WO2011001617A1 - 捲回型電極群および電池 - Google Patents

捲回型電極群および電池 Download PDF

Info

Publication number
WO2011001617A1
WO2011001617A1 PCT/JP2010/003946 JP2010003946W WO2011001617A1 WO 2011001617 A1 WO2011001617 A1 WO 2011001617A1 JP 2010003946 W JP2010003946 W JP 2010003946W WO 2011001617 A1 WO2011001617 A1 WO 2011001617A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
conductive core
sheet
positive electrode
flat portion
Prior art date
Application number
PCT/JP2010/003946
Other languages
English (en)
French (fr)
Inventor
植田智博
佐野陽子
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP10776071A priority Critical patent/EP2320496A4/en
Priority to CN2010800017869A priority patent/CN102057521A/zh
Priority to US12/996,710 priority patent/US20110217576A1/en
Publication of WO2011001617A1 publication Critical patent/WO2011001617A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • H01M10/0409Machines for assembling batteries for cells with wound electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an improvement in the structure of a conductive core in a wound electrode group in which a positive or negative current collector plate is connected to a conductive core.
  • the wound electrode group in which the positive electrode and the negative electrode are wound with a separator interposed therebetween is suitable for downsizing the battery because the facing area between the positive electrode and the negative electrode per unit volume is large.
  • the cylindrical lithium ion battery disclosed in Patent Documents 1 and 2 below includes a negative electrode core serving as a current collector plate, a negative electrode including a negative electrode active material held on the surface of the negative electrode core, a positive electrode, a negative electrode, and a positive electrode.
  • a separator disposed therebetween and a conductive core are provided, and a negative electrode, a positive electrode, and a separator are wound around the conductive core to form a wound electrode group.
  • the negative electrode core includes a core exposed portion in which the negative electrode active material is not held at the end in the winding direction.
  • the core exposed portion is spot-welded to the conductive core at two or more locations along the longitudinal direction of the conductive core, and is directly connected to the conductive core.
  • the conductive core also serves as a lead for connecting the negative electrode and the external terminal, and the conductive core itself has the external terminal. Also serves as. For this reason, it is possible to further reduce the size by reducing the number of parts.
  • the conductive core serving also as the external terminal is directly connected to the negative electrode, high output is easily obtained, the current collecting structure of the negative electrode is simple, and the manufacturing process is simplified.
  • the wound-type electrode group since a projection is generated at the contact between the conductive core and the negative electrode core, welding is performed on the negative electrode, the positive electrode, and the separator wound around the conductive core. Excessive pressure may be applied locally. Such a local excessive pressure causes the active material to peel off from the negative electrode core and the positive electrode core or damage the separator. In addition, since burrs are likely to occur at the welded portion between the conductive core and the negative electrode core, by reducing the diameter of the conductive core in order to reduce the size of the battery, the active material is peeled off or the separator is damaged. Becomes even more prominent. The separation of the active material layer from the negative electrode and the positive electrode is a factor that decreases the capacity of the battery, and the breakage of the separator is a factor that causes an internal short circuit.
  • An object of the present invention is to suppress peeling of an active material layer and damage to a separator while achieving downsizing in a wound electrode group in which a positive or negative current collector is directly connected to a conductive core.
  • the wound electrode group of one aspect of the present invention includes a positive electrode sheet including a positive electrode current collector sheet and a positive electrode active material layer supported on the surface of the positive electrode current collector sheet, and a negative electrode current collector sheet and a negative electrode current collector sheet on the surface.
  • a negative electrode sheet having a supported negative electrode active material layer, a separator interposed between the positive electrode sheet and the negative electrode sheet, and a columnar conductive core on which a stack of the positive electrode sheet, the negative electrode sheet and the separator is wound;
  • the positive electrode sheet or the negative electrode sheet is provided with an exposed portion where the active material layer is not supported on the surface of the end portion on the winding center side, and the outer shape of the cross section of the conductive core is a circle with a predetermined radius.
  • a first flat portion formed by cutting out a part of the circumference, and a curved surface portion that continues to the first flat portion and exists along the circumference.
  • the first flat at a plurality of points along the axial direction of the core Parts and are joined, the edge of the exposed portion, in the first flat side, and being located inside said circumference.
  • a battery according to another aspect of the present invention includes a substantially cylindrical battery case with one end closed, the wound electrode group housed in the battery case, and a nonaqueous electrolyte housed in the battery case. Prepare.
  • a wound electrode group in which a positive electrode or a negative electrode current collector is directly connected to a conductive core, it is possible to suppress peeling of the active material layer from the current collector and damage to the separator.
  • FIG. 1 is a half sectional view schematically showing a pin-type lithium ion battery in an embodiment. It is a cross-sectional view which shows typically the winding type electrode group in embodiment. It is explanatory drawing which shows typically an example of the joining method of a conductive core and a current collection sheet.
  • a lithium ion battery 10 includes a substantially cylindrical battery case 11, a wound electrode group 12 and a nonaqueous electrolyte housed in the battery case 11, and an insulation that seals the battery case 11. And a gasket 13.
  • the wound electrode group 12 includes a columnar conductive core 14, a negative electrode sheet 15, a positive electrode sheet 16, and a separator 17 that separates the negative electrode sheet 15 and the positive electrode sheet 16 from each other.
  • the stacked body of the negative electrode sheet 15, the positive electrode sheet 16, and the separator 17 is wound around the columnar conductive core 14 in a spiral shape.
  • the outer shape of the cross section of the conductive core 14 is formed by cutting out a curved surface portion 18 that exists along a circumference 23 having a predetermined radius and a part of the circumference 23 having a predetermined radius.
  • a first flat portion 20 and a second flat portion 21 formed by cutting out a part of a circumference 23 having a predetermined radius on the opposite side of the first flat portion 20. Yes.
  • the first flat portion 20 and the second flat portion 21 are each continuous with the curved surface portion 18.
  • FIG. 2 shows a part of the negative electrode sheet 15, the positive electrode sheet 16, and the separator 17 in a relaxed state in order to show the structure of the wound electrode group 12.
  • the negative electrode sheet 15 includes a negative electrode current collector sheet 24 and negative electrode active material layers 25 a and 25 b formed on both surfaces of the negative electrode current collector sheet 24.
  • the negative electrode current collector sheet 24 has an exposed portion 26 where the negative electrode current collector sheet 24 is exposed without forming the negative electrode active material layer at one end in the winding direction of the conductive core 14. Yes.
  • the negative electrode sheet 15 and the conductive core 14 are electrically connected by joining the exposed portion 26 of the negative electrode current collector sheet 24 to the surface of the first flat portion 20 of the conductive core 14.
  • the exposed portion 26 and the surface of the first flat portion 20 are joined at a plurality of locations by resistance welding.
  • a joint portion 27 that protrudes from the surface of the exposed portion 26 to the radially outer side of the conductive core 14 is formed at the joint portion.
  • the positive electrode sheet 16 includes a positive electrode current collector sheet 29 and positive electrode active material layers 30 a and 30 b formed on both surfaces of the positive electrode current collector sheet 29.
  • the positive electrode sheet 16 is wound around the negative electrode sheet 15 wound around the outer periphery of the conductive core 14 with the separator 17 interposed therebetween.
  • the conductive core 14 a core material made of copper, copper alloy, stainless steel, nickel, titanium, or the like can be used.
  • the electrode sheet bonded to the conductive core 14 may be a positive electrode sheet.
  • examples of the conductive core 14 include aluminum, an aluminum alloy, stainless steel, and titanium.
  • the diameter of the conductive core 14 can be appropriately set in view of the size of the battery, the strength of the conductive core 14, workability, and the like.
  • the maximum diameter of the curved surface portion 18 is not particularly limited, but is preferably 0.5 to 50 mm, and particularly preferably 0.5 to 10 mm, from the viewpoint of downsizing the battery.
  • the maximum diameter of the curved surface portion 18 when producing a pin-type battery is preferably 0.5 to 6 mm, and more preferably 1 to 4 mm.
  • the joint portion 27 and the edge 28 of the exposed portion 26 of the negative electrode current collector sheet 24 are both circles having a predetermined radius when viewed in the cross section of the conductive core 14. It is located inside the circumference 23. A part of the circumference 23 having the predetermined radius coincides with the curved surface portion 18. According to such a configuration, it is possible to suppress contact between the joint portion 27 and the end edge 28 and the negative electrode sheet 15, the positive electrode sheet 16, and the separator 17 wound around the conductive core 14. For this reason, even when the diameter of the conductive core 14 is reduced in order to reduce the size of the battery, the joint 27 and the edge 28 are locally formed with respect to the negative electrode sheet 15, the positive electrode sheet 16 and the separator 17. Application of excessive pressure can be suppressed.
  • the first flat portion 20 is not particularly limited as long as the joint portion 27 and the end edge 28 are formed so as to be arranged inside the circumference 23 having a predetermined radius.
  • the shape of the first flat portion 20 viewed from the cross-section of the conductive core 14 is such that the joint 27 and the end edge 28 can be disposed inside the circumference 23 having a predetermined radius.
  • 14 may be curved outward in the radial direction.
  • the conductive core 14 may be curved inward in the radial direction.
  • the size of the first flat portion 20 is not particularly limited.
  • the diameter of the joint portion 27 formed by resistance welding such as spot welding may be about 1 mm or more, or the maximum diameter of the curved surface portion 18 of the conductive core 14 in order to reduce the size of the battery. Is set to the above range, the width of the first flat portion 20 in the direction orthogonal to the axial direction 19 is preferably set to about 1 to 4 mm.
  • the first flat portion 20 can be formed, for example, by casting the conductive core 14 using a mold having a portion corresponding to the first flat portion 20 in advance. Moreover, you may form the 1st flat part 20 by cutting a part of outer peripheral surface in a cylindrical conductive winding core.
  • the exposed portion 26 of the negative electrode current collector sheet 24 and the first flat portion 20 of the conductive core 14 can be joined by, for example, resistance welding such as spot welding.
  • the exposed portion 26 of the negative electrode current collector sheet 24 is superposed on the surface of the first flat portion 20 of the conductive core 14, so that the conductive core 14 has a flat plate shape. It arrange
  • the conductive core 14 brings the second flat portion 21 into contact with the second resistance welding electrode 36.
  • the tip of the needle-like first resistance welding electrode 35 is brought into contact with the exposed portion 26, and a current is applied between the first resistance welding electrode 35 and the second resistance welding electrode 36.
  • the joining part 27 is formed in the location where the electric current was applied, and the exposed part 26 and the conductive core 14 are joined.
  • the operation of applying a current between the resistance welding electrodes 35 and 36 is repeated at a plurality of locations in the axial direction 19 of the conductive core 14.
  • the joint portions 27 are formed at a plurality of locations along the axial direction 19 of the conductive core 14, so that the joint strength between the exposed portion 26 and the conductive core 14 is increased.
  • the first flat portion 20 includes a groove portion 22 extending in the axial direction 19 on the surface thereof.
  • the groove portion 22 accommodates an end edge 28 of the negative electrode current collector sheet 24 therein.
  • the negative electrode current collector sheet 24 is generally a metal foil and has a sharp edge shape. For this reason, if the edge 28 is in contact with the active material layer or the separator, the negative electrode active material layers 25a and 25b may be peeled off or the separator 17 may be damaged due to the pressure when the electrode group is wound.
  • the end edge 28 is not only located inside the circumference 23 having a predetermined radius, but is housed inside the groove portion 22, so that the negative electrode sheet 15, Contact with the positive electrode sheet 16 and the separator 17 can be more reliably suppressed.
  • the groove portion 22 may have any shape as long as the end edge 28 of the negative electrode current collector sheet 24 can be inserted, and the width and depth of the groove portion 22 are not particularly limited. Considering that the diameter of the conductive core 14 is set to about several millimeters from the viewpoint of downsizing the battery and that the thickness of the negative electrode current collector sheet 24 is usually about 10 to 20 ⁇ m, the width of the groove 22 Is preferably about 50 to 500 ⁇ m.
  • the second flat portion 21 is formed on the opposite side of the first flat portion 20 across the axis of the conductive core 14.
  • the opposite side of the first flat portion 20 of the conductive core 14 forms the second flat portion 21 instead of the curved surface portion 18, the conductive core 14 and the conductive core 14 are separated for the following reason.
  • the workability at the time of joining the negative electrode current collector sheet 24 and the processing accuracy of the joint portion 27 are both good.
  • the above-described resistance welding is used for joining the first flat portion 20 and the negative electrode current collector sheet 24.
  • the conductive core 14 is disposed on the planar second resistance welding electrode 36 (see FIG. 3). For this reason, by providing the second flat portion 21 in advance in a portion facing the first flat portion 20 across the axis of the conductive core 14, the conductive core is formed on the second resistance welding electrode 36. 14 can be stabilized. As a result, the workability of resistance welding is remarkably improved, and the welding strength between the conductive core 14 and the negative electrode current collector sheet 24 can be stabilized.
  • the thickness of the negative electrode current collector sheet 24 is extremely thin compared to the diameter of the conductive core 14, if the amount of current during resistance welding is excessive, the weld point may be damaged and a sharp cross-section may be generated. is there. Moreover, when the sharp cross section of the negative electrode current collection sheet 24 arises, there exists a possibility that the negative electrode active material layers 25a and 25b may peel or the separator 17 may be damaged. On the other hand, when the amount of current during resistance welding is insufficient, the joint strength of the joint portion 27 is insufficient. However, since the conductive core 14 includes the second flat portion 21, the amount of current when a current is passed between the two resistance welding electrodes 35 and 36 is stabilized, and variations in welding current are suppressed. can do. As a result, the processing accuracy of the joint portion 27 is significantly improved, and the welding strength between the conductive core 14 and the negative electrode current collector sheet 24 can be stabilized.
  • the second flat portion 21 can be formed, for example, by casting the conductive core 14 using a mold having a portion corresponding to the shape of the second flat portion 21 in advance. Moreover, you may form the 2nd flat part 21 by cutting a part of outer peripheral surface in a cylindrical conductive core.
  • the conductive core 14 includes the first flat portion 20 and the second flat portion 21, the outer peripheral surface of the conductive core 14 and the conductive core 14 are provided.
  • a gap is formed between the negative electrode sheet 15, the positive electrode sheet 16, and the separator to be wound.
  • the non-aqueous electrolyte is easily spread inside the wound electrode group 12. For this reason, deterioration of a battery accompanying decomposition
  • the wound electrode group 12 is formed by joining the first flat portion 20 of the conductive core 14 and the exposed portion 26 of the negative electrode current collector sheet 24, and then bonding the negative electrode sheet 15 together with the separator 17 and the positive electrode sheet 16. It is produced by winding around the conductive core 14. After winding the negative electrode sheet 15, the positive electrode sheet 16, and the separator 17, the outermost periphery of the wound electrode group 12 is fixed with an insulating tape made of polypropylene or the like. Further, the insulating gasket 13 is passed through one end 32 of the conductive core 14 and an insulating cover 34 is attached to the other end.
  • the wound electrode group 12 obtained in this way is accommodated in the battery case 11, and after pouring a nonaqueous electrolyte into the battery case 11, the open end 31 is caulked and sealed, whereby the lithium ion battery 10 shown in FIG. Is obtained.
  • one end 32 of the conductive core 14 is exposed to the outside of the battery case, and is also used as a negative electrode terminal.
  • the conductive core 14 is electrically connected to the negative electrode sheet 15 at the joint portion 27.
  • a lead for connecting the negative electrode current collector sheet 24 and the negative electrode terminal becomes unnecessary, the number of parts can be reduced, and the battery can be further miniaturized.
  • the polarity of the electrode sheet connected to the conductive core 14 is not limited to the case shown in FIGS. 1 and 2, and the positive electrode sheet may be connected to the conductive core 14. In this case, a conductive winding core is used as the positive electrode terminal.
  • the insulating gasket 13 formed in a ring shape is inserted on the one end 32 side of the conductive core 14.
  • the opening end 31 of the battery case 11 is caulked and sealed, whereby the opening of the battery case 11 is sealed with the insulating gasket 13.
  • a positive electrode sheet 16 is wound around the outermost periphery of the wound electrode group 12.
  • the positive electrode current collecting sheet 29 in the outermost positive electrode sheet 16 is in contact with the inner peripheral surface of the battery case 11 so as to apply pressure. For this reason, the battery case 11 and the positive electrode current collecting sheet 29 are electrically connected.
  • An insulating cover 34 is provided on the outer surface of the battery case 11, and a portion where the insulating cover 34 is not provided (caulking sealing portion) is used as an external positive electrode terminal of the lithium ion battery 10.
  • An insulating cap 33 is attached to the other end of the conductive core 14 so as not to cause a short circuit with the battery case 11.
  • the battery case 11 a case made of silver, copper, iron, nickel, palladium, gold, platinum, aluminum, stainless steel, or the like can be used.
  • the thickness of the battery case 11 can be set as appropriate, but considering the strength and workability, it is preferably 50 to 500 ⁇ m, particularly preferably 100 to 300 ⁇ m.
  • the diameter of the battery case 11 is preferably 1 to 100 mm, particularly preferably 0.1 to 50 mm, from the viewpoint of achieving both strength and workability.
  • the material of the insulating gasket 13 can be appropriately selected in view of the stability and heat resistance against the nonaqueous electrolyte.
