WO2011013423A1 - 色素増感型太陽電池の製造方法 - Google Patents

色素増感型太陽電池の製造方法 Download PDF

Info

Publication number
WO2011013423A1
WO2011013423A1 PCT/JP2010/057395 JP2010057395W WO2011013423A1 WO 2011013423 A1 WO2011013423 A1 WO 2011013423A1 JP 2010057395 W JP2010057395 W JP 2010057395W WO 2011013423 A1 WO2011013423 A1 WO 2011013423A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing portion
dye
electrode
solar cell
sealing
Prior art date
Application number
PCT/JP2010/057395
Other languages
English (en)
French (fr)
Inventor
土井克浩
岡田顕一
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to AU2010276983A priority Critical patent/AU2010276983B2/en
Priority to JP2011503686A priority patent/JP5241912B2/ja
Priority to EP10804171.6A priority patent/EP2461419B1/en
Priority to CN201080001556.2A priority patent/CN102084536B/zh
Publication of WO2011013423A1 publication Critical patent/WO2011013423A1/ja
Priority to US13/116,629 priority patent/US8293562B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a dye-sensitized solar cell.
  • a dye-sensitized solar cell As a photoelectric conversion element, a dye-sensitized solar cell has attracted attention because it is inexpensive and has high photoelectric conversion efficiency, and various developments have been made on dye-sensitized solar cells.
  • a dye-sensitized solar cell includes a working electrode, a counter electrode, a photosensitizing dye supported on the working electrode, a sealing portion that connects the working electrode and the counter electrode, and a working electrode, a counter electrode, and a sealing portion. And an electrolyte layer disposed in an enclosed space (hereinafter referred to as “cell space”).
  • a sealing material made of a thermoplastic resin is formed only on either the working electrode or the counter electrode, and an electrolyte is injected inside the sealing material under reduced pressure.
  • Dye sensitization with excellent power generation efficiency by forming an electrolyte layer and then bonding the working electrode and counter electrode while heating and pressing under reduced pressure to prevent air from being enclosed between the two.
  • Patent Document 1 A method of manufacturing a solar cell has been proposed (Patent Document 1 below).
  • the electrolyte contains not only a volatile component.
  • the working electrode and the counter electrode are bonded together after injecting the electrolyte into the encapsulant, a part of the volatile component in the electrolyte becomes vapor as the encapsulant is heated. Or the wettability of the adhesive surface of a counter electrode and a sealing material falls. For this reason, it becomes impossible to obtain a strong adhesive force between the working electrode or the counter electrode and the sealing material, which may lead to electrolyte leakage in the obtained dye-sensitized solar cell.
  • the electrolyte when the electrolyte is disposed, when the electrolyte adheres to the adhesion surface between the working electrode or counter electrode and the sealing material, the adhesion is inhibited by the deposit. Therefore, there is a possibility that the electrolyte may remarkably leak in the obtained dye-sensitized solar cell.
  • the dye-sensitized solar cell obtained by the manufacturing method described in Patent Document 1
  • the dye-sensitized solar cell is generated by expansion or contraction of the cell space when the dye-sensitized solar cell is placed in a place where the temperature change is large. Since stress was concentrated on the interface between the working electrode and the sealing portion and the interface between the counter electrode and the sealing portion, the adhesive force between the counter electrode or the working electrode and the sealing portion weakens in a relatively short period of time. As a result, the electrolyte may leak in a relatively short period of time.
  • the dye-sensitized solar cell obtained by the manufacturing method of Patent Document 1 described above has room for improvement in terms of suppressing a decrease in photoelectric conversion efficiency over time due to electrolyte leakage.
  • the present invention has been made in view of the above circumstances, and a method for producing a dye-sensitized solar cell capable of producing a dye-sensitized solar cell that can sufficiently suppress a decrease in photoelectric conversion efficiency over time.
  • the purpose is to provide.
  • the present invention provides a first step of preparing a first electrode and a second electrode having a porous oxide semiconductor layer, and a first annular portion surrounding the porous oxide semiconductor layer in the first electrode.
  • a sealing part forming step of forming a sealing part by bonding The forming step is performed after at least one of the first sealing portion forming step and the second sealing portion forming step, and the sealing portion forming step is performed after the dye supporting step and the electrolyte layer forming step.
  • the sealing portion is formed by melting the first sealing portion and the second sealing portion while applying pressure. It is a manufacturing method of a solar cell.
  • At least one of the first sealing portion forming step and the second sealing portion forming step is performed before the electrolyte layer forming step. For this reason, when the first sealing portion is formed in the first annular portion surrounding the porous oxide semiconductor layer in the first electrode, the volatile component in the electrolyte is not attached to the first annular portion, The wettability of the surface is not reduced. Therefore, the thermoplastic resin is firmly bonded to the first annular portion, and the first sealing portion is firmly fixed to the first annular portion.
  • thermoplastic resin is firmly bonded to the second annular portion, and the second sealing portion is firmly fixed to the second annular portion.
  • the sealing part forming step is performed after the electrolyte layer forming step. For this reason, with melting of the first sealing portion and the second sealing portion, a part of the electrolyte layer evaporates, and wettability between the first sealing portion and the second sealing portion is reduced. . In addition, the electrolyte may adhere to the first sealing portion and the second sealing portion during the electrolyte layer forming step, and wettability between the first sealing portion and the second sealing portion may be reduced.
  • both the first sealing portion and the second sealing portion are made of thermoplastic resin
  • the thermoplastic resins are bonded to each other. It will be.
  • a 1st sealing part and a 2nd sealing part are easy to mutually adhere
  • the first sealing portion and the second sealing portion are also pressurized when they are bonded. For this reason, even when the electrolyte adheres to the first sealing portion and the second sealing portion, the attached electrolyte is pushed away by the flow of the thermoplastic resin of the first sealing portion and the second sealing portion, and removed.
  • the molten thermoplastic resin of the first sealing part and the molten thermoplastic resin of the second sealing part are compatible, and the first sealing part and the second sealing part are firmly bonded.
  • the electrolyte may be partially included inside the sealing resin, but the encapsulation rate decreases due to the pressurization of the sealing portion, The adhesion between the first sealing portion and the second sealing portion is maintained firmly.
  • the resulting dye-sensitized solar cell is placed in an environment with a large temperature difference, and the cell space shrinks or expands.
  • the stress generated at that time is the interface between the first sealing portion and the first electrode, the interface between the second sealing portion and the second electrode, and the interface between the first sealing portion and the second sealing portion.
  • the first sealing portion is firmly fixed to the first annular portion of the first electrode
  • the second sealing portion is firmly fixed to the second annular portion of the second electrode.
  • the first sealing portion and the second sealing portion are also firmly bonded to each other.
  • the obtained dye-sensitized solar cell has a volatile component in the electrolyte. Leakage is sufficiently suppressed. Furthermore, it is possible to sufficiently suppress moisture from entering the electrolyte from the outside. Therefore, according to the method for manufacturing a dye-sensitized solar cell according to the present invention, it is possible to manufacture a dye-sensitized solar cell that can sufficiently suppress a decrease in photoelectric conversion efficiency over time.
  • the sealing part forming step is preferably performed in a reduced pressure space.
  • the electrolyte layer is in a negative pressure state with respect to the outside air.
  • the dye-sensitized solar cell is subjected to atmospheric pressure from the outside, and the state in which the first electrode and the second electrode are pressed against the sealing portion is maintained, and the volatile component in the electrolyte is maintained. Leakage is more sufficiently suppressed.
  • At least one of the first electrode and the second electrode has flexibility.
  • the first electrode and the second electrode when the first electrode and the second electrode are taken out from the reduced pressure space and placed under the atmospheric pressure, the first electrode and the second electrode can be used.
  • the flexible electrode is deflected by the atmospheric pressure, and the distance between the first electrode and the second electrode can be reduced.
  • the photoelectric conversion efficiency is performed more efficiently, and the photoelectric conversion efficiency is further improved.
  • the electrolyte layer includes the electrolyte on the first electrode and inside the first sealing portion, or on the second electrode and inside the second sealing portion. And then overflows outside the first sealing portion or the second sealing portion beyond the first sealing portion or the second sealing portion.
  • the electrolyte can be sufficiently injected inside the first sealing portion or the second sealing portion. Further, when forming the sealing portion by bonding the first sealing portion and the second sealing portion, air can be sufficiently removed from the space surrounded by the first electrode, the second electrode, and the sealing portion. it can. As a result, a decrease in photoelectric conversion efficiency over time can be sufficiently suppressed.
  • the electrolyte layer calculates in advance the amount of the electrolyte to be applied to the inside of the first sealing portion or the second sealing portion, and the first sealing portion or the second sealing portion. It can also be formed by coating so as not to overflow. In this case, theoretically, the electrolyte does not overflow beyond the first sealing portion or the second sealing portion, and the waste of the electrolyte is eliminated.
  • the first electrode is preliminarily provided with a first sealing portion made of a thermoplastic resin
  • the second electrode is preliminarily provided with a second sealing portion made of a thermoplastic resin. Even if a part of the layer evaporates and adheres to the first sealing portion and the second sealing portion, the adhesion between the first sealing portion and the second sealing portion is firmly maintained.
  • the electrolyte when applying the electrolyte, it is more preferable to apply the electrolyte after calculating in advance a sufficient amount of electrolyte that can sufficiently exclude air from the space surrounded by the first electrode, the second electrode, and the sealing portion. .
  • the electrolyte layer is preferably formed on the first electrode and inside the first sealing portion.
  • the sealing step is performed after the electrolyte has sufficiently spread to the porous details of the porous oxide semiconductor layer. For this reason, air in the porous oxide semiconductor layer is sufficiently suppressed from appearing as bubbles, and a decrease in photoelectric conversion efficiency with time can be sufficiently suppressed.
  • the first electrode is provided so as to protrude from the porous oxide semiconductor layer, a conductive film in which the porous oxide semiconductor layer is formed, and the conductive film. It is preferable that the protrusion has an annular portion, and the protrusion is made of an inorganic material.
  • the protruding portion made of an inorganic material since the protruding portion made of an inorganic material is provided so as to protrude on the conductive film, the protruding portion functions to seal the electrolyte layer together with the sealing portion. And since a protrusion part consists of inorganic materials, it has a sealing capability higher than the 1st sealing part and 2nd sealing part which consist of thermoplastic resins. For this reason, compared with the case where a 1st electrode does not have a protrusion part, the leakage of electrolyte can be suppressed more fully.
  • the second electrode has a counter electrode substrate, a catalyst film provided on the counter electrode substrate, and a protruding portion that is provided so as to protrude on the catalyst film and forms the second annular portion.
  • the said protrusion part consists of inorganic materials.
  • the protruding portion made of an inorganic material since the protruding portion made of an inorganic material is provided so as to protrude on the catalyst film, the protruding portion functions to seal the electrolyte layer together with the sealing portion.
  • a protrusion part consists of inorganic materials, it has a sealing capability higher than the 1st sealing part and 2nd sealing part which consist of thermoplastic resins. For this reason, compared with the case where a 2nd electrode does not have a protrusion part, the leakage of electrolyte can be suppressed more fully.
  • the present invention provides a first electrode having a porous oxide semiconductor layer, a second electrode disposed so as to face the first electrode, and a seal connecting the first electrode and the second electrode. And an electrolyte layer filled in a cell space surrounded by the first electrode, the second electrode, and the sealing portion, and the sealing portion is provided on the first electrode side. It has a sealing part and a second sealing part that is provided on the second electrode side and is bonded to the first sealing part, and the first sealing part and the second sealing part are: It is bonded via a mixed layer made of a mixture of the resin contained in the first sealing portion and the oxide of the resin and the resin contained in the second sealing portion and the oxide of the resin. And a dye-sensitized solar cell.
  • the stress generated at that time is Dispersed in the interface between the first sealing portion and the first electrode, the interface between the second sealing portion and the second electrode, and the interface between the first sealing portion and the second sealing portion.
  • the first sealing portion and the second sealing portion are a mixture of a resin contained in the first sealing portion, an oxide of the resin, a resin contained in the second sealing portion, and an oxide of the resin.
  • the resin sealing portion enters a groove formed by the first surface of the first sealing portion and the second surface of the second sealing portion. For this reason, compared with the case where the groove is not formed, the adhesion area between the resin sealing portion and the sealing portion is further increased, and the adhesion between the sealing portion and the resin sealing portion is made stronger. Can do. Therefore, the leakage of volatile components in the electrolyte is more sufficiently suppressed, and the intrusion of moisture from the outside into the electrolyte can be further sufficiently suppressed. Therefore, it is possible to more sufficiently suppress a decrease in photoelectric conversion efficiency over time.
  • “having flexibility” for the first electrode or the second electrode means that both edges on the long side of the sheet-like electrode of 50 mm ⁇ 200 mm in a 20 ° C. environment (each 5 mm wide). Is fixed horizontally with a tension of 1 N, and the maximum deformation rate of the deflection of the electrode when a load of 20 g weight is applied to the center of the electrode is said to exceed 20%.
  • a method for producing a dye-sensitized solar cell capable of producing a dye-sensitized solar cell capable of sufficiently suppressing a temporal decrease in photoelectric conversion efficiency.
  • FIG. 1 is a cross-sectional view showing a dye-sensitized solar cell obtained by an embodiment of a method for producing a dye-sensitized solar cell according to the present invention.
  • 2 is a partial cross-sectional view schematically showing the vicinity of the interface between the first sealing portion and the second sealing portion in FIG. 1
  • FIG. 3 is a cross-sectional view showing the first electrode used in the present embodiment
  • FIG. 5 is a sectional view showing a second electrode used in the present embodiment
  • FIG. 5 is a plan view showing the first electrode of FIG. 3
  • FIG. 7 is a plan view showing the second electrode of FIG. 6 and 8 to 10 are cross-sectional views showing one process of the manufacturing method of this embodiment.
  • the dye-sensitized solar cell 100 includes a working electrode 1 and a counter electrode 2 disposed so as to face the working electrode 1.
  • the working electrode 1 carries a photosensitizing dye.
  • the working electrode 1 and the counter electrode 2 are connected by a sealing portion 4.
  • the cell space S surrounded by the working electrode 1, the counter electrode 2, and the sealing portion 4 is filled with an electrolyte, and the electrolyte layer 3 is formed by this electrolyte.
  • the working electrode 1 includes a transparent substrate 6, a transparent conductive film 7 provided on the counter electrode 2 side of the transparent substrate 6, and a porous oxide semiconductor layer 8 provided on the transparent conductive film 7.
  • the photosensitizing dye is supported on the porous oxide semiconductor layer 8 in the working electrode 1.
  • the counter electrode 2 includes a counter electrode substrate 9 and a conductive catalyst film 10 that is provided on the working electrode 1 side of the counter electrode substrate 9 and promotes a reduction reaction on the surface of the counter electrode 2.
  • the sealing part 4 connects the working electrode 1 and the counter electrode 2, and includes a first sealing part 4 ⁇ / b> A and a second sealing part 4 ⁇ / b> B that adheres to the first sealing part 4 ⁇ / b> A.
  • 4 A of 1st sealing parts are being fixed on the surface by the side of the porous oxide semiconductor layer 8A of the working electrode 1, ie, the surface of the transparent conductive film 7, and are comprised with the thermoplastic resin.
  • the 2nd sealing part 4B is being fixed on the surface of the catalyst film 10 of the counter electrode 2, and is comprised with the thermoplastic resin.
  • the first sealing portion 4A and the second sealing portion 4B include a thermoplastic resin contained in the first sealing portion 4A, an oxide of the thermoplastic resin, and a second seal. It adhere
  • a working electrode (first electrode) 1 and a counter electrode (second electrode) 2 are prepared as follows.
  • the working electrode 1 can be obtained as follows (FIG. 3).
  • a transparent conductive film 7 is formed on a transparent substrate 6 to form a laminate.
  • a sputtering method, a vapor deposition method, a spray pyrolysis method (SPD), a CVD method, or the like is used as a method for forming the transparent conductive film 7, a sputtering method, a vapor deposition method, a spray pyrolysis method (SPD), a CVD method, or the like is used. Of these, the spray pyrolysis method is preferable from the viewpoint of apparatus cost.
  • the material which comprises the transparent substrate 6 should just be a transparent material, for example, as such a transparent material, glass, such as borosilicate glass, soda lime glass, white plate glass, quartz glass, polyethylene terephthalate (PET), for example , Polyethylene naphthalate (PEN), polycarbonate (PC), polyethersulfone (PES) and the like.
  • PET polyethylene terephthalate
  • PEN Polyethylene naphthalate
  • PC polycarbonate
  • PES polyethersulfone
  • the thickness of the transparent substrate 6 is appropriately determined according to the size of the dye-sensitized solar cell 100 and is not particularly limited, but may be in the range of 50 ⁇ m to 10000 ⁇ m, for example.
  • Examples of the material constituting the transparent conductive film 7 include tin-doped indium oxide (Indium-Tin-Oxide: ITO), tin oxide (SnO 2 ), and fluorine-doped tin oxide (Fluorine-doped-Tin-Oxide: FTO).
  • Examples include conductive metal oxides.
  • the transparent conductive film 7 may be a single layer or a laminate of a plurality of layers made of different conductive metal oxides. When the transparent conductive film 7 is composed of a single layer, the transparent conductive film 7 is preferably composed of FTO because it has high heat resistance and chemical resistance.
  • the transparent conductive film 7 it is preferable to use a laminated body composed of a plurality of layers as the transparent conductive film 7 because the characteristics of each layer can be reflected. Among these, it is preferable to use a laminate of a layer made of ITO and a layer made of FTO. In this case, the transparent conductive film 7 having high conductivity, heat resistance and chemical resistance can be realized.
  • the thickness of the transparent conductive film 7 may be in the range of 0.01 ⁇ m to 2 ⁇ m, for example.
  • the porous oxide semiconductor layer forming paste includes a resin such as polyethylene glycol and a solvent such as terpineol in addition to the oxide semiconductor particles described above.
  • a printing method of the paste for forming the porous oxide semiconductor layer for example, a screen printing method, a doctor blade method, a bar coating method, or the like can be used.
  • the porous oxide semiconductor layer forming paste is fired to form the porous oxide semiconductor layer 8 on the transparent conductive film 7.
  • the firing temperature varies depending on the oxide semiconductor particles, but is usually 350 ° C. to 600 ° C., and the firing time also varies depending on the oxide semiconductor particles, but is usually 1 to 5 hours.
  • oxide semiconductor particles examples include titanium oxide (TiO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), niobium oxide (Nb 2 O 5 ), strontium titanate (SrTiO 3 ), tin oxide (SnO). 2 ), indium oxide (In 3 O 3 ), zirconium oxide (ZrO 2 ), thallium oxide (Ta 2 O 5 ), lanthanum oxide (La 2 O 3 ), yttrium oxide (Y 2 O 3 ), holmium oxide (Ho) 2 O 3 ), bismuth oxide (Bi 2 O 3 ), cerium oxide (CeO 2 ), aluminum oxide (Al 2 O 3 ), or oxide semiconductor particles composed of two or more of these.
  • the average particle size of these oxide semiconductor particles is 1 to 1000 nm, which increases the surface area of the oxide semiconductor covered with the dye, that is, widens the field for photoelectric conversion and generates more electrons. Is preferable.
  • the porous oxide semiconductor layer 8 is configured by a stacked body in which oxide semiconductor particles having different particle size distributions are stacked. In this case, it becomes possible to cause reflection of light repeatedly in the laminated body, and light can be efficiently converted into electrons without escaping incident light to the outside of the laminated body.
  • the thickness of the porous oxide semiconductor layer 8 may be, for example, 0.5 to 50 ⁇ m.
  • the porous oxide semiconductor layer 8 can also be comprised with the laminated body of the several semiconductor layer which consists of a different material.
  • the counter electrode 2 can be obtained as follows (FIG. 4).
  • the counter electrode substrate 9 is prepared. Then, the catalyst film 10 is formed on the counter electrode substrate 9.
  • a sputtering method, a vapor deposition method, or the like is used as a method for forming the catalyst film 10. Of these, sputtering is preferred from the viewpoint of film uniformity.
  • the counter electrode substrate 9 is made of, for example, a corrosion-resistant metal material such as titanium, nickel, platinum, molybdenum, or tungsten, a conductive oxide such as ITO or FTO, carbon, or a conductive polymer.
  • the thickness of the counter electrode substrate 9 is appropriately determined according to the size of the dye-sensitized solar cell 100 and is not particularly limited, but may be, for example, 0.005 mm to 0.1 mm.
  • the catalyst film 10 is made of platinum, a carbon-based material, a conductive polymer, or the like.
  • the first sealing portion 4A can be obtained by melting a thermoplastic resin by heating and bonding it to the transparent conductive film 7.
  • the second sealing portion 4 ⁇ / b> B is formed in the second annular portion C ⁇ b> 2 that is a portion on the surface of the catalyst film 10 in the counter electrode 2.
  • the second sealing portion 4B can be obtained by melting the thermoplastic resin by heating and bonding it to the catalyst film 10.
  • thermoplastic resin forming the first sealing portion 4A and the second sealing portion 4B acid-modified polyethylene, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, and the like are preferably used. In this case, it is possible to more sufficiently suppress the electrolyte from penetrating and leaking into the first sealing portion 4A or the second sealing portion 4B.
  • the acid-modified polyethylene means one obtained by random copolymerization, alternating copolymerization, block copolymerization, or graft copolymerization of acid with polyethylene, or one obtained by neutralizing these with metal ions.
  • an ethylene methacrylic acid copolymer is obtained by copolymerizing ethylene and methacrylic acid, and is an acid-modified polyethylene.
  • An ionomer obtained by neutralizing an ethylene methacrylic acid copolymer with a metal ion is also an acid-modified polyethylene. Become.
  • the material constituting the first sealing portion 4A and the second sealing portion 4B is the acid-modified polyethylene.
  • a combination of resins selected from the group is desirable.
  • the resin constituting the first sealing portion 4A is made of an ionomer and the resin constituting the second sealing portion 4B is made of maleic anhydride-modified polyethylene, or the resin constituting the first sealing portion 4A is anhydrous.
  • a combination of a maleic acid-modified polyethylene and a resin constituting the second sealing portion 4B made of an ionomer is desirable.
  • the acid-modified polyethylene has a relatively low melting point compared to polyvinyl alcohol or ethylene-vinyl alcohol copolymer
  • the resin of the first sealing portion 4A and the second sealing portion 4B is melt-bonded at a relatively low temperature. It's easy to do.
  • the compatibility between the monomers is ethylene and the compatibility is good. It is excellent in adhesiveness and adhesiveness between the sealing part 4A and the second sealing part 4B.
  • the material constituting the first sealing portion 4A and the second sealing portion 4B is preferably the same resin selected from the group of acid-modified polyethylene.
  • the resin constituting the first sealing portion 4A and the resin constituting the second sealing portion 4B are made of the same ionomer, or the resin constituting the first sealing portion 4A and the second sealing portion 4B are constituted.
  • a combination of the same resin made of the same maleic anhydride-modified polyethylene is desirable.
  • the same resin includes not only resins having the same molar ratio of acid monomers for modifying polyethylene to ethylene repeating units, but also resins having different molar ratios.
  • an ethylene methacrylic acid copolymer having a molar ratio of acid monomer to ethylene repeating units of 5% and an ethylene methacrylic acid copolymer having a molar ratio of acid monomer to ethylene repeating units of 10% are the same resin.
  • the melting point, melt flow rate, and other various thermal properties of the resin used are close, it is easy to melt and bond each other at the same timing. Therefore, as compared with the case of using resins having greatly different melting points and melt flow rates, the melting and heating time can be easily controlled, and the sealing part forming step described later can be easily performed.
  • a photosensitizing dye is supported on the porous oxide semiconductor layer 8 of the working electrode 1.
  • the working electrode 1 is immersed in a solution containing a photosensitizing dye, the dye is adsorbed on the porous oxide semiconductor layer 8, and then the excess dye is washed away with the solvent component of the solution.
  • the photosensitizing dye may be adsorbed on the porous oxide semiconductor layer 8 by drying.
  • the photosensitizing dye is adsorbed to the porous oxide semiconductor film by applying a solution containing the photosensitizing dye to the porous oxide semiconductor layer 8 and then drying, the photosensitizing dye is porous. It can be supported on the oxide semiconductor layer 8.
  • the photosensitizing dye examples include a ruthenium complex having a ligand containing a bipyridine structure, a terpyridine structure, and the like, and organic dyes such as porphyrin, eosin, rhodamine, and merocyanine.
  • the electrolyte is disposed on the working electrode 1 and inside the first sealing portion 4 ⁇ / b> A to form the electrolyte layer 3.
  • the electrolyte layer 3 can be obtained by injecting or printing the electrolyte on the working electrode 1 and inside the first sealing portion 4A.
  • the electrolyte when the electrolyte is in a liquid state, the electrolyte can be injected until it overflows beyond the first sealing portion 4A to the outside of the first sealing portion 4A. In this case, the electrolyte can be sufficiently injected inside the first sealing portion 4A.
  • the sealing portion 4 is formed by bonding the first sealing portion 4A and the second sealing portion 4B, sufficient air is supplied from the cell space S surrounded by the working electrode 1, the counter electrode 2, and the sealing portion 4. The photoelectric conversion efficiency can be sufficiently improved.
  • the electrolyte layer forming step it is also possible to pre-calculate the amount of electrolyte to be applied to the inside of the first sealing portion 4A and apply the electrolyte so as not to overflow from the first sealing portion 4A. In this case, theoretically, the electrolyte does not overflow beyond the first sealing portion 4A, and the waste of the electrolyte is eliminated.
  • the working electrode 1 is provided with the first sealing portion 4A made of thermoplastic resin in advance
  • the counter electrode 2 is provided with the second sealing portion 4B made of thermoplastic resin in advance.
  • the adhesion between the first sealing portion 4A and the second sealing portion 4B is firmly maintained.
  • the electrolyte is usually composed of an electrolytic solution, and this electrolytic solution contains an oxidation-reduction pair such as I ⁇ / I 3 ⁇ and an organic solvent.
  • an organic solvent acetonitrile, methoxyacetonitrile, methoxypropionitrile, propionitrile, ethylene carbonate, propylene carbonate, diethyl carbonate, ⁇ -butyrolactone, and the like can be used.
  • the redox pair include I ⁇ / I 3 ⁇ and bromine / bromide ion pairs.
  • the dye-sensitized solar cell 100 is an electrolysis that includes a volatile solute such as I ⁇ / I 3 ⁇ as an oxidation-reduction pair and an organic solvent such as acetonitrile, methoxyacetonitrile, and methoxypropionitrile that easily volatilize at high temperatures. This is particularly effective when the liquid is used as an electrolyte. In this case, the change in the internal pressure of the cell space S becomes particularly large due to the change in the ambient temperature around the dye-sensitized solar cell 100, and the interface between the sealing portion 4 and the counter electrode 2, and the sealing portion 4 and the working electrode 1. This is because the electrolyte easily leaks from the interface.
  • a gelling agent may be added to the volatile solvent.
  • the electrolyte may be composed of an ionic liquid electrolyte composed of a mixture of an ionic liquid and a volatile component. This is also because the change in the internal pressure of the cell space S increases due to the change in the ambient temperature around the dye-sensitized solar cell 100.
  • the ionic liquid for example, a known iodine salt such as a pyridinium salt, an imidazolium salt, or a triazolium salt, and a room temperature molten salt that is in a molten state near room temperature is used.
  • a room temperature molten salt for example, 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide is preferably used.
  • the volatile component examples include the above organic solvents, 1-methyl-3-methylimidazolium iodide, LiI, I 2 and 4-t-butylpyridine.
  • the electrolyte 3 a nanocomposite ionic gel electrolyte, which is a pseudo-solid electrolyte formed by kneading nanoparticles such as SiO 2 , TiO 2 , and carbon nanotubes in the ionic liquid electrolyte, may be used.
  • An ionic liquid electrolyte gelled using an organic gelling agent such as vinylidene chloride, polyethylene oxide derivative, or amino acid derivative may be used.
  • thermoplastic resin contained in the first sealing portion 4A, the oxide of the thermoplastic resin, the thermoplastic resin contained in the second sealing portion 4B, and the oxide of the thermoplastic resin This is considered to be because the mixed layer 20 made of a mixture of was formed. More specifically, the mixed layer 20 is considered to be formed as follows.
  • the surface of the first sealing portion 4A is oxidized in advance before bonding the first sealing portion 4A and the second sealing portion 4B, and the surface layer portion of the first sealing portion 4A is the first sealing portion. It is an oxide film of a thermoplastic resin contained in 4A. Further, the surface of the second sealing portion 4B is also oxidized in advance before bonding the first sealing portion 4A and the second sealing portion 4B, and the surface layer portion of the second sealing portion 4A is the second sealing portion. It is an oxide film of a thermoplastic resin contained in 4B.
  • the mixed layer 20 is thus formed. Therefore, in the mixed layer 20, specifically, the heat contained in the first sealing portion 4 ⁇ / b> A in the broken portion of the oxide film formed on the surfaces of the first sealing portion 4 ⁇ / b> A and the second sealing portion 4 ⁇ / b> B.
  • the pressurization of the first sealing portion 4A and the second sealing portion 4B is usually performed at 1 to 50 MPa, preferably 2 to 30 MPa, more preferably 3 to 20 MPa.
  • the temperature at which the first sealing portion 4A and the second sealing portion 4B are melted may be equal to or higher than the melting point of the thermoplastic resin forming the first sealing portion 4A and the second sealing portion 4B. If the temperature is lower than the melting point of the thermoplastic resin, the thermoplastic resin forming the first sealing portion 4A and the second sealing portion 4B does not melt, so the first sealing portion 4A and the second sealing portion 4B are connected to each other. The sealing part 4 cannot be formed by bonding.
  • the temperature at which the first sealing portion 4A and the second sealing portion 4B are melted is preferably (the melting point of the thermoplastic resin + 200 ° C.) or less. If the temperature exceeds (the melting point of the thermoplastic resin + 200 ° C.), the thermoplastic resin contained in the first sealing portion 4A and the second sealing portion 4B may be decomposed by heat.
  • the dye-sensitized solar cell 100 is obtained, and the manufacture of the dye-sensitized solar cell 100 is completed.
  • the first sealing portion 4A and the second sealing portion 4B are formed before the electrolyte layer 3 is formed. For this reason, when forming the 1st sealing part 4A in the 1st cyclic
  • the thermoplastic resin is firmly bonded to the second annular portion C2 of the catalyst film 10, and the second sealing portion 4B is firmly fixed to the second annular portion C2 of the catalyst film 10.
  • the sealing portion 4 is formed after the electrolyte layer 3 is formed. For this reason, as the first sealing portion 4A and the second sealing portion 4B are melted, a part of the electrolyte layer 3 evaporates, and between the first sealing portion 4A and the second sealing portion 4B. The wettability decreases. Further, the electrolyte adheres on the first sealing portion 4A and the second sealing portion 4B during the electrolyte layer forming step, and the wettability between the first sealing portion 4A and the second sealing portion 4B decreases. There is a case.
  • both the first sealing portion 4A and the second sealing portion 4B are made of thermoplastic resin
  • the thermoplastic resin Adhere to each other when the first sealing portion 4A and the second sealing portion 4B are bonded, the thermoplastic resin Adhere to each other.
  • the first sealing portion 4A and the second sealing portion 4B are easier to adhere to each other than when the thermoplastic resin and the working electrode 1 or the counter electrode 2 are adhered.
  • the first sealing portion 4A and the second sealing portion 4B are also pressurized when they are bonded. Therefore, even when the electrolyte adheres to the first sealing portion 4A and the second sealing portion 4B, the attached electrolyte is pushed away by the flow of the thermoplastic resin in the first sealing portion 4A and the second sealing portion 4B.
  • the molten thermoplastic resin of the first sealing portion 4A and the molten thermoplastic resin of the second sealing portion 4B are compatible, and the first sealing portion 4A and the second sealing portion 4B are firmly Glued.
  • the resin included in the first sealing portion 4A, the oxide of the resin, and the resin included in the second sealing portion 4B are firmly bonded. Bonding via a mixed layer 20 made of a mixture of the resin and the oxide of the resin is one of the reasons why the first sealing portion 4A and the second sealing portion 4B are firmly bonded. Conceivable.
  • the electrolyte may be partially included in the sealing resin, but the first sealing portion 4A and the second sealing portion 4B may be added.
  • the inclusion rate is reduced by the pressure, and the adhesion between the first sealing portion 4A and the second sealing portion 4B is firmly maintained.
  • the cell space S contracts or expands.
  • the stress generated at that time is the interface between the first sealing part 4A and the working electrode 1, the interface between the second sealing part 4B and the counter electrode 2, and the first sealing part 4A and the second sealing part 4B. Dispersed in each of the interfaces. Further, the first sealing portion 4A is firmly fixed to the first annular portion C1 of the working electrode 1, and the second sealing portion 4B is firmly fixed to the second annular portion C2 of the counter electrode 2. Further, the first sealing portion 4A and the second sealing portion 4B are also firmly bonded.
  • the obtained dye-sensitized solar cell 100 includes an electrolyte in the electrolyte.
  • the leakage of volatile components is sufficiently suppressed.
  • the electrolyte layer 3 is formed on the working electrode 1 and inside the first sealing portion 4A.
  • the sealing portion 4 is formed after the electrolyte has sufficiently spread to the porous details of the porous oxide semiconductor layer 8. For this reason, air in the porous oxide semiconductor layer 8 is sufficiently suppressed from appearing as bubbles, and the photoelectric conversion efficiency can be more sufficiently improved.
  • the sealing portion 4 is formed in a reduced pressure space.
  • the electrolyte layer 3 can be in a negative pressure state with respect to the outside air. For this reason, the dye-sensitized solar cell 100 receives atmospheric pressure from the outside, and the working electrode 1 and the counter electrode 2 are pressed against the sealing portion 4. As a result, leakage of volatile components in the electrolyte layer 3 can be more sufficiently suppressed.
  • the above decompression space can be formed as follows, for example.
  • the working electrode 1 provided with the first sealing portion 4A is housed in a decompression vessel having an opening. Subsequently, an electrolyte is injected into the first sealing portion 4 ⁇ / b> A to form the electrolyte layer 3. Thereafter, the counter electrode 2 provided with the second sealing portion 4B is further accommodated in the decompression container, the working electrode 1 and the counter electrode 2 are opposed to each other in the decompression container, and the first sealing portion 4A and the second sealing portion 4 The sealing part 4B is overlaid. Next, the opening of the decompression container is closed with a flexible sheet made of a resin such as PET, and a sealed space is formed in the decompression container. Then, the sealed space is decompressed by, for example, a vacuum pump through an exhaust hole (not shown) formed in the decompression container. Thus, a decompression space is formed.
  • the counter electrode 2 is pressed by the flexible sheet.
  • the first sealing portion 4A and the second sealing portion 4B are sandwiched and pressurized by the working electrode 1 and the counter electrode 2.
  • the decompression container is heated and the first sealing portion 4A and the second sealing portion 4B are melted while being pressurized, the first sealing portion 4A and the second sealing portion 4B are bonded and sealed.
  • a stop 4 is formed.
  • the pressure in the decompression space is usually in the range of 50 Pa or more and less than 1013 hPa, preferably 50 to 800 Pa, more preferably 300 to 800 Pa.
  • the pressure in the reduced pressure space is preferably 700 to 1000 Pa, and more preferably 700 to 800 Pa.
  • the pressure is within the above range, the volatilization of the organic solvent is further suppressed when the electrolyte layer 3 is formed inside the first sealing portion 4A as compared with the case where the pressure is outside the above range, and In the dye-sensitized solar cell 100, the working electrode 1, the counter electrode 2 and the sealing portion 4 are more firmly fixed to each other, and the electrolyte layer 3 is less likely to leak.
  • the electrolyte when the electrolyte includes an ionic liquid, the ionic liquid does not volatilize, and it is not necessary to increase the pressure in the decompression space in consideration of the volatilization of the electrolyte unlike the case where the electrolyte includes a volatile solvent. For this reason, the pressure in the decompression space may be 50 to 700 Pa.
  • the electrolyte includes a gel electrolyte
  • the case where the main component of the precursor to be gelled is a volatile system and the case where the main component of the precursor is a volatile system is different.
  • an ionic liquid system it is preferably 50 to 700 Pa. Therefore, when the electrolyte layer 3 contains a gel electrolyte, the pressure in the reduced pressure space is preferably 50 to 800 Pa.
  • the sealing portion 4 is formed in the reduced pressure space as described above, it is preferable that at least one of the working electrode 1 and the counter electrode 2 has flexibility.
  • the flexibility of the working electrode 1 and the counter electrode 2 when the working electrode 1 and the counter electrode 2 are taken out from the reduced pressure space and placed under atmospheric pressure. It becomes possible to bend the electrode between the working electrode 1 and the counter electrode 2 to be narrowed by the atmospheric pressure. As a result, compared with the case where neither the working electrode 1 nor the counter electrode 2 has flexibility, the photoelectric conversion efficiency is performed more efficiently and the photoelectric conversion efficiency is further improved.
  • the electrolyte layer 3 is formed inside the first sealing portion 4A provided on the working electrode 1, but the electrolyte layer 3 is on the counter electrode 2 as shown in FIG. Then, it may be formed inside the second sealing portion 4B provided on the counter electrode 2.
  • the first sealing portion 4A and the second sealing portion 4B are formed before the electrolyte layer 3 is formed.
  • the second sealing portion 4B forms the electrolyte layer 3. It may be performed at the same time or after the electrolyte layer 3 is formed.
  • the formation of the second sealing portion 4B forms the electrolyte layer 3. Must be done before.
  • the first sealing portion 4A does not need to be formed before the electrolyte layer 3 is formed, and may be formed simultaneously with the electrolyte layer 3 or after the electrolyte layer 3 is formed. .
  • the dye carrying step is performed before the sealing portion 4 is formed.
  • a working electrode 101 instead of the working electrode 1, as shown in FIG. 12, a working electrode 101 further having a protruding portion 13 A made of an inorganic material so as to protrude on the transparent conductive film 7 may be used.
  • This protruding portion 13A is a portion where the first sealing portion 4A is formed, and forms a first annular portion C1.
  • the protruding portion 13A made of an inorganic material since the protruding portion 13A made of an inorganic material is provided so as to protrude on the transparent conductive film 7, it functions to seal the electrolyte layer 3 together with the sealing portion 4. Moreover, since the protruding portion 13A is made of an inorganic material, it has a higher sealing ability than the first sealing portion 4A and the second sealing portion 4B made of a thermoplastic resin. For this reason, compared with the case where the working electrode 1 does not have the protruding portion 13A, the leakage of the electrolyte can be more sufficiently suppressed.
  • a counter electrode 102 further having a protruding portion 13 ⁇ / b> B made of an inorganic material so as to protrude on the catalyst film 10 can be used.
  • the protruding portion 13B is a portion where the second sealing portion 4B is formed, and forms a second annular portion C2.
  • the protruding portion 13B made of an inorganic material is provided so as to protrude on the catalyst film 10, the sealing layer 4 and the electrolyte layer 3 are sealed together.
  • the protruding portion 13B is made of an inorganic material, it has a higher sealing ability than the first sealing portion 4A and the second sealing portion 4B made of a thermoplastic resin. For this reason, compared with the case where the counter electrode 2 does not have the protrusion part 13B, the leakage of electrolyte can be suppressed more fully.
  • the inorganic material constituting the protruding portions 13A and 13B for example, an inorganic insulating material such as a lead-free transparent low melting point glass frit, or a metal material such as silver can be used.
  • the wiring portion generally formed on the working electrode 1 also serves as the protruding portion 13A.
  • the wiring portion is composed of a metal wiring formed of a metal material such as silver and a wiring protection layer formed of an inorganic insulating material such as a low melting point glass frit that covers the metal wiring.
  • the dye-sensitized solar cell obtained by the method for manufacturing a dye-sensitized solar cell according to the present invention may have a configuration like the dye-sensitized solar cell 200 shown in FIG.
  • the resin sealing portion 5 containing a resin is provided on the side opposite to the electrolyte layer 3 with respect to the sealing portion 4, and the boundary line B1 between the sealing portion 4 and the working electrode 1 And at least the boundary line B2 between the sealing portion 4 and the counter electrode 2 is covered.
  • the sealing part 4 the first surface 14A on the side opposite to the electrolyte layer 3 in the first sealing part 4A and the second surface on the side opposite to the electrolyte layer 3 in the second sealing part 4B.
  • a groove 15 is formed by 14B.
  • the resin sealing portion 5 enters the groove 15.
  • the bonding area between the resin sealing portion 5 and the sealing portion 4 is further increased as compared with the case where the groove 15 is not formed.
  • the adhesion between the part 4 and the resin sealing part 5 can be made stronger. Therefore, the leakage of volatile components in the electrolyte is more sufficiently suppressed, and the intrusion of moisture from the outside into the electrolyte can be further sufficiently suppressed. Therefore, the temporal deterioration of the photoelectric conversion efficiency in the dye-sensitized solar cell 200 can be more sufficiently suppressed.
  • resin contained in the resin sealing part 5 a thermoplastic resin, moisture curable resin, thermosetting resin, and UV curable resin can be used as resin contained in the resin sealing part 5.
  • the second electrode has flexibility
  • the adhesive strength between the sealing portion 4B and the second electrode can be kept strong. The leakage of volatile components in the electrolyte is more sufficiently suppressed.
  • the resin sealing portion 5 has higher rigidity than the flexible second electrode.
  • the reinforcing effect of the resin sealing part 5 becomes larger.
  • “the resin sealing portion 5 has higher rigidity than the flexible second electrode” means that the sheet-shaped resin sealing portion 5 and the second size of 50 mm ⁇ 200 mm under the environment of 20 ° C.
  • both edges on the long side are held and fixed with a force that does not deform the flat plate, and a 20 g load is applied to the center (position 2.5 cm from the end of the long plate side),
  • a resin sealing portion having a maximum deformation rate smaller than that of the second electrode is assumed.
  • the maximum deformation rate of the resin sealing portion is 2.5%.
  • the maximum deformation rate of the sheet-like second electrode is 25%. In this case, the maximum deformation rate of the resin sealing portion is smaller than the maximum deformation rate of the sheet-like second electrode. Therefore, the resin sealing portion has higher rigidity than the flexible electrode.
  • Example 1 First, a 10 cm ⁇ 10 cm ⁇ 4 mm FTO substrate was prepared. Subsequently, after applying a titanium oxide paste (Solaronix, Ti nanoixide T / sp) on the FTO substrate by a doctor blade method so that the thickness becomes 10 ⁇ m, it is put in a hot air circulation type oven. Firing was performed at 500 ° C. for 3 hours to form a porous oxide semiconductor layer on the FTO substrate to obtain a working electrode of 5 cm ⁇ 5 cm.
  • a titanium oxide paste Smallonix, Ti nanoixide T / sp
  • this working electrode was immersed overnight in a dehydrated ethanol solution in which 0.2 mM of N719 dye as a photosensitizing dye was dissolved, and the working electrode was loaded with the photosensitizing dye.
  • a counter electrode substrate made of FTO glass obtained by forming an FTO film on a 6 cm ⁇ 6 cm ⁇ 2 mm borosilicate glass using the SPD method was prepared in the same manner as the working electrode. Then, a platinum catalyst film having a thickness of 10 nm was formed on the counter electrode substrate by sputtering to obtain a counter electrode.
  • the working electrode and the counter electrode were prepared.
  • the same resin sheet as described above was prepared on the platinum catalyst film of the counter electrode. And this resin sheet was arrange
  • the working electrode provided with the first sealing portion is arranged so that the surface of the FTO substrate on the porous oxide semiconductor layer side is horizontal, and the volatile property made of methoxyacetonitrile is formed inside the first sealing portion.
  • a volatile electrolyte containing 0.1 M lithium iodide, 0.05 M iodine, and 0.5 M 4-tert-butylpyridine was injected by using a solvent as a main solvent to form an electrolyte layer.
  • the counter electrode provided with the second sealing portion was opposed to the working electrode, and the first sealing portion and the second sealing portion were superposed under atmospheric pressure.
  • the brass frame of the same size as the sealing part is heated, the brass frame is arranged on the opposite side where the second sealing part of the counter electrode is provided, and a press machine is used.
  • the first sealing portion and the second sealing portion were heated and melted at 148 ° C. while pressurizing the first sealing portion and the second sealing portion at 5 MPa to form a sealing portion.
  • a dye-sensitized solar cell was obtained.
  • thermoplastic resin constituting the first sealing portion and the second sealing portion is changed from Himiran, which is an ionomer, to Nucrel, which is an ethylene-methacrylic acid copolymer (Mitsui / DuPont Polychemical Co., Ltd., melting point: 98 ° C.).
  • a dye-sensitized solar cell was produced in the same manner as in Example 1 except for the change.
  • thermoplastic resin constituting the first sealing portion and the second sealing portion is changed from HiMilan, which is an ionomer, to EVAL, which is an ethylene-vinyl alcohol copolymer (trade name, manufactured by Kuraray Co., Ltd., melting point: 165 ° C.). Then, the temperature when forming the sealing portion by bonding the first sealing portion and the second sealing portion (hereinafter referred to as “temperature at the time of forming the sealing portion”) is changed from 148 ° C. to 215 ° C. Except that, a dye-sensitized solar cell was produced in the same manner as in Example 1.
  • thermoplastic resin constituting the first sealing portion and the second sealing portion is obtained from Himiran, which is an ionomer, and binel, which is an ethylene-vinyl acetic anhydride copolymer (trade name, manufactured by DuPont, melting point: 127 ° C.).
  • a dye-sensitized solar cell was produced in the same manner as in Example 1 except that the temperature at the time of forming the sealing portion was changed from 148 ° C. to 152 ° C.
  • Example 5 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the electrolyte was changed from the volatile electrolyte to the ionic liquid. At this time, hexylmethylimidazolium iodine salt was used as the ionic liquid.
  • Example 6 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the electrolyte was changed to a gel electrolyte obtained by adding a gelling agent to the electrolyte of Example 1. At this time, silica fine particles having a particle diameter of 10 to 20 ⁇ m were used as the gelling agent.
  • Example 7 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the temperature at the time of forming the sealing portion was changed from 148 ° C. to 108 ° C.
  • Example 8 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the temperature at the time of forming the sealing portion was changed from 148 ° C. to 118 ° C.
  • Example 9 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the temperature at the time of forming the sealing portion was changed from 148 ° C. to 168 ° C.
  • Example 10 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the temperature at the time of forming the sealing portion was changed from 148 ° C. to 198 ° C.
  • Example 11 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the temperature at the time of forming the sealing portion was changed from 148 ° C. to 218 ° C.
  • Example 12 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the temperature at the time of forming the sealing portion was changed from 148 ° C. to 228 ° C.
  • Example 13 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the temperature at the time of forming the sealing portion was changed from 148 ° C. to 248 ° C.
  • Example 14 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the temperature at the time of forming the sealing portion was changed from 148 ° C. to 298 ° C.
  • Example 15 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the temperature at the time of forming the sealing portion was changed from 148 ° C. to 328 ° C.
  • Example 16 Except for changing the pressure when forming the sealing part by bonding the first sealing part and the second sealing part (hereinafter referred to as “pressure at the time of forming the sealing part”) from 5 MPa to 1 MPa.
  • pressure at the time of forming the sealing part (hereinafter referred to as “pressure at the time of forming the sealing part”) from 5 MPa to 1 MPa.
  • Example 17 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the pressure at the time of forming the sealing portion was changed from 5 MPa to 20 MPa.
  • Example 18 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the pressure at the time of forming the sealing portion was changed from 5 MPa to 50 MPa.
  • Example 19 A working electrode was produced in the same manner as in Example 1, and a photosensitizing dye was supported on this working electrode in the same manner as in Example 1. On the other hand, a counter electrode was produced in the same manner as in Example 1.
  • the first sealing portion is formed on the surface of the FTO substrate on the porous oxide semiconductor layer side in the same manner as in Example 1, and the first sealing portion is formed on the counter electrode platinum catalyst film in the same manner as in Example 1. Two sealing parts were formed.
  • the working electrode provided with the first sealing portion was accommodated in a stainless steel decompression vessel having an opening. And the electrolyte similar to Example 1 was inject
  • the counter electrode provided with the second sealing portion was accommodated in a decompression vessel. At this time, the first sealing portion and the second sealing portion were overlapped. Thereafter, the opening of the decompression container was closed with a flexible sheet made of polyethylene terephthalate film (PET) to form a sealed space in the decompression container. And this sealed space was pressure-reduced to 800 Pa with the vacuum pump, and the pressure reduction space was obtained.
  • PET polyethylene terephthalate film
  • the first sealing portion and the second sealing portion were heated and melted at 148 ° C. while pressurizing the first sealing portion and the second sealing portion at 5 MPa to form a sealing portion.
  • Example 20 A dye-sensitized solar cell was produced in the same manner as in Example 19 except that the temperature at the time of forming the sealing portion was changed from 148 ° C. to 108 ° C.
  • Example 21 A dye-sensitized solar cell was produced in the same manner as in Example 19 except that the temperature at the time of forming the sealing portion was changed from 148 ° C. to 118 ° C.
  • Example 22 A dye-sensitized solar cell was produced in the same manner as in Example 19 except that the temperature at the time of forming the sealing portion was changed from 148 ° C. to 218 ° C.
  • Example 23 A dye-sensitized solar cell was produced in the same manner as in Example 19 except that the temperature at the time of forming the sealing portion was changed from 148 ° C. to 228 ° C.
  • Example 24 Example Dye-sensitized solar cell in the same manner as in Example 19 except that the working electrode was changed to a flexible electrode by changing the FTO glass in the working electrode to titanium foil with platinum. 1 was prepared.
  • the titanium foil with platinum was obtained by sputtering platinum on the surface of a titanium foil having a thickness of 40 ⁇ m.
  • Example 25 A dye-sensitized solar cell was produced in the same manner as in Example 19 except that the FTO glass in the counter electrode was changed to a titanium foil with platinum.
  • the titanium foil with platinum was obtained by sputtering platinum on the surface of a titanium foil having a thickness of 40 ⁇ m.
  • Example 26 A dye-sensitized solar cell was produced in the same manner as in Example 19 except that the FTO glass in the counter electrode was changed to a platinum-added titanium foil and the electrolyte was changed from a volatile electrolyte to an ionic liquid.
  • the same ionic liquid as in Example 5 was used.
  • the titanium foil with platinum was obtained by sputtering platinum on the surface of a titanium foil having a thickness of 40 ⁇ m.
  • Example 27 The FTO glass in the counter electrode was changed to a titanium foil with platinum, and the dye sensitizing type was the same as in Example 19 except that the electrolyte was changed to a gel electrolyte obtained by adding a gelling agent to the electrolyte of Example 1. A solar cell was produced. Here, the same gelling agent as in Example 6 was used.
  • the titanium foil with platinum was obtained by sputtering platinum on the surface of a titanium foil having a thickness of 40 ⁇ m.
  • Example 5 A dye-sensitized solar cell was produced in the same manner as in Example 5 except that the second sealing portion was not formed on the counter electrode.
  • Example 8 A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the first sealing portion and the second sealing portion were heated at 88 ° C., which was 10 ° C. lower than the melting point of the thermoplastic resin.
  • the dye-sensitized solar cells obtained in Examples 1-27 and Comparative Example 8 were cut into small pieces including a sealing portion of about 10 mm ⁇ 10 mm ⁇ thickness of about 6 mm using a wet cutter 32F-300 manufactured by Heiwa Technica. At this time, the sealing part was cut along the thickness direction of the dye-sensitized solar cell to expose the cut surface of the sealing part. Then, this small piece was grind
  • a cross section polisher manufactured by JEOL Ltd.
  • the layer observed between the first sealing portion and the second sealing portion is included in the thermoplastic resin included in the first sealing portion, the oxide of the thermoplastic resin, and the second sealing portion. It is considered that the mixed layer is composed of a mixture of a thermoplastic resin and an oxide of the thermoplastic resin.
  • the durability test examines the rate of decrease over time of the photoelectric conversion efficiency of the dye-sensitized solar cell, that is, the durability. Specifically, the durability test was performed as follows. That is, first, the dye-sensitized solar cells obtained in Examples 1 to 27 and Comparative Examples 1 to 8 were allowed to stand for 1000 hours in an environment of 85 ° C. and 85 RH% immediately after their production, and the photoelectric conversion efficiency ( ⁇ ) was measured.
  • the rate of decrease in photoelectric conversion efficiency is displayed as follows according to the value. Less than 10% ... A 10% or more and less than 15% ... B 15% or more and less than 20% ... C It became less than 50% by 500 hours ... D It was decided to be displayed.
  • the dye-sensitized solar cells of Examples 1 to 18 are particularly superior in terms of durability compared to the dye-sensitized solar cells of Comparative Examples 1 to 8. I understood. Therefore, according to the manufacturing method of the dye-sensitized solar cell of this invention, it was confirmed that the dye-sensitized solar cell which can fully suppress the time-dependent fall of photoelectric conversion efficiency is producible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

 本発明は、色素増感型太陽電池の製造方法に関する。光電変換効率の経時的な低下を十分に抑制できる色素増感型太陽電池の製造方法を提供することを目的として、本発明では、電解質層を形成する前に、貼り合わせる2つの電極の各々に、熱可塑性樹脂からなる封止部を予め形成しておき、電解質層を形成した後に、各電極に形成した封止部同士を接着させる。

Description

色素増感型太陽電池の製造方法
 本発明は、色素増感型太陽電池の製造方法に関する。
 光電変換素子として、安価で、高い光電変換効率が得られることから色素増感型太陽電池が注目されており、色素増感型太陽電池に関して種々の開発が行われている。
 色素増感型太陽電池は一般に、作用極と、対極と、作用極に担持される光増感色素と、作用極と対極とを連結する封止部と、作用極、対極及び封止部によって包囲される空間(以下、「セル空間」と呼ぶ)に配置される電解質層とを備えている。
 このような色素増感型太陽電池の製造方法として、作用極又は対極のいずれか一方のみに熱可塑性樹脂からなる封止材を形成し、減圧下で、封止材の内側に電解質を注入して電解質層を形成し、続いて作用極と対極とを減圧下で加熱及び加圧しながら貼り合わせることにより、両者の間に空気が封入されることを防止し、発電効率に優れた色素増感型太陽電池を製造する方法が提案されている(下記特許文献1)。
特開2007-220608号公報
 ところで、色素増感型太陽電池においては一般に、電解質の漏洩による光電変換効率の経時的な低下を抑制することが重要である。
 しかし、上述した特許文献1に記載の色素増感型太陽電池の製造方法は以下に示す課題を有していた。
 即ち、電解質が揮発系の電解質である場合はもちろん、イオン液体やゲル系の電解質である場合にも電解質は少なからず揮発系の成分を含んでいる。しかし、電解質を封止材の内側に注入した後、作用極と対極とを貼り合わせる場合、封止材の加熱に伴って、電解質中の揮発成分の一部が蒸気となり、この蒸気によって作用極又は対極と封止材との接着面の濡れ性が低下する。このため、作用極又は対極と封止材との間で強固な接着力が得られなくなり、このことが、得られる色素増感型太陽電池において電解質の漏洩につながるおそれがある。さらに、電解質を配置する際に、作用極又は対極と封止材との接着面へ電解質が付着した際には、付着物によって接着が阻害される。そのため、得られる色素増感型太陽電池において電解質が顕著に漏洩するおそれがある。
 また上記特許文献1に記載の製造方法により得られる色素増感型太陽電池においては、色素増感型太陽電池が温度変化の大きい場所に置かれた場合に、セル空間の膨張又は収縮によって発生する応力が、作用極と封止部との界面、および、対極と封止部との界面に集中していたため、対極又は作用極と封止部との間の接着力が比較的短期間で弱まるおそれがあり、その結果、電解質が比較的短期間で漏洩するおそれがあった。
 従って、上述した特許文献1の製造方法により得られる色素増感型太陽電池は、電解質の漏洩による光電変換効率の経時的な低下の抑制の点で改良の余地を有していた。
 本発明は、上記事情に鑑みてなされたものであり、光電変換効率の経時的な低下を十分に抑制できる色素増感型太陽電池を製造することが可能な色素増感型太陽電池の製造方法を提供することを目的とする。
 本発明者らは上記課題を解決するため鋭意研究を重ねた結果、電解質層を形成する前に、貼り合わせる2つの電極の各々に、熱可塑性樹脂からなる封止部を予め形成しておき、電解質層を形成した後に、各電極に形成した封止部同士を接着させることで上記課題を解決し得ることを見出し、本発明を完成するに至った。
 即ち本発明は、多孔質酸化物半導体層を有する第1電極、及び、第2電極を準備する準備工程と、前記第1電極のうち前記多孔質酸化物半導体層を包囲する第1環状部位に熱可塑性樹脂を溶融させて接着させることにより第1封止部を形成する第1封止部形成工程と、前記第2電極における第2環状部位に熱可塑性樹脂を溶融させて接着させることにより第2封止部を形成する第2封止部形成工程と、前記多孔質酸化物半導体層に光増感色素を担持させる色素担持工程と、前記第1電極上であって前記第1封止部の内側、又は前記第2電極上であって前記第2封止部の内側に電解質を配置して電解質層を形成する電解質層形成工程と、前記第1封止部及び前記第2封止部を接着させて封止部を形成する封止部形成工程とを含み、前記電解質層形成工程は、前記第1封止部形成工程および前記第2封止部形成工程の少なくとも一方の後に行われ、前記封止部形成工程は、前記色素担持工程及び前記電解質層形成工程の後に行われ、前記封止部形成工程において、前記封止部は、前記第1封止部及び前記第2封止部を加圧しながら溶融させることによって形成されること、を特徴とする色素増感型太陽電池の製造方法である。
 上記製造方法によれば、第1封止部形成工程及び第2封止部形成工程の少なくとも一方は、電解質層形成工程の前に行われる。このため、第1封止部を第1電極のうち多孔質酸化物半導体層を包囲する第1環状部位に形成する際、その第1環状部位に電解質中の揮発成分が付着しておらず、その表面の濡れ性が低下していない。従って、熱可塑性樹脂は第1環状部位に強固に接着し、第1封止部が第1環状部位に強固に固定される。あるいは、第2封止部を第2環状部位に形成する際、第2環状部位に電解質中の揮発成分が付着しておらず、その表面の濡れ性が低下していない。従って、熱可塑性樹脂は第2環状部位に強固に接着し、第2封止部が第2環状部位に強固に固定される。
 一方、封止部形成工程は電解質層形成工程の後に行われる。このため、第1封止部及び第2封止部を溶融させることに伴い、電解質層の一部が蒸発し、第1封止部と第2封止部との間の濡れ性が低下する。また、電解質層形成工程中に電解質が第1封止部と第2封止部上に付着し、第1封止部と第2封止部との間の濡れ性が低下する場合がある。
 しかし、このとき、第1封止部及び第2封止部がともに熱可塑性樹脂で構成されるため、第1封止部及び第2封止部を接着させる場合、熱可塑性樹脂同士を接着させることになる。このため、第1封止部と第2封止部とは、熱可塑性樹脂と第1電極又は第2電極とを接着させる場合に比べて互いに接着しやすい。また第1封止部及び第2封止部に対しては両者の接着に際して加圧も行われる。このため、第1封止部と第2封止部に電解質が付着した場合でも、第1封止部及び第2封止部の熱可塑性樹脂の流動によって、付着した電解質を押しのけて排除し、第1封止部の溶融熱可塑性樹脂と第2封止部の溶融熱可塑性樹脂とが相溶し、第1封止部と第2封止部とは強固に接着される。なお、付着した電解質の粘度や封止樹脂との相性によって、電解質が部分的に封止樹脂内部に含包される場合があるが、封止部の加圧により、含包率は低下し、第1封止部と第2封止部の接着は強固に維持される。
 このように、本発明に係る色素増感型太陽電池の製造方法によれば、得られる色素増感型太陽電池が温度差の大きい環境下に置かれ、セル空間が収縮したり膨張したりしても、そのとき発生する応力は、第1封止部と第1電極との界面、第2封止部と第2電極との界面、第1封止部と第2封止部との界面のそれぞれに分散される。さらに第1封止部は、第1電極の第1環状部位に強固に固定され、第2封止部が第2電極の第2環状部位に強固に固定される。また第1封止部及び第2封止部同士も強固に接着される。従って、得られる色素増感型太陽電池が温度差の大きい環境下に置かれ、セル空間が収縮したり膨張したりしても、得られる色素増感型太陽電池においては、電解質中の揮発成分の漏洩が十分に抑制される。さらに、外部からの電解質への水分の浸入を十分に抑制できる。よって、本発明に係る色素増感型太陽電池の製造方法によれば、光電変換効率の経時的な低下を十分に抑制できる色素増感型太陽電池を製造することが可能となる。
 上記製造方法において、前記封止部形成工程は減圧空間内で行われることが好ましい。この場合、得られる色素増感型太陽電池を減圧空間から大気中に取り出した際に、電解質層が外気に対して陰圧状態となる。その結果、色素増感型太陽電池は外部から大気圧を受けることになり、封止部に対して第1電極及び第2電極が押圧力を加えた状態が維持され、電解質中の揮発成分の漏洩がより十分に抑制される。
 上記製造方法においては、前記第1電極及び前記第2電極のうち少なくとも一方が可撓性を有することが好ましい。
 この場合、第1電極及び第2電極のいずれも可撓性を有しない場合に比べて、減圧空間から取り出されて大気圧下に配置された場合に、第1電極及び第2電極のうち可撓性を有する電極が大気圧によって撓み、第1電極と第2電極との間隔を狭めることが可能となる。その結果、第1電極及び第2電極のいずれも可撓性を有しない場合に比べて、光電変換効率がより効率よく行われ、光電変換効率がより向上する。
 前記電解質層形成工程において、前記電解質層は、前記電解質を、前記第1電極上であって前記第1封止部の内側、又は前記第2電極上であって前記第2封止部の内側に注入し、前記第1封止部又は前記第2封止部を超えて前記第1封止部又は前記第2封止部の外側に溢れさせることにより形成することができる。
 この場合、第1封止部又は第2封止部の内側に電解質を十分に注入することが可能となる。また第1封止部と第2封止部とを接着して封止部を形成するに際し、第1電極と第2電極と封止部とによって囲まれる空間から空気を十分に排除することができる。その結果、光電変換効率の経時的な低下を十分に抑制することができる。
 前記電解質層形成工程において、前記電解質層は、前記電解質を、第1封止部又は第2封止部の内側に塗布する電解質の量を予め計算し第1封止部又は第2封止部よりあふれないように塗布することにより形成することもできる。この場合、理論上、前記第1封止部又は前記第2封止部を超えて電解質があふれることがなく、電解質のムダがなくなる。なお、この場合にも第1電極には予め熱可塑性樹脂からなる第1封止部が配され、第2電極には予め熱可塑性樹脂からなる第2封止部が配されているため、電解質層の一部が蒸発し、第1封止部と第2封止部に付着しても、第1封止部と第2封止部の接着は強固に維持される。
 なお、電解質を塗布するに際しては、第1電極と第2電極と封止部とによって囲まれる空間から空気を十分に排除できる必要十分な量の電解質を予め計算してから塗布することがより好ましい。
 前記電解質層形成工程においては、前記電解質層が、前記第1電極上であって前記第1封止部の内側に形成されることが好ましい。
 この場合、多孔質酸化物半導体層の多孔質の細部にまで電解質が十分に行き渡った後に封止工程が行われることとなる。このため、多孔質酸化物半導体層中の空気が気泡となって現れることが十分に抑制され、光電変換効率の経時的な低下を十分に抑制することができる。
 上記製造方法において、前記第1電極は、前記多孔質酸化物半導体層と、前記多孔質酸化物半導体層が形成される導電膜と、前記導電膜上に突出するように設けられ、前記第1環状部位をなす突出部とを有し、前記突出部が無機材料からなる、ことが好ましい。
 この場合、無機材料からなる突出部が、導電膜上に突出するように設けられているため、突出部が封止部とともに電解質層を封止する機能を果たす。しかも、突出部は、無機材料からなるため、熱可塑性樹脂からなる第1封止部及び第2封止部よりも高い封止能を有する。このため、第1電極が突出部を有しない場合に比べて、電解質の漏洩をより十分に抑制することができる。
 上記製造方法において、前記第2電極は、対極基板と、前記対極基板上に設けられる触媒膜と、前記触媒膜上に突出するように設けられ、前記第2環状部位をなす突出部とを有し、前記突出部が無機材料からなることが好ましい。
 この場合、無機材料からなる突出部が、触媒膜上に突出するように設けられているため、突出部が封止部とともに電解質層を封止する機能を果たす。しかも、突出部は、無機材料からなるため、熱可塑性樹脂からなる第1封止部及び第2封止部よりも高い封止能を有する。このため、第2電極が突出部を有しない場合に比べて、電解質の漏洩をより十分に抑制することができる。
 また本発明は、多孔質酸化物半導体層を有する第1電極と、前記第1電極に対向するように配置される第2電極と、前記第1電極と前記第2電極とを連結する封止部と、前記第1電極、前記第2電極および前記封止部とによって包囲されるセル空間内に充填される電解質層とを備え、前記封止部が前記第1電極側に設けられる第1封止部と、前記第2電極側に設けられ、前記第1封止部と接着される第2封止部とを有し、前記第1封止部と前記第2封止部とは、前記第1封止部に含まれる樹脂とその樹脂の酸化物と前記第2封止部に含まれる樹脂とその樹脂の酸化物との混合物からなる混合層を介して接着されていることを特徴とする色素増感型太陽電池である。
 この色素増感型太陽電池によれば、この色素増感型太陽電池が温度差の大きい環境下に置かれ、セル空間が収縮したり膨張したりしても、そのとき発生する応力は、第1封止部と第1電極との界面、第2封止部と第2電極との界面、第1封止部と第2封止部との界面のそれぞれに分散される。さらに、第1封止部と第2封止部とは、第1封止部に含まれる樹脂とその樹脂の酸化物と第2封止部に含まれる樹脂とその樹脂の酸化物との混合物からなる混合層を介して接着されるため、第1封止部と第2封止部との間に過大な応力がかかっても、電解質中の揮発成分の漏洩が十分に抑制され、外部からの電解質への水分の浸入も十分に抑制できる。よって、光電変換効率の経時的な低下を十分に抑制できる。
 上記色素増感型太陽電池において、前記第1封止部のうち前記電解質層と反対側にある第1面と、前記第2封止部のうち前記電解質層と反対側にある第2面とによって溝が形成され、その溝に入り込むように、前記封止部と前記第1電極との境界線、前記封止部と前記第2電極との境界線を少なくとも覆い且つ樹脂を含む樹脂封止部が、前記封止部に対して前記電解質層と反対側に設けられることが好ましい。
 この場合、樹脂封止部が、第1封止部の第1面と、第2封止部の第2面とによって形成される溝に入り込んでいる。このため、溝が形成されていない場合に比べて、樹脂封止部と封止部との接着面積がより増大し、封止部と樹脂封止部との接着をより強固なものにすることができる。従って、電解質中の揮発成分の漏洩がより十分に抑制され、外部からの電解質への水分の浸入もより十分に抑制できる。よって、光電変換効率の経時的な低下をより十分に抑制することができる。
 なお、本発明において、第1電極又は第2電極について「可撓性を有する」とは、20℃の環境下で50mm×200mmのシート状電極の長辺側の両縁部(それぞれ幅5mm)を張力1Nで水平に固定し、電極の中央に20g重の荷重をかけた際の電極の撓みの最大変形率が20%を超えるものを言うものとする。ここで、最大変形率とは、下記式:
最大変形率(%)=100×(最大変位量/シート状電極の厚さ)
に基づいて算出される値を言う。従って、例えば厚さ0.04mmのシート状電極が上記のようにして荷重をかけることにより撓み、最大変形量が0.01mmとなった場合、最大変形率は25%となり、このシート状電極は可撓性電極となる。
 本発明によれば、光電変換効率の経時的な低下を十分に抑制できる色素増感型太陽電池を製造することが可能な色素増感型太陽電池の製造方法が提供される。
本発明に係る色素増感型太陽電池の製造方法の一実施形態により得られる色素増感型太陽電池を示す断面図である。 図1の第1封止部と第2封止部との界面付近を模式的に示す部分断面図である。 本発明に係る色素増感型太陽電池の製造方法の一実施形態に用いる第1電極を示す断面図である。 本発明に係る色素増感型太陽電池の製造方法の一実施形態に用いる第2電極を示す断面図である。 図3の第1電極を示す平面図である。 本発明に係る色素増感型太陽電池の製造方法の一実施形態の第1封止部形成工程を示す断面図である。 図4の第2電極を示す平面図である。 本発明に係る色素増感型太陽電池の製造方法の一実施形態の第2封止部形成工程を示す断面図である。 本発明に係る色素増感型太陽電池の製造方法の一実施形態の電解質層形成工程を示す断面図である。 本発明に係る色素増感型太陽電池の製造方法の一実施形態の封止部形成工程を示す断面図である。 本発明に係る色素増感型太陽電池の製造方法の他の実施形態の電解質層形成工程を示す断面図である。 図3の第1電極の変形例を示す断面図である。 図4の第2電極の変形例を示す断面図である。 本発明に係る色素増感型太陽電池の製造方法の更に他の実施形態により得られる色素増感型太陽電池を示す断面図である。
 以下、本発明の実施形態について図面を参照しながら詳細に説明する。
 まず本発明に係る色素増感型太陽電池の製造方法の実施形態について図1~図10を用いて説明する。図1は本発明に係る色素増感型太陽電池の製造方法の実施形態により得られる色素増感型太陽電池を示す断面図である。図2は、図1の第1封止部と第2封止部との界面付近を模式的に示す部分断面図、図3は、本実施形態に用いる第1電極を示す断面図、図4は、本実施形態に用いる第2電極を示す断面図、図5は、図3の第1電極を示す平面図、図7は、図4の第2電極を示す平面図である。図6、図8~図10はそれぞれ、本実施形態の製造方法の一工程を示す断面図である。
 図1に示すように、色素増感型太陽電池100は、作用極1と、作用極1に対向するように配置される対極2とを備えている。作用極1には光増感色素が担持されている。作用極1と対極2とは封止部4によって連結されている。そして、作用極1と対極2と封止部4とによって包囲されるセル空間S内には電解質が充填され、この電解質により電解質層3が形成されている。
 作用極1は、透明基板6と、透明基板6の対極2側に設けられる透明導電膜7と、透明導電膜7の上に設けられる多孔質酸化物半導体層8とを備えている。光増感色素は作用極1のうちの多孔質酸化物半導体層8に担持されている。対極2は、対極基板9と、対極基板9のうち作用極1側に設けられて対極2の表面における還元反応を促進する導電性の触媒膜10とを備えている。
 封止部4は、作用極1と対極2とを連結しており、第1封止部4Aと、これと接着する第2封止部4Bとで構成されている。第1封止部4Aは作用極1の多孔質酸化物半導体層8A側の表面上、即ち透明導電膜7の表面上に固定されており、熱可塑性樹脂で構成されている。第2封止部4Bは対極2の触媒膜10の表面上に固定されており、熱可塑性樹脂で構成されている。
 ここで、第1封止部4Aと第2封止部4Bとは、図2に示すように、第1封止部4Aに含まれる熱可塑性樹脂とその熱可塑性樹脂の酸化物と第2封止部4Bに含まれる熱可塑性樹脂とその熱可塑性樹脂の酸化物との混合物からなる混合層20を介して接着されている。
 次に、上述した色素増感型太陽電池100の製造方法について説明する。
 [準備工程]
 まず作用極(第1電極)1及び対極(第2電極)2を以下のようにして準備する。
 (作用極)
 作用極1は、以下のようにして得ることができる(図3)。
 はじめに透明基板6の上に透明導電膜7を形成して積層体を形成する。透明導電膜7の形成方法としては、スパッタ法、蒸着法、スプレー熱分解法(SPD:Spray Pyrolysis Deposition)及びCVD法などが用いられる。これらのうちスプレー熱分解法が装置コストの点から好ましい。
 透明基板6を構成する材料は、例えば透明な材料であればよく、このような透明な材料としては、例えばホウケイ酸ガラス、ソーダライムガラス、白板ガラス、石英ガラスなどのガラス、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリエーテルスルフォン(PES)などが挙げられる。透明基板6の厚さは、色素増感型太陽電池100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば50μm~10000μmの範囲にすればよい。
 透明導電膜7を構成する材料としては、例えばスズ添加酸化インジウム(Indium-Tin-Oxide:ITO)、酸化スズ(SnO)、フッ素添加酸化スズ(Fluorine-doped-Tin-Oxide:FTO)などの導電性金属酸化物が挙げられる。透明導電膜7は、単層でも、異なる導電性金属酸化物で構成される複数の層の積層体で構成されてもよい。透明導電膜7が単層で構成される場合、透明導電膜7は、高い耐熱性及び耐薬品性を有することから、FTOで構成されることが好ましい。また透明導電膜7として、複数の層で構成される積層体を用いると、各層の特性を反映させることが可能となることから好ましい。中でも、ITOで構成される層と、FTOで構成される層との積層体を用いることが好ましい。この場合、高い導電性、耐熱性及び耐薬品性を持つ透明導電膜7が実現できる。透明導電膜7の厚さは例えば0.01μm~2μmの範囲にすればよい。
 次に、上記のようにして得られた積層体の透明導電膜7上に、多孔質酸化物半導体層形成用ペーストを印刷する。多孔質酸化物半導体層形成用ペーストは、上述した酸化物半導体粒子のほか、ポリエチレングリコールなどの樹脂及び、テレピネオールなどの溶媒を含む。多孔質酸化物半導体層形成用ペーストの印刷方法としては、例えばスクリーン印刷法、ドクターブレード法、バーコート法などを用いることができる。
 次に、多孔質酸化物半導体層形成用ペーストを焼成して透明導電膜7上に多孔質酸化物半導体層8を形成する。焼成温度は酸化物半導体粒子により異なるが、通常は350℃~600℃であり、焼成時間も、酸化物半導体粒子により異なるが、通常は1~5時間である。
 上記酸化物半導体粒子としては、例えば酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化タングステン(WO3)、酸化ニオブ(Nb25)、チタン酸ストロンチウム(SrTiO3)、酸化スズ(SnO2)、酸化インジウム(In)、酸化ジルコニウム(ZrO)、酸化タリウム(Ta)、酸化ランタン(La)、酸化イットリウム(Y)、酸化ホルミウム(Ho)、酸化ビスマス(Bi)、酸化セリウム(CeO)、酸化アルミニウム(Al)又はこれらの2種以上で構成される酸化物半導体粒子が挙げられる。これら酸化物半導体粒子の平均粒径は1~1000nmであることが、色素で覆われた酸化物半導体の表面積が大きくなり、即ち光電変換を行う場が広くなり、より多くの電子を生成することができることから好ましい。ここで、多孔質酸化物半導体層8が、粒度分布の異なる酸化物半導体粒子を積層させてなる積層体で構成されることが好ましい。この場合、積層体内で繰り返し光の反射を起こさせることが可能となり、入射光を積層体の外部へ逃がすことなく効率よく光を電子に変換することができる。多孔質酸化物半導体層8の厚さは、例えば0.5~50μmとすればよい。なお、多孔質酸化物半導体層8は、異なる材料からなる複数の半導体層の積層体で構成することもできる。
 (対極)
 一方、対極2は、以下のようにして得ることができる(図4)。
 即ちまず対極基板9を準備する。そして、対極基板9の上に触媒膜10を形成する。触媒膜10の形成方法としては、スパッタ法、蒸着法などが用いられる。これらのうちスパッタ法が膜の均一性の点から好ましい。
 対極基板9は、例えばチタン、ニッケル、白金、モリブデン、タングステン等の耐食性の金属材料や、ITO、FTO等の導電性酸化物や、炭素、導電性高分子で構成される。対極基板9の厚さは、色素増感型太陽電池100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば0.005mm~0.1mmとすればよい。
 触媒膜10は、白金、炭素系材料又は導電性高分子などから構成される。
 [第1封止部形成工程]
 次に、図5及び図6に示すように、作用極1のうち透明導電膜7の表面上の部位であって多孔質酸化物半導体層8を包囲する第1環状部位C1に第1封止部4Aを形成する。第1封止部4Aは、熱可塑性樹脂を加熱により溶融させて透明導電膜7に接着させることによって得ることができる。
 [第2封止部形成工程]
 一方、図7及び図8に示すように、対極2のうち触媒膜10の表面上の部位である第2環状部位C2に第2封止部4Bを形成する。第2封止部4Bは、熱可塑性樹脂を加熱により溶融させて触媒膜10に接着させることによって得ることができる。
 第1封止部4A及び第2封止部4Bを形成する熱可塑性樹脂としては、酸変性ポリエチレン、ポリビニルアルコール、及びエチレンービニルアルコール共重合体などが好ましく用いられる。この場合、電解質が第1封止部4A又は第2封止部4Bに浸透して漏洩することを、より十分に抑制することができる。なお、酸変性ポリエチレンとは、ポリエチレンに酸をランダム共重合、交互共重合、ブロック共重合、グラフト共重合させたもの、またはこれらを金属イオンで中和したものを意味する。一例としては、エチレンメタクリル酸共重合体は、エチレンとメタクリル酸とを共重合させたもので、酸変性ポリエチレンであり、エチレンメタクリル酸共重合体を金属イオンで中和したアイオノマーも酸変性ポリエチレンとなる。
 ここで、第1封止部4Aと第2封止部4Bとの密着性を向上させる観点からは、第1封止部4A及び第2封止部4Bを構成する材料は上記酸変性ポリエチレンの群から選ばれる樹脂の組み合わせであることが望ましい。例えば第1封止部4Aを構成する樹脂がアイオノマーからなり、第2封止部4Bを構成する樹脂が無水マレイン酸変性ポリエチレンからなる組み合わせ、又は、第1封止部4Aを構成する樹脂が無水マレイン酸変性ポリエチレンからなり、第2封止部4Bを構成する樹脂がアイオノマーからなる組み合わせなどが望ましい。
 この場合、酸変性ポリエチレンはポリビニルアルコールまたはエチレンービニルアルコール共重合体に比べて比較的低融点であるため、第1封止部4Aと第2封止部4Bの樹脂が比較的低温で溶融接着しやすい。また、第1封止部4Aと第2封止部4Bの樹脂が異種の酸変性ポリエチレンであっても、お互いのモノマーがエチレンであるため相性が良く、後述する封止部形成工程で第1封止部4Aと第2封止部4Bとの間での接着性及び密着性に優れる。
 より望ましくは、第1封止部4A及び第2封止部4Bを構成する材料は上記酸変性ポリエチレンの群から選ばれる同じ樹脂であることが望ましい。例えば第1封止部4Aを構成する樹脂と第2封止部4Bを構成する樹脂が同じアイオノマーからなる組み合わせ、又は、第1封止部4Aを構成する樹脂と第2封止部4Bを構成する樹脂が同じ無水マレイン酸変性ポリエチレンからなる組み合わせなどが望ましい。
 ここで、同じ樹脂とは、ポリエチレンを変性する酸モノマーのエチレン繰返し単位に対するモル比が同一である樹脂はもちろん、このモル比が異なる樹脂をも含む。例えば酸モノマーのエチレン繰返し単位に対するモル比率が5%のエチレンメタクリル酸共重合体と、酸モノマーのエチレン繰返し単位に対するモル比率が10%のエチレンメタクリル酸共重合体とは同じ樹脂となる。この場合、使用する樹脂の融点、メルトフローレート、その他の様々な熱的性質が近いため、同じタイミングでお互いが溶融接着しやすい。そのため、融点やメルトフローレートが大きく異なる樹脂を用いる場合と比較して、溶融加熱時間をコントロールしやすく、後述する封止部形成工程を容易に行うことができる。
 [色素担持工程]
 次に、作用極1の多孔質酸化物半導体層8に光増感色素を担持させる。このためには、作用極1を、光増感色素を含有する溶液の中に浸漬させ、その色素を多孔質酸化物半導体層8に吸着させた後に上記溶液の溶媒成分で余分な色素を洗い流し、乾燥させることで、光増感色素を多孔質酸化物半導体層8に吸着させればよい。但し、光増感色素を含有する溶液を多孔質酸化物半導体層8に塗布した後、乾燥させることによって光増感色素を酸化物半導体多孔膜に吸着させても、光増感色素を多孔質酸化物半導体層8に担持させることが可能である。
 光増感色素としては、例えばビピリジン構造、ターピリジン構造などを含む配位子を有するルテニウム錯体や、ポルフィリン、エオシン、ローダミン、メロシアニンなどの有機色素が挙げられる。
 [電解質層形成工程]
 次に、図9に示すように、作用極1上であって第1封止部4Aの内側に電解質を配置し、電解質層3を形成する。電解質層3は、電解質を、作用極1上であって第1封止部4Aの内側に注入したり、印刷したりすることによって得ることができる。
 ここで、電解質が液状である場合は、電解質を、第1封止部4Aを超えて第1封止部4Aの外側に溢れるまで注入することができる。この場合、第1封止部4Aの内側に電解質を十分に注入することが可能となる。また第1封止部4Aと第2封止部4Bとを接着して封止部4を形成するに際し、作用極1と対極2と封止部4とによって囲まれるセル空間Sから空気を十分に排除することができ、光電変換効率を十分に向上させることができる。なお、電解質が第1封止部4Aを超えて第1封止部4Aの外側に溢れるまで注入されることにより第1封止部4Aの接着部位が電解質で濡れても、第1封止部4A及び第2封止部4Bはいずれも熱可塑性樹脂であるため、第1封止部4A及び第2封止部4Bの接着に際し、濡れ性の低下による接着力の低下は十分に小さく、第1封止部4A及び第2封止部4Bは強固に接着する。
 電解質層形成工程においては、第1封止部4Aの内側に塗布する電解質の量を予め計算し第1封止部4Aより溢れないように電解質を塗布することも可能である。この場合、理論上、第1封止部4Aを超えて電解質が溢れることがなく、電解質のムダがなくなる。なお、この場合にも作用極1には予め熱可塑性樹脂からなる第1封止部4Aが配され、対極2には予め熱可塑性樹脂からなる第2封止部4Bが配されているため、電解質層3の一部が蒸発し、第1封止部4Aと第2封止部4Bに付着しても、第1封止部4Aと第2封止部4Bの接着は強固に維持される。なお、電解質を塗布するに際しては、作用極1と対極2と封止部4とによって囲まれる空間から空気を十分に排除できる必要十分な量の電解質を予め計算してから塗布することがより好ましい。
 電解質は通常、電解液で構成され、この電解液は例えばI/I などの酸化還元対と有機溶媒とを含んでいる。有機溶媒としては、アセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ-ブチロラクトンなどを用いることができる。酸化還元対としては、例えばI/I のほか、臭素/臭化物イオンなどの対が挙げられる。色素増感型太陽電池100は、酸化還元対としてI/I のような揮発性溶質及び、高温下で揮発しやすいアセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリルのような有機溶媒を含む電解液を電解質として用いた場合に特に有効である。この場合、色素増感型太陽電池100の周囲の環境温度の変化によりセル空間Sの内圧の変化が特に大きくなり、封止部4と対極2との界面、および封止部4と作用極1との界面から電解質が漏洩しやすくなるからである。なお、上記揮発性溶媒にはゲル化剤を加えてもよい。また電解質は、イオン液体と揮発性成分との混合物からなるイオン液体電解質で構成されてもよい。この場合も、色素増感型太陽電池100の周囲の環境温度の変化によりセル空間Sの内圧の変化が大きくなるためである。イオン液体としては、例えばピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等の既知のヨウ素塩であって、室温付近で溶融状態にある常温溶融塩が用いられる。このような常温溶融塩としては、例えば1-エチル-3-メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミドが好適に用いられる。また揮発性成分としては、上記の有機溶媒や、1-メチル-3-メチルイミダゾリウムヨーダイド、LiI、I、4-t-ブチルピリジンなどが挙げられる。さらに電解質3としては、上記イオン液体電解質にSiO、TiO、カーボンナノチューブなどのナノ粒子を混練してゲル様となった擬固体電解質であるナノコンポジットイオンゲル電解質を用いてもよく、また、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などの有機系ゲル化剤を用いてゲル化したイオン液体電解質を用いてもよい。
 [封止部形成工程]
 次に、図10に示すように、作用極1と対極2とを対向させて、第1封止部4Aと第2封止部4Bとを重ね合わせる。そして、第1封止部4A及び第2封止部4Bを加圧しながら溶融させることによって第1封止部4Aと第2封止部4Bとを接着させる。こうして、作用極1と対極2との間に封止部4を形成する(図1参照)。このとき、第1封止部4Aと第2封止部4Bとの間には、第1封止部4A及び第2封止部4Bとは異なる層が観測される。このような層が観測されるのは、第1封止部4Aと第2封止部4Bとが接触する部分の一部では第1封止部4A上の酸化皮膜の破れと第2封止部4Bの酸化皮膜の破れが生じ、その破れた部分に、第1封止部4Aに含まれる酸化されていない熱可塑性樹脂と、第2封止部4Bに含まれる酸化されていない熱可塑性樹脂とが入り込み、互いに混合する結果、第1封止部4Aに含まれる熱可塑性樹脂とその熱可塑性樹脂の酸化物と第2封止部4Bに含まれる熱可塑性樹脂とその熱可塑性樹脂の酸化物との混合物からなる混合層20が形成されたためであると考えられる。混合層20はさらに具体的には以下のように形成されるものと考えられる。
 即ち、第1封止部4Aの表面は、第1封止部4Aと第2封止部4Bとを接着させる前から予め酸化され、第1封止部4Aの表層部は第1封止部4Aに含まれる熱可塑性樹脂の酸化皮膜になっている。また第2封止部4Bの表面も、第1封止部4Aと第2封止部4Bとを接着させる前から予め酸化され、第2封止部4Aの表層部は、第2封止部4Bに含まれる熱可塑性樹脂の酸化皮膜になっている。そして、第1封止部4Aと第2封止部4Bとを加圧しながら溶融させると、それぞれの酸化皮膜の一部が破れ、酸化皮膜内側から酸化していない樹脂が染み出し、混合される。こうして混合層20が形成されるものと考えられる。従って、混合層20では、具体的には、第1封止部4A及び第2封止部4Bの表面に形成された酸化皮膜のうち破れた部分において、第1封止部4Aに含まれる熱可塑性樹脂と、第2封止部4Bに含まれる熱可塑性樹脂とが混合され、第1封止部4Aの表面に形成された酸化皮膜のうち破れないで残った部分と、第2封止部4Bの表面に形成された酸化皮膜のうち破れないで残った部分とが積層されていると考えられる。こうして、第1封止部4Aと第2封止部4Bとは混合層20を介して接着されることとなる。
 このとき、第1封止部4A及び第2封止部4Bの加圧は通常、1~50MPaで行い、好ましくは2~30MPa、より好ましくは3~20MPaで行う。
 また第1封止部4A及び第2封止部4Bを溶融させるときの温度は、第1封止部4A及び第2封止部4Bを形成する熱可塑性樹脂の融点以上であればよい。上記温度が熱可塑性樹脂の融点未満では、第1封止部4A及び第2封止部4Bを形成する熱可塑性樹脂が溶融しないため、第1封止部4A及び第2封止部4B同士を接着させて封止部4を形成させることができなくなる。
 但し、第1封止部4A及び第2封止部4Bを溶融させるときの温度は、(熱可塑性樹脂の融点+200℃)以下であることが好ましい。上記温度が(熱可塑性樹脂の融点+200℃)を超えると、第1封止部4A及び第2封止部4Bに含まれる熱可塑性樹脂が熱によって分解するおそれがある。
 こうして色素増感型太陽電池100が得られ、色素増感型太陽電池100の製造が完了する。
 上述した色素増感型太陽電池100の製造方法によれば、第1封止部4A及び第2封止部4Bが、電解質層3を形成する前に形成される。このため、第1封止部4Aを作用極1の第1環状部位C1に形成する際、その第1環状部位C1に電解質中の揮発成分が付着しておらず、その表面の濡れ性が低下していない。従って、熱可塑性樹脂は第1環状部位C1に強固に接着され、第1封止部4Aが第1環状部位C1に強固に固定される。また第2封止部4Bを触媒膜10の第2環状部位C2に形成する際にも、触媒膜10の表面上に電解質中の揮発成分が付着しておらず、その表面の濡れ性が低下していない。従って、熱可塑性樹脂は触媒膜10の第2環状部位C2に強固に接着され、第2封止部4Bが触媒膜10の第2環状部位C2に強固に固定される。
 一方、封止部4は電解質層3を形成する後に形成される。このため、第1封止部4A及び第2封止部4Bを溶融させることに伴い、電解質層3の一部が蒸発し、第1封止部4Aと第2封止部4Bとの間の濡れ性が低下する。また、電解質層形成工程中に電解質が第1封止部4Aおよび第2封止部4B上に付着し、第1封止部4Aと第2封止部4Bとの間の濡れ性が低下する場合がある。
 しかし、このとき、第1封止部4A及び第2封止部4Bがともに熱可塑性樹脂で構成されるため、第1封止部4A及び第2封止部4Bを接着させる場合、熱可塑性樹脂同士を接着させることになる。このため、第1封止部4Aと第2封止部4Bとは、熱可塑性樹脂と作用極1又は対極2とを接着させる場合に比べて互いに接着しやすい。また第1封止部4A及び第2封止部4Bに対しては両者の接着に際して加圧も行われる。このため、第1封止部4Aと第2封止部4Bに電解質が付着した場合でも、第1封止部4A及び第2封止部4Bの熱可塑性樹脂の流動によって、付着した電解質を押しのけて排除し、第1封止部4Aの溶融熱可塑性樹脂と第2封止部4Bの溶融熱可塑性樹脂とが相溶し、第1封止部4Aと第2封止部4Bとは強固に接着される。また、第1封止部4Aと第2封止部4Bとが、それらの間に、第1封止部4Aに含まれる樹脂とその樹脂の酸化物と第2封止部4Bに含まれる樹脂とその樹脂の酸化物との混合物からなる混合層20を介して接着されることも、第1封止部4Aと第2封止部4Bとが強固に接着される理由の一つであると考えられる。なお、付着した電解質の粘度や封止樹脂との相性によって、電解質が部分的に封止樹脂内部に含包される場合があるが、第1封止部4A及び第2封止部4Bの加圧により、含包率は低下し、第1封止部4Aと第2封止部4Bの接着は強固に維持される。
 このように、色素増感型太陽電池100の製造方法によれば、得られる色素増感型太陽電池が温度差の大きい環境下に置かれ、セル空間Sが収縮したり膨張したりしても、そのとき発生する応力は、第1封止部4Aと作用極1との界面、第2封止部4Bと対極2との界面、第1封止部4Aと第2封止部4Bとの界面のそれぞれに分散される。さらに第1封止部4Aは、作用極1の第1環状部位C1に強固に固定され、第2封止部4Bが対極2の第2環状部位C2に強固に固定される。また第1封止部4A及び第2封止部4B同士も強固に接着される。従って、得られる色素増感型太陽電池100が温度差の大きい環境下に置かれ、セル空間Sが収縮したり膨張したりしても、得られる色素増感型太陽電池100においては、電解質中の揮発成分の漏洩が十分に抑制される。さらに、外部からの電解質への水分の浸入を十分に抑制できる。よって、色素増感型太陽電池100の製造方法によれば、光電変換効率の経時的な低下を十分に抑制できる色素増感型太陽電池を製造することが可能となる。
 また本実施形態では、電解質層形成工程において、電解質層3が、作用極1上であって第1封止部4Aの内側に形成されている。このため、多孔質酸化物半導体層8の多孔質の細部にまで電解質が十分に行き渡った後に封止部4が形成されることとなる。このため、多孔質酸化物半導体層8中の空気が気泡となって現れることが十分に抑制され、光電変換効率をより十分に向上させることができる。
 本実施形態においては、封止部4は減圧空間内で形成されることが好ましい。この場合、得られる色素増感型太陽電池100を大気中に取り出した際に、電解質層3を外気に対して陰圧状態とすることができる。このため、色素増感型太陽電池100は外部から大気圧を受けることになり、封止部4に対して作用極1及び対極2が押圧力を加えた状態が維持される。その結果、電解質層3中の揮発成分の漏洩をより十分に抑制することができる。
 上記の減圧空間は例えば以下のようにして形成することができる。
 即ちまず開口を有する減圧用容器内に、その開口から、第1封止部4Aを設けた作用極1を収容する。続いて、第1封止部4Aの内側に電解質を注入して電解質層3を形成する。その後、減圧用容器内に、第2封止部4Bを設けた対極2をさらに収容し、減圧用容器内で作用極1と対極2とを対向させて、第1封止部4Aと第2封止部4Bとを重ね合わせる。次に、減圧用容器の開口を例えばPETなどの樹脂からなる可撓性シートで塞ぎ、減圧用容器内に密閉空間を形成する。そして、密閉空間を、減圧用容器に形成された排気孔(図示せず)を通して、例えば真空ポンプにより減圧する。こうして減圧空間が形成される。
 このようにして減圧空間を形成すると、上記可撓性シートによって対極2が押圧される。これに伴って、作用極1と対極2とによって第1封止部4A及び第2封止部4Bが挟まれて加圧される。このとき、減圧用容器を加熱し、第1封止部4A及び第2封止部4Bを加圧しながら溶融させると、第1封止部4Aと第2封止部4Bとが接着され、封止部4が形成される。
 その際、減圧空間の圧力は通常、50Pa以上1013hPa未満の範囲であり、50~800Paとすることが好ましく、300~800Paとすることがより好ましい。
 特に、電解質に含まれる有機溶媒が揮発性溶媒である場合には、減圧空間内の圧力は700~1000Paであることが好ましく、700~800Paであることがより好ましい。圧力が上記範囲内にあると、圧力が上記範囲を外れる場合と比較して、電解質層3を第1封止部4Aの内側に形成する際、有機溶媒の揮発がより抑制されるとともに、得られる色素増感型太陽電池100において作用極1、対極2及び封止部4が互いにより強固に固定され、電解質層3の漏洩が起こりにくくなる。
 また電解質がイオン液体を含む場合には、イオン液体は揮発しないため、電解質が揮発性溶媒を含む場合のように電解質の揮発を考慮して減圧空間の圧力を高くする必要がない。このため、減圧空間内の圧力は50~700Paであってもよい。
 さらに電解質がゲル電解質を含む場合には、ゲル化させる前駆体の主成分が揮発系である場合とイオン液体系である場合とで異なり、前駆体の主成分が揮発系である場合には600~800Pa,イオン液体系である場合には50~700Paであることが好ましい。従って電解質層3がゲル電解質を含む場合には、減圧空間内の圧力は50~800Paとすることが好ましい。
 また上記のように封止部4の形成を減圧空間内で行う場合は、作用極1及び対極2のうち少なくとも一方が可撓性を有することが好ましい。
 この場合、作用極1及び対極2のいずれも可撓性を有しない場合に比べて、減圧空間から取り出されて大気圧下に配置された場合に、作用極1及び対極2のうち可撓性を有する電極が大気圧によって撓み、作用極1と対極2との間隔を狭めることが可能となる。その結果、作用極1及び対極2のいずれも可撓性を有しない場合に比べて、光電変換効率がより効率よく行われ、光電変換効率がより向上する。
 本発明は、上記実施形態に限定されるものではない。例えば上記実施形態においては、電解質層3が、作用極1に設けた第1封止部4Aの内側に形成されているが、電解質層3は、図11に示すように、対極2上であって、対極2に設けた第2封止部4Bの内側に形成されてもよい。
 さらに上記実施形態では、電解質層3を形成する前に、第1封止部4A及び第2封止部4Bが形成されているが、第2封止部4Bは、電解質層3を形成するのと同時に行われてもよく、電解質層3を形成した後に行われてもよい。但し、図11に示すように、対極2に設けた第2封止部4Bの内側に電解質層3が形成される場合には、第2封止部4Bの形成は、電解質層3を形成する前に行う必要がある。この場合、第1封止部4Aは、電解質層3を形成する前に形成される必要はなく、電解質層3と同時に形成されてもよいし、電解質層3を形成した後に形成されてもよい。このとき、色素担持工程は封止部4を形成する前に行われる。
 また上記実施形態では、作用極1に代えて、図12に示すように、透明導電膜7上に突出するように無機材料からなる突出部13Aをさらに有する作用極101を用いてもよい。この突出部13Aは第1封止部4Aが形成される部位であり、第1環状部位C1をなすことになる。
 この場合、無機材料からなる突出部13Aが、透明導電膜7上に突出するように設けられているため、封止部4とともに電解質層3を封止する機能を果たす。しかも、突出部13Aは無機材料からなるため、熱可塑性樹脂からなる第1封止部4A及び第2封止部4Bよりも高い封止能を有する。このため、作用極1が突出部13Aを有しない場合に比べて、電解質の漏洩をより十分に抑制することができる。
 また上記実施形態では、図13に示すように、触媒膜10上に突出するように、無機材料からなる突出部13Bをさらに有する対極102を用いることもできる。この突出部13Bは第2封止部4Bが形成される部位であり、第2環状部位C2をなすことになる。
 この場合、無機材料からなる突出部13Bが、触媒膜10上に突出するように設けられているため、封止部4とともに電解質層3を封止する機能を果たす。しかも、突出部13Bは、無機材料からなるため、熱可塑性樹脂からなる第1封止部4A及び第2封止部4Bよりも高い封止能を有する。このため、対極2が突出部13Bを有しない場合に比べて、電解質の漏洩をより十分に抑制することができる。
 突出部13A,13Bを構成する無機材料としては、例えば非鉛系の透明な低融点ガラスフリットなどの無機絶縁材料や、銀などの金属材料を用いることができる。特に、作用極1上に一般に形成される配線部が突出部13Aを兼ねることが好ましい。ここで、配線部は、銀などの金属材料で形成される金属配線と、金属配線を被覆する低融点ガラスフリットなどの無機絶縁材料で構成される配線保護層とで構成されるものである。
 さらに、本発明に係る色素増感型太陽電池の製造方法により得られる色素増感型太陽電池は、図14に示す色素増感型太陽電池200のような構成を有していてもよい。色素増感型太陽電池200においては、樹脂を含む樹脂封止部5が、封止部4に対して電解質層3と反対側に設けられ、封止部4と作用極1との境界線B1および封止部4と対極2との境界線B2を少なくとも覆っている。一方、封止部4においては、第1封止部4Aのうち電解質層3と反対側にある第1面14Aと、第2封止部4Bのうち電解質層3と反対側にある第2面14Bとによって溝15が形成されている。そして、樹脂封止部5が溝15に入り込んでいる。
 このように溝15に樹脂封止部5が入り込んでいるため、溝15が形成されていない場合に比べて、樹脂封止部5と封止部4との接着面積がより増大し、封止部4と樹脂封止部5との接着をより強固なものにすることができる。従って、電解質中の揮発成分の漏洩がより十分に抑制され、外部からの電解質への水分の浸入もより十分に抑制できる。よって、色素増感型太陽電池200における光電変換効率の経時的な低下をより十分に抑制することができる。なお、樹脂封止部5に含まれる樹脂としては、熱可塑性樹脂、湿気硬化性樹脂、熱硬化性樹脂、UV硬化性樹脂を用いることができる。
 特に第2電極が可撓性を有する場合には、樹脂封止部5で補強することが望ましい。この場合、加熱―冷却サイクル環境下で、第2電極が封止部4近傍で撓むことで生じる応力を緩和できるため、封止部4Bと第2電極間の接着強度を強固なまま維持でき、電解質中の揮発成分の漏洩がより十分に抑制される。
 樹脂封止部5は、可撓性を有する第2電極よりも高い剛性を有することが望ましい。この場合、樹脂封止部5の補強効果がより大きくなる。ここで、「樹脂封止部5は、可撓性を有する第2電極よりも高い剛性を有する」とは、20℃の環境下で50mm×200mmのシート状の樹脂封止部5及び第2電極のそれぞれについて、長辺側の両縁部(それぞれ幅5mm)を平板が変形しない力で保持固定し、中央(平板長辺の端から2.5cmの位置)に20g重の荷重をかけ、最大変形率を算出した場合に、第2電極よりも小さい最大変形率を有する樹脂封止部を言うものとする。従って、例えば厚さ10mmの板状の樹脂封止部(例えばエポキシ樹脂)に荷重をかけ、樹脂封止部の最大変位量が0.01mmとなった場合、樹脂封止部の最大変形率は2.5%となる。これに対し、シート状の第2電極の最大変形率が25%であるとする。この場合、樹脂封止部の最大変形率は、シート状の第2電極の最大変形率よりも小さい。従って、樹脂封止部は、可撓性電極よりも高い剛性を有することになる。
 以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 (実施例1)
 はじめに、10cm×10cm×4mmのFTO基板を準備した。続いて、FTO基板の上に、ドクターブレード法によって酸化チタンペースト(Solaronix社製、Ti nanoixide T/sp)を、その厚さが10μmとなるように塗布した後、熱風循環タイプのオーブンに入れて500℃で3時間焼成し、FTO基板上に多孔質酸化物半導体層を形成し、5cm×5cmの作用極を得た。
 次に、この作用極を、光増感色素であるN719色素を0.2mM溶かした脱水エタノール液中に一昼夜浸漬して作用極に光増感色素を担持させた。
 一方、6cm×6cm×2mmのホウケイ酸ガラスにSPD法を用いてFTO膜を形成して得たFTOガラスからなる対極基板を作用極同様に準備した。そして、対極基板上に、スパッタリング法により、厚さ10nmの白金触媒膜を形成し、対極を得た。
 こうして作用極及び対極を準備した。
 次に、アイオノマーであるハイミラン(商品名、三井・デュポンポリケミカル社製、融点:98℃)からなる6cm×6cm×100μmのシートの中央に、5cm×5cm×100μmの開口を形成した四角環状の樹脂シートを準備した。そして、この樹脂シートを、作用極の多孔質酸化物半導体層を包囲する環状の部位に配置した。この樹脂シートを180℃で5分間加熱し溶融させることによって環状部位に接着し、FTO基板上における環状部位に第1封止部を形成した。
 一方、対極の白金触媒膜上に、上記と同一の樹脂シートを準備した。そして、この樹脂シートを対極の白金触媒膜上における環状の部位に配置した。そして、この樹脂シートを180℃で5分間加熱し溶融させることによって環状部位に接着し、対極の白金触媒膜上における環状部位に第2封止部を形成した。
 次いで、第1封止部を設けた作用極を、FTO基板の多孔質酸化物半導体層側の表面が水平になるように配置し、第1封止部の内側に、メトキシアセトニトリルからなる揮発性溶媒を主溶媒とし、ヨウ化リチウムを0.1M、ヨウ素を0.05M、4-tert-ブチルピリジンを0.5M含む揮発系電解質を注入し、電解質層を形成した。
 次に、第2封止部を設けた対極を、作用極に対向させ、大気圧下で、第1封止部と第2封止部とを重ね合わせた。そして、大気圧下で、封止部と同じ大きさの真鍮製の枠を加熱し、前記真鍮製の枠を対極の第2封止部を設けた反対側に配置し、プレス機を用いて、5MPaで第1封止部及び第2封止部を加圧しながら148℃で加熱して溶融させて封止部を形成した。こうして色素増感型太陽電池を得た。
 (実施例2)
 第1封止部および第2封止部を構成する熱可塑性樹脂を、アイオノマーであるハイミランから、エチレン-メタクリル酸共重合体であるニュクレル(三井・デュポンポリケミカル社製、融点:98℃)に変更したこと以外は実施例1と同様にして色素増感型太陽電池を作製した。
 (実施例3)
 第1封止部および第2封止部を構成する熱可塑性樹脂を、アイオノマーであるハイミランから、エチレン-ビニルアルコール共重合体であるエバール(商品名、クラレ社製、融点:165℃)に変更し、第1封止部と第2封止部とを接着させて封止部を形成するときの温度(以下、「封止部形成時の温度」と呼ぶ)を148℃から215℃に変更したこと以外は実施例1と同様にして色素増感型太陽電池を作製した。
 (実施例4)
 第1封止部および第2封止部を構成する熱可塑性樹脂を、アイオノマーであるハイミランから、エチレン-ビニル酢酸無水物共重合体であるバイネル(商品名、デュポン社製、融点:127℃)に変更し、封止部形成時の温度を148℃から152℃に変更したこと以外は実施例1と同様にして色素増感型太陽電池を作製した。
 (実施例5)
 電解質を、揮発系電解質からイオン液体に変更したこと以外は実施例1と同様にして色素増感型太陽電池を作製した。このとき、イオン液体としては、ヘキシルメチルイミダゾリウムヨウ素塩を用いた。
 (実施例6)
 電解質として、実施例1の電解質にゲル化剤を添加したゲル電解質に変更したこと以外は実施例1と同様にして色素増感型太陽電池を作製した。このとき、ゲル化剤としては、粒径10~20μmのシリカ微粒子を用いた。
 (実施例7)
 封止部形成時の温度を、148℃から108℃に変更したこと以外は実施例1と同様にして色素増感型太陽電池を作製した。
 (実施例8)
 封止部形成時の温度を、148℃から118℃に変更したこと以外は実施例1と同様にして色素増感型太陽電池を作製した。
 (実施例9)
 封止部形成時の温度を、148℃から168℃に変更したこと以外は実施例1と同様にして色素増感型太陽電池を作製した。
 (実施例10)
 封止部形成時の温度を、148℃から198℃に変更したこと以外は実施例1と同様にして色素増感型太陽電池を作製した。
 (実施例11)
 封止部形成時の温度を、148℃から218℃に変更したこと以外は実施例1と同様にして色素増感型太陽電池を作製した。
 (実施例12)
 封止部形成時の温度を、148℃から228℃に変更したこと以外は実施例1と同様にして色素増感型太陽電池を作製した。
 (実施例13)
 封止部形成時の温度を、148℃から248℃に変更したこと以外は実施例1と同様にして色素増感型太陽電池を作製した。
 (実施例14)
 封止部形成時の温度を、148℃から298℃に変更したこと以外は実施例1と同様にして色素増感型太陽電池を作製した。
 (実施例15)
 封止部形成時の温度を、148℃から328℃に変更したこと以外は実施例1と同様にして色素増感型太陽電池を作製した。
 (実施例16)
 第1封止部と第2封止部とを接着させて封止部を形成するときの圧力(以下、「封止部形成時の圧力」と呼ぶ)を、5MPaから1MPaに変更したこと以外は実施例1と同様にして色素増感型太陽電池を作製した。
 (実施例17)
 封止部形成時の圧力を、5MPaから20MPaに変更したこと以外は実施例1と同様にして色素増感型太陽電池を作製した。
 (実施例18)
 封止部形成時の圧力を、5MPaから50MPaに変更したこと以外は実施例1と同様にして色素増感型太陽電池を作製した。
 (実施例19)
 実施例1と同様にして作用極を作製し、この作用極に実施例1と同様にして光増感色素を担持させた。一方、実施例1と同様にして対極を作製した。
 次に、実施例1と同様にしてFTO基板の多孔質酸化物半導体層側の表面上に第1封止部を形成するとともに、対極の白金触媒膜上に、実施例1と同様にして第2封止部を形成した。
 次いで、第1封止部を設けた作用極を、開口を有するステンレス製の減圧用容器内に収容した。そして、第1封止部の内側に、実施例1と同様の電解質を注入し、電解質層を形成した。次いで、第2封止部を設けた対極を減圧用容器内に収容した。このとき、第1封止部と第2封止部とを重ね合わせるようにした。その後、減圧用容器の開口をポリエチレンテレフタレートフィルム(PET)からなる可撓性シートで塞ぎ、減圧用容器内に密閉空間を形成した。そして、この密閉空間を、真空ポンプにより800Paに減圧し、減圧空間を得た。
 こうして得られた減圧空間において、5MPaで第1封止部及び第2封止部を加圧しながら148℃で加熱して溶融させて封止部を形成した。
 次に、真空ポンプの作動を停止し、可撓性シートを減圧用容器から取り去り、密閉空間を大気開放した。こうして色素増感型太陽電池を得た。
 (実施例20)
 封止部形成時の温度を、148℃から108℃に変更したこと以外は実施例19と同様にして色素増感型太陽電池を作製した。
 (実施例21)
 封止部形成時の温度を、148℃から118℃に変更したこと以外は実施例19と同様にして色素増感型太陽電池を作製した。
 (実施例22)
 封止部形成時の温度を、148℃から218℃に変更したこと以外は実施例19と同様にして色素増感型太陽電池を作製した。
 (実施例23)
 封止部形成時の温度を、148℃から228℃に変更したこと以外は実施例19と同様にして色素増感型太陽電池を作製した。
 (実施例24)
 作用極中のFTOガラスを、プラチナ付チタン箔に変更することにより、作用極を、可撓性を有する電極に変更したこと以外は実施例19と同様にして色素増感型太陽電池を実施例1と同様にして作製した。なお、プラチナ付チタン箔は厚み40μmのチタン箔表面にプラチナをスパッタすることで得た。
 (実施例25)
 対極中のFTOガラスを、プラチナ付チタン箔に変更したこと以外は実施例19と同様にして色素増感型太陽電池を作製した。なお、プラチナ付チタン箔は厚み40μmのチタン箔表面にプラチナをスパッタすることで得た。
 (実施例26)
 対極中のFTOガラスを、プラチナ付チタン箔に変更するとともに、電解質を、揮発系電解質からイオン液体に変更したこと以外は実施例19と同様にして色素増感型太陽電池を作製した。ここで、イオン液体としては、実施例5と同様のものを用いた。なお、プラチナ付チタン箔は厚み40μmのチタン箔表面にプラチナをスパッタすることで得た。
 (実施例27)
 対極中のFTOガラスを、プラチナ付チタン箔に変更するとともに、電解質として、実施例1の電解質にゲル化剤を添加したゲル電解質に変更したこと以外は実施例19と同様にして色素増感型太陽電池を作製した。ここで、ゲル化剤としては、実施例6と同様のものを用いた。なお、プラチナ付チタン箔は厚み40μmのチタン箔表面にプラチナをスパッタすることで得た。
 (比較例1)
 対極に第2封止部を形成しなかったこと以外は実施例1と同様にして色素増感型太陽電池を作製した。
 (比較例2)
 対極に第2封止部を形成しなかったこと以外は実施例2と同様にして色素増感型太陽電池を作製した。
 (比較例3)
 対極に第2封止部を形成しなかったこと以外は実施例3と同様にして色素増感型太陽電池を作製した。
 (比較例4)
 対極に第2封止部を形成しなかったこと以外は実施例4と同様にして色素増感型太陽電池を作製した。
 (比較例5)
 対極に第2封止部を形成しなかったこと以外は実施例5と同様にして色素増感型太陽電池を作製した。
 (比較例6)
 対極に第2封止部を形成しなかったこと以外は実施例6と同様にして色素増感型太陽電池を作製した。
 (比較例7)
 作用極に第1封止部を形成しなかったこと以外は実施例1と同様にして色素増感型太陽電池を作製した。
 (比較例8)
 第1封止部及び第2封止部を加熱するに際し、熱可塑性樹脂の融点より10℃低い88℃で加熱したこと以外は実施例1と同様にして色素増感型太陽電池を作製した。
 [第1封止部と第2封止部との界面観察結果]
 実施例1~27及び比較例8で得られた色素増感型太陽電池について、平和テクニカ製湿式カッター32F-300で、10mm×10mm×厚み約6mm程度の封止部を含む小片に切断した。このとき、封止部が、色素増感型太陽電池の厚さ方向に沿って切断されるようにし、封止部の切断面を露出させた。その後、この小片を、厚みが2mm以下となるように作用極側から研磨した。その後に、クロスセクションポリッシャ(日本電子社製)を用いて、露出した封止部の切断面を研磨し、その研磨面をSEMで観察した。その結果、実施例1~27の色素増感型太陽電池においてはいずれも、切断面のうち第1封止部と第2封止部との間に層が確認された。またこの層について、IR分析(赤外線分光分析)を行った結果、第1封止部と第2封止部の酸化に由来するピークが確認された。従って、第1封止部と第2封止部との間に観測される層は、第1封止部に含まれる熱可塑性樹脂とその熱可塑性樹脂の酸化物と第2封止部に含まれる熱可塑性樹脂とその熱可塑性樹脂の酸化物との混合物からなる混合層であると考えられる。
 これに対し、比較例8の色素増感型太陽電池について、実施例1と同様にして切断面をSEMで観察したところ、切断面のうち第1封止部と第2封止部との間の部分には第1封止部と第2封止部の酸化に由来するピークが確認されず、酸化皮膜が確認されなかった。
 [特性評価]
 (1)初期変換効率
 実施例1~27及び比較例1~8で得られた色素増感型太陽電池について、初期変換効率(η)を測定した。結果を表1~3に示す。なお、表1~3には、実施例1~27及び比較例1~8の色素増感型太陽電池についての測定で得られた初期光電変換効率(η)の値を100としたときの相対値を示してある。

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 (2)耐久性試験
 耐久性試験は、色素増感型太陽電池の光電変換効率の経時的な低下率、即ち耐久性を調べるものである。耐久性試験は、具体的には以下のようにして行った。即ちまず実施例1~27及び比較例1~8で得られた色素増感型太陽電池を、その製造直後から85℃、85RH%の環境下で1000時間静置して光電変換効率(η)を測定した。そして、こうして測定された光電変換効率(η)と、上記のようにして測定された初期変換効率(η)とに基づいて光電変換効率の低下率を下記式:
光電変換効率の低下率=100×(η-η)/η
に基づいて算出した。結果を表1~3に示す。なお、表1~3において、光電変換効率の低下率については、その値に応じて以下のように表示することとした。
10%未満・・・・・・・・・・・・・・・・・・A
10%以上15%未満・・・・・・・・・・・・・B
15%以上20%未満・・・・・・・・・・・・・C
500h経過までに50%以下となったもの・・・D
と表示することとした。
 表1~3に示す結果より、実施例1~18の色素増感型太陽電池は、比較例1~8の色素増感型太陽電池に比べて、耐久性の点で特に優れていることが分かった。よって、本発明の色素増感型太陽電池の製造方法によれば、光電変換効率の経時的な低下を十分に抑制できる色素増感型太陽電池を製造可能であることが確認された。
 なお、実施例1,5,6,7,8,11,12と実施例19,26,27,20~23との比較から、封止部の形成を減圧空間内で行うことにより、耐久性がより向上することが分かった。また実施例19と実施例24,25との比較から、作用極又は対極を、可撓性を有するもので構成することで、初期変換効率がより向上することも分かった。
 1,101…作用極(第1電極)、2,102…対極(第2電極)、3…電解質、4A…第1封止部、4B…第2封止部、4…封止部、13A,13B…突出部、100、200…色素増感型太陽電池、C1…第1環状部位、C2…第2環状部位、S…セル空間。
 

Claims (9)

  1.  多孔質酸化物半導体層を有する第1電極、及び、第2電極を準備する準備工程と、
     前記第1電極のうち前記多孔質酸化物半導体層を包囲する第1環状部位に熱可塑性樹脂を溶融させて接着させることにより第1封止部を形成する第1封止部形成工程と、
     前記第2電極における第2環状部位に熱可塑性樹脂を溶融させて接着させることにより第2封止部を形成する第2封止部形成工程と、
     前記多孔質酸化物半導体層に光増感色素を担持させる色素担持工程と、
     前記第1電極上であって前記第1封止部の内側、又は前記第2電極上であって前記第2封止部の内側に電解質を配置して電解質層を形成する電解質層形成工程と、
     前記第1封止部及び前記第2封止部を接着させて封止部を形成する封止部形成工程とを含み、
     前記電解質層形成工程は、前記第1封止部形成工程および前記第2封止部形成工程の少なくとも一方の後に行われ、
     前記封止部形成工程は、前記色素担持工程および前記電解質層形成工程の後に行われ、
     前記封止部形成工程において、前記封止部は、前記第1封止部及び前記第2封止部を加圧しながら溶融させることによって形成されること、
    を特徴とする色素増感型太陽電池の製造方法。
  2.  前記封止部形成工程が減圧空間内で行われる、請求項1に記載の色素増感型太陽電池の製造方法。
  3.  前記第1電極及び前記第2電極のうち少なくとも一方が可撓性を有する、請求項2に記載の色素増感型太陽電池の製造方法。
  4.  前記電解質層形成工程において、前記電解質層は、前記電解質を、前記第1電極上であって前記第1封止部の内側、又は前記第2電極上であって前記第2封止部の内側に注入し、前記第1封止部又は前記第2封止部を超えて前記第1封止部又は前記第2封止部の外側に溢れさせることにより形成される、請求項1~3のいずれか一項に記載の色素増感型太陽電池の製造方法。
  5.  前記電解質層形成工程においては、前記電解質層が、前記第1電極上であって前記第1封止部の内側に形成される、請求項1~4のいずれか一項に記載の色素増感型太陽電池の製造方法。
  6.  前記第1電極は、
     前記多孔質酸化物半導体層と、
     前記多孔質酸化物半導体層が形成される導電膜と、
     前記導電膜上に突出するように設けられ、前記第1環状部位をなす突出部とを有し、
     前記突出部が無機材料からなる、
    請求項1~5のいずれか一項に記載の色素増感型太陽電池の製造方法。
  7.  前記第2電極は、
     対極基板と、
     前記対極基板上に設けられる触媒膜と、
     前記触媒膜上に突出するように設けられ、前記第2環状部位をなす突出部とを有し、
     前記突出部が無機材料からなる、
    請求項1~6のいずれか一項に記載の色素増感型太陽電池の製造方法。
  8.  前記第1封止部及び前記第2封止部がいずれも、酸変性ポリエチレン、ポリビニルアルコール及びエチレン-ビニルアルコール共重合体からなる群より選ばれる少なくとも1種類を含む、請求項1~7のいずれか一項に記載の色素増感型太陽電池の製造方法。
  9.  前記第1封止部及び前記第2封止部がいずれも、酸変性ポリエチレンを含む、請求項1~7のいずれか一項に記載の色素増感型太陽電池の製造方法。
     
     
PCT/JP2010/057395 2009-07-28 2010-04-26 色素増感型太陽電池の製造方法 WO2011013423A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2010276983A AU2010276983B2 (en) 2009-07-28 2010-04-26 Method for manufacturing dye-sensitized solar cell
JP2011503686A JP5241912B2 (ja) 2009-07-28 2010-04-26 色素増感型太陽電池の製造方法
EP10804171.6A EP2461419B1 (en) 2009-07-28 2010-04-26 Method for manufacturing dye-sensitized solar cell
CN201080001556.2A CN102084536B (zh) 2009-07-28 2010-04-26 色素增感型太阳能电池的制造方法
US13/116,629 US8293562B2 (en) 2009-07-28 2011-05-26 Dye-sensitized solar cell manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-175938 2009-07-28
JP2009175938A JP4504456B1 (ja) 2009-07-28 2009-07-28 色素増感型太陽電池の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/116,629 Continuation US8293562B2 (en) 2009-07-28 2011-05-26 Dye-sensitized solar cell manufacturing method

Publications (1)

Publication Number Publication Date
WO2011013423A1 true WO2011013423A1 (ja) 2011-02-03

Family

ID=42575714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057395 WO2011013423A1 (ja) 2009-07-28 2010-04-26 色素増感型太陽電池の製造方法

Country Status (8)

Country Link
US (1) US8293562B2 (ja)
EP (1) EP2461419B1 (ja)
JP (2) JP4504456B1 (ja)
KR (1) KR20110037938A (ja)
CN (1) CN102084536B (ja)
AU (1) AU2010276983B2 (ja)
TW (1) TW201115811A (ja)
WO (1) WO2011013423A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027820A1 (ja) * 2011-08-24 2013-02-28 株式会社フジクラ 電子機器
WO2013031933A1 (ja) * 2011-08-31 2013-03-07 株式会社フジクラ 光電変換素子
CN103262337A (zh) * 2011-03-02 2013-08-21 株式会社藤仓 色素敏化太阳能电池模块
JP5296904B1 (ja) * 2012-05-22 2013-09-25 株式会社フジクラ 色素増感太陽電池及びその製造方法
JP5380619B1 (ja) * 2013-03-30 2014-01-08 株式会社フジクラ 色素増感太陽電池素子
JP2014022180A (ja) * 2012-07-18 2014-02-03 Fujikura Ltd 色素増感太陽電池およびその製造方法
EP2728662A4 (en) * 2011-06-30 2015-07-22 Fujikura Ltd Dye-sensitized solar cell and production method therefor
JP5882507B1 (ja) * 2015-01-19 2016-03-09 株式会社フジクラ 光電変換素子
JP2016100482A (ja) * 2014-11-21 2016-05-30 積水化学工業株式会社 太陽電池の製造方法
TWI726562B (zh) * 2019-12-31 2021-05-01 財團法人工業技術研究院 太陽能電池模組

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101085475B1 (ko) * 2009-12-21 2011-11-21 삼성전기주식회사 태양전지모듈 및 그 제조방법
WO2012033049A1 (ja) * 2010-09-06 2012-03-15 シャープ株式会社 色素増感太陽電池および色素増感太陽電池モジュール
US20140261672A1 (en) * 2013-03-14 2014-09-18 Miami University Titanium metal as electrode for organic solar cells, flexible organic solar cell on ti foil and method of manufacture
WO2014162640A1 (ja) * 2013-03-30 2014-10-09 株式会社フジクラ 色素増感太陽電池素子
JPWO2016017776A1 (ja) * 2014-07-30 2017-06-01 積水化学工業株式会社 太陽電池の製造方法
JP5905619B1 (ja) * 2015-03-31 2016-04-20 株式会社フジクラ 色素増感光電変換素子の製造方法
KR102618397B1 (ko) 2019-11-28 2023-12-27 가부시키가이샤 리코 광전 변환 소자, 광전 변환 모듈, 전자 기기, 및 전원 모듈
US11695089B2 (en) 2019-12-31 2023-07-04 Industrial Technology Research Institute Solar cell modules

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319112A (ja) * 2003-04-11 2004-11-11 Toto Ltd 光電変換素子およびその製造方法
JP2007220608A (ja) 2006-02-20 2007-08-30 Dainippon Printing Co Ltd 色素増感型太陽電池の製造方法および色素増感型太陽電池
JP2008115057A (ja) * 2006-11-07 2008-05-22 Electric Power Dev Co Ltd 封止材料、ガラスパネルの製造方法および色素増感太陽電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4171626B2 (ja) * 2002-09-03 2008-10-22 富士通株式会社 液晶表示装置
JP4601286B2 (ja) * 2003-11-07 2010-12-22 大日本印刷株式会社 多孔質半導体電極の形成方法及び色素増感型太陽電池用電極基板の製造方法
WO2007046499A1 (ja) * 2005-10-21 2007-04-26 Nippon Kayaku Kabushiki Kaisha 色素増感型光電変換素子及びその製造法
JP5028804B2 (ja) * 2006-01-19 2012-09-19 ソニー株式会社 機能デバイス
JP2007294696A (ja) * 2006-04-25 2007-11-08 Sony Chemical & Information Device Corp 電気化学セルの製造方法
WO2009144949A1 (ja) * 2008-05-30 2009-12-03 株式会社フジクラ 光電変換素子モジュール、及び、光電変換素子モジュールの製造方法
US8490343B2 (en) * 2009-09-09 2013-07-23 Saint-Gobain Performance Plastics Corporation Attachment system of photovoltaic cells to fluoropolymer structural membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319112A (ja) * 2003-04-11 2004-11-11 Toto Ltd 光電変換素子およびその製造方法
JP2007220608A (ja) 2006-02-20 2007-08-30 Dainippon Printing Co Ltd 色素増感型太陽電池の製造方法および色素増感型太陽電池
JP2008115057A (ja) * 2006-11-07 2008-05-22 Electric Power Dev Co Ltd 封止材料、ガラスパネルの製造方法および色素増感太陽電池

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103262337A (zh) * 2011-03-02 2013-08-21 株式会社藤仓 色素敏化太阳能电池模块
US9536676B2 (en) 2011-03-02 2017-01-03 Fujikura Ltd. Dye-sensitized solar cell module
US20140000678A1 (en) * 2011-03-02 2014-01-02 Fujikura Ltd. Dye-sensitized solar cell module
EP2683020A1 (en) * 2011-03-02 2014-01-08 Fujikura Ltd. Dye-sensitized solar cell module
EP2683020A4 (en) * 2011-03-02 2014-09-03 Fujikura Ltd SOLAR CELL MODULE SENSITIZED BY DYE
US9536677B2 (en) 2011-06-30 2017-01-03 Fujikura Ltd. Dye-sensitized solar cell and method for manufacturing same
EP2728662A4 (en) * 2011-06-30 2015-07-22 Fujikura Ltd Dye-sensitized solar cell and production method therefor
JPWO2013027820A1 (ja) * 2011-08-24 2015-03-19 株式会社フジクラ 電子機器
WO2013027820A1 (ja) * 2011-08-24 2013-02-28 株式会社フジクラ 電子機器
JPWO2013031933A1 (ja) * 2011-08-31 2015-03-23 株式会社フジクラ 光電変換素子
WO2013031933A1 (ja) * 2011-08-31 2013-03-07 株式会社フジクラ 光電変換素子
US10049823B2 (en) 2011-08-31 2018-08-14 Fujikura Ltd. Photoelectric conversion element
JPWO2013175823A1 (ja) * 2012-05-22 2016-01-12 株式会社フジクラ 色素増感太陽電池及びその製造方法
US9355788B2 (en) 2012-05-22 2016-05-31 Fujikura Ltd. Dye-sensitized solar cell and method of manufacturing the same
JP5296904B1 (ja) * 2012-05-22 2013-09-25 株式会社フジクラ 色素増感太陽電池及びその製造方法
JP2014022180A (ja) * 2012-07-18 2014-02-03 Fujikura Ltd 色素増感太陽電池およびその製造方法
JP5380619B1 (ja) * 2013-03-30 2014-01-08 株式会社フジクラ 色素増感太陽電池素子
JP2016100482A (ja) * 2014-11-21 2016-05-30 積水化学工業株式会社 太陽電池の製造方法
JP5882507B1 (ja) * 2015-01-19 2016-03-09 株式会社フジクラ 光電変換素子
WO2016117546A1 (ja) * 2015-01-19 2016-07-28 株式会社フジクラ 光電変換素子
TWI726562B (zh) * 2019-12-31 2021-05-01 財團法人工業技術研究院 太陽能電池模組

Also Published As

Publication number Publication date
TW201115811A (en) 2011-05-01
US20110223704A1 (en) 2011-09-15
JPWO2011013423A1 (ja) 2013-01-07
CN102084536B (zh) 2014-08-06
JP4504456B1 (ja) 2010-07-14
EP2461419A4 (en) 2013-07-31
US8293562B2 (en) 2012-10-23
CN102084536A (zh) 2011-06-01
JP2014063565A (ja) 2014-04-10
EP2461419B1 (en) 2018-05-30
AU2010276983A1 (en) 2011-02-03
EP2461419A1 (en) 2012-06-06
AU2010276983B2 (en) 2012-07-12
JP5241912B2 (ja) 2013-07-17
KR20110037938A (ko) 2011-04-13

Similar Documents

Publication Publication Date Title
JP5241912B2 (ja) 色素増感型太陽電池の製造方法
JP4504457B1 (ja) 色素増感太陽電池の封止用積層シート及びこれを用いた色素増感太陽電池の製造方法
JP5486996B2 (ja) 色素増感太陽電池モジュール及びその製造方法
US10020120B2 (en) Electronic device and manufacturing method for same
JP4759646B1 (ja) 電子機器及びその製造方法
JP4759647B1 (ja) 電子機器及びその製造方法
JP4793953B1 (ja) 色素増感太陽電池
JP4793954B1 (ja) 色素増感太陽電池
JP5465446B2 (ja) 光電変換素子
JP5422225B2 (ja) 光電変換素子
WO2012046796A1 (ja) 色素増感太陽電池
JP5785618B2 (ja) 電子機器
JP2012186032A (ja) 色素増感太陽電池
JP5160051B2 (ja) 光電変換素子
JP2013004178A (ja) 色素増感太陽電池及びその製造方法
JP6371194B2 (ja) 色素増感光電変換素子の製造方法
JP5689773B2 (ja) 光電変換素子用電極、光電変換素子、及び、光電変換素子用電極の製造に用いられる銀ペースト
US9536677B2 (en) Dye-sensitized solar cell and method for manufacturing same
JP5905619B1 (ja) 色素増感光電変換素子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001556.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20107025902

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011503686

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804171

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010276983

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010804171

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010276983

Country of ref document: AU

Date of ref document: 20100426

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE