WO2011013776A1 - 半導体デバイス用封着ガラス、封着材料、封着材料ペースト、および半導体デバイスとその製造方法 - Google Patents

半導体デバイス用封着ガラス、封着材料、封着材料ペースト、および半導体デバイスとその製造方法 Download PDF

Info

Publication number
WO2011013776A1
WO2011013776A1 PCT/JP2010/062851 JP2010062851W WO2011013776A1 WO 2011013776 A1 WO2011013776 A1 WO 2011013776A1 JP 2010062851 W JP2010062851 W JP 2010062851W WO 2011013776 A1 WO2011013776 A1 WO 2011013776A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
glass
sealing material
substrate
mass
Prior art date
Application number
PCT/JP2010/062851
Other languages
English (en)
French (fr)
Inventor
広樹 高橋
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP10804522.0A priority Critical patent/EP2460780A4/en
Priority to JP2011524840A priority patent/JP5609875B2/ja
Priority to CN201080033773.XA priority patent/CN102471137B/zh
Publication of WO2011013776A1 publication Critical patent/WO2011013776A1/ja
Priority to US13/362,690 priority patent/US8704361B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/142Silica-free oxide glass compositions containing boron containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/145Silica-free oxide glass compositions containing boron containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/10Frit compositions, i.e. in a powdered or comminuted form containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • Y10T428/1314Contains fabric, fiber particle, or filament made of glass, ceramic, or sintered, fused, fired, or calcined metal oxide, or metal carbide or other inorganic compound [e.g., fiber glass, mineral fiber, sand, etc.]

