WO2011007695A1 - 電気車の推進制御装置 - Google Patents

電気車の推進制御装置 Download PDF

Info

Publication number
WO2011007695A1
WO2011007695A1 PCT/JP2010/061415 JP2010061415W WO2011007695A1 WO 2011007695 A1 WO2011007695 A1 WO 2011007695A1 JP 2010061415 W JP2010061415 W JP 2010061415W WO 2011007695 A1 WO2011007695 A1 WO 2011007695A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
power
inverter
regenerative
current command
Prior art date
Application number
PCT/JP2010/061415
Other languages
English (en)
French (fr)
Inventor
英俊 北中
俊明 竹岡
啓太 畠中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020117031673A priority Critical patent/KR101363701B1/ko
Priority to RU2012105312/11A priority patent/RU2492071C1/ru
Priority to CN201080031578.3A priority patent/CN102470761B/zh
Priority to JP2011514953A priority patent/JP5111662B2/ja
Priority to US13/375,702 priority patent/US9221346B2/en
Priority to EP10799754.6A priority patent/EP2455252B1/en
Priority to CA2768235A priority patent/CA2768235C/en
Publication of WO2011007695A1 publication Critical patent/WO2011007695A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/40Adaptation of control equipment on vehicle for remote actuation from a stationary place
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a propulsion control device for an electric vehicle using a power storage device such as a secondary battery or an electric double layer capacitor.
  • an electric vehicle is configured to take in electric power from an overhead line with a current collector and drive the electric motor with a power conversion device such as an inverter device using the taken-in electric power.
  • a so-called regenerative brake is used in which the electric motor is regeneratively operated to obtain a braking force.
  • the regenerative power generated at this time is supplied to and consumed by the load of another vehicle existing near the own vehicle via an overhead wire, a third rail, or the like.
  • the regenerative power generated by the vehicle may not be consumed sufficiently.
  • the regenerative electric power of the own vehicle is larger than the electric power consumed by other vehicles, the overhead line voltage rises, and there is a risk of damaging various devices connected to the overhead line.
  • the inverter device mounted on the electric vehicle has a voltage detector that detects an overhead wire voltage or the like (an overhead wire voltage or a filter capacitor voltage on the input side of the inverter device corresponding to the overhead wire voltage).
  • an overhead wire voltage or the like an overhead wire voltage or a filter capacitor voltage on the input side of the inverter device corresponding to the overhead wire voltage.
  • the regenerative braking force is controlled to suppress the generation of regenerative power, and the overhead line voltage or the like is operated so as not to rise above a specified value.
  • the braking force of the vehicle that is insufficient due to the regenerative braking force being suppressed is supplemented by the mechanical brake that presses the brake shoe against the wheels and the brake disc, and the brake energy (kinetic energy) of the vehicle becomes heat and becomes atmospheric. Escaped to. In such a case, there is a problem that the brake energy that would otherwise have been available with the load of another vehicle is wasted and the brake shoes of the mechanical brake are worn.
  • This power storage system includes a converter device that performs DC-DC conversion and a power storage device that includes a power storage device such as a secondary battery or an electric double layer capacitor.
  • the charge / discharge method for the power storage device is generally configured to control the charge / discharge current to the power storage device via the converter device.
  • Patent Document 1 As an example of such an electric power storage system, for example, the conventional technique disclosed in Patent Document 1 below is described in which an electric double layer capacitor is mounted on a vehicle and there is no regenerative load near the own vehicle. Using the phenomenon that the overhead line voltage and the filter capacitor voltage rise during braking, when the detected value of the filter capacitor voltage exceeds the specified value, an absorption current command to the power storage device is generated according to the excess amount, and the converter Disclosed is a technology that recycles regenerative energy by collecting and storing excess regenerative power in the electric double-layer capacitor by controlling the device and discharging it in the next powering operation. Has been.
  • Patent Document 1 is configured to control the charging current to the power storage device based on the detected value of the overhead line voltage and the filter capacitor voltage input to the control unit of the converter device. In this case, there are the following problems.
  • the voltage detector for detecting the overhead line voltage or the filter capacitor voltage is provided in each of the inverter device and the converter device, the overhead line voltage or the filter capacitor voltage detected by the inverter device and the converter are detected by the detection error of each voltage detector.
  • An error occurs in the overhead line voltage or the filter capacitor voltage detected by the apparatus. For example, in a voltage detector that can detect a general 1500V as an overhead voltage of an electric railway, since a detection tolerance is about 3%, a detection error of about ⁇ 45V occurs.
  • the converter device even when the voltage detector provided in the inverter device determines that the increase in the overhead wire voltage or the filter capacitor voltage has exceeded a predetermined value and performs control to suppress the regenerative braking force, the converter device In some cases, the overhead line voltage or the filter capacitor voltage detected by the voltage detector provided in the circuit does not reach a predetermined value. Therefore, the converter device does not collect the regenerative power to the power storage device, and as a result, the state where the regenerative braking force is insufficient continues and the mechanical brake operates.
  • the present invention has been made in view of the above, and in an electric vehicle propulsion control device to which a power storage device such as a secondary battery or an electric double layer capacitor is applied, to a power storage device for regenerative power generated during regenerative braking. Can be efficiently recovered, and even when there are multiple inverter devices, converter devices, and power storage devices during train formation, variations in the operating state of the converter device and the power storage device can be suppressed.
  • An object is to obtain a propulsion control device for an electric vehicle.
  • the present invention provides an inverter device connected to a DC power source, an electric motor connected to an output of the inverter device, and a converter connected to an input of the inverter device.
  • an electric vehicle having a power storage device connected to the output of the converter device and configured to discharge a part of the power running power or regenerative power of the motor from the power storage device or charge the power storage device
  • the converter device is based on a regenerative state signal as a signal indicating the regenerative power or a regenerative torque equivalent to this, and a regenerative current suppression state.
  • a charge current command value that is a command value of a current for charging the battery, and based on the charge current command value, a charge / discharge current of the converter device It had a converter control unit for generating and controlling the decree value, characterized by.
  • the converter device based on the regenerative torque suppression amount indicating the state of regenerative torque or regenerative power of the motor, the converter device generates a charge current command value for charging the power storage device, and based on the charge current command value.
  • the converter control unit that generates and controls the charge / discharge current command value of the converter device is provided.
  • the regenerative power generated during regenerative braking can be efficiently recovered to the power storage device, and the converter device and power storage can be performed even when multiple inverter devices, converter devices, and power storage devices exist during train formation. There is an effect that variation in the operating state of the apparatus can be suppressed.
  • FIG. 1 is a diagram illustrating a configuration example of a propulsion control device for an electric vehicle according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of the converter device according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a configuration example of the inverter device according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a configuration example of the inverter control unit according to the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a relationship example of each signal in the first embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a configuration example of the converter control unit according to the first embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a configuration example of a propulsion control device for an electric vehicle according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of the converter device according to the first embodiment of the present invention.
  • FIG. 7 is a diagram for explaining the power flow during regenerative braking in the first embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a configuration example of a charging current command generation unit according to Embodiment 2 of the present invention.
  • FIG. 9 is a diagram illustrating a configuration example of a charging current command generation unit according to Embodiment 3 of the present invention.
  • FIG. 10 is a diagram illustrating a configuration example of an electric vehicle including a plurality of inverter devices and converter devices according to Embodiment 4 of the present invention.
  • FIG. 11 is a diagram illustrating a configuration example of a converter control unit according to Embodiment 4 of the present invention.
  • FIG. 1 is a configuration diagram of a propulsion control apparatus for an electric vehicle according to Embodiment 1 of the present invention.
  • electric power from a substation (not shown) is transmitted from an overhead line 1 through a current collector 2 to a positive terminal P of an inverter device (hereinafter simply referred to as “inverter”) 50, a converter device (hereinafter simply referred to as “inverter”). Input to the positive terminal P1 of the "converter”) 40.
  • the negative current from the inverter 50 and the converter 40 is connected to the rail 4 via the wheels 3 through the terminals N and N1, and returns to the negative side of a substation (not shown).
  • the converter 40 is provided with DC output terminals P2 and N2, and a power storage device 60 is connected to the DC output terminals P2 and N2.
  • the power storage device 60 is configured to obtain a desired voltage and capacity by connecting a plurality of power storage devices such as secondary batteries and electric double layer capacitors in series and parallel, and the specific configuration is publicly known. Because there is, detailed explanation is omitted.
  • the inverter 50 is provided with AC output terminals U, V, W, and an electric motor 71 is connected to the AC output terminals U, V, W.
  • the electric motor 71 is an AC electric motor, and is preferably a three-phase induction motor or a synchronous motor.
  • the wheel 3 is driven by the electric motor 71 to run the electric car.
  • a master controller 10 provided in an electric vehicle driver's cab is a device in which an electric vehicle operator sets a command to an inverter device or the like in order to adjust acceleration / deceleration of the vehicle.
  • the operation command signal MC from the controller 10 is configured to be input to the inverter 50.
  • the drive command signal MC includes a command relating to power running acceleration of the electric vehicle, on / off of the brake, and its strength, and the inverter 50 controls the torque of the electric motor 71 based on the drive command signal MC.
  • the control signal VC is output from the inverter 50 to the converter 40.
  • the control signal VC is an amount indicating a regenerative torque suppression state or a regenerative power suppression state, and is a regenerative torque suppression amount (hereinafter simply referred to as “a suppression amount”) VDTELM, an electric vehicle speed VEL (inverter). 50, the rotational frequency of the motor 71, etc.), a power running regenerative state signal (inverter state signal) PBC indicating whether the inverter 50 is in a power running control state or a regenerative braking state, an input current ISV of the inverter 50, and This signal includes the overhead line voltage ESV of the inverter 50. Details of the control signal VC and its function will be described later.
  • FIG. 2 is a diagram showing a configuration example of the converter 40 in the first embodiment of the present invention.
  • the electric power from the current collector 2 is input to the input terminals P1 and N1.
  • a reactor 41 is connected to the input terminal P1, and a filter capacitor (hereinafter simply referred to as “capacitor”) 42 is connected to the subsequent stage of the reactor 41.
  • capacitor hereinafter simply referred to as “capacitor”
  • the LC filter circuit constituted by the reactor 41 and the capacitor 42 suppresses the outflow of noise current generated by the switching operation of a switching element, which will be described later, to the overhead line 1 and includes ripples included in the voltage of the overhead line 1 (overhead voltage).
  • the component is smoothed to smooth the voltage across the capacitor 42.
  • the voltage across the capacitor 42 is detected by the voltage detector 43b and input to the converter controller 46 as a capacitor voltage detection value (hereinafter simply referred to as “voltage detection value”) EFCD.
  • a converter circuit 44 is connected to both ends of the capacitor 42.
  • the converter circuit 44 includes switching elements 44H and 44L, and each switching element is on / off controlled (switching control) by an on / off signal DGC from the converter control unit 46.
  • the converter circuit 44 is a so-called bidirectional step-down chopper circuit, and has a current control function for adjusting the output current as desired, as well as a step-down function for stepping down and outputting the voltage EFCD by switching control of the switching elements 44H and 44L. Since its configuration and operation are known, the description thereof will be omitted.
  • the detection signals ESD, EFCD, IB, and VB from the voltage detectors 43a, 43b, and 43c and the current detector 47 are input to the converter control unit 46. Further, a control signal VC from an inverter 50 described later is input to the converter control unit 46. Details of the control signal VC will be described later.
  • the converter control unit 46 generates an on / off signal DGC to the converter circuit 44 based on these input signals.
  • FIG. 3 is a diagram illustrating a configuration example of the inverter 50 according to the first embodiment of the present invention.
  • the power from the current collector 2 is input to the input terminals P and N.
  • a current detector 57 that detects an input current and outputs it as an inverter input current ISV is disposed at the input terminal P.
  • a reactor 51 is connected to the subsequent stage of the current detector 57, and a capacitor 52 is connected to the subsequent stage of the reactor 51. Is connected.
  • the LC filter circuit constituted by the reactor 51 and the capacitor 52 suppresses the outflow of noise current generated by the switching operation of the switching element described later to the overhead line 1 and also includes a ripple component included in the voltage (overhead voltage) of the overhead line 1. To smooth the voltage across the capacitor 52.
  • the voltage across the capacitor 52 is detected by the voltage detector 53b and input to the inverter control unit 56 as the voltage detection value EFCV.
  • the voltage of the capacitor 52 is input to the inverter circuit 55.
  • the inverter circuit 55 includes switching elements 54U, 54V, 54W, 54X, 54Y, and 54Z, and each switching element is on / off controlled (switching control) by an on / off signal IGC from the inverter control unit 56.
  • the inverter circuit 55 is a voltage-type three-phase two-level inverter circuit, which converts the voltage of the capacitor 52 into an AC voltage having an arbitrary magnitude and frequency by switching control of the switching elements 54U, 54V, 54W, 54X, 54Y, and 54Z. Has a function to output. Since its configuration and operation are known, the description thereof will be omitted.
  • the outputs U, V, and W of the inverter circuit 55 are output to the electric motor 71.
  • the detected values ESV, EFCV, and ISV from the voltage detector 53a, the voltage detector 53b, and the current detector 57 are input to the inverter control unit 56. Further, an operation command signal MC is input from the master controller 10.
  • the inverter control unit 56 generates an on / off signal IGC to the inverter circuit 55 based on these input signals, and controls the torque of the electric motor 71 as desired. Further, the control signal VC is output to the converter 40. Details of the control signal VC will be described later.
  • FIG. 4 is a diagram illustrating a configuration example of the inverter control unit 56 according to the first embodiment of the present invention.
  • the operation command signal MC is input to the torque command generator 56a.
  • the torque command generator 56a generates a required regenerative torque command PTRS that serves as a regenerative brake torque command to be generated by the electric motor 71 based on a brake force command included in the operation command signal MC.
  • the voltage detection value EFCV is input to the subtractor 56b.
  • the subtractor 56b outputs a difference between the voltage detection value EFCV and the regeneration suppression start voltage setting value VDL (1800V in FIG. 4A, but may be other), and inputs the difference to the negative value cut limiter 56bb.
  • VDL regeneration suppression start voltage setting value
  • the negative value cut limiter 56bb only a positive value is input to the subsequent gain unit (amplifying circuit) 56c.
  • the gain unit 56c When the input voltage detection value EFCV exceeds the regeneration suppression start voltage setting value VDL (1800 V in FIG. 4A), the gain unit 56c amplifies the excess amount, and generates and outputs the suppression amount VDTELM. .
  • the gain unit 56c may be replaced with an arbitrary function including an integral element in addition to the proportional gain.
  • the requested regenerative torque command PTRS and the suppression amount VDTELM are input to the subtractor 56d, and the subtractor 56d takes these differences and outputs them as a regenerative torque command PTR.
  • the regenerative torque command PTR is input to the torque control unit 56e, and the torque control unit 56e turns on / off the inverter circuit 55 so that the regenerative torque generated by the motor 71 matches the regenerative torque command PTR based on the regenerative torque command PTR.
  • a signal IGC is generated.
  • a regenerative torque command PTR that serves as a regenerative torque command for the electric motor 71 can be generated by generating a suppression amount VDTELM in accordance with the degree of excess and subtracting the suppression amount VDTELM from the required regenerative torque command PTRS.
  • the regenerative brake torque of the electric motor 71 is suppressed more than the value of the required regenerative torque command PTRS, so that the regenerative power from the electric motor 71 can be suppressed, and the voltage detection value EFCV is the regenerative suppression start voltage. It is maintained near the set value VDL. An excessive increase in overhead line voltage can be suppressed.
  • the above-described suppression amount VDTELM is output to the converter 40 as the control signal VC together with other information (ISV and ESV in the figure).
  • the inverter control part 56 is a structure which also produces
  • FIG. 5 is a diagram illustrating a relationship example of each signal in the first embodiment of the present invention. Specifically, FIG. 5 shows the required regenerative torque command PTRS, the suppression amount VDTELM, the regenerative torque command PTR, the regenerative suppression power PSB, the charging power command PREF1, and the charging current command (charging current command value) IREF1. An example of the relationship is shown.
  • FIG. 5 shows the regenerative torque command PTR, the suppression amount VDTELM, the regeneration suppression power PSB, the charging power command PREF1, and the charging current command IREF1 of the electric motor 71 in order from the top.
  • Regeneration suppression power PSB, charging power command PREF1, and charging current command IREF1 will be described later.
  • the inverter control unit 56 receives the operation command signal MC including the regenerative brake start command at the time t0 in FIG. 5, and generates the regenerative torque command PTR as described above.
  • the inverter control unit 56 controls the electric motor 71 by generating an on / off signal IGC so that the electric motor 71 outputs a torque value coinciding with the regenerative torque command PTR.
  • the regenerative load of the overhead line 1 is insufficient with respect to the regenerative power of the electric motor 71, and the voltage detection value EFCV rises to indicate the state where the regenerative suppression start voltage set value VDL is exceeded.
  • the suppression amount VDTELM is generated, the regenerative torque command PTR is suppressed from the required regenerative torque command PTRS (indicated by a one-dot chain line) requested by the operation command signal MC.
  • the value is obtained by subtracting the amount VDTELM, and the torque controller 56e controls the electric motor 71 based on this value.
  • the regenerative electric power from the electric motor 71 has the voltage detection value EFCV suppressed near the regeneration suppression start voltage setting value.
  • FIG. 6 is a diagram illustrating a configuration example of the converter control unit 46 according to the first embodiment of the present invention.
  • the suppression amount VDTELM and the electric vehicle speed VEL (which may be the output frequency of the inverter 50, the rotation speed of the electric motor 71, etc.) are multiplied by a multiplier 81 to generate a charging current command as the regeneration suppression power PSB.
  • the charging current command generator 82 generates a charging current command IREF1 based on the regeneration suppression power PSB and outputs it to the selector 83.
  • the charging current command generation unit 82 includes a charging power command calculation unit 82 a and a divider 88.
  • the charging current command generation unit 82 when the regeneration suppression power PSB is zero, the charging power command PREF1 is maintained at zero. When the regeneration suppression power PSB is generated, the charging power command PREF1 is generated accordingly.
  • the divider 88 divides the charging power command PREF1 by the converter output voltage VB to convert it into a charging current command IREF1. In FIG. 6, the charging power command PREF1 is generated in proportion to the regeneration suppression power PSB, but is not limited to this.
  • the charging power command PREF1 has a characteristic that the upper limit is maintained at P2.
  • P2 is a value that considers the charge acceptance power upper limit of the power storage device built in the power storage device 60. By setting such a characteristic, the regeneration suppression power PSB is within the capability range of the power storage device. It is possible to generate the corresponding charging power command PREF1. Note that P2 may be determined based on the charge acceptance current upper limit of the power storage device.
  • FIG. 5 shows the relationship among the requested regenerative torque command PTRS, the suppression amount VDTELM, the torque command PTR, the regenerative suppression power PSB, the charging power command PREF1, and the charging current command IREF1.
  • the charging power command PREF1 is preferably set so as to be larger than the regeneration suppression power PSB (that is, gain> 1) as will be described later.
  • the input current ISV of the inverter 50 and the overhead wire voltage ESV are input to the multiplier 85 and multiplied to generate the power running power PLMX.
  • the power running power PLMAX By dividing the power running power PLMAX by the converter output voltage VB by the divider 89, it is converted into the discharge current upper limit value IREFMAX on the output side (the power storage device 60 side) of the converter 40.
  • the maximum discharge current setting unit 86 provided in the converter control unit 46 outputs a maximum discharge current setting value (allowable maximum current value) IBM according to the performance of the power storage device built in the power storage device 60.
  • the limiter unit 87 limits the upper limit of the above-described maximum discharge current set value IBM with the above-described discharge current upper limit value IREFMAX, and outputs a discharge current command (discharge current command value) IREF2. That is, the limiter unit 87 generates the smaller one of the maximum discharge current set value IBM and the discharge current upper limit value IREFMAX as the discharge current command IREF2.
  • the selection unit 83 selects IREF2 when the inverter 50 is in the power running control state and IREF1 when the inverter 50 is in the regenerative braking state based on the power running regenerative state signal PBC included in the control signal VC. Discharge current command value) IREF is output.
  • the charge / discharge current command IREF is input to the current control unit 84.