  • various polymers such as polypropylene, polyethylene, polyphenylene sulfide, polyether ketone, polyamide, polyimide, liquid crystal polymer, and a copolymer containing perfluoroalkoxyethylene may be used alone or in admixture of two or more. it can.
  • the above exemplified polymers can be used in combination with fillers such as inorganic fibers.
  • the insulating gasket can be coated with a sealing material in order to increase the airtightness of the battery.
  • the negative electrode sheet 15 includes a negative electrode current collector sheet 24 and negative electrode active material layers 25a and 25b formed on both surfaces thereof.
  • the negative electrode current collector sheet 24 is formed in a strip shape suitable for winding.
  • the negative electrode current collector sheet 24 is preferably a metal foil.
  • Examples of the material of the negative electrode current collector sheet 24 include copper and copper alloys.
  • the material of the negative electrode current collector sheet 24 is preferably the same as the material of the conductive core 14 from the viewpoint of suppressing current loss from the negative electrode sheet 15 to the conductive core 14.
  • the negative electrode active material layers 25a and 25b include a negative electrode active material, and further include a conductive agent, a binder, and the like as necessary.
  • Examples of the negative electrode active material include natural and artificial graphite, silicide, silicon oxide, lithium metal, and various alloy materials.
  • Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, and styrene-butadiene rubber.
  • Examples of the conductive agent include acetylene black, ketjen black (registered trademark), and various graphites.
  • the positive electrode sheet 16 includes a positive electrode current collector sheet 29 and positive electrode active material layers 30a and 30b formed on both surfaces thereof.
  • the positive electrode current collector sheet 29 is formed in a belt shape suitable for winding.
  • the positive electrode current collector sheet 29 is preferably a metal foil.
  • Examples of the material of the positive electrode current collector sheet 29 include aluminum, an aluminum alloy, stainless steel, and titanium.
  • the material of a positive electrode current collection sheet and the material of a conductive core are preferably the same.
  • the positive electrode active material layers 30a and 30b include a positive electrode active material, and further include a conductive agent, a binder, and the like as necessary.
  • the positive electrode active material include lithium-containing transition metal oxides such as lithium cobaltate, lithium nickelate, and lithium manganate, and other known positive electrode active materials.
  • the binder and the conductive agent include those exemplified as the binder and the conductive agent included in the negative electrode sheet 15.
  • Nonaqueous electrolytes include those in which a supporting salt such as a lithium salt is dissolved in a nonaqueous solvent.
  • the lithium salt may be used in combination LiPF 6, LiBF 4 or the like alone, or two or more kinds.
  • carbonate esters such as ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate can be used alone or in combination of two or more.
  • the form of the nonaqueous electrolyte is not limited, and can be appropriately selected from liquid, gel, solid (polymer solid electrolyte) and the like.
  • the separator 17 examples include a microporous thin film, a woven fabric, and a non-woven fabric, and those having a large ion permeability and appropriate mechanical strength and insulating properties are particularly preferable. Further, it may be a single layer film made of one material, or a composite film or a multilayer film made of two or more materials. Examples of the material of the separator 17 include polyolefins such as polypropylene and polyethylene. In particular, a microporous thin film made of polyolefin is excellent in durability and has a so-called shutdown function in which pores are blocked at a certain temperature or higher, and thus is suitable as a separator for a lithium ion battery. The thickness of the separator is generally 10 to 300 ⁇ m, particularly preferably 40 ⁇ m or less, and more preferably 5 to 30 ⁇ m.
  • a lithium ion battery is taken as an example, but the wound electrode group of the present embodiment is not limited to application to a lithium ion battery.
  • the present invention can be applied not only to a non-aqueous electrolyte battery but also to a battery using an alkaline electrolyte.
  • the composition of the electrode material and the alkaline electrolyte is not particularly limited, and known materials and compositions can be appropriately selected.
  • Example 1 The lithium ion battery 10 shown in FIGS. 1 and 2 was produced according to the following procedure.
  • (1) Production of negative electrode sheet 15 Artificial graphite powder (volume average particle size 20 ⁇ m), styrene-butadiene rubber (SBR), and carboxymethyl cellulose (CMC) as a negative electrode active material are dispersed in water to form a negative electrode mixture. A slurry was prepared. Artificial graphite powder, SBR and CMC were mixed at a mass ratio of 98: 1: 1. After apply
  • the amount of the negative electrode active material after drying was 200 g per 1 m 2 of the negative electrode current collector sheet 24.
  • the negative electrode sheet 15 thus obtained was rolled with a roll press to adjust the thickness of the negative electrode sheet 15 in the double-sided coating region to 0.14 mm.
  • the negative electrode active material layers 25 a and 25 b were formed from one end to the other end in the width direction of the negative electrode current collector sheet 24. Further, an exposed portion 26 in which the negative electrode active material layer was not formed on any surface was formed on one end side in the length direction of the negative electrode current collector sheet 24.
  • the negative electrode current collector sheet 24 has a region corresponding to one turn of the conductive core 14 in the length direction.
  • An active material layer 25a was formed.
  • negative electrode active material layers 25a and 25b were formed on both sides.
  • Lithium cobaltate, acetylene black, and polyvinylidene fluoride (PVDF) as a positive electrode active material were dispersed in N-methylpyrrolidone (NMP) to prepare a positive electrode mixture slurry.
  • NMP N-methylpyrrolidone
  • Lithium cobaltate, acetylene black and PVDF were mixed at a mass ratio of 90: 5: 5.
  • the amount of the positive electrode active material deposited after drying was 450 g per 1 m 2 of the positive electrode current collector sheet 29.
  • the positive electrode sheet 16 thus obtained was rolled with a roll press to adjust the thickness of the positive electrode sheet 16 in the double-sided coating region to 0.16 mm.
  • the positive electrode active material layers 30 a and 30 b were formed from one end to the other end in the width direction of the positive electrode current collector sheet 29.
  • an area corresponding to one turn of the wound wire around the conductive core 14 in the length direction of the positive electrode current collector sheet 29 is outside at the time of winding.
  • the positive electrode active material layer 30b was formed only on the surface to be. In the remaining region of the positive electrode current collector sheet 29, positive electrode active material layers 30a and 30b were formed on both surfaces.
  • the outer shape of the cross section of the conductive core 14 is a first curved surface portion 18 formed along a circumference 23 having a predetermined radius and a part of the circumference 23 cut out. And a second flat portion 21 formed by cutting out a part of the circumference 23 on the opposite side of the first flat portion 20.
  • the diameter of the circumference 23 was 1 mm.
  • the groove part 22 had a width of 100 ⁇ m and a depth of 200 ⁇ m.
  • an insulating gasket 13 made of a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer was press-fitted into the other end of the conductive core 14. Thereafter, the exposed portion 26 of the negative electrode current collector sheet 24 was resistance welded to the first flat portion 20 of the conductive core 14. Specifically, as shown in FIG. 3, first, the exposed portion 26 of the negative electrode current collector sheet 24 and the first flat portion 20 of the conductive core 14 were overlapped. Next, the first resistance welding electrode 35 made of copper and the second resistance welding electrode 36 made of copper were opposed to each other through the exposed portion 26 and the conductive core 14.
  • the first resistance welding electrode 35 was brought into point contact with the surface of the negative electrode current collector sheet 24, and the second resistance welding electrode 36 was brought into surface contact with the second flat portion 21 of the conductive core 14.
  • the exposed portion 26 and the first flat portion 20 of the conductive core 14 were resistance welded at four locations along the axial direction 19 of the conductive core 14.
  • IP-205A manufactured by Miyachi Technos Co., Ltd. was used, and one cycle of welding was performed with a welding current of 500A.
  • the tip diameter of the first resistance welding electrode 35 was ⁇ 0.3 mm.
  • the pressure applied to the tip of the first resistance welding electrode 35 was 350 kgf / cm 2 .
  • the resistance-welded part became a welding state as shown in FIG. 2 and FIG.
  • the end edge 28 of the exposed portion 26 of the negative electrode current collector sheet 24 was pressed with a pressing plate to be accommodated in the groove portion 22.
  • a positive electrode sheet 16 covered with a polyethylene separator (microporous film) 17 having a thickness of 0.016 ⁇ m was superposed on the negative electrode sheet 15 resistance-welded to the conductive core 14.
  • the negative electrode sheet 15, the positive electrode sheet 16, and the separator 17 were wound with the winding machine as shown in FIG. After winding, the wound electrode group 12 was produced by fixing the outermost periphery with a polypropylene tape.
  • non-aqueous electrolyte As a non-aqueous solvent, a mixed solvent containing ethylene carbonate, propylene carbonate, and diethyl carbonate at a mass ratio of 10:10:80 was used. LiPF 6 was dissolved in this mixed solvent to obtain a nonaqueous electrolyte having a LiPF 6 concentration of 1.0 mol / L.
  • the present invention can be used in the field of driving power sources for various electronic devices, particularly in the field of driving power sources for small portable electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 柱状の導電性巻芯14と、負極シート15と、正極シート16と、負極シート15および正極シート16の間に介在するセパレータ17とを備え、負極シート15における露出部26が、第1の平坦部20において導電性巻芯14と接合されている捲回型電極群12において、導電性巻芯14の端縁28は、曲面部18の表面に位置しておらず、所定半径の円周23よりも導電性巻芯14の径方向内側に位置している。第1の平坦部20と露出部26との接合部27も、いずれも所定半径の円周23よりも導電性巻芯14の径方向内側に位置している。

Description

捲回型電極群および電池
 本発明は、正極または負極の集電板が導電性巻芯に接続された捲回型電極群における導電性巻芯の構造の改良に関する。
 正極および負極がセパレータを挟んで捲回された捲回型電極群は、単位体積あたりの正極と負極との対向面積が大きいことから、電池を小型化するのに好適である。
 下記特許文献1および2に開示の円筒状のリチウムイオン電池は、集電板としての負極芯体および負極芯体の表面に保持された負極活物質を備える負極と、正極と、負極および正極の間に配置されるセパレータと、導電性巻芯とを備えており、負極、正極およびセパレータが導電性巻芯に巻き付けられて捲回型電極群を形成している。この捲回型電極群において、負極芯体は、負極活物質が保持されていない芯体露出部を巻付け方向の端部に備えている。また、芯体露出部は、導電性巻芯の長手方向に沿った2以上の箇所で導電性巻芯と点溶接されており、導電性巻芯と直接に接続されている。
 このように構成された捲回型電極群は、導電性巻芯が、負極と外部端子とを接続するためのリードの役割を兼ねており、さらに、導電性巻芯自体が、外部端子をも兼ねている。このため、部品点数を削減して、より一層の小型化を図ることができる。また、外部端子の役割を兼ねる導電性巻芯が負極と直接に接続していることから、高い出力を得やすく、負極の集電構造が単純で製造工程が簡易になる。
特開2005-85556号公報 特開2008-243704号公報
 しかしながら、上記捲回型電極群の構成によれば、導電性巻芯と負極芯体との接点に、溶接に伴う突起が生じるため、導電性巻芯に巻き付けられた負極、正極およびセパレータに対して局所的に過剰な圧力がかかるおそれがある。このような局所的な過剰の圧力は、負極芯体および正極芯体から活物質を剥離させたり、セパレータを破損させたりする要因となる。また、導電性巻芯と負極芯体との溶接箇所にはバリが生じやすいことから、電池を小型化するために導電性巻芯の径を小さくすることによって、活物質の剥離やセパレータの破損がより一層顕著になる。負極および正極からの活物質層の剥離は、電池の容量を低下させる要因であり、セパレータの破損は、内部短絡を生じさせる要因である。
 本発明は、正極または負極の集電板が導電性巻芯に直接接続されている捲回型電極群において、小型化を図りながら、活物質層の剥離やセパレータの破損を抑制することを目的とする。
 本発明の一局面の捲回型電極群は、正極集電シートおよび正極集電シートの表面に担持された正極活物質層を備える正極シートと、負極集電シートおよび負極集電シートの表面に担持された負極活物質層を備える負極シートと、正極シートおよび負極シートの間に介在するセパレータと、正極シート、負極シートおよびセパレータの重ね合わせ体が捲回されている柱状の導電性巻芯と、を備え、正極シートまたは負極シートは、その捲回中心側の端部の表面に活物質層が担持されていない露出部を備え、導電性巻芯の横断面の外形は、所定半径の円周の一部を切り欠いて形成されたような第1の平坦部と、第1の平坦部に連なり、上記円周に沿って存在する曲面部と、を含み、露出部は、導電性巻芯の軸方向に沿った複数の個所で第1の平坦部と接合されており、露出部の端縁は、第1の平坦部側において、上記円周の内側に位置していることを特徴とする。
 本発明の他の一局面の電池は、一端が閉じられた略円筒状の電池ケースと、電池ケースに収容される上記捲回型電極群と、電池ケースに収容される非水電解質と、を備える。
 本発明によれば、正極または負極の集電板が導電性巻芯に直接接続されている捲回型電極群において、集電板からの活物質層の剥離やセパレータの破損を抑制することができ、小型化を図りながら容量が維持され、かつ、内部短絡のおそれが抑制された電池を提供することができる。
実施形態におけるピン型のリチウムイオン電池を模式的に示す片側断面図である。 実施形態における捲回型電極群を模式的に示す横断面図である。 導電性巻芯と集電シートとの接合方法の一例を模式的に示す説明図である。
 以下、本発明の実施形態について、ピン型のリチウムイオン電池を例に挙げて詳細に説明する。
 図1を参照して、リチウムイオン電池10は、略円筒状の電池ケース11と、電池ケース11内に収容された捲回型電極群12および非水電解質と、電池ケース11を封止する絶縁ガスケット13と、を備えている。捲回型電極群12は、柱状の導電性巻芯14と、負極シート15と、正極シート16と、負極シート15および正極シート16間を隔離するセパレータ17と、を備えている。捲回型電極群12において、負極シート15、正極シート16およびセパレータ17の重ね合わせ体は、柱状の導電性巻芯14に渦巻状に捲回されている。
 図2を参照して、導電性巻芯14の横断面の外形は、所定半径の円周23に沿って存在する曲面部18と、所定半径の円周23の一部を切り欠いて形成されたような第1の平坦部20と、第1の平坦部20の反対側で所定半径の円周23の一部を切り欠いて形成されたような第2の平坦部21と、を備えている。第1の平坦部20および第2の平坦部21は、それぞれ曲面部18に連なっている。なお、図2は、捲回型電極群12の構造を示すために、負極シート15、正極シート16およびセパレータ17の一部を弛んだ状態で示している。
 負極シート15は、負極集電シート24と、負極集電シート24の両面に形成された負極活物質層25a、25bとを備えている。負極集電シート24は、導電性巻芯14への巻付け方向の一方の端部において、負極活物質層が形成されずに負極集電シート24が露出している露出部26を有している。負極シート15と導電性巻芯14とは、負極集電シート24の露出部26を導電性巻芯14の第1の平坦部20の表面に接合することにより、電気的に接続されている。露出部26と第1の平坦部20の表面とは、複数の箇所で抵抗溶接によって接合されている。接合箇所には、露出部26の表面から導電性巻芯14の径方向外側へ突出した接合部27が形成されている。
 正極シート16は、正極集電シート29と、正極集電シート29の両面に形成された正極活物質層30a、30bとを備えている。正極シート16は、導電性巻芯14の外周に巻き付けられた負極シート15に対し、その外側からセパレータ17を挟んで巻き付けられている。
 導電性巻芯14としては、銅、銅合金、ステンレス鋼、ニッケル、チタンなどからなる芯材を用いることができる。なお、後述するように、導電性巻芯14と接合される電極シートは、正極シートであってもよい。この場合において、導電性巻芯14には、アルミニウム、アルミニウム合金、ステンレス鋼、チタンなどが挙げられる。
 導電性巻芯14の径は、電池のサイズ、導電性巻芯14の強度、加工性などを鑑みて、適宜設定することができる。曲面部18の最大径は特に限定されないが、電池を小型化する観点より、0.5~50mmが好ましく、0.5~10mmが特に好ましい。また、特にピン型電池を作製する場合の曲面部18の最大径は、0.5~6mmが好ましく、1~4mmがさらに好ましい。
 上記捲回型電極群12において、接合部27と、負極集電シート24の露出部26における端縁28とは、導電性巻芯14の横断面で見た場合に、いずれも所定半径の円周23よりも内側に位置している。この所定半径の円周23の一部は、曲面部18と一致している。このような構成によれば、接合部27および端縁28と、導電性巻芯14の周囲に捲回されている負極シート15、正極シート16およびセパレータ17との接触を抑制することができる。このため、電池を小型化するために導電性巻芯14の径を小さくした場合であっても、接合部27および端縁28が負極シート15、正極シート16およびセパレータ17に対して局所的に過度な圧力を加えることを抑制できる。また、上記の構成によれば、負極集電シート24の表面からの負極活物質層25a、25bの剥離や、セパレータ17の破損を抑制することができる。このため、電池の容量低下や内部短絡の発生を抑制して、電池の信頼性を向上させることができる。
 第1の平坦部20は、接合部27および端縁28が、いずれも所定半径の円周23の内側に配置されるように形成されていればよく、その形状は特に限定されない。導電性巻芯14の横断面から見た第1の平坦部20の形状は、接合部27および端縁28を所定半径の円周23の内側に配置することができる範囲において、導電性巻芯14の径方向外側に湾曲していてもよい。また、導電性巻芯14の径方向内側に湾曲していてもよい。第1の平坦部20のサイズも特に限定されない。なお、スポット溶接などの抵抗溶接によって形成される接合部27の直径は1mm程度またはそれ以上となる場合があることや、電池を小型化するために導電性巻芯14の曲面部18の最大径が上述の範囲に設定されることを勘案すれば、第1の平坦部20における軸方向19と直交する方向の幅は、1~4mm程度に設定することが好ましい。
 第1の平坦部20は、例えば、あらかじめ第1の平坦部20に対応する部位を備えた金型を用いて導電性巻芯14を鋳造することにより形成できる。また、第1の平坦部20は、円柱状の導電性巻芯における外周面の一部を切削することにより形成してもよい。
