッタ端子に、カソード端子はコレクタ端子に接続されている。D3のアノード端子はS3のエミッタ端子に、カソード端子はコレクタ端子に接続され、D4のアノード端子はS4のエミッタ端子に、カソード端子はコレクタ端子に接続されている。
 リアクトルLcは、S3とD3との並列体およびS4とD4との並列体の直列接続点と低圧電圧端子VLとの間に接続されている。平滑コンデンサCH1は、互いに直列に接続されたS3とD3との並列体およびS4とD4との並列体と並列に接続され、平滑コンデンサCH2は、互いに直列に接続されたS1とD1との並列体およびS2とD2との並列体と並列に接続されている。
 S1、S2、S3、S4のゲート端子と、電圧端子VH、VL、VcomL、VcomHは、制御回路220に接続されている。S1、S2、S3、S4のゲート端子には、各IGBTのエミッタ端子の電圧を基準としたゲート信号が入力されている。
 次に、動作について説明する。まず、昇圧動作について述べる。このDC/DC電力変換装置は、入出力電圧の関係において、V2が1×V1以上で2×V1より小さい場合と2×V1より大きい場合とで動作が異なる。始めに、高圧電圧端子VH-VcomH間に、電圧V2として1×V1≦V2<2×V1に昇圧して出力する動作について説明する。 この場合は、電圧V1の直流電源(平滑コンデンサCLは容量が大きいとして所定の時間内の動作では直流電源とみなしてもよい)が低圧電圧端子VL-VcomL間に接続され、高圧電圧端子VH-VcomH間には直流負荷が接続され、エネルギをVL-VcomL→VH-VcomHの経路で消費している状態である。
 図8に、IGBTS2とS3のゲート信号電圧波形と、リアクトルLcの電流ILの波形を示している。なお、IGBTはゲート信号がハイ電圧でオンする。定常状態において、平滑コンデンサCH1、CH2には電圧0.5×V2の電圧が蓄積されている。昇圧動作において、S1とS4はオフした状態でありS2とS3とがオンオフの動作を行う。動作は下記の4つのモードから成る。
 S2のゲート電圧がハイ電圧、S3のゲート電圧がロウ電圧の状態(図8の時間帯(21))では、S2がオン、S3がオフであることから、以下の経路でエネルギがコンデンサCH1に移行するとともに、リアクトルLcにエネルギを蓄積する。
 CL→Lc→D4→CH1→S2→CL
 即ち、リアクトルLcによるエネルギの蓄勢動作が、平滑コンデンサCL、従って低圧電圧端子VL、VcomL間に分圧コンデンサとして機能する平滑コンデンサCH1を介して接続されるリアクトルLcへの通電により行われる。
 S2のゲート電圧がロウ電圧、S3のゲート電圧がロウ電圧の状態(図8の時間帯(22))では、S2がオフ、S3がオフであることから、以下の経路でLcに蓄積されたエネルギが平滑コンデンサCH1およびCH2に移行する。
 CL→Lc→D4→CH1→CH2→D1→CL
 S2のゲート電圧がロウ電圧、S3のゲート電圧がハイ電圧の状態(図8の時間帯(23))では、S2がオフ、S3がオンであることから、以下の経路でエネルギが平滑コンデンサCH2に移行するとともに、リアクトルLcにエネルギを蓄積する。
 CL→Lc→S3→CH2→D1→CL
 即ち、ここでも、リアクトルLcによるエネルギの蓄勢動作が、低圧電圧端子VL、VcomL間に分圧コンデンサとして機能する平滑コンデンサCH2を介して接続されるリアクトルLcへの通電により行われる。
 S2のゲート電圧がロウ電圧、S3のゲート電圧がロウ電圧の状態(図8の時間帯(24))では、S2がオフ、S3がオフであることから、以下の経路でLcに蓄積されたエネルギが平滑コンデンサCH1およびCH2に移行する。
 CL→Lc→D4→CH1→CH2→D1→CL
 この一連の動作の繰り返しにより、1×V1≦V2<2×V1の範囲で、入力された電圧V1を昇圧調整して、電圧V2として出力する。
 なお、上記範囲の内、V1=V2となるのは、S2、S3を共にオフの状態にすることに相当する。
 次に、高圧電圧端子VH-VcomH間に、電圧V2としてV2>2×V1に昇圧して出力する動作について説明する。この場合も同様に、高圧電圧端子VH-VcomH間には直流負荷が接続され、エネルギをVL-VcomL→VH-VcomHの経路で消費している状態である。
 図9に、IGBT2とS3のゲート信号電圧波形と、リアクトルLcの電流ILの波形を示している。この場合も定常状態において、平滑コンデンサCH1およびCH2には電圧0.5×V2の電圧が蓄積されている。同様に、昇圧動作において、S1とS4とはオフした状態でありS2とS3とがオンオフの動作を行う。動作は下記の4つのモードから成る。
 S2のゲート電圧がハイ電圧、S3のゲート電圧がハイ電圧の状態(図9の時間帯(25))では、S2がオン、S3がオンであることから、以下の経路でエネルギがリアクトルLcに移行する。
 CL→Lc→S3→S2→CL
 即ち、リアクトルLcによるエネルギの蓄勢動作が、低圧電圧端子VL、VcomL間に平滑コンデンサCH1、CH2を介さず直接接続されるリアクトルLcへの通電により行われる。
 S2のゲート電圧がハイ電圧、S3のゲート電圧がロウ電圧の状態(図9の時間帯(26))では、S2がオン、S3がオフであることから、以下の経路でLcに蓄積されたエネルギがコンデンサCH1に移行する。
 CL→Lc→D4→CH1→S2→CL
 S2のゲート電圧がハイ電圧、S3のゲート電圧がハイ電圧の状態(図9の時間帯(27))では、S2がオン、S3がオンであることから、以下の経路でエネルギがリアクトルLcに移行する。
 CL→Lc→S3→S2→CL