  • the current control unit 84 receives the converter output current IB, the converter output voltage VB, and the voltage detection value EFCD. Based on these signals, current control unit 84 performs current control so that converter output current IB matches charge / discharge current command IREF, and outputs the result as on / off pulse DGC to each switching element. By controlling in this way, converter 40 can perform charging / discharging from power storage device 60 based on regeneration suppression power PSB or powering power PLMX.
  • a gain condition of 0 to 1 is newly provided between the divider 89 and the limiter unit 87.
  • the gain is set to a small value including zero.
  • the gain may be changed (for example, 1), and the discharge current upper limit value IREFMAX may be adjusted and output.
  • the gain is set to a small value including zero, and when the power running power PLMX is a predetermined magnitude or more, the gain is changed (for example, 1), and the discharge current upper limit value is set. It may be configured such that IREFMAX is adjusted and output.
  • the discharge current upper limit value IREFMAX can be adjusted according to the control state of the inverter 50 or the traveling state of the electric vehicle, so the discharge power from the power storage device 60 within the range of the power running power PLMX. Can be adjusted.
  • so-called peak cut control such as supplementing the power consumption of the inverter 50 and suppressing the power received from the overhead line 1 by allowing more discharge power to be generated in a region where the power running power PLMX is large is also possible.
  • converter device 40 As described above, converter device 40 according to the present embodiment is charged such that converter device 40 charges power storage device 60 based on suppression amount VDTELM indicating the state of regenerative torque of the motor or the state of regenerative power. Since the current command IREF1 is generated and the converter control unit 46 that performs control by generating the charge / discharge current command IREF of the converter device 40 based on the charge current command IREF1, the inverter 50 is in a regenerative braking operation. When the load on the overhead line 1 becomes smaller than the regenerative power, the power storage device 60 is charged with power (regenerative power absorption) in conjunction with the generation of the suppression amount VDTELM accompanying the increase in the voltage detection value EFCV. Can do.
  • the overhead line voltage incorporated in the inverter 50 and the converter 40 respectively.
  • the regenerative torque is suppressed in the inverter 50 due to the detection error of the detectors 43a and 53a or the capacitor voltage detectors 43b and 53b, the power storage device 60 is charged (regenerative power absorption). There is a problem that does not occur.
  • the voltage detection value EFCD of the capacitor voltage detector 43b of the converter 40 is smaller than the detection value of the voltage detection value EFCV of the capacitor voltage detector 53b of the inverter 50 at the same overhead wire voltage.
  • the voltage detection value EFCV rises and exceeds the regenerative suppression start voltage set value VDL, and a suppression amount VDTELM is generated accordingly.
  • the detection value of the voltage detector 43b of the converter 40 exceeds a predetermined set value (for example, a value equal to the regenerative suppression start voltage set value VDL). Therefore, there is a case where regenerative power absorption to the power storage device 60 cannot be performed.
  • the power storage device 60 is charged (regenerative power absorption) based on the suppression amount VDTELM from the inverter 50, so that even when the suppression amount VDTELM occurs even slightly. Can recover more brake energy, and can suppress the suppression amount VDTELM. As a result, the frequency at which the regenerative brake is suppressed can be reduced, and the operation frequency of the mechanical brake can be lowered. As a result, it is possible to reduce the wear of the brake shoe.
  • the conventional method of determining the charging current command based on the overhead wire voltage or the capacitor voltage has another problem as follows.
  • the inverter 50 is in a regenerative braking operation.
  • the load of the overhead wire 1 is reduced with respect to the regenerative power, the voltage detection value EFCV rises and exceeds the regenerative suppression start voltage setting value VDL, and accordingly, the suppression amount VDTELM is generated and the regenerative torque is suppressed
  • the voltage detection value EFCD of the voltage detector 43b of the converter 40 does not exceed a predetermined set value (for example, a value equal to the regeneration suppression start voltage set value VDL), so that power is stored.
  • a predetermined set value for example, a value equal to the regeneration suppression start voltage set value VDL
  • the power storage device 60 is charged (regenerative power absorption) based on the suppression amount VDTELM from the inverter 50, so that even when the suppression amount VDTELM occurs even slightly. Can recover more brake energy, and can suppress the suppression amount VDTELM. As a result, the frequency at which the regenerative brake is suppressed is reduced, so that the frequency of operation of the mechanical brake can be reduced, so that wear of the brake shoe can be reduced.
  • the charging current command IREF1 and the discharge current command IREF2 are switched by the power regeneration state signal PBC in the selection unit 83 to generate the charging / discharging current command IREF.
  • the converter 40 can be controlled by generating and selecting the charge current command or the discharge current command optimally according to the state (power running state / regenerative state).
  • FIG. 7 is a diagram for explaining the power flow during regenerative braking in the first embodiment of the present invention.
  • the power (regenerative power) output from the inverter 50 is PV
  • the power (regenerative absorption power) that is charged to the power storage device 60 via the converter 40 is PD
  • the overhead wire 1 is connected via the current collector 2.
  • the outflow power (overhead regenerative power) is defined as PP.
  • the regenerative electric power PV is a value generated based on the regenerative torque command PTR and the electric vehicle speed VEL (synonymous with the rotational speed of the electric motor 71).
  • the regenerative power PV is derived from the required regenerative power PC based on the required regenerative torque command PTRS generated based on the operation command signal MC from the master controller 10 and the electric vehicle speed VEL (synonymous with the rotational speed of the electric motor 71).
  • the regenerative suppression power PSB that is the power that cannot be regenerated on the overhead line 1
  • the power storage device 60 may absorb the same power as the regenerative absorption power PD.
  • the operation state at this time is as follows.
  • Requirement regenerative power PC 1000 kW
  • overhead line regenerative power PP 500 kW
  • regenerative suppression power PSB 500 kW
  • regenerative absorption power PD 0 kW.
  • the converter 40 operates to charge the power storage device 60 with 500 kW as the regenerative absorption power PD.
  • the charging power command PREF1 is also set to be equal to the regenerative suppression power PSB, it is reduced from the initial 500 kW, so that the regenerative absorption power PD is also reduced from 500 kW.
  • the movement from the initial state to the equilibrium state is a transient phenomenon that occurs in a very short time (several tens of ms).
  • the charging power command PREF1 is set to a value equal to the regeneration suppression power PSB
  • the regeneration absorption power PD is insufficient and the regeneration suppression power PSB (suppression amount VDTELM) cannot be made zero.
  • the charging power command PREF1 it is preferable to set the charging power command PREF1 to be larger than the regeneration suppression power PSB.
  • the charging power command PREF1 is set to 9 times the regeneration suppression power PSB will be described below as an example.
  • the operating state at this time is the same as described above.
  • Requirement regenerative power PC 1000 kW
  • overhead line regenerative power PP 500 kW
  • regenerative suppression power PSB 500 kW
  • regenerative absorption power PD 0 kW.
  • the converter 40 operates to charge the power storage device 60 with 4500 kW as the regenerative absorption power PD.
  • the charging power command PREF1 set to 9 times the regenerative suppression power PSB also decreases from 4500 kW, so that the regenerative absorption power PD also decreases from 4500 kW.
  • the movement from the initial state to the equilibrium state is a transient phenomenon that occurs in a very short time (several tens of ms). Actually, the regenerative absorption power PD or the like does not reach the above-mentioned 4500 kW, and the above-mentioned is promptly described. Transition to equilibrium.
  • the charging power command PREF1 when the charging power command PREF1 is set to be larger than the regeneration suppression power PSB, the regenerative absorption power PD becomes larger than when the charging power command PREF1 is set to a value equal to the regeneration suppression power PSB. It turns out that electric power PV is also increasing. That is, by setting the charging power command PREF1 to be larger than the regeneration suppression power PSB, it is possible to reduce the suppression amount VDTELM of the inverter 50 and regenerate more power with respect to the requested regenerative power PC. It is possible to recover the regenerative power in the power storage device 60. Thereby, it becomes possible to improve the energy saving performance of the electric vehicle propulsion control device by reusing the power collected in the power storage device 60 at the time of power running, etc., and the operation frequency of the mechanical brake can be lowered. Shoe wear can be reduced.
  • the charging power command PREF1 is set to 9 times the regenerative suppression power PSB.
  • the charging power command PREF1 is not limited to this. As long as the stability of the control system is ensured, the charging power command PREF1 is charged. It is preferable to set power command PREF1 to be as large as possible than regeneration suppression power PSB.
  • the inverter 50 may be configured to generate the regeneration suppression power PSB that is the regeneration state signal and output it to the converter control unit 46.
  • the inverter 50 transmits a regeneration state signal to an external overall control device (not shown). 40 may be configured to transmit the regeneration state signal of the inverter 50.
  • FIG. FIG. 8 is a diagram illustrating a configuration example of the charging current command generation unit 82 according to Embodiment 2 of the present invention.
  • the charging current command generation unit 82 includes a charging current command calculation unit 82b.
  • the charging current command IREF1 may be generated from the regeneration suppression power PSB directly via a gain table or the like.
  • the charging current command generation unit 82 generates the charging current command IREF1 from the regeneration suppression power PSB by the charging current command calculation unit 82b. It is possible to delete the divider 88 existing in FIG. 5, and to simplify the calculation unit.
  • FIG. 9 is a diagram illustrating a configuration example of the charging current command generation unit 82 according to Embodiment 3 of the present invention.
  • the charging current command generation unit 82 is configured from a proportional-plus-integral controller 82 c so that the regenerative suppression power PSB is input and the charging current command IREF ⁇ b> 1 is generated via a proportional-integral element. It is good.
  • the charging current command generation unit 82 generates the charging current command IREF1 from the regenerative suppression power PSB by the proportional integration controller 82c. Compared with the configuration example, it is possible to generate the charging current command IREF1 such that the regenerative suppression power PSB becomes completely zero, so that it is possible to collect more regenerative power in the power storage device 60.
  • FIG. 10 is a diagram illustrating a configuration example of an electric vehicle including a plurality of inverter devices and converter devices according to Embodiment 4 of the present invention.
  • FIG. 10 shows an example in which a train organization is composed of four electric cars. The train is composed of a first car 101, a second car 102, a third car 103, and a fourth car 104. ing.
  • the first car 101 is No. 1 converter device 40-1 and No. 1 converter device 40-1.
  • No. 1 electric power storage device 61 is installed, and the second vehicle 102 has a No. 1 power storage device 61.
  • No. 1 inverter device 50-1 is installed, and the third vehicle 103 has no. No. 2 inverter device 50-2 is installed, and the fourth vehicle 104 has a No. 2 inverter device 50-2.
  • Two power storage devices 62 are mounted.
  • No. 1 converter device 40-1 No. 1 converter device 40-1. 1 power storage device 61, No. 1 1 inverter device 50-1, No. 1 inverter device 50-1. 2 inverter device 50-2, No. 2 2 converter device 40-2, No. 2 converter device 40-2.
  • the configuration of the second power storage device 62 is the same as the configuration of the converter device 40, the inverter device 50, and the power storage device 60 described in the first embodiment except for the portions described below.
  • Converter devices 40-1 and 40-2 and power storage devices 61 and 62 are connected as shown in the first embodiment, and positive terminal P1 of converter devices 40-1 and 40-2 and inverter device 50-1 are connected. , 50-2 are connected in common to the overhead wire 1 via the current collector 2. Negative terminals N1 of converter devices 40-1 and 40-2 and negative terminals N of inverter devices 50-1 and 50-2 are commonly connected to rail 4 via wheels 3.
  • Control signals VC1 and VC2 are output from the inverter devices 50-1 and 50-2, respectively, and are input to the converter device 40-1 and the converter device 40-2, respectively.
  • the contents of the control signals VC1 and VC2 are the same as those shown in the first embodiment.
  • FIG. 11 is a diagram illustrating a configuration example of the converter control unit 46a according to the fourth embodiment.
  • a converter control unit 46a shown in FIG. 11 is mounted on each of the converters 40-1 and 40-2.
  • the converter control unit 46a receives the suppression amount VDTELM1 included in the control command VC1 and the suppression amount VDTELM2 included in the control command VC2, and the adder 110 takes the sum of these, and the suppression amount Generate VDTELM.
  • the multiplier 81 multiplies the suppression amount VDTELM and the speed VEL to generate and output the regeneration suppression power PSB. Subsequent description is omitted because it has been described in the first embodiment.
  • the power running regeneration state signal PBC1 included in the control command VC1 and the power running regeneration state signal PBC2 included in the control command VC2 are input to the converter controller 46a.
  • a regeneration state signal PBC is generated. Subsequent description is omitted because it has been described in the first embodiment.
  • the converter control unit 46a includes the input current ISV1 and the overhead line voltage ESV1 of the inverters 50-1 and 50-2 included in the control command VC1, and the input current ISV2 of the inverters 50-1 and 50-2 included in the control command VC2.
  • the overhead line voltage ESV2 are input, the adder 111 takes the sum of the input current ISV1 and the input current ISV2, and outputs the result as the input current ISV.
  • the adder 112 sums the overhead line voltage ESV1 and the overhead line voltage ESV2. The result is divided and averaged by 2 (the number of converters 40 in the train) by the divider 114 and output as an overhead wire voltage ESV.
  • the input current ISV and the overhead line voltage ESV are multiplied by a multiplier 85 and the result is averaged by dividing by 2 (the number of converters 40 in the train) by a divider 115 to generate power running power PLMX.
  • the charge / discharge current command IREF is generated in the same manner as in the first embodiment, and the converter 40 is controlled.
  • Structuring as described above has the following effects compared to the conventional example.
  • a plurality of inverter devices, converter devices, and power storage devices are arranged during train formation. If present, the regenerative torque suppression amount of the inverter device and the regenerative absorption power of the converter device are controlled based on the overhead line voltage of each device or the detection voltage of the capacitor voltage detector. However, as described above, there is an error in the detection value of the voltage detector.
  • the capacitor voltage exceeds the predetermined set value and the regenerative torque suppression amount is generated, but the capacitor voltage of the converter device falls below the predetermined set value and the regenerative torque is reduced. In some cases, the power absorption operation is not performed. In such a case, since the regenerative torque remains unnecessarily suppressed, wear of the mechanical brake shoe and waste of regenerative power occur.
  • the plurality of inverters 50-1 and 50-2 are caused by variations in the detection characteristics of the voltage detectors 53b of the plurality of inverters 50-1 and 50-2.
  • the converters 40-1 and 40-2 respectively receive the charging current command IREF1 corresponding to the sum of the suppression amounts VDTELM of the plurality of inverters 50-1 and 50-2. Since it can be generated, the power of regenerative absorption can be equally shared by the respective converters 40-1 and 40-2. At this time, the regeneratively absorbed power PD of the converters 40-1 and 40-2 becomes equal, so that the operating states of the plurality of converters 40-1 and 40-2 and the power storage device 60 can be made uniform. It is possible to avoid the concentration of loads on the power storage devices 60-1 and 40-2 and the power storage device 60.
  • each converter 40 generates a charging current command IREF1, and each of the converters 40-1, 40-2 Since the regenerative power can be absorbed in the power storage device 60, it is possible to avoid a case where only some of the converter devices are in an operating state.
  • each of the converters 40-1 and 40-2 receives the suppression amount VDTELM of the plurality of inverters 50-1 and 50-2 as an input, and the charging current. Since the command IREF1 is generated, a plurality of inverters 50-1 and 50-2, converters 40-1 and 40-2, and a power storage device 60 are mounted in a train formation composed of a plurality of vehicles. In this case, a larger amount of regenerative power can be recovered in the power storage device 60.
  • the converter control unit 46a has been described as generating the regenerative suppression power PSB based on the product of the suppression amount VDTELM and the speed VEL. However, other configurations may be used.
  • the regeneration suppression power PSB may be generated and output to the converter control unit 40a.
  • the converter control unit 46a calculates the sum of the suppression amount VDTELM1 that is the regeneration state signal included in the control command VC1 and the suppression amount VDTELM2 that is the regeneration state signal included in the control command VC2. Although the amount VDTELM is generated, the larger one of the regeneration state signal included in the control command VC1 and the regeneration state signal included in the control command VC2 may be extracted and used as the regeneration state signal used for control.
  • each converter 40 generates the charging current command IREF1 at the point of time when the suppression amount VDTELM is generated in any one of the plurality of inverters 50, thereby converting the converter 40 and the power storage device 60. Therefore, it is possible to avoid a case where only some of the converter devices are in an operating state.
  • the converter control unit 46a calculates the sum of the suppression amount VDTELM1 that is the regeneration state signal included in the control command VC1 and the suppression amount VDTELM2 that is the regeneration state signal included in the control command VC2. Although the amount VDTELM is generated, an average value of the regeneration state signal included in the control command VC1 and the regeneration state signal included in the control command VC2 may be calculated and used as a regeneration state signal used for control.
  • each converter 40 generates a charging current command IREF1 to the converter 40 and the power storage device 60 when the suppression amount VDTELM is generated in any of the plurality of inverters 50. Therefore, it is possible to avoid a case where only some of the converter devices are in an operating state.
  • each inverter 50 transmits the regeneration state signal to an external integrated control device (not shown).
  • the overall control device may transmit the regeneration state signal of each inverter 50 to each converter 40. In this way, the number of wires connecting each inverter 50 and each converter 40 can be reduced as compared with the case where each inverter 50 and each converter 40 are connected by wires.
  • the embodiment of the present invention is not limited to the configuration described above, and is based on the regenerative state signal itself or the regenerative state signal, which is an amount indicating the regenerative torque suppression state or the regenerative power suppression state of each inverter 50. What is necessary is just the structure which each converter control part 46a can recognize the obtained addition value, the maximum value, an average value, etc.
  • the converter controller 46a receives the input current ISV1 of the inverter 50 included in the control command VC1 and the input current ISV2 of the inverter 50 included in the control command VC2, and the average value thereof is obtained.
  • the power running power PLMX was calculated based on this, but the input current was transmitted from each inverter 50 to the external general control device, and the average value was calculated by the general control device, and the calculated average value was obtained. Based on this, the power running power PLMX may be calculated and input to each converter control unit 46a.
  • the converter control unit 46a is preferably configured to generate the discharge current command IREF2 based on the sum of the input power of the plurality of inverters 50.
  • each converter control unit 46a When there are a plurality of pairs of the converter 40 and the power storage device 60, each converter control unit 46a generates the discharge current command IREF2 based on a value obtained by averaging the input power of the inverter 50 by the number of converters 40. preferable.
  • each converter control unit 46a calculates the sum of the input powers of the plurality of inverters 50 inputted. It is preferable to generate discharge current command IREF2 based on this.
  • each converter control unit 46a calculates the sum of the input powers of the plurality of input inverters 50. It is preferable to generate discharge current command IREF2 based on a value averaged by the number of converters 40.
  • inverter 50 the converter 40, and the power storage device 60 are illustrated and described as being separate devices, they may be configured as an integrated device such as being housed in the same storage box.
  • the operation command signal MC is input to the torque command generation unit 56a, and the torque command generation unit 56a includes the operation command signal MC.
  • the configuration has been described in which the required regenerative torque command PTRS, which is a regenerative brake torque command to be generated by the electric motor 71, is generated based on the brake force command and the like. Further, it has been described that the requested regenerative torque command PTRS and the suppression amount VDTELM are input to the subtractor 56d, and the subtractor 56d takes these differences and outputs them as a regenerative torque command PTR.
  • the regenerative torque command PTR is input to the torque control unit 56e, and the torque control unit 56e causes the inverter circuit 55 so that the regenerative torque generated by the electric motor 71 matches the regenerative torque command PTR based on the regenerative torque command PTR.
  • the on / off signal IGC is generated as described above. That is, the configuration in which the torque of the motor is controlled as desired based on the operation command signal MC and the detected voltage value EFCV has been described as an example.
  • the torque of the motor is directly related to the current of the motor. Therefore, for example, as shown in FIG. 4B, it is possible to replace the configuration for controlling the torque described above with a configuration for controlling the current of the electric motor 71. That is, the invention can be implemented even if the amount corresponding to the torque is replaced with the amount corresponding to the current of the electric motor 71.
  • the torque command generator 65a is read as the current command generator 56a.
  • the required regenerative torque command PTRS is read as the required regenerative current command PIRS
  • the regenerative torque command PTR is read as the regenerative current command PIR
  • the torque control unit 56e is read as the current control unit 56e.
  • the suppression amount VDTELM indicating the regenerative torque suppression state which is the regenerative state signal, is also an amount indicating the regenerative current suppression state.
  • the structure shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and a part thereof is not deviated from the gist of the present invention. Needless to say, the configuration may be changed or omitted.
  • the present invention can be applied to a propulsion control device for an electric vehicle to which an electric power storage device is applied, and in particular, it is possible to efficiently recover the regenerative power generated during regenerative braking to the electric power storage device. It is useful as a possible invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

