WO2011004670A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2011004670A1
WO2011004670A1 PCT/JP2010/059679 JP2010059679W WO2011004670A1 WO 2011004670 A1 WO2011004670 A1 WO 2011004670A1 JP 2010059679 W JP2010059679 W JP 2010059679W WO 2011004670 A1 WO2011004670 A1 WO 2011004670A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
layer
conductivity type
collector
insulating
Prior art date
Application number
PCT/JP2010/059679
Other languages
English (en)
French (fr)
Inventor
雅史 川中
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2011521864A priority Critical patent/JP5569526B2/ja
Publication of WO2011004670A1 publication Critical patent/WO2011004670A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66265Thin film bipolar transistors

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a semiconductor device provided with a bipolar transistor.
  • the bipolar transistor is formed by sequentially laminating a first conductivity type collector layer, a second conductivity type base layer, and a first conductivity type emitter layer on a semiconductor substrate, and each of these layers is electrically connected to each other.
  • a structure in which an electrode is formed In order to obtain a high breakdown voltage in the breakdown voltage characteristic represented by the emitter-collector breakdown voltage characteristic and the base collector breakdown voltage characteristic of such a bipolar transistor, it is necessary to increase the thickness of the low concentration collector layer.
  • a substrate in which a semiconductor layer is provided on an insulating substrate typified by SOS (Semiconductor on Sapphire), or a semiconductor substrate typified by an SOI (Semiconductor on Insulator) substrate in order to reduce the capacity between the collector and the substrate.
  • SOS semiconductor on Sapphire
  • SOI semiconductor on Insulator
  • Various bipolar transistors formed using a substrate on which a semiconductor layer is provided via a buried insulating layer have been proposed.
  • Japanese Patent Application Laid-Open No. 8-97225 discloses a bipolar transistor formed using an SOI substrate.
  • the bipolar transistor in order to obtain a desired breakdown voltage characteristic, it is necessary to increase the thickness of the semiconductor layer on the insulating substrate or the buried insulating layer to several microns or more. In order to obtain high breakdown voltage characteristics, if the thickness of the semiconductor layer is increased to several microns or more, the manufacturing cost increases, and further, it is fabricated on the same wafer as the general-purpose CMOS, npn bipolar transistor, and pnp bipolar transistor that are usually used. It becomes difficult to manufacture a one-chip IC.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a semiconductor device including a high breakdown voltage bipolar transistor.
  • a bipolar transistor including an emitter region of a type, and the collector region, the base region, and the emitter region are stacked in this order from the lower layer side, the insulating layer or the insulating substrate and the collector region,
  • a semiconductor device having a second conductivity type semiconductor layer region is provided.
  • a semiconductor device capable of realizing high withstand voltage characteristics regardless of the thickness of the semiconductor layer can be provided.
  • a semiconductor device includes a semiconductor layer provided on an insulating layer on a semiconductor substrate or an insulating substrate, a first conductivity type collector region, a second conductivity type base region, and a first conductivity type.
  • the semiconductor layer region between the insulating layer or the insulating substrate and the collector region includes a region in which the second conductivity type impurity concentration is equal to the first conductivity type impurity concentration. May be.
  • the semiconductor layer region between the insulating layer or the insulating substrate and the collector region preferably has a second conductivity type impurity concentration lower than a first conductivity type impurity concentration of the collector region.
  • the semiconductor layer region between the insulating layer or the insulating substrate and the collector region may include a non-doped region into which the first conductivity type impurity is not introduced.
  • the collector region is formed by introducing a first conductivity type impurity into the upper layer side of the second conductivity type semiconductor layer on the insulating layer or the insulating substrate.
  • the second conductivity type semiconductor layer region may be a semiconductor region that is in contact with the insulating layer or the insulating substrate and reaches the first conductivity type region.
  • the base region is provided in a region surrounded by a field insulating film formed on the surface of the semiconductor layer on the insulating layer or the insulating substrate, and the collector region is provided in the field insulating region.
  • a lead region extending from below the base region to the outer edge of the field insulating film and connected to the extending portion of the collector region, and the field is electrically connected to the lead region.