 負極集電シート24の露出部26と、導電性巻芯14の第1の平坦部20とは、例えば、スポット溶接などの抵抗溶接によって接合することができる。具体的には、図3を参照して、負極集電シート24の露出部26を導電性巻芯14の第1の平坦部20の表面に重ね合わせて、導電性巻芯14を平板状の第2抵抗溶接電極36上に配置する。ここで、導電性巻芯14は、第2の平坦部21を第2抵抗溶接電極36に接触させる。次いで、針状の第1抵抗溶接電極35の先端を露出部26に接触させて、第1抵抗溶接電極35と第2抵抗溶接電極36との間に電流を印加する。これにより、電流を印加した箇所に接合部27が形成されて、露出部26と導電性巻芯14とが接合される。各抵抗溶接電極35、36間に電流を印加する操作は、導電性巻芯14の軸方向19において、複数の箇所で繰り返す。これにより、導電性巻芯14の軸方向19に沿った複数の箇所に接合部27が形成されることから、露出部26と導電性巻芯14との接合強度が大きくなる。
 再び図2を参照して、第1の平坦部20は、その表面に、軸方向19に延びる溝部22を備えている。溝部22は、その内部に、負極集電シート24の端縁28を収容している。負極集電シート24は、後述するように、一般に金属箔であって、その端縁の形状が鋭い。このため、端縁28が活物質層やセパレータに接触していると、電極群の捲回時の圧力によって負極活物質層25a、25bの剥離やセパレータ17の破損を招くおそれがある。しかしながら、上記のような構成によれば、端縁28が、単に所定半径の円周23の内側に位置しているだけでなく、溝部22の内部に収容されていることから、負極シート15、正極シート16およびセパレータ17との接触をより一層確実に抑制することができる。
 溝部22は、負極集電シート24の端縁28を差し込むことができる形状であればよく、溝部22の幅や深さは特に限定されない。電池を小型化する観点より導電性巻芯14の径が数ミリ程度に設定されることや、負極集電シート24の厚みが通常10~20μm程度であることを勘案すれば、溝部22の幅は、50~500μm程度であることが好ましい。
 第2の平坦部21は、導電性巻芯14の軸を挟んで第1の平坦部20の反対側に形成されている。このように、導電性巻芯14の第1の平坦部20の反対側が曲面部18ではなく、第2の平坦部21を形成していることから、以下の理由により、導電性巻芯14と負極集電シート24とを接合する際の作業性、および接合部27の加工精度がいずれも良好となる。
 電池を小型化する観点より導電性巻芯14の径を数ミリ程度とする場合において、第1の平坦部20と負極集電シート24との接合には、上述の抵抗溶接が用いられる。抵抗溶接では、上述のように、導電性巻芯14が平面状の第2抵抗溶接電極36(図3参照)上に配置される。このため、導電性巻芯14の軸を挟んで第1の平坦部20と対向する部分にあらかじめ第2の平坦部21を設けておくことにより、第2抵抗溶接電極36上で導電性巻芯14を安定させることができる。その結果、抵抗溶接の作業性が格段に向上して、導電性巻芯14と負極集電シート24との溶接強度を安定させることができる。
 また、負極集電シート24の厚みは、導電性巻芯14の径と比べて極めて薄いことから、抵抗溶接時の電流量が過剰となると、溶接点が破損して鋭利な断面を生じるおそれがある。また、負極集電シート24の鋭利な断面が生じると、負極活物質層25a、25bが剥離したり、セパレータ17が破損したりするおそれがある。一方、抵抗溶接時の電流量が不足すると、接合部27の接合強度が不足する。しかし、導電性巻芯14が第2の平坦部21を備えていることにより、2つの抵抗溶接電極35、36間に電流を流した時の電流量を安定させて、溶接電流のばらつきを抑制することができる。その結果、接合部27の加工精度が格段に向上して、導電性巻芯14と負極集電シート24との溶接強度を安定させることができる。
 第2の平坦部21は、例えば、あらかじめ第2の平坦部21の形状に対応する部位を備えた金型を用いて導電性巻芯14を鋳造することにより形成できる。また、第2の平坦部21は、円柱状の導電性巻芯における外周面の一部を切削することにより形成してもよい。
 捲回型電極群12は、導電性巻芯14が第1の平坦部20および第2の平坦部21を備えていることから、導電性巻芯14の外周面と、導電性巻芯14に巻き付けられる負極シート15、正極シート16およびセパレータとの間に、間隙が形成される。このような間隙が形成されることにより、捲回型電極群12の内部に非水電解質を行き渡らせやすくなる。このため、非水電解質の分解、揮散などに伴う電池の劣化を抑制することができる。
 捲回型電極群12は、導電性巻芯14の第1の平坦部20と、負極集電シート24の露出部26とを接合した後、負極シート15を、セパレータ17および正極シート16とともに、導電性巻芯14の周りに巻き付けることによって作製される。負極シート15、正極シート16およびセパレータ17を巻き付けた後には、ポリプロピレン製などの絶縁性テープで捲回型電極群12の最外周を固定する。さらに、導電性巻芯14の一端32に絶縁ガスケット13を貫通させて、他端に絶縁カバー34を取り付ける。こうして得られた捲回型電極群12を電池ケース11内に収容し、電池ケース11内に非水電解質を注入した後、開口端31をかしめ封口することによって、図1に示すリチウムイオン電池10が得られる。
 再び図1を参照して、リチウムイオン電池10は、導電性巻芯14の一端32を電池ケースの外部に露出させており、負極端子として兼用されている。導電性巻芯14は、上述のように、接合部27において負極シート15と電気的に接続されている。このため、このような構成によれば、負極集電シート24と、負極端子とを接続するためのリードが不要となり、部品点数を削減することができ、また、電池をより一層小型化することができる。なお、導電性巻芯14に接続される電極シートの極性は、図1および図2に示す場合に限定されるものではなく、正極シートを導電性巻芯14に接続させてもよい。この場合には、導電性巻芯が正極端子として用いられる。
 導電性巻芯14の一端32側には、リング状に成形された絶縁ガスケット13が挿入されている。電池ケース11の開口端31はかしめ封口されており、これにより、電池ケース11の開口が絶縁ガスケット13によって封止される。
 捲回型電極群12の最外周には、正極シート16が巻き付けられている。そして、この最外周の正極シート16における正極集電シート29は、電池ケース11の内周面に対して圧を加えるように接触している。このため、電池ケース11と正極集電シート29とが、電気的に接続されている。電池ケース11の外表面には絶縁カバー34が設けられており、絶縁カバー34が設けられていない部分(かしめ封口部)がリチウムイオン電池10の外部正極端子として用いられる。なお、導電性巻芯14の他端には、電池ケース11との間で短絡を生じないように、絶縁キャップ33が取り付けられている。
 電池ケース11としては、銀、銅、鉄、ニッケル、パラジウム、金、白金、アルミニウム、ステンレス鋼などからなるケースを用いることができる。電池ケース11の厚みは適宜設定できるが、強度や加工性を考慮すれば、50~500μmが好ましく、100~300μmが特に好ましい。電池ケース11の直径は、強度と加工性とを両立する観点から、1~100mmが好ましく、0.1~50mmが特に好ましい。
 絶縁ガスケット13の材質は、非水電解質に対する安定性および耐熱性を鑑みて適宜選択することができる。具体的には、ポリプロピレン、ポリエチレン、ポリフェニレンスルフィド、ポリエーテルケトン、ポリアミド、ポリイミド、液晶ポリマー、パーフルオロアルコキシエチレンを含むコポリマーなどの各種ポリマーを、単独で、または2種以上を混合して用いることができる。また、上記例示のポリマーを、無機繊維などのフィラーと組み合わせて用いることもできる。絶縁ガスケットは、電池の気密性を高めるために、シール材でコーティングすることもできる。
 負極シート15は、負極集電シート24と、その両面に形成された負極活物質層25a、25bとを含む。負極集電シート24は、捲回に適した帯状に形成される。また、負極集電シート24は、金属箔であることが好ましい。負極集電シート24の材質としては、銅、銅合金などが挙げられる。負極集電シート24の材質は、負極シート15から導電性巻芯14への通電ロスを抑制する観点より、導電性巻芯14における材質と同じであることが好ましい。負極活物質層25a、25bは負極活物質を含み、さらに必要に応じて、導電剤、結着剤などを含む。負極活物質としては、天然および人造の各種黒鉛、シリサイド、ケイ素酸化物、リチウム金属、各種合金材料などが挙げられる。結着剤としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、スチレン-ブタジエンゴムなどが挙げられる。導電剤としては、アセチレンブラック、ケッチェンブラック(登録商標)、各種グラファイトなどが挙げられる。
 正極シート16は、正極集電シート29と、その両面に形成された正極活物質層30a、30bとを含む。正極集電シート29は、捲回に適した帯状に形成される。また、正極集電シート29は、金属箔であることが好ましい。正極集電シート29の材質としては、アルミニウム、アルミニウム合金、ステンレス鋼、チタンなどが挙げられる。なお、導電性巻芯に対して正極集電シートを接合させる場合には、正極シートから導電性巻芯への通電ロスを抑制する観点より、正極集電シートの材質と導電性巻芯の材質とを同じにすることが好ましい。正極活物質層30a、30bは正極活物質を含み、さらに必要に応じて、導電剤、結着剤などを含む。正極活物質としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムなどのリチウム含有遷移金属酸化物、その他公知の各種正極活物質が挙げられる。結着剤および導電剤としては、負極シート15に含まれる結着剤および導電剤として例示したものと同様のものが挙げられる。
 非水電解質としては、非水溶媒にリチウム塩などの支持塩を溶解したものが挙げられる。リチウム塩としては、LiPF6、LiBF4などを単独で、または2種以上を組み合わせて用いることができる。非水溶媒としては、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの炭酸エステルを単独で、または2種以上を組み合わせて用いることができる。非水電解質の形態は限定されず、液状、ゲル状、固体状(高分子固体電解質)などから適宜選択することができる。
 セパレータ17としては、微多孔薄膜、織布、不織布などが挙げられ、特に、イオン透過度が大きく、適度な機械的強度および絶縁性を備えたものが好ましい。また、1種の材料からなる単層膜であってもよく、2種以上の材料からなる複合膜または多層膜であってもよい。セパレータ17の材質としては、ポリプロピレン、ポリエチレンなどのポリオレフィンが挙げられる。特に、ポリオレフィン製の微多孔薄膜は、耐久性に優れ、一定の温度以上で孔が塞がれる、いわゆるシャットダウン機能を有していることから、リチウムイオン電池のセパレータとして好適である。セパレータの厚さは、一般的に10~300μmであるが、特に、40μm以下が好ましく、5~30μmがより好ましい。
 以上の説明ではリチウムイオン電池を例に挙げたが、本実施形態の捲回型電極群は、リチウムイオン電池への適用に限定されるものではない。本発明は、非水電解質電池への適用だけでなく、アルカリ電解液を用いた電池への適用も可能である。この場合において、電極材料やアルカリ電解液の組成は特に限定されず、公知の材料および組成を適宜選択することができる。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲は下記の実施例に何ら限定されるものではない。
  実施例1
 以下の手順に従って、図1および図2に示すリチウムイオン電池10を作製した。
 (1)負極シート15の作製
 負極活物質としての人造黒鉛粉末(体積平均粒径20μm)と、スチレン-ブタジエンゴム(SBR)と、カルボキシメチルセルロース(CMC)とを水に分散させて、負極合剤スラリーを調製した。人造黒鉛粉末、SBRおよびCMCは、98:1:1の質量比で混合した。得られた負極合剤スラリーを負極集電シート24としての銅箔(厚さ12μm、幅13mm、長さ28mm)に塗布した後、乾燥機で乾燥することにより、スラリーから水を除去した。負極集電シート24の両面に負極合剤スラリーが塗布された両面塗布領域において、乾燥後の負極活物質の付着量は、負極集電シート24の1m2あたり200gであった。こうして得られた負極シート15をロールプレスで圧延することにより、両面塗布領域における負極シート15の厚みを0.14mmとなるように調整した。負極活物質層25a、25bは、負極集電シート24の幅方向の一端から他端にかけて形成した。また、負極集電シート24の長さ方向の一端側には、いずれの面にも負極活物質層を形成していない露出部26を形成した。さらに、露出部26に隣接して、負極集電シート24の長さ方向で概ね導電性巻芯14への捲回1周分に相当する領域には、捲回時に内側になる面にのみ負極活物質層25aを形成した。負極集電シート24の残りの領域では、両面に負極活物質層25a、25bを形成した。
 (2)正極シート16の作製
 正極活物質としてのコバルト酸リチウムと、アセチレンブラックと、ポリフッ化ビニリデン(PVDF)とを、N-メチルピロリドン(NMP)に分散させて、正極合剤スラリーを調製した。コバルト酸リチウム、アセチレンブラックおよびPVDFは、90:5:5の質量比で混合した。得られた正極合剤スラリーを、正極集電シート29としてのアルミニウム箔(厚さ20μm、幅12mm、長さ33mm)に塗布した後、乾燥機で乾燥することにより、スラリーからNMPを除去した。正極集電シート29の両面に正極合剤スラリーが塗布された両面塗布領域において、乾燥後の正極活物質の付着量は、正極集電シート29の1m2あたり450gであった。こうして得られた正極シート16をロールプレスで圧延することにより、両面塗布領域における正極シート16の厚みを0.16mmとなるように調整した。正極活物質層30a、30bは、正極集電シート29の幅方向の一端から他端にかけて形成した。また、正極集電シート29の長さ方向の一端側において、正極集電シート29の長さ方向で概ね導電性巻芯14への捲回1周分に相当する領域には、捲回時に外側になる面にのみ正極活物質層30bを形成した。正極集電シート29の残りの領域では、両面に正極活物質層30a、30bを形成した。
 (3)捲回型電極群12の作製
 導電性巻芯14には柱状のステンレス鋼を使用した。図2に示すように、導電性巻芯14の横断面の外形は、所定半径の円周23に沿った曲面部18と、円周23の一部を切り欠いて形成されたような第1の平坦部20と、第1の平坦部20の反対側で円周23の一部を切り欠いて形成されたような第2の平坦部21と、を備えている。円周23の直径は1mmであった。また、溝部22は、幅が100μm、深さが200μmであった。
 図3を参照して、導電性巻芯14の他方の端部に、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体製の絶縁ガスケット13を圧入した。その後、導電性巻芯14の第1の平坦部20に対し、負極集電シート24の露出部26を抵抗溶接した。具体的には、図3に示すように、まず、負極集電シート24の露出部26と、導電性巻芯14の第1の平坦部20とを重ね合わせた。次いで、銅製の第1抵抗溶接電極35と、銅製の第2抵抗溶接電極36とを、露出部26および導電性巻芯14を介して互いに対向させた。このとき、第1抵抗溶接電極35を負極集電シート24の表面に点接触させ、第2抵抗溶接電極36を導電性巻芯14の第2の平坦部21に面接触させた。こうして、導電性巻芯14の軸方向19に沿った4箇所で、露出部26と導電性巻芯14の第1の平坦部20とを抵抗溶接した。
 抵抗溶接機には、ミヤチテクノス株式会社製のIP-205Aを用い、500Aの溶接電流により、1サイクルの溶接を行った。第1抵抗溶接電極35の先端径は、φ0.3mmであった。第1抵抗溶接電極35の先端にかかる圧力は、350kgf/cm2であった。こうして抵抗溶接された箇所は、図2および図3に示すような溶接状態となった。
 続いて、負極集電シート24の露出部26における端縁28を押圧板で押圧することにより、溝部22内に収容させた。その後、導電性巻芯14に対して抵抗溶接された負極シート15上に、厚さ0.016μmのポリエチレン製セパレータ(微多孔膜)17で覆われた正極シート16を重ね合わせた。そして、捲回機により、負極シート15、正極シート16およびセパレータ17を図2に示すように捲回した。捲回後、最外周をポリプロピレン製テープで固定することにより、捲回型電極群12を作製した。
 (4)非水電解質の調製
 非水溶媒として、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとを、10:10:80の質量比で含む混合溶媒を用いた。この混合溶媒にLiPF6を溶解させて、LiPF6の濃度が1.0mol/Lの非水電解質を得た。
 (5)ピン型リチウムイオン電池の作製
 上記捲回型電極群12を、電池ケース11としてのアルミニウム製の円筒体へ挿入し、100℃の真空下で放置してその内部を乾燥させた。その後、この電池ケース11内に上記非水電解液を100mg注液した。最後に、外装体の開口部を、絶縁ガスケット13を介したかしめ封口により封止し、高さ20mm、直径4mmのリチウムイオン二次電池を得た。
 以上の説明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。本発明の技術分野における当業者によって明らかな本発明の変形例は、本発明の範囲に含まれるものである。
 本発明は、各種電子機器のための駆動用電源の分野において、特に、小型の携帯型電子機器のための駆動用電源の分野において利用することができる。

