WO2011013696A1 - 貼合わせ適性に優れた透明導電性フィルム及びこれを用いたタッチパネル - Google Patents

貼合わせ適性に優れた透明導電性フィルム及びこれを用いたタッチパネル Download PDF

Info

Publication number
WO2011013696A1
WO2011013696A1 PCT/JP2010/062686 JP2010062686W WO2011013696A1 WO 2011013696 A1 WO2011013696 A1 WO 2011013696A1 JP 2010062686 W JP2010062686 W JP 2010062686W WO 2011013696 A1 WO2011013696 A1 WO 2011013696A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
circuit pattern
thick film
film
Prior art date
Application number
PCT/JP2010/062686
Other languages
English (en)
French (fr)
Inventor
肆矢健二
橋本孝夫
Original Assignee
日本写真印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本写真印刷株式会社 filed Critical 日本写真印刷株式会社
Publication of WO2011013696A1 publication Critical patent/WO2011013696A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact

Definitions

  • the present invention relates to a transparent conductive film used for a touch panel or the like and a touch panel using the same.
  • the film substrate, a transparent electrode pattern made of a transparent conductive film formed on one side of the film substrate, and the peripheral portion on the film substrate on which the transparent electrode pattern is formed are routed to the
  • a transparent conductive film including a thick film circuit pattern made of a material having a resistance lower than that of the transparent conductive film, which is connected to an end of the transparent electrode pattern see Patent Document 1.
  • a resistive film type touch panel consists of two transparent conductive substrates on which transparent conductive films are formed facing each other at a predetermined interval. Both transparent electrode substrates are in contact only with a part touched with a finger, pen, etc. It operates as a switch and can select menus on the display screen or input handwritten characters, for example.
  • a relatively simple configuration is realized by using the transparent conductive film having the above-described configuration as a transparent conductive substrate and laminating at the peripheral portion.
  • a pressure-sensitive adhesive layer is used for pasting, and the thick film circuit pattern forming region is also covered with the pressure-sensitive adhesive layer.
  • the capacitive type touch panel mounted on a portable information device has become widespread, and its momentum surpasses that of a resistive film type.
  • the transparent conductive film having the above-described configuration is used. In this case, the transparent conductive film is entirely bonded to the transparent substrate.
  • a step corresponding to the thickness of the thick film circuit pattern is generated between the thick film circuit pattern and its adjacent portion. Therefore, when a touch panel is obtained by covering the region where the thick film circuit pattern is formed with the pressure sensitive adhesive layer, the pressure sensitive adhesive layer has an air gap between the thick film circuit pattern and the side wall due to this step. , And bubbles are generated. Even if the bubbles are stuck together under pressure, they move only along the sidewalls of the thick film circuit pattern and do not disappear, leaving the bubbles remaining in the bent part of the thick film circuit pattern, resulting in the following problems. .
  • the pressure-sensitive adhesive layer is not adhered to the part where bubbles are present, and the bonding force decreases accordingly.
  • the thick film circuit pattern where bubbles are present is likely to be deteriorated by oxidation.
  • a plurality of thick film circuit patterns are running side by side, if bubbles exist between the thick film circuit patterns, a short circuit may occur via the bubbles.
  • the transparent conductive film is bonded not only to the thick film circuit pattern forming area but also to the transparent electrode pattern forming area.
  • the transparent electrode pattern formation region there also arises a problem that it is difficult to visually recognize the back display through the touch panel.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a transparent conductive film that does not generate bubbles at the time of bonding, that is, excellent in bonding suitability, and a touch panel using the same.
  • the present invention provides a transparent conductive film having the following constitution and excellent bonding suitability and a touch panel using the transparent conductive film.
  • a film substrate a transparent electrode pattern made of a transparent conductive film formed on one side of the film substrate, and a peripheral portion on the film substrate on which the transparent electrode pattern is formed
  • a thick film circuit pattern made of a material having a resistance lower than that of the transparent conductive film, which is routed and connected to an end portion of the transparent electrode pattern, wherein the thick film circuit pattern is
  • a transparent conductive film excellent in bonding suitability characterized in that it has a film thickness of 0.05 to 100 ⁇ m and at least one line edge is formed in a zigzag shape.
  • the second aspect of the present invention provides a transparent conductive film excellent in laminating suitability of the first aspect, wherein the distance from the convex peak having the jagged shape to the adjacent convex peak is 10 to 600 ⁇ m.
  • the third aspect of the present invention provides a transparent conductive film excellent in laminating suitability according to the second aspect, wherein the difference between the peak of the convex part and the peak of the concave part is 2 to 50 ⁇ m.
  • the fourth aspect of the present invention provides a transparent conductive film having excellent laminating suitability according to the first aspect, wherein the zigzag shape is a complicated structure.
  • the fifth aspect of the present invention provides a transparent conductive film having excellent laminating suitability according to the fourth aspect in which the zigzag shape is more complicated and has a fractal shape.
  • the sixth aspect of the present invention provides a transparent conductive film excellent in bonding suitability of the first aspect in which the thick film circuit pattern is formed of a conductive paste.
  • the seventh aspect of the present invention is the application according to the first aspect, wherein the thick film circuit pattern has a region where two or more thick film circuit patterns run in parallel, and the interval between the thick film circuit patterns running in parallel is 10 to 60 ⁇ m.
  • a transparent conductive film excellent in suitability for alignment is provided.
  • the 8th aspect of this invention is a sticking of a 1st aspect further provided with the circuit pattern which consists of a transparent conductive film extended from the said transparent electrode pattern between the said film base material and the said thick film circuit pattern.
  • the circuit pattern which consists of a transparent conductive film extended from the said transparent electrode pattern between the said film base material and the said thick film circuit pattern.
  • the ninth aspect of the present invention further provides a transparent conductive film excellent in laminating suitability of the first aspect provided with a pressure-sensitive adhesive layer so as to cover at least the formation region of the thick film circuit pattern.
  • the tenth aspect of the present invention provides a touch panel characterized by using the transparent conductive film according to the first to ninth aspects.
  • the line edge of the thick film circuit pattern is formed in a zigzag shape, even when the formation area of the thick film circuit pattern is covered with the pressure-sensitive adhesive layer, it is caused by this step.
  • the pressure adhesive layer does not bite air between the thick film circuit pattern side walls, and bubbles are not generated. This is because the side walls of the thick film circuit pattern are roughened so that air can easily escape through the fine gaps formed by the irregularities on the rough surface. Also, air that could not be removed does not form bubbles because it is finely dispersed in the fine gaps.
  • the pressure-sensitive adhesive layer adheres firmly and the laminating force does not decrease. Rather, the unevenness on the side wall of the thick film circuit pattern exerts an anchor effect on the pressure-sensitive adhesive layer, and the transparent conductive film does not peel off due to bending during use of the touch panel or warping of the touch panel in a high temperature and high humidity environment. A strong laminating force can be obtained.
  • the thick film circuit pattern is not easily deteriorated by oxidation.
  • the thick film circuit pattern is not easily deteriorated by oxidation.
  • the touch panel is a capacitive type, there is no bubble moving to the transparent electrode pattern formation region, so that there is no problem that it is difficult to see the back display through the touch panel.
  • FIG. 1 is an exploded perspective view showing an example of a resistive film type touch panel according to the present invention.
  • FIG. It is a disassembled perspective view which shows an example of the capacitive touch panel which concerns on this invention.
  • FIG. 2 is a partially enlarged photograph of a thick film circuit pattern of Example 1.
  • FIG. 2 is a partially enlarged photograph of a thick film circuit pattern of Example 1.
  • FIG. 4 is a partially enlarged photograph of a thick film circuit pattern of Example 2.
  • FIG. 4 is a partially enlarged photograph of a thick film circuit pattern of Example 2.
  • FIG. 4 is a partially enlarged photograph of a thick film circuit pattern of Example 3.
  • FIG. 4 is a partially enlarged photograph of a thick film circuit pattern of Example 3.
  • a transparent electrode pattern 61 made of a transparent conductive film is formed on one side of a film substrate 62, and at the peripheral portion on the film substrate 62 on which the transparent electrode pattern 61 is formed.
  • a plurality of thick film circuit patterns 60 are routed and connected to the ends of the transparent electrode pattern 61.
  • the material of the film substrate 62 is polyethylene terephthalate, polyethylene, polypropylene, cyclic polyolefin, polyvinyl chloride, polyvinylidene chloride, polymethyl methacrylate, polymethyl acrylate, polystyrene, nitrocellulose, triacetyl cellulose, polycarbonate, polydimethylcyclohexane terephthalate, Examples thereof include ABS resin, polyamide, polyimide, polyethersulfone, polysulfone, polyvinyl acetal, polyetherketone, polyurethane, copolymer resins of these resins, and mixed resins of these resins.
  • the transparent electrode pattern 61 is made of a transparent conductive film, and the material thereof is made of transparent oxides such as indium oxide, tin oxide, indium tin oxide, zinc oxide, and aluminum zinc oxide, as well as thiophene-based materials. Examples thereof include transparent conductive polymers.
  • the thick film circuit pattern 60 is made of a material having a resistance lower than that of the transparent conductive film.
  • a conductive paste layer made of a binder resin and a conductive material or a thin film layer made of a single conductive material can be used.
  • the binder resin include resins such as acrylic, polyester, polyurethane, and polyvinyl chloride.
  • the thick film circuit pattern 60 is formed into a predetermined pattern by a method such as painting or ink jet, in addition to screen printing, gravure printing, and offset printing. Alternatively, the solid pattern may be formed by these methods and then patterned.
  • Examples of conductive materials include metal powders such as silver, gold, copper, and palladium, metal particles, and metal nanoparticles, as well as conductive nanofibers such as carbon nanofibers and metal nanowires.
  • the thickness of the thick film circuit pattern 60 can be appropriately set in the range of 0.05 to 100 ⁇ m. If the thickness is less than 0.05 ⁇ m, it is difficult to obtain the conductivity as a routing circuit, and if the thickness is more than 100 ⁇ m, it is difficult to form a thin film.
  • the feature of the present invention lies in that at least one line edge of the thick film circuit pattern 60 is formed in a zigzag shape to obtain excellent bonding ability (see FIGS. 2 and 8). That is, since the line edge of the thick film circuit pattern 60 is formed in a zigzag shape, even when the formation area of the thick film circuit pattern 60 is covered with the pressure sensitive adhesive layer 64, the pressure sensitivity is caused by this step.
  • the adhesive layer 64 does not bite air between the side walls of the thick film circuit pattern 60, and bubbles are not generated. This is because the side wall 60a of the thick film circuit pattern 60 is roughened so that air can easily escape through the fine gaps formed by the irregularities of the rough surface. Also, air that could not be removed does not form bubbles because it is finely dispersed in the fine gaps.
  • the thick film circuit pattern is formed so that the line edge, that is, the side wall of the thick film circuit pattern is smooth. This is because the smoother one can form a plurality of thick film circuit patterns closer to each other and achieve higher definition. In fact, in this field, there is a technical competition on how to smooth line edges. On the other hand, in the present invention, the effect of the preceding paragraph is obtained by intentionally forming the line edge into a rough and jagged shape rather than usual, based on the idea of reversal.
  • the jagged shape is preferably formed so that the distance from the convex peak to the adjacent convex peak is in the range of 10 to 600 ⁇ m (see FIG. 2).
  • it is less than 10 ⁇ m, it becomes difficult to form unevenness, and when it exceeds 600 ⁇ m, it is impossible to obtain sufficient bonding suitability. More preferably, it is 20 to 300 ⁇ m. More preferably, it is 40 to 150 ⁇ m.
  • the jagged shape is preferably formed so that the distance from the convex peak to the adjacent convex peak is in the range of 10 to 600 ⁇ m, and the difference between the convex peak and the concave peak is in the range of 2 to 50 ⁇ m ( (See FIG. 2).
  • the difference between the peak of the convex part and the peak of the concave part is less than 2 ⁇ m, the bonding ability cannot be obtained sufficiently, and when the difference between the peak of the convex part and the peak of the concave part exceeds 50 ⁇ m, the thick film runs in parallel It is difficult to reduce the interval between circuit patterns (narrow frame).
  • the difference between the peak of the convex portion and the peak of the concave portion is 3 to 25 ⁇ m. More preferably, the difference between the peak of the convex portion and the peak of the concave portion is 5 to 15 ⁇ m.
  • the zigzag shape has a more complex anchor structure and better anchor effect with respect to the pressure-sensitive adhesive layer 64.
  • the unevenness and the protruding direction are different, so it can respond to various changes in how the force is applied, such as how to bend when using the touch panel and how to warp the touch panel in a high-temperature and high-humidity environment. it can.
  • the jagged shape is uniform, the anchor effect varies depending on how the force is applied.
  • the shape of the aforementioned line edge formed in a jagged shape may be a more complicated and fractal diagram shape, that is, a structure that is more jagged when the surface of the jagged surface is enlarged. This further increases the anchor effect.
  • the thick film circuit pattern 60 has a region in which two or more of the thick film circuit patterns 60 run in parallel (see FIGS. 1 to 3), and an interval 5 between the thick film circuit patterns 60 that run in parallel is 10 to 60 ⁇ m.
  • interval 5 means between the convex parts which protrude most.
  • a circuit pattern 64 made of a transparent conductive film extended from the transparent electrode pattern 61 is provided between the film substrate 62 and the thick film circuit pattern 60. Good.
  • the transparent conductive film 1 may include a pressure-sensitive adhesive (PSA) layer 64 for bonding in advance so as to cover at least the formation region of the thick film circuit pattern 60 (See FIG. 5).
  • PSA pressure-sensitive adhesive
  • a normal printing method such as screen printing, offset printing, gravure printing, or flexographic printing may be used.
  • the touch panel 1 can be obtained using the transparent conductive film 1 as described above.
  • the touch panel is a sensor that detects where the user touches without disturbing the screen display of an LCD or the like. Although the touched position is detected electrically and the one not using electricity, the transparent conductive film 1 described above is used for an electric detection method such as a resistance film method or a capacitance method. is there.
  • the two transparent conductive films 1 are bonded only at the peripheral edge so that the transparent electrodes face each other through the air layer. When the input surface is touched, the film bends due to the pressure, and the transparent electrodes come into contact with each other so that electricity flows.
  • the pressed position can be detected by measuring the voltage division ratio due to the resistance of each transparent electrode (Fig. 6).
  • the position is detected by detecting the change in the capacitance between the fingertip and the transparent electrode.
  • the transparent conductive film 1 is placed on the entire back surface of the glass plate. The two transparent conductive films 1 are bonded together so that the transparent electrodes face each other (see FIG. 7).
  • a transparent conductive film made of indium tin oxide was formed by sputtering on one side of a biaxially stretched polyethylene terephthalate film having a thickness of 100 ⁇ m as a film substrate, and unnecessary portions were removed to form a transparent electrode pattern.
  • a silver paste (3 parts by weight of silver powder having an average particle diameter of 20 ⁇ m with respect to 10 parts by weight of acrylic resin) is used by screen printing to form a frame-shaped solid pattern having a thickness of 7 ⁇ m, which is unnecessary
  • the portion was removed, and a jagged thick film circuit pattern with uneven line edges on both sides was formed so as to be connected to the transparent electrode pattern to obtain a transparent conductive film.
  • the line edge portion of the formed thick film circuit pattern has an average distance of 100 ⁇ m from the jagged convex peak to the adjacent convex peak, and an average difference of 14 ⁇ m between the convex peak and the concave peak.
  • the gap between the running thick film circuit patterns was about 50 ⁇ m (see FIGS. 9 and 10).
  • the two transparent conductive films were bonded together with a pressure-sensitive adhesive layer so that the transparent electrodes were opposed to each other to obtain a capacitive touch panel.
  • the touch panel obtained in this way had no pressure between the pressure-sensitive adhesive layer and the side wall of the thick film circuit pattern, and no bubbles were generated.
  • the bonding force was strong enough to prevent the transparent conductive film from peeling due to bending when using the touch panel and warping of the touch panel in a high temperature and high humidity environment.
  • a thick film circuit pattern was formed in the same manner as in Example 1 except that a silver nanocolloid material having an average particle diameter of 1 ⁇ m was used instead of the silver powder of the silver paste.
  • the distance from the jagged-shaped convex peak at the line edge portion of the thick film circuit pattern to the adjacent convex peak is 100 ⁇ m on average, and the difference between the convex peak and the concave peak is 5 ⁇ m on average (See FIGS. 11 and 12).
  • a sufficient effect was obtained for pasting.
  • a thick film circuit pattern was formed in the same manner as in Example 1 except that a copper foil having a thickness of 10 ⁇ m was used instead of the silver paste.
  • the distance from the jagged convex peak at the line edge portion of the thick film circuit pattern to the adjacent convex peak is 40 ⁇ m on average, and the difference between the convex peak and the concave peak is 6 ⁇ m on average (See FIGS. 13 and 14).
  • a sufficient effect was obtained for pasting.
  • the present invention can be used for applications such as PDAs, handheld terminals and other portable information terminals, copiers, facsimile and other OA equipment, smartphones, mobile phones, portable game machines, electronic dictionaries, car navigation systems, small PCs, various home appliances It is useful industrially.

Abstract

【課題】 貼合わせ時に気泡を生じない、すなわち貼合わせ適性に優れた透明導電性フィルム及びこれを用いたタッチパネルを提供する 【解決手段】 フィルム基材と、前記フィルム基材の片面に形成された透明導電膜からなる透明電極パターンと、前記透明電極パターンが形成された前記フィルム基材上の周縁部に引き回されて前記透明電極パターンの端部と接続される、前記透明導電膜より低抵抗の材料からなる厚膜回路パターンと、を備えた透明導電性フィルムであって、前記厚膜回路パターンが、0.05~100μmの膜厚で、なおかつ少なくとも一方のラインエッジをギザキザ形状に形成されている透明導電性フィルムとした。

Description

貼合わせ適性に優れた透明導電性フィルム及びこれを用いたタッチパネル
 この発明は、タッチパネルなどに用いる透明導電性フィルム及びこれを用いたタッチパネルに関するものである。
 従来より、フィルム基材と、前記フィルム基材の片面に形成された透明導電膜からなる透明電極パターンと、前記透明電極パターンが形成された前記フィルム基材上の周縁部に引き回されて前記透明電極パターンの端部と接続される、前記透明導電膜より低抵抗の材料からなる厚膜回路パターンと、を備えた透明導電性フィルムが知られている(特許文献1参照)。
 そして、タッチパネルを搭載した携帯型の情報機器が広く使用されているが、これらに搭載されるタッチパネルとしては抵抗膜方式のものがあった。抵抗膜方式のタッチパネルは、透明導電膜が形成された二枚の透明導電基板を所定間隔で相対させて構成するもので、指、ペン等でタッチした部分でのみ両透明電極基板が接触してスイッチとして動作し、例えばディスプレイ画面上のメニューの選択あるいは手書き文字の入力等を行うことが出来る。このタッチパネルにおいては、前記した構成の透明導電性フィルムを透明導電基板として用い、周縁部で貼合わせることにより、比較的簡易な構成を実現している。貼合わせには感圧接着剤層が用いられ、前記厚膜回路パターンの形成領域もこの感圧接着剤層で被覆される。
 また、近年では、携帯型の情報機器に搭載されるタッチパネルとして静電容量方式のものも普及しており、その勢いは抵抗膜方式を凌駕するほどである。静電容量方式のタッチパネルにおいても前記した構成の透明導電性フィルムを用いるが、この場合、透明導電性フィルムを全面的に透明基材に貼り合わせている。
特開2006-059720号公報
 しかしながら、厚膜回路パターンの形成領域においては、厚膜回路パターンとその隣接部分との間に厚膜回路パターン厚み分の段差が生じている。そのため、厚膜回路パターンの形成領域を感圧接着剤層で被覆してタッチパネルを得た際に、この段差に起因して、感圧接着剤層が厚膜回路パターンの側壁との間に空気を噛み、気泡が発生する。気泡は、加圧しながら貼合わせても厚膜回路パターンの側壁に沿って移動するだけで消滅せず、厚膜回路パターンの屈曲部分などに気泡が残存したままとなり、以下のような問題を生ずる。
 まず、この気泡が経時的に、例えばタッチパネルの保管・輸送時などに押圧されることにより集合すると、タッチパネルの外表面に膨れなどの外観不良を起こすという悪さをする。
 また、気泡が存在する部分は感圧接着剤層は接着していないで、その分だけ貼合わせ力は低下する。
 さらに、気泡が存在する部分の厚膜回路パターンには酸化による劣化が生じ易い。加えて複数本の厚膜回路パターンが並走している場合には、厚膜回路パターンどうしの間に気泡が存在すると当該気泡を介して短絡が生じるおそれもある。
 そして、タッチパネルが静電容量方式の場合には、透明導電性フィルムは厚膜回路パターンの形成領域のみならず透明電極パターン形成領域も貼合わせられるため、厚膜回路パターンの形成領域で発生した気泡が経時的に透明電極パターン形成領域まで移動してくると、タッチパネルを透して背後のディスプレイを視認しずらくなるという問題も生ずる。
 本発明は、上記のような課題を解決するためになされたもので、貼合わせ時に気泡を生じない、すなわち貼合わせ適性に優れた透明導電性フィルム及びこれを用いたタッチパネルを提供することを目的とする。
 本発明は、上記技術的課題を解決するために、以下の構成の貼合わせ適性に優れた透明導電性フィルム及びこれを用いたタッチパネルを提供する。
 本発明の第1態様は、フィルム基材と、前記フィルム基材の片面に形成された透明導電膜からなる透明電極パターンと、前記透明電極パターンが形成された前記フィルム基材上の周縁部に引き回されて前記透明電極パターンの端部と接続される、前記透明導電膜より低抵抗の材料からなる厚膜回路パターンと、を備えた透明導電性フィルムであって、前記厚膜回路パターンが、0.05~100μmの膜厚で、なおかつ少なくとも一方のラインエッジをギザキザ形状に形成されていることを特徴とする貼合わせ適性に優れた透明導電性フィルムを提供する。
 また、本発明の第2態様は、前記ギザキザ形状の凸部ピークから隣の凸部ピークまでの距離が10~600μmである第1態様の貼合わせ適性に優れた透明導電性フィルムを提供する。
 また、本発明の第3態様は、前記ギザキザ形状の凸部のピークと凹部のピークの差が2~50μmである第2態様の貼合わせ適性に優れた透明導電性フィルムを提供する。
 また、本発明の第4態様は、前記ギザキザ形状が複雑な構造である第1態様の貼合わせ適性に優れた透明導電性フィルムを提供する。
 また、本発明の第5態様は、前記ギザキザ形状が、より複雑でフラクタル図形状になっている第4態様の貼合わせ適性に優れた透明導電性フィルムを提供する。
 また、本発明の第6態様は、前記厚膜回路パターンが導電性ペーストで形成されている第1態様の貼合わせ適性に優れた透明導電性フィルムを提供する。
 また、本発明の第7態様は、前記厚膜回路パターンが2本以上並走する領域を有しており、並走する前記厚膜回路パターンの間隔が10~60μmである第1態様の貼合わせ適性に優れた透明導電性フィルムを提供する。
 また、本発明の第8態様は、さらに、前記フィルム基材と前記厚膜回路パターンとの間に、前記透明電極パターンから延出された透明導電膜からなる回路パターンを備える第1態様の貼合わせ適性に優れた透明導電性フィルムを提供する。
 また、本発明の第9態様は、さらに、少なくとも前記厚膜回路パターンの形成領域を覆うように感圧接着剤層を備える第1態様の貼合わせ適性に優れた透明導電性フィルムを提供する。
 また、本発明の第10態様は、第1~9態様の透明導電性フィルムを用いたことを特徴するタッチパネルを提供する。
 本発明によれば、厚膜回路パターンのラインエッジがギザキザ形状に形成されているので、厚膜回路パターンの形成領域を感圧接着剤層で被覆する際でも、この段差に起因して、感圧接着剤層が厚膜回路パターンの側壁との間に空気を噛みことがなく、気泡が発生しない。何故ならば、厚膜回路パターンの側壁を業と粗くしているので、当該粗面の凹凸で構成される微細な隙間を介して空気が抜け易くなっているためである。また、抜けきれなかった空気も前記微細な隙間に細かく分散して存在するため気泡を構成しない。
 したがって、気泡が存在しないので、タッチパネルの外表面に膨れなどの外観不良を起こすという悪さをしない。
 また、気泡が存在しないので、感圧接着剤層はしっかり接着して貼合わせ力は低下しない。むしろ、厚膜回路パターンの側壁の凹凸が感圧接着剤層に対してアンカー効果を発揮し、タッチパネル使用時の撓み、高温高湿環境下におけるタッチパネルの反りによっても透明導電性フィルムが剥離しないほどに強い貼合わせ力が得られる。
 さらに、気泡が存在しないので、厚膜回路パターンには酸化による劣化が生じにくい。加えて複数本の厚膜回路パターンが並走している場合でも、厚膜回路パターンどうしの間で短絡が生じるおそれもない。
 そして、タッチパネルが静電容量方式の場合に、透明電極パターン形成領域まで移動してくる気泡も存在しないので、タッチパネルを透して背後のディスプレイを視認しずらくなるという問題も生じない。
本発明に係る透明導電性フィルムの一例を示す平面図である。 図1の透明導電性フィルムに引き回された厚膜回路パターンの部分拡大写真である。 本発明に係る透明導電性フィルムの一例を示す要部拡大断面図である。 本発明に係る透明導電性フィルムの他の例を示す要部拡大断面図である。 本発明に係る透明導電性フィルムの他の例を示す要部拡大断面図である。 本発明に係る抵抗膜方式のタッチパネルの一例を示す分解斜視図である。 本発明に係る静電容量方式のタッチパネルの一例を示す分解斜視図である。 厚膜回路パターンのラインエッジの状態を説明する模式図である。 実施例1の厚膜回路パターンの部分拡大写真である。 実施例1の厚膜回路パターンの部分拡大写真である。 実施例2の厚膜回路パターンの部分拡大写真である。 実施例2の厚膜回路パターンの部分拡大写真である。 実施例3の厚膜回路パターンの部分拡大写真である。 実施例3の厚膜回路パターンの部分拡大写真である。
 次に、発明の実施の形態について図を参照しながら説明する。
 図1の発明の透明導電性フィルム1は、フィルム基材62の片面に透明導電膜からなる透明電極パターン61が形成され、この透明電極パターン61が形成されたフィルム基材62上の周縁部において、複数の厚膜回路パターン60が引き回されて透明電極パターン61の端部と接続されている。
 フィルム基材62の材質は、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、環状ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメチルメタクリレート、ポリメチルアクリレート、ポリスチレン、ニトロセルロース、トリアセチルセルロース、ポリカーボネート、ポリジメチルシクロヘキサンテレフタレート、ABS樹脂、ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリビニルアセタール、ポリエーテルケトン、ポリウレタン、これらの樹脂の共重合体樹脂、これらの樹脂の混合樹脂などが挙げられる。
 透明電極パターン61は透明導電膜で構成され、その材質は、インジウム酸化物、スズ酸化物、インジウムスズ酸化物、亜鉛酸化物、アルミニウム亜鉛酸化物などの透明酸化物などのほか、チオフェン系などの透明導電ポリマーなどが挙げられる。
 厚膜回路パターン60には、前記透明導電膜より低抵抗の材料が用いられる。例えばバインダー樹脂と導電性材料とからなる導電ペースト層や導電性材料単体からなる薄膜層が挙げられる。バインダー樹脂は、アクリル、ポリエステル、ポリウレタン、ポリ塩化ビニルなどの樹脂が挙げられる。厚膜回路パターン60は、スクリーン印刷、グラビア印刷、オフセット印刷の他、塗装やインクジェットなどの方法により所定のパターンに形成する。あるいはこれらの方法でベタパターンを形成したのち、パターニングしてもよい。
 導電性材料は、銀、金、銅、パラジウムなどの金属粉や金属粒子、金属ナノ粒子のほか、カーボンナノファイバー、金属ナノワイヤなどの導電性ナノファイバーなどが挙げられる。
 厚膜回路パターン60の厚みは0.05~100μmの範囲で適宜設定可能である。厚みが0.05μmより薄いと引き回し回路としての導電性が得にくくなり、厚みが100μmより厚いと薄膜形成が難しい。
 本発明の特徴は、厚膜回路パターン60の少なくとも一方のラインエッジをギザキザ形状に形成して優れた貼合わせ適性を得たことにある(図2、図8参照)。すなわち、厚膜回路パターン60のラインエッジがギザキザ形状に形成されているので、厚膜回路パターン60の形成領域を感圧接着剤層64で被覆する際でも、この段差に起因して、感圧接着剤層64が厚膜回路パターン60の側壁との間に空気を噛みことがなく、気泡が発生しない。何故ならば、厚膜回路パターン60の側壁60aを業と粗くしているので、当該粗面の凹凸で構成される微細な隙間を介して空気が抜け易くなっているためである。また、抜けきれなかった空気も前記微細な隙間に細かく分散して存在するため気泡を構成しない。
 従来、厚膜回路パターンは、ラインエッジ、即ち厚膜回路パターンの側壁は平滑になるように形成されている。より平滑である方が複数の厚膜回路パターンを接近して形成し、高精細化が図れるからである。実際、この分野では如何にラインエッジを平滑にできるかという技術競争をしている。これに対して、本発明では逆転の発想により、むしろわざとラインエッジを、通常より粗く、ギザキザ形状に形成することにより前段落の効果を得ようとするものである。
 前記ギザキザ形状は、凸部ピークから隣の凸部ピークまでの距離が10~600μmの範囲で形成するのが好ましい(図2参照)。10μmに満たない場合には凹凸を形成することが難しくなり、600μmを越える場合には貼合わせ適性が充分に得られなくなる。より好ましくは、20~300μmである。さらに好ましくは40~150μmである。
 また、ギザキザ形状は、凸部ピークから隣の凸部ピークまでの距離が10~600μmの範囲で、なおかつ凸部のピークと凹部のピークの差が2~50μmの範囲で形成するのが好ましい(図2参照)。凸部のピークと凹部のピークの差が2μmに満たない場合には貼合わせ適性が充分に得られなくなり、凸部のピークと凹部のピークの差が50μmを越える場合には並走する厚膜回路パターン間の間隔を小さくすること(狭額縁化)が難しくなる。より好ましくは、凸部のピークと凹部のピークの差が3~25μmである。さらに好ましくは凸部のピークと凹部のピークの差が5~15μmである。
 また、ギザキザ形状は、複雑な構造であるほうが感圧接着剤層64に対してアンカー効果に優れている。つまり、凹凸の大きさや突出方向がバラバラになることにより、タッチパネル使用時の撓み方や、高温高湿環境下におけるタッチパネルの反り方など、力の加わり方が色々と変化しても、各々に対応できる。これに対してギザキザ形状が均一であると、力の加わり方によってアンカー効果にバラツキが生じる。
 また、ギザキザ形状に形成された前述ラインエッジの形状が、より複雑でフラクタル図形状に、つまりギザキザの表面を拡大するとさらにギザギザであるような構造となっていても良い。このことによってアンカー効果はさらに増大する。
 前記厚膜回路パターン60が2本以上並走する領域を有しており(図1~3参照)、並走する前記厚膜回路パターン60の間隔5が10~60μmである。間隔5が10μmに満たない場合には感圧接着剤層64が厚膜回路パターン60の間に入り込みにくくなり、間隔5が60μmを越える場合には狭額縁化が難しくなる。なお、本明細書においては、間隔5とは、最も突出した凸部どうしの間のことをいう。
 さらに、図4に示すように、前記フィルム基材62と前記厚膜回路パターン60との間に、前記透明電極パターン61から延出された透明導電膜からなる回路パターン64を備えるようにしてもよい。
 なお、透明導電性フィルム1は、少なくとも前記厚膜回路パターン60の形成領域を覆うように、貼合わせのための感圧接着剤(Pressure Sensitive Adhesives,PSA)層64をあらかじめ備えていてもよい(図5参照)。PSA層64の塗布方法としては、スクリーン印刷、オフセット印刷、グラビア印刷、若しくは、フレキソ印刷などの通常印刷法などを用いるとよい。
 以上のような透明導電性フィルム1を用いてタッチパネル1を得ることができる。タッチパネルとはLCDなどの画面表示を邪魔せずにどこをタッチしたかを検出するセンサである。タッチした位置の検出を電気的に行うものと電気を用いないものに分かれるが、上記した透明導電性フィルム1を用いるのは、抵抗膜方式や静電容量方式などの電気的に検出する方式である。例えば、抵抗膜方式のタッチパネル100の場合は、二枚の透明導電性フィルム1を透明電極どうしが空気層を介して対向するように周縁部のみで接着させる。入力面をタッチすると、圧力によりフィルムが撓み、透明電極どうしが接触して電気が流れるため、それぞれの透明電極の抵抗による分圧比を測定することで押された位置を検出することができる(図6参照)。一方、静電容量方式のタッチパネル101の場合は、指先と透明電極との間での静電容量の変化を捉えて位置を検出するもので、ガラス板の裏面などに透明導電性フィルム1を全面的に接着させたり、二枚の透明導電性フィルム1を透明電極どうしが対向するように全面接着させたりする(図7参照)。
 フィルム基材として厚さ100μmの二軸延伸ポリエチレンテレフタレートフィルムの片面にスパッタリング法によりインジウムスズ酸化物からなる透明導電膜を形成し、不要部分を除去して、透明電極パターンを形成した。
 次に、透明電極パターン上に、スクリーン印刷により銀ペースト(アクリル樹脂10重量部に対して平均粒子径20μmの銀粉3重量部)用いて、厚み7μmである枠状のベタパターンで形成し、不要部分を除去して、両側のラインエッジが不均一なギザギザ形状の厚膜回路パターンを透明電極パターンに接続するように形成し、透明導電性フィルムを得た。形成された厚膜回路パターンのラインエッジ部分は、ギザギザ形状の凸部ピークから隣の凸部ピークまでの距離が平均100μm、凸部のピークと凹部のピークの差が平均14μmであって、並走する厚膜回路パターンどうしの間隙が約50μmであった(図9,図10参照)。
 最後に、二枚の上記透明導電性フィルムを透明電極どうしが対向するように、感圧接着剤層にて全面接着させて静電容量方式のタッチパネルを得た。
 このようにして得られたタッチパネルは、感圧接着剤層が厚膜回路パターンの側壁との間に空気を噛みことがなく、気泡が発生しないものであった。その上、タッチパネル使用時の撓み、高温高湿環境下におけるタッチパネルの反りによっても透明導電性フィルムが剥離しないほどに強い貼合わせ力が有していた。
 前記銀ペーストの銀粉に換えて、平均粒子径が1μmの銀ナノコロイド材料を使った他は、実施例1と同様にして厚膜回路パターンを形成した。この場合、実施例1と比べて厚膜回路パターンのラインエッジ部分のギザギザ形状の凸部ピークから隣の凸部ピークまでの距離が平均100μm、凸部のピークと凹部のピークの差が平均5μmにまで減少した(図11,図12参照)。が、それでも貼合わせについて充分な効果は得られた。
 前記銀ペーストに換えて厚さ10μmの銅箔を使った他は、実施例1と同様にして厚膜回路パターンを形成した。この場合、実施例1と比べて厚膜回路パターンのラインエッジ部分のギザギザ形状の凸部ピークから隣の凸部ピークまでの距離が平均40μm、凸部のピークと凹部のピークの差が平均6μmにまで減少した(図13,図14参照)。が、それでも貼合わせについて充分な効果は得られた。
 なお前記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 本発明は、PDA、ハンディターミナルなど携帯情報端末、コピー機、ファクシミリなどOA機器、スマートフォン、 携帯電話機、携帯ゲーム機器、電子辞書、カーナビシステム、小型PC、各種家電品等の用途に用いることができ、産業上有用なものである。
 1  透明導電性フィルム
 5  厚膜回路パターンどうしの間隙
 60 厚膜回路パターン
 61 透明電極パターン
 62 フィルム基材
 63 透明導電膜からなる回路パターン
 64 感圧接着剤層
 100 抵抗膜方式のタッチパネル
 101 静電容量方式のタッチパネル 

Claims (10)

  1.  フィルム基材と、
     前記フィルム基材の片面に形成された透明導電膜からなる透明電極パターンと、
     前記透明電極パターンが形成された前記フィルム基材上の周縁部に引き回されて前記透明電極パターンの端部と接続される、前記透明導電膜より低抵抗の材料からなる厚膜回路パターンと、を備えた透明導電性フィルムであって、
     前記厚膜回路パターンが、0.05~100μmの膜厚で、なおかつ少なくとも一方のラインエッジをギザキザ形状に形成されていることを特徴とする貼合わせ適性に優れた透明導電性フィルム。
  2.  前記ギザキザ形状の凸部ピークから隣の凸部ピークまでの距離が10~600μmである請求項1記載の貼合わせ適性に優れた透明導電性フィルム。
  3.  前記ギザキザ形状の凸部のピークと凹部のピークの差が2~50μmである請求項2記載の貼合わせ適性に優れた透明導電性フィルム。
  4.  前記ギザキザ形状が複雑な構造である請求項1記載の貼合わせ適性に優れた透明導電性フィルム。
  5.  前記ギザキザ形状が、より複雑でフラクタル図形状になっている請求項4に記載の貼合わせ適性に優れた透明導電性フィルム。
  6.  前記厚膜回路パターンが導電性ペーストで形成されている請求項1記載の貼合わせ適性に優れた透明導電性フィルム。
  7.  前記厚膜回路パターンが2本以上並走する領域を有しており、並走する前記厚膜回路パターンの間隔が10~60μmである請求項1記載の貼合わせ適性に優れた透明導電性フィルム。
  8.  さらに、前記フィルム基材と前記厚膜回路パターンとの間に、前記透明電極パターンから延出された透明導電膜からなる回路パターンを備える請求項1貼合わせ適性に優れた透明導電性フィルム。
  9.  さらに、少なくとも前記厚膜回路パターンの形成領域を覆うように感圧接着剤層を備える請求項1記載の貼合わせ適性に優れた透明導電性フィルム。
  10.  請求項1~9のいずれかに記載の透明導電性フィルムを用いたことを特徴するタッチパネル。
PCT/JP2010/062686 2009-07-31 2010-07-28 貼合わせ適性に優れた透明導電性フィルム及びこれを用いたタッチパネル WO2011013696A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-180012 2009-07-31
JP2009180012A JP2011034806A (ja) 2009-07-31 2009-07-31 貼合わせ適性に優れた透明導電性フィルム及びこれを用いたタッチパネル

Publications (1)

Publication Number Publication Date
WO2011013696A1 true WO2011013696A1 (ja) 2011-02-03

Family

ID=43529349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062686 WO2011013696A1 (ja) 2009-07-31 2010-07-28 貼合わせ適性に優れた透明導電性フィルム及びこれを用いたタッチパネル

Country Status (3)

Country Link
JP (1) JP2011034806A (ja)
TW (1) TW201112272A (ja)
WO (1) WO2011013696A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173192A1 (ja) * 2011-06-17 2012-12-20 日東電工株式会社 導電性積層体、パターン配線付き透明導電性積層体、および光学デバイス
CN104347153A (zh) * 2013-07-31 2015-02-11 南昌欧菲光科技有限公司 一种透明导电膜
JP2016130913A (ja) * 2015-01-13 2016-07-21 大日本印刷株式会社 導電性パターンシートの製造方法、導電性パターンシート、導電性パターンシートを備えたタッチパネルセンサおよびフォトマスク
WO2024020721A1 (zh) * 2022-07-25 2024-02-01 京东方科技集团股份有限公司 光学结构和用于制造光学结构的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101192645B1 (ko) 2012-03-28 2012-10-19 배삼한 플렉시블 디스플레이용 플렉시블 터치패널 및 그것의 제조방법
JP6207846B2 (ja) 2013-03-04 2017-10-04 富士フイルム株式会社 透明導電性フィルムおよびタッチパネル
JP6083308B2 (ja) * 2013-04-11 2017-02-22 株式会社デンソー 静電容量式操作装置および静電容量式操作装置の製造方法
JP6275961B2 (ja) 2013-06-26 2018-02-07 富士フイルム株式会社 光学フィルム及び表示装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004355181A (ja) * 2003-05-28 2004-12-16 Kawaguchiko Seimitsu Co Ltd タッチパネル

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004355181A (ja) * 2003-05-28 2004-12-16 Kawaguchiko Seimitsu Co Ltd タッチパネル

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173192A1 (ja) * 2011-06-17 2012-12-20 日東電工株式会社 導電性積層体、パターン配線付き透明導電性積層体、および光学デバイス
JP2013001009A (ja) * 2011-06-17 2013-01-07 Nitto Denko Corp 導電性積層体、パターン配線付き透明導電性積層体、および光学デバイス。
US9674946B2 (en) 2011-06-17 2017-06-06 Nitto Denko Corporation Conductive laminate, transparent conductive laminate with patterned wiring, and optical device
CN104347153A (zh) * 2013-07-31 2015-02-11 南昌欧菲光科技有限公司 一种透明导电膜
JP2016130913A (ja) * 2015-01-13 2016-07-21 大日本印刷株式会社 導電性パターンシートの製造方法、導電性パターンシート、導電性パターンシートを備えたタッチパネルセンサおよびフォトマスク
WO2024020721A1 (zh) * 2022-07-25 2024-02-01 京东方科技集团股份有限公司 光学结构和用于制造光学结构的方法

Also Published As

Publication number Publication date
JP2011034806A (ja) 2011-02-17
TW201112272A (en) 2011-04-01

Similar Documents

Publication Publication Date Title
WO2011013696A1 (ja) 貼合わせ適性に優れた透明導電性フィルム及びこれを用いたタッチパネル
JP5026486B2 (ja) 感圧センサを備えたタッチ入力デバイスの実装構造
JP4642158B2 (ja) 押圧検出機能を有するタッチパネル及び当該タッチパネル用感圧センサ
US8243225B2 (en) Electronic device having protection panel
JP5361579B2 (ja) 大型ディスプレイ用のセンサパネル及びその製造方法
JP4880723B2 (ja) 押圧検出機能を有する抵抗膜式タッチパネル
JP6030220B2 (ja) タッチパネルおよびその製造方法
KR101501940B1 (ko) 터치 스크린 및 그 제조 방법
US8264469B2 (en) Touch panel and display unit
CN106155403B (zh) 触控元件
WO2007091600A1 (ja) 保護パネル付きの電子機器
JP2010157037A (ja) 振動素子を有するパネル部材
KR20140120811A (ko) 터치 패널 및 그 제조 방법
JP2011013881A (ja) タッチパネル
TW201140014A (en) Pressure detecting unit and pressure detecting device
WO2010147045A1 (ja) 押圧検出機能を有する抵抗膜式タッチパネル
CN205158321U (zh) 触摸显示装置
TWM488681U (zh) 觸控面板
TWI494550B (zh) 壓力檢測單元
JP2015079477A (ja) タッチスクリーンパネル及びその製造方法
CN213780923U (zh) 一种无边框触摸屏及终端设备
JP2010282394A (ja) タッチパネル
JP2014075021A (ja) 導電層付シート及びこれを用いたタッチパネル
JP2013168095A (ja) タッチパネル
JP2004102567A (ja) タッチパネル用シート及びこれを用いたタッチパネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804442

Country of ref document: EP

Kind code of ref document: A1