Definitions

  • the present invention relates to a sealing glass for a semiconductor device, a sealing material, a sealing material paste, a semiconductor device, and a manufacturing method thereof.
  • a package with a hollow structure above the element portion is available.
  • MEMS Micro Electro Mechanical System
  • a sealing substrate made of a semiconductor substrate or a glass substrate is directly bonded onto a semiconductor substrate provided with a sensor element, a CMOS element, or the like.
  • CSP chip size package
  • a resin for joining a semiconductor substrate (element semiconductor substrate) on which a sensor element or a CMOS element is formed and a sealing substrate made of a semiconductor substrate, a glass substrate, or the like.
  • Sensor elements, CMOS elements, and the like provided on the element semiconductor substrate must be hermetically sealed.
  • elements constituting the MEMS are generally hermetically sealed in a vacuum state.
  • the resin is inferior in airtightness, which causes a decrease in the reliability of the semiconductor device. Since metal materials such as Au—Sn solder have electrical conductivity, they cannot be formed directly on a semiconductor substrate when insulation is required, and the manufacturing cost increases because an insulating package is obtained. Have the following disadvantages.
  • sealing glass made of a glass material
  • a low melting point PbO-based glass lead-based glass
  • Sealing glass has an advantage that it can be directly formed on a semiconductor substrate because it is excellent in hermetic sealing and moisture resistance and is an insulating material.
  • a PbO-based sealing glass or the like having a conventional composition is used as a sealing material for a semiconductor device, due to the semiconductor substrate (Si substrate or the like) and the atmosphere (especially a vacuum atmosphere) at the time of sealing, The component (metal oxide such as PbO) is reduced and metal balls are deposited, which causes a problem that the insulation of the semiconductor substrate is lowered and the surface leakage is increased.
  • sealing temperature firing temperature of the sealing glass
  • metal deposition due to reduction of the glass component metal oxide
  • the decrease in the sealing temperature deteriorates the reactivity of the sealing glass with respect to the semiconductor substrate, and becomes a factor that decreases the adhesive strength and reliability.
  • metal precipitation due to reduction of glass components metal oxides is suppressed without reducing the reactivity and adhesion to the semiconductor substrate. It is important to do.
  • An object of the present invention is to provide a sealing glass for a semiconductor device, which can suppress deposition of a metal due to reduction of a glass component (metal oxide) without reducing reactivity and adhesion to a semiconductor substrate. It is an object of the present invention to provide a semiconductor device and a method for manufacturing the semiconductor device that can improve hermetic sealing performance and reliability by using a bonding material, a sealing material paste, and such a material.
  • the sealing glass for a semiconductor device is a sealing glass for a semiconductor device made of a low-melting glass having a softening point of 430 ° C. or less, and the low-melting glass is 0.1 to 5% by mass.
  • At least one metal oxide selected from the group consisting of Fe, Mn, Cr, Co, Ni, Nb, Hf, W, Re, and rare earth elements, and K in a mass ratio of 5 to 100 ppm. 2 O is included.
  • Mo can be added to the above group.
  • the sealing material for a semiconductor device according to an aspect of the present invention is characterized by containing the sealing glass according to an aspect of the present invention and an inorganic filler in a volume ratio of 0 to 40%.
  • the sealing material paste for semiconductor devices according to an aspect of the present invention is characterized by comprising a mixture of the sealing material according to the aspect of the present invention and a vehicle.
  • a semiconductor device includes an element semiconductor substrate having a surface including an element portion and a first sealing region, and a surface including a second sealing region corresponding to the first sealing region. And a sealing substrate disposed so that the surface faces the surface of the element semiconductor substrate, and the first sealing of the element semiconductor substrate so as to seal the element portion.
  • a semiconductor device comprising a sealing layer formed between a stop region and the second sealing region of the sealing substrate, the sealing layer being formed of a melt-fixed layer of a sealing material, wherein the sealing material is Made of low melting point glass having a softening point of 430 ° C.
  • a method of manufacturing a semiconductor device includes a step of preparing a semiconductor substrate for an element having a surface including an element part and a first sealing region provided so as to surround the element part, A step of preparing a sealing substrate having a surface including a second sealing region corresponding to the first sealing region, and the first sealing region of the element semiconductor substrate, or the sealing substrate. Forming a sealing material layer made of a fired layer of a sealing material in the second sealing region of the element, while facing the surface of the element semiconductor substrate and the surface of the sealing substrate.
  • the sealing material is a low melting point glass having a softening point of 430 ° C. or less, and the mass ratio of Fe, Mn, Cr, Co, is 0.1 to 5%.
  • a sealing glass containing an oxide of at least one metal selected from the group consisting of Ni, Nb, Hf, W, Re, and a rare earth element, and K 2 O in a mass ratio of 5 to 100 ppm is contained. It is characterized by that. Furthermore, Mo can be added to the above group.
  • the sealing glass for a semiconductor device it is possible to suppress the precipitation of the metal due to the reduction of the glass component (metal oxide) while enhancing the reactivity and adhesion with the semiconductor substrate. Therefore, according to the semiconductor device using such a sealing glass and the manufacturing method thereof, it becomes possible to improve the hermetic sealing property and reliability of the semiconductor device.
  • the sealing glass for a semiconductor device of this embodiment includes a semiconductor substrate (element semiconductor substrate (Si substrate, etc.)) provided with an element portion, a semiconductor substrate (Si substrate, etc.), a glass substrate, a ceramic substrate, and the like. Used for sealing (bonding) with a stop substrate.
  • the sealing glass of this embodiment is made of a low-melting glass having a softening point of 430 ° C. or lower, and the low-melting glass is Fe, Mn, Cr, Co, Ni, Nb, in a mass ratio of 0.1 to 5%.
  • metal M An oxide of at least one metal selected from the group consisting of Hf, W, Re, and rare earth elements (hereinafter referred to as metal M), and K 2 O in a mass ratio of 5 to 100 ppm. . Furthermore, Mo can be added to the above group.
  • low-melting glass such as bismuth glass, tin-phosphate glass, vanadium glass, and lead glass having a softening point of 430 ° C. or less is used.
  • bismuth glass, tin-phosphate glass, or vanadium glass that does not substantially contain lead, and further bismuth glass More preferably, glass or tin-phosphate glass is used.
  • the softening point of the low-melting glass exceeds 430 ° C., it may adversely affect the constituent elements (eg, Si—Au eutectic) of the element portion of the semiconductor device.
  • the softening point of the low melting point glass of the present invention is preferably 420 ° C. or lower, and more preferably 350 ° C. or higher.
  • the bismuth glass as the low-melting glass preferably has a composition of 70 to 90% Bi 2 O 3 , 1 to 20% ZnO, and 2 to 18% B 2 O 3 by mass ratio.
  • the composition of the bismuth-based glass is more preferably 75 to 86% Bi 2 O 3 , 5 to 12% ZnO, and 5 to 16% B 2 O 3 by mass ratio.
  • Bi 2 O 3 is a component that forms a glass network.
  • the content of Bi 2 O 3 is less than 70% by mass, the softening point of the low-melting glass becomes high and sealing at a low temperature becomes difficult.
  • the content of Bi 2 O 3 exceeds 90% by mass, it becomes difficult to vitrify and the thermal expansion coefficient tends to be too high.
  • ZnO is a component that lowers the thermal expansion coefficient and the like and further lowers the load softening point. Vitrification becomes difficult when the content of ZnO is less than 1% by mass. When the content of ZnO exceeds 20% by mass, stability during low-melting glass molding is lowered, and devitrification is likely to occur.
  • B 2 O 3 is a component that forms a glass skeleton and widens the range in which vitrification is possible. If the content of B 2 O 3 is less than 2% by mass, vitrification becomes difficult, and if it exceeds 18% by mass, the softening point becomes too high, and even if a load is applied during sealing, sealing is performed at a low temperature. It becomes difficult.
  • the glass (glass frit) formed with the above three components has a low glass transition point and is suitable for a low-temperature sealing material. Further, Al 2 O 3 , SiO 2 , CaO, SrO, BaO, P An optional component such as 2 O 5 or SnO x (x is 1 or 2) may be contained. However, if the content of any component is too large, the glass becomes unstable and devitrification may occur, and the glass transition point and softening point may increase. Therefore, the total content of any component is 30% by mass. The following is preferable. The total content of optional components is more preferably 15% by mass or less, and further preferably 5% by mass or less.
  • the tin-phosphate glass preferably has a composition of 45 to 68% SnO, 2 to 10% SnO 2 , and 20 to 40% P 2 O 5 by weight.
  • the composition of the tin-phosphate glass is more preferably 55 to 65% SnO, 2 to 5% SnO 2 and 25 to 35% P 2 O 5 by mass ratio.
  • SnO is a component for lowering the melting point of glass. If the SnO content is less than 45% by mass, the viscosity of the glass becomes high and the sealing temperature becomes too high, and if it exceeds 68% by mass, it will not vitrify.
  • SnO 2 is a component for stabilizing the glass.
  • SnO 2 is a component for stabilizing the glass.
  • SnO 2 is separated and precipitated in the glass that has been softened and melted during the sealing operation, the fluidity is impaired, and the sealing workability is lowered. If the content of SnO 2 exceeds 10% by mass, SnO 2 is likely to precipitate during melting of the low-melting glass.
  • P 2 O 5 is a component for forming a glass skeleton. When the content of P 2 O 5 is less than 20% by mass, vitrification does not occur, and when the content exceeds 40% by mass, the weather resistance, which is a disadvantage specific to phosphate glass, may be deteriorated.
  • the ratio (mass%) of SnO and SnO 2 in the glass frit can be determined as follows. First, after the glass frit (low melting point glass powder) is acid-decomposed, the total amount of Sn atoms contained in the glass frit is measured by ICP emission spectroscopic analysis. Next, since Sn 2+ (SnO) is obtained by acidimetric decomposition, the amount of Sn 2+ determined there is subtracted from the total amount of Sn atoms to obtain Sn 4+ (SnO 2 ).
  • the glass formed of the above three components has a low glass transition point and is suitable for a sealing material for low temperature.
  • An optional component such as BaO may be included.
  • the total content of any component is 30% by mass. The following is preferable.
  • the total content of optional components is more preferably 20% by mass or less, and further preferably 10% by mass or less.
  • the vanadium-based glass preferably has a composition of 50 to 80% V 2 O 5 and 15 to 45% P 2 O 5 by mass ratio.
  • the composition of the vanadium-based glass is more preferably 50 to 70% V 2 O 5 and 15 to 25% P 2 O 5 by mass ratio.
  • the vanadium-based glass may contain 5 to 25% by mass of Sb 2 O 3 , 1 to 15% by mass of BaO, and the like. Furthermore, SiO 2 , Al 2 O 3 , MgO, CaO, SrO, SnO x (x is 1 or 2). However, if the content of the optional component is too large, the glass becomes unstable and devitrification may occur, or the glass transition point and the softening point may increase. Therefore, the total content of the optional component is 50% by mass or less. It is preferable that The total content of arbitrary components is more preferably 40% by mass or less, and further preferably 35% by mass or less.
  • the lead-based glass preferably has a composition of 75 to 90% PbO and 5 to 20% B 2 O 3 by mass ratio.
  • the composition of the lead-based glass is more preferably 75 to 85% PbO and 10 to 15% B 2 O 3 by mass ratio.
  • PbO content is less than 75% by mass, the softening point of the low-melting glass becomes high, and sealing at low temperatures becomes difficult.
  • the content of PbO exceeds 90% by mass, crystallization is likely to occur when the glass is melted, and fluidity at the time of sealing may be reduced.
  • the content of B 2 O 3 is less than 5% by mass, vitrification becomes difficult, and if it exceeds 20% by mass, the softening point becomes too high and sealing at low temperatures becomes difficult.
  • the lead-based glass may contain 5 mass% or less of ZnO, 4 mass% or less of SiO 2 , 2 mass% or less of Al 2 O 3 , 2 mass% or less of BaO, 4 mass% or less of SnO 2, or the like. Furthermore, Bi 2 O 3 , MgO, CaO, SrO and the like may be included. However, if the content of any component is too large, the glass becomes unstable and devitrification may occur, and the glass transition point and softening point may increase. Therefore, the total content of any component is 30% by mass. The following is preferable. The total content of arbitrary components is more preferably 15% by mass or less, and further preferably 7% by mass or less.
  • the sealing glass (glass frit) of this embodiment includes Fe, Mn, Cr, Co, Ni, Nb in a mass ratio of 0.1 to 5% in addition to the basic components of the low melting point glass as described above. , Hf, W, Re, and at least one metal M oxide selected from the group consisting of rare earth elements, and K 2 O in a mass ratio of 5 to 100 ppm. Furthermore, Mo can be added to the above group.
  • the composition of the sealing glass is adjusted so that the total amount of the basic component of the low melting point glass, the metal M oxide and K 2 O, and the total amount including the optional components is basically 100% by mass.
  • K 2 O is a component that improves the adhesion between the sealing glass and the semiconductor substrate.
  • it functions as a component for improving the adhesion between the oxide of an alkaline metal other than K 2 O, such as Li 2 O and Na 2 O is also a semiconductor substrate (Si substrate), these surface leakage of the semiconductor substrate This will increase the current.
  • K 2 O since K 2 O has a larger atomic radius than Li 2 O, Na 2 O, and the like, the mobility is small, thereby suppressing an increase in the surface leakage current of the semiconductor substrate.
  • K 2 O is a component that improves the adhesion between the sealing glass and the semiconductor substrate (Si substrate, etc.) while suppressing adverse effects (increase in surface leakage current, etc.) on the semiconductor substrate and thus the semiconductor device. . If the content of K 2 O is less than 5 ppm, the effect of improving the adhesion to the semiconductor substrate cannot be sufficiently obtained, and if it exceeds 100 ppm, the surface leakage current increases.
  • the K 2 O content is more preferably in the range of 10 to 50 ppm.
  • Alkali metal oxides such as Li 2 O and Na 2 O other than K 2 O cause the surface leakage current of the semiconductor substrate to increase.
  • the content of Li 2 O in the sealing glass is preferably 30 ppm or less by mass ratio.
  • the sealing glass preferably contains K 2 O in the range of 5 to 100 ppm, and the Li 2 O content is preferably 30 ppm or less.
  • the content of Li 2 O is more preferably 10 ppm or less by mass ratio.
  • the constituent components of the low melting point glass are reduced. It is a component that suppresses precipitation as metal particles. Furthermore, Mo can be added to the above group.
  • PbO may be reduced during sealing (firing), and Pb particles may be deposited on the semiconductor substrate.
  • Metal particles may be deposited on the semiconductor substrate.
  • the metal M has a plurality of ionic valences and is more likely to be reduced in an ionic state (for example, 3+ to 2+, 4+ to 3+, etc.), but has a property that it is difficult to reduce to a metal state. . Therefore, when the sealing glass is fired, the metal M oxide functions as an oxygen supply source, so that the components of the low-melting glass are prevented from being precipitated as metal particles. Since the metal M oxide itself is not easily reduced to the metal state, the metal deposition can be suppressed. In addition, monovalent metals increase the surface leakage current, but metal M is a preferable component from this point because it does not take a monovalent state.
  • the oxygen supply at the time of sealing is improved, and the precipitation of the metal particles is more effectively suppressed. That is, when an alkali metal oxide such as K 2 O is present in the glass, the alkali metal ion cuts the glass network. The end of this network is [—O ( ⁇ ) R (+) ], and the alkali metal ion exists as a monovalent cation (R (+) ).
  • the content of the metal M oxide in the sealing glass is in the range of 0.1 to 5% by mass.
  • the content of the metal M oxide is less than 0.1% by mass, the supply amount of oxygen in the sealing glass is insufficient, and the precipitation of the metal particles due to the reduction of the components of the low-melting glass is sufficiently performed. It cannot be suppressed.
  • the content of the metal M oxide exceeds 5% by mass, the glass becomes unstable and devitrification may occur, and the glass transition point and softening point may increase.
  • the content of the metal M oxide is more preferably in the range of 0.1 to 3.5% by mass.
  • the rare earth element In addition to suppressing the reduction of the constituent components of the low-melting glass to suppress the precipitation of metal particles, the rare earth element also functions as a component that reduces damage to the melting tank when the glass is melted. This is considered to have the property of being more easily reduced even at the high temperature of glass melting.
  • the type of the rare earth element is not particularly limited and may be any lanthanoid element including Sc and Y, but is at least one selected from the group consisting of Ce, Eu, Yb, Pr, Nd, Tb and Tm. It is desirable. Since these elements have the property of being more easily reduced in an ionic state, precipitation of metal particles can be more effectively suppressed.
  • the sealing material of this embodiment is configured by blending the above-described sealing glass (glass frit) with an inorganic filler such as a low expansion filler as necessary.
  • the blending amount of the inorganic filler is appropriately set according to the purpose, but is preferably in the range of 40% by volume or less with respect to the sealing material. If the blending amount of the inorganic filler exceeds 40% by volume, the fluidity of the sealing material at the time of sealing may be reduced, and the adhesive strength may be reduced. More preferably, it is 20 volume% or less.
  • the sealing material contains sealing glass and 0 to 40% by volume of an inorganic filler.