Claims (7)

  1.  正極集電シートおよび該正極集電シートの表面に担持された正極活物質層を備える正極シートと、
     負極集電シートおよび該負極集電シートの表面に担持された負極活物質層を備える負極シートと、
     前記正極シートおよび前記負極シートの間に介在するセパレータと、
     前記正極シート、前記負極シートおよび前記セパレータの重ね合わせ体が捲回されている柱状の導電性巻芯と、を備え、
     前記正極シートまたは前記負極シートは、その捲回中心側の端部の表面に活物質層が担持されていない露出部を備え、
     前記導電性巻芯の横断面の外形は、所定半径の円周の一部を切り欠いて形成されたような第1の平坦部と、該第1の平坦部に連なり、前記円周に沿って存在する曲面部と、を含み、
     前記露出部は、前記導電性巻芯の軸方向に沿った複数の個所で前記第1の平坦部と接合されており、
     前記露出部の端縁は、前記第1の平坦部側において、前記円周の内側に位置していることを特徴とする捲回型電極群。
  2.  前記導電性巻芯の横断面において、前記露出部と前記第1の平坦部との接合部が、前記円周の内側に存在する、請求項1に記載の捲回型電極群。
  3.  前記導電性巻芯は、前記第1の平坦部に前記軸方向に延びる溝部を備え、前記露出部の端縁は、前記溝部内に収容されている、請求項1に記載の捲回型電極群。
  4.  前記導電性巻芯の横断面の外形は、さらに、前記第1の平坦部の反対側で前記円周の一部を切り欠いて形成されたような第2の平坦部を有する、請求項1に記載の捲回型電極群。
  5.  前記導電性巻芯の最大径が0.5~10mmである、請求項1に記載の捲回型電極群。
  6.  一端が閉じられた略円筒状の電池ケースと、前記電池ケースに収容される請求項1に記載の捲回型電極群と、前記電池ケースに収容される非水電解質と、を備える電池。
  7.  前記導電性巻芯の一端が、前記電池ケースの外部に露出されるように配置されて外部端子を形成している請求項6に記載の電池。
PCT/JP2010/003946 2009-06-30 2010-06-15 捲回型電極群および電池 WO2011001617A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10776071A EP2320496A4 (en) 2009-06-30 2010-06-15 WRAPPED ELECTRODE ARRANGEMENT AND BATTERY
CN2010800017869A CN102057521A (zh) 2009-06-30 2010-06-15 卷绕型电极组及电池
US12/996,710 US20110217576A1 (en) 2009-06-30 2010-06-15 Wound electrode assembly and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009155595A JP2011014297A (ja) 2009-06-30 2009-06-30 捲回型電極群および電池
JP2009-155595 2009-06-30

Publications (1)

Publication Number Publication Date
WO2011001617A1 true WO2011001617A1 (ja) 2011-01-06

Family

ID=43410708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003946 WO2011001617A1 (ja) 2009-06-30 2010-06-15 捲回型電極群および電池

Country Status (5)

Country Link
US (1) US20110217576A1 (ja)
EP (1) EP2320496A4 (ja)
JP (1) JP2011014297A (ja)
CN (1) CN102057521A (ja)
WO (1) WO2011001617A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299553A (zh) * 2014-01-28 2019-10-01 锂电池材料科技有限公司 圆柱形电化学电池和制造方法
JP2020061359A (ja) * 2018-10-10 2020-04-16 パナソニックIpマネジメント株式会社 電池および積層電池
JPWO2019107049A1 (ja) * 2017-11-30 2020-11-26 パナソニックIpマネジメント株式会社 円筒形二次電池

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140322585A1 (en) * 2011-12-07 2014-10-30 Toray Battery Separator Film Co., Ltd. Microporous membrane roll and method of manufacturing same
US9130223B2 (en) 2012-04-26 2015-09-08 Medtronic, Inc. Mandrel for electrode assemblies
US9356264B2 (en) 2012-04-26 2016-05-31 Medtronic, Inc. Electrode assemblies including a mandrel and at least one insulative portion
US8778521B2 (en) 2012-04-26 2014-07-15 Medtronic, Inc. Mandrel for electrode assemblies
CN103387160B (zh) * 2012-05-11 2016-12-14 Tdk株式会社 隔离物卷绕芯以及具备其的卷型物
KR101551531B1 (ko) * 2012-08-06 2015-09-09 주식회사 엘지화학 이차전지 권취용 권심부재 및 이를 포함하는 권취장치, 권취방법
DE102012218991A1 (de) * 2012-10-18 2014-06-12 Bayerische Motoren Werke Aktiengesellschaft Energiespeicherzelle und Energiespeichermodul
CN110429320B (zh) 2014-06-26 2022-09-23 松下知识产权经营株式会社 卷绕型电池
KR101888793B1 (ko) * 2016-08-29 2018-08-14 스미또모 가가꾸 가부시키가이샤 권취 코어, 세퍼레이터 권회체
WO2018193771A1 (ja) * 2017-04-18 2018-10-25 株式会社村田製作所 電池及びその製造方法、組電池、並びに電子機器
JP7225111B2 (ja) * 2017-10-27 2023-02-20 三洋電機株式会社 非水電解質二次電池の製造方法
KR102480958B1 (ko) * 2018-10-05 2022-12-23 주식회사 엘지에너지솔루션 이차전지
CN111261948B (zh) * 2018-11-30 2021-06-15 北京好风光储能技术有限公司 一种圆柱形锂浆料电池及其制备方法
WO2021060007A1 (ja) * 2019-09-26 2021-04-01 三洋電機株式会社 二次電池
CN111682129A (zh) 2020-06-05 2020-09-18 重庆市紫建电子股份有限公司 一种金属壳扣式锂离子电池
WO2022061610A1 (zh) * 2020-09-23 2022-03-31 宁德新能源科技有限公司 电池及具有所述电池的电子装置
CN118633188A (zh) * 2022-02-18 2024-09-10 松下知识产权经营株式会社 圆筒形非水电解质二次电池
WO2023162710A1 (ja) * 2022-02-28 2023-08-31 パナソニックエナジー株式会社 円筒形の非水電解質二次電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264175A (ja) * 1988-04-14 1989-10-20 Toshiba Battery Co Ltd 渦巻状電極群の製造方法
JPH08329958A (ja) * 1994-08-23 1996-12-13 Fuji Elelctrochem Co Ltd スパイラル型非水電解液電池ならびにその渦巻状電極体の巻回方法
JPH1064588A (ja) * 1996-08-20 1998-03-06 Shin Kobe Electric Mach Co Ltd 円筒形リチウム二次電池
JP2005085556A (ja) 2003-09-05 2005-03-31 Sanyo Electric Co Ltd リチウムイオン電池およびその製造方法
JP2008091127A (ja) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd 筒型電池及びその製造方法
JP2008226500A (ja) * 2007-03-08 2008-09-25 Hitachi Vehicle Energy Ltd 捲回式電池
JP2008243704A (ja) 2007-03-28 2008-10-09 Sanyo Electric Co Ltd 円筒型非水電解質電池
JP2008251189A (ja) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd 円筒型電池の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353539A (ja) * 1999-06-10 2000-12-19 Toyota Central Res & Dev Lab Inc 電極捲回型二次電池
US6670071B2 (en) * 2002-01-15 2003-12-30 Quallion Llc Electric storage battery construction and method of manufacture
KR100696785B1 (ko) * 2005-04-25 2007-03-19 삼성에스디아이 주식회사 원통형 리튬 이차 전지
KR100731452B1 (ko) * 2005-12-29 2007-06-21 삼성에스디아이 주식회사 원통형 전지의 극판 권취장치 및 권취방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264175A (ja) * 1988-04-14 1989-10-20 Toshiba Battery Co Ltd 渦巻状電極群の製造方法
JPH08329958A (ja) * 1994-08-23 1996-12-13 Fuji Elelctrochem Co Ltd スパイラル型非水電解液電池ならびにその渦巻状電極体の巻回方法
JPH1064588A (ja) * 1996-08-20 1998-03-06 Shin Kobe Electric Mach Co Ltd 円筒形リチウム二次電池
JP2005085556A (ja) 2003-09-05 2005-03-31 Sanyo Electric Co Ltd リチウムイオン電池およびその製造方法
JP2008091127A (ja) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd 筒型電池及びその製造方法
JP2008226500A (ja) * 2007-03-08 2008-09-25 Hitachi Vehicle Energy Ltd 捲回式電池
JP2008243704A (ja) 2007-03-28 2008-10-09 Sanyo Electric Co Ltd 円筒型非水電解質電池
JP2008251189A (ja) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd 円筒型電池の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2320496A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299553A (zh) * 2014-01-28 2019-10-01 锂电池材料科技有限公司 圆柱形电化学电池和制造方法
CN110299553B (zh) * 2014-01-28 2023-05-12 锂电池材料科技有限公司 圆柱形电化学电池和制造方法
JPWO2019107049A1 (ja) * 2017-11-30 2020-11-26 パナソニックIpマネジメント株式会社 円筒形二次電池
JP7209196B2 (ja) 2017-11-30 2023-01-20 パナソニックIpマネジメント株式会社 円筒形二次電池
JP2020061359A (ja) * 2018-10-10 2020-04-16 パナソニックIpマネジメント株式会社 電池および積層電池
JP7357275B2 (ja) 2018-10-10 2023-10-06 パナソニックIpマネジメント株式会社 電池および積層電池

Also Published As

Publication number Publication date
JP2011014297A (ja) 2011-01-20
CN102057521A (zh) 2011-05-11
EP2320496A4 (en) 2012-11-28
US20110217576A1 (en) 2011-09-08
EP2320496A1 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
WO2011001617A1 (ja) 捲回型電極群および電池
JP5103489B2 (ja) 密閉型電池
JP5103496B2 (ja) リチウムイオン二次電池
WO2017163932A1 (ja) 非水電解質二次電池
CN109891640B (zh) 非水电解质二次电池用电极以及非水电解质二次电池
WO2007142040A1 (ja) 二次電池
JP5619033B2 (ja) 密閉型電池およびその製造方法
JP2010086780A (ja) 角形二次電池
WO2018173899A1 (ja) 非水電解質二次電池
WO2022024712A1 (ja) 非水電解質二次電池
WO2022249989A1 (ja) 非水電解質二次電池
WO2023281973A1 (ja) 円筒形電池
WO2022181383A1 (ja) 円筒形電池、及びその製造方法
WO2021176961A1 (ja) 二次電池
WO2021039275A1 (ja) 非水電解質二次電池
WO2021153441A1 (ja) 非水電解質二次電池
JP2004363087A (ja) 電池および電池の製造方法
WO2024004451A1 (ja) 円筒形電池
JP5954339B2 (ja) 角形二次電池及びその製造方法
WO2021039481A1 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
WO2022196442A1 (ja) 密閉電池
JP5377472B2 (ja) リチウムイオン二次電池
WO2022186039A1 (ja) 円筒形電池
WO2024135582A1 (ja) 非水電解質二次電池
WO2024135586A1 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001786.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010776071

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12996710

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10776071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE