WO2011001959A1 - 射出成形品の製造方法 - Google Patents

射出成形品の製造方法 Download PDF

Info

Publication number
WO2011001959A1
WO2011001959A1 PCT/JP2010/061021 JP2010061021W WO2011001959A1 WO 2011001959 A1 WO2011001959 A1 WO 2011001959A1 JP 2010061021 W JP2010061021 W JP 2010061021W WO 2011001959 A1 WO2011001959 A1 WO 2011001959A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
molded product
mold
molding
insulating layer
Prior art date
Application number
PCT/JP2010/061021
Other languages
English (en)
French (fr)
Inventor
貴之 宮下
正人 高嶋
章弘 望月
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to CN2010800291596A priority Critical patent/CN102470564A/zh
Priority to SG2011096617A priority patent/SG177391A1/en
Publication of WO2011001959A1 publication Critical patent/WO2011001959A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3828Moulds made of at least two different materials having different thermal conductivities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0079Liquid crystals

Definitions

  • the present invention relates to a method for producing an injection molded product using a liquid crystalline resin composition.
  • a group of plastics called engineering plastics has high strength and is being replaced by metal parts.
  • a group of plastics called liquid crystalline resins melts while maintaining a crystal structure.
  • High strength based on this crystal structure is one of the characteristics of the liquid crystalline resin.
  • the liquid crystalline resin has a small volume change between melting and solidification because the crystal structure does not change greatly upon solidification. As a result, the liquid crystalline resin has an advantage that the molding shrinkage is small and the dimensional accuracy of the molded product is excellent.
  • the liquid crystalline resin composition is used for precision instrument parts by taking advantage of the above-described advantages of high strength and excellent dimensional accuracy.
  • a small amount of dust, dust, etc. affect the equipment performance.
  • components used in precision instruments and optical instruments, such as camera module parts are usually ultrasonically cleaned using water or the like to remove small dust, oil, dust, etc. adhering to the surface of the parts.
  • a molded product formed by molding the liquid crystalline resin composition is relatively easily fibrillated on the surface because the molecular orientation is particularly large in the surface portion. For this reason, if the surface of a molded product peels, it will become a factor of dropout (dust). Therefore, since generation
  • Patent Document 1 A resin molded product characterized by having a flat portion of 4 ⁇ m or less is disclosed (Patent Document 1).
  • Patent Document 1 it is useful as a component of an electric / electronic device or an optical device, and can prevent generation of surface particles (foreign matter).
  • the surface characteristics can be improved.
  • Patent Document 1 the generation of foreign matter in Patent Document 1 is a foreign matter that occurs when the surface is washed by gently stirring in pure water for 1 minute. Therefore, in the improvement of the surface characteristics by the method described in Patent Document 1, a satisfactory result cannot be obtained for the suppression of fibrillation during ultrasonic cleaning. That is, in the method described in Patent Document 1, when a resin molded product is exposed to severe conditions such as ultrasonic cleaning, a large amount of foreign matter is generated.
  • the mold temperature at the time of molding is higher in order to suppress the generation of dust and the like.
  • molding is performed under the condition of a mold temperature of 130 ° C.
  • the mold temperature condition is set to a temperature exceeding 100 ° C., the temperature cannot be adjusted with water, and the temperature must be adjusted using oil. For this reason, from the viewpoint of facilitating the production of injection-molded products, it is required to mold the mold at a temperature of 100 ° C. or less.
  • the injection-molded product has a particularly large molecular orientation at the surface portion, surface fibrillation is likely to occur and ultrasonic cleaning or the like tends to cause fluff. For this reason, there is a demand for a technique for improving surface characteristics that can be applied to injection molded products.
  • the injection molded product formed by injection molding the liquid crystalline resin composition is also required to have an excellent appearance.
  • the present invention has been made to solve the above-described problems, and its purpose is to suppress the fibrillation of the surface of an injection-molded product even when the liquid crystalline resin composition is subjected to ultrasonic cleaning, and has an excellent appearance. It is providing the shaping
  • the inventors of the present invention have made extensive studies to solve the above problems.
  • a mold in which a heat insulating layer is formed on the inner surface of the mold is used, the heat insulating layer thickness t1, the injection speed S, the injection molded product thickness t2, the mold temperature T.
  • the present inventors have found that the above problems can be solved by injection molding under molding conditions that satisfy a specific relational expression, and have completed the present invention.
  • the present invention provides the following.
  • a mold having a heat insulating layer formed on the inner surface of the mold is used, the thickness t1 ( ⁇ m) of the heat insulating layer, the injection speed S (mm / sec), and the injection molded product.
  • the manufacturing method of the injection molded product which carries out injection molding on the molding conditions which satisfy
  • the injection-molded product obtained by the production method of the present invention does not generate dropouts (dust) due to peeling of the surface of the molded product even by ultrasonic cleaning. For this reason, the injection molded product used for the precision instrument, the optical instrument, etc. manufactured by the manufacturing method of the present invention can be easily ultrasonically cleaned, and the cleaning operation at the time of manufacturing the parts can be performed efficiently. .
  • the injection molded product obtained by the production method of the present invention has an excellent appearance.
  • the surface of an injection molded product obtained by the production method of the present invention is not easily peeled off, it is easy to maintain a beautiful appearance for a long period of time.
  • the production method of the present invention can be performed under conditions where the mold temperature is 100 ° C. or less. For this reason, the temperature adjustment of the metal mold
  • the present invention uses a mold in which a heat insulating layer is formed on the inner surface of the mold, and the thickness t1 ( ⁇ m) of the heat insulating layer, the injection speed S (mm / sec), When the thickness t2 (mm) of the injection-molded product and the mold temperature T (° C.) are used, injection molding is performed under molding conditions that satisfy a specific relational expression.
  • the present invention will be described in the order of a liquid crystalline resin composition and a method for producing an injection molded product.
  • Liquid crystal resin composition The method for producing an injection-molded article of the present invention can be applied to all liquid crystalline resin compositions containing a liquid crystalline resin.
  • the liquid crystalline resin refers to a melt processable polymer having a property capable of forming an optically anisotropic molten phase.
  • the property of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the anisotropic molten phase can be confirmed by using a Leitz polarizing microscope and observing a molten sample placed on a Leitz hot stage under a nitrogen atmosphere at a magnification of 40 times.
  • the liquid crystalline resin applicable to the present invention is inspected between crossed polarizers, the polarized light is normally transmitted even in a molten stationary state, and optically anisotropic.
  • the liquid crystalline resin as described above is not particularly limited, but is preferably an aromatic polyester or an aromatic polyester amide, and a polyester partially including an aromatic polyester or an aromatic polyester amide in the same molecular chain is also within the range. It is in. They preferably have a logarithmic viscosity (IV) of at least about 2.0 dl / g, more preferably 2.0-10.0 dl / g when dissolved in pentafluorophenol at 60 ° C. at a concentration of 0.1% by weight. .) Are used.
  • IV logarithmic viscosity
  • the aromatic polyester or aromatic polyester amide as the liquid crystalline resin applicable to the present invention is particularly preferably at least one compound selected from the group of aromatic hydroxycarboxylic acids, aromatic hydroxyamines, and aromatic diamines. Aromatic polyesters and aromatic polyester amides as constituent components.
  • a polyester amide comprising one or more of aromatic dicarboxylic acid, alicyclic dicarboxylic acid and derivatives thereof; (4) mainly (a) one or more of aromatic hydroxycarboxylic acids and derivatives thereof; (b) one or more of aromatic hydroxyamines, aromatic diamines and derivatives thereof; and (c). One or more of aromatic dicarboxylic acid, alicyclic dicarboxylic acid and derivatives thereof, and (d) at least one or more of aromatic diol, alicyclic diol, aliphatic diol and derivatives thereof, and And polyester amides composed of Furthermore, you may use a molecular weight modifier together with said structural component as needed.
  • Specific examples of the specific compound constituting the liquid crystalline resin applicable to the present invention include aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, 2,6-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 4,4′-dihydroxybiphenyl, hydroquinone, resorcin, aromatic diols such as compounds represented by the following general formula (A) and the following general formula (B); terephthalic acid, isophthalic acid, 4 , 4′-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid and aromatic dicarboxylic acids such as compounds represented by the following general formula (C); aromatic amines such as p-aminophenol and p-phenylenediamine Can be mentioned.
  • aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, 2,6-di
  • X a group selected from alkylene (C1 to C4), alkylidene, —O—, —SO—, —SO 2 —, —S—, and —CO—
  • the liquid crystalline resin composition used in the present invention includes other resins, nucleating agents, carbon black, inorganic baked pigments and other pigments, antioxidants, stabilizers, plasticizers, and lubricants as long as the effects of the present invention are not impaired.
  • the liquid crystal resin composition used in the present invention also includes a composition imparted with desired characteristics by adding additives such as a release agent and a flame retardant.
  • the method for producing an injection-molded article of the present invention uses a mold in which a heat insulating layer is formed on the inner surface of the mold in the injection molding of the liquid crystalline resin composition, the thickness t1 ( ⁇ m) of the heat insulating layer, and the injection speed S. (Mm / sec), injection molded product thickness t2 (mm), and mold temperature T (° C.), injection molding is performed under molding conditions that satisfy the following relational expression (I).
  • the heat insulating layer formed on the inner surface of the mold is not particularly limited as long as it functions to delay solidification of the liquid crystalline resin composition on the mold surface.
  • those having a heat insulating layer formed on a part of the inner surface of the mold are also included in the “mold having the heat insulating layer formed on the inner surface of the mold”.
  • the thickness (t1) of the heat insulating layer is not particularly limited as long as it is adjusted so as to satisfy the above formula (I) as described later.
  • the thickness of the heat insulating layer formed on the inner surface of the mold may be uniform or may include portions having different thicknesses. When the thickness of the heat insulation layer is not uniform, the average thickness is set to t1.
  • the thermal conductivity of the heat insulating layer formed on the inner surface of the mold is particularly preferably 5 W / m ⁇ K or less.
  • the heat insulating layer needs to have heat resistance that can withstand the high temperature during molding.
  • the heat insulating layer formed on the inner surface of the mold used in the method for producing an injection molded product of the present invention preferably contains a polyimide resin. This is because the polyimide resin has a thermal conductivity of 5 W / m ⁇ K or less and has heat resistance enough to withstand high temperatures during injection molding.
  • polyimide resins that can be used include pyromellitic acid (PMDA) -based polyimide, biphenyltetracarboxylic acid-based polyimide, polyamideimide using trimellitic acid, bismaleimide-based resins (bismaleimide / triazine-based, etc.), benzophenone Examples include tetracarboxylic acid-based polyimides, acetylene-terminated polyimides, and thermoplastic polyimides. In particular, a heat insulating layer made of a polyimide resin is preferable. Preferable materials other than polyimide resin include, for example, tetrafluoroethylene resin.
  • the method for forming the heat insulating layer on the inner surface of the mold is not particularly limited.
  • a solution of a polymer precursor such as a polyimide precursor capable of forming a polymer heat insulating layer is applied to the mold surface, heated to evaporate the solvent, and further heated to polymerize to form a heat insulating layer such as a polyimide film.
  • a polymer precursor such as a polyimide precursor capable of forming a polymer heat insulating layer
  • die using an adhesive tape-shaped polymer heat insulation film, and forming a heat insulation layer is mentioned. It is also possible to form a polyimide film and further form a chromium (Cr) film or a titanium nitride (TiN) film as a metal-based hard film on
  • the manufacturing method of the injection molded product of the present invention is the case where the thickness t1 ( ⁇ m) of the heat insulation layer, the injection speed S (mm / sec), the thickness t2 (mm) of the injection molded product, and the mold temperature T (° C.).
  • the injection molding is performed under molding conditions that satisfy the relational expression of the following formula (I).
  • the boundary between the surface layer and the skin layer does not exist on at least a part of the surface of the molded product as will be described later.
  • the surface peeling of the injection molded product is caused by the peeling of the surface layer formed on the skin layer.
  • this surface layer is obtained as an injection molded product having no surface layer on at least a part of the surface of the molded product. It is done. As a result, it is possible to obtain a high-quality injection-molded product that has an excellent appearance and does not peel off even when ultrasonically cleaned.
  • the injection molded product obtained by the production method of the present invention is characterized in that at least part of the boundary between the surface layer and the skin layer on the surface of the molded product is eliminated.
  • the effect of suppressing surface peeling of the injection molded product is remarkably enhanced.
  • the injection molded product having an excellent appearance with very little peeling of the surface of the molded product prevents the liquid crystalline resin composition flowing into the mold from immediately solidifying on the mold surface, and solidifies the resin composition.
  • the heat insulating layer has a function of suppressing the resin composition from immediately solidifying on the mold surface when the molten liquid crystalline resin composition flows into the mold.
  • the time for filling the resin composition in the mold is shortened by improving the injection speed. That is, the filling of the liquid crystal resin composition into the mold can be finished at a stage where the solidification of the liquid crystal resin composition does not proceed excessively. As a result, it can be suppressed that the molecules before solidification are pulled by the solidified resin composition and the molecular orientation is increased on the surface of the molded product.
  • the thickness of the injection molded product is too thick, it takes time to fill the liquid crystalline resin composition into the mold. For this reason, if the thickness of the injection-molded product is too thick, the solidified resin composition tends to cause a phenomenon in which molecules in the portion before solidification are pulled and molecular orientation is increased on the surface of the molded product.
  • the feature of the present invention is that the heat insulating layer thickness t1 ( ⁇ m), the injection speed S (mm / sec), the mold temperature T (° C.), and the injection molded product thickness t2 (mm) satisfy the above formula (I). It is found that the boundary between the surface layer and the skin layer on the surface of the injection molded product is eliminated by adjusting to.
  • Heat insulation layer thickness t1 ( ⁇ m) will be described.
  • Heat insulation layer thickness t1 should just be adjusted so that the said Formula (I) may be satisfy
  • a more preferable heat insulating layer thickness t1 is 10 ⁇ m to 300 ⁇ m.
  • the injection speed S (mm / sec) will be described.
  • the injection speed S may be adjusted so as to satisfy the above formula (I) similarly to the heat insulating layer thickness t1.
  • the mold temperature T (° C.) will be described.
  • the mold temperature T may be adjusted so as to satisfy the above formula (I) similarly to the heat insulating layer thickness t1 and the like.
  • the temperature of the mold can be adjusted with water, and a high-quality injection-molded product can be easily obtained.
  • a more preferable mold temperature range is 50 ° C to 100 ° C.
  • the injection molded product thickness t2 can be adjusted in a wide range. Specifically, the thickness t2 of the injection molded product can be adjusted from 0.2 mm to 10 mm under the condition satisfying the above formula (I). Under the condition satisfying the above formula (II), t2 can be adjusted from 0.2 mm to 5 mm. In particular, when the thickness t2 of the injection-molded product is in the range of 0.2 mm to 3 mm, the above-mentioned problem is likely to occur. Can be easily obtained.
  • FIG. 1 shows a multilayer structure (from a central portion to a surface portion) of an injection molded product obtained by the production method of the present invention.
  • the injection molded product obtained by the manufacturing method of this invention does not have the boundary of a surface layer and a skin layer in at least one part of the molded product surface. Therefore, even if the injection molded product obtained by the manufacturing method of the present invention is subjected to ultrasonic cleaning or the like, the portion where surface peeling occurs is reduced as shown in FIG.
  • FIG. 2 shows a multilayer structure (from the central part to the surface part) of the injection molded product obtained by the manufacturing method of the prior art.
  • a surface layer is present on the entire surface of the injection molded product. Therefore, when ultrasonic cleaning or the like is performed on an injection molded product obtained by the manufacturing method of the prior art, surface peeling occurs on the entire surface as shown in FIG.
  • FIG. 3 shows a multilayer structure (from the central portion to the surface portion) of the injection molded product manufactured under the condition satisfying the above formula (II).
  • the injection molded products manufactured under the conditions satisfying the above formula (II) tend to have no boundary between the surface layer and the skin layer. . Therefore, even if ultrasonic cleaning or the like is performed, it becomes an injection molded product that hardly causes surface peeling.
  • the injection-molded product obtained by the production method of the present invention does not peel off even when subjected to ultrasonic cleaning, and has an excellent appearance. Furthermore, by setting the mold temperature to 100 ° C. or less, a high-quality injection molded product can be easily obtained.
  • Liquid crystalline resin 1 “Vectra (registered trademark) E130i” Glass fiber 30% by mass Filling material Melting point 335 ° C., melt viscosity 40 Pa ⁇ s (manufactured by Polyplastics Co., Ltd.)
  • Heat insulation layer forming material 1 polyimide resin tape (manufactured by Sumitomo 3M), thermal conductivity 0.2 W / m ⁇ K
  • Thermal insulation layer forming material 2 polyimide resin varnish (Fine Chemical Japan), thermal conductivity 0.2 W / m ⁇ K
  • Heat insulation layer forming material 3 polyimide resin film (manufactured by Toray DuPont), thermal conductivity 0.2 W / m ⁇ K
  • the thermal conductivity of the polyimide resin was calculated by measuring the thermal diffusivity by laser flash method, specific gravity by Archimedes method, and specific heat by DSC.
  • the heat insulating layer forming material 1 is affixed to the mold cavity surface of a flat plate mold having a width of 20 mm, a length of 50 mm, and a thickness of 0.5 mm. Molding was performed under molding conditions such as injection speed and mold temperature to obtain an injection molded product.
  • the conditions other than the molding conditions shown in the table are as follows. [Molding condition] Cylinder set temperature: 350 ° C Screw rotation speed: 150rpm
  • Example 2 After using the liquid crystalline resin 1 as a molding material and spraying the heat insulation layer forming material 2 on the mold cavity surface of a plate molding mold of 40 mm ⁇ ⁇ thickness 1 mm and baking at 250 ° C. for 1 hour, After the polyimide surface was polished and adjusted to the thickness of the heat insulating layer in Table 1, molding was performed at the injection speed and mold temperature in Table 1 to obtain an injection molded product.
  • the molding conditions other than those shown in Table 1 are the same as in Example 1.
  • Example 3 An injection molded product was produced in the same manner as in Example 2 except that the molding conditions were changed to the conditions shown in Table 1. The molding conditions other than those shown in Table 1 are the same as in Example 1.
  • Example 4 A liquid crystalline resin 1 is used as a molding material, and a heat insulating layer forming material 3 is attached to a mold cavity surface of an ISO standard test piece mold with a double-sided tape. Molding was performed to obtain an injection molded product.
  • the molding conditions other than those shown in Table 1 are the same as in Example 1.
  • Example 5 An injection molded product was produced in the same manner as in Example 4 except that the molding conditions were changed to the conditions shown in Table 1.
  • the molding conditions other than those shown in Table 1 are the same as in Example 1.
  • the injection molded product obtained by the production method of the present invention was found to be less susceptible to surface peeling, as is clear from the number of peels in the cross-cut peel test evaluation. As described above, the injection molded product obtained by the production method of the present invention is unlikely to peel off, so that a beautiful appearance can be maintained.
  • Example 4 it was found that no fibril generation occurred from the ultrasonic cleaning test. In Examples 1 to 3 and 5, it was confirmed that there was no boundary between the surface layer and the skin layer on the surface of the injection molded product. Moreover, although fibril generation on the surface occurred in Example 4, the generation area is very small compared with the generation area of fibrillation generated on the surface of the molded article of the comparative example. Therefore, in Example 4, it was confirmed that a boundary between the surface layer and the skin layer exists in part.
  • the production method of the present invention can produce a high-quality injection-molded product even under a mold temperature of 100 ° C. or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

 液晶性樹脂組成物を、超音波洗浄しても射出成形品表面のフィブリル化を抑え、優れた外観を有する成形品を得るための成形技術を提供する。特に、金型温度が100℃以下の条件でも実施可能な成形技術を提供する。 液晶性樹脂組成物の射出成形において、金型内表面に断熱層が形成された金型を用い、断熱層の厚みt1(μm)、射出速度S(mm/sec)、射出成形品の厚みt2(mm)、金型温度T(℃)とした場合に、特定の関係式を満たす成形条件で射出成形する。好ましくは金型温度が100℃以下で成形を行う。

Description

射出成形品の製造方法
 本発明は、液晶性樹脂組成物を用いた射出成形品の製造方法に関する。
 エンジニアリングプラスチックと呼ばれる一群のプラスチックスは高い強度を有し、金属部品に置き替わりつつある。中でも液晶性樹脂と呼ばれる一群のプラスチックスは、結晶構造を保持しながら溶融する。この結晶構造に基づく高強度が液晶性樹脂の特徴の一つである。さらに、液晶性樹脂は、固化時に結晶構造が大きく変化しないことにより溶融時と固化時との体積変化が小さい。その結果、液晶性樹脂には、成形収縮が小さく成形品の寸法精度に優れているという利点がある。
 上記のような、高強度、寸法精度が優れているという利点を生かして、液晶性樹脂組成物は、精密機器部品に使用されるようになっている。ところで、精密機器、光学機器の場合、わずかなゴミ、埃等が機器性能に影響する。このため、精密機器、光学機器に用いられる部品、例えばカメラモジュール用部品等では、通常、水等を用いて超音波洗浄され、部品の表面に付着する小さなゴミ、油分、埃等は除去される。しかし、液晶性樹脂組成物を成形してなる成形品は、分子配向が表面部分で特に大きいため表面が比較的フィブリル化しやすい。このため、成形品の表面が剥がれると脱落物(ゴミ)の要因となる。したがって、ゴミ等の発生が問題となるため、液晶性樹脂組成物を成形してなる成形品を超音波洗浄することは極めて難しい。
 上記のゴミ等の発生は、上述の通り成形品の表面で分子配向が特に大きいために起こる。そこで、表面特性を改善した樹脂成形体として、液晶性高分子と繊維状フィラーとを含む樹脂成形品であって、特定の表面テープ剥離試験により求められる表面粗さRa値の上昇幅が0.4μm以下となる平面部を有することを特徴とする樹脂成形品が開示されている(特許文献1)。
 特許文献1に記載の方法によれば、電気・電子機器又は光学機器の部品として有用であり、表面パーティクル(異物)発生を防止し得るとされている。このように特許文献1に記載の技術を用いると、表面特性の改善が可能ではある。
 しかしながら、特許文献1の実施例に記載されている通り、特許文献1における異物発生とは、純水中で緩やかに1分間攪拌して表面を洗浄したときに発生する異物である。したがって、特許文献1に記載の方法による表面特性の改善では、超音波洗浄の際のフィブリル化抑制については満足する結果は得られない。即ち、上記特許文献1に記載の方法では、超音波洗浄等のような激しい条件に樹脂成形品を曝すと、非常に多くの異物が発生してしまう。
 また、特許文献1では、上記ゴミ等の発生を抑えるために成形の際の金型温度が高い方が好ましいとされている。実際に、特許文献1の実施例では金型温度130℃の条件で成形を行っている。金型温度の条件を、100℃を超える温度に設定する場合、水による温度調整ができず、オイルを用いて温度調整を行わなければならない。このため、射出成形品の生産を容易にする観点から、金型温度が100℃以下の条件で成形することが求められる。
 さらに、射出成形品は特に分子配向が表面部分で大きいため、表面フィブリル化が起こりやすく超音波洗浄等を行うと毛羽立ちやすい。このため、射出成形品に適用可能な表面特性改善の技術が求められている。
 また、上記のような表面の毛羽立ち、上記のような成形品表面の剥がれは、射出成形品の外観を損ねる。このため、液晶性樹脂組成物を射出成形してなる射出成形品には、優れた外観を備えることも求められている。
特開2008-239950号公報
 本発明は、以上のような課題を解決するためになされたものであり、その目的は、液晶性樹脂組成物を、超音波洗浄しても射出成形品表面のフィブリル化を抑え、優れた外観を有する成形品を得るための成形技術を提供することにある。特に、金型温度が100℃以下の条件でも実施可能な成形技術を提供することにある。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、液晶性樹脂組成物の射出成形において、金型内表面に断熱層が形成された金型を用い、断熱層の厚みt1、射出速度S、射出成形品の厚みt2、金型温度Tとした場合に、特定の関係式を満たす成形条件で射出成形することで、上記課題を解決できることを見出し、本発明を完成するに至った。具体的には本発明は以下のものを提供する。
 (1) 液晶性樹脂組成物の射出成形において、金型内表面に断熱層が形成された金型を用い、断熱層の厚みt1(μm)、射出速度S(mm/sec)、射出成形品の厚みt2(mm)、金型温度T(℃)とした場合に、下記の式(I)を満たす成形条件で射出成形する射出成形品の製造方法。
Figure JPOXMLDOC01-appb-M000003
 (2) 下記の式(II)を満たす成形条件で射出成形する(1)に記載の射出成形品の製造方法。
Figure JPOXMLDOC01-appb-M000004
 (3) 前記断熱層は、熱伝導率が5W/m・K以下である(1)又は(2)に記載の射出成形品の製造方法。
 (4) 前記断熱層は、ポリイミド樹脂を含む(1)から(3)のいずれかに記載の射出成形品の製造方法。
 (5) 金型温度Tが、100℃以下である(1)から(4)のいずれかに記載の射出成形品の製造方法。
 本発明の製造方法により得られる射出成形品は、超音波洗浄しても成形品表面の剥がれによる脱落物(ゴミ)の発生が無い。このため、本発明の製造方法により製造した精密機器、光学機器等に用いられる射出成形品は、超音波洗浄を容易に行うことができ、部品製造の際の洗浄作業を効率よく行うことができる。
 本発明の製造方法により得られる射出成形品は、優れた外観を備える。特に、本発明の製造方法により得られる射出成形品の表面は容易に剥がれることが無いため、美しい外観を長期間維持しやすい。
 本発明の製造方法は、金型温度が100℃以下の条件で行うことができる。このため、射出成形品を得る際の金型の温度調整をオイルでなく水で行うことができる。その結果、優れた射出成形品を容易に得ることができる。
本発明の製造方法により得られる射出成形品の多層構造を示す図である。 従来技術の製造方法により得られる射出成形品の多層構造を示す図である。 下記式(II)を満たす条件で製造した射出成形品の多層構造を示す図である。
 以下、本発明の一実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
 本発明は、液晶性樹脂組成物の射出成形において、金型内表面に断熱層が形成された金型を用いること、及び断熱層の厚みt1(μm)、射出速度S(mm/sec)、射出成形品の厚みt2(mm)、金型温度T(℃)とした場合に、特定の関係式を満たす成形条件で射出成形することを特徴とする。以下、本発明について、液晶性樹脂組成物、射出成形品の製造方法の順で説明する。
<液晶性樹脂組成物>
 本発明の射出成形品の製造方法は、液晶性樹脂を含む全ての液晶性樹脂組成物に適用することができる。
[液晶性樹脂]
 液晶性樹脂とは、光学異方性溶融相を形成し得る性質を有する溶融加工性ポリマーを指す。異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することが出来る。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージに載せた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。本発明に適用できる液晶性樹脂は直交偏光子の間で検査したときに、たとえ溶融静止状態であっても偏光は通常透過し、光学的に異方性を示す。
 上記のような液晶性樹脂としては特に限定されないが、芳香族ポリエステル又は芳香族ポリエステルアミドであることが好ましく、芳香族ポリエステル又は芳香族ポリエステルアミドを同一分子鎖中に部分的に含むポリエステルもその範囲にある。これらは60℃でペンタフルオロフェノールに濃度0.1重量%で溶解したときに、好ましくは少なくとも約2.0dl/g、さらに好ましくは2.0~10.0dl/gの対数粘度(I.V.)を有するものが使用される。
 本発明に適用できる液晶性樹脂としての芳香族ポリエステル又は芳香族ポリエステルアミドとして特に好ましくは、芳香族ヒドロキシカルボン酸、芳香族ヒドロキシアミン、芳香族ジアミンの群から選ばれた少なくとも1種以上の化合物を構成成分として有する芳香族ポリエステル、芳香族ポリエステルアミドである。
 より具体的には、
(1)主として芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上からなるポリエステル;
(2)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、(b)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体の1種又は2種以上と、(c)芳香族ジオール、脂環族ジオール、脂肪族ジオール及びその誘導体の少なくとも1種又は2種以上、とからなるポリエステル;
(3)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、(b)芳香族ヒドロキシアミン、芳香族ジアミン及びその誘導体の1種又は2種以上と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体の1種又は2種以上、とからなるポリエステルアミド;
(4)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、(b)芳香族ヒドロキシアミン、芳香族ジアミン及びその誘導体の1種又は2種以上と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体の1種又は2種以上と、(d)芳香族ジオール、脂環族ジオール、脂肪族ジオール及びその誘導体の少なくとも1種又は2種以上、とからなるポリエステルアミド等が挙げられる。さらに上記の構成成分に必要に応じ分子量調整剤を併用してもよい。
 本発明に適用できる前記液晶性樹脂を構成する具体的化合物の好ましい例としては、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸等の芳香族ヒドロキシカルボン酸、2,6-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、4,4’-ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、下記一般式(A)及び下記一般式(B)で表される化合物等の芳香族ジオール;テレフタル酸、イソフタル酸、4,4’-ジフェニルジカルボン酸、2,6-ナフタレンジカルボン酸及び下記一般式(C)で表される化合物等の芳香族ジカルボン酸;p-アミノフェノール、p-フェニレンジアミン等の芳香族アミン類が挙げられる。
Figure JPOXMLDOC01-appb-C000005
(X:アルキレン(C1~C4)、アルキリデン、-O-、-SO-、-SO-、-S-、-CO-より選ばれる基である)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
(Y:-(CH-(n=1~4)、-O(CHO-(n=1~4)より選ばれる基である。)
[その他の成分]
 本発明に用いる液晶性樹脂組成物には、本発明の効果を害さない範囲で、他の樹脂、核剤、カーボンブラック、無機焼成顔料等の顔料、酸化防止剤、安定剤、可塑剤、滑剤、離型剤及び難燃剤等の添加剤を添加して、所望の特性を付与した組成物も本発明に用いる液晶性樹脂組成物に含まれる。
<射出成形品の製造方法>
 本発明の射出成形品の製造方法は、上記液晶性樹脂組成物の射出成形において、金型内表面に断熱層が形成された金型を用い、断熱層の厚みt1(μm)、射出速度S(mm/sec)、射出成形品の厚みt2(mm)、金型温度T(℃)とした場合に、下記式(I)の関係式を満たす成形条件で射出成形する。
Figure JPOXMLDOC01-appb-M000008
[金型]
 本発明の射出成形品を製造する方法においては、金型の内表面(金型の内側の表面)に断熱層が形成された金型を用いる。金型の内側の表面に形成された断熱層により、金型内に流れ込んだ液晶性樹脂組成物は金型表面付近で固まり難くなる。その結果、金型表面で固化した樹脂組成物に接触する固化前の樹脂組成物に含まれる分子が、その固化後の樹脂組成物に引っ張られ成形品表面で分子配向が大きくなることを抑えることができる。
 金型の内表面に形成される断熱層は、金型表面での液晶性樹脂組成物の固化を遅らせる働きをするものであれば、材料等は特に限定されない。また、金型内表面の一部に断熱層が形成されるものも「金型内表面に断熱層が形成された金型」に含まれる。本発明の射出成形品の製造方法においては、少なくとも得られる成形品において良好な外観特性が要求される部分に相当する所望の金型内表面部分の全てに形成することが必要であり、金型内表面全てに形成することが好ましい。
 断熱層の厚み(t1)は、後述する通り、上記式(I)を満たすように調整すれば特に限定されない。上記金型内表面に形成される断熱層の厚みは均一でもよいし、厚みの異なる箇所を含むものであってもよい。断熱層の厚みが均一で無い場合には、平均の厚みをt1とする。
 また、金型内表面に形成される断熱層の熱伝導率は、5W/m・K以下であることが特に好ましい。断熱層の熱伝導率を上記の範囲に調整することで、100℃以下の金型温度で射出成形品を成形しても、超音波洗浄等を行った際に成形品表面が剥がれず、優れた外観を有する射出成形品がさらに得られやすくなる。なお、上記熱伝導率は実施例に記載の方法で測定した熱伝導率を指す。
 また、射出成形の際に金型内には高温の液晶性樹脂組成物が流れ込むため、断熱層は成形の際の高温に耐えられるような耐熱性を備えることが必要になる。
 本発明の射出成形品の製造方法に用いる金型の内表面に形成される断熱層は、ポリイミド樹脂を含むものが好ましい。ポリイミド樹脂は上記熱伝導率が5W/m・K以下であり、射出成形の際の高温にも充分に耐える耐熱性を有するからである。使用可能なポリイミド樹脂の具体例としては、ピロメリット酸(PMDA)系ポリイミド、ビフェニルテトラカルボン酸系ポリイミド、トリメリット酸を用いたポリアミドイミド、ビスマレイミド系樹脂(ビスマレイミド/トリアジン系等)、ベンゾフェノンテトラカルボン酸系ポリイミド、アセチレン末端ポリイミド、熱可塑性ポリイミド等が挙げられる。なお、ポリイミド樹脂からなる断熱層であることが特に好ましい。ポリイミド樹脂以外の好ましい材料としては、例えば、テトラフルオロエチレン樹脂等が挙げられる。
 金型の内表面に断熱層を形成する方法は、特に限定されない。例えば、以下の方法で断熱層を金型の内表面に形成することが好ましい。
 高分子断熱層を形成しうるポリイミド前駆体等のポリマー前駆体の溶液を金型表面に塗布し、加熱して溶媒を蒸発させ、さらに過熱してポリマー化することによりポリイミド膜等の断熱層を形成する方法、耐熱性高分子のモノマー、例えばピロメリット酸無水物と4,4-ジアミノジフェニルエーテルを蒸着重合させる方法、又は、平面形状の金型に関しては、高分子断熱フィルムを用い適切な接着方法又は粘着テープ状の高分子断熱フィルムを用いて金型の所望部分に貼付し断熱層を形成する方法が挙げられる。また、ポリイミド膜を形成させ、さらにその表面に金属系硬膜としてのクローム(Cr)膜や窒化チタン(TiN)膜を形成させることも可能である。
[成形条件]
 本発明の射出成形品の製造方法は、断熱層の厚みt1(μm)、射出速度S(mm/sec)、射出成形品の厚みt2(mm)、金型温度T(℃)とした場合に、下記式(I)の関係式を満たす成形条件で射出成形を行うことを特徴とする。
Figure JPOXMLDOC01-appb-M000009
 上記のような条件で射出成形品を製造することにより、後述する通り、得られる射出成形品には表層とスキン層との境界が、成形品表面の少なくとも一部において存在しなくなる。射出成形品の表面剥がれは、スキン層のさらに上に形成される表層の剥がれが原因となるが、本発明ではこの表層を、成形品表面の少なくとも一部において表層を持たない射出成形品が得られる。その結果、外観に優れ、超音波洗浄しても表面の剥がれのない高品質な射出成形品を得ることができる。
 本発明の製造方法により得られる射出成形品は、成形品表面の表層とスキン層との間の境界を少なくとも一部において無くすことが特徴である。このような射出成形品が得られる結果、射出成形品の表面剥がれを抑える効果が著しく高まる。このように成形品表面の剥がれが非常に少なく、優れた外観を有する射出成形品は、金型内に流れ込んだ液晶性樹脂組成物が金型表面で直ちに固まることを防ぎ、固化した樹脂組成物により固化前の樹脂組成物部分の分子が引っ張られ成形品表面で分子配向が大きくなることを抑えることで得られると推測される。
 断熱層は、上述の通り、溶融状態の液晶性樹脂組成物が金型に流れ込んだ際に、金型表面で樹脂組成物が直ちに固まることを抑える働きを有する。
 射出速度を向上させることで、金型内に樹脂組成物が充填される時間が短くなる。即ち、液晶性樹脂組成物の固化が進みすぎない段階で金型内への液晶性樹脂組成物の充填を終えることができる。その結果、固化した樹脂組成物により固化前の部分の分子が引っ張られ成形品表面で分子配向が大きくなることを抑えることができる。
 射出成形品の厚みが、厚すぎると金型内への液晶性樹脂組成物の充填に時間がかかる。このため、射出成形品の厚みが厚すぎると、固化した樹脂組成物により固化前の部分の分子が引っ張られ成形品表面で分子配向が大きくなる現象が生じやすい。
 金型温度Tを高く設定することで、金型の内側表面付近での液晶性樹脂組成物の固化を特に遅らせることでできる。その結果、固化した樹脂組成物により固化前の部分の分子が引っ張られ成形品表面で分子配向が大きくなる現象を抑えることができる。
 本発明の特徴は、断熱層厚みt1(μm)、射出速度S(mm/sec)、金型温度T(℃)、射出成形品厚みt2(mm)が、上記の式(I)を満たすように調整することで、射出成形品表面の表層とスキン層との境界が無くなることを見出した点にある。
 そして、本発明では、射出速度S(mm/sec)、断熱層厚みt1(μm)、金型温度T(℃)を調整することで、様々な形状(特にt2(mm)が厚い場合でも)の優れた射出成形品を製造することができる。上記式(I)を満たすものであれば、射出成形品の表層とスキン層との間の境界が少なくとも一部において存在しなくなるからである。
 また、下記の式(II)を満たす成形条件で射出成形することで、さらに表面剥がれが生じ難くなり、極めて優れた外観を有する射出成形品を得ることができる。具体的には、下記式(II)を満たす条件で射出成形を行うことにより、表層とスキン層との間に境界が全く無い成形品が得られやすくなる。以下、本発明の製造方法の製造条件について詳細に説明する。
Figure JPOXMLDOC01-appb-M000010
 先ず、断熱層厚みt1(μm)について説明する。断熱層厚みt1は上記式(I)を満たすように調整されればよく、その厚みは特に限定されない。用いる液晶性樹脂組成物の種類、射出成形品の形状等により異なるが、本発明の製造方法においては、断熱層厚みt1を1μmから1000μmに調整することが好ましい。断熱層厚みが1μm以上に調整することで、十分な断熱効果が得られるため好ましく、1000μm以下に調整することは成形品の精度という理由で好ましい。より好ましい断熱層厚みt1は10μmから300μmである。
 次いで、射出速度S(mm/sec)について説明する。射出速度Sについても上記断熱層厚みt1と同様に、上記式(I)を満たすように調整されればよい。用いる液晶性樹脂組成物の種類、射出成形品の形状等により異なるが、本発明の製造方法においては、射出速度Sを20mm/secから1000mm/secの範囲に調整することが好ましい。射出速度を20mm/sec以上に調整することで、ヘジテーションを防止できるため好ましく、射出速度を1000mm/sec以下に調整することで、ジェッティングを防止できるため好ましい。より好ましい射出速度は50mm/secから500mm/secである。
 次いで、金型温度T(℃)について説明する。金型温度Tについても上記断熱層厚みt1等と同様に上記式(I)を満たすように調整されればよい。用いる液晶性樹脂組成物の種類、射出成形品の形状等により異なるが、本発明の製造方法においては、金型温度Tを100℃以下に調整することが好ましい。金型温度Tを100℃以下に設定することで、金型の温度調整を水で行うことができ、容易に高品質の射出成形品を得ることができる。より好ましい金型温度の範囲は50℃から100℃である。
 上記断熱層厚みt1、射出速度S、金型温度Tを調整することで、射出成形品厚みt2を広い範囲で調整可能である。具体的には、上記式(I)を満たす条件では、射出成形品厚みt2を0.2mmから10mmに調整可能である。上記式(II)を満たす条件ではt2を0.2mmから5mmに調整可能である。特に射出成形品厚みt2が0.2mmから3mmの範囲では、上記問題が生じやすいが、本発明の製造方法により成形することで、表面剥がれが無く、優れた外観を有する高品質な射出成形品を容易に得ることができる。
[射出成形品]
 液晶性樹脂組成物を成形すると多層構造になる。図1には、本発明の製造方法により得られる射出成形品の多層構造(中央部分から表面部分まで)を示す。図1(a)に示すように、本発明の製造方法により得られる射出成形品は、成形品表面の少なくとも一部において表層とスキン層との境界が存在しない。したがって、本発明の製造方法により得られる射出成形品に超音波洗浄等を行っても図1(b)に示すように表面剥がれが生じる部分は少なくなる。
 これに対して、図2には、従来技術の製造方法により得られる射出成形品の多層構造(中央部分から表面部分まで)を示した。図2(a)に示すように、射出成形品の全面に表層が存在する。したがって、従来技術の製造方法により得られる射出成形品に超音波洗浄等を行うと、図2(b)に示すように全面で表面剥がれが生じる。
 そして、図3には、上記式(II)を満たす条件で製造した射出成形品の多層構造(中央部分から表面部分まで)を示した。図3に示すように、本発明の製造方法により得られる射出成形品の中でも、上記式(II)を満たす条件で製造した射出成形品は、表層とスキン層との境界が全く無くなる傾向にある。したがって、超音波洗浄等を行っても表面剥がれを極めて生じ難い射出成形品になる。
 以上の通り、本発明の製造方法により得られる射出成形品は、超音波洗浄を行っても表面の剥がれが生じず、優れた外観を有する。さらに、金型温度を100℃以下に設定することで、高品質な射出成形品を容易に得ることができる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
<材料>
液晶性樹脂1:「ベクトラ(登録商標)E130i」 ガラス繊維30質量%充填材料 融点335℃、溶融粘度40Pa・s (ポリプラスチックス株式会社製)
断熱層形成材料1:ポリイミド樹脂テープ(住友スリーエム社製)、熱伝導率0.2W/m・K
断熱層形成材料2:ポリイミド樹脂ワニス(ファインケミカルジャパン社製)、熱伝導率0.2W/m・K
断熱層形成材料3:ポリイミド樹脂フィルム(東レ・デュポン社製)、熱伝導率0.2W/m・K
 上記ポリイミド樹脂の熱伝導率はレーザーフラッシュ法により熱拡散率、アルキメデス法により比重、DSCにより比熱を測定し算出した。
<実施例1>
 成形用材料として液晶性樹脂1を用い、幅20mm×長さ50mm×厚さ0.5mmの平板成形用金型の金型キャビティー面に、断熱層形成材料1を貼付し、表1中の射出速度、金型温度等の成形条件にて成形を行い、射出成形品を得た。なお、表に示す成形条件以外の条件は下記の通りである。
[成形条件]
 シリンダー設定温度:350℃
 スクリュー回転数:150rpm
<実施例2>
 成形用材料として液晶性樹脂1を用い、40mm□×厚さ1mmの平板成形用金型の金型キャビティー面に、断熱層形成材料2をスプレーし、250℃、1時間で焼付けした後、ポリイミド面を研摩し、表1中の断熱層厚みに調整した後、表1中の射出速度、金型温度にて成形を行い、射出成形品を得た。なお、表1に示す以外の成形条件は実施例1と同様である。
<実施例3>
 成形条件を表1に示す条件に変更した以外は実施例2と同様の方法で射出成形品を製造した。なお、表1に示す以外の成形条件は実施例1と同様である。
<実施例4>
 成形用材料として液晶性樹脂1を用い、ISO標準試験片金型の金型キャビティー面に、断熱層形成材料3を両面テープにて貼付し、表1中の射出速度、金型温度にて成形を行い、射出成形品を得た。なお、表1に示す以外の成形条件は実施例1と同様である。
<実施例5>
 成形条件を表1に示す条件に変更した以外は実施例4と同様の方法で射出成形品を製造した。なお、表1に示す以外の成形条件は実施例1と同様である。
<比較例1>
 成形条件を表1に示す条件に変更した以外は実施例4と同様の方法で射出成形品を製造した。なお、表1に示す以外の成形条件は実施例1と同様である。
<比較例2>
 金型内に断熱層を形成しなかった以外は実施例1と同様の方法で射出成形品を製造した。
<比較例3>
 成形条件を表1に示す条件に変更した以外は比較例2と同様の方法で射出成形品を製造した。なお、表1に示す以外の成形条件は実施例1と同様である。
<成形品の評価>
 実施例及び比較例の射出成形品について、碁盤目試験評価、超音波洗浄試験評価を行った。
[碁盤目試験評価]
 JIS K5400に準じた方法で評価を行い、1mm□の100格子の内の剥離された格子数にて評価を行った。評価結果を表1に示した。
[超音波洗浄試験]
 実施例及び比較例の射出成形品を水に浸漬し、1分間超音波洗浄を実施し、表面のフィブリル発生状況を表面の白化現象として測定し、フィブリル発生の有無を評価した。評価結果を表1に示した。
Figure JPOXMLDOC01-appb-T000011
 表1から明らかなように、本発明の製造方法で得られる射出成形品は、碁盤目剥離試験評価の剥離数から明らかなように、表面剥がれが生じ難いことが明らかになった。このように本発明の製法により得られた射出成形品は表面剥がれが起こり難いため、綺麗な外観を維持することができる。
 また、表1から明らかなように、実施例1から3、5では、超音波洗浄試験からフィブリル発生が全く起こらないという結果が得られた。実施例1から3、5では、射出成形品表面において表層とスキン層との境界が存在しないことが確認された。また、実施例4では表面のフィブリル発生が生じたものの、その発生面積は、比較例の成形品表面に生じたフィブリル化の発生面積と比較すると非常に小さい。したがって、実施例4では、一部で表層とスキン層との境界が存在することが確認された。
 本発明の製造方法は、金型温度100℃以下の条件でも高品質の射出成形品を製造することができることが確認された。
 実施例1から3、5の結果と実施例4の結果とから明らかなように、上記式(II)を満たす条件で射出成形品の製造を行うことで、表層とスキン層との間の境界が全く存在しない優れた射出成形品が得られることが確認された。

Claims (5)

  1.  液晶性樹脂組成物の射出成形において、金型内表面に断熱層が形成された金型を用い、
     断熱層の厚みt1(μm)、射出速度S(mm/sec)、射出成形品の厚みt2(mm)、金型温度T(℃)とした場合に、下記の式(I)を満たす成形条件で射出成形する射出成形品の製造方法。
    Figure JPOXMLDOC01-appb-M000001
  2.  下記の式(II)を満たす成形条件で射出成形する請求項1に記載の射出成形品の製造方法。
    Figure JPOXMLDOC01-appb-M000002
  3.  前記断熱層は、熱伝導率が5W/m・K以下である請求項1又は2に記載の射出成形品の製造方法。
  4.  前記断熱層は、ポリイミド樹脂を含む請求項1から3のいずれかに記載の射出成形品の製造方法。
  5.  金型温度Tが、100℃以下である請求項1から4のいずれかに記載の射出成形品の製造方法。
PCT/JP2010/061021 2009-06-30 2010-06-29 射出成形品の製造方法 WO2011001959A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800291596A CN102470564A (zh) 2009-06-30 2010-06-29 注射成型品的制造方法
SG2011096617A SG177391A1 (en) 2009-06-30 2010-06-29 Method of manufacturing an injection-molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-155631 2009-06-30
JP2009155631A JP5642947B2 (ja) 2009-06-30 2009-06-30 射出成形品の製造方法

Publications (1)

Publication Number Publication Date
WO2011001959A1 true WO2011001959A1 (ja) 2011-01-06

Family

ID=43411032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061021 WO2011001959A1 (ja) 2009-06-30 2010-06-29 射出成形品の製造方法

Country Status (6)

Country Link
JP (1) JP5642947B2 (ja)
KR (1) KR20120111943A (ja)
CN (1) CN102470564A (ja)
SG (1) SG177391A1 (ja)
TW (1) TW201103732A (ja)
WO (1) WO2011001959A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5869874B2 (ja) * 2011-12-27 2016-02-24 Hoya株式会社 プラスチックレンズの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198667A (ja) * 1992-12-28 1994-07-19 Asahi Chem Ind Co Ltd 合成樹脂の射出成形法
JP2008239950A (ja) * 2007-02-26 2008-10-09 Sumitomo Chemical Co Ltd 樹脂成形体及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287244A (ja) * 2000-04-05 2001-10-16 Asahi Kasei Corp 二層成形品及びその成形方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198667A (ja) * 1992-12-28 1994-07-19 Asahi Chem Ind Co Ltd 合成樹脂の射出成形法
JP2008239950A (ja) * 2007-02-26 2008-10-09 Sumitomo Chemical Co Ltd 樹脂成形体及びその製造方法

Also Published As

Publication number Publication date
SG177391A1 (en) 2012-02-28
JP2011011380A (ja) 2011-01-20
TW201103732A (en) 2011-02-01
JP5642947B2 (ja) 2014-12-17
CN102470564A (zh) 2012-05-23
KR20120111943A (ko) 2012-10-11

Similar Documents

Publication Publication Date Title
JP5332188B2 (ja) 樹脂成形体及びその製造方法
KR20120106597A (ko) 액정 폴리에스테르 수지 조성물
JP2010106165A (ja) 射出成形用液晶性樹脂組成物、当該樹脂組成物を成形してなる成形体、および当該成形体からなるカメラモジュール
WO2005093909A1 (ja) 平面状コネクター
WO2011030707A1 (ja) 射出成形品の製造方法
JP5197553B2 (ja) 液晶性樹脂組成物及びその成形体
JP2011104789A (ja) 金属複合積層部品の製造方法
JP5642947B2 (ja) 射出成形品の製造方法
KR20100100770A (ko) 액정성 폴리에스터 수지 조성물
KR20110089817A (ko) 사출성형용 액정성 수지 조성물, 성형체 및 내블리스터성을 향상시키는 방법
JP5559320B2 (ja) 金型の製造方法
WO2012121066A1 (ja) 射出成形品の製造方法
JPH038388A (ja) 精密細線回路用基板の製造方法
JP5520311B2 (ja) メッキ樹脂成形体、メッキ樹脂成形体の製造方法、及びメッキ樹脂成形体及び成形回路基板
WO2012121075A1 (ja) 射出成形品の製造方法
JP5815061B2 (ja) 射出成形品とその製造方法
KR102507218B1 (ko) Tlcp 수지 조성물 및 이의 제조방법.
JP2012144036A (ja) 複合成形体、複合成形体の製造方法及びインモールドラベル
TW201307025A (zh) 射出成形品之製造方法
JPH02263849A (ja) ポリオレフィン成形体
JP2000225628A (ja) 複合成形品の成形方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029159.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117030882

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 5197/KOLNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10794128

Country of ref document: EP

Kind code of ref document: A1