 即ち、ここでも、リアクトルLcによるエネルギの蓄勢動作が、低圧電圧端子VL、VcomL間に平滑コンデンサCH1、CH2を介さず直接接続されるリアクトルLcへの通電により行われる。
 S2のゲート電圧がロウ電圧、S3のゲート電圧がハイ電圧の状態(図9の時間帯(28))では、S2がオフ、S3がオンであることから、以下の経路でLcに蓄積されたエネルギがコンデンサCH2に移行する。
 CL→Lc→S3→CH2→D1→CL
 この一連の動作の繰り返しにより、V2>2×V1の範囲で、入力された電圧V1を昇圧調整して、電圧V2として出力する。
 次に、降圧動作について述べる。降圧動作でも、入出力電圧の関係において、V2が1×V1以上で2×V1より小さい場合と2×V1より大きい場合とで動作が異なる。まず、低圧電圧端子VL-VcomL間に、電圧V1として1×V2≧V1>0.5×V2に降圧して出力する動作について説明する。
 この場合は、電圧V2の直流電源(平滑コンデンサCH1、CH2は容量が大きいとして所定の時間内の動作では直流電源とみなしてよい)が高圧電圧端子VH-VcomH間に接続され、低圧電圧端子VL-VcomL間には直流負荷が接続され、エネルギをVH-VcomH→VL-VcomLの経路で消費している状態である。
 図10に、IGBTS1とS4のゲート信号電圧波形と、リアクトルLcの電流ILの波形を示している。昇圧動作時の電流を正の方向として表したので、ここではILを負の電流として表している。定常状態において、ここでも平滑コンデンサCH1およびCH2には電圧0.5×V2の電圧が蓄積されている。降圧動作において、S2とS3はオフした状態でありS1とS4とがオンオフの動作を行う。動作は下記の4つのモードから成る。
 S1のゲート電圧がハイ電圧、S4のゲート電圧がハイ電圧の状態(図10の時間帯(29))では、S1がオン、S4がオンであることから、以下の経路でエネルギがリアクトルLcに移行する。
 (CH2→CH1)→S4→Lc→CL→S1→(CH2→CH1)
 平滑コンデンサCH1とCH2との直列体は、高圧電圧端子VH-VcomH間に接続される直流電源でもあるので、この経路により、リアクトルLcによるエネルギの蓄勢動作が、高圧電圧端子VH、VcomH間に(分圧コンデンサとして機能する平滑コンデンサCH1、CH2を介さず)直接接続されるリアクトルLcへの通電により行われる、と言える。
 S1のゲート電圧がハイ電圧、S4のゲート電圧がロウ電圧の状態(図10の時間帯(30))では、S1がオン、S4がオフであることから、以下の経路でLcに蓄積されたエネルギがコンデンサCLに移行する。
 CH2→D3→Lc→CL→S1→CH2
 S1のゲート電圧がハイ電圧、S4のゲート電圧がハイ電圧の状態(図10の時間帯(31))では、S1がオン、S4がオンであることから、以下の経路でエネルギがリアクトルLcに移行する。
 (CH2→CH1)→S4→Lc→CL→S1→(CH2→CH1)
 即ち、ここでも、リアクトルLcによるエネルギの蓄勢動作が、高圧電圧端子VH、VcomH間に(分圧コンデンサとして機能する平滑コンデンサCH1、CH2を介さず)直接接続されるリアクトルLcへの通電により行われる。
 S1のゲート電圧がロウ電圧、S4のゲート電圧がハイ電圧の状態(図10の時間帯(32))では、S1がオフ、S4がオンであることから、以下の経路でリアクトルLcのエネルギがコンデンサCLに移行する。
 CH1→S4→Lc→CL→D2→CH1
 この一連の動作の繰り返しにより、1×V2≧V1>0.5×V2の範囲で、入力された電圧V2を降圧調整して、電圧V1として出力する。
 なお、上記範囲の内、V1=V2となるのは、S1、S4を共にオンの状態を維持することに相当する。
 次に、低圧電圧端子VL-VcomL間に、電圧V1としてV1<0.5×V2に降圧して出力する動作について説明する。この場合も同様に、低圧電圧端子VL-VcomL間には直流負荷が接続され、エネルギをVH-VcomH→VL-VcomLの経路で消費している状態である。
 図11に、IGBTS1とS4のゲート信号電圧波形と、リアクトルLcの電流ILの波形を示している。ここでもまた、電流ILを負の電流として表している。この場合も定常状態において、平滑コンデンサCH1およびCH2には電圧0.5×V2の電圧が蓄積されている。同様に、降圧動作において、S2とS3はオフした状態でありS1とS4とがオンオフの動作を行う。動作は下記の4つのモードから成る。
 S1のゲート電圧がハイ電圧、S4のゲート電圧がロウ電圧の状態(図11の時間帯(33))では、S1がオン、S4がオフであることから、以下の経路でエネルギがCLに移行するとともに、リアクトルLcにエネルギを蓄積する。
 CH2→D3→Lc→CL→S1→CH2
 平滑コンデンサCH2は、高圧電圧端子VH-VcomH間の電圧V2を分圧した電圧(0.5×V2)を蓄積しているものであることから、上記した経路により、リアクトルLcによるエネルギの蓄勢動作は、高圧電圧端子VH、VcomH間に分圧コンデンサとして機能する平滑コンデンサCH2を介して接続されるリアクトルLcへの通電により行われる、と言える。
 S1のゲート電圧がロウ電圧、S4のゲート電圧がロウ電圧の状態(図11の時間帯(34))では、S1がオフ、S4がオフであることから、以下の経路でLcに蓄積されたエネルギがコンデンサCLに移行する。
 Lc→CL→D2→D3→Lc
 S1のゲート電圧がロウ電圧、S4のゲート電圧がハイ電圧の状態(図11の時間帯(35))では、S1がオフ、S4がオンであることから、以下の経路でエネルギがCLに移行するとともに、リアクトルLcに蓄積される。