 直流電源に接続されたインバータ装置と、インバータ装置の出力に接続された電動機と、インバータ装置の入力に接続されたコンバータ装置と、コンバータ装置の出力に接続された電力貯蔵装置を有し、電動機の力行電力あるいは回生電力の一部を電力貯蔵装置から放電あるいは電力貯蔵装置へ充電する構成とした電気車の推進制御装置であって、コンバータ装置は、前記回生電力、あるいはこれと等価な回生トルク、回生電流の抑制状態を示す信号としての回生状態信号に基づいて、コンバータ装置が電力貯蔵装置を充電する電流の指令値である充電電流指令値を生成し、充電電流指令値に基づき、コンバータ装置の充放電電流指令値を生成して制御を行うコンバータ制御部46を有する。

Description

電気車の推進制御装置
 本発明は、二次電池や電気二重層キャパシタ等の電力貯蔵デバイスを応用した電気車の推進制御装置に関するものである。
 一般に電気車は、架線からの電力を集電装置で取り入れ、取り入れた電力を使用してインバータ装置等の電力変換装置で電動機を駆動して走行する構成としている。車両にブレーキをかけるときは、電動機を回生運転してブレーキ力を得るいわゆる回生ブレーキが用いられる。このとき発生する回生電力は、架線や第三軌条等を介して、自車付近に存在する他の車両の負荷へ供給され、そこで消費されることになる。
 ただし、早朝あるいは夜間や、列車の運行本数の少ない閑散線区では、自車付近に他の車両が存在しない場合が発生し、自車が発生した回生電力が十分に消費されない場合がある。他の車両で消費される電力よりも自車の回生電力が大きくなると架線電圧が上昇することになり、架線に接続される種々の機器を破損する恐れがある。
 従って、電気車に搭載されるインバータ装置は、架線電圧等(架線電圧、または架線電圧に相当する例えばインバータ装置の入力側のフィルタコンデンサ電圧)を検出する電圧検出器を有しており、架線電圧等が上昇して所定値を超過した場合に、回生ブレーキ力を抑制して回生電力の発生を抑制する制御を行い、架線電圧等を規定値以上に上昇させないように動作する。このとき、回生ブレーキ力が抑制されて不足した車両としてのブレーキ力は、車輪やブレーキディスクにブレーキシューを押さえつける構成である機械ブレーキにより補足され、車両のブレーキエネルギー(運動エネルギー)は熱となり大気中へ放散される。このような場合、本来なら他の車両の負荷で利用できたはずのブレーキエネルギーが無駄になるほか、機械ブレーキのブレーキシューの磨耗が生じるなどの問題がある。
 近年、二次電池や電気二重層キャパシタ等の電力貯蔵デバイスの性能が向上してきていることから、これらを電気車に搭載し、回生負荷が十分に無い場合におけるブレーキ時などで、過剰となった回生電力を電力貯蔵デバイスに貯蔵し、力行運転時に再利用する電力貯蔵システムの開発が進められている。
 この電力貯蔵システムは、直流-直流変換を行うコンバータ装置と、二次電池や電気二重層キャパシタ等の電力貯蔵デバイスからなる電力貯蔵装置とから構成される。電力貯蔵デバイスへの充放電方法は、上記のコンバータ装置を介して、電力貯蔵装置への充放電電流を制御する構成であることが一般的である。
 このような電力貯蔵システムの例として、例えば、下記特許文献1に示される従来技術は、車両に電気二重層キャパシタを搭載し、自車付近に回生負荷となる他列車が存在しない場合は、回生ブレーキ時に架線電圧やフィルタコンデンサ電圧が上昇する現象を利用して、フィルタコンデンサ電圧の検出値が所定値を超過したときに、超過量に応じて電力貯蔵デバイスへの吸収電流指令を生成し、コンバータ装置の制御を行うことで、架線電圧上昇時に過剰となった回生電力を電気二重層キャパシタに回収して貯蔵し、次の力行運転時に放出することで回生エネルギーの再利用を図るという技術が開示されている。
特開2003-199204号公報
 しかしながら、上記特許文献1に示される従来技術は、コンバータ装置の制御部に入力される架線電圧やフィルタコンデンサ電圧の検出値に基づいて、電力貯蔵装置への充電電流を制御する構成であるが、この場合には以下の課題がある。
 1.架線電圧あるいはフィルタコンデンサ電圧を検出する電圧検出器を、インバータ装置とコンバータ装置にそれぞれ備える場合には、それぞれの電圧検出器の検出誤差により、インバータ装置の検出する架線電圧あるいはフィルタコンデンサ電圧と、コンバータ装置の検出する架線電圧あるいはフィルタコンデンサ電圧には誤差が生じる。たとえば、電気鉄道の架線電圧として一般的な1500Vを検出できる電圧検出器では、検出公差は3%程度であるので、±45V程度の検出誤差が発生することになる。
 この場合、インバータ装置に設けられた電圧検出器が、架線電圧あるいはフィルタコンデンサ電圧の上昇が所定値を超過したと判断して、回生ブレーキ力を抑制する制御を行っている状態においても、コンバータ装置に設けられた電圧検出器が検出した架線電圧あるいはフィルタコンデンサ電圧が所定値に達しない場合が生じることになる。従って、コンバータ装置は、電力貯蔵装置への回生電力の回収を行わないため、結果として回生ブレーキ力が不足した状態が継続して、機械ブレーキが動作してしまう。
 2.インバータ装置や電力貯蔵システム(電力貯蔵装置+コンバータ装置)が列車編成中に複数台存在する場合、それぞれの電圧検出器の検出値の間には誤差が存在するため、回生ブレーキ時において架線電圧等が上昇して所定値を超過したときに、各コンバータ装置の電力貯蔵デバイスへの吸収電力がばらつくことになり、各コンバータ装置の稼働状況(通電電流値)が異なることになる。つまり、同一の架線電圧等(架線電圧あるいはフィルタコンデンサ電圧)の条件においても、低めに架線電圧等を検出する電圧検出器を有したコンバータ装置は、電力貯蔵装置への吸収電力が少なくなり、高めに架線電圧等を検出する電圧検出器を有したコンバータ装置は、電力貯蔵装置への吸収電力が大きくなる。このようにコンバータ装置と電力貯蔵装置の稼動状態にばらつきが生じると、稼動状態が多い装置の寿命が短くなる等の問題が生じる。
 本発明は、上記に鑑みてなされたものであって、二次電池や電気二重層キャパシタ等の電力貯蔵デバイスを応用した電気車の推進制御装置において、回生ブレーキ時に生じる回生電力の電力貯蔵装置への回収を効率的に行うことができ、また列車編成中に複数のインバータ装置、コンバータ装置、電力貯蔵装置が存在する場合においても、コンバータ装置と電力貯蔵装置の稼動状態のばらつきを抑えることの出来る電気車の推進制御装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、直流電源に接続されたインバータ装置と、前記インバータ装置の出力に接続された電動機と、前記インバータ装置の入力に接続されたコンバータ装置と、前記コンバータ装置の出力に接続された電力貯蔵装置を有し、前記電動機の力行電力あるいは回生電力の一部を前記電力貯蔵装置から放電あるいは前記電力貯蔵装置へ充電する構成とした電気車の推進制御装置であって、前記コンバータ装置は、前記回生電力、あるいはこれと等価な回生トルク、回生電流の抑制状態を示す信号としての回生状態信号に基づいて、前記コンバータ装置が前記電力貯蔵装置を充電する電流の指令値である充電電流指令値を生成し、前記充電電流指令値に基づき、前記コンバータ装置の充放電電流指令値を生成して制御を行うコンバータ制御部を有したこと、を特徴とする。
 この発明によれば、電動機の回生トルクの状態あるいは回生電力の状態を示す回生トルク抑制量に基づいて、コンバータ装置が電力貯蔵装置を充電する充電電流指令値を生成し、充電電流指令値に基づき、コンバータ装置の充放電電流指令値を生成して制御を行うコンバータ制御部を有するようにしたので、二次電池や電気二重層キャパシタ等の電力貯蔵デバイスを応用した電気車の推進制御装置において、回生ブレーキ時に生じる回生電力の電力貯蔵装置への回収を効率的に行うことができ、また列車編成中に複数のインバータ装置、コンバータ装置、電力貯蔵装置が存在する場合においても、コンバータ装置と電力貯蔵装置の稼動状態のばらつきを抑えることできるという効果を奏する。
図1は、本発明の実施の形態1における電気車の推進制御装置の構成例を示す図である。 図2は、本発明の実施の形態1におけるコンバータ装置の構成例を示す図である。 図3は、本発明の実施の形態1におけるインバータ装置の構成例を示す図である。 図4は、本発明の実施の形態1におけるインバータ制御部の構成例を示す図である。 図5は、本発明の実施の形態1における各信号の関係例を示す図である。 図6は、本発明の実施の形態1におけるコンバータ制御部の構成例を示す図である。 図7は、本発明の実施の形態1における回生ブレーキ時の電力フローを説明する図である。 図8は、本発明の実施の形態2における充電電流指令生成部の構成例を示す図である。 図9は、本発明の実施の形態3における充電電流指令生成部の構成例を示す図である。 図10は、本発明の実施の形態4における複数台のインバータ装置、コンバータ装置を含む電気車における構成例を示す図である。 図11は、本発明の実施の形態4におけるコンバータ制御部の構成例を示す図である。
 以下に、本発明にかかる電気車の推進制御装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1における電気車の推進制御装置の構成図である。図1に示すように、図示しない変電所からの電力は、架線1から集電装置2を介して、インバータ装置(以下単に「インバータ」と称する)50の正側端子P、コンバータ装置(以下単に「コンバータ」と称する)40の正側端子P1に入力される。インバータ50およびコンバータ40からの負側電流は、それぞれの端子N、N1を通して車輪3を経由してレール4に接続され、図示しない変電所の負側へ戻る。
 コンバータ40には、直流出力端子P2、N2が設けられており、直流出力端子P2、N2に電力貯蔵装置60が接続されている。電力貯蔵装置60は、二次電池や電気二重層キャパシタ等の電力貯蔵デバイスを複数個直並列に接続して所望の電圧と容量を得るように構成したものであり、具体的な構成は公知であるので、詳しい説明は割愛する。
 インバータ50には交流出力端子U、V、Wが設けられており、交流出力端子U、V、Wに電動機71が接続されている。電動機71は、交流電動機であって、三相誘導電動機や、同期電動機が好適である。電動機71により車輪3を駆動して電気車を走行させる。
 電気車の運転台(図示せず)に設けられた主幹制御器10は、電気車の運転士が車両の加減速を調整するためにインバータ装置等への指令の設定を行う装置であり、主幹制御器10からの運転指令信号MCは、インバータ50に入力される構成である。運転指令信号MCは、電気車の力行加速やブレーキのオンオフ、またその強さに関する指令を含むものであり、インバータ50は、運転指令信号MCに基づいて電動機71のトルクを制御する。
 インバータ50からはコンバータ40に対して、制御信号VCが出力される構成である。制御信号VCは、回生トルクの抑制状態あるいは回生電力の抑制状態を示す量であり、回生状態信号である回生トルク抑制量(以下単に「抑制量」と称する)VDTELM、電気車の速度VEL(インバータ50の出力周波数や電動機71の回転数等でもよい)、インバータ50が力行制御状態か回生ブレーキ状態かを示す信号である力行回生状態信号(インバータ状態信号)PBC、インバータ50の入力電流ISV、およびインバータ50の架線電圧ESVを含む信号である。制御信号VCとその機能についての詳細は後述する。
 次に、コンバータ40の構成について説明する。図2は、本発明の実施の形態1におけるコンバータ40の構成例を示す図である。図2に示すように、集電装置2からの電力は、入力端子P1、N1に入力される。入力端子P1には、リアクトル41が接続され、リアクトル41の後段には、フィルタコンデンサ(以下単に「コンデンサ」と称する)42が接続される。
 リアクトル41とコンデンサ42とにより構成されたLCフィルタ回路は、後述するスイッチング素子のスイッチング動作によって発生するノイズ電流の架線1への流出を抑制するとともに、架線1の電圧(架線電圧)に含まれるリプル成分を平滑化してコンデンサ42の両端電圧を平滑化する。
 入力端子P1、N1の両端電圧(=架線電圧)は、電圧検出器43aにて検出され、架線電圧検出値ESDとしてコンバータ制御部46に入力される。コンデンサ42の両端電圧は、電圧検出器43bにて検出され、コンデンサ電圧検出値(以下単に「電圧検出値」と称する)EFCDとして、コンバータ制御部46に入力される。
 コンデンサ42の両端には、コンバータ回路44が接続される。コンバータ回路44は、スイッチング素子44Hと44Lとから構成され、それぞれのスイッチング素子は、コンバータ制御部46からのオンオフ信号DGCによりオンオフ制御(スイッチング制御)される。コンバータ回路44は、いわゆる双方向降圧チョッパ回路であり、電圧EFCDをスイッチング素子44H、44Lのスイッチング制御により降圧して出力する降圧機能とともに、出力電流を所望に調整する電流制御機能を有する。その構成と動作については公知であるので説明は割愛する。
 コンバータ回路44の出力には、出力電流を検出してコンバータ出力電流IBとして出力する電流検出器47と、電流を平滑化する平滑リアクトル45と、平滑リアクトル45の後段電圧(=電力貯蔵装置60の電圧)を検出し、コンバータ出力電圧VBとしてコンバータ制御部46に出力する電圧検出器43cとが設けられる。
 以上の電圧検出器43a、43b、43c、電流検出器47からの各検出信号ESD、EFCD、IB、VBは、コンバータ制御部46に入力される。また、後述するインバータ50からの制御信号VCがコンバータ制御部46に入力される。制御信号VCの詳細に関しては後述する。コンバータ制御部46では、これらの入力された信号に基づいて、コンバータ回路44へのオンオフ信号DGCを生成する。
 次に、インバータ50の構成について説明する。図3は、本発明の実施の形態1におけるインバータ50の構成例を示す図である。図3に示すように、集電装置2からの電力は、入力端子P、Nに入力される。入力端子Pには、入力電流を検出しインバータ入力電流ISVとして出力する電流検出器57が配置され、電流検出器57の後段には、リアクトル51が接続され、リアクトル51の後段には、コンデンサ52が接続される。
 リアクトル51とコンデンサ52により構成されたLCフィルタ回路は、後述するスイッチング素子のスイッチング動作により発生するノイズ電流の架線1への流出を抑制するとともに、架線1の電圧(架線電圧)に含まれるリプル成分を平滑化してコンデンサ52の両端電圧を平滑化する。
 入力端子P、Nの両端電圧(=架線電圧)は、電圧検出器53aにて検出され、架線電圧ESVとしてインバータ制御部56に入力される。コンデンサ52の両端電圧は、電圧検出器53bにて検出され、電圧検出値EFCVとして、インバータ制御部56に入力される。
 コンデンサ52の電圧は、インバータ回路55に入力される。インバータ回路55は、スイッチング素子54U、54V、54W、54X、54Y、54Zから構成され、それぞれのスイッチング素子は、インバータ制御部56からのオンオフ信号IGCによりオンオフ制御(スイッチング制御)される。インバータ回路55は、電圧形三相2レベルインバータ回路であり、コンデンサ52の電圧をスイッチング素子54U、54V、54W、54X、54Y、54Zのスイッチング制御により任意の大きさと周波数の交流電圧に変換して出力する機能を有する。その構成と動作については公知であるので説明は割愛する。
 インバータ回路55の出力U、V、Wは、電動機71へ出力される。
 以上の電圧検出器53a、電圧検出器53b、および電流検出器57からの各検出値ESV、EFCV、ISVは、インバータ制御部56に入力される。また、主幹制御器10から運転指令信号MCが入力される。インバータ制御部56では、これらの入力された信号に基づいて、インバータ回路55へのオンオフ信号IGCを生成し、電動機71のトルクを所望に制御する。さらに、コンバータ40へ制御信号VCを出力する。なお、制御信号VCの詳細は後述する。
 次に、インバータ50における電動機71のトルク制御について説明する。図4は、本発明の実施の形態1におけるインバータ制御部56の構成例を示す図である。図4(a)に示すように、運転指令信号MCは、トルク指令生成部56aに入力される。トルク指令生成部56aでは、運転指令信号MCに含まれるブレーキ力の指令等に基づいて、電動機71が発生すべき回生ブレーキトルクの指令となる要求回生トルク指令PTRSを生成する。
 電圧検出値EFCVは、減算器56bに入力される。減算器56bでは、電圧検出値EFCVと回生抑制開始電圧設定値VDL(図4(a)では1800Vであるが、この他でもよい)との差を出力し、負値カットリミッタ56bbに入力し、負値カットリミッタ56bbでは、正の値のみを後段のゲイン部(増幅回路)56cに入力する。
 ゲイン部56cでは、入力された電圧検出値EFCVが回生抑制開始電圧設定値VDL(図4(a)では1800V)を超過した場合に、その超過量を増幅し、抑制量VDTELMを生成し出力する。なお、ゲイン部56cは、比例ゲインの他、積分要素等を含む任意の関数に置き換えても構わない。
 要求回生トルク指令PTRSと抑制量VDTELMとは、減算器56dに入力され、減算器56dではこれらの差をとり、回生トルク指令PTRとして出力する。
 回生トルク指令PTRは、トルク制御部56eに入力され、トルク制御部56eは、回生トルク指令PTRに基づいて電動機71の発生する回生トルクが回生トルク指令PTRに一致するようにインバータ回路55へのオンオフ信号IGCを生成する。
 このように構成されているので、回生ブレーキ中に架線1に繋がる他の電気車等の回生負荷が不足して電圧検出値EFCVが上昇し、回生抑制開始電圧設定値VDLを超過した場合に、超過の程度に応じて抑制量VDTELMを発生させて要求回生トルク指令PTRSから抑制量VDTELMを減算して、電動機71の回生トルクの指令となる回生トルク指令PTRを生成することができる。
 このような動作により、電動機71の回生ブレーキトルクは、要求回生トルク指令PTRSの値よりも抑制されるので、電動機71からの回生電力を抑制することができ、電圧検出値EFCVは回生抑制開始電圧設定値VDLの近傍に維持されることになる。架線電圧の過剰な上昇を抑制できる。
 上記した抑制量VDTELMは、他の情報(図ではISV、ESV)とともに、制御信号VCとして、コンバータ40に出力される。なお、インバータ制御部56は、当然ながら力行トルクの生成も行う構成であるが図示していない。
 次に、図5を用いて、上記したインバータ制御部56の動作を時間軸で説明する。図5は、本発明の実施の形態1における各信号の関係例を示す図である。具体的には、図5には、要求回生トルク指令PTRSと、抑制量VDTELMと、回生トルク指令PTRと、回生抑制電力PSBと、充電電力指令PREF1と、充電電流指令(充電電流指令値)IREF1との関係例が示されている。
 図5は、上段から順に電動機71の回生トルク指令PTR、抑制量VDTELM、回生抑制電力PSB、充電電力指令PREF1、充電電流指令IREF1を示している。なお、回生抑制電力PSB、充電電力指令PREF1、充電電流指令IREF1については後述する。
 インバータ制御部56は、図5の時刻t0のタイミングで、回生ブレーキの立ち上げ指令を含む運転指令信号MCを受信し、上述したように回生トルク指令PTRを生成する。インバータ制御部56は、この回生トルク指令PTRと一致したトルク値を電動機71が出力するようにオンオフ信号IGCを生成して電動機71の制御を行う。
 時刻t1において、架線1の回生負荷が電動機71の回生電力に対して不足して、電圧検出値EFCVが上昇して回生抑制開始電圧設定値VDLを超過した状況を示す。このとき、図4(a)で説明したように、抑制量VDTELMが生成されるので、回生トルク指令PTRは、運転指令信号MCにより要求された要求回生トルク指令PTRS(一点鎖線で表示)から抑制量VDTELMを差し引いた値となり、トルク制御部56eにおいてこれに基づいて電動機71の制御を行う。これにより、電動機71からの回生電力は、電圧検出値EFCVが回生抑制開始電圧設定値付近に抑制される。
 時刻t2では、架線1の回生負荷が電動機71の回生電力に対して不足する状態が解消されたので、抑制量VDTELMはゼロとなり、回生トルク指令PTR=要求回生トルク指令PTRSとなる。
 次に、本発明の中心となるコンバータ制御部46について説明する。図6は、本発明の実施の形態1におけるコンバータ制御部46の構成例を示す図である。図6に示すように、抑制量VDTELMと電気車の速度VEL(インバータ50の出力周波数や電動機71の回転数等でもよい)は、乗算器81で乗算され、回生抑制電力PSBとして充電電流指令生成部82に出力される(参考;トルク[Nm]×速度[rad/s]=電力[kW])。なお、電力を計算する際に必要となる換算係数等は図6には示していない。
 充電電流指令生成部82では、回生抑制電力PSBに基づいて充電電流指令IREF1を生成し選択部83に出力する。充電電流指令生成部82は、充電電力指令演算部82aと除算器88とから構成される。充電電流指令生成部82では、回生抑制電力PSBがゼロの場合は、充電電力指令PREF1をゼロに維持する。回生抑制電力PSBが発生すると、それに応じて充電電力指令PREF1を生成する。除算器88により充電電力指令PREF1をコンバータ出力電圧VBで割ることで充電電流指令IREF1に換算する。図6では、充電電力指令PREF1は、回生抑制電力PSBに比例して生成する構成としているが、これに限定されるわけではない。
 回生抑制電力PSBがP1を超えると、充電電力指令PREF1は上限がP2に維持された特性としている。ここでP2は、電力貯蔵装置60に内蔵された電力貯蔵デバイスの充電受け入れ電力上限を考慮した値であり、このような特性とすることで、電力貯蔵デバイスの能力範囲内で回生抑制電力PSBに応じた充電電力指令PREF1を生成することが可能となる。なお、P2は、電力貯蔵デバイスの充電受け入れ電流上限を元に決定しても良い。
 要求回生トルク指令PTRS、抑制量VDTELM、トルク指令PTR、回生抑制電力PSB、充電電力指令PREF1、充電電流指令IREF1の関係を図5に示す。充電電力指令PREF1は後述するように回生抑制電力PSBよりも大きな値となるように(すなわちゲイン>1となるように)設定するのが好ましい。
 次に、インバータ50の入力電流ISV、架線電圧ESVが乗算器85に入力され乗算することで力行電力PLMXを生成する。除算器89により力行電力PLMAXをコンバータ出力電圧VBで割ることで、コンバータ40の出力側(電力貯蔵装置60側)の放電電流上限値IREFMAXに換算する。
 コンバータ制御部46の内部に設けた最大放電電流設定部86は、電力貯蔵装置60に内蔵された電力貯蔵デバイスの性能に応じて最大放電電流設定値(許容最大電流値)IBMを出力する。
 次にリミッタ部87にて、上記した最大放電電流設定値IBMの上限を、上記した放電電流上限値IREFMAXで制限し、放電電流指令(放電電流指令値)IREF2を出力する。すなわち、リミッタ部87は、最大放電電流設定値IBMと放電電流上限値IREFMAXの小さいほうを放電電流指令IREF2として生成する。
 選択部83では、制御信号VCに含まれる力行回生状態信号PBCにより、インバータ50が力行制御状態の場合はIREF2を、インバータ50が回生ブレーキ状態の場合はIREF1を選択し、充放電電流指令(充放電電流指令値)IREFとして出力する。
 充放電電流指令IREFは、電流制御部84に入力される。電流制御部84には、コンバータ40の出力電流IBの指令となる上記した充放電電流指令IREFの他、コンバータ出力電流IB、コンバータ出力電圧VB、および電圧検出値EFCDが入力される。電流制御部84は、これらの信号に基づき、コンバータ出力電流IBが充放電電流指令IREFに一致するように電流制御を行って、各スイッチング素子へのオンオフパルスDGCとして出力する。このように制御することで、コンバータ40は、回生抑制電力PSBあるいは力行電力PLMXに基づいて、電力貯蔵装置60からの充放電を行うことが可能となる。
 なお、図示しないが除算器89とリミッタ部87との間に新たに0~1のゲイン条件を設けて、たとえば電気車が所定の速度以下の場合は、ゲインを、ゼロを含む小さな値としておき、所定の速度以上の場合は、ゲインを変更(たとえば1)として、放電電流上限値IREFMAXを調整して出力する等の構成としてもよい。
 この他、力行電力PLMXが所定の大きさ以下の場合はゲインをゼロを含む小さな値としておき、力行電力PLMXが所定の大きさ以上の場合はゲインを変更(たとえば1)として、放電電流上限値IREFMAXを調整して出力する等の構成としてもよい。
 このようにすれば、インバータ50の制御状態、あるいは電気車の走行状態に応じて、放電電流上限値IREFMAXを調整することができるので、力行電力PLMXの範囲内で電力貯蔵装置60からの放電電力を調整することが可能となる。たとえば、力行電力PLMXが大きくなる領域でより多くの放電電力が生じるようにして、インバータ50の消費電力を補足し、架線1から受電する電力を抑える等のいわゆるピークカット制御も可能となる。
 以上に説明したように、本実施の形態にかかるコンバータ装置40は、電動機の回生トルクの状態あるいは回生電力の状態を示す抑制量VDTELMに基づいて、コンバータ装置40が電力貯蔵装置60を充電する充電電流指令IREF1を生成し、充電電流指令IREF1に基づき、コンバータ装置40の充放電電流指令IREFを生成して制御を行うコンバータ制御部46を有するようにしたので、インバータ50が回生ブレーキ運転中に、回生電力に対して架線1の負荷が小さくなった場合、電圧検出値EFCVの上昇に伴う抑制量VDTELMの発生と連動して、電力貯蔵装置60への電力の充電(回生電力吸収)を行うことができる。そのため、わずかでも抑制量VDTELMが発生すれば回生電力吸収を行えるので、より多くのブレーキエネルギーを回収することが可能となり、抑制量VDTELMを抑制することができる。その結果、回生ブレーキを抑制する頻度が軽減されるので、機械ブレーキの磨耗を抑制することが可能である。
 なお、従来の構成である架線電圧あるいはコンデンサ電圧と所定値との偏差に基づいて、電力貯蔵装置への充電電流の指令を決定する方式では、インバータ50とコンバータ40にそれぞれ内蔵されている架線電圧検出器43a、53aあるいはコンデンサ電圧検出器43b、53bの検出誤差の影響により、インバータ50において回生トルクが抑制されているにも関わらず、電力貯蔵装置60への充電(回生電力吸収)が行われないケースが生じる問題がある。
 具体例としては、同一の架線電圧において、コンバータ40のコンデンサ電圧検出器43bの電圧検出値EFCDのほうが、インバータ50のコンデンサ電圧検出器53bの電圧検出値EFCVの検出値より小さい場合を考えると、インバータ50が回生ブレーキ運転中に、回生電力に対して架線1の負荷が小さくなり、電圧検出値EFCVが上昇して回生抑制開始電圧設定値VDLを超過し、これに伴い抑制量VDTELMが発生して回生トルクが抑制された状態が発生する状態であっても、コンバータ40の電圧検出器43bの検出値が、所定の設定値(たとえば回生抑制開始電圧設定値VDLと等しい値)を超過していないために、電力貯蔵装置60への回生電力吸収を行えない場合が発生する。
 本発明の構成では、インバータ50からの抑制量VDTELMに基づいて電力貯蔵装置60への充電(回生電力吸収)を行うので、上記した不都合は発生しないため、抑制量VDTELMがわずかでも生じた場合には、より多くのブレーキエネルギーを回収することが可能となり、抑制量VDTELMを抑制することができる。これにより回生ブレーキが抑制される頻度が軽減され、機械ブレーキの動作頻度を低下させることができるので、その結果、ブレーキシューの磨耗を低減することが可能である。
 さらに、従来の構成である架線電圧あるいはコンデンサ電圧に基づいて充電電流指令を決定する方式では、次の別の問題もある。
 インバータ50の電圧検出値EFCVと、コンバータ40の電圧検出値EFCDとは、それぞれ架線1の架線電圧ESV(=ESD)を基準にリアクトル51、41における電圧降下分を考慮した値となる。このため、インバータ50の入力電流ISVとコンバータ40の入力電流ISDとがともにゼロである場合は、電圧検出値EFCVと電圧検出値EFCDとは等しくなるが、動作中においてインバータ50の入力電流ISVとコンバータ40の入力電流ISDがゼロではない場合、リアクトル51、41における電圧降下分が発生する。このため同一の架線電圧下においても、この電圧降下分だけ電圧検出値EFCVと電圧検出値EFCDとの間には電圧差が発生する。
 この電圧差の影響により、インバータ50において回生トルクが抑制されているにも関わらず、電力貯蔵装置60への充電(回生電力吸収)が行われないケースが生じる問題がある。
 具体的には、コンバータ40のコンデンサ電圧検出器43bの電圧検出値EFCDのほうが、インバータ50のコンデンサ電圧検出器53bの電圧検出値EFCVよりも小さい場合を考えると、インバータ50が回生ブレーキ運転中に、回生電力に対して架線1の負荷が小さくなり、電圧検出値EFCVが上昇して回生抑制開始電圧設定値VDLを超過し、これに伴い抑制量VDTELMが発生して回生トルクが抑制された状態が発生する状態であっても、コンバータ40の電圧検出器43bの電圧検出値EFCDは、所定の設定値(たとえば回生抑制開始電圧設定値VDLと等しい値)を超過していないために、電力貯蔵装置60への回生電力吸収を行えない場合が発生する。
 本発明の構成では、インバータ50からの抑制量VDTELMに基づいて電力貯蔵装置60への充電(回生電力吸収)を行うので、上記した不都合は発生しないため、抑制量VDTELMがわずかでも生じた場合には、より多くのブレーキエネルギーを回収することが可能となり、抑制量VDTELMを抑制することができる。これにより回生ブレーキが抑制される頻度が軽減されるので、機械ブレーキの動作頻度を低下させることができるのでブレーキシューの磨耗を低減することができる。
 また、本発明の構成では、充電電流指令IREF1と、放電電流指令IREF2とを、選択部83で力行回生状態信号PBCにより切り替えて充放電電流指令IREFを生成する構成としたので、インバータ50の制御状態(力行状態/回生状態)に応じて最適に充電電流指令あるいは放電電流指令を生成して選択し、コンバータ40を制御することができる。
 次に、充電電力指令PREF1の生成に関して留意する点を以下に説明する。図6において、回生抑制電力PSBよりも電力貯蔵装置60への充電電力指令である充電電力指令PREF1が大きくなるように充放電電流指令生成部82を構成することが好適である。
 この理由は、以下の通りである。図7は、本発明の実施の形態1における回生ブレーキ時の電力フローを説明する図である。図7に示すとおり、インバータ50から出力する電力(回生電力)をPV、コンバータ40を介して電力貯蔵装置60に充電する電力(回生吸収電力)をPD、集電装置2を介して架線1へ流出する電力(架線回生電力)をPPと定義する。
 なお、回生電力PVは、回生トルク指令PTRと電気車の速度VEL(電動機71の回転速度と同義)に基づき生じる値である。また、回生電力PVは、主幹制御器10からの運転指令信号MC等に基づき生成された要求回生トルク指令PTRSと電気車の速度VEL(電動機71の回転速度と同義)に基づく要求回生電力PCから、抑制量VDTELMと電気車の速度VEL(電動機71の回転速度と同義)に基づく回生抑制電力PSBを差し引いた値である。
 図7において、回生ブレーキ中にインバータ50の抑制量VDTELMが生じている場合、これをゼロにして回生トルクの抑制状態を解消するには、架線1に回生できない分の電力である回生抑制電力PSBと等しい電力を回生吸収電力PDとして電力貯蔵装置60が吸収すればよい。
 ここで、充電電力指令PREF1を、回生抑制電力PSBと等しい値に設定した場合を考えると、以下の挙動となり、上記で意図したようには動作しない。
 動作状態例として、コンバータ40を停止している状態であって、架線1に回生負荷が500kW程存在している状態において、インバータ50が要求回生電力PC=1000kWで回生ブレーキ運転しているケースを想定する。このときの動作状態は以下となる。
 要求回生電力PC=1000kW、架線回生電力PP=500kW、回生電力PV(=PC-PSB)=500kW、回生抑制電力PSB=500kW、回生吸収電力PD=0kW。
 このとき、コンバータ40の運転を開始して、充電電力指令PREF1を回生抑制電力PSBと等しい500kWとして運転すると、コンバータ40は回生吸収電力PDとして電力貯蔵装置60に500kWを充電するよう動作する。
 この直後、回生吸収電力PDが500kWとなることで、インバータ50からみた回生負荷が増加することになり、回生可能な電力が増加し、回生抑制電力PSBが500kWから減少することになる。ところが、充電電力指令PREF1も回生抑制電力PSBと等しくなるように設定しているために当初の500kWから減少することになるので、回生吸収電力PDも500kWから減少してしまう。
 結局、回生抑制電力PSBと回生吸収電力PDがバランスする点である回生抑制電力PSB=250kW、回生吸収電力PD=250kWの動作点で平衡することになる。すなわち、平衡後の動作状態は、要求回生電力PC=1000kW、架線回生電力PP=500kW、回生電力PV(=PC-PSB)=750kW、回生抑制電力PSB=250kW、回生吸収電力PD=250kWとなる。なお、初期状態から平衡状態に至る動きはごく短時間(数十ms)に生じる過渡的現象である。
 以上のように、充電電力指令PREF1を回生抑制電力PSBと等しい値に設定した場合、回生吸収電力PDが不足して回生抑制電力PSB(抑制量VDTELM)をゼロにはできない。
 上記不具合を回避するためには、充電電力指令PREF1を、回生抑制電力PSBよりも大きく設定することが好ましい。一例として、充電電力指令PREF1を回生抑制電力PSBの9倍に設定した場合を例にして以下に説明する。
 動作状態例としては、前述のケースと同じく、コンバータ40を停止している状態であって、架線1の回生負荷が500kWである状態において、インバータ50を要求回生電力PC=1000kWの状態で回生ブレーキ運転しているケースを想定する。このときの動作状態は、上述の場合と同じく以下である。
 要求回生電力PC=1000kW、架線回生電力PP=500kW、回生電力PV(=PC-PSB)=500kW、回生抑制電力PSB=500kW、回生吸収電力PD=0kW。
 このとき、コンバータ40の運転を開始して、充電電力指令PREF1をPSBの9倍である4500kWに設定すると、コンバータ40は回生吸収電力PDとして電力貯蔵装置60に4500kWを充電するよう動作する。
 この直後、回生吸収電力PDが4500kWとなることで、インバータ50からみた回生負荷が増加することになり、回生可能な電力が増加し、回生抑制電力PSBが500kWから減少することになる。これに応じて、回生抑制電力PSBの9倍に設定した充電電力指令PREF1も4500kWから減少することになるので、回生吸収電力PDも4500kWから減少する。
 結局、回生抑制電力PSBと回生吸収電力PDがバランスする点である回生抑制電力PSB=50kW、回生吸収電力PD=450kWの動作点で平衡することになる。すなわち、平衡後の動作状態は、要求回生電力PC=1000kW、架線回生電力PP=500kW、回生電力PV(=PC-PSB)=950kW、回生抑制電力PSB=50kW、回生吸収電力PD=450kWとなる。
 なお、初期状態から平衡状態に至る動きは、ごく短時間(数十ms)に生じる過渡的現象であり、実際には回生吸収電力PD等が上記した4500kWに至ることはなく、速やかに上記した平衡状態に移行する。
 以上のように、充電電力指令PREF1を回生抑制電力PSBよりも大きく設定した場合、充電電力指令PREF1を回生抑制電力PSBと等しい値に設定した場合と比べて、回生吸収電力PDが大きくなり、回生電力PVも大きくなっていることがわかる。すなわち、充電電力指令PREF1を回生抑制電力PSBよりも大きく設定することで、インバータ50の抑制量VDTELMを減少させて、要求回生電力PCに対してより多くの電力を回生することができ、より多くの回生電力を電力貯蔵装置60に回収することが可能となる。これにより、電力貯蔵装置60に回収した電力を力行時等において再利用することで電気車の推進制御装置の省エネ性を高めることが可能となり、機械ブレーキの動作頻度を低下させることができるのでブレーキシューの磨耗を低減することができる。
 なお、上記では説明の容易化のために、充電電力指令PREF1を回生抑制電力PSBの9倍と設定したが、これに限定されるわけではなく、制御系の安定性が確保される限り、充電電力指令PREF1を回生抑制電力PSBよりも極力大きく設定することが好ましい。
 上記では、コンバータ制御部46の内部で回生トルクの状態を示す回生状態信号である抑制量VDTELMと速度VELとの積をとって回生抑制電力PSBを生成する構成で説明したが、これ以外の構成でもよく、たとえば、インバータ50において、回生状態信号である回生抑制電力PSBを生成し、これをコンバータ制御部46へ出力する構成としてもよい。
 なお、説明において、回生トルクの抑制状態を示す抑制量VDTELMと、回生電力の抑制状態を示す回生抑制電力PSBとを総称して指す場合は、回生状態信号と記している。
 また、回生抑制信号をインバータ50から直接にコンバータ40に入力するこれまで説明した方法の他に、インバータ50が回生状態信号を図示しない外部の統括制御装置に送信し、この統括制御装置が、コンバータ40に対して、インバータ50の回生状態信号を送信する構成としてもよい。
実施の形態2.
 図8は、本発明の実施の形態2における充電電流指令生成部82の構成例を示す図である。図8に示すように、充電電流指令生成部82は、充電電流指令演算部82bから構成される。このように、回生抑制電力PSBから直接ゲインテーブル等を介して、充電電流指令IREF1を生成する構成としてもよい。
 以上に説明したように、本実施の形態にかかる充電電流指令生成部82は、充電電流指令演算部82bによって、回生抑制電力PSBから充電電流指令IREF1を生成するようにしたので、実施の形態1において存在していた除算器88を削除することができ、演算部の簡略化を図ることが可能となる。
実施の形態3.
 図9は、本発明の実施の形態3における充電電流指令生成部82の構成例を示す図である。図9に示すように、充電電流指令生成部82を、比例積分制御器82cから構成するようにして、回生抑制電力PSBを入力し、比例積分要素を介して、充電電流指令IREF1を生成する構成としてもよい。
 以上に説明したように、本実施の形態にかかる充電電流指令生成部82は、比例積分制御器82cによって、回生抑制電力PSBから充電電流指令IREF1を生成するようにしたので、実施の形態1の構成例と比較して、回生抑制電力PSBが完全にゼロになるような充電電流指令IREF1を生成することができるので、より多くの回生電力を電力貯蔵装置60に回収することが可能となる。
実施の形態4.
 図10は、本発明の実施の形態4における複数台のインバータ装置、コンバータ装置を含む電気車における構成例を示す図である。図10には、4両の電気車で列車編成が構成されている例を示しており、列車は、1両目車両101と2両目車両102と3両目車両103と4両目車両104とから構成されている。
 1両目車両101には、No.1のコンバータ装置40-1とNo.1の電力貯蔵装置61とが搭載され、2両目車両102には、No.1のインバータ装置50-1が搭載され、3両目車両103には、No.2のインバータ装置50-2が搭載され、4両目車両104には、No.2のコンバータ装置40-2とNo.2の電力貯蔵装置62とが搭載される。
 No.1のコンバータ装置40-1、No.1の電力貯蔵装置61、No.1のインバータ装置50-1、No.2のインバータ装置50-2、No.2のコンバータ装置40-2、No.2の電力貯蔵装置62の構成は、以下に説明する部分を除いては、実施の形態1で説明したコンバータ装置40、インバータ装置50、電力貯蔵装置60の構成と同様である。
 なお、本実施の形態では4両の電気車において、インバータ装置とコンバータ装置と電力貯蔵装置とがそれぞれ2台搭載されている構成例を示すが、台数や構成はこれに限られず、複数のコンバータ装置と複数のインバータ装置と複数の電力貯蔵装置を含んで構成されていれば同様の考え方を適用できる。
 コンバータ装置40-1、40-2と電力貯蔵装置61、62は、実施の形態1に示したように接続され、コンバータ装置40-1、40-2の正側端子P1とインバータ装置50-1、50-2の正側端子Pは、集電装置2を介して架線1に共通に接続される。コンバータ装置40-1、40-2の負側端子N1とインバータ装置50-1、50-2の負側端子Nは、車輪3を介してレール4に共通に接続される。
 インバータ装置50-1、50-2からは、それぞれ制御信号VC1、VC2が出力され、それぞれがコンバータ装置40-1とコンバータ装置40-2とに入力される。制御信号VC1、VC2の内容は、実施の形態1に示したものと同じである。
 図11は、実施の形態4におけるコンバータ制御部46aの構成例を示す図である。図11に示すコンバータ制御部46aが、それぞれのコンバータ40-1、40-2に搭載される。図11に示すように、コンバータ制御部46aには、制御指令VC1に含まれる抑制量VDTELM1と制御指令VC2に含まれる抑制量VDTELM2とが入力され、加算器110ではこれらの和を取り、抑制量VDTELMを生成する。乗算器81では抑制量VDTELMと速度VELとを掛け合わせ、回生抑制電力PSBを生成出力する。これ以降は実施の形態1で説明を行ったので割愛する。
 さらに、コンバータ制御部46aには、制御指令VC1に含まれる力行回生状態信号PBC1と制御指令VC2に含まれる力行回生状態信号PBC2とが入力され、論理和回路113ではこれらの論理和を取り、力行回生状態信号PBCを生成する。これ以降は実施の形態1で説明を行ったので割愛する。
 さらに、コンバータ制御部46aには、制御指令VC1に含まれるインバータ50-1、50-2の入力電流ISV1と架線電圧ESV1、制御指令VC2に含まれるインバータ50-1、50-2の入力電流ISV2と架線電圧ESV2とが入力され、加算器111が入力電流ISV1と入力電流ISV2との和を取り、その結果を入力電流ISVとして出力し、加算器112は架線電圧ESV1と架線電圧ESV2との和を取り、その結果を除算器114で2(列車中のコンバータ40の台数)で割り平均化し、架線電圧ESVとして出力する。入力電流ISVと架線電圧ESVは、乗算器85で乗算し、その結果を除算器115で2(列車中のコンバータ40の台数)で割ることで平均化し、力行電力PLMXを生成する。
 上記のように生成した回生抑制電力PSBと力行回生状態信号PBCと力行電力PLMXとを使用して実施の形態1と同じように充放電電流指令IREFを生成して、コンバータ40を制御する。
 上記のように構成することで、従来例と比較して以下の効果がある。従来の構成である架線電圧あるいはコンデンサ電圧と所定値との偏差に基づいて電力貯蔵装置への充電電流の指令を決定する方式では、インバータ装置やコンバータ装置、電力貯蔵装置が列車編成中に複数台存在する場合、それぞれの装置が個別に有する架線電圧あるいはコンデンサ電圧検出器の検出電圧を基準にインバータ装置の回生トルク抑制量、コンバータ装置の回生吸収電力を制御することになる。しかしながら、電圧検出器の検出値には、これまでに説明したとおり、誤差が存在する。このため、回生ブレーキ時において架線電圧やコンデンサ電圧が上昇した場合において、装置毎に所定の設定値との関係(所定の設定値を超過したか否か、あるいは超過の程度)が異なることになるので、各コンバータ装置の回生吸収電流値はばらつくことになり、各コンバータ装置や電力貯蔵装置の稼働状況にアンバランスが生じることになる。つまり、同一の架線1に接続されたシステムであっても、真値より低めに架線電圧やコンデンサ電圧を検出する電圧検出器を有したコンバータ装置は、回生吸収電力が少なくなり、高めに架線電圧やコンデンサ電圧を検出する電圧検出器を有したコンバータ装置は、回生吸収電力が大きくなる。
 また架線電圧やコンデンサ電圧が所定の設定値の近傍に存在する場合は、検出値が所定の設定値を超過しているコンバータ装置と検出値が所定の設定値を下回っているコンバータ装置が発生し、一部のコンバータ装置のみが回生電力吸収動作を行い稼動状態となるケースも発生する。このようにコンバータ装置と電力貯蔵装置の稼動状態にばらつきが生じると、稼動状態が多い装置の寿命が短くなる等の問題が生じる。
 また、インバータが回生ブレーキ中にコンデンサ電圧が所定の設定値を超過して、回生トルク抑制量が生じているにも関わらず、コンバータ装置のコンデンサ電圧は所定の設定値を下回った状態となり、回生電力吸収動作を行わないケースも生じる。このようなケースでは、不要に回生トルクが抑制されたままとなるので、機械ブレーキシューの磨耗や、回生電力の無駄が発生する。
 本実施の形態4に示した構成では、複数のインバータ50-1、50-2のそれぞれの電圧検出器53bの検出特性のばらつき等に起因して、複数のインバータ50-1、50-2が、それぞれが異なる抑制量VDTELMを生じた場合において、各コンバータ40-1、40-2は、複数のインバータ50-1、50-2の抑制量VDTELMの和に相当する充電電流指令IREF1をそれぞれで生成できるので、それぞれのコンバータ40-1、40-2で回生吸収の電力を等しく分担することができる。このとき各コンバータ40-1、40-2の回生吸収電力PDは等しくなるので、複数のコンバータ40-1、40-2と電力貯蔵装置60の稼動状態を揃えることが可能となり、一部のコンバータ40-1、40-2と電力貯蔵装置60に負荷が集中したりすることを回避できる。
 また、複数のインバータ50-1、50-2のうちの何れかに抑制量VDTELMを生じた時点で、各コンバータ40は、それぞれ充電電流指令IREF1を生成してコンバータ40-1、40-2と電力貯蔵装置60への回生電力の吸収を行うことができるので、一部のコンバータ装置のみが稼動状態となるケースを回避できる。
 以上に説明したように、本実施の形態にかかる電気車の推進制御装置は、各コンバータ40-1、40-2が複数のインバータ50-1、50-2の抑制量VDTELMを入力として充電電流指令IREF1を生成するようにしたので、複数の車両からなる列車編成中に複数のインバータ50-1、50-2、コンバータ40-1、40-2、および電力貯蔵装置60が搭載されている場合においても、より多くの回生電力を電力貯蔵装置60に回収することが可能となる。これにより、電力貯蔵装置60に回収した電力を力行時等で再利用することで電気車の推進制御装置の省エネを改善することが可能となり、機械ブレーキの動作頻度を低下させることができるのでブレーキシューの磨耗を低減することができる。さらに一部のコンバータ装置のみが稼動状態となるケースを回避でき、また、一部のコンバータ40と電力貯蔵装置60に負荷が集中したりすることを回避できるため、稼動状態のばらつきに起因する装置の短寿命化等の問題を解消できる。
 なお、以上の説明では、コンバータ制御部46aで抑制量VDTELMと速度VELとの積に基づき回生抑制電力PSBを生成する構成で説明したが、これ以外の構成でもよく、たとえば、インバータ50の内部で、回生抑制電力PSBを生成し、これをコンバータ制御部40aへ出力する構成としてもよい。
 また、図11では、コンバータ制御部46aにおいて、制御指令VC1に含まれる回生状態信号である抑制量VDTELM1と制御指令VC2に含まれる回生状態信号である抑制量VDTELM2との和を演算して、抑制量VDTELMを生成しているが、制御指令VC1に含まれる回生状態信号と制御指令VC2に含まれる回生状態信号のうち大きいほうを抽出して制御に使用する回生状態信号としてもよい。
 このように構成しても、複数のうちのインバータ50のうちの何れかに抑制量VDTELMを生じた時点で、各コンバータ40は、それぞれ充電電流指令IREF1を生成してコンバータ40と電力貯蔵装置60への回生電力の吸収を行うことができるので、一部のコンバータ装置のみが稼動状態となるケースを回避できる。
 さらに、図11では、コンバータ制御部46aにおいて、制御指令VC1に含まれる回生状態信号である抑制量VDTELM1と制御指令VC2に含まれる回生状態信号である抑制量VDTELM2との和を演算して、抑制量VDTELMを生成しているが、制御指令VC1に含まれる回生状態信号と制御指令VC2に含まれる回生状態信号の平均値を演算して制御に使用する回生状態信号としてもよい。
 このように構成しても、複数のうちのインバータ50のうちの何れかに抑制量VDTELMを生じた時点で、各コンバータ40はそれぞれ充電電流指令IREF1を生成してコンバータ40と電力貯蔵装置60への回生電力の吸収を行うことができるので、一部のコンバータ装置のみが稼動状態となるケースを回避できる。
 この他、各インバータ50の回生状態信号を、各インバータ50から直接に各コンバータ40に入力するこれまで説明した方法の他に、各インバータ50が図示しない外部の統括制御装置に回生状態信号を送信し、この統括制御装置が、各コンバータ40に対して、各インバータ50の回生状態信号を送信する構成としてもよい。このようにすれば、個々のインバータ50と個々のコンバータ40を配線で接続する場合に比べて、各インバータ50と各コンバータ40とを接続する配線の数を減らすことができる。
 なお、各インバータ50の回生状態信号の加算演算、最大値の抽出、平均値の演算等は、上記した統括制御装置にて実施し、その演算結果を各コンバータ制御部46aに送信する構成としてもよい。このようにすれば、コンバータ制御部46aにてインバータの台数に応じた加算演算、最大値の抽出、平均値の演算をする必要がなくなるので演算量を減らすことができるほか、列車中のインバータ50の台数の変動による演算構成の差異(平均をとる場合の分母の違い等)は統括制御装置側で負担することができるので、各コンバータ制御部46aの構成を同じにすることができる。
 本発明の実施の形態は、以上に説明した構成に限定されず、各インバータ50の回生トルクの抑制状態あるいは回生電力の抑制状態を示す量である回生状態信号そのもの、あるいは回生状態信号に基づいて得た加算値、最大値、平均値等を、各コンバータ制御部46aが認識できる構成であればよい。
 さらに、上記の説明では、コンバータ制御部46aには、制御指令VC1に含まれるインバータ50の入力電流ISV1と、制御指令VC2に含まれるインバータ50の入力電流ISV2とが入力され、これらの平均値に基づき力行電力PLMXを演算する構成としていたが、各インバータ50から外部の統括制御装置に対して入力電流を送信し、統括制御装置にてこれらの平均値の演算を行い、演算された平均値に基づいて力行電力PLMXを演算して各コンバータ制御部46aに入力する構成としてもよい。
 このようにすれば、コンバータ制御部46aにてコンバータ40の台数に応じた平均値の演算をする必要がなくなるので演算量を減らすことができるほか、列車中のコンバータ40の台数の変動による演算構成の差異(平均をとる場合の分母の違い等)は統括制御装置側で負担することができるので、各コンバータ制御部46aの構成を同じにすることができる。
 インバータ50と電動機71の組が複数存在する場合、コンバータ制御部46aは、複数のインバータ50の入力電力の和に基づいて放電電流指令IREF2を生成するように構成するのが好ましい。
 コンバータ40と電力貯蔵装置60の組が複数存在する場合、それぞれのコンバータ制御部46aは、インバータ50の入力電力をコンバータ40の台数で平均化した値に基づいて放電電流指令IREF2を生成するのが好ましい。
 コンバータ40と電力貯蔵装置60の組が複数存在し、尚且つインバータ50と電動機71の組が複数存在する場合、それぞれのコンバータ制御部46aは、入力された複数のインバータ50の入力電力の和に基づいて放電電流指令IREF2を生成するのが好ましい。
 コンバータ40と電力貯蔵装置60の組が複数存在し、尚且つインバータ50と電動機71の組が複数存在する場合、それぞれのコンバータ制御部46aは、入力された複数のインバータ50の入力電力の和をコンバータ40の台数で平均化した値に基づいて放電電流指令IREF2を生成するのが好ましい。
 インバータ50とコンバータ40と電力貯蔵装置60は、それぞれが個別の装置であるとして図示し説明したが、これらを同一の収納箱に収納する等、一体とした装置として構成しても構わない。
 なおこれまでの実施の形態の説明では、例えば図4(a)に示すように、運転指令信号MCがトルク指令生成部56aに入力され、トルク指令生成部56aでは、運転指令信号MCに含まれるブレーキ力の指令等に基づいて、電動機71が発生すべき回生ブレーキトルクの指令となる要求回生トルク指令PTRSを生成する構成として説明した。また、要求回生トルク指令PTRSと抑制量VDTELMとは、減算器56dに入力され、減算器56dではこれらの差をとり、回生トルク指令PTRとして出力する構成として説明した。次に、回生トルク指令PTRは、トルク制御部56eに入力され、トルク制御部56eは、回生トルク指令PTRに基づいて電動機71の発生する回生トルクが回生トルク指令PTRに一致するようにインバータ回路55へのオンオフ信号IGCを生成する構成として説明した。すなわち、運転指令信号MCと電圧検出値EFCVとに基づいて電動機のトルクを所望に制御する構成を例示して説明した。
 当業者周知のとおり、電動機のトルクは電動機の電流と直接的に関係がある。したがって、例えば図4(b)ように、上記に説明したトルクを制御する構成を、電動機71の電流を制御する構成に置き換えることももちろん可能である。つまり、トルクに相当する量を、電動機71の電流に相当する量に置き換えても発明を実施できる。この場合、トルク指令生成部65aは、電流指令生成部56aと読み替える。同様に、要求回生トルク指令PTRSは要求回生電流指令PIRS、回生トルク指令PTRは回生電流指令PIR、トルク制御部56eは電流制御部56eと読み替える。
 したがって回生状態信号である回生トルクの抑制状態を示す抑制量VDTELMは、回生電流の抑制状態を示す量でもある。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。
 以上のように、本発明は、電力貯蔵デバイスを応用した電気車の推進制御装置に適用可能であり、特に、回生ブレーキ時に生じる回生電力の電力貯蔵装置への回収を効率的に行うことができることが可能な発明として有用である。
 1 架線
 2 集電装置
 3 車輪
 4 レール
 10 主幹制御器
 40 コンバータ装置
 40-1 No.1のコンバータ装置
 40-2 No.2のコンバータ装置
 41,51 リアクトル
 42,52 フィルタコンデンサ
 43a,43b,43c,53a,53b 電圧検出器
 44 コンバータ回路
 44H,44L スイッチング素子
 45 平滑リアクトル
 46,46a コンバータ制御部
 47,57 電流検出器
 50 インバータ装置
 50-1 No.1のインバータ装置
 50-2 No.2のインバータ装置
 54U,54V,54W,54X,54Y,54Z スイッチング素子
 55 インバータ回路
 56 インバータ制御部
 56a トルク指令生成部、電流指令生成部
 56b,56d 減算器
 56bb 負値カットリミッタ
 56c ゲイン部
 56e トルク制御部、電流制御部
 60 電力貯蔵装置
 61 No.1の電力貯蔵装置
 62 No.2の電力貯蔵装置
 71 電動機
 81,85 乗算器
 82 充電電流指令生成部
 82a 充電電力指令演算部
 82b 充電電流指令演算部
 82c 比例積分制御器
 83 選択部
 84 電流制御部
 86 最大放電電流設定部
 87 リミッタ部
 88,89 除算器
 101 1両目車両
 102 2両目車両
 103 3両目車両
 104 4両目車両
 110,111,112 加算器
 113 論理和回路
 114,115 除算器
 DGC,IGC オンオフ信号
 EFCD,EFCV フィルタコンデンサ電圧検出値
 ESD,ESV,ESV1,ESV2 架線電圧
 IB コンバータ出力電流
 IBM 最大放電電流設定値(許容最大電流値)
 IREF 充放電電流指令(充放電電流指令値)
 IREF1 充電電流指令(充電電流指令値)
 IREF2 放電電流指令(放電電流指令値)
 IREFMAX 放電電流上限値
 ISV,ISV1,ISV2 入力電流
 MC 運転指令信号
 N,N1 負側端子
 P,P1 正側端子
 P2,N2 直流出力端子
 PBC,PBC1,PBC2 力行回生状態信号(インバータ状態信号)
 PC 要求回生電力
 PD 回生吸収電力
 PLMX 力行電力
 PP 架線回生電力
 PREF1 充電電力指令
 PSB 回生抑制電力
 PTR 回生トルク指令
 PIR 回生電流指令
 PTRS 要求回生トルク指令
 PIRS 要求回生電流指令
 PV 回生電力
 VB コンバータ出力電圧
 VC,VC1,VC2 制御信号
 VDL 回生抑制開始電圧設定値
 VDTELM,VDTELM1,VDTELM2 回生トルク抑制量(回生状態信号)
 VEL 速度

Claims (22)

  1.  直流電源に接続されたインバータ装置と、前記インバータ装置の出力に接続された電動機と、前記インバータ装置の入力に接続されたコンバータ装置と、前記コンバータ装置の出力に接続された電力貯蔵装置を有し、前記電動機の力行電力あるいは回生電力の一部を前記電力貯蔵装置から放電あるいは前記電力貯蔵装置へ充電する構成とした電気車の推進制御装置であって、
     前記コンバータ装置は、
     前記回生電力、あるいはこれと等価な回生トルク、回生電流の抑制状態を示す信号としての回生状態信号に基づいて、前記コンバータ装置が前記電力貯蔵装置を充電する電流の指令値である充電電流指令値を生成し、前記充電電流指令値に基づき、前記コンバータ装置の充放電電流指令値を生成して制御を行うコンバータ制御部を有したこと、
     を特徴とする電気車の推進制御装置。
  2.  前記回生状態信号は、
     前記インバータ装置が前記電動機の発生する回生電力を所定値から抑制する量である回生電力抑制量、回生電力抑制量と等価な回生トルクを所定値から抑制する量である回生トルク抑制量、または回生電力抑制量と等価な回生電流を所定値から抑制する量である回生電流抑制量であることを特徴とする請求項1に記載の電気車の推進制御装置。
  3.  前記コンバータ制御部は、前記回生トルク抑制量あるいは前記回生電力抑制量に基づき、前記充電電流指令値を生成することを特徴とする請求項2に記載の電気車の推進制御装置。
  4.  前記コンバータ制御部は、前記回生トルク抑制量と前記電動機の回転数あるいは電気車の速度に相当する量との積に基づいて前記回生電力抑制量を生成して、これに基づき前記充電電流指令値を生成することを特徴とする請求項2に記載の電気車の推進制御装置。
  5.  前記コンバータ制御部は、前記回生状態信号を増幅した値に基づき前記充電電流指令値を生成することを特徴とする請求項1に記載の電気車の推進制御装置。
  6.  前記コンバータ制御部は、前記回生状態信号を増幅した値に基づき前記充電電流指令値を生成し、
     前記増幅した値は、前記回生電力抑制量よりも前記電力貯蔵装置への充電電力が大きくなるような値に設定されていることを特徴とする請求項2に記載の電気車の推進制御装置。
  7.  前記インバータ装置と前記電動機の組が複数存在する場合、前記コンバータ制御部は、
     複数の前記インバータ装置の前記回生状態信号に基づいて前記充電電流指令値を生成することを特徴とする請求項1に記載の電気車の推進制御装置。
  8.  前記インバータ装置と前記電動機の組が複数存在する場合、前記コンバータ制御部は、
     複数の前記インバータ装置の前記回生状態信号の和に基づいて前記充電電流指令値を生成することを特徴とする請求項1に記載の電気車の推進制御装置。
  9.  前記インバータ装置と前記電動機の組が複数存在する場合、前記コンバータ制御部は、
     複数の前記インバータ装置の前記回生状態信号のうち最も大きいものに基づいて前記充電電流指令値を生成することを特徴とする請求項1に記載の電気車の推進制御装置。
  10.  前記インバータ装置と前記電動機の組が複数存在する場合、前記コンバータ制御部は、
     複数の前記インバータ装置の前記回生状態信号の平均値に基づいて前記充電電流指令値を生成することを特徴とする請求項1に記載の電気車の推進制御装置。
  11.  前記コンバータ装置と前記電力貯蔵装置の組が複数存在する場合、それぞれの前記コンバータ制御部は、
     前記インバータ装置が生成する前記回生状態信号に基づいて前記充電電流指令値を生成することを特徴とする請求項1に記載の電気車の推進制御装置。
  12.  前記コンバータ装置と前記電力貯蔵装置の組が複数存在し、尚且つ前記インバータ装置と前記電動機の組が複数存在する場合、複数の前記コンバータ制御部は、
     ぞれぞれが、複数の前記インバータ装置の前記回生状態信号に基づいて前記充電電流指令値を生成することを特徴とする請求項1に記載の電気車の推進制御装置。
  13.  前記コンバータ装置と前記電力貯蔵装置の組が複数存在し、尚且つ前記インバータ装置と前記電動機の組が複数存在する場合、複数の前記コンバータ制御部は、
     ぞれぞれが、複数の前記インバータ装置の前記回生状態信号の和に基づいて前記充電電流指令値を生成することを特徴とする請求項1に記載の電気車の推進制御装置。
  14.  前記コンバータ装置と前記電力貯蔵装置の組が複数存在し、尚且つ前記インバータ装置と前記電動機の組が複数存在する場合、複数の前記コンバータ制御部は、
     ぞれぞれが、複数の前記インバータ装置の前記回生状態信号のうち最も大きいものに基づいて前記充電電流指令値を生成することを特徴とする請求項1に記載の電気車の推進制御装置。
  15.  前記コンバータ装置と前記電力貯蔵装置の組が複数存在し、尚且つ前記インバータ装置と前記電動機の組が複数存在する場合、複数の前記コンバータ制御部は、
     ぞれぞれが、複数の前記インバータ装置の前記回生状態信号の平均値に基づいて前記充電電流指令値を生成することを特徴とする請求項1に記載の電気車の推進制御装置。
  16.  直流電源に接続されたインバータ装置と、前記インバータ装置の出力に接続された電動機と、前記インバータ装置の入力に接続されたコンバータ装置と、前記コンバータ装置の出力に接続された電力貯蔵装置を有し、前記電動機の力行電力あるいは回生電力の一部を前記電力貯蔵装置から充放電する構成とした電気車の推進制御装置であって、
     前記コンバータ装置は、
     前記インバータ装置の入力電力に基づいて、前記コンバータ装置が前記電力貯蔵装置を放電する電流の指令値である放電電流指令値を生成し、前記放電電流指令値に基づき、前記コンバータ装置の充放電電流指令値を生成して制御を行うコンバータ制御部を有したことを特徴とする電気車の推進制御装置。
  17.  前記コンバータ制御部は、
     前記インバータ装置の入力電力に基づいて放電電流上限値を生成し、前記電力貯蔵装置の許容最大電流値と前記放電電流上限値の小さいほうを前記放電電流指令値として生成することを特徴とする請求項16に記載の電気車の推進制御装置。
  18.  前記インバータ装置と前記電動機の組が複数存在する場合、前記コンバータ制御部は、
     複数の前記インバータ装置の入力電力の和に基づいて前記放電電流指令値を生成することを特徴とする請求項16に記載の電気車の推進制御装置。
  19.  前記コンバータ装置と前記電力貯蔵装置の組が複数存在する場合、それぞれの前記コンバータ制御部は、
     前記インバータ装置の入力電力を前記コンバータ装置の台数で平均化した値に基づいて前記放電電流指令値を生成することを特徴とする請求項16に記載の電気車の推進制御装置。
  20.  前記コンバータ装置と前記電力貯蔵装置の組が複数存在し、尚且つ前記インバータ装置と前記電動機の組が複数存在する場合、それぞれの前記コンバータ制御部は、
     入力された複数の前記インバータ装置の入力電力の和に基づいて前記放電電流指令値を生成する
    ことを特徴とする請求項16に記載の電気車の推進制御装置。
  21.  前記コンバータ装置と前記電力貯蔵装置の組が複数存在し、尚且つ前記インバータ装置と前記電動機の組が複数存在する場合、それぞれの前記コンバータ制御部は、
     入力された複数の前記インバータ装置の入力電力の和を前記コンバータ装置の台数で平均化した値に基づいて前記放電電流指令値を生成する
    ことを特徴とする請求項16に記載の電気車の推進制御装置。
  22.  前記コンバータ制御部は、
     前記インバータ装置の力行運転状態あるいは回生運転状態を示すインバータ状態信号が入力され、前記インバータ状態信号に基づき、前記充電電流指令値と前記放電電流指令値のいずれかを選択して前記充放電電流指令値を生成する構成としたことを特徴とする請求項1または請求項16に記載の電気車の推進制御装置。
PCT/JP2010/061415 2009-07-15 2010-07-05 電気車の推進制御装置 WO2011007695A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020117031673A KR101363701B1 (ko) 2009-07-15 2010-07-05 전기차의 추진 제어 장치
RU2012105312/11A RU2492071C1 (ru) 2009-07-15 2010-07-05 Устройство управления ходом электромоторного вагона
CN201080031578.3A CN102470761B (zh) 2009-07-15 2010-07-05 电气列车的推进控制装置
JP2011514953A JP5111662B2 (ja) 2009-07-15 2010-07-05 電気車の推進制御装置
US13/375,702 US9221346B2 (en) 2009-07-15 2010-07-05 Propulsion control apparatus for electric motor car
EP10799754.6A EP2455252B1 (en) 2009-07-15 2010-07-05 Drive-control device for electric vehicle
CA2768235A CA2768235C (en) 2009-07-15 2010-07-05 Propulsion control apparatus for electric motor car

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2009/062813 2009-07-15
PCT/JP2009/062813 WO2011007430A1 (ja) 2009-07-15 2009-07-15 電気車の推進制御装置

Publications (1)

Publication Number Publication Date
WO2011007695A1 true WO2011007695A1 (ja) 2011-01-20

Family

ID=43449046

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/062813 WO2011007430A1 (ja) 2009-07-15 2009-07-15 電気車の推進制御装置
PCT/JP2010/061415 WO2011007695A1 (ja) 2009-07-15 2010-07-05 電気車の推進制御装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062813 WO2011007430A1 (ja) 2009-07-15 2009-07-15 電気車の推進制御装置

Country Status (7)

Country Link
US (1) US9221346B2 (ja)
EP (1) EP2455252B1 (ja)
KR (1) KR101363701B1 (ja)
CN (1) CN102470761B (ja)
CA (1) CA2768235C (ja)
RU (1) RU2492071C1 (ja)
WO (2) WO2011007430A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084673A1 (ja) * 2011-12-09 2013-06-13 三菱重工業株式会社 充放電制御装置、充電制御方法、放電制御方法、及びプログラム
JP2014057381A (ja) * 2012-09-11 2014-03-27 Denso Corp 電力変換システム
JP2016111730A (ja) * 2014-12-02 2016-06-20 トヨタ自動車株式会社 電源システム
KR20160087363A (ko) * 2015-01-13 2016-07-21 제네럴 일렉트릭 컴퍼니 차량 시스템을 위한 양방향 dc-dc 전력 컨버터
WO2018061372A1 (ja) * 2016-09-29 2018-04-05 株式会社日立製作所 鉄道車両用および鉄道車両後付け用の電力変換装置ならびにその制御方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5260718B2 (ja) * 2011-11-08 2013-08-14 ファナック株式会社 産業用ロボットの可動部の回転軸に接続されたサーボモータを駆動するサーボモータ駆動装置
JP5523639B2 (ja) * 2012-01-12 2014-06-18 三菱電機株式会社 電気車制御装置
CN103568851B (zh) * 2012-08-09 2016-06-29 中国北车股份有限公司 轨道车辆的再生制动电能吸收装置和轨道车辆
WO2014027401A1 (ja) * 2012-08-14 2014-02-20 三菱電機株式会社 列車情報管理装置および機器制御方法
DE102013202236B4 (de) * 2013-02-12 2019-01-10 Siemens Aktiengesellschaft Schienenfahrzeug
JP5968518B2 (ja) * 2013-03-06 2016-08-10 三菱電機株式会社 電気車用主変換装置
KR101491933B1 (ko) * 2013-11-19 2015-02-09 엘에스산전 주식회사 병렬 인버터 제어 장치
JP6187268B2 (ja) * 2014-01-10 2017-08-30 トヨタ自動車株式会社 電動車両
CN104467508B (zh) * 2014-12-08 2017-05-10 西安中车永电捷通电气有限公司 制动能量可回收再利用的牵引变流器及变流方法
FR3031849B1 (fr) * 2015-01-16 2017-02-17 Alstom Transp Tech Convertisseur d'alimentation reseau et/ou de sous-station de recuperation de l'energie de freinage
CN106671794B (zh) * 2015-11-11 2019-06-21 中车大连电力牵引研发中心有限公司 Dcdc主电路及电车供电电路
KR102269106B1 (ko) * 2017-11-20 2021-06-24 주식회사 엘지화학 배터리 파워 한계 값 제어 방법
US11999267B2 (en) 2021-01-20 2024-06-04 Abb Schweiz Ag Power line system with ripple generator for electric vehicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199204A (ja) 2001-12-25 2003-07-11 Toshiba Corp 電気車制御装置
JP2005278269A (ja) * 2004-03-24 2005-10-06 Railway Technical Res Inst 車両用駆動制御装置
JP2006014489A (ja) * 2004-06-25 2006-01-12 Toshiba Corp 電気車の電力変換装置
JP2008029149A (ja) * 2006-07-24 2008-02-07 Toshiba Corp 鉄道車両の蓄電装置制御方法
JP2008141877A (ja) * 2006-12-01 2008-06-19 Toshiba Corp 電気車制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19731642C1 (de) * 1997-07-23 1999-02-18 Dbb Fuel Cell Engines Gmbh Brennstoffzellenfahrzeug
JP2001157303A (ja) * 1999-11-25 2001-06-08 Hitachi Ltd 車両用電力変換器の制御装置
RU2198103C2 (ru) * 2001-01-09 2003-02-10 Кузнецов Геннадий Петрович Автономное транспортное средство с рациональным использованием электроэнергии, вырабатываемой в процессе рекуперативного торможения
JP2002305803A (ja) * 2001-04-03 2002-10-18 Nec Tokin Corp 電気車
JP3636098B2 (ja) * 2001-06-06 2005-04-06 東芝三菱電機産業システム株式会社 電力変換装置の制御回路
JP3943928B2 (ja) * 2001-12-25 2007-07-11 株式会社東芝 電力変換装置
DE112005000294B4 (de) * 2004-02-06 2023-02-09 Mitsubishi Denki K.K. Motorantriebsvorrichtung
JP2006014412A (ja) * 2004-06-23 2006-01-12 Toshiba Corp 電気車制御装置
JP4643355B2 (ja) * 2005-05-09 2011-03-02 株式会社東芝 電気車制御装置
JP4568169B2 (ja) * 2005-05-18 2010-10-27 株式会社東芝 電気車制御装置
JP2006340464A (ja) 2005-05-31 2006-12-14 Toshiba Corp 電気車
JP2007020370A (ja) * 2005-07-11 2007-01-25 Shizuki Electric Co Inc 電気車制御装置
US7368890B2 (en) * 2006-02-07 2008-05-06 Rockwell Automation Technologies, Inc. Power converter with active discharging for improved auto-restart capability
KR100970286B1 (ko) * 2006-04-25 2010-07-15 미쓰비시덴키 가부시키가이샤 전기차의 제어 장치
EP2018995A4 (en) * 2006-05-15 2013-04-24 Mitsubishi Electric Corp CONTROL DEVICE FOR ELECTRIC CAR
JP4746525B2 (ja) * 2006-11-30 2011-08-10 株式会社東芝 電気車制御装置
EP2090456B1 (en) * 2006-12-05 2016-03-09 Mitsubishi Electric Corporation Electric car control apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199204A (ja) 2001-12-25 2003-07-11 Toshiba Corp 電気車制御装置
JP2005278269A (ja) * 2004-03-24 2005-10-06 Railway Technical Res Inst 車両用駆動制御装置
JP2006014489A (ja) * 2004-06-25 2006-01-12 Toshiba Corp 電気車の電力変換装置
JP2008029149A (ja) * 2006-07-24 2008-02-07 Toshiba Corp 鉄道車両の蓄電装置制御方法
JP2008141877A (ja) * 2006-12-01 2008-06-19 Toshiba Corp 電気車制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2455252A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084673A1 (ja) * 2011-12-09 2013-06-13 三菱重工業株式会社 充放電制御装置、充電制御方法、放電制御方法、及びプログラム
JP2013123280A (ja) * 2011-12-09 2013-06-20 Mitsubishi Heavy Ind Ltd 充放電制御装置、充電制御方法、放電制御方法、及びプログラム
CN103947073A (zh) * 2011-12-09 2014-07-23 三菱重工业株式会社 充放电控制装置、充电控制方法、放电控制方法以及程序
US9419461B2 (en) 2011-12-09 2016-08-16 Mitsubishi Heavy Industruies, Ltd. Charge and discharge control device, charge control method, discharge control method, and program
CN103947073B (zh) * 2011-12-09 2016-10-12 三菱重工业株式会社 充放电控制装置、充电控制方法以及放电控制方法
JP2014057381A (ja) * 2012-09-11 2014-03-27 Denso Corp 電力変換システム
JP2016111730A (ja) * 2014-12-02 2016-06-20 トヨタ自動車株式会社 電源システム
KR20160087363A (ko) * 2015-01-13 2016-07-21 제네럴 일렉트릭 컴퍼니 차량 시스템을 위한 양방향 dc-dc 전력 컨버터
KR101938331B1 (ko) 2015-01-13 2019-04-11 제네럴 일렉트릭 컴퍼니 차량 시스템을 위한 양방향 dc-dc 전력 컨버터
WO2018061372A1 (ja) * 2016-09-29 2018-04-05 株式会社日立製作所 鉄道車両用および鉄道車両後付け用の電力変換装置ならびにその制御方法
JPWO2018061372A1 (ja) * 2016-09-29 2019-04-04 株式会社日立製作所 鉄道車両用および鉄道車両後付け用の電力変換装置ならびにその制御方法

Also Published As

Publication number Publication date
CN102470761A (zh) 2012-05-23
CA2768235A1 (en) 2011-01-20
EP2455252A4 (en) 2017-06-21
EP2455252B1 (en) 2018-04-11
RU2012105312A (ru) 2013-08-20
WO2011007430A1 (ja) 2011-01-20
US20120086369A1 (en) 2012-04-12
KR20120016670A (ko) 2012-02-24
US9221346B2 (en) 2015-12-29
EP2455252A1 (en) 2012-05-23
RU2492071C1 (ru) 2013-09-10
CN102470761B (zh) 2014-07-09
KR101363701B1 (ko) 2014-02-14
CA2768235C (en) 2013-09-24

Similar Documents

Publication Publication Date Title
WO2011007695A1 (ja) 電気車の推進制御装置
JP5209922B2 (ja) 電気鉄道システム
US9013135B2 (en) Power converting apparatus for electric motor vehicle propulsion
JP4561938B1 (ja) 電気車の駆動制御装置
JP2009072003A5 (ja)
JP5048384B2 (ja) 鉄道車両におけるバッテリ充電装置
JP4934562B2 (ja) 蓄電装置を有する車両用制御装置
JP4713690B2 (ja) 電気車の電力変換装置
JP4772718B2 (ja) 鉄道車両の駆動システム
JP5566977B2 (ja) 鉄道車両の駆動システム
JP4500217B2 (ja) 回路装置
JP2009183078A (ja) 電気車の駆動システム
JP2006014489A (ja) 電気車の電力変換装置
JP5111662B2 (ja) 電気車の推進制御装置
KR20120029716A (ko) 하이브리드 전기철도 차량의 에너지 저장 장치
JP5509442B2 (ja) 電力変換装置及び電気鉄道システム
JP5325478B2 (ja) 鉄道車両駆動システム
JP4846064B2 (ja) 電気車推進用電力変換装置
JP4948657B2 (ja) 電気車の電力変換装置
JP2011152040A (ja) 電気車の電力変換装置
JPWO2018061372A1 (ja) 鉄道車両用および鉄道車両後付け用の電力変換装置ならびにその制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080031578.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011514953

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13375702

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117031673

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010799754

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 429/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2768235

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012105312

Country of ref document: RU