WO2019017361A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2019017361A1
WO2019017361A1 PCT/JP2018/026804 JP2018026804W WO2019017361A1 WO 2019017361 A1 WO2019017361 A1 WO 2019017361A1 JP 2018026804 W JP2018026804 W JP 2018026804W WO 2019017361 A1 WO2019017361 A1 WO 2019017361A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
duty ratio
power
period
input voltage
Prior art date
Application number
PCT/JP2018/026804
Other languages
English (en)
French (fr)
Inventor
将也 ▲高▼橋
宜久 山口
正樹 金▲崎▼
翔一 竹本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112018003721.5T priority Critical patent/DE112018003721T5/de
Publication of WO2019017361A1 publication Critical patent/WO2019017361A1/ja
Priority to US16/745,918 priority patent/US10862403B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • H02M7/53803Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration with automatic control of output voltage or current
    • H02M7/53806Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration with automatic control of output voltage or current in a push-pull configuration of the parallel type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to a power converter.
  • a power conversion device that converts power input to a primary side of a transformer by switching operation and outputs the power to a secondary side to which a load is connected.
  • the dust collection electrode of the electrostatic air purifier is connected to the secondary side of the high voltage generation transformer.
  • This device detects a current flowing through a switching element (hereinafter referred to as "switch") connected to the primary side of a high voltage generation transformer, and feeds it back to a control circuit.
  • the control circuit controls the duty ratio of the switch based on the fed back current value to keep the dust collection capacity of the electrostatic air purifier constant.
  • a resonant inverter using a push-pull circuit is known.
  • a conventional common push-pull circuit includes a smoothing capacitor and two switches, and the two switches operate alternately to control the transformer primary current flowing through two primary coils connected to a common center tap.
  • a capacitive load is connected to the secondary coil of the transformer, and the output current flowing to the load is resonated by the LC component of the secondary circuit.
  • the current flowing through the first primary coil and the second primary coil is mainly extracted from the smoothing capacitor, so the load on the smoothing capacitor is large and the ripple current tends to be large.
  • the active clamp push-pull circuit includes two lower arm switches Q1 and Q2, two upper arm switches Q3 and Q4, and a clamp capacitor C2.
  • the source terminals of the upper arm switches Q3 and Q4 and the drain terminals of the lower arm switches Q1 and Q2 are connected to the switch side ends 23 and 24 of the first primary coil 21 and the second primary coil 22, respectively.
  • the clamp capacitor C2 is connected between the drain terminals of the upper arm switches Q3 and Q4 and the low potential input terminal 12.
  • the object of the present disclosure is to suppress output fluctuation and overcurrent due to sudden change in input voltage, reduce ripple current, and reduce discontinuous current in a resonant inverter type power conversion device using an active clamp type push-pull circuit.
  • An object of the present invention is to provide a power converter that avoids occurrence.
  • the power converter of the present disclosure includes a smoothing capacitor, a first primary coil and a second primary coil, a secondary coil, first to fourth switches, a clamp capacitor, and a switch controller.
  • the smoothing capacitor is connected between the high potential input end and the low potential input end to which the input voltage of the DC power supply is applied.
  • One end of each of the first primary coil and the second primary coil is connected to a common center tap connected to the high potential input terminal, and constitutes the primary side of the transformer.
  • the secondary coil constitutes the secondary side of the transformer and a load is connected.
  • the high potential side terminal is connected to the switch side end that is the end opposite to the center tap of the first primary coil and the second primary coil, and the low potential side terminal Are connected to the low potential input terminal to constitute the lower arm of the bridge circuit.
  • the first switch and the second switch operate alternately in a predetermined switching cycle.
  • One terminal of each of the third switch and the fourth switch is connected to the switch side end of the first primary coil and the second primary coil to constitute the upper arm of the bridge circuit.
  • the third switch and the fourth switch operate alternately in the same switching cycle as the first switch and the second switch.
  • the clamp capacitor is connected between the other terminal of the third switch and the fourth switch and the low potential input terminal.
  • the bridge circuit switch comprises a first switch, a second switch, a third switch and a fourth switch.
  • the switch controller calculates a duty ratio, which is the ratio of the on time of each bridge circuit switch to the switching period, for the operation of the bridge circuit switch. Then, the switch controller controls the operation such that the fourth switch is on at least in the on period of the first switch and the third switch is on in the on period of the second switch.
  • the switch controller prohibits the first switch and the second switch from being simultaneously turned on and the third switch and the fourth switch from being simultaneously turned on.
  • the switch controller includes a lower arm DUTY ratio calculator, an upper arm DUTY ratio calculator, and a PWM generator.
  • the lower arm DUTY ratio calculator calculates the lower arm DUTY ratio, which is the duty ratio of the first switch and the second switch, using a map or an equation by feedforward control based on the input voltage.
  • the upper arm DUTY ratio calculator outputs a constant value equal to or larger than the maximum value of the lower arm DUTY ratio in the fluctuation range of the input voltage as the upper arm DUTY ratio which is the duty ratio of the third switch and the fourth switch.
  • the PWM generator generates a PWM signal based on the outputs of the lower arm DUTY ratio calculator and the upper arm DUTY ratio calculator, and outputs the PWM signal to the bridge circuit switch.
  • the lower arm DUTY ratio calculator calculates the lower arm DUTY ratio by feedforward control based on the input voltage, it is possible to appropriately suppress the output fluctuation and the overcurrent due to the sudden change of the input voltage.
  • an active clamp type push-pull circuit including a clamp capacitor and an upper arm switch is used. Since the clamp capacitor assists the discharge of the smoothing capacitor, the load on the smoothing capacitor can be reduced and the ripple current can be reduced.
  • the upper arm DUTY ratio is set to a constant value that is equal to or greater than the maximum value of the lower arm DUTY ratio in the fluctuation range of the input voltage.
  • the upper arm DUTY ratio is set to “the maximum value obtained by subtracting a value corresponding to the dead time secured between the on period of the third switch and the on period of the fourth switch from 0.5”. There is. Thereby, the voltage applied to the transformer becomes a one-pulse waveform, and the generation of the discontinuous mode can be avoided as much as possible.
  • the frequency dependency in feedforward control of the DUTY ratio can be eliminated, and acquisition and adaptation of a map according to the switching frequency become unnecessary.
  • FIG. 1 is a block diagram of a power converter using an active clamp type push-pull circuit
  • FIG. 2 is a schematic view of a discharge reactor used in an ozone generator
  • FIG. 3 is a time chart of an operation example of the active clamp type push-pull circuit
  • FIG. 4A is a diagram showing a current path in a period of timing AB
  • FIG. 4B is a diagram showing current paths in a period of timings B to C and F to A
  • FIG. 5A is a diagram showing current paths in a period of timings C to D and E to F
  • FIG. 1 is a block diagram of a power converter using an active clamp type push-pull circuit
  • FIG. 2 is a schematic view of a discharge reactor used in an ozone generator
  • FIG. 3 is a time chart of an operation example of the active clamp type push-pull circuit
  • FIG. 4A is a diagram showing a current path in a period of timing AB
  • FIG. 4B is a diagram showing current paths in
  • FIG. 5B is a diagram showing a current path in a period of timing D to E
  • FIG. 6 is a control block diagram of the switch controller of the first and second embodiments
  • Fig. 7 is a map that defines the relationship between the input voltage and the duty ratio
  • FIG. 8 is a diagram for explaining the operation of maintaining a constant output by the duty ratio control
  • FIG. 9 is a control block diagram of the power controller of the first embodiment
  • FIG. 10 is a characteristic diagram showing the relationship between switching frequency and power
  • FIG. 11 is a diagram for explaining a gate driving method according to the first embodiment
  • FIG. 12 is a waveform diagram of the transformer primary side current and transformer applied voltage according to the first embodiment
  • FIG. 13A is an input voltage-DUTY ratio map according to the first embodiment
  • FIG. 13B is a diagram showing switching frequency dependency of the duty ratio according to the first embodiment
  • FIG. 14 is a one-pulse waveform diagram used to derive the theoretical formula of the duty ratio
  • FIG. 15 is a control block diagram of the power controller of the second embodiment
  • FIG. 16 is a diagram showing an intermittent drive pulse signal
  • FIG. 17A is a diagram showing the relationship between switching frequency and instantaneous power
  • FIG. 17B is a diagram showing a relationship of burst duty ratio-average power
  • FIG. 18 is a diagram for explaining a gate driving method according to a comparative example
  • FIG. 19 is a waveform diagram of a transformer primary side current and a transformer applied voltage according to a comparative example
  • FIG. 20A is an input voltage-DUTY ratio map according to a comparative example
  • FIG. 20B is a diagram showing the switching frequency dependency of the duty ratio according to the comparative example.
  • the power conversion device is a resonant inverter that converts DC power input to the primary side of a transformer by switching operation of a push-pull circuit and outputs AC power to a secondary side to which a capacitive load is connected.
  • the resonant inverter can output high power by switching the push-pull circuit at a frequency close to the resonant frequency of the output current.
  • the resonant inverter 100 includes a transformer 20 including two primary coils 21 and 22 connected at one end to a common center tap 25 and a secondary coil 26.
  • the ends of the first primary coil 21 and the second primary coil 22 opposite to the center tap 25 are referred to as switch side ends 23 and 24, respectively.
  • the high potential input terminal 11 and the low potential input terminal 12 of the resonant inverter 100 are connected to the positive electrode and the negative electrode of the battery 10 as a DC power supply, and the input voltage Vin of the battery 10 is applied.
  • the low potential input 12 may be at ground potential, ie, at ground.
  • the center tap 25 of the transformer 20 is connected to the high potential input terminal 11.
  • a smoothing capacitor C1 and a first switch Q1 and a second switch Q2 that constitute a basic push-pull circuit are provided on the primary side of the transformer 20, a smoothing capacitor C1 and a first switch Q1 and a second switch Q2 that constitute a basic push-pull circuit are provided.
  • the smoothing capacitor C1 is connected between the high potential input end 11 and the low potential input end 12 to smooth the input voltage Vin of the battery 10.
  • the smoothing capacitor C1 has a high potential side electrode 17 and a low potential side electrode 18, and has a relatively large capacity.
  • a clamp capacitor C2 and a third switch Q3 and a fourth switch Q4 are provided as a configuration specific to the present embodiment.
  • This configuration is referred to herein as an "active clamp push-pull circuit".
  • the first switch Q1 and the second switch Q2 are also referred to as “lower arm switches Q1, Q2" because they constitute the lower arm of the bridge circuit.
  • the third switch Q3 and the fourth switch Q4 are also referred to as "upper arm switches Q3, Q4" because they constitute the upper arm of the bridge circuit.
  • the switches of the upper and lower arms are collectively referred to as "bridge circuit switch Q1-Q4".
  • the bridge circuit switches Q1 to Q4 are formed of, for example, MOSFETs, and when a gate signal is input, current flows between drain and source. Also attached is a body diode that allows current flow from the source to the drain. Note that as a switch, an IGBT or the like in which a free wheeling diode is connected in parallel may be used, and in that case, the name of the terminal may be appropriately read and interpreted as a collector, an emitter, or the like.
  • the drain terminal of the first switch Q 1 is connected to the switch end 23 of the first primary coil 21, and the source terminal is connected to the low potential input terminal 12.
  • the drain terminal of the second switch Q 2 is connected to the switch end 24 of the second primary coil 22, and the source terminal is connected to the low potential input terminal 12.
  • the first switch Q1 and the second switch Q2 operate alternately at a predetermined switching cycle Ts which is referred to in FIG. Thereby, the first current I1 and the second current I2 reverse to each other flow through the first primary coil 21 and the second primary coil 22, and accordingly, the output current Io whose direction is alternated on the secondary side of the transformer 20. Flows.
  • the source terminal of the third switch Q3 is connected to the switch end 23 of the first primary coil 21 and the drain terminal of the first switch Q1.
  • the source terminal of the fourth switch Q4 is connected to the switch end 24 of the second primary coil 22 and the drain terminal of the second switch Q2.
  • the third switch Q3 and the fourth switch Q4 operate alternately with the same switching cycle Ts as the first switch Q1 and the second switch Q2. Details of the operation will be described later.
  • the clamp capacitor C2 is connected between the drain terminals of the third switch Q3 and the fourth switch Q4 and the low potential input terminal 12.
  • the clamp capacitor C2 has a high potential side electrode 27 and a low potential side electrode 28, has a function of assisting the discharge performance of the smoothing capacitor C1 and reducing the ripple current.
  • the electrodes 31, 32 of the capacitive load C3 are connected to both ends of the secondary coil 26.
  • the end of the secondary coil 26 on the side connected to the electrode 32 is connected to the low potential input end 12. Due to the inductance component of the secondary coil 26 and the capacitance component of the load C3, resonance occurs in the output current Io flowing through the secondary circuit. Assuming that the inductance is L and the capacitance is C, the resonant frequency is represented by “1 / (2 ⁇ LC)”.
  • the load C3 of the present embodiment is a discharge reactor used in the ozone generator 30.
  • the discharge reactor C3 a plurality of pairs of electrodes 31 and 32 are provided along the flow path 33, and when pulse power of high voltage is supplied between the electrodes 31 and 32, oxygen molecules passing through the flow path 33 It is decomposed to generate oxygen radicals. Then, oxygen radicals (O) react with other oxygen molecules (O 2 ) to generate ozone (O 3 ).
  • the ozone generator 30 is mounted, for example, on a vehicle powered by an engine, and generates ozone to decompose unburned CH in exhaust gas.
  • the resonant inverter 100 adjusts the amount of ozone generation by controlling the power output to the discharge reactor C3.
  • an input voltage detector 15 is provided on the battery 10 side of the resonant inverter 100. Further, at least one of the primary side input power detector 16 of the transformer 20 or the secondary side output power detector 36 is provided.
  • the switch controller 40 according to the present embodiment includes a duty ratio calculator 50 that performs feedforward control, a power controller 60 that performs feedback control, and PWM generation that generates a PWM signal and outputs it to the gate of the bridge circuit switch Q1-Q4. Vessel 70 is included.
  • the DUTY ratio calculator 50 calculates the DUTY ratio using a map or an equation by feedforward control based on the input voltage Vin acquired from the input voltage detector 15.
  • the duty ratio is the ratio of the on time of each switch Q1-Q4 to the switching period Ts.
  • the configuration of the duty ratio calculator 50 shown in FIG. 1 is common to the comparative example to be compared with the present embodiment, and the configuration specific to the present embodiment is referred to FIG. 6 described later. .
  • the power controller 60 performs feedback control so that the actual power P acquired from the input power detector 16 or the output power detector 36 matches the target power Pref.
  • the detailed configuration of the power controller 60 will also be described later.
  • the PWM generator 70 generates a PWM signal based on the outputs of the duty ratio calculator 50 and the power controller 60.
  • the current flowing through the first primary coil 21 is referred to as a first current I1
  • the current flowing through the second primary coil 22 is referred to as a second current I2
  • the current flowing through the secondary coil 26 is referred to as an output current Io.
  • the first current I1 and the second current I2 define the direction from the center tap 25 toward the switch side end portions 23 and 24 as positive.
  • the output current Io defines the direction from the electrode 31 of the load C3 through the secondary coil 26 to the electrode 32 as positive.
  • the time chart of FIG. 3 shows the relationship between the operation of the switches Q1 and Q2 and changes in the first current I1, the second current I2 and the output current Io.
  • the first period T1 in which the first switch Q1 and the fourth switch Q4 are turned on and the second period T2 in which the second switch Q2 and the third switch Q3 are turned on are alternately switched, and the dead time is ignored. .
  • the first current I1 and the second current I2 are detected, and the on / off of each switch is switched at the timing when the first current I1 and the second current I2 become equal at the positive switching value I SHIFT .
  • the switch switching timing is not limited to this.
  • the second current I2 is larger than the first current I1
  • the output current Io is positive
  • the first current I1 is larger than the second current I2
  • the output current Io is negative.
  • symbols A to F are added to the timing at which the first current I1 or the second current I2 crosses zero, and the timing at which the first current I1 crosses the second current I2 and becomes equal.
  • the second current I2 crosses from positive to negative and from negative to positive, respectively.
  • the increasing second current I2 crosses the decreasing first current I1.
  • the first current I1 crosses positive to negative and negative to positive zero, respectively.
  • the increasing first current I1 crosses the decreasing second current I2.
  • FIGS. 4A, 4B, 5A, and 5B respectively show paths of the first current I1 and the second current I2 between the respective timings.
  • the arrows from the low potential electrodes 18, 28 toward the high potential electrodes 17, 27 mean discharge, and the arrows from the high potential electrodes 17, 27 toward the low potential electrodes 18, 28 represent charging. means.
  • the direction of the current flowing through the switches Q1-Q4 the direction of flow from the drain to the source is referred to as the forward direction, and the direction of flow from the source to the drain is the reverse direction.
  • the positive first current I1 is discharged from the smoothing capacitor C1, passes from the center tap 25 through the first primary coil 21, and flows in the forward direction through the first switch Q1.
  • the negative second current I2 is discharged from the clamp capacitor C2, flows in the forward direction through the fourth switch Q4, passes through the second primary coil 22 and the center tap 25, and is charged in the smoothing capacitor C1.
  • the first current I1 generated by the discharge of the smoothing capacitor C1 flows through the first primary coil 21, and the second current I2 generated by the discharge of the clamp capacitor C2 flows through the second primary coil 22.
  • the positive first current I1 flows along the same path as that of FIG. 4A in the same direction as that of FIG. 4A.
  • the positive second current I2 flows along the same path as FIG. 4A in the opposite direction to FIG. 4A. That is, the positive second current I2 is discharged from the smoothing capacitor C1, passes from the center tap 25 through the second primary coil 22, flows in the reverse direction through the fourth switch Q4, and is charged in the clamp capacitor C2.
  • the positive second current I2 is discharged from the smoothing capacitor C1, passes from the center tap 25 through the second primary coil 22, and proceeds to the second switch Q2. Flow in the direction.
  • the positive first current I1 is discharged from the smoothing capacitor C1, passes from the center tap 25 through the first primary coil 21, flows in the reverse direction through the third switch Q3, and is charged in the clamp capacitor C2.
  • the positive second current I2 flows in the same path as that of FIG. 5A in the same direction as that of FIG. 5A.
  • the negative first current I1 flows in the same path as in FIG. 5A in the opposite direction to that in FIG. 5A. That is, the negative first current I1 is discharged from the clamp capacitor C2, flows in the forward direction through the third switch Q3, passes through the first primary coil 21 and the center tap 25, and is charged in the smoothing capacitor C1.
  • the second current I2 generated by the discharge of the smoothing capacitor C1 flows through the second primary coil 22, and the first current I1 generated by the discharge of the clamp capacitor C2 flows through the first primary coil 21.
  • the configuration of the switch controller 40 according to the present embodiment will be described with reference to FIGS. 1 and 6 to 10.
  • the configuration of the duty ratio calculator 50 of the switch controller 40 is shown in detail with respect to FIG. 1 in FIG.
  • the DUTY ratio calculator 50 of the present embodiment includes a lower arm DUTY ratio calculator 51 and an upper arm DUTY ratio calculator 53, respectively.
  • the duty ratio of the first switch Q1 and the second switch Q2 which are lower arm switches will be referred to as "lower arm DUTY ratio”.
  • the duty ratio of the third switch Q3 and the fourth switch Q4, which are upper arm switches is referred to as "upper arm DUTY ratio”.
  • the lower arm DUTY ratio calculator 51 calculates the lower arm DUTY ratio using a map or a mathematical expression by feedforward control based on the input voltage Vin detected by the input voltage detector 15.
  • FIG. 7 shows a map defining the relationship between the input voltage Vin and the duty ratio in feedforward control. This map represents a negative correlation in which the duty ratio decreases as the input voltage Vin increases in the fluctuation range of the input voltage Vin. Therefore, the duty ratio at the lower limit Vin_min of the input voltage in the fluctuation range is maximized, and the duty ratio at the upper limit Vin_max of the input voltage is minimized.
  • the maximum value of the duty ratio is denoted as [ ⁇ ].
  • the description of (dmax / 2), [ ⁇ ] and the like will be cited in the following description.
  • FIG. 8 shows an operation in which the first switch Q1 is turned on in the first half of the switching cycle Ts and the second switch Q2 is turned on in the second half of the switching cycle Ts.
  • the upper arm DUTY ratio calculator 53 outputs a constant value as the upper arm DUTY ratio. That is, the feedforward control of the duty ratio with reference to FIGS. 7 and 8 is applied only to the lower arm duty ratio in this embodiment, and is not reflected in the setting of the upper arm duty ratio. Thus, in the present embodiment, the upper arm DUTY ratio is output as a fixed value. The specific setting of the value of the upper arm DUTY ratio and the effect by this configuration will be described later.
  • the first embodiment and the second embodiment differ in the configuration of the power controller 60.
  • the codes of the power controller 60 in the first embodiment and the second embodiment are denoted by 601 and 602, respectively.
  • the power controller 601 of the first embodiment has a switching frequency controller 65 and a PWM frequency generator 66, and performs feedback control of power.
  • the switching frequency controller 65 controls the switching frequency such that the detected power P matches the target power Pref.
  • the PWM frequency generator 66 generates a PWM frequency based on the control result of the switching frequency controller 65 and outputs the PWM frequency to the PWM generator 70.
  • the switching frequency and the power have a mountain-like relationship with the resonance frequency as a peak.
  • Vin_L the input voltage Vin rises from Vin_L on the low voltage side to Vin_H on the high voltage side
  • the mountain-shaped curve shifts to the high power side as a whole.
  • the target power Pref is driven at the switching frequency f1 that can be obtained.
  • the switching frequency controller 65 changes the switching frequency to f2 so that the power P matches the target power Pref.
  • FIG. 18 shows a method of driving the bridge circuit switches Q1-Q4 in the comparative example.
  • Ts is a switching period.
  • Ton_L is the on time of the lower arm switches Q1 and Q2
  • Ton_U is the on time of the upper arm switches Q3 and Q4.
  • the block arrows indicate that when the input voltage Vin rises from a low state to a high state, the on-time Ton of each switch Q1-Q4 is shortened from the broken line state to the solid line state.
  • the first switch Q1 and the second switch Q2 of the lower arm alternately operate equally, and the third switch Q3 and the fourth switch Q4 of the upper arm alternately are equivalent To work.
  • at least the fourth switch Q4 is on during the on period of the first switch Q1, and the second switch Q2 is It is necessary that the third switch Q3 is on during the on period.
  • the switch controller 40 prohibits the first switch Q1 and the second switch Q2 from turning on simultaneously and the third switch Q3 and the fourth switch Q4 from turning on simultaneously. As a result, an abnormal current is prevented from flowing to the primary side, and the power is appropriately output to the load C3 on the secondary side.
  • the first switch Q1 and the fourth switch Q4 are simultaneously turned on and off, and the second switch Q2 and the third switch Q3 are simultaneously turned on and off. That is, the on time Ton_U of the upper arm switches Q3 and Q4 is always set equal to the on time Ton_L of the lower arm switches Q1 and Q2 regardless of the input voltage Vin. Therefore, the upper arm DUTY ratio is always set equal to the lower arm DUTY ratio regardless of the input voltage Vin.
  • the on time Ton_L of the lower arm switches Q1 and Q2 is shortened as in the comparative example as the input voltage Vin rises.
  • the on time Ton_U of the upper arm switches Q3 and Q4 is constant with respect to the switching period Ts regardless of the change of the input voltage Vin. That is, the upper arm DUTY ratio is set to a constant value regardless of the change of the input voltage Vin.
  • the constant value of the upper arm DUTY ratio is equal to or greater than the maximum value of the lower arm DUTY ratio, and is preferably set to “0.5 minus a value corresponding to the dead time DT”.
  • the dead time DT is secured between the on period of the third switch Q3 and the on period of the fourth switch Q4, and is the minimum time required to avoid the simultaneous on state.
  • the dead time DT is determined by the element characteristics of the switches Q3 and Q4 and manufacturing variations, and generally, a time within a few percent of the switching period Ts, for example, within 5% is expected. For example, if the value corresponding to the dead time DT is 5% of the switching period Ts, "0.45 minus 0.05 minus 0.45" is set as the upper arm DUTY ratio.
  • the upper arm DUTY ratio is equal to or greater than the maximum DUTY ratio [ ⁇ ] corresponding to the lower limit value Vin_min of the input voltage, and is constant equal to or less than 0.5 minus the dead time equivalent value from 0.5. It is shown as a value.
  • the upper arm DUTY ratio is set to a value equivalent to [ ⁇ ] which is the maximum value of this range.
  • the upper arm DUTY ratio in the realistic drive of this embodiment is a value obtained by subtracting the dead time equivalent value from 0.5.
  • the driving method of this embodiment performs driving with “full DUTY ratio” in which one upper arm switch Q 3 or Q 4 is always turned on. it can.
  • the upper arm DUTY ratio is made to follow the lower arm DUTY ratio.
  • FIG. 19 of the comparative example and FIG. 12 of the present embodiment show the switch current, the transformer primary current, the transformer applied voltage, and the gate command to the bridge circuit switch Q1-Q4.
  • the switch current represents the current flowing through any one of the switches Q1 to Q4 in one figure, and means that the switch through which the current flows is switched at the timing of the vertical line.
  • a switch current continuously flows in a period excluding the switching timing.
  • the first switch Q1 and the fourth switch Q4 are turned on in the period from time t10 to t11 corresponding to about one fourth of the switching cycle Ts, and the period from time t12 to t13 2)
  • the switch Q2 and the third switch Q3 turn on.
  • all the switches Q1-Q4 are turned off.
  • the current is discontinuous immediately before transitioning from the off state of all the switches Q1-Q4 to the on state of the first and fourth switches Q1 and Q4 or the second and third switches Q2 and Q3.
  • "Discontinuous mode" that changes to occurs.
  • the discontinuous mode the polarity of the voltage applied to the transformer is inverted, and a waveform is obtained in which pulses of positive voltage and negative voltage are included twice in the switching cycle Ts.
  • the fourth switch Q4 is turned on for the period of time t0 to t2 beyond the period of time t0 to t1 in which the first switch Q1 is on.
  • the third switch Q3 is turned on for a period of time t2 to t4 beyond the period of time t2 to t3 in which the second switch Q2 is on.
  • Such full duty ratio driving of the upper arm switches Q3 and Q4 prevents the occurrence of the current discontinuous mode.
  • the transformer application voltage has a “one pulse waveform” in which each pulse of positive voltage and negative voltage is included once in the switching period Ts.
  • the one pulse waveform means that a pulse as instructed is applied to the transformer.
  • FIGS. 20A and 20B of the comparative example and FIGS. 13A and 13B of the present embodiment show maps of DUTY ratios required to output constant power when the input voltage Vin changes, obtained by simulation, for each switching frequency.
  • FIGS. 20B and 13B convert this map into the relationship of switching frequency to DUTY ratio at every low, middle and high levels of the input voltage Vin.
  • the DUTY ratio on the vertical axis represents a value commonly used as the lower arm DUTY ratio and the upper arm DUTY ratio in the comparative example, and represents the lower arm DUTY ratio in the present embodiment.
  • the duty ratio depends on the switching frequency. Therefore, in the comparative example, in feedforward control of the duty ratio, a plurality of maps are required according to the frequency.
  • the load C3 is a discharge reactor or the like, the characteristics may change due to variations in load capacity or temperature changes, and the resonance frequency may change. Then, the feedforward control of the duty ratio is also affected by the characteristic change of the load.
  • FIG. 13A of the present embodiment maps at a plurality of switching frequencies overlap one line.
  • the lines are intentionally shifted slightly to indicate that the maps overlap.
  • the duty ratio does not depend on the switching frequency. Since there is no frequency dependency, even if the characteristic of the load C3 changes and the resonance frequency changes, it is not affected. Therefore, in the present embodiment, acquisition and adaptation of a map according to the characteristics of the load C3 and the switching frequency become unnecessary, and feedforward control of the duty ratio can be performed with one map.
  • the lower arm DUTY ratio calculator 51 may calculate the lower arm DUTY by using a mathematical expression that approximates the waveform obtained by simulation or experiment. Good. Thereby, the optimal DUTY ratio can be calculated in advance.
  • the lower arm DUTY ratio calculator 51 can also derive a DUTY ratio equivalent to the map of FIG. 13A by a theoretical formula. Next, derivation of a theoretical formula for calculating the duty ratio based on the input voltage Vin will be described.
  • the maximum value of the duty ratio at the input voltage lower limit value Vin_min is expressed as (dmax / 2).
  • the primary circuit is a step-up converter
  • the relationship between the input voltage Vin and the clamp capacitor voltage Vc is expressed by equations (2) and (3).
  • the necessary attenuation amount x is expressed by the input voltage Vin and the d value.
  • the d value is calculated, and the DUTY ratio is determined from the d value. Therefore, the optimal duty ratio can be calculated by the theoretical formula.
  • the clamp capacitor C2 assists the discharge of the smoothing capacitor C1 by using the active clamp type push-pull circuit including the clamp capacitor C2 and the upper arm switches Q3 and Q4. Thereby, the load on the smoothing capacitor C1 can be reduced and the ripple current can be reduced.
  • the upper arm DUTY ratio calculator 53 of this embodiment outputs, as the upper arm DUTY ratio, a constant value equal to or greater than the maximum value of the lower arm DUTY ratio in the fluctuation range of the input voltage Vin.
  • the upper arm DUTY ratio is set to the maximum value obtained by subtracting the value corresponding to the dead time DT. Thereby, the voltage applied to the transformer becomes a one-pulse waveform, and the generation of the discontinuous mode can be avoided as much as possible.
  • the power controller 601 can control the power to be constant by controlling the switching frequency by feedback control of the power. Also, with this configuration, the transformer applied voltage has a one-pulse waveform, whereby the frequency dependency in feedforward control of the duty ratio can be eliminated. As a result, it is not necessary to obtain or match the map according to the switching frequency.
  • the power converter of the second embodiment will be described with reference to FIGS. 15 to 17B.
  • the second embodiment is different from the first embodiment in the configuration of power feedback control.
  • the power controller 602 of the second embodiment further includes a burst duty ratio controller 67 in addition to the switching frequency controller 65 and the PWM frequency generator 66 which the power controller 601 of the first embodiment has. And a burst duty ratio generator 68.
  • the switching frequency controller 65 and the PWM frequency generator 66 feedback control the switching frequency so that the detected value of the instantaneous power P inst matches the target instantaneous power Pref inst , and outputs the result to the PWM generator 70.
  • the burst duty ratio controller 67 and the burst duty ratio generator 68 perform feedback control of the burst duty ratio so that the detected value of the average power Pavr matches the target average power Prefavr , and outputs the feedback to the PWM generator 70.
  • the PWM generator 70 generates a PWM signal for intermittently driving the bridge circuit switches Q1-Q4 based on the switching frequency and the burst duty ratio generated by the power controller 602.
  • the bridge circuit switches Q1-Q4 is intermittently driven at a predetermined burst period T B including a drive period T DRIVE and stop period T STOP.
  • the bridge circuit switches Q1-Q4 is turned on and off operation in accordance with DUTY ratio and the switching frequency is commanded to drive period T DRIVE, it is all in the stop period T STOP off.
  • Burst DUTY ratio is the ratio of the driving period T DRIVE against burst period T B. For example, when the drive period T.sub.DRIVE and the stop period T.sub.STOP are equal, the burst duty ratio is 0.5.
  • the burst frequency (Hz) is the reciprocal of the burst period (s).
  • the power at the time of the output pulse ON of the drive period T DRIVE is the instantaneous power P inst .
  • a value obtained by multiplying the instantaneous power P inst by the burst duty ratio is the average power P avr .
  • the full-layer discharge power shown in FIG. 17A means instantaneous power that needs to be applied to cause discharge in all layers of the discharge reactor C3, that is, between all the electrodes 31 and 32.
  • the lower limit value of all layer discharge power is set as target instantaneous power Pref inst .
  • Power controller 602 first switching frequency - the switching frequency as desired instantaneous power Pref inst is obtained in the power characteristic line by changing from f4 to f3, to control the instantaneous power P inst. Thereby, discharge in all layers of the discharge reactor C3 can be realized.
  • power controller 602 generates a burst duty ratio corresponding to target average power Prefavr based on the burst duty ratio-power characteristic line shown in FIG. 17B.
  • the ratio of the target average power Pref avr to the target instantaneous power Pref inst is generated as a burst duty ratio.
  • the second embodiment by operating both the switching frequency and the burst duty ratio, it is possible to control the average power P avr while maintaining the efficient discharge in all layers. Further, as in the first embodiment, the generation of the discontinuous mode of the output current can be avoided, and the frequency dependency in the feedforward control of the lower arm DUTY ratio can be reduced.
  • the power controller 602 controls the instantaneous power P inst by operating the switching frequency, and then controls the burst duty ratio to control the average power P avr .
  • the switching frequency may be fixed, for example, in the vicinity of the resonance frequency of the output current, and the burst duty ratio may be manipulated to perform feedback control of only the average power Pavr .
  • This type of power controller may be configured to include only the burst duty ratio controller 67 and the burst duty ratio generator 68. In this embodiment, the frequency dependency in feedforward control of the duty ratio does not pose a problem in the first place, but the same effect as that of the above embodiment can be obtained for avoiding the occurrence of the discontinuous mode.
  • the capacitive load C3 connected to the secondary coil 26 of the transformer 20 is not limited to the discharge reactor used in the ozone generator 30, but may be another load.
  • an inductor or the like for adjusting the resonance frequency of the load C3 may be connected to the secondary circuit.
  • the switch controller may not perform feedback control of the power P.
  • the effects (1) to (3) of the above embodiment can be achieved by performing only the feedforward control of the duty ratio based on at least the input voltage Vin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

共振インバータのスイッチ制御器(40)は、ブリッジ回路スイッチ(Q1-Q4)のDUTY比を算出し、動作を制御する。下アームDUTY比算出器(51)は、入力電圧(Vin)に基づくフィードフォワード制御により、マップ又は数式を用いて下アームDUTY比を算出する。上アームDUTY比算出器(53)は、上アームDUTY比として、入力電圧(Vin)の変動範囲における下アームDUTY比の最大値以上の一定値を出力する。PWM生成器(70)は、下アーム用DUTY比算出器(51)及び上アーム用DUTY比算出器(53)の出力に基づいてPWM信号を生成し、ブリッジ回路スイッチ(Q1-Q4)に出力する。

Description

電力変換装置 関連出願の相互参照
 本出願は、2017年7月20日に出願された特許出願番号2017-140673号に基づくものであり、ここにその記載内容を援用する。
 本開示は、電力変換装置に関する。
 従来、トランスの一次側に入力される電力をスイッチング動作により変換し、負荷が接続された二次側に出力する電力変換装置が知られている。例えば、特許文献1に記載された高電圧発生装置は、高電圧発生用トランスの二次側に静電式空気清浄機の集塵電極が接続される。この装置は、高電圧発生用トランスの一次側に接続されたスイッチング素子(以下「スイッチ」)に流れる電流を検出し、制御回路にフィードバックする。フィードバックされた電流値に基づいて制御回路がスイッチのDUTY比を制御することにより、静電式空気清浄機の集塵能力を一定に保持する。
特開2001-251854号公報
 動作状況等によって入力電圧が急変したとき、トランス一次側の電流を迅速に補償し、トランス二次側の出力を安定されることが要求される。しかし、特許文献1の従来技術では、入力電圧の急変に対しスイッチ電流がフィードバック制御されるため応答が遅れる。この応答遅れにより、指令値に対する出力電力のオーバーシュート、アンダーシュートや過電流が発生する。
 また、従来、プッシュプル回路を用いた共振インバータが知られている。従来の一般的なプッシュプル回路は、平滑コンデンサ及び二つのスイッチを含み、二つのスイッチが交互に動作することにより、共通のセンタタップに接続された二つの一次コイルを流れるトランス一次側電流を制御する。トランスの二次コイルには容量性の負荷が接続されており、負荷に流れる出力電流は二次回路のLC成分によって共振する。このような共振インバータでは、第1一次コイル及び第2一次コイルに流す電流を主に平滑コンデンサから取り出しているため、平滑コンデンサの負担が大きく、リップル電流が大きくなりやすい。
 これに対し、アクティブクランプ式プッシュプル回路を用いることが考えられる。図1に示すように、アクティブクランプ式プッシュプル回路は、二つの下アームスイッチQ1、Q2、二つの上アームスイッチQ3、Q4、及びクランプコンデンサC2を含む。上アームスイッチQ3、Q4のソース端子及び下アームスイッチQ1、Q2のドレイン端子は、それぞれ、第1一次コイル21及び第2一次コイル22のスイッチ側端部23、24に接続される。クランプコンデンサC2は、上アームスイッチQ3、Q4のドレイン端子と、低電位入力端12との間に接続される。
 このアクティブクランプ式プッシュプル回路において、下アームスイッチQ1と上アームスイッチQ4とを同時にオンさせる期間と、下アームスイッチQ2と上アームスイッチQ3とを同時にオンさせる期間を交互に繰り返す動作を想定する。この動作においてクランプコンデンサC2が平滑コンデンサC1の放電を補助することにより、平滑コンデンサC1の負担を減らし、リップル電流を低減することができる。
 ここで、特許文献1のフィードバック制御の問題点に鑑み、下アームスイッチQ1、Q2のDUTY比を入力電圧に基づいてフィードフォワード制御する構成を採用する。この場合、上アームスイッチQ3、Q4のDUTY比を下アームスイッチQ1、Q2のDUTY比に追従して変化させると、出力電流の不連続モードが発生する場合がある。特に、出力電力に応じてスイッチング周波数を変化させる構成では、フィードフォワード制御においてDUTY比がスイッチング周波数に依存するため、周波数に応じて複数のマップが必要になる。
 本開示の目的は、アクティブクランプ式プッシュプル回路を用いた共振インバータ型の電力変換装置において、入力電圧の急変による出力変動や過電流を抑制し、リップル電流を低減し、且つ、不連続モードの発生を回避する電力変換装置を提供することにある。
 本開示の電力変換装置は、平滑コンデンサと、第1一次コイル及び第2一次コイルと、二次コイルと、第1-第4スイッチと、クランプコンデンサと、スイッチ制御器と、を備える。
 平滑コンデンサは、直流電源の入力電圧が印加される高電位入力端及び低電位入力端の間に接続される。第1一次コイル及び第2一次コイルは、高電位入力端に接続された共通のセンタタップに一端が接続され、トランスの一次側を構成する。二次コイルは、トランスの二次側を構成し、負荷が接続される。
 第1スイッチ及び第2スイッチは、高電位側の端子が第1一次コイル及び第2一次コイルのセンタタップとは反対側の端部であるスイッチ側端部にそれぞれ接続され、低電位側の端子が低電位入力端に接続されてブリッジ回路の下アームを構成する。第1スイッチ及び第2スイッチは、所定のスイッチング周期で交互に動作する。第3スイッチ及び第4スイッチは、一方の端子が第1一次コイル及び第2一次コイルのスイッチ側端部にそれぞれ接続されてブリッジ回路の上アームを構成する。第3スイッチ及び第4スイッチは、第1スイッチ及び第2スイッチと同じスイッチング周期で交互に動作する。クランプコンデンサは、第3スイッチ及び第4スイッチの他方の端子と低電位入力端との間に接続される。
 ブリッジ回路スイッチは、第1スイッチ、第2スイッチ、第3スイッチ及び第4スイッチからなる。スイッチ制御器は、ブリッジ回路スイッチの動作について、スイッチング周期に対する各ブリッジ回路スイッチのオン時間の比であるDUTY比を算出する。そして、スイッチ制御器は、少なくとも、第1スイッチのオン期間に第4スイッチがオンしており、第2スイッチのオン期間に第3スイッチがオンしているように動作を制御する。ここで、スイッチ制御器は、第1スイッチと第2スイッチとが同時にオンすること、及び、第3スイッチと第4スイッチとが同時にオンすることを禁止することが好ましい。
 スイッチ制御器は、下アームDUTY比算出器と、上アームDUTY比算出器と、PWM生成器と、を含む。下アームDUTY比算出器は、入力電圧に基づくフィードフォワード制御により、マップ又は数式を用いて第1スイッチ及び第2スイッチのDUTY比である下アームDUTY比を算出する。上アームDUTY比算出器は、第3スイッチ及び第4スイッチのDUTY比である上アームDUTY比として、入力電圧の変動範囲における下アームDUTY比の最大値以上の一定値を出力する。PWM生成器は、下アームDUTY比算出器及び上アームDUTY比算出器の出力に基づいてPWM信号を生成し、ブリッジ回路スイッチに出力する。
 本開示では、下アームDUTY比算出器が入力電圧に基づくフィードフォワード制御により下アームDUTY比を算出するため、入力電圧の急変による出力変動や過電流を適切に抑制可能である。また、平滑コンデンサ及び下アームスイッチのみを含む一般的なプッシュプル回路でなく、クランプコンデンサ及び上アームスイッチを含むアクティブクランプ式プッシュプル回路が用いられる。平滑コンデンサの放電をクランプコンデンサが補助することで、平滑コンデンサの負担を減らし、リップル電流を低減することができる。
 さらに、上アームDUTY比は、入力電圧の変動範囲における下アームDUTY比の最大値以上の一定値に設定されている。好ましくは、上アームDUTY比は、「第3スイッチのオン期間と第4スイッチのオン期間との間に確保されるデッドタイムに相当する値を0.5から差し引いた最大値」に設定されている。これにより、トランス印加電圧がワンパルス波形となり、不連続モードの発生を可及的に回避することができる。特に、出力電力に応じてスイッチング周波数を変化させる構成では、DUTY比のフィードフォワード制御における周波数依存性を無くすことができ、スイッチング周波数に応じたマップの取得や適合が不要となる。
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、アクティブクランプ式プッシュプル回路を用いた電力変換装置の構成図であり、 図2は、オゾン発生装置に用いられる放電リアクタの模式図であり、 図3は、アクティブクランプ式プッシュプル回路の動作例のタイムチャートであり、 図4Aは、タイミングA~Bの期間における電流経路を示す図であり、 図4Bは、タイミングB~C及びF~Aの期間における電流経路を示す図であり、 図5Aは、タイミングC~D及びE~Fの期間における電流経路を示す図であり、 図5Bは、タイミングD~Eの期間における電流経路を示す図であり、 図6は、第1、第2実施形態のスイッチ制御器の制御ブロック図であり、 図7は、入力電圧とDUTY比との関係を規定したマップであり、 図8は、DUTY比制御により一定出力を維持する作用を説明する図であり、 図9は、第1実施形態の電力制御器の制御ブロック図であり、 図10は、スイッチング周波数と電力との関係を示す特性図であり、 図11は、第1実施形態によるゲート駆動方法を説明する図であり、 図12は、第1実施形態によるトランス一次側電流、トランス印加電圧の波形図であり、 図13Aは、第1実施形態による入力電圧-DUTY比マップであり、 図13Bは、第1実施形態によるDUTY比のスイッチング周波数依存性を示す図であり、 図14は、DUTY比の理論式導出に用いるワンパルス波形図であり、 図15は、第2実施形態の電力制御器の制御ブロック図であり、 図16は、間欠的な駆動パルス信号を示す図であり、 図17Aは、スイッチング周波数-瞬時電力の関係を示す図であり、 図17Bは、バーストDUTY比-平均電力の関係を示す図であり、 図18は、比較例によるゲート駆動方法を説明する図であり、 図19は、比較例によるトランス一次側電流、トランス印加電圧の波形図であり、 図20Aは、比較例による入力電圧-DUTY比マップであり、 図20Bは、比較例によるDUTY比のスイッチング周波数依存性を示す図である。
 以下、電力変換装置の複数の実施形態を図面に基づいて説明する。第1及び第2実施形態を包括して「本実施形態」という。本実施形態の電力変換装置は、トランスの一次側に入力される直流電力をプッシュプル回路のスイッチング動作により変換し、容量性負荷が接続された二次側に交流電力を出力する共振インバータである。共振インバータでは、出力電流の共振周波数に近い周波数でプッシュプル回路をスイッチング動作させることにより、高い電力を出力することができる。
 [共振インバータの構成と動作]
 最初に、本実施形態が適用される共振インバータの構成及び動作について、図1~図5を参照して説明する。図1に示すように、共振インバータ100は、一端が共通のセンタタップ25に接続された二つの一次コイル21、22、及び、二次コイル26を含むトランス20を備える。第1一次コイル21、第2一次コイル22のセンタタップ25とは反対側の端部を、それぞれスイッチ側端部23、24と記す。共振インバータ100の高電位入力端11及び低電位入力端12は、直流電源としてのバッテリ10の正極及び負極に接続され、バッテリ10の入力電圧Vinが印加される。例えば低電位入力端12はグランド電位、すなわち接地状態であってもよい。トランス20のセンタタップ25は、高電位入力端11に接続される。
 トランス20の一次側には、平滑コンデンサC1、並びに、基本的なプッシュプル回路を構成する第1スイッチQ1及び第2スイッチQ2が設けられている。平滑コンデンサC1は、高電位入力端11及び低電位入力端12の間に接続され、バッテリ10の入力電圧Vinを平滑化する。平滑コンデンサC1は、高電位側電極17及び低電位側電極18を有し、比較的容量が大きい。
 また、トランス20の一次側には、本実施形態に特有の構成として、クランプコンデンサC2、並びに、第3スイッチQ3及び第4スイッチQ4が設けられている。本明細書では、この構成を「アクティブクランプ式プッシュプル回路」と呼ぶ。第1スイッチQ1及び第2スイッチQ2は、ブリッジ回路の下アームを構成するため、「下アームスイッチQ1、Q2」ともいう。第3スイッチQ3及び第4スイッチQ4は、ブリッジ回路の上アームを構成するため、「上アームスイッチQ3、Q4」ともいう。また、上下アームのスイッチを包括して「ブリッジ回路スイッチQ1-Q4」という。
 ブリッジ回路スイッチQ1-Q4は、例えばMOSFETにより構成され、ゲート信号が入力されると、ドレイン-ソース間が通電する。また、ソースからドレインに向かう電流を許容するボディダイオードが付随されている。なお、スイッチとして、還流ダイオードが並列に接続されたIGBT等を用いてもよく、その場合、端子の名称を、適宜、コレクタ、エミッタ等に読み替えて解釈すればよい。
 第1スイッチQ1は、ドレイン端子が第1一次コイル21のスイッチ側端部23に接続され、ソース端子が低電位入力端12に接続される。第2スイッチQ2は、ドレイン端子が第2一次コイル22のスイッチ側端部24に接続され、ソース端子が低電位入力端12に接続される。第1スイッチQ1及び第2スイッチQ2は、図8等に参照される所定のスイッチング周期Tsで交互に動作する。これにより、第1一次コイル21及び第2一次コイル22に、互いに逆向きの第1電流I1及び第2電流I2が流れ、それに伴ってトランス20の二次側に、方向が交番する出力電流Ioが流れる。
 第3スイッチQ3は、ソース端子が第1一次コイル21のスイッチ側端部23、及び、第1スイッチQ1のドレイン端子に接続される。第4スイッチQ4は、ソース端子が第2一次コイル22のスイッチ側端部24、及び、第2スイッチQ2のドレイン端子に接続される。第3スイッチQ3及び第4スイッチQ4は、第1スイッチQ1及び第2スイッチQ2と同じスイッチング周期Tsで交互に動作する。動作の詳細については後述する。
 クランプコンデンサC2は、第3スイッチQ3及び第4スイッチQ4のドレイン端子と低電位入力端12との間に接続される。クランプコンデンサC2は、高電位側電極27及び低電位側電極28を有し、平滑コンデンサC1の放電性能を補助し、リップル電流を低減する機能を有する。
 トランス20の二次側では、二次コイル26の両端に、容量性の負荷C3の電極31、32が接続される。電極32に接続される側の二次コイル26の端部は、低電位入力端12に接続されている。二次コイル26のインダクタンス成分と負荷C3の容量成分とにより、二次回路を流れる出力電流Ioに共振が発生する。インダクタンスをL、容量をCとすると、その共振周波数は「1/(2π√LC)」で表される。
 図2に示すように、例えば本実施形態の負荷C3は、オゾン発生装置30に用いられる放電リアクタである。放電リアクタC3は、複数組の電極31、32が流路33に沿って設けられており、電極31、32間に高電圧のパルス電力が供給されると、流路33を通過する酸素分子が分解され、酸素ラジカルが生成される。そして、酸素ラジカル(O)が他の酸素分子(O2)と反応することによりオゾン(O3)が生成される。このオゾン発生装置30は、例えばエンジンを動力源とする車両に搭載され、排気中の未燃CHを分解するためにオゾンを発生させる。共振インバータ100は、放電リアクタC3に出力する電力を制御することにより、オゾンの生成量を調整する。
 図1に戻り、共振インバータ100のバッテリ10側には入力電圧検出器15が設けられている。また、トランス20の一次側の入力電力検出器16、又は、二次側の出力電力検出器36の少なくとも一方が設けられている。本実施形態のスイッチ制御器40は、フィードフォワード制御を行うDUTY比算出器50、フィードバック制御を行う電力制御器60、及び、PWM信号を生成しブリッジ回路スイッチQ1-Q4のゲートに出力するPWM生成器70を含む。
 DUTY比算出器50は、入力電圧検出器15から取得した入力電圧Vinに基づくフィードフォワード制御により、マップ又は数式を用いてDUTY比を算出する。ここで、DUTY比とは、スイッチング周期Tsに対する各スイッチQ1-Q4のオン時間の比である。なお、図1に示すDUTY比算出器50の構成は、本実施形態と対比される比較例にも共通するものであり、本実施形態に特有の構成については、後述の図6に参照される。
 電力制御器60は、入力電力検出器16または出力電力検出器36から取得した実電力Pを目標電力Prefに一致させるようフィードバック制御する。電力制御器60の詳細な構成についても後述する。PWM生成器70は、DUTY比算出器50及び電力制御器60の出力に基づいてPWM信号を生成する。
 次に図3~図5Bを参照し、アクティブクランプ式プッシュプル回路の動作概要について説明する。図1において、第1一次コイル21を流れる電流を第1電流I1、第2一次コイル22を流れる電流を第2電流I2とし、二次コイル26を流れる電流を出力電流Ioとする。第1電流I1及び第2電流I2は、センタタップ25からスイッチ側端部23、24に向かう方向を正と定義する。出力電流Ioは、負荷C3の電極31から二次コイル26を通り電極32に向かう方向を正と定義する。
 図3のタイムチャートには、スイッチQ1、Q2の動作と第1電流I1、第2電流I2及び出力電流Ioの変化との関係を示す。ここで、第1スイッチQ1及び第4スイッチQ4がオンする第1期間T1と、第2スイッチQ2及び第3スイッチQ3がオンする第2期間T2とは交互に切り替わるものとし、デッドタイムは無視する。
 なお、この例では第1電流I1及び第2電流I2を検出し、第1電流I1と第2電流I2とが正の切替値ISHIFTで等しくなるタイミングで各スイッチのオンオフを切り替えている。ただし、スイッチの切替タイミングは、これに限らない。第2電流I2が第1電流I1より大きいとき、出力電流Ioは正となり、第1電流I1が第2電流I2より大きいとき、出力電流Ioは負となる。
 スイッチング周期Tsにおいて、第1電流I1又は第2電流I2がゼロクロスするタイミング、及び、第1電流I1と第2電流I2とがクロスし等しくなるタイミングに記号A~Fを付す。第1期間T1中のタイミングA、Bでは、それぞれ第2電流I2が正から負、負から正にゼロクロスする。第1期間T1から第2期間T2に移行するタイミングCでは、増加する第2電流I2と減少する第1電流I1とがクロスする。第2期間T2中のタイミングD、Eでは、それぞれ第1電流I1が正から負、負から正にゼロクロスする。第2期間T2から第1期間T1に移行するタイミングFでは、増加する第1電流I1と減少する第2電流I2とがクロスする。
 図4A、図4B、図5A、図5Bには、それぞれ各タイミング間における第1電流I1及び第2電流I2の経路を示す。平滑コンデンサC1及びクランプコンデンサC2において、低電位電極18、28から高電位電極17、27に向かう矢印は放電を意味し、高電位電極17、27から低電位電極18、28に向かう矢印は充電を意味する。また、スイッチQ1-Q4を流れる電流の向きについて、ドレインからソースに流れる向きを順方向、ソースからドレインに流れる向きを逆方向と記す。
 図4Aに示すタイミングA~Bの期間には、正の第1電流I1は、平滑コンデンサC1から放電され、センタタップ25から第1一次コイル21を通り、第1スイッチQ1を順方向に流れる。負の第2電流I2は、クランプコンデンサC2から放電され、第4スイッチQ4を順方向に流れて第2一次コイル22及びセンタタップ25を通り、平滑コンデンサC1に充電される。この期間には、平滑コンデンサC1の放電により発生する第1電流I1が第1一次コイル21を流れると共に、クランプコンデンサC2の放電により発生する第2電流I2が第2一次コイル22を流れる。
 図4Bに示すタイミングB~C及びF~Aの期間には、正の第1電流I1は、図4Aと同じ経路を図4Aと同じ向きに流れる。正の第2電流I2は、図4Aと同じ経路を図4Aとは逆向きに流れる。すなわち、正の第2電流I2は、平滑コンデンサC1から放電され、センタタップ25から第2一次コイル22を通り、第4スイッチQ4を逆方向に流れてクランプコンデンサC2に充電される。
 図5Aに示すタイミングC~D及びE~Fの期間には、正の第2電流I2は、平滑コンデンサC1から放電され、センタタップ25から第2一次コイル22を通り、第2スイッチQ2を順方向に流れる。正の第1電流I1は、平滑コンデンサC1から放電され、センタタップ25から第1一次コイル21を通り、第3スイッチQ3を逆方向に流れてクランプコンデンサC2に充電される。
 図5Bに示すタイミングD~Eの期間には、正の第2電流I2は、図5Aと同じ経路を図5Aと同じ向きに流れる。負の第1電流I1は、図5Aと同じ経路を図5Aとは逆向きに流れる。すなわち、負の第1電流I1は、クランプコンデンサC2から放電され、第3スイッチQ3を順方向に流れて第1一次コイル21及びセンタタップ25を通り、平滑コンデンサC1に充電される。この期間には、平滑コンデンサC1の放電により発生する第2電流I2が第2一次コイル22を流れると共に、クランプコンデンサC2の放電により発生する第1電流I1が第1一次コイル21を流れる。
 平滑コンデンサC1及び下アームスイッチQ1、Q2のみにより構成される通常のプッシュプル回路を用いた共振インバータでは、第1一次コイル21及び第2一次コイル22に流す電流を主に平滑コンデンサC1から取り出している。したがって、平滑コンデンサC1の負担が大きく、リップル電流が大きくなりやすいという課題がある。それに対しアクティブクランプ式のプッシュプル回路では、タイミングA~B及びD~Eの期間に、平滑コンデンサC1の放電により発生する電流と、クランプコンデンサC2の放電により発生する電流との両方が一次コイル21、22を流れる。そのため、平滑コンデンサC1による放電の負担が軽減され、リップル電流を低減することができる。
 (第1実施形態)
 このようなアクティブクランプ式のプッシュプル回路を用いた電力変換装置において、本実施形態のスイッチ制御器40の構成について、図1、及び、図6~図10を参照して説明する。図6には、スイッチ制御器40のDUTY比算出器50の構成が、図1に対し詳細に示されている。本実施形態のDUTY比算出器50は、下アームDUTY比算出器51及び上アームDUTY比算出器53をそれぞれ有している。以下、下アームスイッチである第1スイッチQ1及び第2スイッチQ2のDUTY比を「下アームDUTY比」という。また、上アームスイッチである第3スイッチQ3及び第4スイッチQ4のDUTY比を「上アームDUTY比」という。
 下アームDUTY比算出器51は、入力電圧検出器15によって検出された入力電圧Vinに基づくフィードフォワード制御により、マップ又は数式を用いて下アームDUTY比を算出する。図7に、フィードフォワード制御における入力電圧VinとDUTY比との関係を規定したマップを示す。このマップは、入力電圧Vinの変動範囲において、入力電圧Vinが高くなるほどDUTY比が小さくなる負の相関を表している。したがって、変動範囲における入力電圧の下限値Vin_minでのDUTY比は最大となり、入力電圧の上限値Vin_maxでのDUTY比は最小となる。ここで、DUTY比の最大値を[α]と記す。なお、(dmax/2)及び[β]等の記載は、後の説明で引用される。
 図8を参照し、DUTY比制御によって出力が一定に維持される作用を説明する。入力電圧Vinの変動範囲における相対的に低い電圧をVin_L、相対的に高い電圧をVin_Hと表す。例えばバッテリ10の電圧として、Vin_Lは10V程度、Vin_Hは16V程度と想定される。図8には、スイッチング周期Tsの前半に第1スイッチQ1がオンし、スイッチング周期Tsの後半に第2スイッチQ2がオンする動作が示される。破線で示す低電圧Vin_Lのとき、スイッチQ1、Q2のオン時間Tonは、スイッチング周期の2分の1(Ts/2)に近く、DUTY比は0.5に近い。この状態から、実線で示す高電圧Vin_Hまで入力電圧Vinが上昇すると、スイッチQ1、Q2のオン時間Tonが短く、すなわち、DUTY比が小さくなるように制御される。そのため、入力電圧Vinが変化しても、DUTY比制御によって出力が一定に維持される。
 図6に戻り、上アームDUTY比算出器53は、上アームDUTY比として一定値を出力する。つまり、図7、図8を参照したDUTY比のフィードフォワード制御は、本実施形態では下アームDUTY比についてのみ適用され、上アームDUTY比の設定には反映されない。このように、本実施形態では上アームDUTY比は固定値として出力される。上アームDUTY比の値の具体的な設定、及び、この構成による作用効果については後述する。
 第1実施形態及び第2実施形態は、電力制御器60の構成が異なる。第1実施形態及び第2実施形態の電力制御器60の符号をそれぞれ601、602とする。図9に示すように、第1実施形態の電力制御器601は、スイッチング周波数制御器65及びPWM周波数生成器66を有し、電力をフィードバック制御する。スイッチング周波数制御器65は、検出された電力Pを目標電力Prefに一致させるようにスイッチング周波数を制御する。PWM周波数生成器66は、スイッチング周波数制御器65の制御結果に基づきPWM周波数を生成し、PWM生成器70に出力する。
 図10に示すように、スイッチング周波数と電力とは、共振周波数をピークとする山型の関係を有している。入力電圧Vinが低圧側のVin_Lから高圧側のVin_Hに上昇すると山型カーブが全体に高電力側にシフトする。例えば、入力電圧Vin_Lのとき、目標電力Prefが得られるスイッチング周波数f1で駆動されていたとする。その後、入力電圧Vin_Hに上昇すると、スイッチング周波数f1に対応する電力Pは目標電力Prefを上回る。そこで、スイッチング周波数制御器65は、電力Pが目標電力Prefに一致するように、スイッチング周波数をf2に変化させる。
 次に、主に図11~13を参照し、本実施形態のスイッチ制御器40の構成及び作用効果について、図18~図20に示される比較例の構成、作用と対比しつつ説明する。比較例のDUTY比算出器の構成としては、図1のDUTY比算出器50が参照される。図18に、比較例におけるブリッジ回路スイッチQ1-Q4の駆動方法を示す。Tsはスイッチング周期である。Ton_Lは下アームスイッチQ1、Q2のオン時間であり、Ton_Uは上アームスイッチQ3、Q4のオン時間である。ブロック矢印は、入力電圧Vinが低い状態から高い状態に上昇したとき、各スイッチQ1-Q4のオン時間Tonが破線の状態から実線の状態に短縮されることを示す。
 比較例及び本実施形態に共通する駆動の前提として、下アームの第1スイッチQ1及び第2スイッチQ2は交互に同等に動作し、上アームの第3スイッチQ3及び第4スイッチQ4は交互に同等に動作する。また、図4、図5に示されるようなクランプコンデンサC2による放電補助作用が生じるためには、少なくとも、第1スイッチQ1のオン期間に第4スイッチQ4がオンしており、第2スイッチQ2のオン期間に第3スイッチQ3がオンしていることが必要である。ここで、短絡防止のため、上下アーム対である第1スイッチQ1と第3スイッチQ3、及び、第2スイッチQ2と第4スイッチQ4とが同時にオンすることが禁止されることは一般に技術常識である。
 さらに、アクティブクランプ式のプッシュプル回路では、第1スイッチQ1と第2スイッチQ2との同時オン状態、又は、第3スイッチQ3と第4スイッチQ4との同時オン状態が発生すると、トランス20の一次コイル21、22の間で磁束がキャンセルされる。すると、二次側へ電力が出力されず、一次側で大きな電流が流れてしまう。その事態を回避するため、スイッチ制御器40は、第1スイッチQ1と第2スイッチQ2とが同時にオンすること、及び、第3スイッチQ3と第4スイッチQ4とが同時にオンすることを禁止する。これにより、一次側に異常な電流が流れることが防止され、電力が二次側の負荷C3へ適切に出力される。
 以上の前提の下、比較例では、第1スイッチQ1と第4スイッチQ4は同時にオンオフし、第2スイッチQ2と第3スイッチQ3は同時にオンオフする。すなわち、上アームスイッチQ3、Q4のオン時間Ton_Uは、入力電圧Vinによらず、常に下アームスイッチQ1、Q2のオン時間Ton_Lと等しく設定される。したがって、上アームDUTY比は、入力電圧Vinによらず、常に下アームDUTY比と等しく設定される。
 図11に示すように、本実施形態では、下アームスイッチQ1、Q2のオン時間Ton_Lは、入力電圧Vinの上昇に伴って比較例と同様に短縮する。しかし、上アームスイッチQ3、Q4のオン時間Ton_Uは、入力電圧Vinの変化によらず、スイッチング周期Tsに対して一定である。つまり、上アームDUTY比は、入力電圧Vinの変化によらず一定値に設定される。この上アームDUTY比の一定値は、下アームDUTY比の最大値以上であって、好ましくは、「0.5からデッドタイムDTに相当する値を差し引いた値」に設定される。
 デッドタイムDTは、第3スイッチQ3のオン期間と第4スイッチQ4のオン期間との間に確保され、同時オン状態を回避するために必要な最小時間である。デッドタイムDTは、スイッチQ3、Q4の素子特性や製造ばらつきによって決まり、一般には、スイッチング周期Tsの数%以内、例えば5%以内の時間が見込まれる。例えばデッドタイムDTに相当する値がスイッチング周期Tsの5%の場合、「0.5から0.05を差し引いた0.45」が上アームDUTY比として設定される。
 図7のマップに、「0.5からデッドタイム相当値を差し引いた値」を[β]と記す。すると、本実施形態では、上アームDUTY比は、入力電圧の下限値Vin_minに対応する最大DUTY比[α]以上、且つ、0.5からデッドタイム相当値を差し引いた値[β]以下の一定値として示される。好ましくは、上アームDUTY比は、この範囲の最大値である[β]と同等の値に設定される。
 このように、本実施形態の現実的な駆動での上アームDUTY比は、0.5からデッドタイム相当値を差し引いた値となる。しかし、理想的にデッドタイムをゼロと見なすと、本実施形態の駆動方法は、一方の上アームスイッチQ3、Q4を常にオンさせる「フルDUTY比」での駆動を行うものであると言うことができる。一方、比較例の駆動方法は、上アームDUTY比を下アームDUTY比に追従させるものである。
 このような駆動方法の違いによる駆動波形の違いについて、比較例の図19及び本実施形態の図12を参照する。図19及び図12には、スイッチ電流、トランス一次側電流、トランス印加電圧、及びブリッジ回路スイッチQ1-Q4に対するゲート指令を示す。スイッチ電流は、いずれかのスイッチQ1-Q4に流れる電流を一つの図に表したものであり、縦線のタイミングで電流の流れるスイッチが切り替わったことを意味する。トランス一次側電流は、切り替わりタイミングを除く期間のスイッチ電流が連続的に流れる。
 図19に示す比較例の駆動では、スイッチング周期Tsの約4分の1に相当する時刻t10~t11の期間に第1スイッチQ1及び第4スイッチQ4がオンし、時刻t12~t13の期間に第2スイッチQ2及び第3スイッチQ3がオンする。時刻t11~t12の期間、及び、時刻t13~t14の期間には全てのスイッチQ1-Q4がオフする。このような駆動により、全スイッチQ1-Q4のオフ状態から、第1及び第4スイッチQ1、Q4、又は、第2及び第3スイッチQ2、Q3のオン状態に移行する直前に、電流が不連続に変化する「不連続モード」が発生する。この不連続モードの期間、トランス印加電圧の極性が反転し、スイッチング周期Ts中に正電圧、負電圧のパルスが各2回含まれる波形となっている。
 それに対し図12に示す本実施形態の駆動では、第4スイッチQ4は、第1スイッチQ1がオンしている時刻t0~t1の期間を超えて、時刻t0~t2の期間オンする。第3スイッチQ3は、第2スイッチQ2がオンしている時刻t2~t3の期間を超えて、時刻t2~t4の期間オンする。このような上アームスイッチQ3、Q4のフルDUTY比駆動により、電流不連続モードの発生が回避される。また、トランス印加電圧は、スイッチング周期Ts中に正電圧、負電圧のパルスが各1回含まれる「ワンパルス波形」となる。ワンパルス波形は、指令通りのパルスがトランスに印加されることを意味する。
 また、DUTY比算出器50における周波数依存性の効果について、比較例の図20A、20B、及び本実施形態の図13A、13Bを参照する。図20A及び図13Aは、シミュレーションによって求めた、入力電圧Vinが変化した場合に一定の電力を出力するために必要なDUTY比のマップをスイッチング周波数毎に示したものである。図20B及び図13Bは、このマップを、入力電圧Vinの低、中、高のレベル毎にスイッチング周波数対DUTY比の関係に直したものである。なお、縦軸のDUTY比は、比較例では下アームDUTY比及び上アームDUTY比として共通に用いられる値を表し、本実施形態では下アームDUTY比を表す。
 比較例では、同じ入力電圧Vinにおいて、周波数が低いほどDUTY比が高く、周波数が高いほどDUTY比が低くなる傾向にある。すなわち、DUTY比はスイッチング周波数に依存している。したがって比較例では、DUTY比のフィードフォワード制御において、周波数に応じて複数のマップが必要となる。また、負荷C3が放電リアクタである場合等には、負荷容量等のばらつきや温度変化によって特性が変化し、共振周波数が変化する可能性がある。すると、やはりDUTY比のフィードフォワード制御において、負荷の特性変化による影響を受けることとなる。
 それに対し、本実施形態の図13Aでは複数のスイッチング周波数におけるマップが一本の線に重なっている。なお、図示では故意に複数の線を少しずらし、複数のマップが重なっていることを表している。また、図13Bに示す通り、各入力電圧Vinにおいて、DUTY比はスイッチング周波数に依存しない。周波数依存性が無いため、仮に負荷C3の特性が変化し共振周波数が変化した場合でも、その影響を受けることがない。したがって本実施形態では、負荷C3の特性やスイッチング周波数に応じたマップの取得や適合が不要となり、一つのマップでDUTY比のフィードフォワード制御を行うことが可能となる。
 ところで、図13Aのマップはシミュレーションによって得られたものであるが、下アームDUTY比算出器51は、シミュレーション又は実験で得られた波形を多項式近似した数式を用いて下アームDUTYを算出してもよい。これにより、最適なDUTY比を予め算出することができる。また、下アームDUTY比算出器51は、図13Aのマップと同等のDUTY比を理論式により導出することも可能である。次に、入力電圧Vinに基づいてDUTY比を算出する理論式の導出について説明する。
 まず、式中の記号を以下のように定義する。
 Vin:入力電圧
 Vin_min:入力電圧の変動範囲における下限値
 x:必要減衰量
 Vt:トランス20に印加されるトランス印加電圧
 Vt_min:トランス印加電圧の最小値
 Vc:クランプコンデンサC2の電極間電圧であるクランプコンデンサ電圧
 Vc_min:クランプコンデンサ電圧の最小値
 d:DUTY比の2倍値(d=2×DUTY比)
 dmax:入力電圧の変動範囲におけるdの最大値
 k:基底実効値比
 図7の縦軸に示すように、入力電圧下限値Vin_minにおけるDUTY比の最大値は(dmax/2)と表される。必要減衰量xは、入力電圧下限値Vin_minからの入力電圧Vinの増加に伴って必要となるDUTY比(=d/2)の減衰量である。また、本実施形態ではトランス印加電圧Vtがワンパルス波形となることに基づいて、d値は、図14に示すように定義される。すなわち、スイッチのオン時間がスイッチング周期の2分の1(2/Ts)であるときd=1となる。現実には、d値は0≦d<1の範囲で設定される。
 アクティブクランプ式回路では、トランス印加電圧Vtがクランプコンデンサ電圧Vcとなることから、必要減衰量xは、式(1)で表される。
Figure JPOXMLDOC01-appb-M000005
 また、一次回路は昇圧形コンバータとなるため、入力電圧Vinとクランプコンデンサ電圧Vcとの関係は、式(2)、(3)で表される。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 式(2)、(3)を式(1)に代入すると、必要減衰量xは、入力電圧Vin及びd値により表される。必要減衰量xを式(4)に代入するとd値が算出され、d値からDUTY比が求められる。よって、理論式により最適なDUTY比を算出することができる。
Figure JPOXMLDOC01-appb-M000008
 式(4)の導出について補足する。図14のワンパルス波形をフーリエ展開し基本波成分を抽出すると、以下の式(5.1)~(5.3)が導出される。式(5.1)~(5.3)をまとめると、式(4)が得られる。
Figure JPOXMLDOC01-appb-M000009
 (本実施形態の効果)
 (1)特許文献1(特開2001-251854号公報)の従来技術では、フィードバックされた電流値に基づいてDUTY比を制御するため、入力電圧が急変したときの応答遅れにより、出力変動や過電流が発生するおそれがある。それに対し、本実施形態の下アームDUTY比算出器51は、入力電圧Vinに基づくフィードフォワード制御によってDUTY比を算出するため、入力電圧の急変による出力変動や過電流を抑制することができる。
 (2)プッシュプル回路を用いた共振インバータでは、第1一次コイル21及び第2一次コイル22に流す電流を主に平滑コンデンサC1から取り出しているため、平滑コンデンサC1の負担が大きく、リップル電流が大きくなりやすいという課題がある。本実施形態では、クランプコンデンサC2及び上アームスイッチQ3、Q4を含むアクティブクランプ式プッシュプル回路を用いることで、平滑コンデンサC1の放電をクランプコンデンサC2が補助する。これにより、平滑コンデンサC1の負担を減らし、リップル電流を低減することができる。
 (3)アクティブクランプ式プッシュプル回路の駆動方法において上アームスイッチQ3、Q4のDUTY比を下アームスイッチQ1、Q2のDUTY比に追従して変化させると、出力電流の不連続モードが発生するという問題がある。本実施形態の上アームDUTY比算出器53は、上アームDUTY比として、入力電圧Vinの変動範囲における下アームDUTY比の最大値以上の一定値を出力する。好ましくは、上アームDUTY比は、デッドタイムDTに相当する値を差し引いた最大値に設定されている。これにより、トランス印加電圧がワンパルス波形となり、不連続モードの発生を可及的に回避することができる。
 (4)本実施形態の電力制御器601は、電力のフィードバック制御によりスイッチング周波数を制御することで、電力を一定に制御することができる。また、この構成においてトランス印加電圧がワンパルス波形となることで、DUTY比のフィードフォワード制御における周波数依存性を無くすことができる。その結果、スイッチング周波数に応じたマップの取得や適合が不要となる。
 (第2実施形態)
 第2実施形態の電力変換装置について、図15~図17Bを参照して説明する。第2実施形態は、第1実施形態に対し、電力フィードバック制御の構成が異なる。図15に示すように、第2実施形態の電力制御器602は、第1実施形態の電力制御器601が有するスイッチング周波数制御器65及びPWM周波数生成器66に加え、さらにバーストDUTY比制御器67及びバーストDUTY比生成器68を有する。
 スイッチング周波数制御器65及びPWM周波数生成器66は、瞬時電力Pinstの検出値を目標瞬時電力Prefinstに一致させるようにスイッチング周波数をフィードバック制御し、PWM生成器70に出力する。バーストDUTY比制御器67及びバーストDUTY比生成器68は、平均電力Pavrの検出値を目標平均電力Prefavrに一致させるようにバーストDUTY比をフィードバック制御し、PWM生成器70に出力する。PWM生成器70は、電力制御器602で生成されたスイッチング周波数及びバーストDUTY比に基づいて、ブリッジ回路スイッチQ1-Q4を間欠的に駆動するPWM信号を生成する。
 図16に示すように、ブリッジ回路スイッチQ1-Q4は、駆動期間TDRIVE及び停止期間TSTOPを含む所定のバースト周期TBで間欠的に駆動される。すなわち、ブリッジ回路スイッチQ1-Q4は、駆動期間TDRIVEには指令されたDUTY比及びスイッチング周波数に従ってオンオフ動作し、停止期間TSTOPには全てオフされる。バーストDUTY比は、バースト周期TBに対する駆動期間TDRIVEの比である。例えば駆動期間TDRIVEと停止期間TSTOPとが等しい場合、バーストDUTY比は0.5である。なお、バースト周波数(Hz)はバースト周期(s)の逆数である。また、駆動期間TDRIVEの出力パルスオン時における電力が瞬時電力Pinstである。瞬時電力PinstにバーストDUTY比を乗じた値が平均電力Pavrとなる。
 図17Aに示す全層放電電力は、放電リアクタC3の全層、すなわち、全ての電極31、32間で放電を行わせるために投入が必要な瞬時電力を意味する。全層放電電力の下限値が目標瞬時電力Prefinstとして設定される。電力制御器602は、まず、スイッチング周波数-電力特性線において目標瞬時電力Prefinstが得られるようにスイッチング周波数をf4からf3に変更することで、瞬時電力Pinstを制御する。これにより、放電リアクタC3の全層での放電を実現することができる。
 続いて電力制御器602は、図17Bに示すバーストDUTY比-電力特性線に基づき、目標平均電力Prefavrに対応するバーストDUTY比を生成する。要するに、目標瞬時電力Prefinstに対する目標平均電力Prefavrの割合がバーストDUTY比として生成される。このように第2実施形態では、スイッチング周波数及びバーストDUTY比の両方を操作することで、効率の良い全層での放電を維持しつつ、平均電力Pavrを制御することができる。また、第1実施形態と同様に出力電流の不連続モードの発生を回避し、下アームDUTY比のフィードフォワード制御における周波数依存性を低減することができる。
 (その他の実施形態)
 (a)第2実施形態の電力制御器602は、スイッチング周波数の操作によって瞬時電力Pinstを制御した上で、バーストDUTY比を操作して平均電力Pavrを制御する。これに対し、スイッチング周波数を例えば出力電流の共振周波数付近に固定し、バーストDUTY比を操作して平均電力Pavrのみをフィードバック制御する形態も考えられる。この形態の電力制御器は、バーストDUTY比制御器67及びバーストDUTY比生成器68のみを有する構成であればよい。この形態では、DUTY比のフィードフォワード制御における周波数依存性はそもそも問題とならないが、不連続モードの発生回避について上記実施形態と同様の効果を奏する。
 (b)トランス20の二次コイル26に接続される容量性の負荷C3は、オゾン発生装置30に用いられる放電リアクタに限らず、他の負荷であってもよい。また、負荷C3の共振周波数を調整するためのインダクタ等が二次回路に接続されてもよい。
 (c)例えば負荷C3の特性により、出力電力を厳密に制御する必要のない場合等は、スイッチ制御器は電力Pのフィードバック制御を行わなくてもよい。少なくとも入力電圧Vinに基づくDUTY比のフィードフォワード制御のみを行うことで、上記実施形態の効果(1)~(3)を奏することができる。
 以上、本開示は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。
 本開示は、実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も本開示の範疇および思想範囲に入るものである。

Claims (8)

  1.  直流電源(10)の入力電圧(Vin)が印加される高電位入力端(11)及び低電位入力端(12)の間に接続される平滑コンデンサ(C1)と、
     前記高電位入力端に接続された共通のセンタタップ(25)に一端が接続され、トランス(20)の一次側を構成する第1一次コイル(21)及び第2一次コイル(22)と、
     前記トランスの二次側を構成し、負荷(C3)が接続される二次コイル(26)と、
     高電位側の端子が前記第1一次コイル及び前記第2一次コイルの前記センタタップとは反対側の端部であるスイッチ側端部(23、24)にそれぞれ接続され、低電位側の端子が前記低電位入力端に接続されてブリッジ回路の下アームを構成し、所定のスイッチング周期(Ts)で交互に動作する第1スイッチ(Q1)及び第2スイッチ(Q2)と、
     一方の端子が前記第1一次コイル及び前記第2一次コイルの前記スイッチ側端部にそれぞれ接続されてブリッジ回路の上アームを構成し、前記スイッチング周期で交互に動作する第3スイッチ(Q3)及び第4スイッチ(Q4)と、
     前記第3スイッチ及び第4スイッチの他方の端子と前記低電位入力端との間に接続されるクランプコンデンサ(C2)と、
     前記第1スイッチ、前記第2スイッチ、前記第3スイッチ及び前記第4スイッチからなるブリッジ回路スイッチの動作について、前記スイッチング周期に対する各前記ブリッジ回路スイッチのオン時間の比であるDUTY比を算出し、少なくとも、前記第1スイッチのオン期間に前記第4スイッチがオンしており、前記第2スイッチのオン期間に前記第3スイッチがオンしているように動作を制御するスイッチ制御器(40)と、
     を備え、
     前記スイッチ制御器は、
     前記入力電圧に基づくフィードフォワード制御により、マップ又は数式を用いて前記第1スイッチ及び第2スイッチのDUTY比である下アームDUTY比を算出する下アームDUTY比算出器(51)と、
     前記第3スイッチ及び第4スイッチのDUTY比である上アームDUTY比として、前記入力電圧の変動範囲における前記下アームDUTY比の最大値以上の一定値を出力する上アームDUTY比算出器(53)と、
     前記下アームDUTY比算出器及び前記上アームDUTY比算出器の出力に基づいてPWM信号を生成し、前記ブリッジ回路スイッチに出力するPWM生成器(70)と、
     を含む電力変換装置。
  2.  前記スイッチ制御器は、前記第1スイッチと前記第2スイッチとが同時にオンすること、及び、前記第3スイッチと前記第4スイッチとが同時にオンすることを禁止する請求項1に記載の電力変換装置。
  3.  前記上アームDUTY比は、前記第3スイッチのオン期間と前記第4スイッチのオン期間との間に確保されるデッドタイムに相当する値を0.5から差し引いた最大値に設定されている請求項1または2に記載の電力変換装置。
  4.  入力電圧をVin、
     入力電圧の変動範囲における下限値をVin_min、
     前記下限値からの入力電圧の増加に伴って必要となるDUTY比の減衰量である必要減衰量をx、
     前記トランスに印加されるトランス印加電圧をVt、
     前記トランス印加電圧の最小値をVt_min、
     前記クランプコンデンサの電極間電圧であるクランプコンデンサ電圧をVc、
     前記クランプコンデンサ電圧の最小値をVc_min、
     DUTY比の2倍値をd、
     入力電圧の変動範囲におけるDUTY比の2倍値の最大値をdmaxとすると、
     前記下アームDUTY比算出器は、
     以下の式(1)、式(2)、式(3)を用いて入力電圧から前記必要減衰量を算出し、
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
     さらに、以下の式(4)によりd値を算出し、
    Figure JPOXMLDOC01-appb-M000004
     算出されたd値に基づいて前記下アームDUTY比を算出する請求項1~3のいずれか一項に記載の電力変換装置。
  5.  前記スイッチ制御器は、
     前記トランスの一次側の入力電力又は二次側の出力電力を目標電力に対してフィードバック制御する電力制御器(60)をさらに備え、
     前記PWM生成器は、さらに前記電力制御器の出力に基づいて前記PWM信号を生成する請求項1~4のいずれか一項に記載の電力変換装置。
  6.  前記電力制御器(601)は、前記ブリッジ回路スイッチのスイッチング周波数を操作して電力を制御する請求項5に記載の電力変換装置。
  7.  前記スイッチ制御器は、駆動期間(TDRIVE)及び停止期間(TSTOP)を含む所定のバースト周期(TB)で前記ブリッジ回路スイッチを間欠的に駆動し、
     前記電力制御器(602)は、前記バースト周期に対する前記駆動期間の比であるバーストDUTY比を操作して電力を制御する請求項5または6に記載の電力変換装置。
  8.  前記負荷は、オゾン発生装置(30)に用いられる放電リアクタである請求項1~7のいずれか一項に記載の電力変換装置。
PCT/JP2018/026804 2017-07-20 2018-07-18 電力変換装置 WO2019017361A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112018003721.5T DE112018003721T5 (de) 2017-07-20 2018-07-18 Leistungsumwandlungsvorrichtung
US16/745,918 US10862403B2 (en) 2017-07-20 2020-01-17 Power conversion apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017140673A JP6708175B2 (ja) 2017-07-20 2017-07-20 電力変換装置
JP2017-140673 2017-07-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/745,918 Continuation US10862403B2 (en) 2017-07-20 2020-01-17 Power conversion apparatus

Publications (1)

Publication Number Publication Date
WO2019017361A1 true WO2019017361A1 (ja) 2019-01-24

Family

ID=65015560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026804 WO2019017361A1 (ja) 2017-07-20 2018-07-18 電力変換装置

Country Status (4)

Country Link
US (1) US10862403B2 (ja)
JP (1) JP6708175B2 (ja)
DE (1) DE112018003721T5 (ja)
WO (1) WO2019017361A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2578145B (en) * 2018-10-18 2023-08-09 Owlstone Med Ltd Waveform generator
JP7157640B2 (ja) * 2018-11-28 2022-10-20 株式会社Soken 電力変換装置の制御装置
EP3937365B1 (en) * 2019-03-06 2024-04-03 Metawater Co., Ltd. Power supply, control program, and control method
TWI734509B (zh) * 2019-06-04 2021-07-21 極創電子股份有限公司 過電流保護模組及相關的過電流保護方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012210143A (ja) * 2011-03-29 2012-10-25 Sony Corp グリッドタイインバータ、システム及び方法
US20140268903A1 (en) * 2013-03-14 2014-09-18 Infineon Technologies Ag System and Method for a Switched-Mode Power Converter
JP2015173541A (ja) * 2014-03-11 2015-10-01 トヨタ自動車株式会社 電力変換装置及びその起動方法
JP2015201999A (ja) * 2014-04-09 2015-11-12 トヨタ自動車株式会社 電力変換装置及びその制御方法
US9774263B1 (en) * 2016-08-05 2017-09-26 Schneider Electric It Corporation Power converter with extended hold-up time

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001251854A (ja) 2000-03-03 2001-09-14 Diamond Electric Mfg Co Ltd 高電圧発生装置
DE102004033994B4 (de) * 2003-07-16 2017-07-27 Denso Corporation Gleichstrom-Gleichstrom-Wandler
US7746670B2 (en) * 2006-10-04 2010-06-29 Denso Corporation Dual-transformer type of DC-to-DC converter
JP5168603B2 (ja) * 2010-01-26 2013-03-21 株式会社デンソー スイッチング装置
JP5071516B2 (ja) * 2010-04-22 2012-11-14 株式会社デンソー 電力変換装置
JP5387629B2 (ja) * 2011-07-30 2014-01-15 株式会社デンソー Dcdcコンバータの制御装置
US10263508B2 (en) * 2015-07-21 2019-04-16 Christopher Donovan Davidson Single stage isolated AC/DC power factor corrected converter
JP2017060294A (ja) 2015-09-16 2017-03-23 株式会社デンソー パルス発生装置及びオゾン生成システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012210143A (ja) * 2011-03-29 2012-10-25 Sony Corp グリッドタイインバータ、システム及び方法
US20140268903A1 (en) * 2013-03-14 2014-09-18 Infineon Technologies Ag System and Method for a Switched-Mode Power Converter
JP2015173541A (ja) * 2014-03-11 2015-10-01 トヨタ自動車株式会社 電力変換装置及びその起動方法
JP2015201999A (ja) * 2014-04-09 2015-11-12 トヨタ自動車株式会社 電力変換装置及びその制御方法
US9774263B1 (en) * 2016-08-05 2017-09-26 Schneider Electric It Corporation Power converter with extended hold-up time

Also Published As

Publication number Publication date
US20200153342A1 (en) 2020-05-14
JP2019022378A (ja) 2019-02-07
JP6708175B2 (ja) 2020-06-10
DE112018003721T5 (de) 2020-04-02
US10862403B2 (en) 2020-12-08

Similar Documents

Publication Publication Date Title
JP6942852B2 (ja) 広出力電圧範囲用の絶縁型dc/dcコンバータ及びその制御方法
JP5325983B2 (ja) Dc/dc電力変換装置
WO2019017361A1 (ja) 電力変換装置
EP2728724A1 (en) Power source system
US20140211515A1 (en) Dc-dc converter and power supply device having dc-dc converter
US20140226369A1 (en) Power converter with dead-time control function
JP6012822B1 (ja) 電力変換装置
JP6132887B2 (ja) 電力変換装置
JP5783195B2 (ja) 電源装置及び制御方法
JP2020010594A (ja) Dc/dcコンバータ
JP2013132112A (ja) スイッチング電源装置及びその制御方法
JP2020182367A (ja) Dc−dcコンバータ
JP7001896B2 (ja) Dc-dcコンバータ
US20200252002A1 (en) Resonant inverter apparatus
JP2013236428A (ja) 直流変換装置
JP7189191B2 (ja) 電源制御装置
CN112400273B (zh) 开关电源
JP6603927B1 (ja) プラズマ装置用直流パルス電源装置
JP6048167B2 (ja) Dcdcコンバータ及びこのdcdcコンバータを備えた電源装置
JP2019009848A (ja) Dc−dcコンバータ、これを用いた電源システム及び当該電源システムを用いた自動車
JP5958414B2 (ja) Dcdcコンバータ及びこのdcdcコンバータを備えた電源装置
JP2020108304A (ja) 電力変換装置、電力変換装置の制御方法、及び制御装置
JP2018164391A (ja) 共振インバータ
JP7495311B2 (ja) 電力変換装置、電力変換装置の制御方法、及び電力システム
JP2002159176A (ja) 電源装置及び放電灯点灯装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834912

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18834912

Country of ref document: EP

Kind code of ref document: A1