 CH1→S4→Lc→CL→D2→CH1
 即ち、ここでも、リアクトルLcによるエネルギの蓄勢動作は、高圧電圧端子VH、VcomH間に分圧コンデンサとして機能する平滑コンデンサCH1を介して接続されるリアクトルLcへの通電により行われる。
 S1のゲート電圧がロウ電圧、S4のゲート電圧がロウ電圧の状態(図11の時間帯(36))では、S1がオフ、S4がオフであることから、以下の経路でLcに蓄積されたエネルギがコンデンサCLに移行する。
 Lc→CL→D2→D3→Lc
 この一連の動作の繰り返しにより、V1<0.5×V2の範囲で、入力された電圧V2を降圧調整して、電圧V1として出力する。
 実施の形態2のDC/DC電力変換装置も、実施の形態1と同様、以上説明したように動作することにより昇降圧の動作ができる。更に、実施の形態1で説明したと同様の原理で、スイッチング周波数f、電流リプルのピーク-ピーク値ΔI、リアクトルのインダクタンスL、昇降圧動作に係る電圧V1、V2、および電圧比kの間に先の(14)式および(15)式が成立する。
 従って、この実施の形態2における制御回路220は、リアクトルの電流リプルΔIとして許容される値を入力し、スイッチング周波数fを、電圧比kに応じて(14)式または(15)式で算出される値に変化させることにより、リアクトルの電流リプルの大きさを変化させること無しにスイッチ素子のスイッチング損失を低減し、DC/DC電力変換装置の広い動作範囲において電力消費量を低減することができる。
 上記で説明したように、昇圧動作のみの場合はS1、S4は不要であり、降圧動作のみの場合はS2、S3は不要となる。よって、片方向の機能のみでよい場合、不要なスイッチ素子を省いた構成とすればよい。
実施の形態3.
 先の実施の形態1では、記述したように、(14)式、(15)式に基づき、電流リプルの大きさが一定になるようスイッチング周波数fを連続的に変化させる必要があり、制御が複雑になるという側面がある。また、電圧比k=2では、両式からは有効なスイッチング周波数fが得られないので、これも記述したとおり、電圧比k=2の付近で動作させたい場合は、スイッチング周波数fとして極小さい値に設定するという制御上の特別の配慮が必要となる。
 この発明の実施の形態3は、以上の点を考慮してなされたもので、スイッチング周波数fを電圧比kに合わせて可変させるのではなく、スイッチング周波数fを固定の何種類かで変化させ、リアクトルのインダクタンス値Lをさほど大きくしないで(リアクトルのサイズをさほど大きくしないで)、電流リプルをある値以下に抑えるとともに、スイッチング周波数が低い動作領域において電力消費量を低減できるようにしたものである。
 回路構成は図1に示したものと同じで再度の説明は省略する。同様に、DC/DC電力変換装置としては、低圧電圧端子VLとVcom間に入力された電圧V1を、V1以上に昇圧された電圧V2に変換して高圧電圧端子VHとVcom間に出力したり(昇圧動作)、高圧電圧端子VHとVcom間に入力された電圧V2を、V2以下に降圧された電圧V1に変換して低圧電圧端子VLとVcom間に出力する(降圧動作)DC/DC電力変換機能を有する。
 昇圧動作、降圧動作自体は、先の実施の形態1で説明した通りであり、再度の説明は省略する。ここでは、電圧比kの範囲を複数の動作領域に分割し、各動作領域において異なる2種類のスイッチング周波数を設定し、動作領域に応じて、従って、電圧比kに応じてスイッチング周波数fを切り替える方法とその効果について説明する。
 先ず、その前提として、昇圧動作においてスイッチング周波数fを10kHz一定とした場合における、出力電圧と電流リプルΔI(最大値と最小値の差)との関係を図12に示す。ここでは、V1=250V、リアクトルのL=100μHとしている。
 図からわかるように、出力電圧260V~660Vの範囲において、電流リプルは375V(250Vの1.5倍)で極大値をもち、500V(250Vの2倍)で最小値、500V以上では電圧の大きさに依存して大きくなり、660Vでは最大値の30.3Aをとる。
 次に、動作領域260V~280Vの範囲ではf=5kHz、280V~440Vではf=10kHz、440V~560Vではf=5kHz、560V~660Vではf=10kHzで動作させた場合の出力電圧と電流リプルΔIとの関係を図13に示す。このような周波数を選んで動作させることにより、リアクトルの電流リプルを制限値30.3A以下に抑制しつつ、260V~280V、440V~560Vの動作領域でf=5kHzでの動作が可能となる。
 そして、このf=5kHzの動作領域で消費電力を低減できることから、動作電圧範囲の全体として見て電力消費量を低減でき、装置を冷却する負担が軽減して装置の小形軽量化も実現し、装置の耐久性も向上し、制御も全体として簡便となる。
 なお、上記の例では、動作電圧範囲の全体においては、3回の周波数切替点があるが、動作電圧範囲が440V~660Vの条件では、周波数切替点は2回となる。また、上記の例では2種類の周波数を設定したが、3種類、4種類と増やすことによりさらに電流リプルを低く抑え、消費電力を低下させることができる。
 また、上記の例では昇圧動作について説明したが、降圧動作でも同様な動作が可能であり、同様な効果を得ることができる。また、実施の形態2で示したDC/DC電力変換装置においても同様な動作が可能であり、同様な効果を得ることができる。
 更に、実施の形態1および2で説明したように、昇圧動作あるいは降圧動作のみの機能でよい場合は、不要なスイッチ素子を省いた構成とすればよい。

Claims (17)

  1. 高圧電圧端子、低圧電圧端子、前記高圧電圧端子間に接続され、整流素子を複数個互いに直列に接続してなる素子直列体、前記複数個の整流素子の全部または一部のそれぞれに並列に接続されたスイッチ素子、複数の前記整流素子と並列に接続され前記高圧電圧端子間の電圧を分圧した電圧を保持するコンデンサ、一端が前記低圧電圧端子の一方に接続され他端が前記整流素子の直列接続点に接続され前記スイッチ素子のスイッチング動作に応じて通電しエネルギの蓄勢放勢を行うリアクトル、および前記スイッチ素子のオンオフ動作を制御することにより前記高圧電圧端子間の電圧と前記低圧電圧端子間の電圧との間の直流電圧変換の制御を行う制御回路を備えたDC/DC電力変換装置において、
     前記制御回路は、前記リアクトルに流れる電流リプルの大きさが前記直流電圧変換の電圧比に拘わらず所定の制限値以下となるよう、前記電圧比に応じて前記スイッチ素子をオンオフするスイッチング周波数を変化させるようにしたDC/DC電力変換装置。
  2. 前記素子直列体は、低電位側から高電位側に順次互いに直列に接続された第1~第4の整流素子からなり、前記低圧電圧端子は、前記リアクトルを介して前記第1の整流素子と前記第2の整流素子との直列体と並列に接続され、前記コンデンサは、前記第2の整流素子と前記第3の整流素子との直列体と並列に接続されており、
     前記第1~第4の整流素子のそれぞれに並列に前記スイッチ素子を接続することにより、前記低圧電圧端子間の電圧を前記高圧電圧端子間の電圧に昇圧する昇圧動作と前記高圧電圧端子間の電圧を前記低圧電圧端子間の電圧に降圧する降圧動作の双方を実行するようにした請求項1記載のDC/DC電力変換装置。
  3. 前記素子直列体は、低電位側から高電位側に順次互いに直列に接続された第1~第4の整流素子からなり、前記低圧電圧端子は、前記リアクトルを介して前記第1の整流素子と前記第2の整流素子との直列体と並列に接続され、前記コンデンサは、前記第2の整流素子と前記第3の整流素子との直列体と並列に接続されており、
     前記第1の整流素子と前記第2の整流素子とのそれぞれに並列に前記スイッチ素子を接続することにより、前記低圧電圧端子間の電圧を前記高圧電圧端子間の電圧に昇圧する昇圧動作を実行するようにした請求項1記載のDC/DC電力変換装置。
  4. 前記素子直列体は、低電位側から高電位側に順次互いに直列に接続された第1~第4の整流素子からなり、前記低圧電圧端子は、前記リアクトルを介して前記第1の整流素子と前記第2の整流素子との直列体と並列に接続され、前記コンデンサは、前記第2の整流素子と前記第3の整流素子との直列体と並列に接続されており、
     前記第3の整流素子と前記第4の整流素子とのそれぞれに並列に前記スイッチ素子を接続することにより、前記高圧電圧端子間の電圧を前記低圧電圧端子間の電圧に降圧する降圧動作を実行するようにした請求項1記載のDC/DC電力変換装置。
  5. 前記素子直列体は、低電位側から高電位側に順次互いに直列に接続された第1~第4の整流素子からなり、前記低圧電圧端子は、前記リアクトルを介して前記第2の整流素子と前記第3の整流素子との直列体と並列に接続され、前記コンデンサは、前記第1の整流素子と前記第2の整流素子との直列体および前記第3の整流素子と前記第4の整流素子との直列体のそれぞれと並列に接続されており、
     前記第1~第4の整流素子のそれぞれに並列に前記スイッチ素子を接続することにより、前記低圧電圧端子間の電圧を前記高圧電圧端子間の電圧に昇圧する昇圧動作と前記高圧電圧端子間の電圧を前記低圧電圧端子間の電圧に降圧する降圧動作の双方を実行するようにした請求項1記載のDC/DC電力変換装置。
  6. 前記素子直列体は、低電位側から高電位側に順次互いに直列に接続された第1~第4の整流素子からなり、前記低圧電圧端子は、前記リアクトルを介して前記第2の整流素子と前記第3の整流素子との直列体と並列に接続され、前記コンデンサは、前記第1の整流素子と前記第2の整流素子との直列体および前記第3の整流素子と前記第4の整流素子との直列体のそれぞれと並列に接続されており、
     前記第2の整流素子と前記第3の整流素子とのそれぞれに並列に前記スイッチ素子を接続することにより、前記低圧電圧端子間の電圧を前記高圧電圧端子間の電圧に昇圧する昇圧動作を実行するようにした請求項1記載のDC/DC電力変換装置。
  7. 前記素子直列体は、低電位側から高電位側に順次互いに直列に接続された第1~第4の整流素子からなり、前記低圧電圧端子は、前記リアクトルを介して前記第2の整流素子と前記第3の整流素子との直列体と並列に接続され、前記コンデンサは、前記第1の整流素子と前記第2の整流素子との直列体および前記第3の整流素子と前記第4の整流素子との直列体のそれぞれと並列に接続されており、
     前記第1の整流素子と前記第4の整流素子とのそれぞれに並列に前記スイッチ素子を接続することにより、前記高圧電圧端子間の電圧を前記低圧電圧端子間の電圧に降圧する降圧動作を実行するようにした請求項1記載のDC/DC電力変換装置。
  8. 前記低圧電圧端子間に直流電源が接続され前記高圧電圧端子間に直流負荷が接続され、
     前記制御回路は、前記リアクトルによる前記エネルギの蓄勢動作が、前記低圧電圧端子間に前記コンデンサを介して接続される前記リアクトルへの通電により行われるよう前記各スイッチ素子をオンオフ制御することにより、(前記高圧電圧端子間の電圧/前記低圧電圧端子間の電圧)を電圧比kとしたとき、1≦k<2の範囲で昇圧動作の直流電圧変換の制御をする請求項1~3、5、6のいずれか1項に記載のDC/DC電力変換装置。
  9. 前記低圧電圧端子間に直流電源が接続され前記高圧電圧端子間に直流負荷が接続され、
     前記制御回路は、前記リアクトルによる前記エネルギの蓄勢動作が、前記低圧電圧端子間に前記コンデンサを介さず接続される前記リアクトルへの通電により行われるよう前記各スイッチ素子をオンオフ制御することにより、(前記高圧電圧端子間の電圧/前記低圧電圧端子間の電圧)を電圧比kとしたとき、k>2の範囲で昇圧動作の直流電圧変換の制御をする請求項1~3、5、6のいずれか1項に記載のDC/DC電力変換装置。
  10. 前記高圧電圧端子間に直流電源が接続され前記低圧電圧端子間に直流負荷が接続され、
     前記制御回路は、前記リアクトルによる前記エネルギの蓄勢動作が、前記高圧電圧端子間に前記コンデンサを介さず接続される前記リアクトルへの通電により行われるよう前記各スイッチ素子をオンオフ制御することにより、(前記高圧電圧端子間の電圧/前記低圧電圧端子間の電圧)を電圧比kとしたとき、1≦k<2の範囲で降圧動作の直流電圧変換の制御をする請求項1、2、4、5、7のいずれか1項に記載のDC/DC電力変換装置。
  11. 前記高圧電圧端子間に直流電源が接続され前記低圧電圧端子間に直流負荷が接続され、
     前記制御回路は、前記リアクトルによる前記エネルギの蓄勢動作が、前記高圧電圧端子間に前記コンデンサを介して接続される前記リアクトルへの通電により行われるよう前記各スイッチ素子をオンオフ制御することにより、(前記高圧電圧端子間の電圧/前記低圧電圧端子間の電圧)を電圧比kとしたとき、k>2の範囲で降圧動作の直流電圧変換の制御をする請求項1、2、4、5、7のいずれか1項に記載のDC/DC電力変換装置。
  12. 前記低圧電圧端子間の電圧をV1、前記スイッチング周波数をf、前記リアクトルのインダクタンスをL、前記リアクトルに流れる電流リプルの前記制限値をΔIとしたとき、
     前記制御回路は、下式に基づき、前記電圧比kに応じて前記スイッチング周波数fを変化させるようにした請求項8記載のDC/DC電力変換装置。
     f=(V1/(2×L×ΔI))×(k-1)×(2-k)/k
  13. 前記低圧電圧端子間の電圧をV1、前記スイッチング周波数をf、前記リアクトルのインダクタンスをL、前記リアクトルに流れる電流リプルの前記制限値をΔIとしたとき、
     前記制御回路は、下式に基づき、前記電圧比kに応じて前記スイッチング周波数fを変化させるようにした請求項10記載のDC/DC電力変換装置。
     f=(V1/(2×L×ΔI))×(k-1)×(2-k)/k
  14. 前記低圧電圧端子間の電圧をV1、前記スイッチング周波数をf、前記リアクトルのインダクタンスをL、前記リアクトルに流れる電流リプルの前記制限値をΔIとしたとき、
     前記制御回路は、下式に基づき、前記電圧比kに応じて前記スイッチング周波数fを変化させるようにした請求項9記載のDC/DC電力変換装置。
     f=(V1/(2×L×ΔI))×(k-2)/k
  15. 前記低圧電圧端子間の電圧をV1、前記スイッチング周波数をf、前記リアクトルのインダクタンスをL、前記リアクトルに流れる電流リプルの前記制限値をΔIとしたとき、
     前記制御回路は、下式に基づき、前記電圧比kに応じて前記スイッチング周波数fを変化させるようにした請求項11記載のDC/DC電力変換装置。
     f=(V1/(2×L×ΔI))×(k-2)/k
  16. 前記昇圧動作または前記降圧動作を実行する場合の前記電圧比kの範囲を複数の動作領域に分割し、
     前記制御回路は、前記リアクトルに流れる前記電流リプルの大きさが前記動作領域に拘わらず前記制限値以下となるよう、前記動作領域毎に前記スイッチ素子をオンオフするスイッチング周波数を設定するようにした請求項1ないし7のいずれか1項に記載のDC/DC電力変換装置。
  17. 前記動作領域として前記電圧比k=2を含む動作領域を設け、当該動作領域で設定する前記スイッチング周波数を他の動作領域で設定する前記スイッチング周波数以下とした請求項16記載のDC/DC電力変換装置。
     
PCT/JP2010/004746 2009-08-05 2010-07-26 Dc/dc電力変換装置 WO2011016199A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/382,231 US8773082B2 (en) 2009-08-05 2010-07-26 DC/DC power conversion apparatus
JP2011525752A JP5325983B2 (ja) 2009-08-05 2010-07-26 Dc/dc電力変換装置
DE112010003189T DE112010003189T5 (de) 2009-08-05 2010-07-26 DC/DC-Leistungsumwandlungsvorrichtung
EP10806199A EP2485376A1 (en) 2009-08-05 2010-07-26 Dc/dc power converter
CN201080034386.8A CN102474180B (zh) 2009-08-05 2010-07-26 Dc/dc电力转换装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009182127 2009-08-05
JP2009-182127 2009-08-05

Publications (1)

Publication Number Publication Date
WO2011016199A1 true WO2011016199A1 (ja) 2011-02-10

Family

ID=43544109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004746 WO2011016199A1 (ja) 2009-08-05 2010-07-26 Dc/dc電力変換装置

Country Status (6)

Country Link
US (1) US8773082B2 (ja)
EP (1) EP2485376A1 (ja)
JP (1) JP5325983B2 (ja)
CN (1) CN102474180B (ja)
DE (1) DE112010003189T5 (ja)
WO (1) WO2011016199A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140781A1 (ja) * 2011-04-15 2012-10-18 三菱電機株式会社 Dc/dc電力変換装置および太陽光発電システム
JP2013192383A (ja) * 2012-03-14 2013-09-26 Sanken Electric Co Ltd Dc−dcコンバータ
JP2014036491A (ja) * 2012-08-08 2014-02-24 Mitsubishi Electric Corp Dc/dc電力変換装置および太陽光発電システム用パワーコンディショナ
JP2015012645A (ja) * 2013-06-27 2015-01-19 サンケン電気株式会社 Dc−dcコンバータ及びac−dcコンバータ
JP2016041012A (ja) * 2015-12-22 2016-03-24 三菱電機株式会社 電力変換装置
WO2016111156A1 (ja) * 2015-01-08 2016-07-14 三菱電機株式会社 Dc/dcコンバータ
JP2017050977A (ja) * 2015-09-02 2017-03-09 三菱電機株式会社 電力変換装置
JPWO2016035209A1 (ja) * 2014-09-05 2017-04-27 三菱電機株式会社 電力変換装置及び冷凍サイクル装置
US10027234B2 (en) 2015-07-24 2018-07-17 Mitsubishi Electric Corporation Power conversion device for performing power conversion between DC and DC by controlling switching of a semiconductor switching element
JP2020501488A (ja) * 2016-12-01 2020-01-16 インテグレーテッド・デバイス・テクノロジー・インコーポレーテッド バッテリ充電システム
DE112014006339B4 (de) 2014-02-06 2022-09-15 Mitsubishi Electric Corporation Entladungsvorrichtung

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8604757B2 (en) 2010-02-01 2013-12-10 Mitsubishi Electric Corporation DC/DC power conversion apparatus
JP5189620B2 (ja) 2010-06-29 2013-04-24 三菱電機株式会社 Dc/dc電力変換装置
US9007042B2 (en) * 2010-07-30 2015-04-14 Mitsubishi Electric Corporation DC/DC converter
JP5800130B2 (ja) * 2011-06-20 2015-10-28 富士電機株式会社 直流電源システム
JP5780914B2 (ja) * 2011-10-24 2015-09-16 株式会社豊田中央研究所 電力変換器の制御装置および制御方法
US9203292B2 (en) * 2012-06-11 2015-12-01 Power Systems Technologies Ltd. Electromagnetic interference emission suppressor
US9203293B2 (en) * 2012-06-11 2015-12-01 Power Systems Technologies Ltd. Method of suppressing electromagnetic interference emission
JP5673629B2 (ja) * 2012-08-29 2015-02-18 株式会社豊田自動織機 Lcフィルタの保護装置
US9660540B2 (en) 2012-11-05 2017-05-23 Flextronics Ap, Llc Digital error signal comparator
US20140184189A1 (en) * 2013-01-02 2014-07-03 Loai Galal Bahgat Salem Inductively assisted switched capacitor dc-dc converter
CN103042938A (zh) * 2013-01-17 2013-04-17 辽宁太阳能研究应用有限公司 太阳能电动车
DE102013218601A1 (de) * 2013-09-17 2015-04-02 Siemens Aktiengesellschaft Energiespeicheranordnung, Energiespeichersystem und Verfahren für das Betreiben einer Energiespeicheranordnung
DE102014204549A1 (de) * 2014-03-12 2015-09-17 Siemens Aktiengesellschaft Steuerungsverfahren für einen DC-DC-Konverter
EP3255775B1 (en) * 2015-02-02 2021-06-02 Mitsubishi Electric Corporation Power conversion device
EP3320607B1 (en) * 2015-07-10 2020-03-11 Maxim Integrated Products, Inc. Systems and methods for reducing switch stress in switched mode power supplies
JP6121018B1 (ja) * 2016-03-23 2017-04-26 三菱電機株式会社 Dc/dcコンバータ
JP6180576B1 (ja) 2016-04-12 2017-08-16 三菱電機株式会社 Dc−dc電圧変換装置
EP3242385A1 (en) * 2016-05-06 2017-11-08 Merus Audio ApS A load adaptable boost dc-dc power converter
US9935549B2 (en) * 2016-07-08 2018-04-03 Toshiba International Corporation Multi-switch power converter
US9893613B1 (en) * 2016-07-29 2018-02-13 Mitsubishi Electric Corporation DC/DC converter
US10340689B2 (en) * 2016-10-21 2019-07-02 Nxp B.V. System and method for power management
JP6659190B2 (ja) * 2017-01-23 2020-03-04 三菱電機株式会社 電力変換装置、および電力変換システム
US10770970B2 (en) * 2017-06-09 2020-09-08 Ford Global Technologies, Llc Flying capacitor based variable voltage converter
CN107482905A (zh) * 2017-07-19 2017-12-15 深圳市华星光电半导体显示技术有限公司 直流电压转换电路及直流电压转换方法与液晶显示装置
JP7075199B2 (ja) 2017-11-17 2022-05-25 株式会社Soken 電力変換装置の制御装置
CN107947305A (zh) * 2017-12-01 2018-04-20 珠海市魅族科技有限公司 一种无线充电电路、系统、方法及终端设备
CN110198057A (zh) * 2018-02-26 2019-09-03 立锜科技股份有限公司 充电电路及其电源转换电路
JP7127429B2 (ja) * 2018-08-28 2022-08-30 トヨタ自動車株式会社 電動バルブシステム
CN109600067B (zh) * 2018-11-21 2020-05-19 华中科技大学 一种适用于三相电力电子变换器的均匀分布pwm方法及系统
DE102018222905A1 (de) * 2018-12-31 2020-07-02 Dialog Semiconductor (Uk) Limited Single Inductor Multiple Output-Regler mit hybrider Negativ- und Positivschienen-Generierung
US11448685B2 (en) 2020-08-06 2022-09-20 Innoscience (Zhuhai) Technology Co., Ltd. Device and method for testing semiconductor devices
CN112953202B (zh) * 2021-03-03 2023-10-20 华为数字能源技术有限公司 电压转换电路及供电系统
CN113938001B (zh) * 2021-09-17 2024-06-25 华为数字能源技术有限公司 三电平变换器及其控制方法、以及供电系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192162A (ja) 1984-10-08 1986-05-10 Sharp Corp Dc/dcコンバ−タ
JP2005224060A (ja) 2004-02-06 2005-08-18 Honda Motor Co Ltd Dc/dcコンバータ、及びプログラム。
JP2008295228A (ja) * 2007-05-25 2008-12-04 Toshiba Mitsubishi-Electric Industrial System Corp 昇圧チョッパ回路、降圧チョッパ回路及びそれを用いたdc−dcコンバータ回路

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1562279A3 (en) * 2004-02-06 2005-11-02 HONDA MOTOR CO., Ltd. DC/DC converter and program
US7170268B2 (en) 2004-08-09 2007-01-30 Lite-On Technology Corporation DC to DC converter with high frequency zigzag transformer
US7327127B2 (en) * 2005-06-17 2008-02-05 Via Technologies, Inc. Pulse-frequency mode DC-DC converter circuit
US7688046B2 (en) 2005-07-25 2010-03-30 Apple Inc. Power converters having varied switching frequencies
US7746041B2 (en) 2006-06-27 2010-06-29 Virginia Tech Intellectual Properties, Inc. Non-isolated bus converters with voltage divider topology
CN101517876B (zh) 2006-09-15 2012-02-15 三菱电机株式会社 Dc/dc电力转换装置
WO2008032424A1 (fr) 2006-09-15 2008-03-20 Mitsubishi Electric Corporation Convertisseur de puissance cc/cc
JP2008141871A (ja) * 2006-12-01 2008-06-19 Honda Motor Co Ltd 電力変換器
JP5049637B2 (ja) 2007-04-12 2012-10-17 三菱電機株式会社 Dc/dc電力変換装置
US7619907B2 (en) 2007-04-12 2009-11-17 Mitsubishi Electric Corporation DC/DC power conversion device
US7782032B2 (en) 2007-12-03 2010-08-24 California Polytechnic Corporation System method and apparatus for a multi-phase DC-to-DC converter
US8212537B2 (en) * 2009-07-23 2012-07-03 International Business Machines Corporation Integratable efficient switching down converter
JP5189620B2 (ja) * 2010-06-29 2013-04-24 三菱電機株式会社 Dc/dc電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192162A (ja) 1984-10-08 1986-05-10 Sharp Corp Dc/dcコンバ−タ
JP2005224060A (ja) 2004-02-06 2005-08-18 Honda Motor Co Ltd Dc/dcコンバータ、及びプログラム。
JP2008295228A (ja) * 2007-05-25 2008-12-04 Toshiba Mitsubishi-Electric Industrial System Corp 昇圧チョッパ回路、降圧チョッパ回路及びそれを用いたdc−dcコンバータ回路

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140781A1 (ja) * 2011-04-15 2012-10-18 三菱電機株式会社 Dc/dc電力変換装置および太陽光発電システム
JP5528622B2 (ja) * 2011-04-15 2014-06-25 三菱電機株式会社 Dc/dc電力変換装置および太陽光発電システム
JP2013192383A (ja) * 2012-03-14 2013-09-26 Sanken Electric Co Ltd Dc−dcコンバータ
JP2014036491A (ja) * 2012-08-08 2014-02-24 Mitsubishi Electric Corp Dc/dc電力変換装置および太陽光発電システム用パワーコンディショナ
JP2015012645A (ja) * 2013-06-27 2015-01-19 サンケン電気株式会社 Dc−dcコンバータ及びac−dcコンバータ
DE112014006339B4 (de) 2014-02-06 2022-09-15 Mitsubishi Electric Corporation Entladungsvorrichtung
JPWO2016035209A1 (ja) * 2014-09-05 2017-04-27 三菱電機株式会社 電力変換装置及び冷凍サイクル装置
JPWO2016111156A1 (ja) * 2015-01-08 2017-04-27 三菱電機株式会社 Dc/dcコンバータ
WO2016111156A1 (ja) * 2015-01-08 2016-07-14 三菱電機株式会社 Dc/dcコンバータ
CN107112897A (zh) * 2015-01-08 2017-08-29 三菱电机株式会社 Dc/dc转换器
US10003264B2 (en) 2015-01-08 2018-06-19 Mitsubishi Electric Corporation DC/DC converter
CN107112897B (zh) * 2015-01-08 2019-05-10 三菱电机株式会社 Dc/dc转换器
US10027234B2 (en) 2015-07-24 2018-07-17 Mitsubishi Electric Corporation Power conversion device for performing power conversion between DC and DC by controlling switching of a semiconductor switching element
JP2017050977A (ja) * 2015-09-02 2017-03-09 三菱電機株式会社 電力変換装置
JP2016041012A (ja) * 2015-12-22 2016-03-24 三菱電機株式会社 電力変換装置
JP2020501488A (ja) * 2016-12-01 2020-01-16 インテグレーテッド・デバイス・テクノロジー・インコーポレーテッド バッテリ充電システム

Also Published As

Publication number Publication date
EP2485376A1 (en) 2012-08-08
US8773082B2 (en) 2014-07-08
DE112010003189T5 (de) 2012-09-20
US20120126764A1 (en) 2012-05-24
JP5325983B2 (ja) 2013-10-23
CN102474180A (zh) 2012-05-23
JPWO2011016199A1 (ja) 2013-01-10
CN102474180B (zh) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5325983B2 (ja) Dc/dc電力変換装置
US10340810B2 (en) Bidirectional DC converter assembly having cascade of isolated resonant converter and step-up/step-down converter
JP5492040B2 (ja) 電源システム
US9438115B2 (en) Power supply system
WO2012001828A1 (ja) Dc/dc電力変換装置
WO2011161729A1 (ja) Dc-dcコンバータ
JP6157388B2 (ja) 双方向dcdcコンバータ
WO2011151940A1 (ja) 電力変換装置
JP2008141871A (ja) 電力変換器
KR20110095950A (ko) 트랜스 결합형 승압기의 제어 장치
JP2015204639A (ja) 電力変換装置及びその制御方法
JP6223609B2 (ja) Dc/dcコンバータ
US8830701B2 (en) DC-DC converter
US20120092909A1 (en) Power conversion apparatus
JP7001896B2 (ja) Dc-dcコンバータ
JP2014239579A (ja) Dc/dcコンバータおよびバッテリ充放電装置
JP2017060303A (ja) 電源装置
WO2019017361A1 (ja) 電力変換装置
JP4365171B2 (ja) 電力変換装置及びそれを用いたパワーコンディショナ
JP4119985B2 (ja) 直列電気二重層コンデンサ装置
JP5924281B2 (ja) 電力変換装置及び系統連系システム
JP2019009848A (ja) Dc−dcコンバータ、これを用いた電源システム及び当該電源システムを用いた自動車
JP5191270B2 (ja) デッドバンド補償方法および補償装置
JP2013005642A (ja) 電力変換装置
JP2013005644A (ja) 電力変換装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034386.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806199

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011525752

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13382231

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100031894

Country of ref document: DE

Ref document number: 112010003189

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2010806199

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

Effective date: 20120206