WO2011001753A1 - 照明装置、表示装置、及びテレビ受信装置 - Google Patents

照明装置、表示装置、及びテレビ受信装置 Download PDF

Info

Publication number
WO2011001753A1
WO2011001753A1 PCT/JP2010/058338 JP2010058338W WO2011001753A1 WO 2011001753 A1 WO2011001753 A1 WO 2011001753A1 JP 2010058338 W JP2010058338 W JP 2010058338W WO 2011001753 A1 WO2011001753 A1 WO 2011001753A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light source
led
chassis
board
Prior art date
Application number
PCT/JP2010/058338
Other languages
English (en)
French (fr)
Inventor
匡史 横田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to BRPI1012267A priority Critical patent/BRPI1012267A2/pt
Priority to US13/379,912 priority patent/US20120092568A1/en
Priority to JP2011520830A priority patent/JP5184701B2/ja
Priority to EP10793924A priority patent/EP2434200A1/en
Priority to CN2010800268284A priority patent/CN102472436A/zh
Priority to RU2011153386/07A priority patent/RU2489640C1/ru
Publication of WO2011001753A1 publication Critical patent/WO2011001753A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133608Direct backlight including particular frames or supporting means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs

Definitions

  • the present invention relates to a lighting device, a display device, and a television receiver.
  • a liquid crystal panel used in a liquid crystal display device such as a liquid crystal television does not emit light, and thus requires a separate backlight device as an illumination device.
  • This backlight device is installed on the back side of the liquid crystal panel (the side opposite to the display surface), and has a chassis with an open surface on the liquid crystal panel side, a light source accommodated in the chassis, And a reflection sheet that reflects light toward the opening of the chassis, and an optical member (such as a diffusion sheet) that is disposed at the opening of the chassis and efficiently emits light emitted from the light source toward the liquid crystal panel.
  • an LED may be used as a light source.
  • an LED substrate on which the LED is mounted is accommodated in the chassis.
  • a diffuser lens is individually attached to the LED substrate corresponding to each LED for the purpose of relaxing the directivity.
  • the LED substrate used in the backlight device has a size that covers the entire area of the chassis, the material cost increases. For example, it is preferable to dispose a plurality of strip-shaped LED substrates intermittently.
  • the inventor of the present application has adopted a configuration in which a reflection sheet for a substrate is installed between the diffusion lens and the LED substrate separately from the reflection sheet. If it does in this way, the light reflected on the LED board side by the diffuser lens can be reflected and reflected on the diffuser lens side again by the board reflection sheet, and can be used effectively.
  • the substrate reflection sheet is preferably larger than the diffusion lens in a plan view, whereas the LED substrate is mounted with a diffusion lens or the like in consideration of material costs. It is preferable to keep the size as small as possible. From these circumstances, the substrate reflection sheet may be sized in a wider range than the LED substrate in a plan view.
  • the present invention has been completed based on the above-described circumstances, and an object thereof is to suppress deformation of the reflective member for a substrate.
  • An illumination device includes a light source substrate having a light source, a chassis having an opening for accommodating the light source substrate and emitting light from the light source, and being arranged along an inner surface of the chassis.
  • the chassis includes a first support portion that supports the light source substrate, and a second support portion that is disposed on the opening side relative to the first support portion and supports the substrate reflection member.
  • the board reflection member that overlaps the light source substrate on the opening side is provided. Even when the hole is formed, it is possible to dispose a part of the reflecting member for the substrate in the hole, and thus it is possible to increase the light use efficiency.
  • the substrate reflection member has a size over a wider range than the light source substrate when seen in a plane, and this means that the light source substrate is smaller than the substrate reflection member when seen in a plane. This means that the material cost for the light source substrate can be reduced.
  • the portion of the board reflection member that overlaps the light source substrate on the opening side is supported by the light source substrate, while the portion that does not overlap the light source substrate is more relative to the first support portion that supports the light source substrate. It is supported by the 2nd support part distribute
  • a hole is formed in the chassis reflection member, and at least a part of the substrate reflection member is disposed in the hole as viewed in a plan view. If it does in this way, since the light to a hole part can be reflected by the board
  • the second support portion is disposed at a position where at least a part of the second support portion overlaps with an edge portion of the hole portion in the chassis reflection member as seen in a plan view.
  • the overlapping portion of the edge of the hole in the reflective member for chassis and the reflective member for substrate can be supported by the second support portion, so the edge of the hole in the reflective member for chassis and the substrate It is possible to more reliably prevent light from leaking from the gap with the reflective member for use. Thereby, the utilization efficiency of light can be further improved.
  • the chassis reflection member is formed so that the hole has a size over a wider range than the light source substrate when viewed in a plane, whereas the second support portion is at least as viewed in a plane.
  • a part is arranged in the hole. If it does in this way, although the part arranged in a hole part seeing in a plane among board reflective members will not overlap with a light source board and will contain a part which is not supported by a light source board, the part Can be supported by the second support portion to suppress deformation. Since the portion disposed in the hole portion when viewed from the plane in the substrate reflection member has a function of reflecting light to the hole portion, unevenness is hardly generated in the reflected light by suppressing the deformation of the portion. And good optical properties can be obtained.
  • the board reflection member is provided with a light source insertion hole through which the light source passes at a position overlapping the light source when viewed in plan, whereas the chassis reflection member has a flat hole.
  • the light source is formed to have a size over a wider range than the light source insertion hole. In this way, since the light source is passed through the light source insertion hole and the hole, it is avoided that light from the light source is blocked by the board reflection member or the chassis reflection member.
  • the light utilization efficiency can be improved by arranging the substrate reflection member in the hole portion larger than the light source insertion hole as viewed in a plane.
  • a diffusion lens that diffuses light from the light source is disposed on the opening side of the light source substrate at a position that overlaps the light source when viewed in plan, and the chassis reflection member includes:
  • the hole is arranged at a position overlapping the diffusing lens when seen in a plan view, and is formed to have a size allowing the diffusing lens to pass through.
  • the light emitted from the light source can be diffused by the diffusion lens and then guided to the opening. Even if light reflected on the light source substrate side is generated by the diffusion lens, the light can be reflected again to the diffusion lens side by the reflection member for the substrate disposed in the hole, so that the light use efficiency is improved. Can do. Thereby, generation
  • substrate reflection member is distribute
  • the light source substrate is formed in a size such that at least a part of the outer edge overlaps with the diffusing lens in a plan view.
  • the second support portion is flush with a surface of the light source substrate facing the substrate reflection member. According to this configuration, since no step is generated between the opposing surface of the light source substrate that supports the substrate reflection member and the second support portion, deformation of the substrate reflection member can be effectively suppressed. .
  • the substrate reflection member has a size that projects outward from both outer edges of the light source substrate facing opposite to each other, whereas the second support portion is the light source in a plan view. At least one pair is arranged at a position sandwiching the substrate. If it does in this way, since the part which protrudes from the both outer edges of a light source board
  • the second support portion is formed by partially projecting the chassis toward the opening side. In this way, it is possible to keep the whole thin compared to the case where the first support portion is formed by partially protruding the chassis to the side opposite to the opening side.
  • the second support portion has a dot shape when seen in a plane. In this way, since the ratio of the area of the second support portion to the entire chassis can be minimized, it is easy to form the second support portion by partially protruding the chassis. Moreover, the freedom degree of arrangement
  • the substrate reflection member protrudes outward from an outer edge of the light source substrate, whereas the second support portion is aligned with the light source along the extension direction of the substrate reflection member. It is arranged like this. In this way, since the light source and the second support portion are arranged along the protruding direction of the reflection member for the substrate from the outer edge of the light source substrate, the deformation of the reflection member for the substrate is performed at a position closer to the light source. Can be suppressed. Thereby, when light from the light source is reflected by the reflecting member for a substrate, unevenness is less likely to occur.
  • each 2nd support part suppresses modification of a reflective member for substrates in a position closer to each light source arranged in parallel in a light source substrate, in a reflective member for substrates Unevenness is less likely to occur in the reflected light.
  • the second support portion is configured to extend along an outer edge of the light source substrate. In this way, stress concentration on the substrate reflection member can be relaxed over a predetermined length along the outer edge of the light source substrate, so that deformation of the substrate reflection member can be effectively suppressed.
  • the light source substrate has a rectangular shape when seen in a plan view, and the second support portion extends along a long side direction of the light source substrate. In this way, stress concentration on the reflecting member for the substrate can be relaxed over a predetermined length along the outer edge in the long side direction of the light source substrate, so that the deformation of the reflecting member for the substrate can be more effectively suppressed. Can do.
  • the first support portion is formed by projecting the chassis partially toward the side opposite to the opening side. If it does in this way, the distance between a light source substrate and an opening part can be enlarged by the part which made the 1st support part protrude on the opposite side to an opening part side. Accordingly, it is possible to ensure a long optical path length until the light emitted from the light source reaches the opening, and thus unevenness in the outgoing light emitted from the opening is less likely to occur.
  • a plurality of the light source substrates are arranged in parallel at a predetermined interval, and the second support portion is configured to cover the entire area between the adjacent light source substrates. If it does in this way, the board
  • the chassis is provided with a substrate positioning portion capable of positioning the light source substrate in a direction along the plate surface.
  • a substrate positioning portion capable of positioning the light source substrate in a direction along the plate surface.
  • the substrate positioning portion is configured to extend along an edge portion of the light source substrate. In this way, the light source substrate can be easily and appropriately positioned by directing the edge of the light source substrate to the substrate positioning portion.
  • the light source substrate has a rectangular shape in plan view, and the substrate positioning portion is configured to extend along the long side direction of the light source substrate. If it does in this way, the light source board which makes a rectangular shape can be positioned more easily and appropriately.
  • the substrate positioning unit can position the light source substrate in two directions along the plate surface and orthogonal to each other. In this way, the light source substrate can be accurately positioned two-dimensionally.
  • the substrate positioning part has either the first support part or the second support part.
  • the structure of the chassis can be simplified and the manufacturing cost can be reduced as compared with the case where the first support part or the second support part is provided separately from the substrate positioning part. be able to.
  • the board positioning part is configured to partially protrude the chassis toward the opening, and includes the second support part. In this way, it is possible to keep the whole thin compared to the case where the substrate positioning portion and the first support portion are formed by partially projecting the chassis to the side opposite to the opening side.
  • the board positioning part includes a board housing space for housing the light source board and the first support part by partially protruding the chassis to the side opposite to the opening side.
  • the distance between the light source substrate accommodated in the substrate accommodation space and the opening can be increased by the amount that the substrate positioning portion protrudes on the side opposite to the opening side. Accordingly, it is possible to ensure a long optical path length until the light emitted from the light source reaches the opening, and thus unevenness in the outgoing light emitted from the opening is less likely to occur.
  • the substrate reflection member includes a plurality of light source surrounding reflection portions that surround each of the light sources in a plan view, and the adjacent light source surrounding reflection portions.
  • the reflective member for a substrate has a longitudinal shape having a connecting part between the reflecting parts that connect each other, and the width of the connecting part between the reflecting parts is relatively smaller than the width of the light source surrounding reflecting part in the short side direction. It is formed to be narrow.
  • the board-shaped reflection member having a longitudinal shape is configured such that the plurality of light source surrounding reflection portions are connected by the connecting portion between the reflection portions, so that the respective light source surrounding reflection portions are not connected to each other individually.
  • the handling property is excellent, and for example, the cost can be reduced.
  • the light source surrounding reflection portion needs a certain size (width) to reflect light from the light source, whereas the inter-reflecting portion connecting portion connects each light source surrounding reflection portion to each other.
  • the width of the connecting portion between the reflecting portions is set narrower than the width of the light source surrounding reflecting portion in the short side direction of the reflecting member for the substrate. Compared with the case where the width is the same as the portion, the total area of the reflective member for a substrate can be reduced, and thus the material cost can be reduced, that is, the cost can be reduced.
  • the second support part is disposed at a position overlapping the light source surrounding reflection part in a plan view. In this way, since the light source surrounding reflection part is supported by the second support part, it is possible to prevent the light source surrounding reflection part from being deformed. Thereby, when light from the light source is reflected by the light source surrounding reflection portion, unevenness is less likely to occur.
  • the light source substrate has a plurality of the light sources, and has a plurality of light source arrangement portions in which each of the light sources is arranged, and an arrangement portion connecting portion that connects the adjacent light source arrangement portions.
  • the light source substrate is formed such that the width of the connecting portion between the arrangement portions is relatively narrower than the width of the light source arrangement portion in the short side direction.
  • the light source substrate having a longitudinal shape has a configuration in which a plurality of light source arrangement portions are connected by the inter-arrangement portion connection portion. Therefore, the light source substrates are individually divided without connecting each light source arrangement portion. Compared with the case where the light source substrate is configured by the arrangement portion, the handling property is excellent, and for example, the cost can be reduced.
  • the light source arrangement part needs a certain size (width) in order to arrange the light sources, whereas the inter-arrangement part connection part has a mechanical strength necessary for connecting the light source arrangement parts to each other. As long as it can be maintained, it does not necessarily have to be the same size (width) as the light source arrangement portion. Therefore, in the present invention, since the width of the connecting portion between the arrangement portions is set narrower than the width of the light source arrangement portion in the short side direction of the light source substrate, the light source substrate is assumed to have the same width as the light source arrangement portion over the entire length. Compared to the case, the total area of the light source substrate can be reduced, so that the material cost can be reduced, that is, the cost can be reduced.
  • a holding member that holds the light source board, the board reflection member, and the chassis reflection member between the chassis and the chassis. If it does in this way, a light source board, a reflective member for substrates, and a reflective member for chassis can be collectively held by a holding member.
  • the holding member projects from the main body to the chassis side and is fixed to the chassis by sandwiching the light source substrate, the board reflecting member, and the chassis reflecting member between the holding member and the chassis.
  • the fixing portion is fixed to the chassis while penetrating the light source board, the board reflecting member, and the chassis reflecting member. If it does in this way, it is possible to position the light source board, the board reflection member, and the chassis reflection member in the direction along the plate surface by the fixing portion that penetrates the light source board, the board reflection member, and the chassis reflection member. It becomes.
  • the fixing portion penetrates the light source board, the board reflection member, the chassis reflection member, and the chassis, and is locked to the chassis from a side opposite to the light source board side.
  • the holding member can be fixed by locking the fixing portion penetrating the chassis together with the light source board, the board reflection member, and the chassis reflection member to the chassis. It is not necessary to use this fixing means, and the fixing can be easily achieved at low cost.
  • the light source is an LED. In this way, high brightness and low power consumption can be achieved.
  • a display device of the present invention includes the above-described illumination device and a display panel that performs display using light from the illumination device.
  • the illumination device that supplies light to the display panel is difficult to cause deformation in the reflective member for the substrate that reflects light in the chassis, it is reflected by the reflective member for the substrate. Therefore, unevenness is hardly generated in the emitted light, and it is possible to realize display with excellent display quality.
  • a liquid crystal panel can be exemplified as the display panel.
  • Such a display device can be applied as a liquid crystal display device to various uses such as a display of a television or a personal computer, and is particularly suitable for a large screen.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention.
  • the exploded perspective view which shows schematic structure of the liquid crystal display device with which a television receiver is equipped
  • the top view which shows the arrangement configuration of the LED board and holding member in the chassis with which a liquid crystal display device is equipped.
  • Sectional view taken along line iv-iv in FIG. 3 in the liquid crystal display device 3 is a cross-sectional view taken along the line vv in FIG.
  • the top view which shows the detailed arrangement structure of a LED board and a holding member Vii-vii sectional view of FIG. Viii-viii sectional view of FIG. Sectional view taken along line ix-ix in FIG.
  • Sectional drawing which shows the relationship between the reflective sheet for substrates which concerns on the modification 3 of Embodiment 1, and a 2nd support part.
  • Sectional drawing which shows the relationship between the reflective sheet for substrates which concerns on the modification 4 of Embodiment 1, and a 2nd support part.
  • the expanded bottom view of the chassis which concerns on Embodiment 2 of this invention Xxiv-xxiv sectional view of FIG. Sectional drawing which shows the 1st support part, board
  • Sectional drawing which shows a 1st support part, a board
  • the top view which shows the state which piled up the reflective sheet for board
  • a plan view showing a state in which a diffuser lens mounted on an LED substrate on which a substrate reflection sheet is placed is arranged in a chassis
  • substrates The top view which shows the state which has distribute
  • Sectional drawing which shows the relationship between the 2nd support part and LED board which concern on Embodiment 5 of this invention.
  • FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
  • the liquid crystal display device 10 is illustrated.
  • a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing.
  • the upper side shown in FIG.4 and FIG.5 be a front side, and let the lower side of the figure be a back side.
  • the television receiver TV includes a liquid crystal display device 10, front and back cabinets Ca and Cb that are accommodated so as to sandwich the liquid crystal display device 10, a power source P, a tuner T, And a stand S.
  • the liquid crystal display device (display device) 10 has a horizontally long rectangular shape (rectangular shape) as a whole and is accommodated in a vertically placed state.
  • the liquid crystal display device 10 includes a liquid crystal panel 11 that is a display panel and a backlight device (illumination device) 12 that is an external light source, which are integrated by a frame-like bezel 13 or the like. Is supposed to be retained.
  • the screen size is 42 inches and the aspect ratio is 16: 9.
  • the liquid crystal panel 11 and the backlight device 12 constituting the liquid crystal display device 10 will be described sequentially.
  • the liquid crystal panel (display panel) 11 has a rectangular shape in plan view, and a pair of glass substrates are bonded together with a predetermined gap therebetween, and liquid crystal is sealed between the glass substrates. It is said.
  • One glass substrate is provided with a switching element (for example, TFT) connected to a source wiring and a gate wiring orthogonal to each other, a pixel electrode connected to the switching element, an alignment film, and the like.
  • the substrate is provided with a color filter and counter electrodes in which colored portions such as R (red), G (green), and B (blue) are arranged in a predetermined arrangement, and an alignment film.
  • a polarizing plate is disposed on the outside of both substrates.
  • the backlight device 12 covers the chassis 14 having a substantially box shape having an opening 14 b on the light emitting surface side (the liquid crystal panel 11 side), and the opening 14 b of the chassis 14.
  • a group of optical members 15 (diffusion plate (light diffusion member) 15a and a plurality of optical sheets 15b arranged between the diffusion plate 15a and the liquid crystal panel 11), and an optical member disposed along the outer edge of the chassis 14.
  • a frame 16 that holds the outer edge portion of the group of members 15 between the chassis 14 and the chassis 14.
  • an LED 17 (Light ⁇ ⁇ Emitting Diode) as a light source, an LED board 18 on which the LED 17 is mounted, and the LED board 18 corresponding to the LED 17. And a diffusing lens 19 attached to the position.
  • a holding member 20 that can hold the LED substrate 18 between the chassis 14 and a reflection sheet 21 (reflection member) that reflects the light in the chassis 14 toward the optical member 15. And are provided.
  • the optical member 15 side is the light emission side from the LED 17.
  • the chassis 14 is made of metal and, as shown in FIGS. 3 to 5, has a rectangular bottom plate 14a similar to the liquid crystal panel 11, a side plate 14c rising from an outer end of each side of the bottom plate 14a, and each side plate 14c. And a receiving plate 14d projecting outward from the rising edge, and as a whole, has a shallow substantially box shape (substantially shallow dish shape) opened toward the front side.
  • the long side direction of the chassis 14 coincides with the X-axis direction (horizontal direction), and the short side direction coincides with the Y-axis direction (vertical direction).
  • the bottom plate 14 a in the chassis 14 has a substantially flat plate shape parallel to the liquid crystal panel 11 and the optical member 15, and the size of the bottom plate 14 a viewed from the plane is equivalent to that of the liquid crystal panel 11 and the optical member 15.
  • a plurality of LED substrates 18 are intermittently arranged in parallel at predetermined intervals, as will be described in detail later.
  • the bottom plate 14a has a board placement area BA where the LED board 18 is placed and a board non-placement area NBA where the LED board 18 is not placed (FIGS. 3 and 16).
  • a frame 16 and an optical member 15 to be described below can be placed on each receiving plate 14d in the chassis 14 from the front side.
  • a frame 16 is screwed to each receiving plate 14d.
  • An attachment hole 14e for attaching the holding member 20 is provided in the bottom plate 14a.
  • a plurality of mounting holes 14e are dispersedly arranged corresponding to the mounting position of the holding member 20 on the bottom plate 14a.
  • the optical member 15 has a horizontally long rectangular shape (rectangular shape) in a plan view, like the liquid crystal panel 11 and the chassis 14. As shown in FIGS. 4 and 5, the optical member 15 has its outer edge portion placed on the receiving plate 14 d so as to cover the opening 14 b of the chassis 14 and be interposed between the liquid crystal panel 11 and the LED 17. Arranged.
  • the optical member 15 includes a diffusion plate 15a disposed on the back side (the side opposite to the LED 17 side and the light emitting side) and an optical sheet 15b disposed on the front side (the liquid crystal panel 11 side and the light emitting side). .
  • the diffusing plate 15a has a structure in which a large number of diffusing particles are dispersed in a substantially transparent resin base material having a predetermined thickness, and has a function of diffusing transmitted light.
  • the optical sheet 15b has a sheet shape that is thinner than the diffusion plate 15a, and two optical sheets 15b are stacked (FIGS. 7 to 9). Specific types of the optical sheet 15b include, for example, a diffusion sheet, a lens sheet, a reflective polarizing sheet, and the like, which can be appropriately selected and used.
  • the frame 16 has a frame shape along the outer peripheral edge portions of the liquid crystal panel 11 and the optical member 15. An outer edge portion of the optical member 15 can be sandwiched between the frame 16 and each receiving plate 14d (FIGS. 4 and 5).
  • the frame 16 can receive the outer edge portion of the liquid crystal panel 11 from the back side, and can sandwich the outer edge portion of the liquid crystal panel 11 with the bezel 13 disposed on the front side (FIGS. 4 and 5). ).
  • the LED 17 has a configuration in which an LED chip is sealed with a resin material on a substrate portion fixed to the LED substrate 18.
  • the LED chip mounted on the substrate unit has one main emission wavelength, and specifically, one that emits blue light in a single color is used.
  • a phosphor that converts blue light emitted from the LED chip into white light is dispersed and blended in the resin material for sealing the LED chip.
  • the LED 17 can emit white light.
  • the LED 17 is a so-called top type in which a surface opposite to the mounting surface with respect to the LED substrate 18 is a light emitting surface.
  • the optical axis LA of the LED 17 is set to substantially coincide with the Z-axis direction (direction orthogonal to the main plate surfaces of the liquid crystal panel 11 and the optical member 15). Note that the light emitted from the LED 17 spreads radially to some extent within a predetermined angle range around the optical axis LA, but its directivity is higher than that of a cold cathode tube or the like. In other words, the light emission intensity of the LED 17 shows an angular distribution in which the direction along the optical axis LA is remarkably high and decreases rapidly as the tilt angle with respect to the optical axis LA increases.
  • the LED substrate 18 has a base material that has a rectangular shape (strip shape) in plan view, the long side direction matches the X axis direction, and the short side direction is the Y axis direction.
  • the base material of the LED substrate 18 is made of a metal such as the same aluminum material as that of the chassis 14, and a wiring pattern made of a metal film such as a copper foil is formed on the surface thereof via an insulating layer.
  • insulating materials such as a ceramic, can also be used as a ceramic.
  • the surface facing the front side (the surface facing the optical member 15 side) has the above-described configuration as shown in FIGS.
  • the LED 17 is surface mounted.
  • a plurality of LEDs 17 are linearly arranged in parallel along the long side direction (X-axis direction) of the LED substrate 18, and are connected in series by a wiring pattern formed on the LED substrate 18.
  • the arrangement pitch of the LEDs 17 is substantially constant, that is, it can be said that the LEDs 17 are arranged at equal intervals.
  • this LED board 18 is comprised from the some LED arrangement
  • the connector part 18a is provided in the both ends of the long side direction in the LED board 18, and let this be a connector arrangement
  • the LED substrate 18 having the above-described configuration is arranged in parallel in the chassis 14 in a state where the long side direction and the short side direction are aligned with each other in the X-axis direction and the Y-axis direction. ing. That is, the LED board 18 and the LED 17 mounted thereon are both set in the X-axis direction (the long side direction of the chassis 14 and the LED board 18) in the chassis 14 and in the Y-axis direction (of the chassis 14 and the LED board 18). Matrix arrangement (arranged in a matrix) with the short side direction as the column direction.
  • a total of 27 LED substrates 18 are arranged in parallel in the chassis 14, three in the X-axis direction and nine in the Y-axis direction.
  • two types of LED substrates 18 having different long side dimensions and the number of LEDs 17 to be mounted are used.
  • the LED substrate 18 six LEDs 17 are mounted, and the long side dimension is a relatively long six-part mounting type and the five LEDs 17 are mounted, and the long side dimension is relatively long.
  • the short five-mount type is used, one for the six-mount type at the X-axis direction end position of the chassis 14 and one for the five-mount type at the central position in the same direction. , Each is arranged.
  • the LED boards 18 that form one row along the X-axis direction are electrically connected to each other by fitting and connecting the adjacent connector portions 18a to each other.
  • Connector portions 18a corresponding to both ends in the X-axis direction are electrically connected to external control circuits (not shown).
  • the LEDs 17 arranged on the LED boards 18 in one row are connected in series, and the lighting / extinction of a large number of LEDs 17 included in the row is collectively controlled by a single control circuit. Therefore, it is possible to reduce the cost.
  • the short side dimension and the arrangement pitch of LED17 are made substantially the same.
  • the arrangement of the LED substrates 18 with respect to the chassis 14 described above matches the arrangement of the substrate arrangement areas BA on the bottom plate 14a. Therefore, it can be said that the substrate non-arrangement region NBA in the bottom plate 14a has a lattice shape surrounding each substrate arrangement region BA arranged in a matrix (FIG. 16).
  • each liquid crystal display device 10 having a screen size of, for example, 26 inches, 32 inches, 37 inches, 40 inches, 42 inches, 46 inches, 52 inches, and 65 inches is used. Therefore, it is possible to easily cope with the manufacture at a low cost.
  • the diffusing lens 19 is made of a synthetic resin material (for example, polycarbonate or acrylic) that is almost transparent (having high translucency) and has a refractive index higher than that of air. As shown in FIGS. 7, 8, and 11, the diffusing lens 19 has a predetermined thickness and is formed in a substantially circular shape when seen in a plan view, and each LED 17 is individually connected to the LED substrate 18 from the front side. So as to cover each LED 17 in a plan view. The diffusing lens 19 can emit light having strong directivity emitted from the LED 17 while diffusing.
  • a synthetic resin material for example, polycarbonate or acrylic
  • the diffusing lens 19 is disposed at a position that is substantially concentric with the LED 17 in a plan view.
  • the diffuser lens 19 is sufficiently larger in both the X-axis direction and the Y-axis direction than the LED 17.
  • the diffusing lens 19 has a diameter dimension that is larger than the short side dimension (dimension in the Y-axis direction) of the LED substrate 18 but is smaller than the long side dimension (dimension in the X-axis direction) of the LED substrate 18.
  • both end portions of the diffusing lens 19 in the Y-axis direction protrude outward from the LED substrate 18 by a predetermined dimension in the Y-axis direction.
  • both outer edges on the long side of the LED substrate 18 overlap with the diffusing lens 19 in a plan view.
  • the short side dimension of the LED substrate 18 is smaller than the diameter dimension of the diffusion lens 19 and is a minimum size necessary for mounting the diffusion lens 19 (specifically, each mounting described later)
  • the material cost related to the LED board 18 is reduced.
  • the surface facing the back side and facing the LED substrate 18 is a light incident surface 19 a on which light from the LED 17 is incident, whereas the surface facing the front side and facing the optical member 15 is the surface facing the optical member 15.
  • the light exit surface 19b emits light.
  • the light incident surface 19 a is formed in parallel with the plate surface (X-axis direction and Y-axis direction) of the LED substrate 18 as a whole.
  • the light incident side concave portion 19c is formed in a region overlapping with the LED 17 when viewed, thereby having an inclined surface.
  • the light incident side concave portion 19c has a substantially conical shape and is disposed at a substantially concentric position in the diffusing lens 19, and is open toward the back side, that is, the LED 17 side.
  • the light incident side concave portion 19c has an opening end portion facing the LED 17 side having the largest diameter dimension and larger than the diameter dimension of the LED 17, and the diameter dimension gradually and gradually increases from there to the front side. It becomes smaller and is minimized at the front end.
  • the light incident side concave portion 19c has a substantially inverted V-shaped cross section, and its peripheral surface is an inclined surface inclined with respect to the Z-axis direction. The inclined surface is inclined so that the front end thereof intersects the optical axis LA of the LED 17.
  • the light emitted from the LED 17 and entering the light incident side concave portion 19c enters the diffusion lens 19 through the inclined surface, but at that time, the amount of the inclination angle of the inclined surface with respect to the optical axis LA is as follows.
  • the light is refracted in a direction away from the center, that is, a wide angle, and enters the diffusing lens 19.
  • the light projecting surface 19a protrudes toward the LED substrate 18 at a position radially outward from the light incident side concave portion 19c, and has a structure for attaching the diffusing lens 19 to the LED substrate 18.
  • a mounting leg portion 19d is provided.
  • Three attachment legs 19d are arranged in the diffuser lens 19 at a position closer to the outer peripheral end than the light incident side recess 19c, and the line connecting the attachment legs 19d is a substantially equilateral triangle as viewed in a plane. It is arranged at the position that makes.
  • Each attachment leg 19d can fix the diffusing lens 19 to the LED substrate 18 in an attached state by fixing the tip of the attachment leg 19d to the LED substrate 18 with an adhesive or the like.
  • the diffusing lens 19 is fixed to the LED substrate 18 via the mounting leg portion 19d, so that a predetermined gap is formed between the light incident surface 19a and the LED substrate 18. In this gap, incidence of light from a space outside the diffusion lens 19 in a plan view is allowed. Further, in the attached state, the projecting tip portion of the LED 17 from the LED substrate 18 enters the light incident side recess 19c.
  • the light exit surface 19b of the diffusion lens 19 is formed in a flat and substantially spherical shape.
  • the light emitted from the diffusion lens 19 can be emitted while being refracted in a direction away from the center at the interface with the external air layer, that is, a wide angle.
  • a light emitting side recess 19e is formed in a region of the light emitting surface 19b that overlaps the LED 17 when seen in a plan view.
  • the light emitting side concave portion 19e has a substantially bowl shape, and is formed in a flat and substantially spherical shape with a peripheral surface having a downward slope toward the center.
  • the angle formed by the tangent of the peripheral surface of the light exit side recess 19e with respect to the optical axis LA of the LED 17 is relatively larger than the angle formed by the inclined surface of the light incident side recess 19c with respect to the optical axis LA. It is said.
  • the region of the light exit surface 19b that overlaps with the LED 17 when seen in a plane is a region where the amount of light from the LED 17 is extremely large compared to other regions, and the brightness tends to be locally high, but there
  • the light emitting side recess 19e most of the light from the LED 17 can be emitted while being refracted at a wide angle, or a part of the light from the LED 17 can be reflected to the LED substrate 18 side. Thereby, it can suppress that the brightness
  • the reflection sheet 21 is large enough to cover the entire inner surface of the chassis 14, that is, the chassis reflection sheet 22 (chassis reflection member) that covers all the LED boards 18, and the LED board 18.
  • the substrate reflection sheet 23 substrate reflection member.
  • the board reflection sheet 23 is overlaid on the front side with respect to the LED board 18, while the chassis reflection sheet 22 is overlaid on the front side with respect to the board reflection sheet 23.
  • the reflection sheet 21 is laminated in the order of the board reflection sheet 23 and the chassis reflection sheet 22 on the front side surface of the LED board 18, and the board reflection sheet 23 is composed of the LED board 18 and the chassis reflection sheet. It is interposed between the sheet 22.
  • Both the reflection sheets 22 and 23 are made of a synthetic resin, and the surfaces thereof are white with excellent light reflectivity. Both the reflection sheets 22 and 23 are assumed to extend along the bottom plate 14 a (LED substrate 18) in the chassis 14.
  • the chassis reflection sheet 22 will be described. As shown in FIG. 3, most of the chassis reflection sheet 22 that extends along the bottom plate 14 a of the chassis 14 (opposed to the bottom plate 14) is the main body portion 22 a.
  • the main body portion 22a is substantially the same size as the bottom plate 14a in plan view, and can cover each substrate placement area BA and substrate non-placement area NBA in the bottom plate 14a in a lump. In other words, the main body portion 22a has a size that covers a range that is sufficiently wider than each LED substrate 18 in a plan view.
  • lens insertion holes 22b holes through which the diffusion lenses 19 that cover the LEDs 17 together with the LEDs 17 arranged in the chassis 14 can be inserted (opened).
  • a plurality of lens insertion holes 22b are arranged in parallel at positions overlapping the respective LEDs 17 and the respective diffusion lenses 19 in a plan view in the main body portion 22a, and are arranged in a matrix.
  • the lens insertion hole 22 b has a circular shape when seen in a plan view, and the diameter thereof is set to be larger than that of the diffusing lens 19.
  • each diffuser lens 19 can be reliably passed through each lens insertion hole 22b regardless of the occurrence of dimensional errors. Since the diameter dimension of the diffusing lens 19 is larger than the short side dimension of the LED substrate 18, the lens insertion hole 19 has a diameter dimension larger than the short side dimension of the LED substrate 18, and the LED in the Y-axis direction when viewed in a plan view. It can be said that it has a size over a wider range than the substrate 18.
  • the chassis reflection sheet 22 covers the outer peripheral side region and the region between the adjacent diffusion lenses 19 in the chassis 14, so that the light directed to these regions is directed to the optical member 15 side. Can be reflected. Moreover, the hole which lets the connector part 18a pass is formed in the position which overlaps with the connector part 18a seeing in a plane among the main-body parts 22a, respectively. As shown in FIGS. 4 and 5, the outer peripheral side portion of the chassis reflection sheet 22 rises so as to cover the side plate 14 c and the receiving plate 14 d of the chassis 14, and the portion placed on the receiving plate 14 d is the chassis 14. And the optical member 15. Moreover, the part which connects the main-body part 22a and the part mounted in the receiving plate 14d among the reflective sheets 22 for chassis has comprised the inclined shape.
  • the board reflection sheet 23 is formed in a rectangular shape when viewed in plan view, which is substantially the same outer shape as the LED board 18.
  • the board reflection sheet 23 is arranged so as to overlap the front side surface of the LED board 18 and to cover almost the entire region from the front side.
  • the substrate reflection sheet 23 is interposed between the diffusion lens 19 and the LED substrate 18 and is opposed to the diffusion lens 19. That is, the board reflection sheet 23 is disposed in a lens insertion hole 22b formed in the chassis reflection sheet 22 that is overlapped on the front side in a plan view.
  • the board reflection sheet 23 has a long side dimension substantially the same as that of the LED board 18, whereas a short side dimension is larger than that of the LED board 18.
  • the board reflection sheet 23 has a size over a wider range than the LED board 18 in the Y-axis direction when viewed in a plane, and both outer edges on the long side of the LED board 18 (facing opposite sides to each other). Both outer edges) project outward along the Y-axis direction.
  • the central side portion in the short side direction is a substrate overlapping portion BL that overlaps the front side of the LED substrate 18 (superimposes in a plan view), whereas the short side Both end portions in the direction protrude outwardly along the Y-axis direction from both outer edges on the long side of the LED board 18 (both outer edges in the short side direction) and do not overlap with the LED board 18 (overlapping in plan view) (Not)
  • a pair of substrate non-overlapping portions NBL A pair of substrate non-overlapping portions NBL.
  • the substrate overlapping portion BL coincides with the substrate placement area BA in the bottom plate 14a of the chassis 14 when viewed in plan, whereas the both substrate non-superimposed portions NBL are viewed in plan and are not disposed in the substrate 14a on the bottom plate 14a of the chassis 14. It will be placed in the NBA. Specifically, both substrate non-overlapping portions NBL are located at the ends in the Y-axis direction in the substrate non-arrangement region NBA.
  • the short side dimension of the board reflection sheet 23 is larger than the diameter dimension of the lens insertion hole 22b of the diffuser lens 19 and the chassis reflection sheet 22 as shown in FIGS.
  • the board reflection sheet 23 is disposed over almost the entire region facing the diffusion lens 19, and substantially the entire region in the lens insertion hole 22 b as viewed in a plane (the diffusion lens 19 and the lens insertion hole 22 b as viewed in a plane). And overlap with the edge of the lens insertion hole 22b. Accordingly, the lens is reflected by the diffusing lens 19 and returned to the LED substrate 18 side or enters the space between the diffusing lens 19 and the LED substrate 18 from a space outside the diffusing lens 19 in a plan view.
  • the light traveling toward the insertion hole 22b can be reflected again toward the diffusion lens 19 by the substrate reflection sheet 23.
  • the light utilization efficiency can be increased, and the luminance can be improved. In other words, sufficient brightness can be obtained even when the number of LEDs 17 is reduced to reduce the cost.
  • the edge portion of the lens insertion hole 22b in the chassis reflection sheet 22 is superposed on the front side with respect to the board reflection sheet 23, the chassis reflection sheet 22 and the board reflection sheet 23 are flat in the chassis 14.
  • the chassis 14 or the LED board 18 is hardly exposed to the front side from the lens insertion hole 22b. Therefore, the light in the chassis 14 can be efficiently reflected toward the optical member 15, which is extremely suitable for improving the luminance.
  • a part of both substrate non-overlapping portions NBL is arranged in the substrate reflection sheet 23. .
  • the LED insertion hole 23a which lets each LED17 pass is formed in the position which overlaps with each LED17 in the LED board 18 seeing in a plane among the reflective sheets 23 for board
  • the LED insertion holes 23 a are arranged in parallel with the same arrangement pitch as the LEDs 17, and the diameter dimension is larger than that of the LEDs 17, but the lens insertion holes 22 b and the diffusion lens 19 of the chassis reflection sheet 22. It is supposed to be smaller.
  • leg insertion holes 23 b through which the respective attachment legs 19 d of the respective diffusion lenses 19 are passed are formed at positions where they are overlapped when viewed in a plane.
  • the board reflection sheet 23 includes a plurality of LED surrounding reflection portions (diffuse lens surrounding reflection portions) surrounding each of the LEDs 17 and a plurality of reflection portion connecting portions connecting adjacent LED surrounding reflection portions. It can be said that.
  • the holding member 20 includes a multifunctional holding member 20B having a supporting function for supporting the optical member 15 in addition to a holding function for holding the LED substrate 18 (respective reflecting sheets 22 and 23), and a supporting member having a holding function.
  • a multifunctional holding member 20B having a supporting function for supporting the optical member 15 in addition to a holding function for holding the LED substrate 18 (respective reflecting sheets 22 and 23), and a supporting member having a holding function.
  • a plurality of holding members 20 are arranged in parallel in the plane of the bottom plate 14 a of the chassis 14.
  • the holding member 20 has a row direction in the X-axis direction (the longer side direction of the chassis 14 and the LED substrate 18) and a column direction in the Y-axis direction (the shorter side direction of the chassis 14 and the LED substrate 18) in the bottom plate 14a.
  • a plurality are arranged in a matrix (arranged in a matrix).
  • Each holding member 20 is disposed at a position overlapping each LED substrate 18 in a plan view and between adjacent diffusion lenses 19 (LEDs 17).
  • the holding members 20 are arranged in the same arrangement as the diffusion lens 19 and the LED 17 described above. Since the holding members 20 are arranged one by one in the region between the adjacent diffusion lenses 19 (LEDs 17) on the LED substrate 18, the diffusion lenses 19 (LEDs 17) and the holding members 20 are alternately arranged in the X-axis direction. Will be lined up. Specifically, four holding members 20 are attached to each LED substrate 18. In the six-mounting type LED substrate 18, the holding member 20 is disposed in the region between the adjacent diffusion lenses 19 (LEDs 17) other than the central position in the long side direction, whereas the five mounting substrates are mounted. In the LED substrate 18 of the type, the holding member 20 is disposed in the entire region between the adjacent diffusion lenses 19 (LEDs 17).
  • all of the holding members 20 arranged as described above are all single-function holding members 20A except for two composite function holding members 20B described later.
  • the two multi-function holding members 20B are arranged at the center position in the short side direction of the chassis 14 and closer to the center than the outer end in the long side direction. The arrangement in the long side direction will be described in detail.
  • the multi-function holding member 20B is disposed at a symmetrical position across the central LED board 18 among the three LED boards 18 arranged in parallel in the X-axis direction.
  • the holding member 20 is made of a synthetic resin such as polycarbonate, and has a white surface with excellent light reflectivity.
  • the holding member 20 has a substantially circular shape as a whole when viewed in plan. As shown in FIGS. 7 and 9, the holding member 20 has a main body 24 along the bottom plate 14 a of the chassis 14 and the plate surface of the LED board 18, and protrudes from the main body 24 toward the back side, that is, the chassis 14 side. 14 and a fixing part 25 fixed to.
  • the holding member 20 as a whole has a symmetrical shape with the central axis along the Z-axis direction as the center of symmetry.
  • the main body portion 24 has a substantially circular shape when seen in a plan view, and is formed in a substantially straight plate shape along the X-axis direction and the Y-axis direction. As shown in FIG. 6, the main body portion 24 has a diameter that is substantially the same as the short side dimension (dimension in the Y-axis direction) of the LED substrate 18. And this main-body part 24 can be hold
  • the main body 24 is attached in a state where the reflection sheets 22 and 23 are arranged in advance on the front side of the LED substrate 18, it is possible to sandwich the reflection sheets 22 and 23 together with the LED substrate 18 (FIG. 7 and FIG. 9). That is, the holding member 20 according to the present embodiment can be sandwiched (held) with the chassis 14 in a state where the reflecting sheets 22 and 23 and the LED boards 18 that are extending members are stacked on each other.
  • the main body 24 is arranged at a position where the center thereof coincides with the center position in the short side direction of the LED substrate 18. Therefore, the main body 24 can sandwich the LED board 18 with the chassis 14 over the entire length in the short side direction. At this time, both outer ends in the Y-axis direction of the main body portion 24 and both outer ends in the short side direction of the LED substrate 18 are substantially aligned. In other words, the main body 24 is almost entirely overlapped with the LED board 18 when viewed in plan, and is prevented from projecting outside the LED board 18.
  • the diameter of the main body 24 is smaller than the interval (arrangement pitch) between the diffusion lenses 19 (LEDs 17) adjacent in the X-axis direction.
  • the main body 24 is arranged in a region between the diffusion lenses 19 (LEDs 17) adjacent to each other in the X-axis direction in the LED substrate 18, that is, in a non-light emitting part in the LED substrate 18, and with respect to the LED 17 There is no overlap when seen on a plane. That is, it is possible to avoid the main body 24 from obstructing light emission from the LED 17.
  • the holding member 20 is arranged using the space and the holding member 20 is used. The LED substrate 18 is fixed.
  • the fixing portion 25 can be locked to the bottom plate 14 a while penetrating through an attachment hole 14 e formed corresponding to the attachment position of the holding member 20 in the bottom plate 14 a of the chassis 14.
  • the main body portion 24 provided with the fixing portion 25 is arranged so that the entire region thereof overlaps with the LED substrate 18 in plan view as described above (FIG. 6). Accordingly, the fixing portion 25 is similarly arranged so as to overlap with the LED substrate 18 in a plan view. Therefore, the LED substrate 18 has a through hole 18b through which the fixing portion 25 is passed. As shown in FIG.
  • the through-hole 18b is arranged at a position on the LED board 18 between the adjacent LEDs 17 (diffuse lens 19), that is, a position where the LED 17 (diffuse lens 19) does not overlap with the LED 17 (diffuse lens 19).
  • the position overlapping the through hole 18 b of the LED substrate 18 in a plan view is shown in FIGS.
  • through-holes 22c and 23c are formed, which communicate with the through-hole 18b of the LED substrate 18 and allow the fixing portion 25 to pass therethrough.
  • An attachment hole 14e into which the fixing portion 25 is inserted and locked is formed in a position of the bottom plate 14a of the chassis 14 that coincides with each through hole 18b, 22c, 23c in plan view. Note that a plurality of mounting holes 14e are arranged in parallel in a matrix form along the X-axis direction and the Y-axis direction corresponding to the mounting position of each holding member 20 on the bottom plate 14a of the chassis 14.
  • the fixing part 25 is arranged on the center side in the main body part 24 as shown in FIGS. Specifically, the fixing portion 25 is disposed at a position that is substantially concentric with the main body portion 24. As shown in FIG. 9, the fixing portion 25 protrudes from the back side surface (the surface facing the chassis 14) of the main body portion 24 toward the back side, and a groove portion 25 c is provided at the tip portion thereof so as to be elastically engaged. It has a stop piece 25b.
  • the fixing portion 25 includes a base portion 25a that protrudes from the main body portion 24 to the back side, and an elastic locking piece 25b that protrudes further from the protruding tip of the base portion 25a toward the back side.
  • the base portion 25a has a substantially cylindrical shape, the diameter of the base portion 25a is smaller than the mounting hole 14e of the chassis 14, and the insertion through the through holes 18b, 22c, 23c and the mounting hole 14e is allowed. Is done.
  • the elastic locking piece 25 b is divided into four parts by making the groove part 25 c into a substantially cross shape when seen in a plan view.
  • each elastic locking piece 25b is formed in a cantilever shape, and can be elastically deformed while constricting in the groove 25c with the protruding base end from the base 25a as a fulcrum. That is, the groove 25c is a bending space for each elastic locking piece 25b.
  • On the outer surface of the elastic locking piece 25b there is provided a locking portion 25d that bulges outward, that is, on the side opposite to the groove 25c.
  • the locking portion 25d protrudes further outward than the outer peripheral surface of the base portion 25a, and the diameter dimension (maximum diameter dimension) of the fixing portion 25 at the bulging end is the through-holes 18b, 22c, 23c and the attachment.
  • the diameter is larger than the diameter of the hole 14e.
  • the bulging end of the locking portion 25d is located outside the inner peripheral surface of the mounting hole 14e. Therefore, the locking portion 25d can be locked from the back side to the edge of the mounting hole 14e in the chassis 14, that is, the portion of the chassis 14 adjacent to the fixing portion 25.
  • the elastic locking pieces 25b are elastically engaged with the edge portion from the back side after the elastic locking pieces 25b are passed through the mounting holes 14e. It has come to be stopped. Thereby, the holding member 20 can be fixed to the chassis 14 in an attached state.
  • an inclined surface 24a is formed on the outer peripheral end surface of the main body 24 in the single-function holding member 20A.
  • the inclined surface 24a has a downward slope from the central side to the outer end side in the main body 24, thereby eliminating or reducing a step that may occur with the chassis reflection sheet 22.
  • the outer peripheral edge portion (the boundary portion with the reflection sheet 21) of the main body portion 24 is hardly visually recognized as luminance unevenness through the optical member 15.
  • illustration is abbreviate
  • the multifunctional holding member 20B has an optical member support portion 26 that protrudes from the main body portion 24 toward the front side and can support the optical member 15 from the back side.
  • the optical member support portion 26 has a conical shape as a whole. Specifically, the optical member support portion 26 has a circular cross-sectional shape cut along the plate surface of the main body portion 24 and is tapered so that the diameter gradually decreases from the protruding proximal end side to the protruding distal end side. Is formed.
  • the optical member support portion 26 can be brought into contact with the diffusion plate 15a disposed on the backmost side (the LED 17 side) of the optical member 15, thereby supporting the diffusion plate 15a at a predetermined position. That is, the optical member support portion 26 can restrict the positional relationship between the optical member 15 and the LED 17 in the Z-axis direction (direction orthogonal to the surface of the optical member 15) to a constant state.
  • the outer diameter size of the protruding base end portion of the optical member support portion 26 is smaller than both the short side size of the main body 24 and the short side size of the LED substrate 18. That is, the optical member support portion 26 has a point shape when viewed in a plane, whereas the main body portion 24 has a surface shape that covers a wider range when viewed in plan than the optical member support portion 26. .
  • the protruding dimension of the optical member support 26 is substantially equal to the distance from the front surface of the main body 24 to the back surface of the diffusion plate 15a that is substantially straight along the X-axis direction and the Y-axis direction. ing. Accordingly, the optical member support portion 26 is brought into contact with the diffusion plate 15a in a substantially straight state.
  • the protruding tip portion that is a contact portion with the diffusion plate 15a is rounded. Since the optical member support portion 26 is the only portion of the composite function type holding member 20B that protrudes from the main body 24 to the front side, the work is performed when attaching the composite function type holding member 20B to the chassis 14. A person can use the optical member support portion 26 as an operation portion. Thereby, the attachment / detachment workability of the multifunctional holding member 20B can be improved.
  • the optical member support part 26 is arranged at a substantially central position in the main body part 24 as shown in FIGS. That is, the optical member support portion 26 is disposed at a position overlapping the fixing portion 25 disposed on the back side in a plan view. More specifically, the optical member support portion 26 and the fixing portion 25 are disposed at positions that are substantially concentric when viewed in plan. With such an arrangement, when the operator uses the optical member support portion 26 as an operation portion when performing the operation of attaching the multifunctional holding member 20B to the chassis 14, the optical member support portion exposed to the front side is used. By visually observing 26, the position of the fixing portion 25 hidden behind the back can be easily grasped. Therefore, workability when inserting the fixing portion 25 into the mounting hole 14e can be improved.
  • positioned among the bottom plates 14a in the chassis 14 which concerns on this embodiment has the 1st support part 27 which supports the LED board 18 from a back side, as shown in FIG. It is composed.
  • the substrate overlapping portion BL in the board reflection sheet 23 is placed, and the front side surface of the LED board 18 (with the board reflection sheet 23).
  • the substrate overlapping portion BL is supported from the back side by the facing surface.
  • the board non-placement area NBA where the LED board 18 is not placed is arranged at a position protruding (lifted) relatively to the front side from the first support part 27 described above.
  • a second support portion 28 capable of supporting the substrate non-overlapping portion NBL from the back side of the substrate reflection sheet 23 is provided. That is, in the chassis 14 according to the present embodiment, the LED board 18 on which the board overlapping part BL is stacked is supported by the first support part 27 disposed on the back side of the board reflection sheet 23, and the board is not superposed.
  • the portion NBL is supported by the second support portion 28 that is relatively disposed on the front side, and thereby the Z-axis direction (the bottom plate 14e and the base plate 14e and the substrate non-overlapping portion NBL in the substrate reflection sheet 23).
  • the support positions in the direction orthogonal to the plate surface of the board reflection sheet 23 are aligned to eliminate the step.
  • the second support portion 28 is formed by partially projecting the substrate non-arrangement region NBA in the bottom plate 14a to the front side, that is, the opening portion 14b side.
  • the second support portion 28 has a protrusion dimension from the substrate non-arrangement area NBA to the front side that is about the thickness dimension of the LED substrate 18. Accordingly, the surface on the front side of the second support portion 28 and the LED substrate 18, that is, the facing surface (support surface) of the substrate reflection sheet 23 is flush with each other.
  • the support positions on the chassis 14 side in the Z-axis direction with respect to the substrate overlapping portion BL and the substrate non-overlapping portion NBL of the substrate reflection sheet 23 are substantially the same, and the step is almost completely eliminated.
  • substrate reflection sheet 23 ensures the whole flatness by the board
  • the second support portion 28 is located in each of the non-substrate placement areas NBA that are adjacent to each board placement area BA (each LED board 18) in the Y-axis direction. It is arranged. As shown in FIGS. 16 and 17, the second support portion 28 has a substantially dotted shape when viewed in plan in the substrate non-arrangement region NBA, and along the outer edge (X-axis direction) on the long side of the LED substrate 18. Are intermittently arranged in parallel. Specifically, each of the second support portions 28 has a substantially circular shape when viewed in a plane, and has a diameter larger than the distance between the diffusion lens 19 and the lens insertion hole 22b when viewed in a plane.
  • the number of the second support portions 28 arranged in parallel along the X-axis direction is the same as the number of LEDs 17 arranged in parallel on the LED substrate 18, and the Y-axis direction of each LED 17, that is, the substrate reflection sheet 23, the LED substrate 18 is arranged along the protruding direction from the outer edge on the long side. That is, it can be said that the respective second support portions 28 are arranged in the same manner in the X-axis direction as the respective LEDs 17 and are arranged at positions closest to the respective LEDs 17.
  • the interval (arrangement pitch) between the second support portions 28 adjacent in the X-axis direction is substantially the same as the interval between the LEDs 17 on the LED substrate 18.
  • the 2nd support part 28 is distribute
  • a pair of second support portions 28 are provided at positions (positions between adjacent LED substrates 18) that sandwich each LED substrate 18 in the Y-axis direction (short-side direction). Therefore, each of the second support portions 28 can support a pair of substrate non-overlapping portions NBL protruding from both outer edges on the long side of the LED substrate 18 in the substrate reflection sheet 23.
  • the second support portion 28 has a substantially trapezoidal cross-sectional shape, and the protruding tip portion 28 a has a support surface for the substrate reflection sheet 23.
  • the second support portion 28 is integrally formed with the chassis 14 by drawing the bottom plate 14a of the chassis 14, for example.
  • the protruding tip portion 28a (the portion having a support surface for the board reflection sheet 23) in the second support portion 28 is disposed in the lens insertion hole 22b when the portion on the LED board 18 side in the Y-axis direction is viewed in a plane.
  • the portion on the opposite side to the LED substrate 18 side is overlapped with the edge of the lens insertion hole 22b in a plan view.
  • the 2nd support part 28 is distribute
  • the outer portion O that is arranged outside the lens insertion hole 22b in a plan view and that overlaps the edge of the lens insertion hole 22b can be supported from the back side, and is in surface contact with each other without any step.
  • the inner portion I arranged in the lens insertion hole 22b as viewed in a plane in the non-overlapping portion NBL is supported by the second support portion 28 and the deformation thereof is suppressed, whereby the inside of the lens insertion hole 22b. Can be reflected without unevenness.
  • the outer portion O that overlaps with the edge portion of the lens insertion hole 22b in a plan view in the substrate non-overlapping portion NBL is supported by the second support portion 28 and its deformation is suppressed, whereby the edge of the lens insertion hole 22b is suppressed. It is possible to prevent a gap from being formed in the Z-axis direction between the portion and the outer portion O of the substrate non-overlapping portion NBL, so that light can be prevented from leaking therefrom.
  • tip part 28a of the 2nd support part 28 is the part between the protrusion base end part from the outer edge of the LED board 18, and the protrusion front-end
  • the second support portion 28 has the substrate positioning portion 29 integrally.
  • the board positioning unit 29 can be positioned in the Y-axis direction by contacting the outer edge of the LED board 18 on the long side.
  • the LED substrate 18 can be accommodated between the paired second support portions 28, and the substrate positioning portion 29 sandwiches the accommodated LED substrate 18 from both outer sides in the Y-axis direction, thereby It is possible to position the substrate 18 almost without rattling in the Y-axis direction.
  • a plurality of substrate positioning portions 29 are intermittently arranged in parallel along the outer edge on the long side of the LED substrate 18. Therefore, it is possible to effectively prevent the LED board 18 from being displaced by each board positioning portion 29 so as to be inclined with respect to the long side direction.
  • a second plate capable of positioning the LED board 18 in the X-axis direction is located at a position adjacent to the edge on the short side of the LED board 18 in the bottom plate 14 a of the chassis 14.
  • Substrate positioning unit 30 is provided. Similar to the second support portion 28 described above, the second substrate positioning portion 30 has a bottom plate 14a of the chassis 14 that partially protrudes to the front side. It has a shape. The second substrate positioning unit 30 can position the LED substrate 18 in the X-axis direction by contacting the outer edge of the LED substrate 18 on the short side.
  • a pair of second substrate positioning portions 30 are arranged at positions sandwiching the LED substrate 18 in the Y-axis direction (long-side direction), and the distance between the second substrate positioning portions 30 is the length of the LED substrate 18.
  • the side dimensions are about the same. Therefore, by sandwiching the LED board 18 from both outer sides in the X-axis direction by both the second board positioning portions 30, it is possible to position the LED board 18 almost without any rattling in the X-axis direction.
  • the LED substrate 18 is two-dimensionally positioned in the X-axis direction and the Y-axis direction orthogonal to each other by the substrate positioning portions 29 and 30.
  • the second substrate positioning unit 30 is disposed at the center position of the LED substrate 18 in the Y-axis direction.
  • This embodiment has the structure as described above, and its operation will be described next.
  • the liquid crystal panel 11 and the backlight device 12 are separately manufactured and assembled to each other using the bezel 13 or the like, whereby the liquid crystal display device 10 shown in FIGS. 4 and 5 is manufactured. Among these, the assembly work at the time of manufacturing the backlight device 12 will be described in detail.
  • an operation of attaching the LED 17, the board reflection sheet 23, and the diffusion lens 19 to the LED board 18 is performed prior to the assembly of each component to the chassis 14. Specifically, first, as shown in FIG. 10, the LED 17 is mounted on a predetermined position on the LED board 18, and then the board reflection sheet 23 is put on the front side. At this time, the LEDs 17 are passed through the LED insertion holes 23 a of the board reflection sheet 23, and the through holes 18 b and 23 c of the LED board 18 and the board reflection sheet 23 are aligned and communicated with each other. Thereafter, as shown in FIG. 11, a diffusion lens 19 is attached to the LED substrate 18 so as to cover each LED 17.
  • each mounting leg 19 d of the diffusing lens 19 is fixed to the LED substrate 18 by an adhesive through the leg insertion hole 23 b of the board reflection sheet 23.
  • the light source unit U in which the LED 17, the board reflection sheet 23, and the diffusing lens 19 are integrated with the LED board 18, is produced.
  • the substrate overlapping portion BL of the substrate reflection sheet 23 is supported from the back side by the LED substrate 18, but the both substrate non-overlapping portions NBL are not supported by the LED substrate 18.
  • each component to the chassis 14 is housed inside from the front side of the chassis 14 through the opening 14b, and each light source unit U is arranged at a predetermined mounting position with respect to the bottom plate 14a.
  • the LED substrate 18 is arranged, the space in the space surrounded by the second support portions 28 (each substrate positioning portion 29) and the second positioning portion 30 provided at the mounting position (substrate placement area BA) in the bottom plate 14a.
  • the LED board 18 is accommodated in the housing (see FIGS. 16 and 17).
  • substrate positioning part 29 which faced the LED board 18 side among each 2nd support part 28 is on both outer edges of the long side of LED board 18, and each 2nd board
  • substrate positioning part 30 is a short side of LED board 18 Abuts against both outer edges.
  • the LED board 18 and the board reflection sheet 23 are accurately positioned two-dimensionally with respect to the chassis 14 in the X-axis direction and the Y-axis direction (FIGS. 8 and 17).
  • the LED board 18 is supported from the back side by the board support area BA in the bottom plate 14 a of the chassis 14, that is, the first support portion 27, while the long side of the LED board 18 of the board reflection sheet 23.
  • the two substrate non-overlapping portions NBL projecting outward from both outer edges are supported from the back side by abutting the projecting tip portions 28a of the second support portions 28 (FIG. 8).
  • the protruding front end portion 28 a of the second support portion 28 has a support surface for the board reflection sheet 23 disposed on the front side of the first support portion 27 and is flush with the support surface of the LED substrate 18. There is almost no step in the Z-axis direction.
  • the board reflection sheet 23 does not cause a step in the Z-axis direction between the substrate overlapping portion BL and the substrate non-overlapping portion NBL by the LED substrate 18 and the second support portion 28, and maintains high flatness. Supported by the state. As a result, the stress hardly concentrates on the boundary position between the substrate overlapping portion BL and each substrate non-overlapping portion NBL in the substrate reflection sheet 23, thereby causing deformation (unevenness) in the substrate reflection sheet 23. Is effectively suppressed. Further, the LED boards 18 adjacent to each other in the X-axis direction can be electrically connected to each other by fitting the adjacent connector portions 18a to each other. The connection work between the LED boards 18 arranged in the X-axis direction is not necessarily performed in the chassis 14 and may be performed outside the chassis 14.
  • each lens insertion hole 22b in the chassis reflection sheet 22 is aligned with each diffusion lens 19 in the light source unit U, and each diffusion lens 19 is passed through each lens insertion hole 22b (FIG. 3). .
  • the main body portion 22a is superposed on the front side of the bottom plate 14a in a state where each light source unit U is mounted over almost the entire region.
  • the edge of the lens insertion hole 22b in the chassis reflection sheet 22 is overlapped on the front side of the board reflection sheet 23 over the entire area.
  • the through holes 22c of the chassis reflection sheet 22 are aligned and communicated with the through holes 18b and 23c of the LED board 18 and the board reflection sheet 23 and the mounting holes 14e of the chassis 14, respectively. Thereafter, the holding member 20 is assembled.
  • each elastic locking piece 25b is elastically deformed so as to be temporarily confined in the groove portion 25c by being pressed by the edge portions of the respective through holes 18b, 22c, 23c and the mounting hole 14e. Then, when the fixing portions 25 are inserted to a depth where each elastic locking piece 25b passes through the mounting hole 14e and reaches the back side of the chassis 14, as shown in FIGS. 7 and 9, each elastic locking piece 25b is elastic.
  • the locking portion 25d is locked from the back side to the edge of the mounting hole 14e.
  • the holding member 20 is prevented from being detached from the chassis 14 and is fixed in the attached state.
  • the LED board 18 and the reflection sheets 22 and 23 are held together between the main body 24 of the holding member 20 and the bottom plate 14 a of the chassis 14.
  • the optical member supporting portion 26 can be used as the operation portion for the multifunctional holding member 20B among the holding members 20.
  • the operator can operate the multifunctional holding member 20B while holding the optical member support portion 26.
  • the optical member support portion 26 and the fixing portion 25 are arranged at positions that overlap each other and are concentric when viewed in plan, the operator can easily grasp the position of the fixing portion 25. . Therefore, the operation of inserting the fixing portion 25 into the mounting hole 14e can be performed smoothly.
  • the fixing portion 25 penetrates the reflection sheets 22 and 23 and the LED board 18, the reflection sheets 22 and 23 and the LED board 18 are prevented from inadvertently moving in the X-axis direction and the Y-axis direction. The positioning in the same direction is achieved. Furthermore, since the fixing portion 25 has been fixed by passing through the mounting hole 14e formed in the chassis 14 and mechanically locked there, a fixing method using an adhesive or the like was temporarily adopted. Compared to the case, the fixing can be easily performed at a low cost, and the holding member 20 can be easily detached at the time of maintenance or disposal.
  • the optical member 15 is attached to the chassis 14 so as to cover the opening 14b.
  • the specific mounting order of the optical member 15 is that the diffusion plate 15a is first and then the optical sheet 15b.
  • the optical member 15 has an outer peripheral edge received by the receiving plate 14d of the chassis 14 and a central portion supported by the optical member support 26 of each multifunctional holding member 20B. It has come to be.
  • the frame 16 is attached to the chassis 14, the outer peripheral edge of the optical member 15 is sandwiched between the frame 16 and the receiving plate 14d. Thereby, the manufacture of the backlight device 12 is completed.
  • the liquid crystal panel 11 When assembling the manufactured backlight device 12 and the liquid crystal panel 11, the liquid crystal panel 11 is placed on the frame 16, and then the bezel 13 is put on the front side and screwed. As a result, the liquid crystal panel 11 is sandwiched between the frame 16 and the bezel 13 and the liquid crystal panel 11 is integrated with the backlight device 12, thereby completing the manufacture of the liquid crystal display device 10.
  • each LED 17 provided in the backlight device 12 is turned on and an image signal is supplied to the liquid crystal panel 11, thereby A predetermined image is displayed on the display surface of the liquid crystal panel 11.
  • the light emitted when each LED 17 is turned on first enters the light incident surface 19 a of the diffusion lens 19. At this time, most of the light is incident on the inclined surface of the light incident side recess 19c in the light incident surface 19a, so that the light enters the diffusing lens 19 while being refracted at a wide angle according to the inclination angle. The incident light propagates through the diffusing lens 19 and then exits from the light exit surface 19b.
  • the light exit surface 19b has a flat, substantially spherical shape, an external air layer is formed. Light is emitted while being refracted at a wider angle at the interface.
  • the light emitting side concave portion 19e having a substantially bowl shape is formed, and the peripheral surface has a flat and substantially spherical shape. Light can be emitted while being refracted at a wide angle on the peripheral surface of the light emitting side recess 19e, or reflected to the LED substrate 18 side.
  • the light returned to the LED substrate 18 side and directed toward the lens insertion hole 22b is reflected to the diffusion lens 19 side by the substrate reflection sheet 23 arranged in the lens insertion hole 22b and is incident on the diffusion lens 19 again. Therefore, high luminance can be obtained.
  • the light having strong directivity emitted from the LED 17 can be diffused at a wide angle by the diffusing lens 19, so that the in-plane distribution of the optical member 15 in the light reaching the optical member 15 is uniform. It can be.
  • the region between the adjacent LEDs 17 becomes difficult to be visually recognized as a dark part by using the diffusing lens 19, it becomes possible to widen the interval between the LEDs 17, and thus the number of the LEDs 17 arranged while suppressing the luminance unevenness. Reduction can be achieved.
  • the interval between the adjacent LEDs 17 can be widened, so that the holding member 20 can be arranged using the widened area, and the holding member 20 is further reduced.
  • the LED substrate 18 can be fixed.
  • the substrate reflection sheet 23 that reflects light at the position closest to the LED 18 and the diffusing lens 19 hardly undergoes deformation (unevenness) as described above, and maintains flatness. Since the supporting structure is adopted, there is almost no unevenness in the light (reflected light) mainly reflected toward the diffusion lens 19 after being reflected by the board reflection sheet 23. Specifically, since the second support portion 28 supports the inner portion I disposed in the lens insertion hole 22b among the non-overlapping portions NBL of both the substrates in the substrate reflection sheet 23, the second support portion 28 is disposed in the lens insertion hole 22b. The incident light (light that cannot be reflected by the chassis reflection sheet 22) can be uniformly reflected to the diffuser lens 19 side.
  • the second support portion 28 supports the outer portion O that overlaps with the edge portion of the lens insertion hole 22b among the non-overlapping portions NBL of both the substrates in the substrate reflection sheet 23, the lens insertion hole 22b.
  • Can be maintained in contact with each other and the overlapping portions of the non-overlapping portions NBL of both the substrates can be prevented from leaving a gap in the Z-axis direction, and light can be prevented from leaking from the gap. be able to.
  • the light emitted from the diffusing lens 19 and directed to the diffusing plate 15a (opening 14b) is less likely to be uneven, and the light utilization efficiency can be improved.
  • each LED 17 in the backlight device 12 is turned on or off, so that a change occurs in the internal temperature environment, and accordingly each configuration of the liquid crystal display device 10.
  • Parts can expand or contract thermally.
  • each board reflection sheet 23 also undergoes expansion and contraction due to thermal expansion or contraction, and in some cases, deformation such as warping may occur.
  • the deformation accompanying the change in the temperature environment tends to be more likely to occur as the stress is applied. That is, if stress concentration occurs at a predetermined location in the substrate reflection sheet 23, local deformation due to thermal expansion or contraction is likely to occur at that location.
  • the substrate reflection sheet 23 is flat from the chassis 14 side by the LED substrate 18 and the second support portion 28 that are flush with each other as described above. Since the state is maintained, it is avoided that stress is concentrated at the boundary position between the substrate overlapping portion BL and each substrate non-overlapping portion NBL. Therefore, even if the temperature environment changes slightly, it is difficult for the substrate reflection sheet 23 to be deformed.
  • the backlight device 12 of the present embodiment includes the LED board 18 having the LED 17 that is the light source, the chassis 14 having the opening 14b for accommodating the LED board 18 and emitting the light from the LED 17, and A chassis reflection sheet 22 that is disposed along the inner surface of the chassis 14 and reflects light, and overlaps the LED board 18 on the opening 14b side, and is disposed over a wider area than the LED board 18 in plan view.
  • the chassis 14 has a first support portion 27 that supports the LED substrate 18 and is disposed closer to the opening portion 14 b than the first support portion 27. And a second support portion 28 that supports the substrate reflection sheet 23.
  • the board reflection sheet 23 that overlaps the LED board 18 on the opening 14 b side is provided. Even when a hole is formed in the chassis reflection sheet 22, a part of the board reflection sheet 23 can be disposed in the hole, thereby improving the light utilization efficiency.
  • the board reflection sheet 23 has a size over a wider range than the LED board 18 when seen in a plane, which means that the LED board 18 is smaller than the board reflection sheet 23 when seen in a plane. This means that the material cost of the LED substrate 18 can be reduced.
  • the portion of the substrate reflection sheet 23 that overlaps the LED substrate 18 on the side of the opening 14b is supported by the LED substrate 18 but does not overlap the LED substrate 18 (substrate non-overlapping).
  • the overlapping portion NBL) is supported by a second support portion 28 disposed on the opening 14b side relative to the first support portion 27 that supports the LED substrate 18. Therefore, it is possible to alleviate the stress concentration at the boundary position between the portion of the substrate reflection sheet 23 that overlaps the LED substrate 18 (substrate overlapping portion BL) and the portion that does not overlap (substrate non-overlapping portion NBL). it can. Thereby, it becomes difficult to produce a deformation
  • the chassis reflection sheet 22 is formed with a lens insertion hole 22b as a hole, and at least a part of the substrate reflection sheet 23 is disposed in the lens insertion hole 22b in a plan view. In this way, the light to the lens insertion hole 22b can be reflected by the board reflection sheet 23 disposed in the lens insertion hole 22b of the chassis reflection sheet 22, so that the light use efficiency can be improved. it can.
  • the edge of the lens insertion hole 22b in the chassis reflection sheet 22 and the board reflection sheet 23 are overlapped with each other when seen in a plan view. If it does in this way, the edge part of lens penetration hole 22b in reflection sheet 22 for chassis and reflection sheet 23 for substrates will connect seamlessly in the plane. Thereby, the utilization efficiency of light can be further improved.
  • the board reflection sheet 23 is supported by the second support portion 28 and deformation is suppressed, a gap is formed between the edge of the lens insertion hole 22b and the board reflection sheet 23, and light leaks from there. Therefore, high light utilization efficiency can be obtained.
  • the second support portion 28 is disposed at a position where at least a part of the second support portion 28 overlaps with the edge portion of the lens insertion hole 22b in the chassis reflection sheet 22 in a plan view. In this way, the overlapping portion of the edge portion of the lens insertion hole 22b in the chassis reflection sheet 22 and the board reflection sheet 23 can be supported by the second support portion 28, so the lens in the chassis reflection sheet 22 can be supported. It is possible to more reliably prevent light from leaking from a gap between the edge of the insertion hole 22b and the board reflection sheet 23. Thereby, the utilization efficiency of light can be further improved.
  • the chassis reflection sheet 22 is formed so that the lens insertion hole 22b has a size over a wider range than the LED substrate 18 when viewed in a plane, whereas the second support portion 28 is at least as viewed in a plane.
  • a part is disposed in the lens insertion hole 22b. If it does in this way, the part arrange
  • the portion disposed in the lens insertion hole 22b when viewed in a plane in the substrate reflection sheet 23 has a function of reflecting light to the lens insertion hole 22b, reflected light is suppressed by suppressing deformation of the portion. As a result, unevenness is less likely to occur and good optical characteristics are obtained.
  • the board reflection sheet 23 is provided with an LED insertion hole 23a through which the LED 17 is passed at a position overlapping with the LED 17 when viewed in plan, whereas the chassis reflection sheet 22 has a lens insertion hole 22b in a plane. It is formed to have a size over a wider range than the LED insertion hole 23a. In this way, since the LED 17 is passed through the LED insertion hole 23a and the lens insertion hole 22b, the light from the LED 17 is prevented from being blocked by the board reflection sheet 23 or the chassis reflection sheet 22.
  • the use efficiency of light can be improved by arranging the board reflection sheet 23 in the lens insertion hole 22b larger than the LED insertion hole 23a in a plan view.
  • a diffusion lens 19 for diffusing light from the LED 17 is disposed at a position overlapping the LED 17 when viewed in a plane, and the chassis reflection sheet 22 has a plane.
  • a lens insertion hole 22 b is arranged at a position overlapping the diffusion lens 19 when viewed, and is formed to have a size allowing the diffusion lens 19 to pass through.
  • the light emitted from the LED 17 can be diffused by the diffusing lens 19 and then guided to the opening 14b.
  • the utilization efficiency can be improved. Thereby, generation
  • the board reflection sheet 23 is arranged over a wider range than the diffusion lens 19 in a plan view. If it does in this way, the light reflected in the LED board 18 side by the diffuser lens 19 can be more reliably returned to the diffuser lens 19 side by the board
  • the LED substrate 18 is formed in such a size that at least a part of the outer edge overlaps with the diffusing lens 19 in a plan view. By setting the LED substrate 18 to such a size, the material cost for the LED substrate 18 can be reduced, which is suitable for cost reduction.
  • the second support portion 28 is flush with the surface of the LED substrate 18 facing the substrate reflection sheet 23. In this way, there is no step between the opposing surface of the LED board 18 that supports the board reflection sheet 23 and the second support portion 28, so that deformation of the board reflection sheet 23 is effectively suppressed. can do.
  • the board reflection sheet 23 has a size that projects outward from both outer edges of the LED board 18 facing opposite to each other, whereas the second support portion 28 is viewed from above the LED board 18. At least a pair is arranged at a position sandwiching. In this way, portions of the board reflection sheet 23 that protrude from both outer edges of the LED board 18 (substrate non-overlapping parts NBL) can be supported by the second support parts 28, respectively. 23 deformation can be effectively suppressed.
  • the second support portion 28 is formed by partially protruding the chassis 14 toward the opening portion 14b. In this way, the whole can be kept thin as compared with the case where the first support portion 27 is formed by partially protruding the chassis to the side opposite to the opening 14b side.
  • the second support portion 28 has a dot shape when viewed in a plane. In this way, the ratio of the area of the second support portion 28 occupying the entire chassis 14 can be made as small as possible, so that it is easy to form the second support portion 28 by partially protruding the chassis 14. Become. Moreover, the freedom degree of arrangement
  • the board reflection sheet 23 projects outward from the outer edge of the LED board 18, while the second support portion 28 is arranged so as to line up with the LED 17 along the direction in which the board reflection sheet 23 projects.
  • the LED 17 and the second support portion 28 are arranged along the protruding direction (Y-axis direction) of the board reflection sheet 23 from the outer edge of the LED substrate 18, so that the LED 17 is closer to the LED 17.
  • deformation of the board reflection sheet 23 can be suppressed.
  • a nonuniformity becomes difficult to produce more.
  • a plurality of LEDs 17 are arranged in parallel along one direction on the LED substrate 18, while a plurality of second support portions 28 are arranged in parallel along the parallel direction of the LEDs 17. If it does in this way, since each 2nd support part 28 will suppress modification of substrate reflective sheet 23 in the position where each LED17 arranged in parallel in LED board 18 is nearer, respectively, board reflection Unevenness is less likely to occur in the light reflected by the sheet 23.
  • the chassis 14 is provided with board positioning portions 29 and 30 that can position the LED board 18 in the direction along the plate surface. In this way, when the LED board 18 is disposed on the chassis 14, the LED board 18 can be positioned in the direction along the plate surface by the board positioning portions 29 and 30. Accordingly, the LED substrate 18 can be reliably supported by the first support portion 27, and the positional relationship between the substrate reflection sheet 23 and the second support portion 28 stacked on the LED substrate 18 is also accurate. .
  • the board positioning portions 29 and 30 can position the LED board 18 in two directions along the plate surface and orthogonal to each other. In this way, the LED board 18 can be accurately positioned two-dimensionally.
  • the substrate positioning unit 29 has a second support unit 28.
  • the structure of the chassis 14 can be simplified and the manufacturing cost can be reduced as compared with the case where the second support portion is provided separately from the substrate positioning portion 29. .
  • the board positioning part 29 is configured to partially protrude the chassis 14 toward the opening part 14b, and has a second support part 28.
  • the entire chassis can be kept thin as compared with the case where the substrate positioning portion and the first support portion are formed by partially projecting the chassis to the side opposite to the opening 14b side.
  • a holding member 20 that holds the LED board 18, the board reflection sheet 23, and the chassis reflection sheet 22 with the chassis 14 is provided. In this way, the LED board 18, the board reflection sheet 23, and the chassis reflection sheet 22 can be held together by the holding member 20.
  • the holding member 20 protrudes from the main body 24 toward the chassis 14 and is fixed to the chassis 14.
  • the main body 24 sandwiches the LED board 18, the board reflection sheet 23 and the chassis reflection sheet 22 with the chassis 14.
  • the fixing portion 25 is fixed to the chassis 14 while penetrating the LED board 18, the board reflection sheet 23, and the chassis reflection sheet 22. If it does in this way, the LED board 18, the board reflection sheet 23, and the chassis reflection sheet 22 will be along the plate surface by the fixing
  • the fixing portion 25 penetrates the LED board 18, the board reflection sheet 23, the chassis reflection sheet 22, and the chassis 14, and is locked to the chassis 14 from the side opposite to the LED board 18 side.
  • the holding member 20 can be fixed by locking the fixing portion 25 penetrating the chassis 14 together with the LED board 18, the board reflection sheet 23, and the chassis reflection sheet 22 to the chassis 14. Therefore, it is not necessary to use other fixing means such as an adhesive, and fixing can be easily performed at low cost.
  • the light source is the LED 17. In this way, high brightness and low power consumption can be achieved.
  • Embodiment 1 of this invention was shown, this invention is not restricted to the said embodiment, For example, the following modifications can also be included.
  • members similar to those in the above embodiment are denoted by the same reference numerals as those in the above embodiment, and illustration and description thereof may be omitted.
  • Modification 1 of Embodiment 1 will be described with reference to FIG. Here, what changed the support range of the board
  • the formation range of the second support portion 28-1 according to the first modification is expanded as compared with the second support portion 28 described in the first embodiment. Specifically, as shown in FIG. 19, the second support portion 28-1 extends outward from both outer edges on the long side of the LED board 18 along the Y-axis direction in the board reflection sheet 23. It is formed in a range extending further to the outside in the projecting direction than the projecting tip portion of the two non-overlapping portions NBL to be projected. In this way, the projecting front end portions of the two non-overlapping portions NBL can be reliably supported from the back side by the second support portion 28-1.
  • the overlapping portion between the non-overlapping portions NBL of both substrates and the edge portion of the lens insertion hole 22b can be maintained in a more reliable contact state, and it is possible to prevent a gap from being formed in the Z-axis direction therebetween. It is possible to prevent light from leaking from the gap.
  • the second support portion 28-2 has a support position in a plan view from the second support portion 28 described in the first embodiment to the board reflection sheet 23-2 is changed inward. Yes. Specifically, as shown in FIG. 20, the second support portion 28-2 is located in the lens insertion hole 22 b-2 in a plan view of both the substrate non-overlapping portions NBL of the substrate reflection sheet 23-2.
  • the inner portion I to be disposed is in contact with and supported, and the outer portion O that is disposed outside the lens insertion hole 22b-2 and overlaps with the edge of the lens insertion hole 22b-2 is disposed in a non-contact position. Has been.
  • the support surface extending along the board reflection sheet 23-2 exists only in the lens insertion hole 22b-2 in a plan view, and the lens insertion hole 22b-. 2 is formed so as not to exist outside.
  • the diffusion lens 19-2 and the lens insertion hole 22b-2 according to the present modification are larger than those described in the first embodiment, and accordingly, the short side dimension of the substrate reflection sheet 23-2 ( The dimension in the Y-axis direction) is also larger than that described in the first embodiment.
  • the shape and formation range of the second support portion 28-3 according to Modification 3 are changed from those of the second support portion 28 described in the first embodiment.
  • the second support portion 28-3 has a substantially inverted U-shaped cross section.
  • a surface (support surface) facing the board reflection sheet 23 in the second support portion 28-3 has a substantially arc shape, and is substantially point-contacted with the board reflection sheet 23.
  • the second support portion 28-3 is formed on the inner portion I disposed in the lens insertion hole 22b as viewed in a plane, out of both the substrate non-overlapping portions NBL of the substrate reflection sheet 23.
  • Modification 4 of Embodiment 1 will be described with reference to FIG. Here, the support position of the second support portion 28-4 as viewed from the side with respect to the board reflection sheet 23 is changed.
  • the support position in the Z-axis direction with respect to the substrate reflection sheet 23 from the second support portion 28 described in the first embodiment is changed to the back side.
  • the second support portion 28-4 has a protruding dimension from the bottom plate 14 a of the chassis 14 smaller than the thickness dimension of the LED board 18. Accordingly, the surface of the second support portion 28-4 that faces the substrate reflection sheet 23 is not in contact with the substrate reflection sheet 23 that is straight along the X-axis direction and the Y-axis direction.
  • the predetermined gap is set to be retained.
  • the substrate non-overlapping portion NBL can be supported by the second support portion 28-4 disposed on the front side relative to the first support portion 27, and further deformation can be restricted. Therefore, it is possible to suppress the local deformation of the board reflection sheet 23 and to maintain a certain level of flatness as a whole.
  • Embodiment 2 A second embodiment of the present invention will be described with reference to FIG. 23 or FIG. In this Embodiment 2, what changed the shape of the 2nd support part 128 is shown. In addition, the overlapping description about the same structure, effect
  • the second support portion 128 is configured to extend along the X-axis direction, that is, along the outer edge on the long side of the LED board 18, in the bottom plate 14a of the chassis 14. Specifically, a pair of second support portions 128 are arranged at positions adjacent to both outer edges on the long side of the LED board 18 in the bottom plate 14a of the chassis 14 (positions sandwiching the LED board 18 in the Y-axis direction). In addition, the LED board 18 and the board reflection sheet 23 have substantially the same length as the long side dimension as viewed in a plan view.
  • the 2nd support part 128 is distribute
  • the portion of the second supporting portion 128 that faces the LED substrate 18 in the protruding base end portion constitutes the substrate positioning portion 129 as in the first embodiment.
  • substrate positioning part 129 is made into the form extended along the outer edge of the long side in the LED board 18, and can contact the outer edge over the full length, and can position the LED board 18 more appropriately. It is possible. Note that the cross-sectional shape of the substrate positioning portion 129 is the same as that of FIG.
  • the second support portion 128 is configured to extend along the outer edge of the LED substrate 18. In this way, stress concentration on the board reflection sheet 23 can be alleviated over a predetermined length along the outer edge of the LED board 18, so that deformation of the board reflection sheet 23 can be effectively suppressed. .
  • the LED board 18 has a rectangular shape when seen in a plan view, and the second support portion 128 is configured to extend along the long side direction of the LED board 18. In this way, stress concentration on the board reflection sheet 23 can be alleviated over a predetermined length along the outer edge of the LED board 18 in the long side direction, so that the board reflection sheet 23 can be more effectively deformed. Can be suppressed.
  • the substrate positioning portion 129 is configured to extend along the edge portion of the LED substrate 18. If it does in this way, the LED board 18 can be easily and appropriately positioned by addressing the edge part of the LED board 18 to the board positioning part 129. Further, the LED substrate 18 has a rectangular shape when seen in a plan view, and the substrate positioning portion 129 is configured to extend along the long side direction of the LED substrate 18. If it does in this way, the LED board 18 which makes a rectangular shape can be positioned more easily and appropriately.
  • the first support portion 227 is formed by partially protruding the bottom plate 14a of the chassis 14 to the back side. Specifically, the first support portion 227 is formed by projecting the substrate placement area BA on which the LED substrate 18 is placed in the bottom plate 14a to the back side relative to the substrate non-placement area NBA.
  • the dimension is approximately the same as the thickness dimension of the LED substrate 18. Therefore, the front side surface of the LED substrate 18 supported from the back side by the first support portion 227 is substantially flush with the front side surface of the substrate non-arrangement region NBA of the bottom plate 14a.
  • the substrate non-arrangement region NBA in the bottom plate 14a can support the substrate non-overlapping portion NBL protruding from the outer edge on the long side of the LED substrate 18 of the substrate reflection sheet 23 superimposed on the front surface of the LED substrate 18.
  • the second support portion 228 extends over the entire length along the outer edge on the long side of the LED substrate 18 in the X-axis direction, and extends over substantially the entire area between the adjacent LED substrates 18 in the Y-axis direction. Therefore, the substrate non-overlapping portion NBL in the substrate reflection sheet 23 can be reliably supported.
  • the portion connecting the first support portion 227 and the substrate non-arrangement area NBA in the bottom plate 14a can position the LED substrate 18 in the direction along the plate surface.
  • Part 229 is configured.
  • the board positioning portion 229 has an endless annular shape that surrounds the outer peripheral edge of the LED board 18 over the entire circumference. It is possible to position.
  • the space surrounded by the first support portion 227 and the substrate positioning portion 229 is a substrate accommodation space BS that can accommodate the LED substrate 18 and has a predetermined width in the Y-axis direction and substantially along the X-axis direction. It has a substantially rail shape extending linearly.
  • the first support portion 227 is formed by protruding the chassis 14 partially toward the side opposite to the opening 14b side. If it does in this way, the distance between LED board 18 and opening part 14b can be enlarged by the part which made 1st support part 227 project to the opposite side to opening part 14b side. Therefore, it is possible to ensure a long optical path length until the light emitted from the LED 17 reaches the opening 14b, so that unevenness is not easily generated in the outgoing light emitted from the opening 14b.
  • a plurality of LED substrates 18 are arranged in parallel at a predetermined interval, and the second support portion 228 is configured to cover the entire area between the adjacent LED substrates 18.
  • the board reflection sheet 23 that overlaps each LED board 18 can be reliably supported by the second support part 228 in the form of the entire region between the adjacent LED boards 18. Accordingly, the board reflection sheet 23 is less likely to be deformed.
  • the board positioning part 229 has a board housing space BS for housing the LED board 18 and a first support part 27 by partially projecting the chassis 14 to the side opposite to the opening 14b side.
  • the distance between the LED substrate 18 accommodated in the substrate accommodating space BS and the opening 14b can be increased by the amount of the substrate positioning portion 229 protruding to the side opposite to the opening 14b. it can. Therefore, it is possible to ensure a long optical path length until the light emitted from the LED 17 reaches the opening 14b, so that unevenness is not easily generated in the outgoing light emitted from the opening 14b.
  • Embodiment 3 of this invention was shown, this invention is not restricted to the said embodiment, For example, the following modifications can also be included.
  • members similar to those in the above embodiment are denoted by the same reference numerals as those in the above embodiment, and illustration and description thereof may be omitted.
  • the board positioning part 229-1 has a shape that rises substantially perpendicularly from the board non-arrangement area NBA (second support part 228-1) on the bottom plate 14 a, and the long side of the LED board 18 Parallel along the outer edge of the. Therefore, the board positioning portion 229-1 comes into contact with the outer edge of the long side of the LED board 18 with almost no gap, thereby enabling highly accurate positioning. Since there is almost no gap between the LED board 18 and the board positioning part 229-1, the second support part 228-1 and the LED board 18 are on the front side, that is, the support surface for the board reflection sheet 23. Constitutes one continuous surface without steps and cuts. As a result, the board reflection sheet 23 is supported by the LED board 18 and the second support portion 228-1 as a whole in a surface contact state, thereby ensuring the flatness of the whole.
  • NBA second support part 228-1
  • Embodiment 4 A fourth embodiment of the present invention will be described with reference to FIGS.
  • this Embodiment 4 what changed the shape of the LED board 318 and the reflective sheet 323 for board
  • action, and effect as above-mentioned Embodiment 1 is abbreviate
  • the LED substrate 318 has a longitudinal shape with the X-axis direction as the long side direction, and the Y-axis direction dimension, that is, the width dimension in the short side direction is partially different. It is said. Specifically, the LED substrate 318 has a symmetrical shape centered on a symmetry axis along the X-axis direction, and a plurality of LED arrangement portions 31 on which the LEDs 17 are arranged and a plurality of LED arrangement portions 31 that are adjacent to each other are connected. It is comprised from the connection part 32 between arrangement
  • the LED arrangement portion 31 has a substantially circular shape in a plan view following the planar shape of the diffusion lens 19, whereas the inter-arrangement portion connection portion 32 has a substantially straight shape along the X-axis direction. ing.
  • the LED placement portion 31 has a width dimension Y1 in the short side direction of the LED substrate 318 that is smaller than the diameter dimension of the diffusion lens 19, and is a minimum size necessary for mounting the diffusion lens 19 (specifically, The degree to which each mounting leg 19d described later can be attached).
  • the width dimension Y ⁇ b> 2 in the short side direction of the LED substrate 318 is smaller than the diameter dimension of the diffusion lens 19 and the width dimension Y ⁇ b> 1 of the LED arrangement portion 31.
  • the width dimension Y2 in the inter-arrangement portion connecting portion 32 is such that a minimum rigidity (strength) necessary for connecting the LED arrangement portions 31 can be maintained, and the through hole 318b through which the fixing portion 25 of the holding member 20 passes. It is kept to the extent that it can be formed. That is, as compared with the LED substrate 18 described in the first embodiment, the entire area can be reduced by the amount that the inter-arrangement portion connecting portion 32 is narrower than the LED arrangement portion 31. Thereby, a material required when manufacturing the base material of the LED board 318 can be reduced, and the manufacturing cost of the LED board 318 can be reduced.
  • the dimension in the X-axis direction (the length dimension in the long side direction) of the inter-arrangement section connecting section 32 is larger than the same dimension of the LED arrangement section 31.
  • the board reflection sheet 323 has a longitudinal shape in which the X-axis direction is the long side direction like the LED board 318, and the Y-axis direction dimension, that is, the width dimension in the short side direction is partially different. It is said. Specifically, the board reflection sheet 323 has a symmetrical shape centered on the symmetry axis along the X-axis direction, surrounds the LED 17 in a plan view, and overlaps the LED placement portion 31 with the LED surrounding reflection portion 33. It is composed of a plurality of inter-reflecting portion connecting portions 34 that connect adjacent LED surrounding reflecting portions 33 and are superimposed on the inter-arranged portion connecting portion 32, and the LED surrounding reflecting portion 33 and the inter-reflecting portion connecting portion 34.
  • the LED surrounding reflection part 33 has a substantially circular shape in a plan view following the planar shape of the LED arrangement part 31 and the diffusing lens 19, whereas the inter-reflection part connection part 34 is an inter-arrangement part connection part 32. In the same manner as above, the shape is almost straight along the X-axis direction.
  • the width dimension Y ⁇ b> 3 in the short side direction of the board reflection sheet 323 is larger than the width dimension Y ⁇ b> 1 of the LED placement portion 31 and the diameter dimension of the diffusion lens 19. The optical performance of returning the reflected light to the diffuser lens 19 side can be sufficiently exhibited.
  • the inter-reflecting portion connecting portion 34 has a width dimension Y2 in the short side direction of the board reflection sheet 323 that is substantially the same as the width dimension Y2 of the inter-placement portion connecting portion 32.
  • the LED surrounding reflection portion 33 is smaller than the width dimension Y3.
  • the width Y2 in the connecting part 34 between the reflection parts is such that the minimum rigidity (strength) necessary for connecting the LED surrounding reflecting parts 33 can be maintained, and the through hole 323c through which the fixing part 25 of the holding member 20 passes. It is kept to the extent that can be formed.
  • the entire area can be reduced by the width of the inter-reflecting portion connecting portion 34 that is narrower than the LED surrounding reflecting portion 33.
  • the dimension in the X-axis direction (the length dimension in the long side direction) of the connecting part 34 between the reflecting parts is larger than the same dimension of the LED surrounding reflecting part 33.
  • the second support portion 328 is arranged as follows with respect to the LED board 318 and the board reflection sheet 323 having the above-described configuration. That is, as shown in FIG. 30, the second support portion 328 is adjacent to the LED placement portion 31 in the LED substrate 318 in the Y-axis direction and is disposed at substantially the same position in the X-axis direction as the LED 17.
  • the second support portion 328 is a portion of the LED surrounding reflection portion 33 in the board reflection sheet 323 that is projected from the outer edge of the LED placement portion 31, that is, a position that overlaps the substrate non-overlapping portion NBL in a plan view. It is arranged in.
  • the substrate non-overlapping portion NBL that is not supported by the LED placement portion 31 can be supported by the second support portion 328, and thus the LED surrounding reflection portion 33 is preferably deformed. Can be prevented. Since the LED surrounding reflection part 33 is a part having an optically very important function in the backlight device 12 that returns the light from the diffusion lens 19 to the diffusion lens 19 again, the LED surrounding reflection part 33 is deformed. By preventing this, the optical performance of the backlight device 12 can be satisfactorily exhibited.
  • each board reflection sheet 323 is assigned to the base material M in a state where the long side direction and the short side direction are aligned with each other.
  • the board reflection sheet 323 adjacent in the Y axis direction is assigned to the base material M.
  • each substrate reflection sheet 323 has two different arrangements in the base material M in the X-axis direction.
  • seat 323 adjacent to a Y-axis direction is mutually enclosed by a pair of LED surrounding reflection part 33 adjacent in the X-axis direction, and the connection part 34 between reflection parts which connects them. It arrange
  • the subscript A is attached to the uppermost substrate reflection sheet 323 in FIG. 31, and the subscript B is attached to the second substrate reflection sheet 323 from the top.
  • the LED surrounding reflection part 33A according to the board reflection sheet 323A is fitted between the pair of LED surrounding reflection parts 33B adjacent in the X axis direction in the board reflection sheet 323B adjacent in the Y axis direction.
  • the arrangement interval of the board reflection sheets 323 adjacent to each other in the Y-axis direction (the distance between the centers of the LED surrounding reflection portions 33A and 33B) can be reduced, thereby reducing the dimension of the base material M in the Y-axis direction. it can.
  • seat 323 mentioned above is employable.
  • the LED substrates 318 adjacent in the Y-axis direction have a pair of LED arrangements in which the LED arrangement portions 31 are adjacent in the X-axis direction.
  • base_material so that it may be arrange
  • the LED substrate 318 includes the plurality of LEDs 17, whereas the substrate reflection sheet 323 includes the plurality of LED surrounding reflection portions 33 that surround each of the LEDs 17 in a plan view.
  • the reflective part 323 for a substrate has a longitudinal shape having an inter-reflecting part connecting part 34 for connecting adjacent LED surrounding reflecting parts 33, and the width of the inter-reflecting part connecting part 34 is LED in the short side direction. It is formed so as to be relatively narrower than the width of the surrounding reflection portion 33.
  • the board-like reflection sheet 323 having a longitudinal shape is configured such that the plurality of LED surrounding reflection portions 33 are connected by the inter-reflecting portion connecting portion 34, so that the LED surrounding reflecting portions are not connected temporarily.
  • the handling property is excellent, and for example, the cost can be reduced.
  • the inter-reflection part connecting part 34 connects the LED surrounding reflection parts 33 to each other.
  • the width of the inter-reflecting portion connecting portion 34 is set narrower than the width of the LED surrounding reflecting portion 33 in the short side direction of the reflecting plate 323 for the substrate.
  • the second support portion 328 is disposed at a position overlapping the LED surrounding reflection portion 33 when viewed in a plan view. In this way, since the LED surrounding reflection part 33 is supported by the second support part 328, the LED surrounding reflection part 33 can be prevented from being deformed. Thereby, when the light from LED17 is reflected in the LED surrounding reflection part 33, a nonuniformity becomes difficult to produce more.
  • the LED substrate 318 has a plurality of LEDs 17, and has a plurality of LED placement portions 31 on which each of the LEDs 17 is placed, and an inter-placement portion connection portion 32 that connects adjacent LED placement portions 31 to each other.
  • the LED substrate 318 is formed such that the width of the inter-arrangement portion connection portion 32 is relatively narrower than the width of the LED arrangement portion 31 in the short side direction. In this way, the LED substrate 318 having a long shape is configured such that a plurality of LED arrangement portions 31 are connected by the inter-arrangement portion connection portion 32, so that the LED arrangement portions are not connected to each other and are divided individually.
  • the LED arrangement part 31 needs a certain size (width) to arrange the LEDs 17, whereas the inter-arrangement part connection part 32 is necessary to connect the LED arrangement parts 31 to each other.
  • the width of the inter-arrangement portion connecting portion 32 is set to be narrower than the width of the LED arrangement portion 31 in the short side direction of the LED substrate 318. The total area of the LED substrate 318 can be reduced compared with the case where the width is the same as that, and thus the material cost can be reduced, that is, the cost can be reduced.
  • Embodiment 4 of this invention was shown, this invention is not restricted to the said embodiment, For example, the following modifications can also be included.
  • members similar to those in the above embodiment are denoted by the same reference numerals as those in the above embodiment, and illustration and description thereof may be omitted.
  • Modification 1 of Embodiment 4 will be described with reference to FIG. Here, the board reflection sheet 323-1 is changed.
  • the board reflection sheet 323-1 is configured by only the LED surrounding reflection portion 33-1 surrounding the LED. That is, the board reflection sheet 323-1 according to the present embodiment is configured such that each inter-reflection part connection portion 34 is removed from the board reflection sheet 323 described in the fourth embodiment.
  • the LED surrounding reflection part 33-1 which is the board reflection sheet 323-1 is individually attached to the LED placement part 31 of the LED board 318. If it does in this way, it will become possible to further reduce the material cost concerning the reflective sheet 323 for substrates.
  • each LED surrounding reflection portion 33-1 can be held in the attached state by the diffusion lens 19. Note that the LED substrate 318 may also be configured by only the LED arrangement portion, similarly to the substrate reflection sheet 323-1 described above.
  • the second support portion 428 is disposed at a position separated from the LED substrate 18 in the Y-axis direction, and does not have a function of positioning the LED substrate 18 in the Y-axis direction. In this way, it is possible to freely change the arrangement of the second support portion 428 in accordance with the size and shape of the board reflection sheet 23, thereby reducing the substrate non-overlapping portion NBL in the board reflection sheet 23. It can be supported more appropriately.
  • the present invention is not limited to the embodiments described with reference to the above description and drawings.
  • the following embodiments are also included in the technical scope of the present invention.
  • the specific shape of the second support portion can be changed as appropriate.
  • the present invention also includes a configuration in which the second support portion has a curved shape or an end ring shape (C shape or the like) in a plan view, that is, a configuration in which the second support portion does not extend along the outer edge of the LED substrate. .
  • the second support part is a cylinder, prism, cone, pyramid, etc.
  • the cross section of the second support part is a mountain shape (triangle), a semicircular shape, an elliptical shape, etc.
  • the present invention is also included in the present invention.
  • the arrangement and the number of installed second support portions on the bottom plate of the chassis can be changed as appropriate.
  • the second support portion that is point-like when viewed in plan is shown in the X-axis direction at approximately the same position as the LED.
  • the second support portion and the LED are arranged in the X-axis direction. May be offset.
  • the present invention includes a configuration in which the number of installed second support portions is larger or smaller than the number of installed LEDs.
  • the second support portion that is linear in a plan view has the same length as the long side dimension of the LED substrate, but the second support portion that is linear is What is made into the length which is less than the long side dimension of a LED board is also contained in this invention. In that case, it is also possible to arrange a plurality of linear second support portions side by side in the X-axis direction.
  • the board reflection sheet is shown to protrude outward along the Y-axis direction only from the outer edge on the long side of the LED board.
  • the present invention can also be applied to an object that protrudes outward along the X-axis direction from the outer edge on the short side.
  • a second support portion may be installed at a position adjacent to the LED substrate in the X-axis direction so as to support the substrate reflection sheet protruding from the outer edge on the short side of the LED substrate.
  • the second support portion surrounds the LED substrate over the entire circumference, and it is more preferable that the inner peripheral edge portion of the second support portion be the substrate positioning portion over the entire circumference.
  • the substrate reflection sheet has been shown to project outward from both outer edges on the long side of the LED substrate along the Y-axis direction. What protruded only from either one of the outer edges on the long side is also included in the present invention. In that case, it is not necessary to arrange the second support portions at positions sandwiching the LED substrate, and it is only necessary to provide the second support portions only at positions corresponding to the projecting portions of the substrate reflection sheet.
  • the second support portion supports the inner portion disposed in the lens insertion hole among the substrate non-overlapping portions in the substrate reflection sheet.
  • the non-overlapping portion of the substrate that supports only the outer portion disposed outside the lens insertion hole and does not support the inner portion is also included in the present invention.
  • the board reflection sheet overlaps with the edge of the lens insertion hole in the chassis reflection sheet.
  • the inner circumference of the lens insertion hole and the outer circumference of the board reflection sheet Are also included in the present invention so that the substrate reflection sheet does not overlap the edge of the lens insertion hole.
  • the substrate reflection sheet is disposed only in a part of the lens insertion hole, that is, the front side surface of the LED substrate is What is partially exposed in the lens insertion hole is also included in the present invention.
  • the LED substrate has a shorter side dimension smaller than the diffusing lens diameter, but the LED substrate shorter side dimension is equal to or larger than the diffusing lens diameter. What is said is also included in the present invention.
  • the present invention includes a configuration in which the front side surface of the second support portion is arranged on the front side (opening side) relative to the front side surface of the substrate reflection sheet.
  • the substrate positioning portion formed by partially protruding the chassis to the back side surrounds the outer periphery of the LED substrate over the entire circumference.
  • the substrate positioning portion is an LED substrate.
  • those which are formed so as to abut only against the outer edge on the long side and not positioned in the X axis direction are also included in the present invention.
  • the LED board and the board reflection sheet are shown to be symmetrical with respect to the axis of symmetry along the X-axis direction. However, at least the LED board or board reflection sheet is used. Any one of the asymmetric shapes is also included in the present invention. In addition, the specific shapes and sizes of the constituent parts of the LED board and the board reflection sheet can be appropriately changed.
  • the substrate positioning unit, the first support unit, and the second support unit are integrally provided in the chassis.
  • the substrate positioning unit, the first support unit, and the second support unit are illustrated. In the present invention, at least one of these is formed separately from the chassis, and the separate parts are assembled to the chassis.
  • the chassis reflection sheet is provided with the lens insertion hole as the “hole”.
  • the chassis reflection sheet is provided with the “hole”.
  • the present invention also includes a substrate reflection sheet disposed in the hole.
  • the fixing part of the holding member is shown penetrating the LED substrate and each reflection sheet.
  • the holding member is arranged in the board non-arrangement region in the chassis, and the fixing part is the LED board.
  • the present invention also includes a board reflection sheet that does not penetrate through the board reflection sheet but penetrates through the chassis reflection sheet.
  • the attachment position and the number of attachments of the holding member to each LED substrate can be appropriately changed.
  • the attachment position and the number of attachments of the holding member to the chassis can be changed as appropriate.
  • the fixing portion of the holding member is locked in a state of penetrating the mounting hole with respect to the chassis, but a specific fixing method of the fixing portion with respect to the chassis is appropriately Can be changed.
  • the present invention includes a configuration in which the mounting hole and the elastic locking piece are omitted, and the base portion penetrating the through hole of the LED board is fixed to the inner wall surface of the chassis with an adhesive or the like. In that case, means such as welding and welding can be employed in addition to the adhesive.
  • the chassis is made of metal, but the chassis is made of other materials such as synthetic resin.
  • the surface color of the holding member is exemplified as white, but the color of the surface of the holding member may be milky white or silver, for example. Further, the color of the surface can be set by applying a desired color paint to the surface of the holding member.
  • the present invention includes an LED using a type of LED in which three types of LED chips each emitting C (cyan), M (magenta), and Y (yellow) are monochromatic.
  • an LED using white light emitting LED is shown.
  • an LED emitting red light, an LED emitting blue light, and an LED emitting green light are used in appropriate combination. May be.
  • the screen size and the horizontal / vertical ratio in the liquid crystal display device can be appropriately changed.
  • the liquid crystal panel and the chassis are vertically placed with the short side direction aligned with the vertical direction.
  • the liquid crystal panel and the chassis have the long side direction in the vertical direction. Those that are in a vertically placed state matched with are also included in the present invention.
  • a TFT is used as a switching element of a liquid crystal display device.
  • the present invention can also be applied to a liquid crystal display device using a switching element other than TFT (for example, a thin film diode (TFD)).
  • a switching element other than TFT for example, a thin film diode (TFD)
  • the present invention can also be applied to a liquid crystal display device for monochrome display.
  • the liquid crystal display device using the liquid crystal panel as the display panel has been exemplified.
  • the present invention is applicable to display devices using other types of display panels.
  • the television receiver provided with the tuner is exemplified, but the present invention can also be applied to a display device that does not include the tuner.
  • SYMBOLS 10 Liquid crystal display device (display device), 11 ... Liquid crystal panel (display panel), 12 ... Backlight device (illumination device), 14 ... Chassis, 14b ... Opening part, 15 ... Optical member, 17 ... LED (light source), 18, 318 ... LED substrate (light source substrate), 19 ... diffusion lens, 20 ... holding member, 22, 522 ... chassis reflection sheet (chassis reflection member), 22b ... lens insertion hole (hole), 23, 323 ... Reflective sheet for substrate (reflective member for substrate), 23a ... LED insertion hole (light source insertion hole), 24 ... main body, 25 ... fixing part, 27,227 ...
  • first support part 28, 128, 228, 328, 428 ... 2nd support part, 29,129,229 ... Board positioning part, 30 ... 2nd board positioning part (board positioning part), 31 ... LED arrangement part (light source arrangement part), 32 ... Connection part between arrangement parts, 33 LED surrounding reflecting portion (light source surrounding reflecting portion), 34 ... reflecting portion between the connecting portions, BS ... substrate housing space, TV ... television receiver apparatus

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明に係るバックライト装置12は、光源であるLED17を有するLED基板18と、LED基板18を収容しLED17からの光を出射するための開口部14bを有するシャーシ14と、シャーシ14の内面に沿って配されていて光を反射させるシャーシ用反射シート22と、LED基板18に対して開口部14b側に重なるとともに平面に視てLED基板18よりも広い範囲にわたって配されていて光を反射させる基板用反射シート23とを備え、シャーシ14は、LED基板18を支持する第1支持部27と、第1支持部27よりも相対的に開口部14b側に配されるとともに基板用反射シート23を支持する第2支持部28とを有する。

Description

照明装置、表示装置、及びテレビ受信装置
 本発明は、照明装置、表示装置、及びテレビ受信装置に関する。
 例えば、液晶テレビなどの液晶表示装置に用いる液晶パネルは、自発光しないため、別途に照明装置としてバックライト装置を必要としている。このバックライト装置は、液晶パネルの裏側(表示面とは反対側)に設置されるようになっており、液晶パネル側の面が開口したシャーシと、シャーシ内に収容される光源と、シャーシ内に配されて光をシャーシの開口部側に反射させる反射シートと、シャーシの開口部に配されて光源が発する光を効率的に液晶パネル側へ放出させるための光学部材(拡散シート等)とを備える。
 上記したバックライト装置の構成部品のうち、光源として例えばLEDを用いる場合があり、その場合には、シャーシ内にLEDを実装したLED基板を収容する。さらには、LEDから発せられた光は、強い指向性を持つ傾向にあるため、その指向性を緩和することを目的として、LED基板に対して各LEDに対応して個別に拡散レンズを取り付ける場合がある。なお、LED及び拡散レンズを用いたバックライト装置の一例として下記特許文献1に記載されたものが知られている。
特開2008-304839号公報
(発明が解決しようとする課題)
 ところで、バックライト装置に用いるLED基板として、シャーシの全域にわたる大きさのものを用いると材料費が高くなるため、例えば短冊状のLED基板を複数間欠的に配置するのが好ましい。一方、バックライト装置を製造する際の組み付け作業性を考慮すると、LED基板に拡散レンズを装着して一体化したものをシャーシ内に収容した後に、反射シートを取り付ける手順を採るのが好ましく、その手順を採用するには、反射シートに拡散レンズを通すレンズ挿通孔を設ける必要がある。
 ところが、反射シートに上記レンズ挿通孔を設けると、拡散レンズとLED基板との間に光を反射する部位が存在しなくなることとなり、拡散レンズにてLED基板側に反射される光を有効に利用できないという問題があった。そこで、本願発明者は、上記反射シートとは別途に、拡散レンズとLED基板との間に基板用反射シートを設置する構成を採用するに至った。このようにすれば、拡散レンズにてLED基板側に反射された光を基板用反射シートにより再度拡散レンズ側に反射させて有効に利用することができるのである。
 ここで、基板用反射シートは、光の利用効率を考慮すると、平面に視て拡散レンズよりも大きくするのが好ましいのに対し、LED基板は、材料費を考慮すると、拡散レンズなどを実装するのに最小限必要な大きさに留めるのが好ましい。これらの事情から基板用反射シートを、平面に視てLED基板よりも広い範囲にわたる大きさとする場合がある。
 しかしながら、そのような設計を採用すると次の問題が生じるおそれがある。すなわち、基板用反射シートのうち、LED基板に重なる部分は、LED基板により支持されるものの、LED基板とは重ならない部分については、LED基板及びシャーシにより支持されることがない。このため、基板用反射シートにおいて上記支持される部分と支持されない部分との境界位置には、応力が集中し易くなり、それにより基板用反射シートに局所的な変形が生じる可能性がある。基板用反射シートにそのような変形が生じると、反射光にムラが生じるなどの問題が生じるおそれがあった。
 本発明は上記のような事情に基づいて完成されたものであって、基板用反射部材に変形が生じるのを抑制することを目的とする。
(課題を解決するための手段)
 本発明の照明装置は、光源を有する光源基板と、前記光源基板を収容し前記光源からの光を出射するための開口部を有するシャーシと、前記シャーシの内面に沿って配されていて光を反射させるシャーシ用反射部材と、前記光源基板に対して前記開口部側に重なるとともに平面に視て前記光源基板よりも広い範囲にわたって配されていて光を反射させる基板用反射部材とを備え、前記シャーシは、前記光源基板を支持する第1支持部と、前記第1支持部よりも相対的に前記開口部側に配されるとともに前記基板用反射部材を支持する第2支持部とを有する。
 このようにすれば、シャーシの内面に沿って配されるシャーシ用反射部材に加えて、光源基板に対して開口部側に重なる基板用反射部材が備えられているので、例えばシャーシ用反射部材に孔部が形成された場合でもその孔部内に基板用反射部材の一部を配することが可能となり、もって光の利用効率を高めることが可能となり得る。基板用反射部材は、平面に視て光源基板よりも広い範囲にわたる大きさを有しており、このことは光源基板が平面に視て基板用反射部材よりも狭い範囲の大きさであることを意味し、それにより光源基板に係る材料費の低減を図ることができる。
 基板用反射部材のうち光源基板に対して開口部側に重なる部分は、光源基板により支持されるのに対し、光源基板とは重ならない部分は、光源基板を支持する第1支持部よりも相対的に開口部側に配される第2支持部により支持される。従って、基板用反射部材のうち光源基板に対して重なる部分と、重ならない部分との境界位置に応力が集中するのを緩和することができる。これにより、基板用反射部材に変形が生じ難くなる。
 本発明の実施態様として、次の構成が好ましい。
(1)前記シャーシ用反射部材には、孔部が形成されており、前記基板用反射部材は、平面に視て少なくとも一部が前記孔部内に配されている。このようにすれば、シャーシ用反射部材における孔部内に配した基板用反射部材により孔部への光を反射させることができるので、光の利用効率を向上させることができる。
(2)前記シャーシ用反射部材における前記孔部の縁部と、前記基板用反射部材とは、平面に視て互いに重畳している。このようにすれば、シャーシ用反射部材における孔部の縁部と基板用反射部材とが平面に視て切れ目無く繋がることになる。これにより、光の利用効率を一層向上させることができる。しかも、基板用反射部材が第2支持部により支持されて変形が抑制されるので、孔部の縁部と基板用反射部材との間に隙間が空いてそこから光が漏れるのが防がれ、もって高い光の利用効率が得られる。
(3)前記第2支持部は、平面に視て少なくとも一部が前記シャーシ用反射部材における前記孔部の縁部と重畳する位置に配されている。このようにすれば、シャーシ用反射部材における孔部の縁部と基板用反射部材との重畳部分を第2支持部により支持することができるので、シャーシ用反射部材における孔部の縁部と基板用反射部材との間に隙間が空いてそこから光が漏れるのをより確実に防ぐことができる。これにより、光の利用効率をより一層向上させることができる。
(4)前記シャーシ用反射部材は、平面に視て前記孔部が前記光源基板よりも広い範囲にわたる大きさとなるよう形成されているのに対し、前記第2支持部は、平面に視て少なくとも一部が前記孔部内に配されている。このようにすれば、基板用反射部材のうち平面に視て孔部内に配される部分には、光源基板とは重ならず、光源基板により支持されない部位が含まれることになるものの、その部位について第2支持部により支持して変形を抑制することができる。基板用反射部材における平面に視て孔部内に配される部分は、孔部への光を反射させる機能を有することから、その部分の変形を抑制することにより、反射光にムラが生じ難くなって良好な光学特性が得られる。
(5)前記基板用反射部材には、平面に視て前記光源と重畳する位置に前記光源を通す光源挿通孔が設けられているのに対し、前記シャーシ用反射部材は、前記孔部が平面に視て前記光源挿通孔よりも広い範囲にわたる大きさとなるよう形成されている。このようにすれば、光源挿通孔及び孔部には、光源が通されるので、光源からの光が基板用反射部材またはシャーシ用反射部材により遮られることが回避される。平面に視て光源挿通孔よりも大きな孔部内に基板用反射部材が配されることで、光の利用効率を向上させることができる。
(6)前記光源基板における前記開口部側には、平面に視て前記光源と重畳する位置に、前記光源からの光を拡散させる拡散レンズが配されており、前記シャーシ用反射部材には、平面に視て前記拡散レンズと重畳する位置に前記孔部が配され且つ前記拡散レンズを通す大きさとなるよう形成されている。このようにすれば、光源から発せられた光を拡散レンズにより拡散させてから、開口部へと導くことができる。拡散レンズにて光源基板側に反射される光が生じても、その光を孔部内に配した基板用反射部材により再度拡散レンズ側に反射させることができるので、光の利用効率を向上させることができる。これにより、開口部から出射する出射光の輝度を高めつつムラの発生を抑制することができる。
(7)前記基板用反射部材は、平面に視て前記拡散レンズよりも広い範囲にわたって配されている。このようにすれば、拡散レンズにて光源基板側に反射される光を、基板用反射部材によってより確実に拡散レンズ側に戻すことができ、光の利用効率を一層向上させることができる。
(8)前記光源基板は、少なくとも外縁の一部が平面に視て前記拡散レンズと重畳するような大きさに形成されている。光源基板をこのような大きさとすることで、光源基板に係る材料費を削減でき、低コスト化に好適となる。
(9)前記第2支持部は、前記光源基板における前記基板用反射部材との対向面と面一状をなしている。このようにすれば、共に基板用反射部材を支持する光源基板における対向面と、第2支持部との間に段差が生じないから、基板用反射部材の変形を効果的に抑制することができる。
(10)前記基板用反射部材は、前記光源基板における互いに反対側を向いた両外縁からそれぞれ外向きに張り出す大きさを有するのに対し、前記第2支持部は、平面に視て前記光源基板を挟んだ位置に少なくとも一対配されている。このようにすれば、基板用反射部材のうち、光源基板の両外縁から張り出す部分をそれぞれ第2支持部により支持可能とされるから、基板用反射部材の変形を効果的に抑制することができる。
(11)前記第2支持部は、前記シャーシを部分的に前記開口部側に向けて突出させて形成されている。このようにすれば、仮にシャーシを部分的に開口部側とは反対側に突出させることで第1支持部を形成した場合と比べると、全体を薄型に保つことができる。
(12)前記第2支持部は、平面に視て点状をなしている。このようにすれば、シャーシ全体に占める第2支持部の面積の割合を極力小さくすることができるから、シャーシを部分的に突出させて第2支持部を形成するのが容易となる。また、第2支持部の配置の自由度も高くなる。
(13)前記基板用反射部材は、前記光源基板における外縁から外向きに張り出しているのに対し、前記第2支持部は、前記光源に対して前記基板用反射部材の張り出し方向に沿って並ぶよう配されている。このようにすれば、光源基板の外縁からの基板用反射部材の張り出し方向に沿って光源と第2支持部とが並ぶ配置とされるから、光源により近い位置にて基板用反射部材の変形を抑制することができる。これにより、光源からの光が基板用反射部材にて反射される際にムラがより生じ難くなる。
(14)前記光源基板には、前記光源が一方向に沿って複数並列して配されているのに対し、前記第2支持部は、前記光源の並列方向に沿って複数並列して配されている。このようにすれば、光源基板において複数並列して配される各光源に対して各第2支持部がそれぞれより近い位置にて基板用反射部材の変形を抑制するから、基板用反射部材にて反射される光に一層ムラが生じ難くなる。
(15)前記第2支持部は、前記光源基板における外縁に沿って延在する形態とされている。このようにすれば、光源基板の外縁に沿う所定長さにわたって基板用反射部材への応力集中を緩和することができるので、基板用反射部材の変形を効果的に抑制することができる。
(16)前記光源基板は、平面に視て矩形状をなしており、前記第2支持部は、前記光源基板における長辺方向に沿って延在する形態とされている。このようにすれば、光源基板における長辺方向の外縁に沿う所定長さにわたって基板用反射部材への応力集中を緩和することができるので、基板用反射部材の変形をより効果的に抑制することができる。
(17)前記第1支持部は、前記シャーシを部分的に前記開口部側とは反対側に向けて突出させて形成されている。このようにすれば、第1支持部を開口部側とは反対側に突出させた分、光源基板と開口部との間の距離を大きくすることができる。従って、光源から発せられた光が開口部に達するまでの光路長を長く確保することができ、もって開口部から出射する出射光にムラが生じ難くなる。
(18)前記光源基板が所定の間隔を空けて複数並列して配されており、前記第2支持部は、隣り合う前記光源基板の間の領域の全域にわたる形態とされている。このようにすれば、隣り合う光源基板の間の領域の全域にわたる形態の第2支持部により、各光源基板に対して重なる基板用反射部材を確実に支持することができる。従って、基板用反射部材に変形がより生じ難くなる。
(19)前記シャーシには、前記光源基板をその板面に沿う方向について位置決め可能な基板位置決め部が設けられている。このようにすれば、光源基板をシャーシに配する際に、基板位置決め部により光源基板をその板面に沿う方向について位置決めすることができる。従って、第1支持部により光源基板を確実に支持することができるとともに、光源基板に重ねられた基板用反射部材と第2支持部との位置関係も正確なものとされる。
(20)前記基板位置決め部は、前記光源基板の縁部に沿って延在する形態とされている。このようにすれば、光源基板の縁部を基板位置決め部に宛うことで、光源基板を容易に且つ適切に位置決めすることができる。
(21)前記光源基板は、平面に視て矩形状をなしており、前記基板位置決め部は、前記光源基板における長辺方向に沿って延在する形態とされている。このようにすれば、矩形状をなす光源基板をより容易に且つ適切に位置決めすることができる。
(22)前記基板位置決め部は、前記光源基板をその板面に沿い且つ互いに直交する2方向について位置決め可能とされる。このようにすれば、光源基板を二次元的に正確に位置決めすることができる。
(23)前記基板位置決め部は、前記第1支持部または前記第2支持部のいずれか一方を有している。このようにすれば、仮に基板位置決め部とは別途に第1支持部または第2支持部を設けた場合と比べると、シャーシの構造を簡素化することができ、製造コストの低廉化などを図ることができる。
(24)前記基板位置決め部は、前記シャーシを部分的に前記開口部側に突出させる形態とされ、前記第2支持部を有している。このようにすれば、仮にシャーシを部分的に開口部側とは反対側に突出させることで基板位置決め部及び第1支持部を形成した場合と比べると、全体を薄型に保つことができる。
(25)前記基板位置決め部は、前記シャーシを部分的に前記開口部側とは反対側に突出させることで、前記光源基板を収容する基板収容空間及び前記第1支持部を有している。このようにすれば、基板位置決め部を開口部側とは反対側に突出させた分、基板収容空間に収容された光源基板と開口部との間の距離を大きくすることができる。従って、光源から発せられた光が開口部に達するまでの光路長を長く確保することができ、もって開口部から出射する出射光にムラが生じ難くなる。
(26)前記光源基板は、前記光源を複数有するのに対し、前記基板用反射部材は、平面に視て前記光源の各々を包囲する複数の光源包囲反射部と、隣り合う前記光源包囲反射部同士を連結する反射部間連結部とを有する長手状をなしており、前記基板用反射部材は、その短辺方向において前記反射部間連結部の幅が前記光源包囲反射部の幅よりも相対的に狭くなるよう形成されている。このようにすれば、長手状をなす基板用反射部材は、複数の光源包囲反射部を反射部間連結部により連結した構成とされるので、仮に各光源包囲反射部を連結せず、個々に分割された光源包囲反射部により基板用反射部材を構成した場合と比べると、取り扱い性に優れ、例えば低コスト化を図ることが可能となる。ところで、光源包囲反射部は、光源からの光を反射する上である程度の大きさ(幅)が必要となるのに対し、反射部間連結部は、各光源包囲反射部同士を連結する上で必要な機械的強度さえ維持できるのであれば、必ずしも光源包囲反射部と同じ大きさ(幅)である必要はない。そこで、本発明では、基板用反射部材の短辺方向において反射部間連結部の幅を、光源包囲反射部の幅よりも狭く設定しているので、仮に基板用反射部材を全長にわたって光源包囲反射部と同じ幅とした場合と比べると、基板用反射部材の総面積を削減でき、もって材料費の削減、すなわち低コスト化を実現することができる。
(27)前記第2支持部は、平面に視て前記光源包囲反射部と重畳する位置に配されている。このようにすれば、光源包囲反射部が第2支持部により支持されるので、光源包囲反射部に変形が生じるのを防ぐことができる。これにより、光源からの光が光源包囲反射部にて反射される際にムラがより生じ難くなる。
(28)前記光源基板は、前記光源を複数有するとともに、前記光源の各々が配置される複数の光源配置部と、隣り合う前記光源配置部同士を連結する配置部間連結部とを有する長手状をなしており、前記光源基板は、その短辺方向において前記配置部間連結部の幅が前記光源配置部の幅よりも相対的に狭くなるよう形成されている。このようにすれば、長手状をなす光源基板は、複数の光源配置部を配置部間連結部により連結した構成とされるので、仮に各光源配置部を連結せず、個々に分割された光源配置部により光源基板を構成した場合と比べると、取り扱い性に優れ、例えば低コスト化を図ることが可能となる。ところで、光源配置部は、光源を配置する上である程度の大きさ(幅)が必要となるのに対し、配置部間連結部は、各光源配置部同士を連結する上で必要な機械的強度さえ維持できるのであれば、必ずしも光源配置部と同じ大きさ(幅)である必要はない。そこで、本発明では、光源基板の短辺方向において配置部間連結部の幅を、光源配置部の幅よりも狭く設定しているので、仮に光源基板を全長にわたって光源配置部と同じ幅とした場合と比べると、光源基板の総面積を削減でき、もって材料費の削減、すなわち低コスト化を実現することができる。
(29)前記シャーシとの間で前記光源基板、前記基板用反射部材及び前記シャーシ用反射部材を挟んで保持する保持部材を備える。このようにすれば、保持部材により光源基板、基板用反射部材及びシャーシ用反射部材を一括して保持することができる。
(30)前記保持部材は、前記シャーシとの間で前記光源基板、前記基板用反射部材及び前記シャーシ用反射部材を挟む本体部と、前記本体部から前記シャーシ側に突出して前記シャーシに固定される固定部とを備えており、前記固定部は、前記光源基板、前記基板用反射部材及び前記シャーシ用反射部材を貫通しつつ前記シャーシに対して固定される。このようにすれば、光源基板、基板用反射部材及びシャーシ用反射部材を貫通する固定部により、光源基板、基板用反射部材及びシャーシ用反射部材をその板面に沿う方向について位置決めすることが可能となる。
(31)前記固定部は、前記光源基板、前記基板用反射部材、前記シャーシ用反射部材及び前記シャーシを貫通するとともに、前記シャーシに対して前記光源基板側とは反対側から係止される。このようにすれば、光源基板、基板用反射部材及びシャーシ用反射部材と共にシャーシを貫通する固定部をシャーシに係止させることで、保持部材の固定を図ることができるから、接着剤などの他の固定手段を用いる必要がなく、低コストで且つ容易に固定を図ることができる。
(32)前記光源は、LEDとされる。このようにすれば、高輝度化及び低消費電力化などを図ることができる。
 次に、上記課題を解決するために、本発明の表示装置は、上記記載の照明装置と、前記照明装置からの光を利用して表示を行う表示パネルとを備える。
 このような表示装置によると、表示パネルに対して光を供給する照明装置が、シャーシ内にて光を反射させる基板用反射部材に変形を生じさせ難いものであるため、基板用反射部材により反射されて出射される光にムラが生じ難く、表示品質の優れた表示を実現することが可能となる。
 前記表示パネルとしては液晶パネルを例示することができる。このような表示装置は液晶表示装置として、種々の用途、例えばテレビやパソコンのディスプレイ等に適用でき、特に大型画面用として好適である。
(発明の効果)
 本発明によれば、基板用反射部材に変形が生じるのを抑制することができる。
本発明の実施形態1に係るテレビ受信装置の概略構成を示す分解斜視図 テレビ受信装置が備える液晶表示装置の概略構成を示す分解斜視図 液晶表示装置に備わるシャーシにおけるLED基板及び保持部材の配置構成を示す平面図 液晶表示装置における図3のiv-iv線断面図 液晶表示装置における図3のv-v線断面図 LED基板及び保持部材の詳しい配置構成を示す平面図 図6のvii-vii線断面図 図6のviii-viii線断面図 図6のix-ix線断面図 LED基板の平面図 LED基板に基板用反射シート及び拡散レンズを取り付けた状態(光源ユニット)を示す平面図 単機能型保持部材の平面図 単機能型保持部材の底面図 複合機能型保持部材の平面図 複合機能型保持部材の底面図 シャーシに光源ユニットを取り付けた状態を示す平面図 シャーシに光源ユニットを取り付けた状態を示す底面図 図16のxviii-xviii線断面図 実施形態1の変形例1に係る基板用反射シートと第2支持部との関係を示す断面図 実施形態1の変形例2に係る基板用反射シートと第2支持部との関係を示す断面図 実施形態1の変形例3に係る基板用反射シートと第2支持部との関係を示す断面図 実施形態1の変形例4に係る基板用反射シートと第2支持部との関係を示す断面図 本発明の実施形態2に係るシャーシの拡大底面図 図23のxxiv-xxiv線断面図 本発明の実施形態3に係る第1支持部、基板位置決め部及び第2支持部を示す断面図 第1支持部、基板位置決め部及び第2支持部を示す断面図 シャーシの拡大底面図 実施形態3の変形例1に係る基板位置決め部を示す断面図 本発明の実施形態4に係るLED基板に基板用反射シートを重ねた状態を示す平面図 基板用反射シートを重ねたLED基板に拡散レンズを実装したものを、シャーシ内に配した状態を示す平面図 基板用反射シートを製造する際の母材に対する各基板用反射シートの割り当てを説明するための平面図 実施形態4の変形例1に係る基板用反射シートを重ねたLED基板に拡散レンズを実装したものを、シャーシ内に配した状態を示す平面図 本発明の実施形態5に係る第2支持部とLED基板との関係を示す断面図
 <実施形態1>
 本発明の実施形態1を図1から図18によって説明する。本実施形態では、液晶表示装置10について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。また、図4及び図5に示す上側を表側とし、同図下側を裏側とする。
 本実施形態に係るテレビ受信装置TVは、図1に示すように、液晶表示装置10と、当該液晶表示装置10を挟むようにして収容する表裏両キャビネットCa,Cbと、電源Pと、チューナーTと、スタンドSとを備えて構成される。液晶表示装置(表示装置)10は、全体として横長の方形(矩形状)を成し、縦置き状態で収容されている。この液晶表示装置10は、図2に示すように、表示パネルである液晶パネル11と、外部光源であるバックライト装置(照明装置)12とを備え、これらが枠状のベゼル13などにより一体的に保持されるようになっている。本実施形態では、画面サイズが42インチで横縦比が16:9のものを例示するものとする。
 次に、液晶表示装置10を構成する液晶パネル11及びバックライト装置12について順次に説明する。このうち、液晶パネル(表示パネル)11は、平面視矩形状をなしており、一対のガラス基板が所定のギャップを隔てた状態で貼り合わせられるとともに、両ガラス基板間に液晶が封入された構成とされる。一方のガラス基板には、互いに直交するソース配線とゲート配線とに接続されたスイッチング素子(例えばTFT)と、そのスイッチング素子に接続された画素電極、さらには配向膜等が設けられ、他方のガラス基板には、R(赤色),G(緑色),B(青色)等の各着色部が所定配列で配置されたカラーフィルタや対向電極、さらには配向膜等が設けられている。なお、両基板の外側には偏光板が配されている。
 続いて、バックライト装置12について詳しく説明する。バックライト装置12は、図2に示すように、光出射面側(液晶パネル11側)に開口部14bを有した略箱型をなすシャーシ14と、シャーシ14の開口部14bを覆うようにして配される光学部材15群(拡散板(光拡散部材)15aと、拡散板15aと液晶パネル11との間に配される複数の光学シート15b)、シャーシ14の外縁部に沿って配され光学部材15群の外縁部をシャーシ14との間で挟んで保持するフレーム16とを備える。さらに、シャーシ14内には、図3から図5に示すように、光源であるLED17(Light Emitting Diode:発光ダイオード)と、LED17が実装されたLED基板18と、LED基板18においてLED17に対応した位置に取り付けられる拡散レンズ19とが備えられる。その上、シャーシ14内には、LED基板18をシャーシ14との間で保持することが可能な保持部材20と、シャーシ14内の光を光学部材15側に反射させる反射シート21(反射部材)とが備えられる。なお、当該バックライト装置12においては、LED17よりも光学部材15側が光出射側となっている。以下では、バックライト装置12の各構成部品について詳しく説明する。
 シャーシ14は、金属製とされ、図3から図5に示すように、液晶パネル11と同様に矩形状をなす底板14aと、底板14aの各辺の外端から立ち上がる側板14cと、各側板14cの立ち上がり端から外向きに張り出す受け板14dとからなり、全体としては表側に向けて開口した浅い略箱型(略浅皿状)をなしている。シャーシ14は、その長辺方向がX軸方向(水平方向)と一致し、短辺方向がY軸方向(鉛直方向)と一致している。シャーシ14における底板14aは、液晶パネル11及び光学部材15に対して並行する略平板状をなしており、その平面に視た大きさが液晶パネル11及び光学部材15と同等とされる。底板14aの面内には、詳しくは後述するがLED基板18が所定の間隔を空けて複数枚、間欠的に並列配置されている。従って、底板14aは、LED基板18が配置される基板配置領域BAと、LED基板18が配置されない基板非配置領域NBAとを有する(図3及び図16)。シャーシ14における各受け板14dには、表側からフレーム16及び次述する光学部材15が載置可能とされる。各受け板14dには、フレーム16がねじ止めされている。底板14aには、保持部材20を取り付けるための取付孔14eが開口して設けられている。取付孔14eは、底板14aにおいて保持部材20の取付位置に対応して複数分散配置されている。
 光学部材15は、図2に示すように、液晶パネル11及びシャーシ14と同様に平面に視て横長の方形(矩形状)をなしている。光学部材15は、図4及び図5に示すように、その外縁部が受け板14dに載せられることで、シャーシ14の開口部14bを覆うとともに、液晶パネル11とLED17との間に介在して配される。光学部材15は、裏側(LED17側、光出射側とは反対側)に配される拡散板15aと、表側(液晶パネル11側、光出射側)に配される光学シート15bとから構成される。拡散板15aは、所定の厚みを持つほぼ透明な樹脂製の基材内に拡散粒子を多数分散して設けた構成とされ、透過する光を拡散させる機能を有する。光学シート15bは、拡散板15aと比べると板厚が薄いシート状をなしており、2枚が積層して配されている(図7から図9)。具体的な光学シート15bの種類としては、例えば拡散シート、レンズシート、反射型偏光シートなどがあり、これらの中から適宜に選択して使用することが可能である。
 フレーム16は、図2に示すように、液晶パネル11及び光学部材15の外周縁部に沿う枠状をなしている。このフレーム16と各受け板14dとの間で光学部材15における外縁部を挟持可能とされている(図4及び図5)。また、このフレーム16は、液晶パネル11における外縁部を裏側から受けることができ、表側に配されるベゼル13との間で液晶パネル11の外縁部を挟持可能とされる(図4及び図5)。
 次に、LED17及びLED17が実装されるLED基板18について詳しく説明する。LED17は、図7,図8及び図10に示すように、LED基板18に固着される基板部上にLEDチップを樹脂材により封止した構成とされる。基板部に実装されるLEDチップは、主発光波長が1種類とされ、具体的には、青色を単色発光するものが用いられている。その一方、LEDチップを封止する樹脂材には、LEDチップから発せられた青色の光を、白色の光に変換する蛍光体が分散配合されている。これにより、このLED17は、白色発光が可能とされる。このLED17は、LED基板18に対する実装面とは反対側の面が発光面となる、いわゆるトップ型とされている。LED17における光軸LAは、Z軸方向(液晶パネル11及び光学部材15の主板面と直交する方向)とほぼ一致する設定とされている。なお、LED17から発せられる光は、光軸LAを中心にして所定の角度範囲内で三次元的にある程度放射状に広がるのであるが、その指向性は冷陰極管などと比べると高くなっている。つまり、LED17の発光強度は、光軸LAに沿った方向が際立って高く、光軸LAに対する傾き角度が大きくなるに連れて急激に低下するような傾向の角度分布を示す。
 LED基板18は、図10に示すように、平面に視て矩形状(短冊状)をなす基材を有しており、長辺方向がX軸方向と一致し、短辺方向がY軸方向と一致する状態でシャーシ14内において底板14aに沿って延在しつつ収容されている(図3)。LED基板18の基材は、シャーシ14と同じアルミ系材料などの金属製とされ、その表面に絶縁層を介して銅箔などの金属膜からなる配線パターンが形成された構成とされる。なお、LED基板18の基材に用いる材料としては、セラミックなどの絶縁材料を用いることも可能である。そして、このLED基板18の基材の板面のうち、表側を向いた面(光学部材15側を向いた面)には、図7,図8及び図10に示すように、上記した構成のLED17が表面実装されている。LED17は、LED基板18における長辺方向(X軸方向)に沿って複数が直線的に並列して配されるとともに、LED基板18に形成された配線パターンにより直列接続されている。各LED17の配列ピッチは、ほぼ一定となっており、つまり各LED17は、等間隔に配列されていると言える。このLED基板18は、各LED17が個々に配置された複数のLED配置部と、隣り合うLED配置部同士を連結する複数の配置部間連結部とから構成されていると言える。また、LED基板18における長辺方向の両端部には、コネクタ部18aが設けられており、ここがコネクタ配置部とされる。
 上記した構成のLED基板18は、図3に示すように、シャーシ14内においてX軸方向及びY軸方向にそれぞれ複数ずつ、互いに長辺方向及び短辺方向を揃えた状態で並列して配置されている。つまり、LED基板18及びそこに実装されたLED17は、シャーシ14内において共にX軸方向(シャーシ14及びLED基板18の長辺方向)を行方向とし、Y軸方向(シャーシ14及びLED基板18の短辺方向)を列方向として行列配置(マトリクス状に配置)されている。具体的には、LED基板18は、シャーシ14内においてX軸方向に3枚ずつ、Y軸方向に9枚ずつ、合計27枚が並列して配置されている。そして、本実施形態では、LED基板18として長辺寸法及び実装されるLED17の数が異なる2種類のものが用いられている。具体的には、LED基板18としては、6個のLED17が実装され、長辺寸法が相対的に長い6個実装タイプのものと、5個のLED17が実装され、長辺寸法が相対的に短い5個実装タイプのものとが用いられており、シャーシ14におけるX軸方向の両端位置に6個実装タイプのものが1枚ずつ、同方向の中央位置に5個実装タイプのものが1枚、それぞれ配されている。上記したようにX軸方向に沿って並んで1つの行をなす各LED基板18は、隣接するコネクタ部18a同士が嵌合接続されることで相互に電気的に接続されるとともに、シャーシ14におけるX軸方向の両端に対応したコネクタ部18aが図示しない外部の制御回路に対してそれぞれ電気的に接続される。これにより、1つの行をなす各LED基板18に配された各LED17が直列接続されるとともに、その1つの行に含まれる多数のLED17の点灯・消灯を1つの制御回路により一括して制御することができ、もって低コスト化を図ることが可能とされる。なお、長辺寸法及び実装されるLED17の数が異なる種類のLED基板18であっても、短辺寸法及びLED17の配列ピッチは、ほぼ同じとされる。上記したシャーシ14に対する各LED基板18の配置は、底板14aにおける各基板配置領域BAの配置と一致している。従って、底板14aにおける基板非配置領域NBAは、マトリクス状に配置された各基板配置領域BAを取り囲む格子状をなしていると言える(図16)。
 このように、長辺寸法及び実装されるLED17の数が異なるLED基板18を複数種類用意し、それら異なる種類のLED基板18を適宜に組み合わせて使用する手法を採用することで、次の効果を得ることができる。すなわち、画面サイズが異なる液晶表示装置10を多品種製造する場合、各画面サイズに合わせて各種類のLED基板18の使用の是非及び種類毎のLED基板18の使用枚数を適宜変更することで容易に対応することができ、仮にシャーシ14の長辺寸法と同等の長辺寸法を有する専用設計のLED基板を画面サイズ毎に用意した場合と比べると、必要なLED基板18の種類を大幅に削減することができ、もって製造コストの低廉化を図ることができる。具体的には、上記した2種類のLED基板18(5個実装タイプのもの及び6個実装タイプのもの)に加え、8個のLED17を実装した8個実装タイプのものを追加し、それら3種類のLED基板18を適宜に組み合わせて使用することにより、画面サイズが例えば26インチ、32インチ、37インチ、40インチ、42インチ、46インチ、52インチ、65インチとされる各液晶表示装置10の製造に、容易に低コストでもって対応することができるのである。
 拡散レンズ19は、ほぼ透明で(高い透光性を有し)且つ屈折率が空気よりも高い合成樹脂材料(例えばポリカーボネートやアクリルなど)からなる。拡散レンズ19は、図7,図8及び図11に示すように、所定の厚みを有するとともに、平面に視て略円形状に形成されており、LED基板18に対して各LED17を表側から個別に覆うよう、つまり平面に視て各LED17と重畳するようそれぞれ取り付けられている。そして、この拡散レンズ19は、LED17から発せられた指向性の強い光を拡散させつつ出射させることができる。つまり、LED17から発せられた光は、拡散レンズ19を介することにより指向性が緩和されるので、隣り合うLED17間の間隔を広くとってもその間の領域が暗部として視認され難くなる。これにより、LED17の設置個数を少なくすることが可能となっている。この拡散レンズ19は、平面に視てLED17とほぼ同心となる位置に配されている。拡散レンズ19は、X軸方向及びY軸方向の寸法が共にLED17よりも十分に大きいものとされる。一方、拡散レンズ19は、その径寸法がLED基板18の短辺寸法(Y軸方向の寸法)よりも大きいものの、LED基板18の長辺寸法(X軸方向の寸法)よりは小さいものとされる。従って、拡散レンズ19におけるY軸方向の両端部は、LED基板18よりもY軸方向について外側に所定寸法ずつ突出することになる。言い換えると、LED基板18における長辺側の両外縁(Y軸方向の両端に位置する外縁)が平面に視て拡散レンズ19と重畳することになる。逆に言うと、LED基板18における短辺寸法は、拡散レンズ19の径寸法よりも小さくなっており、拡散レンズ19を実装する上で必要最小限の大きさ(具体的には後述する各取付脚部19dの取り付けが可能となる程度)に留められ、もってLED基板18に係る材料費の低減が図られている。
 この拡散レンズ19のうち、裏側を向き、LED基板18と対向する面がLED17からの光が入射される光入射面19aとされるのに対し、表側を向き、光学部材15と対向する面が光を出射する光出射面19bとされる。このうち、光入射面19aは、図7及び図8に示すように、全体としてはLED基板18の板面(X軸方向及びY軸方向)に沿って並行する形態とされるものの、平面に視てLED17と重畳する領域に光入射側凹部19cが形成されることで傾斜面を有している。光入射側凹部19cは、略円錐状をなすとともに拡散レンズ19においてほぼ同心位置に配されており、裏側、つまりLED17側に向けて開口する形態とされる。光入射側凹部19cは、LED17側を向いた開口端部が最も径寸法が大きくてLED17の径寸法よりも大きいものとされており、そこから表側に行くに連れて径寸法が連続的に漸次小さくなり、表側の端部において最小とされる。光入射側凹部19cは、断面が略逆V字型をなしており、その周面がZ軸方向に対して傾いた傾斜面とされる。傾斜面は、その表側の端部がLED17の光軸LAに対して交差するよう傾斜している。従って、LED17から発せられて光入射側凹部19c内に入った光は、傾斜面を介して拡散レンズ19内に入射するのであるが、そのとき光軸LAに対する傾斜面の傾斜角度の分だけ、中心から遠ざかる方向、つまり広角に屈折されて拡散レンズ19に入射する。
 拡散レンズ19における光入射面19aのうち、光入射側凹部19cよりも径方向の外寄りの位置には、LED基板18側に向けて突出するとともに、LED基板18に対する拡散レンズ19の取付構造となる取付脚部19dが設けられている。取付脚部19dは、拡散レンズ19のうち、光入射側凹部19cよりも外周端部に近い位置に3つ配されており、各取付脚部19dを結んだ線が平面に視てほぼ正三角形をなす位置に配されている。各取付脚部19dは、その先端部が接着剤などによりLED基板18に固着されることで、拡散レンズ19をLED基板18に対して取付状態に固定することができる。拡散レンズ19は、取付脚部19dを介してLED基板18に固定されることで、その光入射面19aとLED基板18との間に所定の隙間が空けられるようになっている。この隙間には、平面に視て当該拡散レンズ19よりも外側の空間からの光の入射が許容されている。また、上記取付状態では、光入射側凹部19c内には、LED17におけるLED基板18からの突出先端部が進入した状態とされる。
 拡散レンズ19における光出射面19bは、扁平な略球面状に形成されている。これにより、拡散レンズ19から出射する光を、外部の空気層との界面にて中心から遠ざかる方向、つまり広角に屈折させつつ出射させることが可能となる。この光出射面19bのうち平面に視てLED17と重畳する領域には、光出射側凹部19eが形成されている。光出射側凹部19eは、略擂鉢状をなすとともに、その周面が中心に向かって下り勾配となる扁平な略球面状に形成されている。また、光出射側凹部19eにおける周面の接線がLED17の光軸LAに対してなす角度は、光入射側凹部19cの傾斜面が光軸LAに対してなす角度よりも相対的に大きくなるものとされる。光出射面19bのうち平面に視てLED17と重畳する領域は、他の領域と比べてLED17からの光量が極めて多くなる領域であり、輝度が局所的に高くなりがちとなるものの、そこに上記した光出射側凹部19eを形成することにより、LED17からの光の多くを広角に屈折させつつ出射させたり、或いはLED17からの光の一部をLED基板18側に反射させることができる。これにより、光出射面19bのうちLED17と重畳する領域の輝度が局所的に高くなるのを抑制することができ、輝度ムラの防止に好適となるのである。
 次に、反射シート21について説明する。反射シート21は、シャーシ14の内面をほぼ全域にわたって覆う大きさ、つまり全てのLED基板18に跨る大きさのシャーシ用反射シート22(シャーシ用反射部材)と、各LED基板18を個別に覆う大きさの基板用反射シート23(基板用反射部材)とからなる。このうち、基板用反射シート23は、LED基板18に対して表側に重ねられるのに対し、シャーシ用反射シート22は、基板用反射シート23に対して表側に重ねられる。言い換えると、LED基板18の表側の面には、基板用反射シート23、シャーシ用反射シート22の順で反射シート21が積層されており、基板用反射シート23は、LED基板18とシャーシ用反射シート22との間に介在する。両反射シート22,23は、共に合成樹脂製とされ、表面が光の反射性に優れた白色を呈するものとされる。両反射シート22,23は、いずれもシャーシ14内において底板14a(LED基板18)に沿って延在するものとされる。
 先にシャーシ用反射シート22について説明する。図3に示すように、シャーシ用反射シート22のうち、シャーシ14の底板14aに沿って延在する(底板14と対向状をなす)中央側の大部分が本体部22aとされる。本体部22aは、平面に視て底板14aとほぼ同じ大きさとされており、底板14aにおける各基板配置領域BA及び基板非配置領域NBAを一括して覆うことが可能とされる。つまり、本体部22aは、平面に視て各LED基板18よりも十分に広い範囲にわたる大きさを有している。
 本体部22aには、シャーシ14内に配された各LED17と共に各LED17を覆う各拡散レンズ19をも挿通することが可能なレンズ挿通孔22b(孔部)が貫通(開口)して形成されている。レンズ挿通孔22bは、本体部22aにおいて平面に視て各LED17及び各拡散レンズ19と重畳する位置に複数並列して配され、マトリクス状に配されている。レンズ挿通孔22bは、図6に示すように、平面に視て円形状をなしており、その径寸法は拡散レンズ19よりも大きくなる設定とされる。これにより、拡散レンズ19を実装した状態のLED基板18をシャーシ14内に取り付けた後に、シャーシ用反射シート22を敷設する作業手順を採ることが可能になるとともに、シャーシ用反射シート22をシャーシ14内に敷設する際、寸法誤差の発生の有無に拘わらず各拡散レンズ19を各レンズ挿通孔22bに対して確実に通すことができる。拡散レンズ19の径寸法は、LED基板18の短辺寸法より大きいことから、レンズ挿通孔19は、その径寸法がLED基板18の短辺寸法よりも大きく、平面に視てY軸方向についてLED基板18よりも広い範囲にわたる大きさを有していると言える。
 このシャーシ用反射シート22は、図3に示すように、シャーシ14内において、外周側領域及び隣り合う各拡散レンズ19間の領域を覆うので、それら各領域に向かう光を光学部材15側に向けて反射させることができる。また、本体部22aのうち、平面に視てコネクタ部18aと重畳する位置には、コネクタ部18aを通す孔がそれぞれ開口形成されている。また、シャーシ用反射シート22のうち外周側部分は、図4及び図5に示すように、シャーシ14の側板14c及び受け板14dを覆うように立ち上がり、受け板14dに載せられた部分がシャーシ14と光学部材15とに挟まれた状態とされる。また、シャーシ用反射シート22のうち本体部22aと、受け板14dに載せられた部分とを繋ぐ部分は、傾斜状をなしている。
 一方、基板用反射シート23は、図11に示すように、LED基板18と概ね同じ外形、つまり平面に視て矩形状に形成されている。基板用反射シート23は、LED基板18における表側の面に重なるとともにそのほぼ全域を表側から覆うようにして配される。そして、基板用反射シート23は、図7及び図8に示すように、拡散レンズ19とLED基板18との間に介在しており、拡散レンズ19に対して対向状をなす。つまり、基板用反射シート23は、平面に視てその表側に重ねられるシャーシ用反射シート22に形成されたレンズ挿通孔22b内に配されている。
 基板用反射シート23は、図11に示すように、長辺寸法がLED基板18とほぼ同じとされるのに対し、短辺寸法がLED基板18よりも大きなものとされる。つまり、基板用反射シート23は、平面に視てY軸方向についてLED基板18よりも広い範囲にわたる大きさを有しており、LED基板18における長辺側の両外縁(互いに反対側を向いた両外縁)からそれぞれY軸方向に沿って外向きに張り出している。基板用反射シート23のうち、短辺方向(Y軸方向)の中央側部分がLED基板18の表側に重ねられる(平面に視て重畳する)基板重畳部BLとされるのに対し、短辺方向の両端部がそれぞれLED基板18における長辺側の両外縁(短辺方向の両外縁)からY軸方向に沿って外向きに張り出すとともにLED基板18とは重ならない(平面に視て重畳しない)一対の基板非重畳部NBLとされる。この基板重畳部BLは、平面に視てシャーシ14の底板14aにおける基板配置領域BAと一致するのに対し、両基板非重畳部NBLは、平面に視てシャーシ14の底板14aにおける基板非配置領域NBA内に配されることになる。詳しくは、両基板非重畳部NBLは、基板非配置領域NBAにおけるY軸方向の端部に位置する。
 基板用反射シート23の短辺寸法は、図6及び図8に示すように、拡散レンズ19及びシャーシ用反射シート22のレンズ挿通孔22bの径寸法よりも大きなものとされる。つまり、基板用反射シート23は、拡散レンズ19と対向するほぼ全領域にわたって配されるとともに、平面に視てレンズ挿通孔22b内のほぼ全領域(平面に視て拡散レンズ19とレンズ挿通孔22bとの間の領域を含む)にわたって配され、且つレンズ挿通孔22bの縁部に対して重なり合うことになる。従って、拡散レンズ19にて反射されてLED基板18側に戻されたり、平面に視て当該拡散レンズ19よりも外側の空間から拡散レンズ19とLED基板18との間の空間に入ることでレンズ挿通孔22bに向かう光について、基板用反射シート23によって再び拡散レンズ19側に反射させることができる。これにより、光の利用効率を高めることができ、もって輝度の向上を図ることができる。言い換えると、LED17の設置個数を少なくして低コスト化を図った場合でも十分な輝度を得ることができる。しかも、基板用反射シート23に対してシャーシ用反射シート22におけるレンズ挿通孔22bの縁部が表側に重ねられているので、シャーシ14内においてシャーシ用反射シート22及び基板用反射シート23が平面に視て途切れることなく連続的に配されることになり、シャーシ14またはLED基板18がレンズ挿通孔22bから表側に露出することが殆どない。従って、シャーシ14内の光を効率的に光学部材15へ向けて反射させることができ、輝度の向上に極めて好適となる。なお、レンズ挿通孔22b内には、基板用反射シート23のうち基板重畳部BLに加えて両基板非重畳部NBLの一部(詳しくは、基板重畳部BLに隣接する部分)が配される。
 基板用反射シート23のうち、平面に視てLED基板18における各LED17と重畳する位置には、各LED17を通すLED挿通孔23aが形成されている。基板用反射シート23において各LED挿通孔23aは、各LED17と同じ配列ピッチをもって並列配置されており、その径寸法はLED17よりは大きいものの、シャーシ用反射シート22のレンズ挿通孔22b及び拡散レンズ19よりは小さいものとされる。また、基板用反射シート23には、各拡散レンズ19における各取付脚部19dを通す脚部挿通孔23bが平面に視て重畳する位置にそれぞれ形成されている。この基板用反射シート23は、LED17の各々を包囲する複数のLED包囲反射部(拡散レンズ包囲反射部)と、隣り合うLED包囲反射部同士を連結する複数の反射部間連結部とから構成されていると言える。
 続いて、保持部材20について説明する。保持部材20には、LED基板18(各反射シート22,23)を保持する保持機能に加えて光学部材15を支持する支持機能を併有する複合機能型保持部材20Bと、保持機能を有するものの支持機能については有さない単機能型保持部材20Aとの2種類のものがある。なお、以下では保持部材20を区別する場合には、単機能型のものの符号に添え字Aを、複合機能型のものの符号に添え字Bを付し、区別せずに総称する場合には、符号に添え字を付さないものとする。
 まず、シャーシ14における保持部材20の配置について説明する。保持部材20は、図3に示すように、シャーシ14の底板14aの面内において、多数個が並列配置されている。詳しくは、保持部材20は、底板14aにおいてX軸方向(シャーシ14及びLED基板18の長辺方向)を行方向とし、Y軸方向(シャーシ14及びLED基板18の短辺方向)を列方向として複数ずつ行列配置(マトリクス状に配置)されている。各保持部材20は、各LED基板18に対して平面に視て重畳する位置で且つ隣り合う拡散レンズ19(LED17)の間の位置に配されている。従って、各保持部材20は、既述した拡散レンズ19及びLED17と同様の配列とされている。保持部材20は、LED基板18において隣り合う拡散レンズ19(LED17)の間の領域に1つずつ配されているので、拡散レンズ19(LED17)と保持部材20とは、概ねX軸方向に交互に並ぶことになる。具体的には、各LED基板18に対して保持部材20は、4つずつ取り付けられている。なお、6個実装タイプのLED基板18においては、隣り合う拡散レンズ19(LED17)の間の領域のうち、長辺方向の中央位置以外に保持部材20が配されるのに対し、5個実装タイプのLED基板18においては、隣り合う拡散レンズ19(LED17)間の領域の全てに保持部材20が配されている。
 上記のように多数配列される保持部材20は、図3に示すように、続いて説明する2つの複合機能型保持部材20Bを除いて全てが単機能型保持部材20Aとされる。2つの複合機能型保持部材20Bは、シャーシ14における短辺方向の中央位置であって、長辺方向における外端よりは中央に近い位置にそれぞれ配されている。長辺方向の配置について詳しく説明すると、複合機能型保持部材20Bは、X軸方向に並列する3枚のLED基板18のうち中央のLED基板18を挟んで対称となる位置に配されている。
 続いて、保持部材20の具体的な構成について説明する。保持部材20は、既述した通り2種類のものが存在するが、大部分が共通構造となっており、その共通構造について先に説明する。保持部材20は、ポリカーボネートなどの合成樹脂製とされており、表面が光の反射性に優れた白色を呈する。保持部材20は、全体として平面に視て略円形状をなしている。保持部材20は、図7及び図9に示すように、シャーシ14の底板14a及びLED基板18の板面に沿う本体部24と、本体部24から裏側、つまりシャーシ14側に向けて突出してシャーシ14に固定される固定部25とを備える。この保持部材20は、全体としてZ軸方向に沿った中心軸を対称中心とした対称形状をなしている。
 本体部24は、図12から図15に示すように、平面に視て略円形状をなすとともに、X軸方向及びY軸方向に沿ってほぼ真っ直ぐな板状に形成されている。この本体部24は、図6に示すように、その径寸法がLED基板18の短辺寸法(Y軸方向の寸法)とほぼ同じ大きさとされる。そして、この本体部24は、LED基板18に対して平面に視て重畳する位置に取り付けられることで、LED基板18をシャーシ14の底板14aとの間に挟んだ状態に保持することが可能とされる。本体部24は、LED基板18の表側に予め各反射シート22,23を配した状態で取り付けられるので、LED基板18と共に各反射シート22,23を一括して挟み込むことが可能とされる(図7及び図9)。つまり、本実施形態に係る保持部材20は、延在部材である各反射シート22,23及びLED基板18を互いに積層した状態でシャーシ14との間で挟持(保持)可能とされる。
 詳しくは、本体部24は、図6に示すように、その中心がLED基板18における短辺方向の中央位置と一致する位置に配される。従って、本体部24は、LED基板18をその短辺方向について全長にわたってシャーシ14との間で挟持可能とされる。このとき、本体部24におけるY軸方向の両外端と、LED基板18における短辺方向の両外端とがほぼ揃えられることになる。つまり、本体部24は、平面に視てほぼ全域がLED基板18に対して重畳しており、LED基板18外に張り出すことが避けられている。この本体部24の径寸法は、X軸方向に隣り合う拡散レンズ19(LED17)間の間隔(配列ピッチ)よりも小さいものとされる。これにより、本体部24は、LED基板18のうちX軸方向に隣り合う拡散レンズ19(LED17)の間の領域、すなわちLED基板18における非発光部に配されることになり、LED17に対して平面に視て重畳することがない。つまり、本体部24がLED17からの発光の妨げとなるのを回避することができる。なお、本実施形態においては、既述した通り拡散レンズ19を用いることでLED17間の間隔が十分に広くなっているので、その空間を利用して保持部材20を配するとともにその保持部材20によりLED基板18の固定を図るようにしている。
 固定部25は、図9に示すように、シャーシ14の底板14aにおける保持部材20の取付位置に対応して形成された取付孔14eを貫通しつつ底板14aに対して係止可能とされる。この固定部25が設けられた本体部24は、既述した通りその全域がLED基板18と平面に視て重畳する配置とされる(図6)。従って、固定部25についても同様にLED基板18と平面に視て重畳する配置となり、そのためLED基板18には、固定部25を通す貫通孔18bが形成されている。この貫通孔18bは、図10に示すように、LED基板18のうち、隣り合うLED17(拡散レンズ19)の間の位置、つまりLED17(拡散レンズ19)とは平面に視て重畳しない位置に配されている。一方、本体部24とLED基板18との間に挟まれる各反射シート22,23のうち、LED基板18の貫通孔18bに対して平面に視て重畳する位置には、図7,図9及び図11に示すように、LED基板18の貫通孔18bに連通するとともに固定部25を通すことが可能な貫通孔22c,23cがそれぞれ形成されている。そして、シャーシ14の底板14aのうち、各貫通孔18b,22c,23cと平面に視て一致する位置には、固定部25が挿入・係止される取付孔14eが形成されている。なお、取付孔14eは、シャーシ14の底板14aにおいて、各保持部材20の取付位置に対応してX軸方向及びY軸方向に沿って複数ずつマトリクス状に並列配置されている。
 固定部25は、図13及び図15に示すように、本体部24において中央側に配されている。詳しくは、固定部25は、本体部24とほぼ同心となる位置に配されている。固定部25は、図9に示すように、本体部24における裏側の面(シャーシ14との対向面)から裏側へ向けて突出するとともに、その先端部に溝部25cを凹設することで弾性係止片25bを有している。言い換えると、固定部25は、本体部24から裏側に突出する基部25aと、基部25aの突出先端からさらに裏側へ向けて突出する弾性係止片25bとから構成されている。このうち、基部25aは、略円柱状をなしており、その径寸法がシャーシ14の取付孔14eよりも小さく、各貫通孔18b,22c,23c及び取付孔14eへの挿通が許容される程度とされる。
 弾性係止片25bは、図13及び図15に示すように、上記溝部25cが平面に視て略十字形とされることで、4本に分けられている。各弾性係止片25bは、図7及び図9に示すように、片持ち状に形成され、基部25aからの突出基端部を支点として溝部25c内に窄みつつ弾性変形可能とされる。つまり、溝部25cが各弾性係止片25bの撓み空間となっている。弾性係止片25bにおける外側面には、外向き、つまり溝部25cとは反対側に膨出する係止部25dが設けられている。係止部25dは、基部25aの外周面よりもさらに外向きに突出しており、その膨出端における固定部25の径寸法(最大となる径寸法)が各貫通孔18b,22c,23c及び取付孔14eの径寸法よりも大きなものとされる。言い換えると、係止部25dの膨出端は、取付孔14eの内周面よりも外側に位置する。従って、係止部25dは、シャーシ14における取付孔14eの縁部、つまりシャーシ14のうち固定部25に隣接する部位に対して裏側から係止可能とされる。このように、固定部25は、シャーシ14の取付孔14eに対して挿入されると、各弾性係止片25bが取付孔14eに通されてからその縁部に対して裏側から弾性的に係止されるようになっている。これにより、保持部材20をシャーシ14に対して取付状態に固定することができる。
 次に、2種類の保持部材20における相違構造について説明する。単機能型保持部材20Aにおける本体部24の外周端面には、図9に示すように、傾斜面24aが形成されている。傾斜面24aは、本体部24における中央側から外端側に向けて下り勾配をなしており、それによりシャーシ用反射シート22との間に生じ得る段差を解消または軽減している。これにより、本体部24の外周縁部(反射シート21との境界部分)が光学部材15を通して輝度ムラとして視認され難くなる。なお、図示は省略するが、この傾斜面24aを複合機能型保持部材20Bにも設けるようにしてもよい。
 一方、複合機能型保持部材20Bは、図7及び図9に示すように、本体部24から表側に向けて突出し、光学部材15を裏側から支持可能な光学部材支持部26を有している。光学部材支持部26は、全体として円錐状をなしている。詳しくは、光学部材支持部26は、本体部24の板面に沿って切断した断面形状が円形状とされるとともに、突出基端側から突出先端側にかけて次第に径寸法が小さくなるよう先細り状に形成されている。光学部材支持部26は、光学部材15のうち最も裏側(LED17側)に配された拡散板15aに対して当接可能とされ、それにより拡散板15aを所定の位置に支持することができる。つまり、光学部材支持部26は、光学部材15とLED17とのZ軸方向(光学部材15の面と直交する方向)についての位置関係を一定の状態に規制することが可能とされる。
 光学部材支持部26における突出基端部の外径寸法は、本体部24の短辺寸法及びLED基板18の短辺寸法のいずれよりも小さいものとされる。つまり、光学部材支持部26は、平面に視て点状をなしているのに対し、本体部24は、光学部材支持部26よりも平面に視て広い範囲にわたる面状をなしていると言える。光学部材支持部26における突出寸法は、本体部24における表側の面から、X軸方向及びY軸方向に沿ってほぼ真っ直ぐな状態とされた拡散板15aにおける裏側の面までの距離とほぼ等しくなっている。従って、この光学部材支持部26は、ほぼ真っ直ぐな状態の拡散板15aに対して当接されるようになっている。光学部材支持部26のうち、拡散板15aに対する当接箇所である突出先端部は、丸められている。この光学部材支持部26は、複合機能型保持部材20Bのうち本体部24から表側へ突出する唯一の部位であるから、複合機能型保持部材20Bをシャーシ14に対して取り付ける作業を行うに際して、作業者は、光学部材支持部26を操作部として使用することが可能とされる。それにより、複合機能型保持部材20Bの着脱作業性を向上させることができる。
 光学部材支持部26は、図14及び図15に示すように、本体部24におけるほぼ中心位置に配されている。つまり、光学部材支持部26は、裏側に配された固定部25と平面に視て重畳する位置に配されている。さらに詳しくは、これら光学部材支持部26及び固定部25は、平面に視てほぼ同心となる位置に配されている。このような配置とすれば、複合機能型保持部材20Bをシャーシ14に対して取り付ける作業を行うにあたって、作業者が光学部材支持部26を操作部として利用した場合、表側に露出する光学部材支持部26を目視することで、その裏側に隠れる固定部25の位置を容易に把握することができる。従って、固定部25を取付孔14eに挿入する際の作業性を向上させることができる。
 ここで、本実施形態に係るシャーシ14における底板14aのうち、LED基板18が配置される基板配置領域BAは、図8に示すように、LED基板18を裏側から支持する第1支持部27を構成している。この第1支持部27により支持されたLED基板18には、その表側に基板用反射シート23における基板重畳部BLが載せられており、LED基板18における表側の面(基板用反射シート23との対向面)により基板重畳部BLが裏側から支持されている。これに対し、シャーシ14の底板14aのうち、LED基板18が配置されない基板非配置領域NBAには、上記した第1支持部27よりも相対的に表側に突出した(持ち上がった)位置に配されるとともに、基板用反射シート23のうち基板非重畳部NBLを裏側から支持可能な第2支持部28が設けられている。つまり、本実施形態に係るシャーシ14では、基板用反射シート23のうち、基板重畳部BLが重ねられるLED基板18を相対的に裏側に配される第1支持部27により支持し、基板非重畳部NBLを相対的に表側に配される第2支持部28により支持するようにしており、それにより基板用反射シート23における基板重畳部BL及び基板非重畳部NBLに対するZ軸方向(底板14e及び基板用反射シート23の板面と直交する方向)についての支持位置を揃え、段差を解消するようにしている。
 第2支持部28は、底板14aにおける基板非配置領域NBAを部分的に表側、つまり開口部14b側に突出させることで形成されている。第2支持部28は、基板非配置領域NBAから表側への突出寸法がLED基板18の厚さ寸法程度の大きさとされる。従って、第2支持部28とLED基板18とにおける表側の面、つまり基板用反射シート23との対向面(支持面)は、互いに面一状をなす。言い換えると、基板用反射シート23の基板重畳部BL及び基板非重畳部NBLに対するZ軸方向についてのシャーシ14側の支持位置は、ほぼ同じに揃えられ、段差がほぼ完全に解消されている。これにより、基板用反射シート23は、基板重畳部BL及び基板非重畳部NBLがLED基板18及び第2支持部28によって段差無く支持されることで、全体の平坦性が担保される。もって、基板重畳部BLと基板非重畳部NBLとの境界位置への応力集中を緩和することができて変形が生じるのを抑制することができる。
 第2支持部28は、図8,図16及び図17に示すように、基板非配置領域NBAのうち各基板配置領域BA(各LED基板18)に対してY軸方向について隣接する部分にそれぞれ配されている。第2支持部28は、図16及び図17に示すように、基板非配置領域NBAにおいて平面に視て略点状をなすとともに、LED基板18における長辺側の外縁(X軸方向)に沿って複数が間欠的に並列して配されている。詳細には、各第2支持部28は、平面に視て略円形状をなしており、その径寸法は、平面に視て拡散レンズ19とレンズ挿通孔22bとの間の間隔よりも大きなものとされ、基板非重畳部NBLのY軸方向の寸法とほぼ同じ程度とされる。第2支持部28は、X軸方向に沿って並列する数がLED基板18上にて並列する各LED17の数と同じとされるとともに、各LED17に対してY軸方向、つまり基板用反射シート23におけるLED基板18の長辺側の外縁からの張り出し方向に沿って並ぶ配置とされる。つまり、各第2支持部28は、各LED17とX軸方向についての配置がほぼ同じに揃えられており、各LED17に最も近い位置に配されていると言える。従って、X軸方向について隣り合う各第2支持部28間の間隔(配列ピッチ)は、LED基板18における各LED17間の間隔とほぼ同じとされている。言い換えると、第2支持部28は、基板用反射シート23のうち各LED17を包囲する各LED包囲反射部33と平面視重畳する位置に配されている。さらには、第2支持部28は、各LED基板18をY軸方向(短辺方向)について挟んだ位置(隣り合うLED基板18の間の位置)に一対ずつ設けられている。従って、各第2支持部28は、基板用反射シート23のうち、LED基板18における長辺側の両外縁から張り出した一対の基板非重畳部NBLをそれぞれ支持することが可能とされる。
 第2支持部28は、図8に示すように、断面形状が略台形状をなしており、その突出先端部28aが基板用反射シート23に対する支持面を保有している。第2支持部28は、例えばシャーシ14の底板14aに絞り加工を施すことでシャーシ14に一体成形されている。第2支持部28における突出先端部28a(基板用反射シート23に対する支持面を有する部位)は、Y軸方向についてLED基板18側の部分が平面に視てレンズ挿通孔22b内に配されるのに対し、LED基板18側とは反対側の部分が平面に視てレンズ挿通孔22bの縁部と重畳している。つまり、第2支持部28は、レンズ挿通孔22bの内外に跨る範囲にわたって配されている。従って、第2支持部28は、基板用反射シート23における基板非重畳部NBLのうち、平面に視てレンズ挿通孔22b内に配されるとともにシャーシ用反射シート22とは重ならない内側部分Iと、平面に視てレンズ挿通孔22b外に配されるとともにレンズ挿通孔22bの縁部と重なる外側部分Oとを共に裏側から支持することができ、それらに対して段差なく面接触される。このように、基板非重畳部NBLのうち平面に視てレンズ挿通孔22b内に配される内側部分Iを第2支持部28により支持してその変形を抑制することにより、レンズ挿通孔22b内への光をムラなく反射させることができる。しかも、基板非重畳部NBLのうち平面に視てレンズ挿通孔22bの縁部と重畳する外側部分Oを第2支持部28により支持してその変形を抑制することにより、レンズ挿通孔22bの縁部と基板非重畳部NBLの外側部分Oとの間にZ軸方向について隙間が空くことが防がれ、もってそこから光が漏れるのを防止することができる。なお、第2支持部28の突出先端部28aは、基板用反射シート23の基板非重畳部NBLのうち、LED基板18の外縁からの張り出し基端部と、張り出し先端部との間の部分(張り出し基端部及び張り出し先端部を除いた部分)を支持する大きさとされる。
 第2支持部28の突出基端部のうち、LED基板18に対して対向する(隣接する)部分は、LED基板18の外縁に当接することで、LED基板18を位置決め可能な基板位置決め部29を構成している。つまり、第2支持部28が基板位置決め部29を一体に有している。基板位置決め部29は、LED基板18における長辺側の外縁に対して当接することで、LED基板18をY軸方向について位置決めすることが可能とされる。ところで、第2支持部28は、既述した通りLED基板18をY軸方向について挟んだ位置に一対ずつ設けられており、対をなす第2支持部28間の間隔は、LED基板18における短辺寸法程度とされる。つまり、対をなす第2支持部28間には、LED基板18が収容可能とされており、基板位置決め部29は、収容されたLED基板18をY軸方向について両外側から挟み込むことで、LED基板18をY軸方向について殆どがたつきなく位置決めすることが可能とされる。基板位置決め部29は、LED基板18の長辺側の外縁に沿って複数が間欠的に並列して配されている。従って、各基板位置決め部29によりLED基板18がその長辺方向に対して傾くよう位置ずれするのが効果的に防止される。
 シャーシ14の底板14aのうち、LED基板18の短辺側の縁部に対して隣接する位置には、図16から図18に示すように、LED基板18をX軸方向について位置決め可能な第2の基板位置決め部30が設けられている。この第2の基板位置決め部30は、上記した第2支持部28と同様にシャーシ14の底板14aを部分的に表側に突出させることで、平面に視て略円形状で且つ断面形状が略台形状をなしている。第2の基板位置決め部30は、LED基板18における短辺側の外縁に当接することで、LED基板18をX軸方向について位置決めすることができる。第2の基板位置決め部30は、LED基板18をY軸方向(長辺方向)について挟んだ位置に一対配されており、両第2の基板位置決め部30間の間隔は、LED基板18における長辺寸法程度とされている。従って、両第2の基板位置決め部30によりLED基板18をX軸方向について両外側から挟み込むことで、LED基板18をX軸方向について殆どがたつきなく位置決めすることが可能とされる。以上により、LED基板18は、各基板位置決め部29,30により互いに直交するX軸方向及びY軸方向について二次元的に位置決めされるようになっている。また、第2の基板位置決め部30は、Y軸方向についてLED基板18の中央位置に配されている。
 本実施形態は以上のような構造であり、続いてその作用を説明する。液晶パネル11及びバックライト装置12をそれぞれ別途に製造し、それらをベゼル13などを用いて互いに組み付けることで、図4及び図5に示す液晶表示装置10が製造される。このうち、バックライト装置12を製造する際の組み付け作業について詳しく説明する。
 本実施形態では、シャーシ14に対する各構成部品の組み付けに先立って、LED基板18に対してLED17、基板用反射シート23及び拡散レンズ19を取り付ける作業が行われる。詳しくは、まず、LED基板18には、図10に示すように、LED17が所定位置に実装された後、基板用反射シート23が表側に被せ付けられる。このとき、基板用反射シート23の各LED挿通孔23aに各LED17が通されるとともに、LED基板18及び基板用反射シート23の各貫通孔18b,23cが互いに整合して連通される。その後、LED基板18には、図11に示すように、各LED17を覆うようにしてそれぞれ拡散レンズ19が取り付けられる。このとき、拡散レンズ19における各取付脚部19dが基板用反射シート23の脚部挿通孔23bを通してLED基板18に対して接着剤により固着される。以上により、LED基板18にLED17、基板用反射シート23及び拡散レンズ19を一体化してなる、いわば光源ユニットUが製造される。なお、この状態では、基板用反射シート23のうち基板重畳部BLについてはLED基板18により裏側から支持されるものの、両基板非重畳部NBLについてはLED基板18により支持されていない。
 続いて、シャーシ14に対する各構成部品の組み付け作業について説明する。上記した光源ユニットUをシャーシ14の表側から開口部14bを通して内部に収容し、各光源ユニットUを底板14aに対してそれぞれ所定の取付位置に配する。LED基板18を配するにあたっては、底板14aにおける取付位置(基板配置領域BA)に設けられた各第2支持部28(各基板位置決め部29)及び第2の位置決め部30により囲まれた空間内にLED基板18を収容する(図16及び図17参照)。すると、各第2支持部28のうちLED基板18側を向いた各基板位置決め部29がLED基板18の長辺側の両外縁に、各第2の基板位置決め部30がLED基板18の短辺側の両外縁にそれぞれ当接される。これにより、LED基板18並びに基板用反射シート23は、シャーシ14に対してX軸方向及びY軸方向について二次元的に正確に位置決めされる(図8及び図17)。
 このとき、LED基板18がシャーシ14の底板14aにおける基板配置領域BA、つまり第1支持部27によって裏側から支持されるのに対し、基板用反射シート23のうち、LED基板18の長辺側の両外縁から外向きに張り出した状態の両基板非重畳部NBLには、各第2支持部28の突出先端部28aが当接されることで裏側からの支持がなされる(図8)。ここで、第2支持部28の突出先端部28aは、基板用反射シート23に対する支持面が第1支持部27よりも表側に配され且つLED基板18における支持面と面一状をなしており、Z軸方向について段差が殆ど生じていない。従って、基板用反射シート23は、LED基板18及び第2支持部28によって基板重畳部BLと基板非重畳部NBLとの間でZ軸方向について段差が生じることがなく、高い平坦性を保った状態に支持される。これにより、基板用反射シート23のうち基板重畳部BLと各基板非重畳部NBLとの境界位置に応力が集中することは殆どなく、それにより基板用反射シート23に変形(凹凸)が生じるのが効果的に抑制される。また、X軸方向について互いに隣り合う各LED基板18は、隣接するコネクタ部18a同士を嵌合することで相互の電気的な接続が図られる。なお、X軸方向に並ぶLED基板18同士の接続作業は、必ずしもシャーシ14内で行う必要はなく、シャーシ14外にて行うようにしても構わない。
 全ての光源ユニットUの配置が完了したら、続いてシャーシ用反射シート22をシャーシ14内に配する作業を行う。このとき、シャーシ用反射シート22における各レンズ挿通孔22bを光源ユニットUにおける各拡散レンズ19に対して位置合わせしつつ、各拡散レンズ19を各レンズ挿通孔22bに通すようにする(図3)。シャーシ用反射シート22が取り付けられると、その本体部22aが各光源ユニットUが装着された状態の底板14aに対してほぼ全域にわたってその表側に重ねられる。このとき、シャーシ用反射シート22におけるレンズ挿通孔22bの縁部が全域にわたって基板用反射シート23の表側に重ねられる。また、シャーシ用反射シート22の貫通孔22cが、LED基板18及び基板用反射シート23の各貫通孔18b,23cと、シャーシ14の取付孔14eとにそれぞれ整合して相互が連通される。その後、保持部材20の組み付け作業を行う。
 各保持部材20を組み付けるにあたっては、シャーシ14の表側から開口部14bを通して内部に保持部材20を収容するとともに、その固定部25を、各貫通孔18b,22c,23c及び取付孔14e内に挿入する。固定部25を挿入する過程では、各弾性係止片25bは、各貫通孔18b,22c,23c及び取付孔14eの縁部により押圧されることで一旦溝部25c内に窄むよう弾性変形される。そして、各弾性係止片25bが取付孔14eを通り抜けてシャーシ14の裏側に達する深さまで固定部25が挿入されると、図7及び図9に示すように、各弾性係止片25bが弾性復帰するとともにその係止部25dが取付孔14eの縁部に対して裏側から係止される。これにより、保持部材20は、シャーシ14から抜け止めされ、取付状態に固定される。この状態では、保持部材20における本体部24とシャーシ14の底板14aとの間には、LED基板18及び各反射シート22,23が一括して挟まれた状態で保持される。
 なお、上記した保持部材20の組み付けに際しては、保持部材20のうち、複合機能型保持部材20Bについては、光学部材支持部26を操作部として利用することが可能とされる。このようにすれば、複合機能型保持部材20Bの組み付けに際しては、作業者は、光学部材支持部26を把持して複合機能型保持部材20Bを操作することができる。このとき、光学部材支持部26と固定部25とは、平面に視て互いに重畳し且つ同心となる位置に配されているから、作業者にとって固定部25の位置を容易に把握することができる。従って、固定部25を取付孔14e内に挿入する作業をスムーズに行うことができる。
 また、固定部25が各反射シート22,23及びLED基板18を貫通しているので、各反射シート22,23及びLED基板18がX軸方向及びY軸方向に不用意に移動するのが防がれて同方向についての位置決めが図られる。さらには、固定部25がシャーシ14に形成された取付孔14eを貫通してそこに機械的に係止することで、固定がなされているから、仮に接着剤などを用いた固定方法を採用した場合と比べて、低コストで容易な固定が図ることができ、またメンテナンス時や廃棄時などにおいて保持部材20を容易に取り外すことが可能となる。
 その後、シャーシ14に対して開口部14bを覆うようにして光学部材15を取り付ける。具体的な光学部材15の取り付け順序は、拡散板15aが先でその後に光学シート15bとなる。光学部材15は、図4及び図5に示すように、その外周縁部がシャーシ14の受け板14dによって受けられるとともに、中央側部分が各複合機能型保持部材20Bの光学部材支持部26によって支持されるようになっている。それから、フレーム16をシャーシ14に取り付けると、フレーム16と受け板14dとの間で光学部材15の外周縁部が挟持される。これにより、バックライト装置12の製造が完了する。製造されたバックライト装置12と液晶パネル11とを組み付けるに際しては、フレーム16に対して液晶パネル11を載置してから、さらにその表側にベゼル13を被せ付けるとともにネジ止めする。これにより、フレーム16とベゼル13との間で液晶パネル11が挟持されるとともに、液晶パネル11がバックライト装置12に対して一体化され、もって液晶表示装置10の製造が完了する。
 上記のようにして製造された液晶表示装置10を使用する際には、バックライト装置12に備えられた各LED17を点灯させるとともに、液晶パネル11に画像信号を供給するようにしており、それにより液晶パネル11の表示面に所定の画像が表示されるようになっている。各LED17を点灯させるのに伴い発せられた光は、図7及び図8に示すように、まず拡散レンズ19の光入射面19aに入射する。このとき、光の大半は、光入射面19aのうち光入射側凹部19cにおける傾斜面に入射することで、その傾斜角度に応じて広角に屈折されつつ拡散レンズ19内に入射する。そして、入射した光は、拡散レンズ19内を伝播した後、光出射面19bから出射されるのであるが、この光出射面19bは、扁平な略球面状をなしているので、外部の空気層との界面にて光がさらに広角に屈折されつつ出射される。しかも、光出射面19bのうちLED17からの光量が最も多くなる領域には、略擂鉢状をなす光出射側凹部19eが形成され、且つその周面が扁平な略球面状をなしているので、光出射側凹部19eの周面にて光を広角に屈折させつつ出射させたり、或いはLED基板18側に反射させることができる。このうち、LED基板18側に戻され、レンズ挿通孔22bに向かう光は、レンズ挿通孔22b内に配された基板用反射シート23により拡散レンズ19側に反射されて再び拡散レンズ19に入射されることで有効利用されるので、高い輝度が得られる。
 このように、LED17から発せられた指向性の強い光を、拡散レンズ19により広角に拡散させることができるので、光学部材15に達した光における、光学部材15の面内の分布を均一なものとすることができる。言い換えると、拡散レンズ19を用いることで隣り合うLED17間の領域が暗部として視認され難くなるので、LED17間の間隔を広くすることが可能となり、もって輝度ムラを抑制しつつもLED17の配置個数の削減を図ることが可能となる。そして、LED17の設置個数を削減することにより、隣り合うLED17間の間隔を広くすることができるので、その広くなった領域を利用して保持部材20を配することができ、さらにその保持部材20によりLED基板18の固定を図ることができるのである。
 特に、本実施形態では、LED18及び拡散レンズ19の直近位置にて光を反射させる基板用反射シート23について、既述した通り殆ど変形(凹凸)が生じることがなく、平坦性を維持した状態で支持する構成を採用しているから、基板用反射シート23によって反射されてから主に拡散レンズ19へ向かう光(反射光)にムラが生じることが殆どない。詳細には、第2支持部28は、基板用反射シート23における両基板非重畳部NBLのうち、レンズ挿通孔22b内に配される内側部分Iを支持しているから、レンズ挿通孔22b内に入った光(シャーシ用反射シート22では反射不能な光)をムラなく拡散レンズ19側に反射させることができる。それに加えて、第2支持部28は、基板用反射シート23における両基板非重畳部NBLのうち、レンズ挿通孔22bの縁部と重畳する外側部分Oを支持しているから、レンズ挿通孔22bの縁部と両基板非重畳部NBLにおける重畳部分とを当接状態に維持することができ、両者間にZ軸方向について隙間が空くのを防ぐとともにその隙間から光が漏れ出すのを防止することができる。以上により、拡散レンズ19から出射し、拡散板15a(開口部14b)へ向かう光にムラが生じ難くなるとともに、光の利用効率を向上させることができる。
 上記のように液晶表示装置10を使用する際には、バックライト装置12内の各LED17を点灯または消灯させるなどするため、内部の温度環境に変化が生じ、それに伴い液晶表示装置10の各構成部品は、熱膨張または熱収縮する可能性がある。各構成部品のうち、各基板用反射シート23にも、熱膨張または熱収縮に伴う伸縮が生じ、場合によっては反りなどの変形が生じる可能性がある。ここで、温度環境の変化に伴う変形は、応力が作用している箇所ほど生じ易くなる傾向とされる。つまり、基板用反射シート23において所定箇所に応力集中が生じていれば、その箇所において熱膨張または熱収縮に伴う局所的な変形が生じ易くなっている。その点、本実施形態では、基板用反射シート23は、既述した通り、互いに面一状をなすLED基板18及び第2支持部28によってシャーシ14側から支持されることで、全域にわたって平坦な状態に維持されているから、基板重畳部BLと各基板非重畳部NBLとの境界位置に応力が集中することが回避されている。従って、温度環境が多少変化しても、基板用反射シート23には変形が生じ難いものとされる。
 以上説明したように本実施形態のバックライト装置12は、光源であるLED17を有するLED基板18と、LED基板18を収容しLED17からの光を出射するための開口部14bを有するシャーシ14と、シャーシ14の内面に沿って配されていて光を反射させるシャーシ用反射シート22と、LED基板18に対して開口部14b側に重なるとともに平面に視てLED基板18よりも広い範囲にわたって配されていて光を反射させる基板用反射シート23とを備え、シャーシ14は、LED基板18を支持する第1支持部27と、第1支持部27よりも相対的に開口部14b側に配されるとともに基板用反射シート23を支持する第2支持部28とを有する。
 このようにすれば、シャーシ14の内面に沿って配されるシャーシ用反射シート22に加えて、LED基板18に対して開口部14b側に重なる基板用反射シート23が備えられているので、例えばシャーシ用反射シート22に孔部が形成された場合でもその孔部内に基板用反射シート23の一部を配することが可能となり、もって光の利用効率を高めることが可能となり得る。基板用反射シート23は、平面に視てLED基板18よりも広い範囲にわたる大きさを有しており、このことはLED基板18が平面に視て基板用反射シート23よりも狭い範囲の大きさであることを意味し、それによりLED基板18に係る材料費の低減を図ることができる。
 基板用反射シート23のうちLED基板18に対して開口部14b側に重なる部分(基板重畳部BL)は、LED基板18により支持されるのに対し、LED基板18とは重ならない部分(基板非重畳部NBL)は、LED基板18を支持する第1支持部27よりも相対的に開口部14b側に配される第2支持部28により支持される。従って、基板用反射シート23のうちLED基板18に対して重なる部分(基板重畳部BL)と、重ならない部分(基板非重畳部NBL)との境界位置に応力が集中するのを緩和することができる。これにより、基板用反射シート23に変形が生じ難くなる。
 また、シャーシ用反射シート22には、孔部としてレンズ挿通孔22bが形成されており、基板用反射シート23は、平面に視て少なくとも一部がレンズ挿通孔22b内に配されている。このようにすれば、シャーシ用反射シート22におけるレンズ挿通孔22b内に配した基板用反射シート23によりレンズ挿通孔22bへの光を反射させることができるので、光の利用効率を向上させることができる。
 また、シャーシ用反射シート22におけるレンズ挿通孔22bの縁部と、基板用反射シート23とは、平面に視て互いに重畳している。このようにすれば、シャーシ用反射シート22におけるレンズ挿通孔22bの縁部と基板用反射シート23とが平面に視て切れ目無く繋がることになる。これにより、光の利用効率を一層向上させることができる。しかも、基板用反射シート23が第2支持部28により支持されて変形が抑制されるので、レンズ挿通孔22bの縁部と基板用反射シート23との間に隙間が空いてそこから光が漏れるのが防がれ、もって高い光の利用効率が得られる。
 また、第2支持部28は、平面に視て少なくとも一部がシャーシ用反射シート22におけるレンズ挿通孔22bの縁部と重畳する位置に配されている。このようにすれば、シャーシ用反射シート22におけるレンズ挿通孔22bの縁部と基板用反射シート23との重畳部分を第2支持部28により支持することができるので、シャーシ用反射シート22におけるレンズ挿通孔22bの縁部と基板用反射シート23との間に隙間が空いてそこから光が漏れるのをより確実に防ぐことができる。これにより、光の利用効率をより一層向上させることができる。
 また、シャーシ用反射シート22は、平面に視てレンズ挿通孔22bがLED基板18よりも広い範囲にわたる大きさとなるよう形成されているのに対し、第2支持部28は、平面に視て少なくとも一部がレンズ挿通孔22b内に配されている。このようにすれば、基板用反射シート23のうち平面に視てレンズ挿通孔22b内に配される部分には、LED基板18とは重ならず、LED基板18により支持されない部位(内側部分I)が含まれることになるものの、その部位について第2支持部28により支持して変形を抑制することができる。基板用反射シート23における平面に視てレンズ挿通孔22b内に配される部分は、レンズ挿通孔22bへの光を反射させる機能を有することから、その部分の変形を抑制することにより、反射光にムラが生じ難くなって良好な光学特性が得られる。
 また、基板用反射シート23には、平面に視てLED17と重畳する位置にLED17を通すLED挿通孔23aが設けられているのに対し、シャーシ用反射シート22は、レンズ挿通孔22bが平面に視てLED挿通孔23aよりも広い範囲にわたる大きさとなるよう形成されている。このようにすれば、LED挿通孔23a及びレンズ挿通孔22bには、LED17が通されるので、LED17からの光が基板用反射シート23またはシャーシ用反射シート22により遮られることが回避される。平面に視てLED挿通孔23aよりも大きなレンズ挿通孔22b内に基板用反射シート23が配されることで、光の利用効率を向上させることができる。
 また、LED基板18における開口部14b側には、平面に視てLED17と重畳する位置に、LED17からの光を拡散させる拡散レンズ19が配されており、シャーシ用反射シート22には、平面に視て拡散レンズ19と重畳する位置にレンズ挿通孔22bが配され且つ拡散レンズ19を通す大きさとなるよう形成されている。このようにすれば、LED17から発せられた光を拡散レンズ19により拡散させてから、開口部14bへと導くことができる。拡散レンズ19にてLED基板18側に反射される光が生じても、その光をレンズ挿通孔22b内に配した基板用反射シート23により再度拡散レンズ19側に反射させることができるので、光の利用効率を向上させることができる。これにより、開口部14bから出射する出射光の輝度を高めつつムラの発生を抑制することができる。
 また、基板用反射シート23は、平面に視て拡散レンズ19よりも広い範囲にわたって配されている。このようにすれば、拡散レンズ19にてLED基板18側に反射される光を、基板用反射シート23によってより確実に拡散レンズ19側に戻すことができ、光の利用効率を一層向上させることができる。
 また、LED基板18は、少なくとも外縁の一部が平面に視て拡散レンズ19と重畳するような大きさに形成されている。LED基板18をこのような大きさとすることで、LED基板18に係る材料費を削減でき、低コスト化に好適となる。
 また、第2支持部28は、LED基板18における基板用反射シート23との対向面と面一状をなしている。このようにすれば、共に基板用反射シート23を支持するLED基板18における対向面と、第2支持部28との間に段差が生じないから、基板用反射シート23の変形を効果的に抑制することができる。
 また、基板用反射シート23は、LED基板18における互いに反対側を向いた両外縁からそれぞれ外向きに張り出す大きさを有するのに対し、第2支持部28は、平面に視てLED基板18を挟んだ位置に少なくとも一対配されている。このようにすれば、基板用反射シート23のうち、LED基板18の両外縁から張り出す部分(基板非重畳部NBL)をそれぞれ第2支持部28により支持可能とされるから、基板用反射シート23の変形を効果的に抑制することができる。
 また、第2支持部28は、シャーシ14を部分的に開口部14b側に向けて突出させて形成されている。このようにすれば、仮にシャーシを部分的に開口部14b側とは反対側に突出させることで第1支持部27を形成した場合と比べると、全体を薄型に保つことができる。
 また、第2支持部28は、平面に視て点状をなしている。このようにすれば、シャーシ14全体に占める第2支持部28の面積の割合を極力小さくすることができるから、シャーシ14を部分的に突出させて第2支持部28を形成するのが容易となる。また、第2支持部28の配置の自由度も高くなる。
 また、基板用反射シート23は、LED基板18における外縁から外向きに張り出しているのに対し、第2支持部28は、LED17に対して基板用反射シート23の張り出し方向に沿って並ぶよう配されている。このようにすれば、LED基板18の外縁からの基板用反射シート23の張り出し方向(Y軸方向)に沿ってLED17と第2支持部28とが並ぶ配置とされるから、LED17により近い位置にて基板用反射シート23の変形を抑制することができる。これにより、LED17からの光が基板用反射シート23にて反射される際にムラがより生じ難くなる。
 また、LED基板18には、LED17が一方向に沿って複数並列して配されているのに対し、第2支持部28は、LED17の並列方向に沿って複数並列して配されている。このようにすれば、LED基板18において複数並列して配される各LED17に対して各第2支持部28がそれぞれより近い位置にて基板用反射シート23の変形を抑制するから、基板用反射シート23にて反射される光に一層ムラが生じ難くなる。
 また、シャーシ14には、LED基板18をその板面に沿う方向について位置決め可能な基板位置決め部29,30が設けられている。このようにすれば、LED基板18をシャーシ14に配する際に、基板位置決め部29,30によりLED基板18をその板面に沿う方向について位置決めすることができる。従って、第1支持部27によりLED基板18を確実に支持することができるとともに、LED基板18に重ねられた基板用反射シート23と第2支持部28との位置関係も正確なものとされる。
 また、基板位置決め部29,30は、LED基板18をその板面に沿い且つ互いに直交する2方向について位置決め可能とされる。このようにすれば、LED基板18を二次元的に正確に位置決めすることができる。
 また、基板位置決め部29は、第2支持部28を有している。このようにすれば、仮に基板位置決め部29とは別途に第2支持部を設けた場合と比べると、シャーシ14の構造を簡素化することができ、製造コストの低廉化などを図ることができる。
 また、基板位置決め部29は、シャーシ14を部分的に開口部14b側に突出させる形態とされ、第2支持部28を有している。このようにすれば、仮にシャーシを部分的に開口部14b側とは反対側に突出させることで基板位置決め部及び第1支持部を形成した場合と比べると、全体を薄型に保つことができる。
 また、シャーシ14との間でLED基板18、基板用反射シート23及びシャーシ用反射シート22を挟んで保持する保持部材20を備える。このようにすれば、保持部材20によりLED基板18、基板用反射シート23及びシャーシ用反射シート22を一括して保持することができる。
 また、保持部材20は、シャーシ14との間でLED基板18、基板用反射シート23及びシャーシ用反射シート22を挟む本体部24と、本体部24からシャーシ14側に突出してシャーシ14に固定される固定部25とを備えており、固定部25は、LED基板18、基板用反射シート23及びシャーシ用反射シート22を貫通しつつシャーシ14に対して固定される。このようにすれば、LED基板18、基板用反射シート23及びシャーシ用反射シート22を貫通する固定部25により、LED基板18、基板用反射シート23及びシャーシ用反射シート22をその板面に沿う方向について位置決めすることが可能となる。
 また、固定部25は、LED基板18、基板用反射シート23、シャーシ用反射シート22及びシャーシ14を貫通するとともに、シャーシ14に対してLED基板18側とは反対側から係止される。このようにすれば、LED基板18、基板用反射シート23及びシャーシ用反射シート22と共にシャーシ14を貫通する固定部25をシャーシ14に係止させることで、保持部材20の固定を図ることができるから、接着剤などの他の固定手段を用いる必要がなく、低コストで且つ容易に固定を図ることができる。
 また、光源は、LED17とされる。このようにすれば、高輝度化及び低消費電力化などを図ることができる。
 以上、本発明の実施形態1を示したが、本発明は上記実施の形態に限られるものではなく、例えば以下のような変形例を含むこともできる。なお、以下の各変形例において、上記実施形態と同様の部材には、上記実施形態と同符号を付して図示及び説明を省略するものもある。
[実施形態1の変形例1]
 実施形態1の変形例1について図19を用いて説明する。ここでは、第2支持部28‐1による基板用反射シート23の支持範囲を変更したものを示す。
 この変形例1に係る第2支持部28‐1は、上記した実施形態1に記載した第2支持部28と比べて形成範囲が拡張されている。具体的には、第2支持部28‐1は、図19に示すように、基板用反射シート23のうち、LED基板18の長辺側の両外縁からY軸方向に沿って外向きに張り出す両基板非重畳部NBLにおける張り出し先端部よりもさらに張り出し方向の外側に至る範囲に形成されている。このようにすれば、第2支持部28‐1により両基板非重畳部NBLにおける張り出し先端部を確実に裏側から支持することができる。これにより、両基板非重畳部NBLとレンズ挿通孔22bの縁部との重畳部分をより確実に当接状態に維持することができ、両者間にZ軸方向について隙間が空くのを防ぐとともにその隙間から光が漏れ出すのを防止することができる。
[実施形態1の変形例2]
 実施形態1の変形例2について図20を用いて説明する。ここでは、第2支持部28‐2における基板用反射シート23に対する平面に視た支持位置を変更したものを示す。
 この変形例2に係る第2支持部28‐2は、上記した実施形態1に記載した第2支持部28から基板用反射シート23‐2に対する平面に視た支持位置が内寄りの変更されている。具体的には、第2支持部28‐2は、図20に示すように、基板用反射シート23‐2の両基板非重畳部NBLのうち、平面に視てレンズ挿通孔22b‐2内に配される内側部分Iについては当接し支持するもの、レンズ挿通孔22b‐2外に配されるとともにレンズ挿通孔22b‐2の縁部と重畳する外側部分Oについては非接触となる位置に配されている。つまり、第2支持部28‐2のうち、基板用反射シート23‐2に沿って延在する支持面は、平面に視てレンズ挿通孔22b‐2内にのみ存在し、レンズ挿通孔22b‐2外には存在しないよう形成されている。なお、本変形例に係る拡散レンズ19‐2及びレンズ挿通孔22b‐2は、実施形態1に記載したものよりも大きいものとされ、それに伴って基板用反射シート23‐2における短辺寸法(Y軸方向の寸法)も実施形態1に記載したものよりも大きいものとされている。
[実施形態1の変形例3]
 実施形態1の変形例3について図21を用いて説明する。ここでは、第2支持部28‐3の形状を変更したものを示す。
 この変形例3に係る第2支持部28‐3は、上記した実施形態1に記載した第2支持部28から形状及び形成範囲が変更されている。具体的には、第2支持部28‐3は、図21に示すように、断面形状が略逆U字型をなしている。第2支持部28‐3における基板用反射シート23との対向面(支持面)は、略円弧状をなしており、基板用反射シート23に対してほぼ点接触されるようになっている。第2支持部28‐3は、上記した変形例2と同様に、基板用反射シート23の両基板非重畳部NBLのうち、平面に視てレンズ挿通孔22b内に配される内側部分Iには当接し支持するもの、レンズ挿通孔22b外に配されるとともにレンズ挿通孔22bの縁部と重畳する外側部分Oについては非接触となる位置に配されている。
[実施形態1の変形例4]
 実施形態1の変形例4について図22を用いて説明する。ここでは、第2支持部28‐4における基板用反射シート23に対する側方から視た支持位置を変更したものを示す。
 この変形例2に係る第2支持部28‐4は、上記した実施形態1に記載した第2支持部28から基板用反射シート23に対するZ軸方向についての支持位置が裏側に変更されている。具体的には、第2支持部28‐4は、図22に示すように、シャーシ14の底板14aからの突出寸法がLED基板18の厚さ寸法よりも小さいものとされる。従って、第2支持部28‐4における基板用反射シート23との対向面は、X軸方向及びY軸方向に沿って真っ直ぐな状態の基板用反射シート23に対して非接触とされ、間に所定の隙間が保有される設定とされる。このため、基板用反射シート23における基板重畳部BLと基板非重畳部NBLとの境界位置には、応力が集中するおそれがあり、それにより多少の変形が生じる可能性があるものの、ある段階で第1支持部27よりも相対的に表側に配される第2支持部28‐4によって基板非重畳部NBLを支持することができ、それ以上の変形を規制できる。従って、基板用反射シート23に局所的な変形が生じるのを抑制することができ、全体としてある程度の平坦性を維持することが可能となっている。
 <実施形態2>
 本発明の実施形態2を図23または図24によって説明する。この実施形態2では、第2支持部128の形状を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 第2支持部128は、図23及び図24に示すように、シャーシ14の底板14aにおいてX軸方向、つまりLED基板18における長辺側の外縁に沿って延在する形態とされている。詳しくは、第2支持部128は、シャーシ14の底板14aのうちLED基板18における長辺側の両外縁に対して隣接する位置(Y軸方向についてLED基板18を挟んだ位置)にそれぞれ一対配されるとともに、平面に視て略直線状をなしていてLED基板18及び基板用反射シート23における長辺寸法とほぼ同じ長さを有している。つまり、第2支持部128は、基板用反射シート23における基板非重畳部NBLに対してその長辺方向について全長にわたって平面視重畳するよう配されている。従って、第2支持部128は、基板用反射シート23における基板非重畳部NBLを、その長辺方向に沿って全長にわたって支持することが可能とされる。これにより、基板用反射シート23に変形が一層生じ難くすることができる。この第2支持部128における突出基端部のうちLED基板18と対向する部分は、実施形態1と同様に基板位置決め部129を構成している。基板位置決め部129は、LED基板18における長辺側の外縁に沿って延在する形態とされ、同外縁に対して全長にわたって当接されることで、LED基板18をより適切に位置決めすることが可能とされる。なお、基板位置決め部129の断面形状などは、実施形態1に示した図8と同様であるから、図示は省略するものとする。
 以上説明したように本実施形態によれば、第2支持部128は、LED基板18における外縁に沿って延在する形態とされている。このようにすれば、LED基板18の外縁に沿う所定長さにわたって基板用反射シート23への応力集中を緩和することができるので、基板用反射シート23の変形を効果的に抑制することができる。
 また、LED基板18は、平面に視て矩形状をなしており、第2支持部128は、LED基板18における長辺方向に沿って延在する形態とされている。このようにすれば、LED基板18における長辺方向の外縁に沿う所定長さにわたって基板用反射シート23への応力集中を緩和することができるので、基板用反射シート23の変形をより効果的に抑制することができる。
 また、基板位置決め部129は、LED基板18の縁部に沿って延在する形態とされている。このようにすれば、LED基板18の縁部を基板位置決め部129に宛うことで、LED基板18を容易に且つ適切に位置決めすることができる。また、LED基板18は、平面に視て矩形状をなしており、基板位置決め部129は、LED基板18における長辺方向に沿って延在する形態とされている。このようにすれば、矩形状をなすLED基板18をより容易に且つ適切に位置決めすることができる。
 <実施形態3>
 本発明の実施形態3を図25から図27によって説明する。この実施形態3では、第1支持部227、第2支持部228及び基板位置決め部229を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 第1支持部227は、図25及び図26に示すように、シャーシ14の底板14aを部分的に裏側に突出させることで形成されている。詳しくは、第1支持部227は、底板14aのうちLED基板18が配置される基板配置領域BAを、基板非配置領域NBAよりも相対的に裏側に突出させることで形成されており、その突出寸法は、LED基板18の厚さ寸法とほぼ同じ程度とされる。従って、第1支持部227により裏側から支持されたLED基板18における表側の面は、底板14aの基板非配置領域NBAにおける表側の面とほぼ面一状をなすことになる。この底板14aにおける基板非配置領域NBAは、LED基板18における表側の面に重ねられた基板用反射シート23のうちLED基板18の長辺側の外縁から張り出した基板非重畳部NBLを支持可能とされ、ここが第2支持部228を構成している。つまり、基板用反射シート23における基板重畳部BLを支持するLED基板18の支持面と、基板非重畳部NBLを支持する第2支持部228の支持面とが面一状とされることで、基板用反射シート23は、全体が段差無く支持され、もって全体の平坦性が維持されるようになっている。しかも、第2支持部228は、X軸方向についてLED基板18の長辺側の外縁に沿ってその全長にわたって延在するとともに、Y軸方向について隣り合うLED基板18の間のほぼ全域にわたって延在するよう配されているので、基板用反射シート23における基板非重畳部NBLを確実に支持することができる。
 第1支持部227と底板14aにおける基板非配置領域NBAとを繋ぐ部分、つまり基板非配置領域NBAからの裏側への立ち上がり部分は、LED基板18をその板面に沿う方向について位置決め可能な基板位置決め部229を構成している。基板位置決め部229は、図27に示すように、LED基板18における外周縁を全周にわたって取り囲む、無端環状をなしており、それによりLED基板18をX軸方向及びY軸方向について二次元的に位置決めすることが可能とされる。つまり、第1支持部227及び基板位置決め部229により囲まれた空間は、LED基板18を収容可能な基板収容空間BSとされ、Y軸方向について所定の幅を有するとともにX軸方向に沿ってほぼ直線的に延在する略レール状をなしている。
 以上説明したように本実施形態によれば、第1支持部227は、シャーシ14を部分的に開口部14b側とは反対側に向けて突出させて形成されている。このようにすれば、第1支持部227を開口部14b側とは反対側に突出させた分、LED基板18と開口部14bとの間の距離を大きくすることができる。従って、LED17から発せられた光が開口部14bに達するまでの光路長を長く確保することができ、もって開口部14bから出射する出射光にムラが生じ難くなる。
 また、LED基板18が所定の間隔を空けて複数並列して配されており、第2支持部228は、隣り合うLED基板18の間の領域の全域にわたる形態とされている。このようにすれば、隣り合うLED基板18の間の領域の全域にわたる形態の第2支持部228により、各LED基板18に対して重なる基板用反射シート23を確実に支持することができる。従って、基板用反射シート23に変形がより生じ難くなる。
 また、基板位置決め部229は、シャーシ14を部分的に開口部14b側とは反対側に突出させることで、LED基板18を収容する基板収容空間BS及び第1支持部27を有している。このようにすれば、基板位置決め部229を開口部14b側とは反対側に突出させた分、基板収容空間BSに収容されたLED基板18と開口部14bとの間の距離を大きくすることができる。従って、LED17から発せられた光が開口部14bに達するまでの光路長を長く確保することができ、もって開口部14bから出射する出射光にムラが生じ難くなる。
 以上、本発明の実施形態3を示したが、本発明は上記実施の形態に限られるものではなく、例えば以下のような変形例を含むこともできる。なお、以下の各変形例において、上記実施形態と同様の部材には、上記実施形態と同符号を付して図示及び説明を省略するものもある。
[実施形態3の変形例1]
 実施形態3の変形例1について図28を用いて説明する。ここでは、基板位置決め部229‐1の形状を変更したものを示す。
 基板位置決め部229‐1は、図28に示すように、底板14aにおける基板非配置領域NBA(第2支持部228‐1)からほぼ直角に立ち上がる形状をなしており、LED基板18における長辺側の外縁に沿って並行している。従って、基板位置決め部229‐1は、LED基板18における長辺側の外縁に対して殆ど隙間なく当接されるようになっており、それにより精度の高い位置決めが可能となる。LED基板18と基板位置決め部229‐1との間に殆ど隙間が生じないことから、第2支持部228‐1とLED基板18とは、その表側の面、つまり基板用反射シート23に対する支持面が段差及び切れ目が無く連続した一つの面を構成している。これにより、基板用反射シート23は、LED基板18及び第2支持部228‐1により全体として面当たり状態で支持され、それにより全体の平坦性が担保されるようになっている。
 <実施形態4>
 本発明の実施形態4を図29から図31によって説明する。この実施形態4では、LED基板318及び基板用反射シート323の形状を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 LED基板318は、図29及び図30に示すように、X軸方向を長辺方向とした長手状をなすとともに、そのY軸方向の寸法、つまり短辺方向の幅寸法が部分的に異なる形状とされる。詳しくは、LED基板318は、X軸方向に沿った対称軸を中心にした対称形状とされ、LED17が配置される複数のLED配置部31と、隣り合うLED配置部31間を連結する複数の配置部間連結部32とから構成されており、LED配置部31と配置部間連結部32とがX軸方向に沿って交互に並んでいる。LED配置部31は、拡散レンズ19の平面形状に倣って平面に視て略円形状をなしているのに対し、配置部間連結部32は、X軸方向に沿ってほぼ真っ直ぐな形状をなしている。LED配置部31は、LED基板318における短辺方向の幅寸法Y1が拡散レンズ19の径寸法よりも小さくなっており、拡散レンズ19を実装する上で必要最小限の大きさ(具体的には後述する各取付脚部19dの取り付けが可能となる程度)とされる。これに対し、配置部間連結部32は、LED基板318における短辺方向の幅寸法Y2が拡散レンズ19の径寸法及びLED配置部31の上記幅寸法Y1よりも小さいものとされている。配置部間連結部32における上記幅寸法Y2は、LED配置部31間を連結する上で最小限必要な剛性(強度)を維持できる程度で且つ保持部材20の固定部25を通す貫通孔318bの形成が可能な程度に留められている。つまり、実施形態1に記載したLED基板18と比べると、配置部間連結部32をLED配置部31よりも幅狭とした分だけ、全体の面積を削減することができる。これにより、LED基板318の基材を製造する上で必要な材料を削減でき、もってLED基板318の製造コストの低廉化を図ることができる。また、配置部間連結部32におけるX軸方向の寸法(長辺方向の長さ寸法)は、LED配置部31の同寸法よりも大きなものとされる。
 一方、基板用反射シート323は、LED基板318と同様にX軸方向を長辺方向とした長手状をなすとともに、そのY軸方向の寸法、つまり短辺方向の幅寸法が部分的に異なる形状とされる。詳しくは、基板用反射シート323は、X軸方向に沿った対称軸を中心にした対称形状とされ、平面に視てLED17を包囲するとともにLED配置部31に重ねられるLED包囲反射部33と、隣り合うLED包囲反射部33間を連結するとともに配置部間連結部32に重ねられる複数の反射部間連結部34とから構成されており、LED包囲反射部33と反射部間連結部34とがX軸方向に沿って交互に並んでいる。LED包囲反射部33は、LED配置部31及び拡散レンズ19の平面形状に倣って平面に視て略円形状をなしているのに対し、反射部間連結部34は、配置部間連結部32と同様にX軸方向に沿ってほぼ真っ直ぐな形状をなしている。LED包囲反射部33は、基板用反射シート323における短辺方向の幅寸法Y3がLED配置部31の幅寸法Y1及び拡散レンズ19の径寸法よりも大きくなっており、それにより拡散レンズ19にて反射された光を再び拡散レンズ19側に戻す、という光学的性能を十分に発揮することができる。これに対し、反射部間連結部34は、基板用反射シート323における短辺方向の幅寸法Y2が配置部間連結部32の上記幅寸法Y2とほぼ同じとされ、拡散レンズ19の径寸法及びLED包囲反射部33の上記幅寸法Y3よりも小さいものとされている。反射部間連結部34における上記幅寸法Y2は、LED包囲反射部33間を連結する上で最小限必要な剛性(強度)を維持できる程度で且つ保持部材20の固定部25を通す貫通孔323cの形成が可能な程度に留められている。つまり、実施形態1に記載した基板用反射シート23と比べると、反射部間連結部34をLED包囲反射部33よりも幅狭とした分だけ、全体の面積を削減することができる。これにより、基板用反射シート323を製造する上で必要な材料を削減でき、もって基板用反射シート323の製造コストの低廉化を図ることができる。また、反射部間連結部34におけるX軸方向の寸法(長辺方向の長さ寸法)は、LED包囲反射部33の同寸法よりも大きなものとされる。
 上記した構成を有するLED基板318及び基板用反射シート323に対して第2支持部328は、次のような配置とされる。すなわち、第2支持部328は、図30に示すように、LED基板318のうちLED配置部31に対してY軸方向について隣接し且つLED17とX軸方向についてほぼ同じ位置に配されている。そして、第2支持部328は、基板用反射シート323におけるLED包囲反射部33のうち、LED配置部31における外縁から張り出した部分、つまり基板非重畳部NBLに対して平面に視て重畳する位置に配されている。従って、LED包囲反射部33のうち、LED配置部31によって支持されない基板非重畳部NBLを第2支持部328によって支持することができ、それによりLED包囲反射部33に変形が生じるのを好適に防ぐことができる。LED包囲反射部33は、拡散レンズ19からの光を再び拡散レンズ19に戻す、というバックライト装置12において光学的に非常に重要な機能を有する部位であるから、そのLED包囲反射部33の変形を防止することで、バックライト装置12の光学性能を良好に発揮させることが可能となる。
 ここで、LED基板318及び基板用反射シート323を製造する際の具体的な設計手法について説明する。なお、この設計手法を説明する図面には、基板用反射シート323のみを図示するものとし、LED基板318については同様であるため図示を省略している。基板用反射シート323は、図31に示すように、製造時に大型の母材Mから複数枚が取り出されるようになっている。この母材Mにおける各基板用反射シート323の割り当て(配置)は次のようなものとされる。すなわち、各基板用反射シート323は、互いの長辺方向及び短辺方向を揃えた状態で母材Mに割り当てられるのだが、そのときY軸方向に隣り合う基板用反射シート323をX軸方向について所定寸法ずつオフセットさせている。詳しくは、母材MにおいてY軸方向に並んだ各基板用反射シート323のうち、図31の上から数えて奇数番目の基板用反射シート323と、偶数番目の基板用反射シート323とがX軸方向にずれた配置とされており、奇数番目の各基板用反射シート323同士がX軸方向について同じ配置とされ、同偶数番目の各基板用反射シート323同士がX軸方向について同じ配置とされる。つまり、各基板用反射シート323は、母材MにおいてX軸方向について異なる2種類の配置をとっている。
 そして、Y軸方向に隣り合う基板用反射シート323は、互いのLED包囲反射部33が、X軸方向について隣り合う一対のLED包囲反射部33とそれらを繋ぐ反射部間連結部34とにより囲まれる領域内に配されるよう(嵌合されるよう)、母材M内に配置される。なお、説明のため、図31の一番上の基板用反射シート323に添え字Aを付し、上から2番目の基板用反射シート323に添え字Bを付すものとする。基板用反射シート323Aに係るLED包囲反射部33Aは、Y軸方向に隣り合う基板用反射シート323Bにおいて、X軸方向について隣り合う一対のLED包囲反射部33B間に嵌合されるとともに、それらLED包囲反射部33Bを繋ぐ反射部間連結部34Bに当接または近接するよう配されている。つまり、X軸方向について隣り合うLED包囲反射部33と、それらを繋ぐ反射部間連結部34とにより囲まれる領域は、デッドスペースとなり得るものの、そのデッドスペースを利用してY軸方向に隣り合う基板用反射シート323におけるLED包囲反射部33(幅広部分)を取り出すことができる。従って、仮に母材におけるX軸方向についての基板用反射シート323の配置を1種類とした場合と比べると、本実施形態ではY軸方向に隣り合うLED包囲反射部33同士をラップさせた分だけ、Y軸方向に隣り合う基板用反射シート323の配列間隔(LED包囲反射部33A,33Bの中心間距離)を小さくすることができ、もって母材MにおけるY軸方向の寸法を小さくすることができる。このことは、相対的に面積が小さな母材Mからも同じ枚数の基板用反射シート323を取り出すことが可能となることを意味し、もって基板用反射シート323を製造する上で必要な材料費を削減することができる。なお、LED基板318を製造する際にも上記した基板用反射シート323と同様の設計手法を採用することができる。すなわち、LED基板318を大型の母材(図示せず)から複数枚取り出すにあたり、Y軸方向に隣り合うLED基板318は、互いのLED配置部31が、X軸方向について隣り合う一対のLED配置部31とそれらを繋ぐ配置部間連結部32とにより囲まれる領域内に配されるよう(嵌合されるよう)、母材内に配置すればよく、その他の詳しい説明は省略するものとする。
 以上説明したように本実施形態によれば、LED基板318は、LED17を複数有するのに対し、基板用反射シート323は、平面に視てLED17の各々を包囲する複数のLED包囲反射部33と、隣り合うLED包囲反射部33同士を連結する反射部間連結部34とを有する長手状をなしており、基板用反射シート323は、その短辺方向において反射部間連結部34の幅がLED包囲反射部33の幅よりも相対的に狭くなるよう形成されている。このようにすれば、長手状をなす基板用反射シート323は、複数のLED包囲反射部33を反射部間連結部34により連結した構成とされるので、仮に各LED包囲反射部を連結せず、個々に分割されたLED包囲反射部により基板用反射シートを構成した場合と比べると、取り扱い性に優れ、例えば低コスト化を図ることが可能となる。ところで、LED包囲反射部33は、LED17からの光を反射する上である程度の大きさ(幅)が必要となるのに対し、反射部間連結部34は、各LED包囲反射部33同士を連結する上で必要な機械的強度さえ維持できるのであれば、必ずしもLED包囲反射部33と同じ大きさ(幅)である必要はない。そこで、本実施形態では、基板用反射シート323の短辺方向において反射部間連結部34の幅を、LED包囲反射部33の幅よりも狭く設定しているので、仮に基板用反射シートを全長にわたってLED包囲反射部33と同じ幅とした場合と比べると、基板用反射シート323の総面積を削減でき、もって材料費の削減、すなわち低コスト化を実現することができる。
 また、第2支持部328は、平面に視てLED包囲反射部33と重畳する位置に配されている。このようにすれば、LED包囲反射部33が第2支持部328により支持されるので、LED包囲反射部33に変形が生じるのを防ぐことができる。これにより、LED17からの光がLED包囲反射部33にて反射される際にムラがより生じ難くなる。
 また、LED基板318は、LED17を複数有するとともに、LED17の各々が配置される複数のLED配置部31と、隣り合うLED配置部31同士を連結する配置部間連結部32とを有する長手状をなしており、LED基板318は、その短辺方向において配置部間連結部32の幅がLED配置部31の幅よりも相対的に狭くなるよう形成されている。このようにすれば、長手状をなすLED基板318は、複数のLED配置部31を配置部間連結部32により連結した構成とされるので、仮に各LED配置部を連結せず、個々に分割されたLED配置部によりLED基板を構成した場合と比べると、取り扱い性に優れ、例えば低コスト化を図ることが可能となる。ところで、LED配置部31は、LED17を配置する上である程度の大きさ(幅)が必要となるのに対し、配置部間連結部32は、各LED配置部31同士を連結する上で必要な機械的強度さえ維持できるのであれば、必ずしもLED配置部31と同じ大きさ(幅)である必要はない。そこで、本実施形態では、LED基板318の短辺方向において配置部間連結部32の幅を、LED配置部31の幅よりも狭く設定しているので、仮にLED基板を全長にわたってLED配置部31と同じ幅とした場合と比べると、LED基板318の総面積を削減でき、もって材料費の削減、すなわち低コスト化を実現することができる。
 以上、本発明の実施形態4を示したが、本発明は上記実施の形態に限られるものではなく、例えば以下のような変形例を含むこともできる。なお、以下の各変形例において、上記実施形態と同様の部材には、上記実施形態と同符号を付して図示及び説明を省略するものもある。
[実施形態4の変形例1]
 実施形態4の変形例1について図32を用いて説明する。ここでは、基板用反射シート323‐1を変更したものを示す。
 基板用反射シート323‐1は、図32に示すように、LEDを包囲するLED包囲反射部33‐1のみよって構成されている。つまり、本実施形態に係る基板用反射シート323‐1は、上記した実施形態4に記載した基板用反射シート323から各反射部間連結部34を除去したような構成とされる。基板用反射シート323‐1であるLED包囲反射部33‐1は、LED基板318のうちLED配置部31に対して個別にそれぞれ取り付けられるものとされる。このようにすれば、基板用反射シート323に係る材料費をさらに削減することが可能となる。また、各LED包囲反射部33‐1は、拡散レンズ19によって取付状態に保持可能とされる。なお、LED基板318についても上記した基板用反射シート323‐1と同様に、LED配置部のみによって構成するようにしてもよい。
 <実施形態5>
 本発明の実施形態5を図33によって説明する。この実施形態4では、上記した実施形態1から第2支持部428の配置を変更するとともに基板位置決め部を省略したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 第2支持部428は、図33に示すように、LED基板18からY軸方向について離間した位置に配されており、LED基板18をY軸方向について位置決めする機能を有していない。このようにすれば、基板用反射シート23の大きさや形状などに合わせて第2支持部428の配置を自由に変更することが可能となり、それにより基板用反射シート23における基板非重畳部NBLをより適切に支持することができる。
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記した各実施形態以外にも、第2支持部の具体的形状は適宜に変更可能である。例えば、第2支持部が平面に視て曲線状または有端環状(C字型など)などをなすもの、つまりLED基板の外縁に沿って延在しない形態とされるものも本発明に含まれる。さらには、第2支持部が円柱状、角柱状、円錐状、角錐状などとされるものや、第2支持部における断面形状が山形(三角形)や半円形状や楕円形状などとされるものも本発明に含まれる。
 (2)上記した各実施形態以外にも、シャーシの底板における第2支持部の配置及び設置数は適宜に変更可能である。例えば、上記した実施形態1では、平面に視て点状をなす第2支持部がX軸方向についてLEDとほぼ同じ位置となるものを示したが、第2支持部とLEDとをX軸方向についてオフセットさせてもよい。また、第2支持部の設置数をLEDの設置数よりも多くしたり少なくしたものも本発明に含まれる。
 (3)上記した実施形態2では、平面に視て線状をなす第2支持部がLED基板の長辺寸法と同じ長さを有するものを示したが、線状をなす第2支持部がLED基板の長辺寸法に満たない長さとされるものも本発明に含まれる。その場合、線状をなす第2支持部をX軸方向に複数並べて配置することも可能である。
 (4)上記した各実施形態では、基板用反射シートがLED基板の長辺側の外縁からのみY軸方向に沿って外向きに張り出すものを示したが、基板用反射シートがLED基板の短辺側の外縁からX軸方向に沿って外向きに張り出すようなものにも本発明は適用可能である。その場合、LED基板に対してX軸方向について隣り合う位置に第2支持部を設置し、LED基板の短辺側の外縁から張り出した基板用反射シートを支持するようにすればよい。このとき、第2支持部がLED基板を全周にわたって取り囲むような形態とするのが好ましく、さらにその第2支持部における内周縁部を全周にわたって基板位置決め部とするのがより好ましい。
 (5)上記した各実施形態では、基板用反射シートがLED基板の長辺側の両外縁からY軸方向に沿ってそれぞれ外向きに張り出すものを示したが、基板用反射シートがLED基板の長辺側の両外縁のうちいずれか一方の外縁のみから張り出すようにしたものも本発明に含まれる。その場合、第2支持部は、LED基板を挟んだ位置にそれぞれ配置する必要はなく、基板用反射シートにおける張り出し部分にのみ対応した位置にのみ設けるようにすればよい。
 (6)上記した各実施形態では、第2支持部が基板用反射シートにおける基板非重畳部のうち、レンズ挿通孔内に配される内側部分を支持するものを示したが、第2支持部が基板非重畳部のうちレンズ挿通孔外に配される外側部分のみを支持し、内側部分を支持しないようにしたものも本発明に含まれる。
 (7)上記した各実施形態では、基板用反射シートがシャーシ用反射シートにおけるレンズ挿通孔の縁部と重なり合うものを示したが、レンズ挿通孔の内周面と基板用反射シートの外周面とが面一状となり、基板用反射シートがレンズ挿通孔の縁部とは重ならないものも本発明に含まれる。さらには、レンズ挿通孔内の全域にわたって基板用反射シートが配されるもの以外にも、レンズ挿通孔内の一部にのみ基板用反射シートが配されるもの、つまりLED基板における表側の面が部分的にレンズ挿通孔内に露出するものも本発明に含まれる。
 (8)上記した各実施形態では、LED基板の短辺寸法が拡散レンズの径寸法よりも小さいものを示したが、LED基板の短辺寸法が拡散レンズの径寸法と同等またはそれ以上の大きさとされるものも本発明に含まれる。
 (9)上記した実施形態1の変形例1~4にて示した構成を、実施形態2~5に記載したものに適用することも勿論可能である。また、実施形態3の変形例1に示した構成などについても同様である。
 (10)上記した各実施形態に示した構成以外にも、第1支持部と第2支持部とのZ軸方向についての位置関係は変更可能である。例えば、第2支持部における表側の面が、基板用反射シートにおける表側の面よりも相対的に表側(開口部側)に配されるようにしたものも本発明に含まれる。
 (11)上記した各実施形態(実施形態3を除く)では、LED基板をX軸方向について位置決めするための第2の基板位置決め部を設けたものを示したが、第2の基板位置決め部を省略することも勿論可能である。
 (12)上記した実施形態3では、シャーシを部分的に裏側に突出させて形成された基板位置決め部がLED基板における外周縁を全周にわたって取り囲むものを示したが、例えば基板位置決め部がLED基板における長辺側の外縁に対してのみ当接するよう形成され、X軸方向について位置決めしないようにしたものも本発明に含まれる。
 (13)上記した実施形態4では、LED基板及び基板用反射シートがX軸方向に沿った対称軸を中心にした対称形状とされたものを示したが、LED基板または基板用反射シートの少なくともいずれか一方を非対称形状としたものも本発明に含まれる。また、LED基板及び基板用反射シートの各構成部位の具体的形状や大きさなどは適宜に変更可能である。
 (14)上記した各実施形態では、基板位置決め部、第1支持部及び第2支持部がシャーシに一体に設けられたものを示したが、基板位置決め部、第1支持部及び第2支持部の少なくともいずれか1つがシャーシとは別体に形成され、その別部品をシャーシに対して組み付けるようにしたものも本発明に含まれる。
 (15)上記した各実施形態では、シャーシ用反射シートに「孔部」としてレンズ挿通孔が設けられたものを示したが、レンズ挿通孔以外にシャーシ用反射シートに「孔部」が設けられている場合には、その孔部内に基板用反射シートを配するようにしたものも本発明に含まれる。
 (16)上記した各実施形態では、保持部材の固定部がLED基板及び各反射シートを貫通するものを示したが、保持部材をシャーシにおける基板非配置領域に配するとともに、固定部がLED基板及び基板用反射シートは貫通せず、シャーシ用反射シートを貫通するようにしたものも本発明に含まれる。
 (17)上記した各実施形態以外にも、各LED基板に対する保持部材の取付位置及び取付数は適宜に変更可能である。同様にシャーシに対する保持部材の取付位置及び取付数は適宜に変更可能である。
 (18)上記した各実施形態では、シャーシに対する保持部材の取付構造として差込式の固定部を採用したものを示したが、取付構造としてスライド式を採用してもよい。このスライド式の取付構造とは、固定部をフック形状とし、本体部をシャーシの底板に向けて押し込んでから、本体部を底板に沿ってスライドさせることで、取付孔の縁部に対して固定部のフック状部を係止させるようなものを言う。
 (19)上記した各実施形態では、保持部材における固定部がシャーシに対して取付孔を貫通した状態で係止されるものを示したが、シャーシに対する固定部の具体的な固定方法は、適宜に変更可能である。例えば、取付孔及び弾性係止片を省略するとともに、LED基板の貫通孔を貫通した基部をシャーシの内壁面に対して接着剤などにより固着するようにしたものも本発明に含まれる。その場合、接着剤以外にも、溶着、溶接などの手段を採用することができる。
 (20)上記した各実施形態では、単機能型保持部材と複合機能型保持部材とを併用した場合を示したが、単機能型保持部材のみを用いたものや、複合機能型保持部材のみを用いたものも本発明に含まれる。また、単機能型保持部材と複合機能型保持部材とを併用するにあたっての使用数の比率は適宜に変更可能である。
 (21)上記した各実施形態では、シャーシを金属製としたものを示したが、シャーシを合成樹脂製など他の材質からなるようにとしたものも本発明に含まれる。
 (22)上記した各実施形態では、保持部材の表面の色を白色としたものを例示したが、保持部材の表面の色については、例えば乳白色や銀色としてもよい。また、保持部材の表面に所望の色の塗料を塗布することで、表面の色を設定することが可能である。
 (23)上記した各実施形態では、LED基板として5個実装タイプ、6個実装タイプ及び8個実装タイプのものを適宜に組み合わせて用いる旨を説明したが、5個,6個,8個以外の数のLEDを実装したLED基板を用いるようにしたものも本発明に含まれる。
 (24)上記した各実施形態では、青色を単色発光するLEDチップを内蔵し、蛍光体によって白色光を発光するタイプのLEDを用いた場合を示したが、紫外光を単色発光するLEDチップを内蔵し、蛍光体によって白色光を発光するタイプのLEDを用いたものも本発明に含まれる。
 (25)上記した各実施形態では、青色を単色発光するLEDチップを内蔵し、蛍光体によって白色光を発光するタイプのLEDを用いた場合を示したが、R,G,Bをそれぞれ単色発光する3種類のLEDチップを内蔵したタイプのLEDを用いたものも本発明に含まれる。それ以外にも、C(シアン),M(マゼンタ),Y(イエロー)をそれぞれ単色発光する3種類のLEDチップを内蔵したタイプのLEDを用いたものも本発明に含まれる。
 (26)上記した各実施形態では、白色光を発光するLEDを用いたものを示したが、赤色発光するLEDと、青色発光するLEDと、緑色発光するLEDとを適宜に組み合わせて用いるようにしてもよい。
 (27)上記した各実施形態では、光源としてLEDを用いたものを例示したが、LED以外の点状光源を用いたものも本発明に含まれる。
 (28)上記した各実施形態では、LEDからの光を拡散させる拡散レンズを用いたものを示したが、拡散レンズ以外の光学レンズ(例えば集光レンズなど)を用いたものも本発明に含まれる。
 (29)上記した各実施形態以外にも、液晶表示装置における画面サイズ及び横縦の比率などについては適宜変更可能である。
 (30)上記した各実施形態では、液晶パネル及びシャーシがその短辺方向を鉛直方向と一致させた縦置き状態とされるものを例示したが、液晶パネル及びシャーシがその長辺方向を鉛直方向と一致させた縦置き状態とされるものも本発明に含まれる。
 (31)上記した各実施形態では、液晶表示装置のスイッチング素子としてTFTを用いたが、TFT以外のスイッチング素子(例えば薄膜ダイオード(TFD))を用いた液晶表示装置にも適用可能であり、カラー表示する液晶表示装置以外にも、白黒表示する液晶表示装置にも適用可能である。
 (32)上記した各実施形態では、表示パネルとして液晶パネルを用いた液晶表示装置を例示したが、他の種類の表示パネルを用いた表示装置にも本発明は適用可能である。
 (33)上記した各実施形態では、チューナーを備えたテレビ受信装置を例示したが、チューナーを備えない表示装置にも本発明は適用可能である。
 10…液晶表示装置(表示装置)、11…液晶パネル(表示パネル)、12…バックライト装置(照明装置)、14…シャーシ、14b…開口部、15…光学部材、17…LED(光源)、18,318…LED基板(光源基板)、19…拡散レンズ、20…保持部材、22,522…シャーシ用反射シート(シャーシ用反射部材)、22b…レンズ挿通孔(孔部)、23,323…基板用反射シート(基板用反射部材)、23a…LED挿通孔(光源挿通孔)、24…本体部、25…固定部、27,227…第1支持部、28,128,228,328,428…第2支持部、29,129,229…基板位置決め部、30…第2の基板位置決め部(基板位置決め部)、31…LED配置部(光源配置部)、32…配置部間連結部、33…LED包囲反射部(光源包囲反射部)、34…反射部間連結部、BS…基板収容空間、TV…テレビ受信装置

Claims (36)

  1.  光源を有する光源基板と、
     前記光源基板を収容し前記光源からの光を出射するための開口部を有するシャーシと、
     前記シャーシの内面に沿って配されていて光を反射させるシャーシ用反射部材と、
     前記光源基板に対して前記開口部側に重なるとともに平面に視て前記光源基板よりも広い範囲にわたって配されていて光を反射させる基板用反射部材と、を備え、
     前記シャーシは、前記光源基板を支持する第1支持部と、前記第1支持部よりも相対的に前記開口部側に配されるとともに前記基板用反射部材を支持する第2支持部とを有する照明装置。
  2.  前記シャーシ用反射部材には、孔部が形成されており、
     前記基板用反射部材は、平面に視て少なくとも一部が前記孔部内に配されている請求項1記載の照明装置。
  3.  前記シャーシ用反射部材における前記孔部の縁部と、前記基板用反射部材とは、平面に視て互いに重畳している請求項2記載の照明装置。
  4.  前記第2支持部は、平面に視て少なくとも一部が前記シャーシ用反射部材における前記孔部の縁部と重畳する位置に配されている請求項3記載の照明装置。
  5.  前記シャーシ用反射部材は、平面に視て前記孔部が前記光源基板よりも広い範囲にわたる大きさとなるよう形成されているのに対し、前記第2支持部は、平面に視て少なくとも一部が前記孔部内に配されている請求項2から請求項4のいずれか1項に記載の照明装置。
  6.  前記基板用反射部材には、平面に視て前記光源と重畳する位置に前記光源を通す光源挿通孔が設けられているのに対し、前記シャーシ用反射部材は、前記孔部が平面に視て前記光源挿通孔よりも広い範囲にわたる大きさとなるよう形成されている請求項2から請求項5のいずれか1項に記載の照明装置。
  7.  前記光源基板における前記開口部側には、平面に視て前記光源と重畳する位置に、前記光源からの光を拡散させる拡散レンズが配されており、
     前記シャーシ用反射部材には、平面に視て前記拡散レンズと重畳する位置に前記孔部が配され且つ前記拡散レンズを通す大きさとなるよう形成されている請求項6記載の照明装置。
  8.  前記基板用反射部材は、平面に視て前記拡散レンズよりも広い範囲にわたって配されている請求項7記載の照明装置。
  9.  前記光源基板は、少なくとも外縁の一部が平面に視て前記拡散レンズと重畳するような大きさに形成されている請求項7または請求項8記載の照明装置。
  10.  前記第2支持部は、前記光源基板における前記基板用反射部材との対向面と面一状をなしている請求項1から請求項9のいずれか1項に記載の照明装置。
  11.  前記基板用反射部材は、前記光源基板における互いに反対側を向いた両外縁からそれぞれ外向きに張り出す大きさを有するのに対し、前記第2支持部は、平面に視て前記光源基板を挟んだ位置に少なくとも一対配されている請求項1から請求項10のいずれか1項に記載の照明装置。
  12.  前記第2支持部は、前記シャーシを部分的に前記開口部側に向けて突出させて形成されている請求項1から請求項11のいずれか1項に記載の照明装置。
  13.  前記第2支持部は、平面に視て点状をなしている請求項12記載の照明装置。
  14.  前記基板用反射部材は、前記光源基板における外縁から外向きに張り出しているのに対し、前記第2支持部は、前記光源に対して前記基板用反射部材の張り出し方向に沿って並ぶよう配されている請求項13記載の照明装置。
  15.  前記光源基板には、前記光源が一方向に沿って複数並列して配されているのに対し、前記第2支持部は、前記光源の並列方向に沿って複数並列して配されている請求項14記載の照明装置。
  16.  前記第2支持部は、前記光源基板における外縁に沿って延在する形態とされている請求項12記載の照明装置。
  17.  前記光源基板は、平面に視て矩形状をなしており、
     前記第2支持部は、前記光源基板における長辺方向に沿って延在する形態とされている請求項16記載の照明装置。
  18.  前記第1支持部は、前記シャーシを部分的に前記開口部側とは反対側に向けて突出させて形成されている請求項1から請求項17のいずれか1項に記載の照明装置。
  19.  前記光源基板が所定の間隔を空けて複数並列して配されており、
     前記第2支持部は、隣り合う前記光源基板の間の領域の全域にわたる形態とされている請求項18記載の照明装置。
  20.  前記シャーシには、前記光源基板をその板面に沿う方向について位置決め可能な基板位置決め部が設けられている請求項1から請求項19のいずれか1項に記載の照明装置。
  21.  前記基板位置決め部は、前記光源基板の縁部に沿って延在する形態とされている請求項20記載の照明装置
  22.  前記光源基板は、平面に視て矩形状をなしており、
     前記基板位置決め部は、前記光源基板における長辺方向に沿って延在する形態とされている請求項21記載の照明装置。
  23.  前記基板位置決め部は、前記光源基板をその板面に沿い且つ互いに直交する2方向について位置決め可能とされる請求項20から請求項22のいずれか1項に記載の照明装置。
  24.  前記基板位置決め部は、前記第1支持部または前記第2支持部のいずれか一方を有している請求項20から請求項23のいずれか1項に記載の照明装置。
  25.  前記基板位置決め部は、前記シャーシを部分的に前記開口部側に突出させる形態とされ、前記第2支持部を有している請求項24記載の照明装置。
  26.  前記基板位置決め部は、前記シャーシを部分的に前記開口部側とは反対側に突出させることで、前記光源基板を収容する基板収容空間及び前記第1支持部を有している請求項24記載の照明装置。
  27.  前記光源基板は、前記光源を複数有するのに対し、前記基板用反射部材は、平面に視て前記光源の各々を包囲する複数の光源包囲反射部と、隣り合う前記光源包囲反射部同士を連結する反射部間連結部とを有する長手状をなしており、
     前記基板用反射部材は、その短辺方向において前記反射部間連結部の幅が前記光源包囲反射部の幅よりも相対的に狭くなるよう形成されている請求項1から請求項26のいずれか1項に記載の照明装置。
  28.  前記第2支持部は、平面に視て前記光源包囲反射部と重畳する位置に配されている請求項27記載の照明装置。
  29.  前記光源基板は、前記光源を複数有するとともに、前記光源の各々が配置される複数の光源配置部と、隣り合う前記光源配置部同士を連結する配置部間連結部とを有する長手状をなしており、
     前記光源基板は、その短辺方向において前記配置部間連結部の幅が前記光源配置部の幅よりも相対的に狭くなるよう形成されている請求項1から請求項28のいずれか1項に記載の照明装置。
  30.  前記シャーシとの間で前記光源基板、前記基板用反射部材及び前記シャーシ用反射部材を挟んで保持する保持部材を備える請求項1から請求項29のいずれか1項に記載の照明装置。
  31.  前記保持部材は、前記シャーシとの間で前記光源基板、前記基板用反射部材及び前記シャーシ用反射部材を挟む本体部と、前記本体部から前記シャーシ側に突出して前記シャーシに固定される固定部とを備えており、前記固定部は、前記光源基板、前記基板用反射部材及び前記シャーシ用反射部材を貫通しつつ前記シャーシに対して固定される請求項30記載の照明装置。
  32.  前記固定部は、前記光源基板、前記基板用反射部材、前記シャーシ用反射部材及び前記シャーシを貫通するとともに、前記シャーシに対して前記光源基板側とは反対側から係止される請求項31記載の照明装置。
  33.  前記光源は、LEDとされる請求項1から請求項32のいずれか1項に記載の照明装置。
  34.  請求項1から請求項33のいずれか1項に記載の照明装置と、前記照明装置からの光を利用して表示を行う表示パネルとを備える表示装置。
  35.  前記表示パネルは、一対の基板間に液晶を封入してなる液晶パネルとされる請求項34記載の表示装置。
  36.  請求項34または請求項35に記載された表示装置を備えるテレビ受信装置。
PCT/JP2010/058338 2009-07-03 2010-05-18 照明装置、表示装置、及びテレビ受信装置 WO2011001753A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI1012267A BRPI1012267A2 (pt) 2009-07-03 2010-05-18 dispositivo de iluminação, dispositivo de exibição e receptor de televisão.
US13/379,912 US20120092568A1 (en) 2009-07-03 2010-05-18 Lighting device, display device and television receiver
JP2011520830A JP5184701B2 (ja) 2009-07-03 2010-05-18 照明装置、表示装置、及びテレビ受信装置
EP10793924A EP2434200A1 (en) 2009-07-03 2010-05-18 Illumination device, display device and television reception device
CN2010800268284A CN102472436A (zh) 2009-07-03 2010-05-18 照明装置、显示装置以及电视接收装置
RU2011153386/07A RU2489640C1 (ru) 2009-07-03 2010-05-18 Осветительное устройство, устройство отображения и телевизионный приемник

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-159057 2009-07-03
JP2009159057 2009-07-03

Publications (1)

Publication Number Publication Date
WO2011001753A1 true WO2011001753A1 (ja) 2011-01-06

Family

ID=43410836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058338 WO2011001753A1 (ja) 2009-07-03 2010-05-18 照明装置、表示装置、及びテレビ受信装置

Country Status (7)

Country Link
US (1) US20120092568A1 (ja)
EP (1) EP2434200A1 (ja)
JP (1) JP5184701B2 (ja)
CN (1) CN102472436A (ja)
BR (1) BRPI1012267A2 (ja)
RU (1) RU2489640C1 (ja)
WO (1) WO2011001753A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021933A1 (ja) * 2011-08-09 2013-02-14 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
JP2013041716A (ja) * 2011-08-12 2013-02-28 Enplas Corp 発光装置、面光源装置、表示装置、及び光束制御部材
WO2013080909A1 (ja) * 2011-11-30 2013-06-06 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
US20130250550A1 (en) * 2012-03-22 2013-09-26 Sony Corporation Display device
KR20150044224A (ko) * 2013-10-16 2015-04-24 삼성전자주식회사 액정 디스플레이 장치
WO2015194648A1 (ja) * 2014-06-18 2015-12-23 シャープ株式会社 シャーシ、バックライトシャーシ、表示装置、テレビジョン受像機、及び、電子機器の製造方法
WO2023105946A1 (ja) * 2021-12-09 2023-06-15 ソニーグループ株式会社 光源装置および表示装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146917A1 (ja) * 2009-06-15 2010-12-23 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
WO2010146934A1 (ja) * 2009-06-17 2010-12-23 シャープ株式会社 表示装置、テレビ受信装置
US8432499B2 (en) * 2009-06-17 2013-04-30 Sharp Kabushiki Kaisha Display device and television receiver
JP5848631B2 (ja) * 2012-02-23 2016-01-27 シャープ株式会社 照明装置およびそれを備えた表示装置
KR101992718B1 (ko) * 2012-04-24 2019-06-26 삼성전자주식회사 디스플레이 장치
CN103511857B (zh) * 2012-06-15 2018-02-09 欧司朗股份有限公司 照明装置及其制造方法
US9057902B2 (en) * 2013-01-08 2015-06-16 Shenzhen China Star Optoelectronics Technology Co., Ltd. Liquid crystal module and fixing device
KR102137135B1 (ko) 2014-01-29 2020-07-27 삼성디스플레이 주식회사 백라이트 어셈블리 및 이를 포함하는 표시 장치
KR102294163B1 (ko) * 2014-12-05 2021-08-27 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 모듈
JP6601146B2 (ja) * 2015-10-26 2019-11-06 船井電機株式会社 表示装置
KR101690740B1 (ko) * 2016-01-05 2016-12-29 주식회사 에이치엘옵틱스 비대칭 확산 렌즈
JP2018037257A (ja) * 2016-08-31 2018-03-08 三菱電機株式会社 面光源装置および液晶表示装置
CN207074539U (zh) * 2017-08-28 2018-03-06 京东方科技集团股份有限公司 一种显示装置
KR102629991B1 (ko) 2019-07-08 2024-01-29 삼성전자주식회사 디스플레이 장치
JP7467854B2 (ja) * 2019-09-26 2024-04-16 船井電機株式会社 照明装置および表示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058486A (ja) * 2004-08-18 2006-03-02 Sony Corp 放熱装置及び表示装置
WO2008096470A1 (ja) * 2007-02-05 2008-08-14 Sharp Kabushiki Kaisha バックライト装置及びそれを用いた液晶表示装置
JP2008198398A (ja) * 2007-02-08 2008-08-28 Sony Corp バックライト装置及び表示装置
JP2008304839A (ja) 2007-06-11 2008-12-18 Hitachi Displays Ltd 液晶表示装置
JP2009087879A (ja) * 2007-10-02 2009-04-23 Sharp Corp バックライト装置および液晶表示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2172974C2 (ru) * 1999-04-20 2001-08-27 ОПТИВА, Инк. Жидкокристаллический дисплей
KR100965183B1 (ko) * 2003-12-30 2010-06-24 삼성전자주식회사 백라이트 어셈블리 및 이를 갖는 평판표시장치
JP4543813B2 (ja) * 2004-08-04 2010-09-15 ソニー株式会社 バックライト装置及びこのバックライト装置を備えた液晶表示装置
KR100609057B1 (ko) * 2004-11-17 2006-08-09 삼성전자주식회사 백라이트유닛
TWI246606B (en) * 2005-01-12 2006-01-01 Au Optronics Corp Backlight module, dish lens for backlight module and light emitting diode
KR101187204B1 (ko) * 2005-06-08 2012-10-02 삼성디스플레이 주식회사 조립이 간편한 백라이트 어셈블리, 이를 구비한 표시 장치,및 백라이트 어셈블리의 조립 방법
KR101134302B1 (ko) * 2005-06-30 2012-04-13 엘지디스플레이 주식회사 액정표시장치용 커버버툼 및 이를 이용한 발광다이오드백라이트어셈블리와 액정표시장치모듈
JP4533352B2 (ja) * 2006-08-09 2010-09-01 昭和電工株式会社 発光装置、表示装置、およびカバー取付部材
CN101162316A (zh) * 2006-10-13 2008-04-16 鸿富锦精密工业(深圳)有限公司 直下式背光模组
US7938558B2 (en) * 2007-05-04 2011-05-10 Ruud Lighting, Inc. Safety accommodation arrangement in LED package/lens structure
US8104911B2 (en) * 2007-09-28 2012-01-31 Apple Inc. Display system with distributed LED backlight
JP4968014B2 (ja) * 2007-11-22 2012-07-04 ソニー株式会社 バックライト装置及び液晶表示装置
KR101405595B1 (ko) * 2007-12-18 2014-06-12 엘지이노텍 주식회사 발광 모듈 접속 장치 및 이를 구비한 라이트 유닛

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058486A (ja) * 2004-08-18 2006-03-02 Sony Corp 放熱装置及び表示装置
WO2008096470A1 (ja) * 2007-02-05 2008-08-14 Sharp Kabushiki Kaisha バックライト装置及びそれを用いた液晶表示装置
JP2008198398A (ja) * 2007-02-08 2008-08-28 Sony Corp バックライト装置及び表示装置
JP2008304839A (ja) 2007-06-11 2008-12-18 Hitachi Displays Ltd 液晶表示装置
JP2009087879A (ja) * 2007-10-02 2009-04-23 Sharp Corp バックライト装置および液晶表示装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021933A1 (ja) * 2011-08-09 2013-02-14 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
JP2013041716A (ja) * 2011-08-12 2013-02-28 Enplas Corp 発光装置、面光源装置、表示装置、及び光束制御部材
WO2013080909A1 (ja) * 2011-11-30 2013-06-06 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
US20130250550A1 (en) * 2012-03-22 2013-09-26 Sony Corporation Display device
US9307667B2 (en) * 2012-03-22 2016-04-05 Sony Corporation Display device
KR20150044224A (ko) * 2013-10-16 2015-04-24 삼성전자주식회사 액정 디스플레이 장치
KR102089970B1 (ko) * 2013-10-16 2020-03-17 삼성전자주식회사 액정 디스플레이 장치
WO2015194648A1 (ja) * 2014-06-18 2015-12-23 シャープ株式会社 シャーシ、バックライトシャーシ、表示装置、テレビジョン受像機、及び、電子機器の製造方法
WO2023105946A1 (ja) * 2021-12-09 2023-06-15 ソニーグループ株式会社 光源装置および表示装置

Also Published As

Publication number Publication date
JPWO2011001753A1 (ja) 2012-12-13
RU2489640C1 (ru) 2013-08-10
CN102472436A (zh) 2012-05-23
BRPI1012267A2 (pt) 2016-04-05
EP2434200A1 (en) 2012-03-28
US20120092568A1 (en) 2012-04-19
JP5184701B2 (ja) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5184701B2 (ja) 照明装置、表示装置、及びテレビ受信装置
JP5244241B2 (ja) 光源ユニット、照明装置、表示装置、及びテレビ受信装置
JP4951152B2 (ja) 照明装置、表示装置、及びテレビ受信装置
JP5303657B2 (ja) 照明装置、表示装置、及びテレビ受信装置
JP5355714B2 (ja) 照明装置、表示装置、及びテレビ受信装置
WO2010146913A1 (ja) 照明装置、表示装置、及びテレビ受信装置
JP5244240B2 (ja) 照明装置、表示装置、及びテレビ受信装置
JP5133457B2 (ja) 照明装置、表示装置、及びテレビ受信装置
JP5259825B2 (ja) 照明装置、表示装置、及びテレビ受信装置
WO2010146917A1 (ja) 照明装置、表示装置、及びテレビ受信装置
WO2010146916A1 (ja) 照明装置、表示装置、及びテレビ受信装置
WO2011067995A1 (ja) 照明装置、表示装置、及びテレビ受信装置
JP5337883B2 (ja) 照明装置、表示装置、及びテレビ受信装置
JP5476478B2 (ja) 照明装置、表示装置及びテレビ受信装置
WO2011111444A1 (ja) 照明装置、表示装置、及びテレビ受信装置
WO2011055635A1 (ja) 光源ユニット用母材、照明装置、表示装置、及びテレビ受信装置
WO2011089960A1 (ja) 照明装置、表示装置、及びテレビ受信装置
WO2011062023A1 (ja) 照明装置、表示装置、及びテレビ受信装置
WO2013080882A1 (ja) 照明装置、表示装置及びテレビ受信装置
JP2013118055A (ja) 照明装置、表示装置、及びテレビ受信装置
WO2011013455A1 (ja) 照明装置、表示装置、及びテレビ受信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026828.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793924

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010793924

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13379912

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011520830

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 9852/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011153386

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1012267

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1012267

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111227