  • the lower limit of the content of the inorganic filler is not particularly limited, and in some cases, the sealing material can be composed of only the sealing glass.
  • a typical example of the inorganic filler is a low expansion filler.
  • the low expansion filler has a lower thermal expansion coefficient than the sealing glass.
  • the sealing material may contain an inorganic filler other than the low expansion filler.
  • the content of the low expansion filler is preferably 40% by volume or less.
  • the lower limit of the content of the low expansion filler is not particularly limited, and is appropriately set according to the difference in thermal expansion coefficient between the sealing glass and the element semiconductor substrate or the sealing substrate. However, in order to obtain a practical blending effect, it is preferable to blend 5% by volume or more.
  • the content of the low expansion filler is more preferably 5 to 20% by volume.
  • the low expansion filler is selected from the group consisting of silica, alumina, zirconia, zirconium silicate, aluminum titanate, mullite, cordierite, eucryptite, spodumene, zirconium phosphate compounds, tin oxide compounds, and quartz solid solutions. It is preferable to use at least one selected from the above.
  • the zirconium phosphate-based compound include (ZrO) 2 P 2 O 7 , NaZr 2 (PO 4 ) 3 , KZr 2 (PO 4 ) 3 , Ca 0.5 Zr 2 (PO 4 ) 3 , and NbZr (PO 4 ). 3 , Zr 2 (WO 3 ) (PO 4 ) 2 , and complex compounds thereof.
  • inorganic fillers other than the low expansion filler examples include titania and complex oxide pigments.
  • complex oxide pigments As complex oxide pigments, (Co, Fe, Mn) (Fe, Cr, Mn) 2 O 4 , (Fe, Mn) (Fe, Mn) 2 O 4 , (Fe, Zn) (Fe, Cr) 2 O 4 , (Ni, Fe) (Cr, Fe) 2 O 4 , Cu (Cr, Mn) 2 O 4 , Cu (Co, Mn) 2 O 4 , CuCr 2 O 4 , and CoAl 2 O 4 are included. .
  • the sealing material paste of this embodiment is composed of a mixture of a sealing material and a vehicle.
  • a binder component such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose, oxyethyl cellulose, benzyl cellulose, propyl cellulose, nitrocellulose or the like dissolved in a solvent such as terpineol, butyl carbitol acetate, ethyl carbitol acetate, or methyl Acrylic resins (binder components) such as (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-hydroxyethyl methacrylate, methyl ethyl ketone, terpineol, butyl carbitol acetate, ethyl carbitol acetate, etc. Those dissolved in a solvent are used.
  • the mixing ratio of the sealing material and the vehicle is appropriately set according to the desired paste viscosity and the like, and is not particularly limited.
  • the viscosity of the sealing material paste may be adjusted to the viscosity corresponding to the device applied to the sealing substrate or the device semiconductor substrate, the mixing ratio of the organic resin (binder component) and the solvent, and the sealing material and the vehicle.
  • the mixing ratio can be adjusted.
  • the sealing material paste may contain a known additive in a glass paste like an antifoaming agent or a dispersing agent.
  • a known method using a rotary mixer equipped with a stirring blade, a roll mill, a ball mill, or the like can be applied.
  • FIG. 1 shows a configuration example of a semiconductor device using the sealing glass, the sealing material, and the sealing material paste of this embodiment.
  • a semiconductor device 1 shown in FIG. 1 constitutes a pressure sensor, an acceleration sensor, a gyro sensor, a micromirror, an optical device such as a light modulator, an optical device using a CCD element, or a CMOS element, but is not limited thereto. Is not to be done.
  • the semiconductor device 1 includes an element semiconductor substrate 2 and a sealing substrate 3.
  • Various semiconductor substrates typified by Si substrates are applied to the element semiconductor substrate 2.
  • An element portion 4 corresponding to the semiconductor device 1 is provided on the surface 2 a of the element semiconductor substrate 2.
  • the element unit 4 includes a sensor element, a mirror element, a light modulation element, a light detection element, and the like, and has various known structures.
  • the semiconductor device 1 is not limited to the structure of the element unit 4.
  • a first sealing region 5 is provided along the outer periphery of the element portion 4 on the surface 2 a of the element semiconductor substrate 2.
  • the first sealing region 5 is provided so as to surround the element portion 4.
  • a second sealing region 6 corresponding to the first sealing region 5 is provided on the surface 3 a of the sealing substrate 3.
  • the element semiconductor substrate 2 and the sealing substrate 3 are formed in a predetermined manner so that the surface 2a having the element portion 4 and the first sealing region 5 and the surface 3a having the second sealing region 6 face each other. It is arranged with a gap.
  • a gap between the element semiconductor substrate 2 and the sealing substrate 3 is sealed with a sealing layer 7.
  • the sealing layer 7 is formed between the sealing region 5 of the element semiconductor substrate 2 and the sealing region 6 of the sealing substrate 3 so as to seal the element portion 4.
  • the element portion 4 is hermetically sealed with a package including the element semiconductor substrate 2, the sealing substrate 3, and the sealing layer 7.
  • the sealing layer 7 is composed of a melt-fixed layer of the sealing material of this embodiment.
  • the package is hermetically sealed in a state corresponding to the semiconductor device 1. For example, when the semiconductor device 1 is a MEMS, the package is generally hermetically sealed in a vacuum state.
  • a sealing material layer (firing layer of sealing material) 8 is formed in the sealing region 6 of the sealing substrate 3.
  • a sealing material paste is applied to the sealing region 6 and dried to form an application layer of the sealing material paste.
  • the specific configuration of the sealing material and the sealing material paste is as described above.
  • the sealing material paste is applied onto the sealing region 6 by applying a printing method such as screen printing or gravure printing, or is applied along the sealing region 6 using a dispenser or the like.
  • the coating layer of the sealing material paste is dried, for example, at a temperature of 120 ° C. or more for 10 minutes or more.
  • a drying process is implemented in order to remove the solvent in an application layer. If the solvent remains in the coating layer, the binder component may not be sufficiently removed in the subsequent firing step.
  • the sealing material layer 8 is formed by firing the coating layer of the sealing material paste described above.
  • the coating layer is first heated to a temperature below the glass transition point of sealing glass (glass frit), which is the main component of the sealing material, and the binder component in the coating layer is removed, and then the sealing glass (glass The glass material for sealing is heated to a temperature equal to or higher than the softening point of the frit and baked on the sealing substrate 3.
  • the heating temperature for baking is preferably 0 to 80 ° C. higher than the softening point of the sealing glass.
  • the heating time is preferably 5 minutes to 1 hour. In this way, the sealing material layer 8 composed of the fired layer of the sealing material is formed.
  • a sealing substrate 3 having a sealing material layer 8 and an element semiconductor substrate 2 having an element portion 4 produced separately from the surface 2a and the surface 3a. are laminated via the sealing material layer 8 so as to face each other.
  • a gap is formed on the element portion 4 of the element semiconductor substrate 2 based on the thickness of the sealing material layer 8.
  • the laminate of the sealing substrate 3 and the element semiconductor substrate 2 is heated to a temperature equal to or higher than the softening point of the sealing glass in the sealing material layer 8 to melt and solidify the sealing glass.
  • a sealing layer 7 that hermetically seals the gap between the element semiconductor substrate 2 and the sealing substrate 3 is formed (FIG. 2C).
  • the heating temperature is preferably 0 to 80 ° C. higher than the softening point of the sealing glass.
  • the heating time is preferably 5 minutes to 1 hour.
  • the sealing glass contains K 2 O excellent in reactivity with the semiconductor substrate 2, the adhesion between the semiconductor substrate 2 and the sealing layer 7, that is, the hermetic sealing property by the sealing layer 7 is improved. be able to. Furthermore, since the sealing glass contains an oxide of metal M, precipitation of metal particles due to reduction of the glass component (metal oxide) can be suppressed. Therefore, it becomes possible to provide the semiconductor device 1 which is excellent in device characteristics and reliability in addition to hermetic sealing properties with good reproducibility.
  • Example 1 First, it has a composition of Bi 2 O 3 82.8%, B 2 O 3 5.8%, ZnO 10.7%, Al 2 O 3 0.5%, CeO 2 0.2% by mass ratio, A bismuth-based glass frit (softening point: 406 ° C.) containing 50 ppm K 2 O by mass ratio and cordierite powder as a low expansion filler were prepared.
  • the content of Li 2 O in the bismuth-based glass frit was not more than the detection limit of 5 ppm.
  • the content of K 2 O and Li 2 O is a value obtained by analysis by ICP, is the same the following examples. Further, 11% by mass of ethyl cellulose as a binder component was dissolved in 89% by mass of a solvent composed of butyl carbitol acetate to prepare a vehicle.
  • a sealing material was prepared by mixing 92% by volume of the bismuth-based glass frit described above and 8% by volume of cordierite powder.
  • a sealing material paste was prepared by mixing 86% by mass of this sealing material with 14% by mass of the vehicle.
  • a sealing material paste was applied to the outer peripheral region of a sealing substrate made of a semiconductor substrate (Si substrate) by a screen printing method (line width: 400 ⁇ m), and then dried under conditions of 120 ° C. ⁇ 10 minutes. This coating layer was baked in a heating furnace under conditions of 430 ° C. ⁇ 10 minutes to form a sealing material layer having a thickness of 20 ⁇ m.
  • a sealing substrate having a sealing material layer and an element semiconductor substrate (Si substrate) on which an element portion was formed were laminated.
  • the laminate of the sealing substrate and the element semiconductor substrate was placed in a heating furnace and heat-treated at 430 ° C. for 10 minutes to seal the sealing substrate and the element semiconductor substrate.
  • the semiconductor device thus produced was subjected to the characteristic evaluation described later.
  • Examples 2 to 15 A sealing material paste was prepared in the same manner as in Example 1 except that the composition of the bismuth glass frit (including the content of K 2 O) was changed to the conditions shown in Tables 1 and 2. Further, in the same manner as in Example 1 except that these sealing material pastes are used, a sealing material layer forming step for the sealing substrate, and a sealing step between the sealing substrate and the element semiconductor substrate (heating) Step). Each semiconductor device fabricated in this way was subjected to the characteristic evaluation described later.
  • a sealing material paste was prepared in the same manner as in Example 1 except that the composition of the bismuth glass frit (including the content of K 2 O) was changed to the conditions shown in Table 2. Furthermore, while using this sealing material paste and forming the sealing material layer on the sealing substrate in the same manner as in Example 1 except that the temperature shown in Table 4 is applied as the sealing temperature (heating temperature), And the sealing process (heating process) of the board
  • Example 16 It has a composition of PbO 81.0% by mass proportion, B 2 O 3 13.0%, ZnO 2.5%, Al 2 O 3 0.5%, CeO 2 3.0%, and further 5 ppm K by mass proportion.
  • a lead-based glass frit containing 2 O (softening point: 395 ° C.) and cordierite powder as a low expansion filler were prepared.
  • the Li 2 O content of the lead-based glass frit was 5 ppm or less, which was the detection limit.
  • 10% by mass of ethyl cellulose as a binder component was dissolved in 90% by mass of a solvent composed of butyl carbitol acetate to prepare a vehicle.
  • a sealing material was prepared by mixing 91% by volume of the lead-based glass frit described above and 9% by volume of cordierite powder.
  • a sealing material paste was prepared by mixing 85% by mass of the sealing material with 15% by mass of the vehicle.
  • a sealing material paste was applied to the outer peripheral region of a sealing substrate made of a semiconductor substrate (Si substrate) by a screen printing method (line width: 400 ⁇ m), and then dried under conditions of 120 ° C. ⁇ 10 minutes. This coating layer was baked in a heating furnace under conditions of 430 ° C. ⁇ 10 minutes to form a sealing material layer having a thickness of 20 ⁇ m.
  • a sealing substrate having a sealing material layer and an element semiconductor substrate (Si substrate) on which an element portion was formed were laminated.
  • the laminate of the sealing substrate and the element semiconductor substrate was placed in a heating furnace and heat-treated at 430 ° C. for 10 minutes to seal the sealing substrate and the element semiconductor substrate.
  • the semiconductor device thus produced was subjected to the characteristic evaluation described later.
  • Example 17 to 19 A sealing material paste was prepared in the same manner as in Example 16 except that the composition of the lead-based glass frit (including the content of K 2 O) was changed to the conditions shown in Table 2. Further, in the same manner as in Example 16 except that these sealing material pastes are used, a sealing material layer forming step for the sealing substrate, and a sealing step between the sealing substrate and the element semiconductor substrate (heating) Step). Each semiconductor device fabricated in this way was subjected to the characteristic evaluation described later.
  • a sealing material paste was prepared in the same manner as in Example 16 except that the composition of the lead-based glass frit (including the content of K 2 O) was changed to the conditions shown in Table 3. Further, in the same manner as in Example 16 except that this sealing material paste is used, a sealing material layer forming step for the sealing substrate, and a sealing step (heating step) between the sealing substrate and the element semiconductor substrate are performed. ). Each semiconductor device fabricated in this way was subjected to the characteristic evaluation described later.
  • Example 20 It has a composition of SnO 61.5%, SnO 2 3.3%, P 2 O 5 31.4%, ZnO 2.7%, Eu 2 O 3 1.1% by mass ratio, and 30 ppm K by mass ratio.
  • a tin-phosphate glass frit containing 2 O (softening point: 360 ° C.) and zirconium phosphate powder as a low expansion filler were prepared.
  • the Li 2 O content of the tin-phosphate glass frit was 5 ppm or less, which was the detection limit.
  • ethyl cellulose as a binder component was dissolved in 91% by mass of a mixed solvent of terpineol (71% by mass) and isoamyl acetate (29% by mass) to prepare a vehicle.
  • a sealing material was prepared by mixing 91% by volume of the above tin-phosphate glass frit and 9% by volume of cordierite powder.
  • the sealing material paste was prepared by mixing 77% by mass of the sealing material with 23% by mass of the vehicle.
  • a sealing material paste was applied to the outer peripheral region of a sealing substrate made of a semiconductor substrate (Si substrate) by a screen printing method (line width: 400 ⁇ m), and then dried under conditions of 120 ° C. ⁇ 10 minutes. This coating layer was baked in a heating furnace under conditions of 430 ° C. ⁇ 10 minutes to form a sealing material layer having a thickness of 20 ⁇ m.
  • a sealing substrate having a sealing material layer and an element semiconductor substrate (Si substrate) on which an element portion was formed were laminated.
  • the laminate of the sealing substrate and the element semiconductor substrate was placed in a heating furnace and heat-treated at 430 ° C. for 10 minutes to seal the sealing substrate and the element semiconductor substrate.
  • the semiconductor device thus produced was subjected to the characteristic evaluation described later.
  • Example 21 to 24 A sealing material paste was prepared in the same manner as in Example 20, except that the composition of the tin-phosphate glass frit (including the content of K 2 O) was changed to the conditions shown in Tables 2 and 3. Further, in the same manner as in Example 20 except that these sealing material pastes are used, a sealing material layer forming step for the sealing substrate and a sealing step (heating) between the sealing substrate and the element semiconductor substrate are performed. Step). Each semiconductor device fabricated in this way was subjected to the characteristic evaluation described later.
  • Example 25 Composition of V 2 O 5 52.1%, P 2 O 5 18.1%, ZnO 11.9%, Sb 2 O 3 13.0%, BaO 3.9%, Yb 2 O 3 1.0% by mass ratio
  • a vanadium-based glass frit (softening point: 400 ° C.) containing 82 ppm by mass of K 2 O and zirconium silicate powder as a low expansion filler.
  • the content of Li 2 O in the vanadium glass frit was 5 ppm or less, which was the detection limit.
  • 12% by mass of an acrylic resin as a binder component was dissolved in 88% by mass of a solvent composed of terpineol to prepare a vehicle.
  • a sealing material was prepared by mixing 86% by volume of the vanadium glass frit described above and 14% by volume of cordierite powder.
  • a sealing material paste was prepared by mixing 76% by mass of this sealing material with 24% by mass of the vehicle.
  • a sealing material paste was applied to the outer peripheral region of a sealing substrate made of a semiconductor substrate (Si substrate) by a screen printing method (line width: 400 ⁇ m), and then dried under conditions of 120 ° C. ⁇ 10 minutes. This coating layer was baked in a heating furnace under conditions of 430 ° C. ⁇ 10 minutes to form a sealing material layer having a thickness of 20 ⁇ m.
  • a sealing substrate having a sealing material layer and an element semiconductor substrate (Si substrate) on which an element portion was formed were laminated.
  • the laminate of the sealing substrate and the element semiconductor substrate was placed in a heating furnace and heat-treated at 430 ° C. for 10 minutes to seal the sealing substrate and the element semiconductor substrate.
  • the semiconductor device thus produced was subjected to the characteristic evaluation described later.
  • Example 26 to 28 A sealing material paste was prepared in the same manner as in Example 25 except that the composition of the vanadium-based glass frit (including the content of K 2 O) was changed to the conditions shown in Table 3. Further, in the same manner as in Example 25 except that these sealing material pastes are used, a sealing material layer forming step for the sealing substrate, and a sealing step between the sealing substrate and the element semiconductor substrate (heating) Step). Each semiconductor device fabricated in this way was subjected to the characteristic evaluation described later.
  • the present invention can be used for manufacturing a semiconductor device using a sealing glass. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2009-179234 filed on July 31, 2009 are cited herein as disclosure of the specification of the present invention. Incorporated.
  • SYMBOLS 1 Semiconductor device, 2 ... Element semiconductor substrate, 2a, 3a ... Surface, 3 ... Sealing substrate, 4 ... Element part, 5 ... 1st sealing area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

 半導体基板との反応性や接着性を低下させることなく、ガラス成分(金属酸化物)の還元による金属の析出を抑制することを可能にした半導体デバイス用封着ガラス、封着材料、封着材料ペーストを提供する。 半導体デバイス用封着ガラスは軟化点が430℃以下の低融点ガラスからなる。低融点ガラスは、質量割合で0.1~5%の範囲のFe、Mn、Cr、Co、Ni、Nb、Hf、W、Re、および希土類元素からなる群より選ばれる少なくとも1種の金属の酸化物と、質量割合で5~100ppmの範囲のKOとを含んでいる。さらに、上記群にMoを追加することもできる。半導体デバイス用封着材料は封着ガラスと体積割合で0~40%の範囲の無機充填材とを含有する。半導体デバイス用封着材料ペーストは封着材料とビヒクルとの混合物からなる。

Description

半導体デバイス用封着ガラス、封着材料、封着材料ペースト、および半導体デバイスとその製造方法
 本発明は半導体デバイス用封着ガラス、封着材料、封着材料ペースト、および半導体デバイスとその製造方法に関する。
 圧力センサ、加速度センサ、ジャイロセンサ、マイクロミラー、光変調器等のMEMS(Micro Electro Mechanical System)や、CCD素子やCMOS素子を適用した光デバイスにおいては、素子部の上空を中空構造としたパッケージが適用されている(特許文献1,2参照)。さらに、MEMSや光デバイス等の半導体デバイスの小型・軽量化を図るために、半導体基板やガラス基板等からなる封止用基板を、センサ素子やCMOS素子等が設けられた半導体基板上に直接接合したパッケージ構造(チップサイズパッケージ(CSP)等)の適用が進められている。
 センサ素子やCMOS素子等が形成された半導体基板(素子用半導体基板)と半導体基板やガラス基板等からなる封止用基板との接合には、樹脂、Au-Sn半田等の金属材料、ガラス材料等が用いられる。素子用半導体基板上に設けられたセンサ素子やCMOS素子等は気密に封止する必要があり、特にMEMSを構成する素子は真空状態で気密封止することが一般的である。上述した接合材料(封着材料)のうち、樹脂は気密性に劣ることから、半導体デバイスの信頼性を低下させる要因となる。Au-Sn半田等の金属材料は導電性を有することから、絶縁性を必要とされる場合には半導体基板上に直接形成することができず、絶縁パッケージとするために製造コストが増加する等の難点を有する。
 ガラス材料からなる封着材料(封着ガラス)としては、一般的に低融点のPbO系ガラス(鉛系ガラス)が用いられている。封着ガラスは気密封止性や耐湿性等に優れ、また絶縁材料であるために半導体基板上に直接形成することができるという利点を有する。ただし、従来組成のPbO系封着ガラス等を半導体デバイスの封着材料として用いた場合、半導体基板(Si基板等)や封着時の雰囲気(特に真空雰囲気)に起因して、封着ガラスの成分(PbO等の金属酸化物)が還元されて金属ボールが析出し、半導体基板の絶縁性を低下させて表面リークの増加要因となるという難点を有している。
 このような点に対し、封着温度(封着ガラスの焼成温度)を低下させることによって、ガラス成分(金属酸化物)の還元による金属の析出を抑制することができる。しかしながら、封着温度の低下は封着ガラスの半導体基板に対する反応性を悪化させ、接着強度や信頼性を低下させる要因となる。このため、封着ガラスを半導体デバイスの封着材料として使用するためには、半導体基板との反応性や接着性を低下させることなく、ガラス成分(金属酸化物)の還元による金属の析出を抑制することが重要となる。
特表2007-528591号公報 特開2008-244442号公報
 本発明の目的は、半導体基板との反応性や接着性を低下させることなく、ガラス成分(金属酸化物)の還元による金属の析出を抑制することを可能にした半導体デバイス用封着ガラス、封着材料、封着材料ペースト、さらにそのような材料を使用することによって、気密封止性や信頼性を高めることを可能にした半導体デバイスとその製造方法を提供することにある。
 本発明の態様に係る半導体デバイス用封着ガラスは、軟化点が430℃以下の低融点ガラスからなる半導体デバイス用封着ガラスであって、前記低融点ガラスは質量割合で0.1~5%の範囲のFe、Mn、Cr、Co、Ni、Nb、Hf、W、Re、および希土類元素からなる群より選ばれる少なくとも1種の金属の酸化物と、質量割合で5~100ppmの範囲のK2Oとを含むことを特徴としている。さらに、上記群にMoを追加することもできる。
 本発明の態様に係る半導体デバイス用封着材料は、本発明の態様に係る封着ガラスと、体積割合で0~40%の範囲の無機充填材とを含有することを特徴としている。本発明の態様に係る半導体デバイス用封着材料ペーストは、本発明の態様に係る封着材料とビヒクルとの混合物からなることを特徴としている。
 本発明の態様に係る半導体デバイスは、素子部と第1の封止領域とを備える表面を有する素子用半導体基板と、前記第1の封止領域に対応する第2の封止領域を備える表面を有し、前記表面が前記素子用半導体基板の前記表面と対向するように配置された封止用基板と、前記素子部を封止するように、前記素子用半導体基板の前記第1の封止領域と前記封止用基板の前記第2の封止領域との間に形成され、封着材料の溶融固着層からなる封着層とを具備する半導体デバイスであって、前記封着材料は、軟化点が430℃以下の低融点ガラスからなり、かつ質量割合で0.1~5%の範囲のFe、Mn、Cr、Co、Ni、Nb、Hf、W、Re、および希土類元素からなる群より選ばれる少なくとも1種の金属の酸化物と、質量割合で5~100ppmの範囲のK2Oとを含む封着ガラスを含有することを特徴としている。さらに、上記群にMoを追加することもできる。
 本発明の態様に係る半導体デバイスの製造方法は、素子部と、前記素子部を囲むように設けられた第1の封止領域とを備える表面を有する素子用半導体基板を用意する工程と、前記第1の封止領域に対応する第2の封止領域を備える表面を有する封止用基板を用意する工程と、前記素子用半導体基板の前記第1の封止領域、または前記封止用基板の前記第2の封止領域に、封着材料の焼成層からなる封着材料層を形成する工程と、前記素子用半導体基板の前記表面と前記封止用基板の前記表面とを対向させつつ、前記封着材料層を介して前記素子用半導体基板と前記封止用基板とを積層する工程と、前記素子用半導体基板と前記封止用基板との積層物を加熱し、前記封着材料層を溶融させて前記素子部を封止する封着層を形成する工程とを具備する半導体デバイスの製造方法であって、前記封着材料は、軟化点が430℃以下の低融点ガラスからなり、かつ質量割合で0.1~5%の範囲のFe、Mn、Cr、Co、Ni、Nb、Hf、W、Re、および希土類元素からなる群より選ばれる少なくとも1種の金属の酸化物と、質量割合で5~100ppmの範囲のKOとを含む封着ガラスを含有することを特徴としている。さらに、上記群にMoを追加することもできる。
 本発明の態様に係る半導体デバイス用封着ガラスによれば、半導体基板との反応性や接着性を高めつつ、ガラス成分(金属酸化物)の還元による金属の析出を抑制することができる。従って、そのような封着ガラスを使用した半導体デバイスとその製造方法によれば、半導体デバイスの気密封止性や信頼性を向上させることが可能になる。
本発明の実施形態による半導体デバイスの構成を示す断面図である。 本発明の実施形態による半導体デバイスの製造工程を示す断面図である。
 以下、本発明を実施するための形態について説明する。この実施形態の半導体デバイス用封着ガラスは、素子部が設けられた半導体基板(素子用半導体基板(Si基板等))と、半導体基板(Si基板等)、ガラス基板、セラミックス基板等からなる封止用基板との封着(接合)に用いられる。この実施形態の封着ガラスは軟化点が430℃以下の低融点ガラスからなり、かつ低融点ガラスは質量割合で0.1~5%の範囲のFe、Mn、Cr、Co、Ni、Nb、Hf、W、Re、および希土類元素からなる群より選ばれる少なくとも1種の金属(以下、金属Mという。)の酸化物と、質量割合で5~100ppmの範囲のKOとを含んでいる。さらに、上記群にMoを追加することもできる。
 封着ガラスを構成する低融点ガラスには、軟化点が430℃以下のビスマス系ガラス、錫-リン酸系ガラス、バナジウム系ガラス、鉛系ガラス等の低融点ガラスが用いられる。これらのうち、環境や人体に対する影響性等を考慮した場合には、鉛を実質的に含まないビスマス系ガラス、錫-リン酸系ガラス、またはバナジウム系ガラスを用いることが好ましく、さらにはビスマス系ガラスまたは錫-リン酸系ガラスを用いることがより好ましい。低融点ガラスの軟化点が430℃を超えると、半導体デバイスの素子部の構成要素(例えばSi-Au共晶)等に悪影響を及ぼすおそれがある。
 本発明の低融点ガラスの軟化点は、420℃以下が好ましく、また、350℃以上が好ましい。
 低融点ガラスとしてのビスマス系ガラスは、質量割合で70~90%のBi、1~20%のZnO、および2~18%のBの組成を有することが好ましい。ビスマス系ガラスの組成は、質量割合で75~86%のBi、5~12%のZnO、および5~16%のBであることがより好ましい。Biはガラスの網目を形成する成分である。Biの含有量が70質量%未満であると低融点ガラスの軟化点が高くなり、低温での封着が困難になる。Biの含有量が90質量%を超えるとガラス化しにくくなると共に、熱膨張係数が高くなりすぎる傾向がある。
 ZnOは熱膨張係数等を低下させ、さらに荷重軟化点を下げる成分である。ZnOの含有量が1質量%未満であるとガラス化が困難になる。ZnOの含有量が20質量%を超えると低融点ガラス成形時の安定性が低下し、失透が発生しやすくなる。Bはガラスの骨格を形成してガラス化が可能となる範囲を広げる成分である。Bの含有量が2質量%未満であるとガラス化が困難となり、18質量%を超えると軟化点が高くなりすぎて、封着時に荷重をかけたとしても低温で封着することが困難となる。
 上記した3成分で形成されるガラス(ガラスフリット)はガラス転移点が低く、低温用の封着材料に適したものであるが、さらにAl、SiO、CaO、SrO、BaO、P、SnO(xは1または2である)等の任意成分を含んでいてもよい。ただし、任意成分の含有量が多すぎるとガラスが不安定となって失透が発生したり、またガラス転移点や軟化点が上昇するおそれがあるため、任意成分の合計含有量は30質量%以下とすることが好ましい。任意成分の合計含有量は15質量%以下とすることがより好ましく、さらに好ましくは5質量%以下である。
 錫-リン酸系ガラスは、質量割合で45~68%のSnO、2~10%のSnO、および20~40%のPの組成を有することが好ましい。錫-リン酸系ガラスの組成は、質量割合で55~65%のSnO、2~5%のSnO、および25~35%のPであることがより好ましい。SnOはガラスを低融点化させるための成分である。SnOの含有量が45質量%未満であるとガラスの粘性が高くなって封着温度が高くなりすぎ、68質量%を超えるとガラス化しなくなる。
 SnOはガラスを安定化するための成分である。SnOの含有量が2質量%未満であると封着作業時に軟化溶融したガラス中にSnOが分離、析出し、流動性が損なわれて封着作業性が低下する。SnOの含有量が10質量%を超えると低融点ガラスの溶融中からSnOが析出しやすくなる。Pはガラス骨格を形成するための成分である。Pの含有量が20質量%未満であるとガラス化せず、その含有量が40質量%を超えるとリン酸塩ガラス特有の欠点である耐候性の悪化を引き起こすおそれがある。
 ここで、ガラスフリット中のSnOおよびSnOの割合(質量%)は以下のようにして求めることができる。まず、ガラスフリット(低融点ガラス粉末)を酸分解した後、ICP発光分光分析によりガラスフリット中に含有されているSn原子の総量を測定する。次に、Sn2+(SnO)は酸分解したものをヨウ素滴定法により求められるので、そこで求められたSn2+の量をSn原子の総量から減じてSn4+(SnO)を求める。
 上記した3成分で形成されるガラスはガラス転移点が低く、低温用の封着材料に適したものであるが、SiO、ZnO、B、Al、MgO、CaO、SrO、BaO等の任意成分を含んでいてもよい。ただし、任意成分の含有量が多すぎるとガラスが不安定となって失透が発生したり、またガラス転移点や軟化点が上昇するおそれがあるため、任意成分の合計含有量は30質量%以下とすることが好ましい。任意成分の合計含有量は20質量%以下とすることがより好ましく、さらに好ましくは10質量%以下である。
 バナジウム系ガラスは、質量割合で50~80%のV、および15~45%のPの組成を有することが好ましい。バナジウム系ガラスの組成は、質量割合で50~70%のV、および15~25%のPであることがより好ましい。Vの含有量が50質量%未満であると低融点ガラスの軟化点が高くなり、低温での封着が困難になる。Vの含有量が80質量%を超えるとガラス化しにくくなると共に、耐候性等の封着ガラスの信頼性が低下する傾向がある。Pの含有量が15質量%未満であるとガラス化が困難となる。Pの含有量が45質量%を超えると軟化点が高くなりすぎて、低温で封着することが困難となる。
 バナジウム系ガラスは5~25質量%のSbや1~15質量%のBaO等を含んでいてもよく、さらにSiO、Al、MgO、CaO、SrO、SnO(xは1または2である)等を含んでいてもよい。ただし、任意成分の含有量が多すぎるとガラスが不安定となって失透が発生したり、ガラス転移点や軟化点が上昇するおそれがあるため、任意成分の合計含有量は50質量%以下とすることが好ましい。任意成分の合計含有量は40質量%以下とすることがより好ましく、さらに好ましくは35質量%以下である。
 鉛系ガラスは、質量割合で75~90%のPbO、および5~20%のBの組成を有することが好ましい。鉛系ガラスの組成は、質量割合で75~85%のPbO、および10~15%のBであることがより好ましい。PbOの含有量が75質量%未満であると低融点ガラスの軟化点が高くなり、低温での封着が困難になる。PbOの含有量が90質量%を超えるとガラスの溶融時に結晶化しやすくなると共に、封着時の流動性が低下するおそれがある。Bの含有量が5質量%未満であるとガラス化が困難となり、20質量%を超えると軟化点が高くなりすぎて、低温で封着することが困難となる。
 鉛系ガラスは5質量%以下のZnO、4質量%以下のSiO、2質量%以下のAl、2質量%以下のBaO、4質量%以下のSnO等を含んでいてもよく、さらにBi、MgO、CaO、SrO等を含んでいてもよい。ただし、任意成分の含有量が多すぎるとガラスが不安定となって失透が発生したり、またガラス転移点や軟化点が上昇するおそれがあるため、任意成分の合計含有量は30質量%以下とすることが好ましい。任意成分の合計含有量は15質量%以下とすることがより好ましく、さらに好ましくは7質量%以下である。
 この実施形態の封着ガラス(ガラスフリット)は、上述したような低融点ガラスの基本成分に加えて、質量割合で0.1~5%の範囲のFe、Mn、Cr、Co、Ni、Nb、Hf、W、Re、および希土類元素からなる群より選ばれる少なくとも1種の金属Mの酸化物と、質量割合で5~100ppmの範囲のK2Oとを含んでいる。さらに、上記群にMoを追加することもできる。封着ガラスの組成は、低融点ガラスの基本成分と金属Mの酸化物とK2Oとの合計量、さらには任意成分を含む合計量が基本的には100質量%となるように調整される。
 KOは封着ガラスと半導体基板との接着性を向上させる成分である。ここで、LiOやNaO等のKO以外のアルカリ金属の酸化物も半導体基板(Si基板等)との接着性を向上させる成分として機能するものの、これらは半導体基板の表面リーク電流を増加させる要因となる。これに対して、KOはLiOやNaO等に比べて原子半径が大きいために移動度が小さく、これによって半導体基板の表面リーク電流の増加が抑制される。
 このように、KOは半導体基板、ひいては半導体デバイスに対する悪影響(表面リーク電流の増加等)を抑制しつつ、封着ガラスと半導体基板(Si基板等)との接着性を向上させる成分である。KOの含有量が5ppm未満であると半導体基板に対する接着性の向上効果を十分に得ることができず、100ppmを超えると表面リーク電流の増大を招いてしまう。KOの含有量は10~50ppmの範囲であることがより好ましい。
 LiOやNaO等のKO以外のアルカリ金属の酸化物は、半導体基板の表面リーク電流を増加させる要因となる。特に、LiOは半導体デバイスの特性や信頼性に対して悪影響を及ぼしやすいことから、封着ガラス中のLiO量を低減することが好ましい。具体的には、封着ガラス中のLiOの含有量は質量割合で30ppm以下とすることが好ましい。このように、封着ガラスは5~100ppmの範囲のKOを含み、かつLiOの含有量が30ppm以下であることが好ましい。LiOの含有量は質量割合で10ppm以下とすることがより好ましい。
 上述した金属M(Fe、Mn、Cr、Co、Ni、Nb、Hf、W、Re、および希土類元素からなる群より選ばれる少なくとも1種)の酸化物は、低融点ガラスの構成成分が還元されて金属粒子として析出することを抑制する成分である。さらに、上記群にMoを追加することもできる。上述した低融点ガラスのうち、鉛系ガラスではPbOが封着(焼成)時に還元され、Pb粒子が半導体基板上に析出するおそれがある。他の低融点ガラスにおいても同様であり、主成分となる金属酸化物(ビスマス系ではBi、錫-リン酸系ではSnO、バナジウム系ではV)が封着時に還元され、金属粒子が半導体基板上に析出するおそれがある。
 このような点に対して、金属Mは複数のイオン価数を持ち、さらにイオン状態で還元されやすい(例えば3+から2+、4+から3+等)ものの、メタル状態までは還元されにくいという性質を有する。従って、封着ガラスを焼成する際に、金属Mの酸化物が酸素の供給源として機能するため、低融点ガラスの構成成分が金属粒子として析出することが抑制される。金属Mの酸化物自体はメタル状態までは還元されにくいため、金属の析出を抑制することができる。また、1価の金属は表面リーク電流を増加させる要因となるが、金属Mは1価の状態を取らないため、その点からも好ましい成分である。
 さらに、金属Mの酸化物とKOとを併用することによって、封着時における酸素の供給性が向上して金属粒子の析出がより効果的に抑制される。すなわち、KO等のアルカリ金属の酸化物がガラス中に存在すると、アルカリ金属イオンがガラスネットワークを切断する。このネットワークの末端は[-O(-)(+)]となっており、アルカリ金属イオンは1価の陽イオン(R(+))として存在する。
 上記したR(+)基の付近に金属Mの酸化物(M)が存在すると、Mの1個の酸素原子中に存在する電子はアルカリ金属イオン(R(+))に引き付けられ、[-O(-)(+)…O(-)-(My-1(+)]の状態で準安定状態を取る。封着ガラス中から半導体基板側へ酸素が移動する際に、この準安定状態の酸素が使われる。従って、低融点ガラスの構成成分の還元が抑制される。しかも、金属Mは複数の価数状態を取ることが可能であるものの、メタル状態までは還元されにくいため、金属Mが金属粒子として析出することはない。
 封着ガラスにおける金属Mの酸化物の含有量は0.1~5質量%の範囲とする。金属Mの酸化物の含有量が0.1質量%未満であると、封着ガラス中における酸素の供給量が不足し、低融点ガラスの構成成分の還元に起因する金属粒子の析出を十分に抑制することができない。一方、金属Mの酸化物の含有量が5質量%を超えると、ガラスが不安定となって失透が発生したり、またガラス転移点や軟化点が上昇するおそれがある。金属Mの酸化物の含有量は0.1~3.5質量%の範囲とすることがより好ましい。
 金属Mはいずれも上述したような作用を示すものの、それらのうちでも特に希土類元素を使用することが好ましい。希土類元素は低融点ガラスの構成成分の還元を抑制して金属粒子の析出を抑えることに加えて、ガラスの溶融時に溶融槽へのダメージを低下させる成分としても機能する。これはガラス溶融の高温時にも、より還元されやすい性質を有するものと考えられる。希土類元素の種類は特に限定されるものではなく、ScおよびYを含むランタノイド元素であればよいが、Ce、Eu、Yb、Pr、Nd、TbおよびTmからなる群より選ばれる少なくとも1種であることが望ましい。これらの元素はイオン状態でより還元されやすい性質を有するため、金属粒子の析出をより効果的に抑制することができる。
 この実施形態の封着材料は、上述した封着ガラス(ガラスフリット)に必要に応じて、低膨張充填材等の無機充填材を配合して構成される。無機充填材の配合量は目的に応じて適宜に設定されるものであるが、封着材料に対して40体積%以下の範囲とすることが好ましい。無機充填材の配合量が40体積%を超えると、封着時における封着材料の流動性が低下して接着強度が低下するおそれがある。さらに好ましくは20体積%以下である。封着材料は封着ガラスと0~40体積%の無機充填材とを含有するものである。無機充填材の含有量の下限値は特に限定されるものではなく、場合によっては封着ガラスのみで封着材料を構成することも可能である。
 無機充填材の代表例としては低膨張充填材が挙げられる。低膨張充填材とは封着ガラスより低い熱膨張係数を有するものである。封着材料は低膨張充填材以外の無機充填材を含有していてもよい。低膨張充填材の含有量は、上述したように40体積%以下とすることが好ましい。低膨張充填材の含有量の下限値は特に限定されるものではなく、封着ガラスと素子用半導体基板や封止用基板との熱膨張係数の差に応じて適宜に設定されるものであるが、実用的な配合効果を得るためには5体積%以上配合することが好ましい。低膨張充填材の含有量は5~20体積%とすることがより好ましい。
 低膨張充填材としては、シリカ、アルミナ、ジルコニア、珪酸ジルコニウム、チタン酸アルミニウム、ムライト、コージェライト、ユークリプタイト、スポジュメン、リン酸ジルコニウム系化合物、酸化錫系化合物、および石英固溶体からなる群より選ばれる少なくとも1種を用いることが好ましい。リン酸ジルコニウム系化合物としては、(ZrO)、NaZr(PO、KZr(PO、Ca0.5Zr(PO、NbZr(PO、Zr2(WO3)(PO42、これらの複合化合物が挙げられる。低膨張充填材以外の無機充填材としては、チタニア、複合酸化物系顔料が挙げられる。複合酸化物系顔料としては、(Co,Fe,Mn)(Fe,Cr,Mn)、(Fe,Mn)(Fe,Mn)、(Fe,Zn)(Fe,Cr)、(Ni,Fe)(Cr,Fe)、Cu(Cr,Mn)、Cu(Co,Mn)、CuCr、CoAlが挙げられる。
 この実施形態の封着材料ペーストは、封着材料とビヒクルとの混合物からなるものである。ビヒクルとしては、例えばメチルセルロース、エチルセルロース、カルボキシメチルセルロース、オキシエチルセルロース、ベンジルセルロース、プロピルセルロース、ニトロセルロース等のバインダ成分を、ターピネオール、ブチルカルビトールアセテート、エチルカルビトールアセテート等の溶剤に溶解したもの、あるいはメチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリテート、2-ヒドロオキシエチルメタアクリレート等のアクリル系樹脂(バインダ成分)を、メチルエチルケトン、ターピネオール、ブチルカルビトールアセテート、エチルカルビトールアセテート等の溶剤に溶解したものが用いられる。
 封着材料とビヒクルとの混合比は、所望のペースト粘度等に応じて適宜に設定されるものであり、特に限定されるものではない。封着材料ペーストの粘度は、封止用基板もしくは素子用半導体基板に塗布する装置に対応した粘度に合わせればよく、有機樹脂(バインダ成分)と溶剤との混合割合、また封着材料とビヒクルとの混合割合により調整することができる。封着材料ペーストは、消泡剤や分散剤のようにガラスペーストで公知の添加物を含有していてもよい。封着材料ペーストの調製には、攪拌翼を備えた回転式の混合機やロールミル、ボールミル等を用いた公知の方法を適用することができる。
 上述した封着ガラス、封着材料および封着材料ペーストは、半導体デバイスの封着工程(素子用半導体基板と封止用基板との接合工程)に使用されるものである。図1はこの実施形態の封着ガラス、封着材料および封着材料ペーストを使用した半導体デバイスの構成例を示している。図1に示す半導体デバイス1は、圧力センサ、加速度センサ、ジャイロセンサ、マイクロミラー、光変調器等のMEMS、CCD素子やCMOS素子を適用した光デバイス等を構成するものであるが、これらに限定されるものではない。
 半導体デバイス1は素子用半導体基板2と封止用基板3とを具備している。素子用半導体基板2には、Si基板に代表される各種の半導体基板が適用される。封止用基板3としては、半導体基板(Si基板等)、ガラス基板、セラミックス基板等が使用される。素子用半導体基板2の表面2aには、半導体デバイス1に応じた素子部4が設けられている。素子部4はセンサ素子、ミラー素子、光変調素子、光検出素子等を備えており、各種公知の構造を有している。半導体デバイス1は素子部4の構造に限定されるものではない。
 素子用半導体基板2の表面2aには、素子部4の外周に沿って第1の封止領域5が設けられている。第1の封止領域5は素子部4を囲うように設けられている。封止用基板3の表面3aには、第1の封止領域5に対応する第2の封止領域6が設けられている。素子用半導体基板2と封止用基板3とは、素子部4や第1の封止領域5を有する表面2aと第2の封止領域6を有する表面3aとが対向するように、所定の間隙を持って配置されている。素子用半導体基板2と封止用基板3との間の間隙は封着層7で封止されている。
 封着層7は素子部4を封止するように、素子用半導体基板2の封止領域5と封止用基板3の封止領域6との間に形成されている。素子部4は素子用半導体基板2と封止用基板3と封着層7とで構成されたパッケージで気密封止されている。封着層7はこの実施形態の封着材料の溶融固着層からなるものである。パッケージ内は半導体デバイス1に応じた状態で気密封止されている。例えば、半導体デバイス1がMEMSである場合には、パッケージ内は真空状態で気密封止されることが一般的である。
 次に、この実施形態の半導体デバイス1の製造工程について、図2を参照して説明する。まず、図2(a)に示すように、封止用基板3の封止領域6に封着材料層(封着材料の焼成層)8を形成する。封着材料層8の形成にあたっては、まず封止領域6に封着材料ペーストを塗布し、これを乾燥させて封着材料ペーストの塗布層を形成する。封着材料や封着材料ペーストの具体的な構成は前述した通りである。
 封着材料ペーストは、例えばスクリーン印刷やグラビア印刷等の印刷法を適用して封止領域6上に塗布したり、あるいはディスペンサ等を用いて封止領域6に沿って塗布する。封着材料ペーストの塗布層は、例えば120℃以上の温度で10分以上乾燥させる。乾燥工程は塗布層内の溶剤を除去するために実施するものである。塗布層内に溶剤が残留していると、その後の焼成工程でバインダ成分を十分に除去できないおそれがある。
 上記した封着材料ペーストの塗布層を焼成して封着材料層8を形成する。焼成工程は、まず塗布層を封着材料の主成分である封着ガラス(ガラスフリット)のガラス転移点以下の温度に加熱し、塗布層内のバインダ成分を除去した後、封着ガラス(ガラスフリット)の軟化点以上の温度に加熱し、封着用ガラス材料を溶融して封止用基板3に焼き付ける。焼き付けるときの加熱温度は、封着ガラスの軟化点より、0~80℃高い温度であることが好ましい。また、加熱時間は、5分~1時間が好ましい。このようにして、封着材料の焼成層からなる封着材料層8を形成する。
 次に、図2(b)に示すように、封着材料層8を有する封止用基板3と、それとは別に作製した素子部4を有する素子用半導体基板2とを、表面2aと表面3aとが対向するように封着材料層8を介して積層する。素子用半導体基板2の素子部4上には、封着材料層8の厚さに基づいて間隙が形成される。この後、封止用基板3と素子用半導体基板2との積層物を封着材料層8中の封着ガラスの軟化点以上の温度に加熱し、封着ガラスを溶融・固化させることによって、素子用半導体基板2と封止用基板3との間の間隙を気密封止する封着層7を形成する(図2(c))。加熱温度は、封着ガラスの軟化点より、0~80℃高い温度であることが好ましい。また、加熱時間は、5分~1時間が好ましい。
 この際、封着ガラスは半導体基板2との反応性に優れるKOを含んでいるため、半導体基板2と封着層7との接着性、すなわち封着層7による気密封止性を高めることができる。さらに、封着ガラスは金属Mの酸化物を含んでいるため、ガラス成分(金属酸化物)の還元による金属粒子の析出を抑制することができる。従って、気密封止性に加えてデバイス特性や信頼性に優れる半導体デバイス1を再現性よく提供することが可能となる。
 次に、本発明の具体的な実施例およびその評価結果について述べる。なお、以下の説明は本発明を限定するものではく、本発明の趣旨に沿った形での改変が可能である。
(実施例1)
 まず、質量割合でBi82.8%、B5.8%、ZnO10.7%、Al0.5%、CeO0.2%の組成を有し、さらに質量割合で50ppmのKOを含むビスマス系ガラスフリット(軟化点:406℃)と、低膨張充填材としてコージェライト粉末とを用意した。なお、ビスマス系ガラスフリットのLiOの含有量は検出限界の5ppm以下であった。KOおよびLiOの含有量はICPにより分析した値であり、以下の例も同様である。さらに、バインダ成分としてのエチルセルロース11質量%を、ブチルカルビトールアセテートからなる溶剤89質量%に溶解してビヒクルを作製した。
 上述したビスマス系ガラスフリット92体積%とコージェライト粉末8体積%とを混合して封着材料を作製した。この封着材料86質量%をビヒクル14質量%と混合して封着材料ペーストを調製した。次いで、半導体基板(Si基板)からなる封止用基板の外周領域に、封着材料ペーストをスクリーン印刷法で塗布(線幅:400μm)した後、120℃×10分の条件で乾燥させた。この塗布層を加熱炉にて430℃×10分の条件で焼成することによって、膜厚が20μmの封着材料層を形成した。
 次に、封着材料層を有する封止用基板と素子部が形成された素子用半導体基板(Si基板)とを積層した。この封止用基板と素子用半導体基板との積層物を加熱炉内に配置し、430℃×10分の条件で熱処理することによって、封止用基板と素子用半導体基板とを封着した。このようにして作製した半導体デバイスを後述する特性評価に供した。
(実施例2~15)
 ビスマス系ガラスフリットの組成(KOの含有量を含む)を表1および表2に示す条件に変更する以外は、実施例1と同様にして封着材料ペーストを調製した。さらに、これらの封着材料ペーストを用いる以外は実施例1と同様にして、封止用基板に対する封着材料層の形成工程、および封止用基板と素子用半導体基板との封着工程(加熱工程)を実施した。このようにして作製した各半導体デバイスを後述する特性評価に供した。
(比較例1~2)
 ビスマス系ガラスフリットの組成(KOの含有量を含む)を表2に示す条件に変更する以外は、実施例1と同様にして封着材料ペーストを調製した。さらに、この封着材料ペーストを用いると共に、封着温度(加熱温度)として表4に示す温度を適用する以外は実施例1と同様にして、封止用基板に対する封着材料層の形成工程、および封止用基板と素子用半導体基板との封着工程(加熱工程)を実施した。このようにして作製した各半導体デバイスを後述する特性評価に供した。
(実施例16)
 質量割合でPbO81.0%、B13.0%、ZnO2.5%、Al0.5%、CeO3.0%の組成を有し、さらに質量割合で5ppmのKOを含む鉛系ガラスフリット(軟化点:395℃)と、低膨張充填材としてコージェライト粉末とを用意した。なお、鉛系ガラスフリットのLiOの含有量は検出限界の5ppm以下であった。さらに、バインダ成分としてのエチルセルロース10質量%を、ブチルカルビトールアセテートからなる溶剤90質量%に溶解してビヒクルを作製した。
 上述した鉛系ガラスフリット91体積%とコージェライト粉末9体積%とを混合して封着材料を作製した。この封着材料85質量%をビヒクル15質量%と混合して封着材料ペーストを調製した。次いで、半導体基板(Si基板)からなる封止用基板の外周領域に、封着材料ペーストをスクリーン印刷法で塗布(線幅:400μm)した後、120℃×10分の条件で乾燥させた。この塗布層を加熱炉にて430℃×10分の条件で焼成することによって、膜厚が20μmの封着材料層を形成した。
 次に、封着材料層を有する封止用基板と素子部が形成された素子用半導体基板(Si基板)とを積層した。この封止用基板と素子用半導体基板との積層物を加熱炉内に配置し、430℃×10分の条件で熱処理することによって、封止用基板と素子用半導体基板とを封着した。このようにして作製した半導体デバイスを後述する特性評価に供した。
(実施例17~19)
 鉛系ガラスフリットの組成(KOの含有量を含む)を表2に示す条件に変更する以外は、実施例16と同様にして封着材料ペーストを調製した。さらに、これらの封着材料ペーストを用いる以外は実施例16と同様にして、封止用基板に対する封着材料層の形成工程、および封止用基板と素子用半導体基板との封着工程(加熱工程)を実施した。このようにして作製した各半導体デバイスを後述する特性評価に供した。
(比較例3~4)
 鉛系ガラスフリットの組成(K2Oの含有量を含む)を表3に示す条件に変更する以外は、実施例16と同様にして封着材料ペーストを調製した。さらに、この封着材料ペーストを用いる以外は実施例16と同様にして、封止用基板に対する封着材料層の形成工程、および封止用基板と素子用半導体基板との封着工程(加熱工程)を実施した。このようにして作製した各半導体デバイスを後述する特性評価に供した。
(実施例20)
 質量割合でSnO61.5%、SnO3.3%、P31.4%、ZnO2.7%、Eu1.1%の組成を有し、さらに質量割合で30ppmのKOを含む錫-リン酸系ガラスフリット(軟化点:360℃)と、低膨張充填材としてリン酸ジルコニウム粉末とを用意した。なお、錫-リン酸系ガラスフリットのLiOの含有量は検出限界の5ppm以下であった。さらに、バインダ成分としてのエチルセルロース9質量%を、ターピネオール(71質量%)と酢酸イソアミル(29質量%)との混合溶剤91質量%に溶解してビヒクルを作製した。
 上述した錫-リン酸系ガラスフリット91体積%とコージェライト粉末9体積%とを混合して封着材料を作製した。この封着材料77質量%をビヒクル23質量%と混合して封着材料ペーストを調製した。次いで、半導体基板(Si基板)からなる封止用基板の外周領域に、封着材料ペーストをスクリーン印刷法で塗布(線幅:400μm)した後、120℃×10分の条件で乾燥させた。この塗布層を加熱炉にて430℃×10分の条件で焼成することによって、膜厚が20μmの封着材料層を形成した。
 次に、封着材料層を有する封止用基板と素子部が形成された素子用半導体基板(Si基板)とを積層した。この封止用基板と素子用半導体基板との積層物を加熱炉内に配置し、430℃×10分の条件で熱処理することによって、封止用基板と素子用半導体基板とを封着した。このようにして作製した半導体デバイスを後述する特性評価に供した。
(実施例21~24)
 錫-リン酸系ガラスフリットの組成(KOの含有量を含む)を表2および表3に示す条件に変更する以外は、実施例20と同様にして封着材料ペーストを調製した。さらに、これらの封着材料ペーストを用いる以外は実施例20と同様にして、封止用基板に対する封着材料層の形成工程、および封止用基板と素子用半導体基板との封着工程(加熱工程)を実施した。このようにして作製した各半導体デバイスを後述する特性評価に供した。
(実施例25)
 質量割合でV52.1%、P18.1%、ZnO11.9%、Sb13.0%、BaO3.9%、Yb1.0%の組成を有し、さらに質量割合で82ppmのKOを含むバナジウム系ガラスフリット(軟化点:400℃)と、低膨張充填材として珪酸ジルコニウム粉末とを用意した。なお、バナジウム系ガラスフリットのLiOの含有量は検出限界の5ppm以下であった。さらに、バインダ成分としてのアクリル樹脂12質量%を、ターピネオールからなる溶剤88質量%に溶解してビヒクルを作製した。
 上述したバナジウム系ガラスフリット86体積%とコージェライト粉末14体積%とを混合して封着材料を作製した。この封着材料76質量%をビヒクル24質量%と混合して封着材料ペーストを調製した。次いで、半導体基板(Si基板)からなる封止用基板の外周領域に、封着材料ペーストをスクリーン印刷法で塗布(線幅:400μm)した後、120℃×10分の条件で乾燥させた。この塗布層を加熱炉にて430℃×10分の条件で焼成することによって、膜厚が20μmの封着材料層を形成した。
 次に、封着材料層を有する封止用基板と素子部が形成された素子用半導体基板(Si基板)とを積層した。この封止用基板と素子用半導体基板との積層物を加熱炉内に配置し、430℃×10分の条件で熱処理することによって、封止用基板と素子用半導体基板とを封着した。このようにして作製した半導体デバイスを後述する特性評価に供した。
(実施例26~28)
 バナジウム系ガラスフリットの組成(KOの含有量を含む)を表3に示す条件に変更する以外は、実施例25と同様にして封着材料ペーストを調製した。さらに、これらの封着材料ペーストを用いる以外は実施例25と同様にして、封止用基板に対する封着材料層の形成工程、および封止用基板と素子用半導体基板との封着工程(加熱工程)を実施した。このようにして作製した各半導体デバイスを後述する特性評価に供した。
 次に、実施例1~28および比較例1~4の各半導体デバイスについて、金属粒子の析出の有無と封止用基板と素子用半導体基板との接着強度を評価した。これらの測定・評価結果を表4~8に示す。金属粒子の析出の有無はデバイス断面をSEMで観察して評価した。封止用基板と素子用半導体基板との接着強度はダイ・シェア強度(MIL-STD-883G(2019.7)に基づいて測定し、2kg/mm以上であるものを○、2kg/mm未満であるものを×とした。なお、表1~3における封着ガラスの組成比は便宜的に主要成分の合計量を100質量%として示しているが、微量成分であるK2O量も封着ガラスの成分合計(100質量%)に含まれるものである。
Figure JPOXMLDOC01-appb-T000001
*実:実施例、比:比較例。
Figure JPOXMLDOC01-appb-T000002
*実:実施例、比:比較例。
Figure JPOXMLDOC01-appb-T000003
*実:実施例、比:比較例。
Figure JPOXMLDOC01-appb-T000004
*実:実施例、比:比較例。
Figure JPOXMLDOC01-appb-T000005
*実:実施例、比:比較例。
Figure JPOXMLDOC01-appb-T000006
*実:実施例。
Figure JPOXMLDOC01-appb-T000007
*実:実施例。
Figure JPOXMLDOC01-appb-T000008
*実:実施例。
 表4ないし表8から明らかなように、実施例1~28による半導体デバイスはいずれも接着強度に優れ、また金属粒子の析出も認められなかった。これに対して、金属Mの酸化物を含まない封着ガラスを使用した比較例1や比較例3では、金属粒子の析出が認められた。また、比較例1に対して封着温度を下げた比較例2では、金属粒子の析出は認められなかったものの、接着強度が低下して信頼性が劣る結果となった。さらに、KOの含有量が少ない比較例4においても、接着強度が低下して信頼性が劣る結果となった。
 本発明は、封着ガラスを用いる半導体デバイスの製造に利用できる。
 なお、2009年7月31日に出願された日本特許出願2009-179234号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 1…半導体デバイス、2…素子用半導体基板、2a,3a…表面、3…封止用基板、4…素子部、5…第1の封止領域、6…第2の封止領域、7…封着層、8…封着材料層。

Claims (11)

  1.  軟化点が430℃以下の低融点ガラスからなる半導体デバイス用封着ガラスであって、
     前記低融点ガラスは、質量割合で0.1~5%の範囲のFe、Mn、Cr、Co、Ni、Nb、Hf、W、Re、および希土類元素からなる群より選ばれる少なくとも1種の金属の酸化物と、質量割合で5~100ppmの範囲のKOとを含むことを特徴とする半導体デバイス用封着ガラス。
  2.  前記低融点ガラスはLiOの含有量が質量割合で30ppm以下であることを特徴とする請求項1記載の半導体デバイス用封着ガラス。
  3.  前記低融点ガラスは、質量割合で70~90%の範囲のBi、1~20%の範囲のZnO、および2~18%の範囲のBを含むことを特徴とする請求項1または請求項2記載の半導体デバイス用封着ガラス。
  4.  前記低融点ガラスは、質量割合で45~68%の範囲のSnO、2~10%の範囲のSnO、および20~40%の範囲のPを含むことを特徴とする請求項1または請求項2記載の半導体デバイス用封着ガラス。
  5.  前記低融点ガラスは、質量割合で50~80%の範囲のV、および15~45%の範囲のPを含むことを特徴とする請求項1または請求項2記載の半導体デバイス用封着ガラス。
  6.  前記低融点ガラスは、質量割合で75~90%の範囲のPbO、および5~20%の範囲のBを含むことを特徴とする請求項1または請求項2記載の半導体デバイス用封着ガラス。
  7.  請求項1ないし請求項6のいずれか1項記載の封着ガラスと、体積割合で0~40%の範囲の無機充填材とを含有することを特徴とする半導体デバイス用封着材料。
  8.  前記無機充填材は、シリカ、アルミナ、ジルコニア、珪酸ジルコニウム、チタン酸アルミニウム、ムライト、コージェライト、ユークリプタイト、スポジュメン、リン酸ジルコニウム系化合物、酸化錫系化合物、および石英固溶体からなる群より選ばれる少なくとも1種からなる低膨張充填材を有することを特徴とする請求項7記載の半導体デバイス用封着材料。
  9.  請求項7または請求項8項記載の封着材料とビヒクルとの混合物からなることを特徴とする半導体デバイス用封着材料ペースト。
  10.  素子部と第1の封止領域とを備える表面を有する素子用半導体基板と、
     前記第1の封止領域に対応する第2の封止領域を備える表面を有し、前記表面が前記素子用半導体基板の前記表面と対向するように配置された封止用基板と、
     前記素子部を封止するように、前記素子用半導体基板の前記第1の封止領域と前記封止用基板の前記第2の封止領域との間に形成され、封着材料の溶融固着層からなる封着層とを具備する半導体デバイスであって、
     前記封着材料は、軟化点が430℃以下の低融点ガラスからなり、かつ質量割合で0.1~5%の範囲のFe、Mn、Cr、Co、Ni、Nb、Hf、W、Re、および希土類元素からなる群より選ばれる少なくとも1種の金属の酸化物と、質量割合で5~100ppmの範囲のKOとを含む封着ガラスを含有することを特徴とする半導体デバイス。
  11.  素子部と、前記素子部を囲むように設けられた第1の封止領域とを備える表面を有する素子用半導体基板を用意する工程と、
     前記第1の封止領域に対応する第2の封止領域を備える表面を有する封止用基板を用意する工程と、
     前記素子用半導体基板の前記第1の封止領域、または前記封止用基板の前記第2の封止領域に、封着材料の焼成層からなる封着材料層を形成する工程と、
     前記素子用半導体基板の前記表面と前記封止用基板の前記表面とを対向させつつ、前記封着材料層を介して前記素子用半導体基板と前記封止用基板とを積層する工程と、
     前記素子用半導体基板と前記封止用基板との積層物を加熱し、前記封着材料層を溶融させて前記素子部を封止する封着層を形成する工程とを具備する半導体デバイスの製造方法であって、
     前記封着材料は、軟化点が430℃以下の低融点ガラスからなり、かつ質量割合で0.1~5%の範囲のFe、Mn、Cr、Co、Ni、Nb、Hf、W、Re、および希土類元素からなる群より選ばれる少なくとも1種の金属の酸化物と、質量割合で5~100ppmの範囲のKOとを含む封着ガラスを含有することを特徴とする半導体デバイスの製造方法。
PCT/JP2010/062851 2009-07-31 2010-07-29 半導体デバイス用封着ガラス、封着材料、封着材料ペースト、および半導体デバイスとその製造方法 WO2011013776A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10804522.0A EP2460780A4 (en) 2009-07-31 2010-07-29 SEALING GLASS, SEALING MATERIAL AND PASTE FOR SEALING MATERIAL FOR SEMICONDUCTOR DEVICES, AND SEMICONDUCTOR DEVICE AND PRODUCTION METHOD THEREOF
JP2011524840A JP5609875B2 (ja) 2009-07-31 2010-07-29 半導体デバイス用封着ガラス、封着材料、封着材料ペースト、および半導体デバイスとその製造方法
CN201080033773.XA CN102471137B (zh) 2009-07-31 2010-07-29 半导体器件用密封玻璃、密封材料、密封材料糊料以及半导体器件及其制造方法
US13/362,690 US8704361B2 (en) 2009-07-31 2012-01-31 Sealing glass for semiconductor device, sealing material, sealing material paste, and semiconductor device and its production process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009179234 2009-07-31
JP2009-179234 2009-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/362,690 Continuation US8704361B2 (en) 2009-07-31 2012-01-31 Sealing glass for semiconductor device, sealing material, sealing material paste, and semiconductor device and its production process

Publications (1)

Publication Number Publication Date
WO2011013776A1 true WO2011013776A1 (ja) 2011-02-03

Family

ID=43529428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062851 WO2011013776A1 (ja) 2009-07-31 2010-07-29 半導体デバイス用封着ガラス、封着材料、封着材料ペースト、および半導体デバイスとその製造方法

Country Status (5)

Country Link
US (1) US8704361B2 (ja)
EP (1) EP2460780A4 (ja)
JP (1) JP5609875B2 (ja)
CN (1) CN102471137B (ja)
WO (1) WO2011013776A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173593A (zh) * 2011-02-12 2011-09-07 刘国正 无铅玻璃粉、其制备方法及应用
EP2523918A1 (de) * 2010-05-07 2012-11-21 Osram AG Optoelektronisches halbleiterbauelement enthaltend alkalifreies und halogenfreies metallphosphat
JP2013180902A (ja) * 2012-02-29 2013-09-12 Asahi Glass Co Ltd 封着材料ペーストとそれを用いた半導体デバイスの製造方法
JP2014038969A (ja) * 2012-08-18 2014-02-27 Seiko Epson Corp パッケージの製造方法、電子デバイスの製造方法および電子デバイス
JP2016050135A (ja) * 2014-08-29 2016-04-11 日立化成株式会社 無鉛低融点ガラス組成物並びにこれを含む低温封止用ガラスフリット、低温封止用ガラスペースト、導電性材料及び導電性ガラスペースト並びにこれらを利用したガラス封止部品及び電気電子部品
WO2016110986A1 (ja) * 2015-01-08 2016-07-14 ヤマト電子株式会社 結晶化ガラスと結着方法及び成形物の製造方法
CN114804661A (zh) * 2022-04-08 2022-07-29 中国建筑材料科学研究总院有限公司 一种玻璃封接方法及真空玻璃

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011010489A1 (ja) * 2009-07-23 2012-12-27 旭硝子株式会社 封着材料層付きガラス部材の製造方法及び製造装置、並びに電子デバイスの製造方法
JP5732414B2 (ja) * 2012-01-26 2015-06-10 株式会社日立製作所 接合体および半導体モジュール
JP5709810B2 (ja) * 2012-10-02 2015-04-30 キヤノン株式会社 検出装置の製造方法、その検出装置及び検出システム
CN103910491B (zh) * 2013-01-07 2016-10-19 中国建筑材料科学研究总院 具有光谱选择性吸收特性的含铅封接玻璃粉及其制造方法
WO2016136365A1 (ja) * 2015-02-27 2016-09-01 株式会社日立製作所 超音波探触子及びそれを用いた超音波診断装置
CN106430989B (zh) * 2016-09-29 2018-12-25 河南晶泰航空航天高新材料科技有限公司 一种低融点玻璃粉、其制备方法和应用及利用低融点玻璃粉制备复合玻璃柱的方法
JP6913276B2 (ja) * 2017-01-26 2021-08-04 日本電気硝子株式会社 気密パッケージ
US11871676B2 (en) * 2017-02-07 2024-01-09 Nippon Electric Glass Co., Ltd. Airtight package including a package base and a glass cover hermetically sealed with each other via a sealing material layer
JP7168903B2 (ja) * 2018-09-06 2022-11-10 日本電気硝子株式会社 気密パッケージ
JP7185181B2 (ja) * 2018-10-04 2022-12-07 日本電気硝子株式会社 半導体素子被覆用ガラス及びこれを用いた半導体被覆用材料
JP7360085B2 (ja) * 2019-06-05 2023-10-12 日本電気硝子株式会社 粉末材料及び粉末材料ペースト
JP7364418B2 (ja) * 2019-10-16 2023-10-18 日本化学工業株式会社 熱膨張抑制フィラー、その製造方法及びそれを含む複合材料
CN113336479B (zh) * 2021-05-21 2023-07-11 景德镇陶瓷大学 一种堇青石基微晶玻璃高温粘结剂及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161943A (ja) * 1982-03-16 1983-09-26 Iwaki Glass Kk 封着用ガラス組成物
JPS63136424A (ja) * 1986-11-27 1988-06-08 日本碍子株式会社 避雷碍子
JPH05343553A (ja) * 1991-06-17 1993-12-24 Hitachi Ltd 半導体集積回路装置およびそれに用いる封止ガラス
JP2002249339A (ja) * 2000-12-21 2002-09-06 Nippon Electric Glass Co Ltd 半導体封入用ガラス及び半導体封入用外套管
JP2003146691A (ja) * 2001-11-15 2003-05-21 Asahi Techno Glass Corp 低融点ガラス及びその製造方法
JP2007210870A (ja) * 2005-03-09 2007-08-23 Nippon Electric Glass Co Ltd ビスマス系ガラス組成物およびビスマス系封着材料
JP2007528591A (ja) 2003-05-22 2007-10-11 リフレクティヴィティー, インク. 微細構造および半導体デバイスのための新規なパッケージ方法
JP2007320822A (ja) * 2006-06-02 2007-12-13 Hitachi Ltd ガラス封着材料、平面型表示装置用枠ガラス及び平面型表示装置
JP2008244442A (ja) 2007-02-07 2008-10-09 Honeywell Internatl Inc Mems素子を密封するシステム及び方法
JP2009179234A (ja) 2008-01-31 2009-08-13 Ihi Marine United Inc 二重反転シール装置の潤滑構造

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161943A (en) * 1981-03-31 1982-10-05 Hitachi Ltd Data processing device
US4349635A (en) * 1981-10-26 1982-09-14 Motorola, Inc. Lower temperature glass and hermetic seal means and method
US4761518A (en) * 1987-01-20 1988-08-02 Olin Corporation Ceramic-glass-metal packaging for electronic components incorporating unique leadframe designs
US5315155A (en) * 1992-07-13 1994-05-24 Olin Corporation Electronic package with stress relief channel
US5455386A (en) * 1994-01-14 1995-10-03 Olin Corporation Chamfered electronic package component
US6274252B1 (en) * 1994-08-04 2001-08-14 Coors Ceramics Company Hermetic glass-to-metal seal useful in headers for airbags
US6998776B2 (en) * 2003-04-16 2006-02-14 Corning Incorporated Glass package that is hermetically sealed with a frit and method of fabrication
JP5232399B2 (ja) * 2007-03-30 2013-07-10 日立粉末冶金株式会社 ガラスペースト組成物
DE102007054437A1 (de) * 2007-11-13 2009-05-20 Tesa Ag Verfahren zur Herstellung eines schichtförmigen oder geschichteten anorganisch/organischen Verbundmaterials

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161943A (ja) * 1982-03-16 1983-09-26 Iwaki Glass Kk 封着用ガラス組成物
JPS63136424A (ja) * 1986-11-27 1988-06-08 日本碍子株式会社 避雷碍子
JPH05343553A (ja) * 1991-06-17 1993-12-24 Hitachi Ltd 半導体集積回路装置およびそれに用いる封止ガラス
JP2002249339A (ja) * 2000-12-21 2002-09-06 Nippon Electric Glass Co Ltd 半導体封入用ガラス及び半導体封入用外套管
JP2003146691A (ja) * 2001-11-15 2003-05-21 Asahi Techno Glass Corp 低融点ガラス及びその製造方法
JP2007528591A (ja) 2003-05-22 2007-10-11 リフレクティヴィティー, インク. 微細構造および半導体デバイスのための新規なパッケージ方法
JP2007210870A (ja) * 2005-03-09 2007-08-23 Nippon Electric Glass Co Ltd ビスマス系ガラス組成物およびビスマス系封着材料
JP2007320822A (ja) * 2006-06-02 2007-12-13 Hitachi Ltd ガラス封着材料、平面型表示装置用枠ガラス及び平面型表示装置
JP2008244442A (ja) 2007-02-07 2008-10-09 Honeywell Internatl Inc Mems素子を密封するシステム及び方法
JP2009179234A (ja) 2008-01-31 2009-08-13 Ihi Marine United Inc 二重反転シール装置の潤滑構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2460780A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2523918A1 (de) * 2010-05-07 2012-11-21 Osram AG Optoelektronisches halbleiterbauelement enthaltend alkalifreies und halogenfreies metallphosphat
US8772821B2 (en) 2010-05-07 2014-07-08 Osram Gmbh Optoelectronic semiconductor part containing alkali-free and halogen-free metal phosphate
EP2523918B1 (de) * 2010-05-07 2019-08-28 OSRAM GmbH Optoelektronisches halbleiterbauelement enthaltend alkalifreies und halogenfreies metallphosphat
CN102173593A (zh) * 2011-02-12 2011-09-07 刘国正 无铅玻璃粉、其制备方法及应用
JP2013180902A (ja) * 2012-02-29 2013-09-12 Asahi Glass Co Ltd 封着材料ペーストとそれを用いた半導体デバイスの製造方法
JP2014038969A (ja) * 2012-08-18 2014-02-27 Seiko Epson Corp パッケージの製造方法、電子デバイスの製造方法および電子デバイス
JP2016050135A (ja) * 2014-08-29 2016-04-11 日立化成株式会社 無鉛低融点ガラス組成物並びにこれを含む低温封止用ガラスフリット、低温封止用ガラスペースト、導電性材料及び導電性ガラスペースト並びにこれらを利用したガラス封止部品及び電気電子部品
WO2016110986A1 (ja) * 2015-01-08 2016-07-14 ヤマト電子株式会社 結晶化ガラスと結着方法及び成形物の製造方法
CN114804661A (zh) * 2022-04-08 2022-07-29 中国建筑材料科学研究总院有限公司 一种玻璃封接方法及真空玻璃
CN114804661B (zh) * 2022-04-08 2023-10-27 中国建筑材料科学研究总院有限公司 一种玻璃封接方法及真空玻璃

Also Published As

Publication number Publication date
EP2460780A1 (en) 2012-06-06
CN102471137A (zh) 2012-05-23
CN102471137B (zh) 2014-07-02
US8704361B2 (en) 2014-04-22
JPWO2011013776A1 (ja) 2013-01-10
US20120139133A1 (en) 2012-06-07
EP2460780A4 (en) 2013-12-04
JP5609875B2 (ja) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5609875B2 (ja) 半導体デバイス用封着ガラス、封着材料、封着材料ペースト、および半導体デバイスとその製造方法
JP5413373B2 (ja) レーザ封着用ガラス材料、封着材料層付きガラス部材、および電子デバイスとその製造方法
JP5716743B2 (ja) 封着材料ペーストとそれを用いた電子デバイスの製造方法
JP5041323B2 (ja) 粉末材料及びペースト材料
US8697242B2 (en) Glass member provided with sealing material layer, electronic device using it and process for producing the electronic device
JP5692218B2 (ja) 電子デバイスとその製造方法
KR101242636B1 (ko) 바나듐-인산계 유리
WO2012117978A1 (ja) 気密部材とその製造方法
JP2012106891A (ja) 封着用無鉛ガラス、封着材料、封着材料ペースト
JP6357937B2 (ja) 封着材料および封着パッケージ
TW201029947A (en) Glass member having sealing/bonding material layer, electronic device using same, and manufacturing method thereof
US20130287989A1 (en) Glass member provided with sealing material layer electronic device using it and process for producing the electronic device
JPWO2011108115A1 (ja) 有機el封着用無鉛ガラス材とこれを用いた有機elディスプレイ及び該ディスプレイの製造方法
JP2012041196A (ja) 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法
JP2012014971A (ja) 電子デバイス及びその製造方法
JP6311530B2 (ja) 封着用無鉛ガラス、封着材料、封着材料ペーストおよび封着パッケージ
JP5920513B2 (ja) 封着用無鉛ガラス、封着材料、封着材料ペースト
JP2015120623A (ja) 封着材料、封着材料層付き基板およびその製造方法、ならびに封着体
US20140342136A1 (en) Member with sealing material layer, electronic device, and method of manufacturing electronic device
JP5772662B2 (ja) 封着材料ペーストとそれを用いた半導体デバイスの製造方法
TW202408952A (zh) 玻璃組合物、玻璃糊、密封封裝及有機電激發光元件
KR20240017761A (ko) 유리 조성물, 유리 페이스트, 봉착 패키지 및 유기 일렉트로루미네센스 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033773.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804522

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011524840

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010804522

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010804522

Country of ref document: EP