  • a structure in which a collector electrode is provided on the semiconductor layer outside the insulating film can be employed.
  • a semiconductor device includes a bipolar transistor in which a first conductivity type collector region, a second conductivity type base region, and a first conductivity type emitter region are stacked in this order from the lower layer side. .
  • the collector region is formed on the second conductive type semiconductor layer on the insulating layer on the semiconductor substrate or on the insulating substrate (hereinafter, the insulating layer and the insulating substrate are collectively referred to as “insulating base”). Can be introduced by ion implantation and formed on the upper layer side of this semiconductor layer.
  • a base region and an emitter region are stacked on the collector region.
  • the semiconductor layer region thus formed between the collector region and the insulating substrate has the second conductivity type. That is, the semiconductor layer region has a conductivity type opposite to that of the collector region, and an np junction or a pn junction is formed between the semiconductor layer region and the collector region.
  • the second conductivity type semiconductor layer region between the collector region and the insulating substrate formed as described above has a second conductivity type impurity concentration lower than the first conductivity type impurity concentration of the collector region.
  • the second conductivity type semiconductor layer region is a doped region into which the first conductivity type impurity is introduced so that the first conductivity type impurity concentration is equal to or less than the second conductivity type impurity concentration, It may be a non-doped region in which the first conductivity type impurity is not introduced. That is, the semiconductor layer region of the second conductivity type has the opposite conductivity type (second conductivity type) to the conductivity type of the collector region (first conductivity type), and the first conductivity as long as it is the second conductivity type.
  • a type impurity may or may not be included.
  • the potential at the lower end of the conduction band of the lower layer region is raised with respect to the upper layer region corresponding to the collector region, and a reverse bias is applied to the base collector junction.
  • the depletion layer uniformly spreads from the upper layer side region corresponding to the collector region to the lower layer side region. This phenomenon occurs even when the emitter-collector interval (the shortest distance from the center of the emitter region to the collector electrode in the substrate plane) is increased. Therefore, with the above structure, the breakdown voltage characteristic can be improved by widening the emitter-collector interval without depending on the thickness of the semiconductor layer.
  • FIG. 1 is a cross-sectional view showing an example of an npn-type bipolar transistor in the present embodiment.
  • the bipolar transistor shown in FIG. 1 is formed using an SOI substrate in which a semiconductor layer (SOI layer) is provided on a semiconductor substrate (silicon substrate) 1 with an insulating layer (buried oxide film) 2 interposed therebetween.
  • This SOI layer is provided with a low-concentration second conductivity type layer (low-concentration p-type region) 3 on the lower layer side and a first conductivity-type collector layer (n-type collector region) 4 on the upper layer side.
  • a second conductivity type base layer (p type base region) 7 is provided on the first conductivity type collector layer 4, and a first conductivity type emitter layer (n type emitter polysilicon) is formed on the surface region of the base layer 7.
  • Layer) 8 is provided.
  • An emitter electrode 9 is provided on the emitter layer 8.
  • a second conductivity type polysilicon region (p type polysilicon region) 11 for base extraction is provided on the field oxide film 12 in the peripheral region of the second conductivity type base layer 7, a second conductivity type polysilicon region (p type polysilicon region) 11 for base extraction is provided.
  • a base electrode 6 is provided on the second conductivity type polysilicon region 11.
  • the second conductivity type polysilicon region 11 and the emitter layer 8 are insulated by an interlayer insulating film 10.
  • a first conductivity type high concentration region (n + extraction layer) 13 for extracting a collector is formed by ion implantation or the like in order to form an ohmic electrode.
  • a collector electrode 5 is provided on the first conductivity type high concentration region 13.
  • the first conductivity type means one of p-type and n-type
  • the second conductivity type means the other of p-type and n-type.
  • an embodiment in which the first conductivity type is n-type and the second conductivity type is p-type is illustrated as an embodiment of the present invention, but the present invention is not limited to this.
  • the above bipolar transistor structure can be formed as follows using an SOI substrate having a low concentration p-type layer of about 10 15 cm ⁇ 3 as an SOI layer on the buried oxide film 2.
  • a field oxide film 12 is formed on a SOI substrate by a LOCOS process in order to define a portion where a bipolar transistor is to be formed. Thereafter, phosphorus ions are implanted to form a collector layer 4 which is an n-type layer of about 10 16 cm ⁇ 3 in the upper layer region of the SOI layer. Next, high concentration phosphorus ions are selectively implanted into a part of the collector layer 4 to form an n + collector extraction layer 13. Thereafter, the collector electrode 5 is provided on the n + collector extraction layer 13.
  • the lower layer side region of the SOI layer near the buried oxide film 2 is a p-type layer doped with low-concentration boron, and the upper layer side region of the SOI layer near the base layer is ion-implanted.
  • an n-type layer (collector layer 4) doped with phosphorus is formed.
  • this p-type layer (low-concentration p-type region 3) can be set to a thickness of about 0.5 ⁇ m.
  • the base layer 7 of the bipolar transistor is formed of a diffusion or epitaxial layer.
  • the base layer side surface is surrounded by the field oxide film 12 thicker than the thickness of the base layer, and a base layer having a substantially uniform impurity concentration is formed from the center of the base layer to the field oxide film in the substrate plane direction.
  • a polysilicon layer is formed and processed to form a base drawing polysilicon region 11.
  • a high-concentration n-type polysilicon layer leading to the base layer is formed and processed to form the emitter layer 8.
  • the emitter electrode 9 is provided on the emitter layer 8
  • the base electrode 6 is provided on the base lead-out polysilicon region 11.
  • the width of the portion of the emitter layer 8 in contact with the base layer (lateral width in FIG. 1: emitter width W E ) is, for example, about 0.3 ⁇ m or so from the viewpoint of emphasizing high breakdown voltage characteristics and ease of manufacturing. It can be set above.
  • the width of the base layer 7 in the emitter-collector interval direction (lateral width in FIG. 1: base width W B ) is ensured by providing an interlayer insulating film 10 between the emitter layer 8 and the extraction polysilicon region 11. to reason, it is possible to set from for example 0.4 ⁇ m about widely or more wide emitter width W E.
  • a low concentration p-type layer 3 of about 10 15 cm ⁇ 3 is formed in the lower layer region of the SOI layer, and an upper layer region of the SOI layer.
  • the n-type layer (collector layer) 4 of about 10 16 cm ⁇ 3 the potential at the lower end of the conductor in the lower layer region of the SOI layer is raised compared to the upper layer region of the SOI layer.
  • the depletion layer spreads uniformly over the entire upper layer region and lower layer region of the SOI layer, and the highest electric field is applied in the vicinity of the high concentration n-type region 13 for collector extraction.
  • the breakdown voltage characteristics can be improved by widening the emitter-collector interval regardless of the thickness.
  • a low-concentration p-type layer 3 of about 10 15 cm ⁇ 3 is arranged in the lower layer side region of the SOI layer, and an n-type layer (collector layer) 4 of about 10 16 cm ⁇ 3 is arranged in the upper layer side region of the SOI layer.
  • the npn bipolar transistor, the spacing of the emitter electrode 9 and the collector electrode 5 (the emitter-collector spacing: ⁇ L E-C) for, indicating the emitter-collector breakdown voltage (BVCEO) and the change in the simulation calculation value of the base-collector breakdown voltage (BVCBO) (Fig. (Indicated by “ ⁇ ” (base collector breakdown voltage) and “ ⁇ ” (emitter collector breakdown voltage)).
  • the depletion layer expands in the lateral direction of the collector layer, and the respective breakdown voltage characteristics are improved.
  • the low-concentration p-type layer 3 is arranged in the lower layer region of the SOI layer and the n-type layer 4 is arranged in the upper layer region of the SOI layer, so that the lower layer side of the SOI layer is compared with the upper layer region of the SOI layer. This is probably because the potential at the lower end of the conductor in the region is raised, and the influence of the pile-up layer of the dopant impurity existing at the interface between the SOI layer and the buried oxide film is reduced.
  • the emitter-collector withstand voltage and base-collector withstand voltage of the devices that were actually prototyped are shown in Fig. 2 together with the simulation calculation values (in the figure, " ⁇ " (base collector withstand voltage) and “ ⁇ ” (Emitter collector breakdown voltage)). It can be seen that a breakdown voltage characteristic substantially equivalent to the simulation breakdown voltage characteristic is obtained in the actual device.
  • the emitter-collector breakdown voltage characteristic and the base-collector breakdown voltage characteristic of the bipolar transistor can be greatly improved while maintaining the film thickness of the semiconductor layer on the insulating substrate. Therefore, the high breakdown voltage transistor of the present invention can be fabricated in the same wafer as a general general-purpose CMOS, npn bipolar transistor, and pnp bipolar transistor, and a one-chip IC can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

 半導体基板上の絶縁層の上または絶縁性基板の上に設けられた半導体層と、第1導電型のコレクタ領域、第2導電型のベース領域および第1導電型のエミッタ領域を含むバイポーラトランジスタと、を有し、前記コレクタ領域、前記ベース領域および前記エミッタ領域は、下層側からこの順で積層配置され、前記絶縁層または前記絶縁性基板と前記コレクタ領域との間に、第2導電型半導体層領域を有する半導体装置。

Description

半導体装置
 本発明は、半導体装置に関し、特にバイポーラトランジスタを備えた半導体装置に関する。
 バイポーラトランジスタは、例えば、半導体基板に、第1導電型のコレクタ層と第2導電型のベース層と第1導電型のエミッタ層とが順番に積層して設けられ、これらの各層に個々に導通する電極が形成された構造をもつ。このようなバイポーラトランジスタのエミッタコレクタ耐圧特性やベースコレクタ耐圧特性に代表される耐圧特性において高い耐圧を得るには、低濃度コレクタ層の膜厚を厚くする必要がある。
 一方、コレクタと基板間の容量低下を図るため、SOS(Semiconductor on Sapphire)に代表される絶縁性基板上に半導体層が設けられた基板や、SOI(Semiconductor on Insulator)基板に代表される半導体基板上に埋込絶縁層を介して半導体層が設けられた基板を用いて形成された種々のバイポーラトランジスタが提案されている。例えば、特開平8-97225号公報には、SOI基板を用いて形成されたバイポーラトランジスタが開示されている。
特開平8-97225号公報
 しかしながら、上記のようなバイポーラトランジスタにおいて、所望の耐圧特性を得るには、絶縁性基板上あるいは埋込絶縁層上の半導体層の厚さを数ミクロン以上に厚くする必要がある。高い耐圧特性を得るために、この半導体層の厚さを数ミクロン以上に厚くすると、製造コストが増加し、さらに、通常用いられる汎用のCMOSやnpnバイポーラトランジスタ、pnpバイポーラトランジスタと同一ウェハ内に作り込むことが困難になり、そのためワンチップICの製造が困難になる。
 本発明は上記問題を解決するためになされたものであって、その目的は、高耐圧のバイポーラトランジスタを備えた半導体装置を提供することにある。
 本発明の一態様によれば、半導体基板上の絶縁層の上または絶縁性基板の上に設けられた半導体層と、第1導電型のコレクタ領域、第2導電型のベース領域および第1導電型のエミッタ領域を含むバイポーラトランジスタと、を有し、前記コレクタ領域、前記ベース領域および前記エミッタ領域は、下層側からこの順で積層配置され、前記絶縁層または前記絶縁性基板と前記コレクタ領域との間に、第2導電型半導体層領域を有する半導体装置が提供される。
 本発明によれば、絶縁性基板上に半導体層が設けられた基板や半導体基板上に絶縁層を介して半導体層が設けられた基板を用いて形成可能なバイポーラトランジスタ構造を有しながら、前記半導体層の厚さにかかわらず、高い耐圧特性を実現できる半導体装置を提供することができる。
本発明によるnpn型バイポーラトランジスタの一例を示す断面図である。 本発明によるnpn型バイポーラトランジスタの一例のエミッタコレクタ耐圧とベースコレクタ耐圧のエミッタコレクタ間隔依存性(実測値とシミュレーション計算値)を示す図である。
 本発明の一実施形態による半導体装置は、半導体基板上の絶縁層の上または絶縁性基板の上に設けられた半導体層と、第1導電型のコレクタ領域、第2導電型のベース領域および第1導電型のエミッタ領域を含むバイポーラトランジスタと、を有し、前記コレクタ領域、前記ベース領域および前記エミッタ領域は、下層側からこの順で積層配置され、前記絶縁層または前記絶縁性基板と前記コレクタ領域との間に、第2導電型半導体層領域を有する。
 上記半導体装置において、前記絶縁層または前記絶縁性基板と前記コレクタ領域との間の前記半導体層領域は、第2導電型不純物濃度が第1導電型不純物濃度に対して同等である領域を含んでいてもよい。
 上記半導体装置において、前記絶縁層または前記絶縁性基板と前記コレクタ領域との間の前記半導体層領域は、第2導電型不純物濃度が前記コレクタ領域の第1導電型不純物濃度より低いことが好ましい。
 上記半導体装置において、前記絶縁層または前記絶縁性基板と前記コレクタ領域との間の前記半導体層領域は、第1導電型不純物が導入されていないノンドープ領域を含んでいてもよい。
 上記半導体装置は、前記コレクタ領域が、前記絶縁層上または前記絶縁性基板上の第2導電型の前記半導体層の上層側に第1導電型不純物を導入して形成された第1導電型領域であり、前記第2導電型半導体層領域が、前記絶縁層または前記絶縁性基板に接し、前記第1導電型領域に至る半導体領域である構造をとることができる。
 上記導体装置は、前記ベース領域が、前記絶縁層上または前記絶縁性基板上の前記半導体層の表面に形成されたフィールド絶縁膜で囲まれた領域に設けられ、前記コレクタ領域が、前記フィールド絶縁膜下において、前記ベース領域下から該フィールド絶縁膜の外縁まで延在し、前記コレクタ領域の延在部に接続する引き出し領域が設けられ、該引き出し領域に電気的に接続するように、前記フィールド絶縁膜外側の前記半導体層上にコレクタ電極が設けられている構造をとることができる。
 本発明の一実施形態による半導体装置は、第1導電型のコレクタ領域、第2導電型のベース領域および第1導電型のエミッタ領域が下層側からこの順に積層配置されたバイポーラトランジスタを備えている。このコレクタ領域は、半導体基板上の絶縁層の上または絶縁性基板(以下、絶縁層と絶縁性基板を併せて「絶縁基体」という)の上の第2導電型半導体層に第1導電型不純物をイオン注入により導入してこの半導体層の上層側に形成することができる。このコレクタ領域上にベース領域およびエミッタ領域が積層される。このように形成されたコレクタ領域と絶縁基体の間の半導体層領域は、第2導電型を有する。すなわち、この半導体層領域は、コレクタ領域の導電型と反対の導電型を有し、この半導体層領域とコレクタ領域とでnp接合あるいはpn接合が形成されている。
 上記のように形成されたコレクタ領域と絶縁基体の間の第2導電型の半導体層領域は、第2導電型の不純物濃度が前記コレクタ領域の第1導電型不純物濃度より低い。
 この第2導電型の半導体層領域は、第1導電型不純物濃度が第2導電型不純物濃度と同等またはそれ以下になるように、第1導電型不純物が導入されたドープ領域であっても、第1導電型不純物が導入されていないノンドープ領域であってもよい。すなわち、この第2導電型の半導体層領域は、コレクタ領域の導電型(第1導電型)に対して反対の導電型(第2導電型)を持ち、第2導電型である限り第1導電型不純物を含んでいてもよいし、含まなくてもよい。
 このような構造にすることにより、前記絶縁基体上の半導体層において、コレクタ領域に相当する上層側領域に対して下層側領域の伝導帯下端のポテンシャルが持ち上がり、ベースコレクタ接合に逆バイアスを印加すると、コレクタ領域に相当する上層側領域から下層側領域にわたって空乏層が一様に広がる。この現象は、エミッタコレクタ間隔(基板平面におけるエミッタ領域の中央部からコレクタ電極までの最短距離)を広げた場合でも同様に生じる。したがって、上記構造によって、前記半導体層の厚みによらないで、エミッタコレクタ間隔を広げることにより、耐圧特性を向上させることできる。
 以下、図面を参照して、本発明の実施の形態について詳細に説明する。
 図1は、本実施形態におけるnpn型バイポーラトランジスタの一例を示す断面図である。
 図1に示すバイポーラトランジスタは、半導体基板(シリコン基板)1上に絶縁層(埋込酸化膜)2を介して半導体層(SOI層)が設けられたSOI基板を用いて形成される。このSOI層には、下層側に低濃度第2導電型層(低濃度p型領域)3、上層側に第1導電型のコレクタ層(n型コレクタ領域)4が設けられる。第1導電型コレクタ層4上には第2導電型のベース層(p型ベース領域)7が設けられ、このベース層7の表面領域には第1導電型のエミッタ層(n型エミッタポリシリコン層)8が設けられている。このエミッタ層8上にはエミッタ電極9が設けられている。第2導電型のベース層7の周辺領域のフィールド酸化膜12上にはベース引き出し用の第2導電型ポリシリコン領域(p型ポリシリコン領域)11が設けられている。この第2導電型ポリシリコン領域11上には、ベース電極6が設けられている。第2導電型ポリシリコン領域11とエミッタ層8は層間絶縁膜10で絶縁されている。コレクタ層4の周辺領域には、オーミック性電極を形成するために、イオン注入などによりコレクタ引き出し用の第1導電型高濃度領域(n引き出し層)13が形成されている。この第1導電型高濃度領域13上にはコレクタ電極5が設けられている。
 なお、本発明において、第1導電型とはp型とn型の一方を意味しており、第2導電型とはp型とn型の他方を意味する。以下においては、本発明の一実施形態として、第1導電型をn型とし、第2導電型をp型としたものを例示するが、この形態に限定されない。
 上記のバイポーラトランジスタ構造は、埋込酸化膜2上に1015cm-3程度の低濃度p型層をSOI層として有するSOI基板を用いて、下記の通り形成することができる。
 まず、SOI基板上に、バイポーラトランジスタを形成する部分を規定するために、LOCOSプロセスにてフィールド酸化膜12を形成する。その後、リンのイオン注入を行い、SOI層の上層側領域に1016cm-3程度のn型層であるコレクタ層4を形成する。次に、このコレクタ層4の一部分に選択的に高濃度リンイオン注入を行い、nコレクタ引き出し層13を形成する。その後、コレクタ電極5を前記nコレクタ引き出し層13上に設ける。
 このようにして、SOI層の埋込酸化膜2に近い下層側領域は低濃度ボロンでドーピングされたp型層となっており、このSOI層のベース層に近い上層側領域は、イオン注入法でリンがドーピングされたn型層(コレクタ層4)となっている。本例の場合、このp型層(低濃度p型領域3)は、0.5μm程度の厚みに設定することができる。
 次に、ボロンのイオン注入を行い、バイポーラトランジスタのベース層7を形成する。なお、ベース層は、拡散またはエピタキシャル層で形成してもよい。このようにして、ベース層の厚みより厚いフィールド酸化膜12でベース層側面が囲まれ、基板平面方向にベース層中心部からフィールド酸化膜に至って不純物濃度がほぼ均一であるベース層が形成される。その後、ポリシリコン層を形成し、これを加工してベース引き出し用ポリシリコン領域11を形成する。
 次に、層間絶縁膜10を形成し加工した後、ベース層に通じる高濃度n型ポリシリコン層を形成し加工してエミッタ層8とする。その後、エミッタ層8上にエミッタ電極9を、ベース引き出し用ポリシリコン領域11上にベース電極6をそれぞれ設ける。
 エミッタ層8のベース層と接触する部分の幅(図1における横方向の幅:エミッタ幅W)は、高耐圧特性を重視する点、つくり易さの点から、例えば0.3μm程度又はそれ以上に設定することができる。
 ベース層7のエミッタコレクタ間隔方向の幅(図1における横方向の幅:ベース幅W)は、エミッタ層8と引き出し用ポリシリコン領域11との間に層間絶縁膜10を設けて絶縁を確保するため、エミッタ幅Wより例えば0.4μm程度広く又はそれ以上広く設定することができる。
 このようにして形成したnpnバイポーラトランジスタのエミッタコレクタ耐圧特性、ベースコレクタ耐圧特性において、例えばSOI層の下層側領域に1015cm-3程度の低濃度p型層3、SOI層の上層側領域に1016cm-3程度のn型層(コレクタ層)4を配置することにより、SOI層の上層側領域に比べてSOI層の下層側領域の伝導体下端のポテンシャルが持ち上がるため、ベースコレクタ接合に逆バイアスが印加したとき、SOI層の上層側領域と下層側領域の全体に均一に空乏層が広がり、コレクタ引き出し用高濃度n型領域13近辺において最も高い電界が印加されるため、SOI層の厚みによらないで、エミッタコレクタ間隔を広げることにより、耐圧特性を向上させることできる。
 図2に、SOI層の下層側領域に1015cm-3程度の低濃度p型層3、SOI層の上層側領域に1016cm-3程度のn型層(コレクタ層)4が配置されたnpnバイポーラトランジスタにおいて、エミッタ電極9とコレクタ電極5の間隔(エミッタコレクタ間隔:ΔLE-C)に対する、エミッタコレクタ耐圧(BVCEO)とベースコレクタ耐圧(BVCBO)のシミュレーション計算値の変化を示す(図中に「sim.特性」として「◇」(ベースコレクタ耐圧)及び「○」(エミッタコレクタ耐圧)で示す)。エミッタコレクタ間隔が広がるにしたがって、空乏層がコレクタ層の横方向に大きく広がり、それぞれの耐圧特性が向上する。これは、SOI層の下層側領域に低濃度p型層3、SOI層の上層側領域にn型層4が配置されていることにより、SOI層の上層側領域に比べてSOI層の下層側領域の伝導体下端のポテンシャルが持ち上がるため、SOI層と埋込酸化膜の界面に存在するドーパント不純物のパイルアップ層の影響が軽減されているためと考えられる。実際に拡散試作を行ったデバイスのエミッタコレクタ耐圧とベースコレクタ耐圧を、図2にシミュレーション計算値と併せて示す(図中に「実測特性」として「◆」(ベースコレクタ耐圧)及び「●」(エミッタコレクタ耐圧)で示す)。シミュレーション耐圧特性とほぼ同等の耐圧特性が実デバイスにおいて得られていることが分かる。
 なお、SOI層の下層側領域にp型のノンドープ層が設けられている場合においても、上記実施例とほぼ同じ耐圧特性向上効果が得られる。また、SOI層の下層側領域に第1導電型の不純物濃度と第2導電型の不純物濃度が同程度であるp型のドープ層が設けられている場合においても、上記実施例に示したような耐圧特性の向上を得ることができる。
 以上のように、本発明によれば、絶縁基体上の半導体層の膜厚を維持したまま、バイポーラトランジスタのエミッタコレクタ耐圧特性、ベースコレクタ耐圧特性を大きく向上させることができる。従って、通常の汎用的なCMOS、npnバイポーラトランジスタ、pnpバイポーラトランジスタと同一ウェハ内に、本発明の高耐圧トランジスタを作り込むことができ、ワンチップICの提供が可能となる。
 以上、実施例を参照して本発明を説明したが、本発明は上記実施例に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2009年7月10日に出願された日本出願特願2009-163685を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1 シリコン基板
 2 埋込酸化膜
 3 低濃度p型領域
 4 コレクタ層(n型コレクタ領域)
 5 コレクタ電極
 6 ベース電極
 7 ベース層(p型ベース領域)
 8 エミッタ層(n型エミッタポリシリコン層)
 9 エミッタ電極
10 層間絶縁膜
11 ベース引き出し用ポリシリコン領域(p型ポリシリコン領域)
12 フィールド酸化膜
13 コレクタ引き出し用高濃度n型領域(n引き出し層)

Claims (6)

  1.  半導体基板上の絶縁層の上または絶縁性基板の上に設けられた半導体層と、第1導電型のコレクタ領域、第2導電型のベース領域および第1導電型のエミッタ領域を含むバイポーラトランジスタと、を有し、
     前記コレクタ領域、前記ベース領域および前記エミッタ領域は、下層側からこの順で積層配置され、
     前記絶縁層または前記絶縁性基板と前記コレクタ領域との間に、第2導電型半導体層領域を有する半導体装置。
  2.  前記絶縁層または前記絶縁性基板と前記コレクタ領域との間の前記半導体層領域は、第2導電型不純物濃度が第1導電型不純物濃度に対して同等である領域を含む、請求項1に記載の半導体装置。
  3.  前記絶縁層または前記絶縁性基板と前記コレクタ領域との間の前記半導体層領域は、第2導電型不純物濃度が前記コレクタ領域の第1導電型不純物濃度より低い、請求項1又は2に記載の半導体装置。
  4.  前記絶縁層または前記絶縁性基板と前記コレクタ領域との間の前記半導体層領域は、第1導電型不純物が導入されていないノンドープ領域を含む、請求項1に記載の半導体装置。
  5.  前記コレクタ領域は、前記絶縁層上または前記絶縁性基板上の第2導電型の前記半導体層の上層側に第1導電型不純物を導入して形成された第1導電型領域であり、
     前記第2導電型半導体層領域は、前記絶縁層または前記絶縁性基板に接し、前記第1導電型領域に至る半導体領域である、請求項1から4のいずれか一項に記載の半導体装置。
  6.  前記ベース領域は、前記絶縁層上または前記絶縁性基板上の前記半導体層の表面に形成されたフィールド絶縁膜で囲まれた領域に設けられ、
     前記コレクタ領域は、前記フィールド絶縁膜下において、前記ベース領域下から該フィールド絶縁膜の外縁まで延在し、
     前記コレクタ領域の延在部に接続する引き出し領域が設けられ、該引き出し領域に電気的に接続するように、前記フィールド絶縁膜外側の前記半導体層上にコレクタ電極が設けられている、請求項5に記載の半導体装置。
PCT/JP2010/059679 2009-07-10 2010-06-08 半導体装置 WO2011004670A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011521864A JP5569526B2 (ja) 2009-07-10 2010-06-08 半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-163685 2009-07-10
JP2009163685 2009-07-10

Publications (1)

Publication Number Publication Date
WO2011004670A1 true WO2011004670A1 (ja) 2011-01-13

Family

ID=43429096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059679 WO2011004670A1 (ja) 2009-07-10 2010-06-08 半導体装置

Country Status (2)

Country Link
JP (1) JP5569526B2 (ja)
WO (1) WO2011004670A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2996153A1 (en) * 2014-09-12 2016-03-16 Nxp B.V. Bipolar transistor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241168A (ja) * 1988-03-23 1989-09-26 Hitachi Ltd バイポーラトランジスタおよびその製造方法
JPH02207534A (ja) * 1989-02-08 1990-08-17 Hitachi Ltd 半導体装置
JPH0346346A (ja) * 1989-07-14 1991-02-27 Hitachi Ltd 半導体集積回路装置
JPH0637099A (ja) * 1992-07-15 1994-02-10 Hitachi Ltd 半導体基体及びその製造方法
JPH11307537A (ja) * 1998-04-20 1999-11-05 Hitachi Ltd 半導体集積回路装置およびその製造方法
JP2001345377A (ja) * 2000-06-01 2001-12-14 Unisia Jecs Corp 半導体装置
JP2003017503A (ja) * 2001-06-29 2003-01-17 Denso Corp 半導体装置の製造方法および半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050709A (ja) * 2000-08-04 2002-02-15 Hitachi Ltd 半導体集積回路装置およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241168A (ja) * 1988-03-23 1989-09-26 Hitachi Ltd バイポーラトランジスタおよびその製造方法
JPH02207534A (ja) * 1989-02-08 1990-08-17 Hitachi Ltd 半導体装置
JPH0346346A (ja) * 1989-07-14 1991-02-27 Hitachi Ltd 半導体集積回路装置
JPH0637099A (ja) * 1992-07-15 1994-02-10 Hitachi Ltd 半導体基体及びその製造方法
JPH11307537A (ja) * 1998-04-20 1999-11-05 Hitachi Ltd 半導体集積回路装置およびその製造方法
JP2001345377A (ja) * 2000-06-01 2001-12-14 Unisia Jecs Corp 半導体装置
JP2003017503A (ja) * 2001-06-29 2003-01-17 Denso Corp 半導体装置の製造方法および半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2996153A1 (en) * 2014-09-12 2016-03-16 Nxp B.V. Bipolar transistor
US9570546B2 (en) 2014-09-12 2017-02-14 Nxp B.V. Bipolar transistor

Also Published As

Publication number Publication date
JPWO2011004670A1 (ja) 2012-12-20
JP5569526B2 (ja) 2014-08-13

Similar Documents

Publication Publication Date Title
TW201546997A (zh) 暫態電壓抑制元件及其製造方法
JP2014053523A (ja) 半導体装置およびその製造方法
JP5432750B2 (ja) 半導体装置及び半導体装置の製造方法
JP5818238B2 (ja) 半導体装置
US8455953B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2006324412A (ja) 半導体装置
JP2013149926A (ja) 半導体装置
US7355260B2 (en) Schottky device and method of forming
JP2014203851A (ja) 半導体装置及びその製造方法
CN106257671B (zh) 在高阻衬底上形成的半导体器件和射频模块
JP7147703B2 (ja) 半導体装置
US20210296161A1 (en) Semiconductor Device and Method for Manufacturing Same
JP5569526B2 (ja) 半導体装置
JP6389247B2 (ja) 絶縁ゲートバイポーラトランジスタ増幅回路
KR20150067509A (ko) 반도체 전력 소자 및 그 제조 방법
US11532608B2 (en) Semiconductor device and method for manufacturing same
JP6188205B2 (ja) 高降伏電圧を有するバイポーラトランジスタ
JP5851717B2 (ja) 半導体装置及びその製造方法
TWI708364B (zh) 半導體元件及其製造方法
JP2009043795A (ja) 半導体装置
JP5277616B2 (ja) 半導体装置
JP6125866B2 (ja) 半導体装置
JP2020205308A (ja) 半導体装置
JP2002319590A (ja) 半導体装置
JPH11312684A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10796981

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011521864

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10796981

Country of ref document: EP

Kind code of ref document: A1