WO2011000244A1 - 基于导频的时偏估计装置和方法 - Google Patents

基于导频的时偏估计装置和方法 Download PDF

Info

Publication number
WO2011000244A1
WO2011000244A1 PCT/CN2010/072926 CN2010072926W WO2011000244A1 WO 2011000244 A1 WO2011000244 A1 WO 2011000244A1 CN 2010072926 W CN2010072926 W CN 2010072926W WO 2011000244 A1 WO2011000244 A1 WO 2011000244A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
time
frequency domain
channel estimation
length
Prior art date
Application number
PCT/CN2010/072926
Other languages
English (en)
French (fr)
Inventor
李萍
秦洪峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2012516491A priority Critical patent/JP5597705B2/ja
Priority to US13/259,606 priority patent/US8837614B2/en
Publication of WO2011000244A1 publication Critical patent/WO2011000244A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a pilot-based time-offset estimation apparatus for an Orthogonal Frequency Division Multiplexing (OFDM) system in the field of mobile communications. method. Background technique
  • LTE Long Term Evolution
  • the LTE downlink uses OFDM technology.
  • OFDM has the characteristics of high spectrum utilization and anti-multipath interference.
  • the OFDM system can effectively resist the influence of the wireless channel.
  • the LTE uplink transmission scheme uses a single carrier frequency division multiple access (SC-FDMA) with a cyclic prefix, and is used in an uplink SC-FDMA transmission scheme with a cyclic prefix.
  • SC-FDMA single carrier frequency division multiple access
  • DFT Discrete Fourier Transformation
  • IFFT Inverse Fast Fourier Transformation
  • SC-FDMA SC-FDMA
  • DFT-S-OFDM Orthogonal Frequency Division Multiplexing based on Fourier Transform
  • the deviation of the symbol timing will bring about the phase rotation in the frequency domain and will accumulate the phase with the frequency domain symbols.
  • the time domain timing offset increases the sensitivity of OFDM to delay spread, and the delay spread that the system can tolerate is lower than its design value. In order to minimize this negative impact, it is necessary to minimize the time bias. Therefore, it is necessary to estimate the time offset and ⁇ ⁇ ' correct this deviation.
  • Protocol 3GPP TS 36.213 "Evolved Universal Terrestrial Radio Access
  • E-UTRA Physical layer procedures
  • the base station measures the offset value of the UE (User Equipment) uplink synchronization according to the uplink received signal. And the time offset (TA) is sent to the UE, and the UE adjusts according to the received value.
  • the whole uplink time is implemented to realize the uplink synchronization process, so the time-bias estimation is an indispensable part of the LTE system.
  • the timing offset t of the sample interval is a correspondence between the symbol timing deviation and the subcarrier phase. As the timing changes, the symbol phase on the subcarrier also changes accordingly.
  • the phase deviation that will occur between two adjacent subcarriers in the frequency domain is: Where N is the number of FFT (Fast Fourier Transformation) points corresponding to the system sample frequency.
  • the phase shift increases linearly with the carrier distance, and a phase flip occurs when it reaches a certain level.
  • the existing time-bias estimation technique is sensitive to noise and cannot provide good time-bias estimation performance under the signal-to-noise ratio, and cannot reduce the influence of time-bias on receiver performance.
  • the present invention proposes a pilot-based time offset estimation apparatus and method in an OFDM system to solve the above problems. It is an object of the present invention to provide a pilot based time offset estimation apparatus for an orthogonal frequency division multiplexing system.
  • the pilot-based time-offset estimation apparatus includes: a pilot bit channel estimation module, configured to calculate a target user pilot bit frequency domain according to a received frequency domain demodulation reference symbol and a local frequency domain demodulation reference symbol on each subcarrier a channel estimation value; and a time offset estimation module, configured to perform time-bias estimation on the phase difference of the pilot bit channel estimation values on each subcarrier for each target user.
  • Another object of the present invention is to provide a pilot-based time offset estimation method for an orthogonal frequency division multiplexing system.
  • the method includes: calculating, by using a receiving frequency domain demodulation reference symbol and a local frequency domain demodulation reference symbol, a pilot frequency domain frequency channel estimation value of the target user; respectively, using a guide on each subcarrier for each target user
  • the phase difference of the frequency-frequency frequency domain channel estimation value is time-biased.
  • the pilot-based time-offset estimating device performs multi-user time-bias estimation based on the received pilot sequence, thereby providing a more accurate measurement for time-offset compensation and time-offset reporting, thereby reducing the influence of time-bias on receiver performance. .
  • the pilot-based time-offset estimation method can effectively estimate the relative time offset between the base station and the terminal, and the scheme can be performed for a single user by using a method of time domain multi-user separation and noise reduction.
  • Time-bias estimation it is also possible to perform time-bias estimation on multiple MIMO (Multi-Input Multiple-Output) users, and have certain anti-noise ability. It can also be obtained under low SNR operating point. Accurate estimates.
  • FIG. 1 is a schematic diagram of a position of a pilot signal (PUSCH (Physical Uplink Shared Channel) channel demodulation reference signal) of an SC-FDMA system;
  • FIG. 2 is an embodiment of the present invention.
  • FIG. 3 is a flowchart of a time offset estimation apparatus according to another embodiment of the present invention;
  • FIG. 4 is a flowchart of a time offset estimation method according to an embodiment of the present invention;
  • PUSCH Physical Uplink Shared Channel
  • embodiments of the present invention provide a pilot-based time offset estimation apparatus, which includes: a pilot bit channel estimation module, which is used in each sub- Calculating on the carrier according to the received frequency domain demodulation reference symbol and the local frequency domain demodulation reference symbol, obtaining a target user pilot bit frequency domain channel estimation value; and a time offset estimation module for each target user, Time offset estimation is performed using the phase difference of the pilot bit channel estimates on each subcarrier.
  • the pilot-based time offset estimation apparatus includes: a pilot bit channel estimation module A, configured to perform a frequency domain solution on each subcarrier. And a local frequency domain demodulation reference symbol calculation to obtain a target user pilot bit frequency domain channel estimation value; and a time offset estimation module D, configured to separately use pilot bits on each subcarrier for each target user The phase difference of the channel estimation value is time-biased.
  • the time offset estimation module D calculates each pilot position and the time offset estimation value t on each receiving antenna by the following formula.
  • the time offset estimating apparatus of the orthogonal frequency division multiplexing system includes a pilot bit channel estimation module A, pilot channel estimation multi-user separation, and time domain noise reduction.
  • Module B the time domain channel estimate is transformed to frequency domain module C, time offset estimation module D. The modules are connected in series.
  • the pilot bit channel estimation module A is configured to receive the frequency domain solution on each subcarrier.
  • the reference symbol and the local frequency domain demodulation reference symbol are calculated to obtain a pilot user frequency domain channel estimation value of the target user.
  • the pilot channel estimation multi-user separation and time domain noise reduction module B is configured to perform multi-user separation time domain noise reduction on the pilot channel estimation.
  • the time domain channel estimate is transformed to the frequency domain module C for transforming the noise reduced time domain channel estimate to the frequency domain.
  • the time offset estimation module D is configured to separately calculate each pilot position and the time offset estimation value on each receiving antenna by using the subcarrier phase difference, and average the plurality of pilot positions and the time offset estimation values on the receiving antenna.
  • the pilot channel estimation multi-user separation and time domain noise reduction module B may further include: a time domain channel estimation value acquisition sub-module, configured to transform the pilot bit frequency domain channel estimation value acquired by the pilot bit channel estimation module to the time domain Obtaining a time domain channel estimation value; an impulse response window length acquisition submodule, configured to calculate a effective channel impulse response window length of the target user and separating the user; a filtering noise submodule, configured to obtain the estimated time domain channel value and the target user
  • the effective channel impulse response window filters out noise outside the effective channel impulse response window of the target user of each antenna.
  • the effective channel impulse response window length L w of the target user is calculated by the following formula:
  • the effective channel impulse response window length comprises a front window length and a rear window length
  • ML w L fore + L post
  • M is The length of the frequency domain channel estimation value
  • is the window width adjustment factor, "L”, representing the lower rounding function, indicating the cyclic prefix length
  • L c is the calculated window length parameter corresponding to the CP.
  • the scheme can perform time-bias estimation for a single user, or multiple MIMO (Multi-Input Multiple-Output) technologies.
  • a pilot-based time-offset estimation method includes: S100, receiving frequency domain demodulation reference symbols and local frequency domain demodulation reference symbols on each subcarrier, and acquiring a pilot user frequency domain frequency channel estimation value of the target user;
  • S400 and performing a time offset estimation S400 for each target user using a phase difference of the pilot bit frequency domain channel estimation values on each subcarrier.
  • S400 may further comprise:
  • the target user m uses the frequency domain channel estimation value phase difference on each subcarrier to perform time offset estimation.
  • the following pilot equations can be used to calculate the respective pilot positions and the time offset values on the respective receiving antennas.
  • H k ot ka m is the frequency domain channel estimate of the kth subcarrier
  • H t+ ⁇ toi » is the kth +S subcarrier carrier frequency domain channel estimation value
  • S is the carrier spacing factor, which is an integer integer, which is less than M - S.
  • the time offset compensation may be performed by estimating the obtained t 0 or reported to the MAC (Medium Access Control) layer, so that the MAC notifies the UE to perform timing adjustment.
  • multi-user time-offset estimation is performed based on the received pilot sequence, which provides a more accurate measurement for time offset compensation and time-offset reporting, thereby reducing the influence of time offset on receiver performance.
  • Step S100 calculating a pilot frequency domain frequency channel estimation value of the target user by using the receiving frequency domain demodulation reference symbol and the local frequency domain demodulation reference symbol; on the slot slot_i and the antenna ka, the frequency domain receiving sequence is i , The local frequency domain pilot position is X k , then the channel estimate H sht i is as follows:
  • Step S200 performing multi-user separation time domain noise reduction on the pilot channel estimation.
  • Step S200 further includes:
  • the effective channel impulse response window length includes the front window length and the rear window length, and the front window length is
  • the sample points are the effective channel impulse response window of the user m.
  • c ⁇ represents the cyclic shift of the mth user
  • S203 filters out the noise of each antenna. User's window tap
  • the window tap of the user after step S200 further includes:
  • H (m) (k) DFT(h (n)); ⁇ m ⁇ K User;
  • step 4 S400 Perform time-bias estimation on the phase difference of the pilot bit frequency domain channel estimation values on each subcarrier for each target user.
  • step 4 S400 further includes the following steps:
  • H k ot ka m is the frequency domain channel estimate of the kth subcarrier
  • H t+ ⁇ toi » is the kth +S subcarrier carrier frequency domain channel estimation value
  • S is the carrier spacing factor, which is an integer value smaller than when the cell configuration is normal CP
  • the uplink synchronization is implemented.
  • the time-bias estimation of the obtained pilot frequency-frequency domain channel estimation value reduces the influence of the time offset on the performance of the receiver.
  • the time-offset estimation method of the present invention can effectively estimate the relative time offset between the base station and the terminal, and the method can not only perform time-bias estimation on a single user due to the use of the method of i- or multi-user separation and noise reduction. Moreover, it is possible to perform time-bias estimation on multiple MIMO users, and has certain anti-noise capability, and can obtain more accurate estimation values under the SNR operating point.
  • the present invention is applicable to OFDM systems, and any signal processing, communication Engineers of the same knowledge background may design corresponding devices according to the present invention, any modifications, equivalent substitutions, improvements, etc., which are included in the scope and scope of the present invention. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)

Abstract

本发明公开一种基于导频的时偏估计装置和方法,该时偏估计装置包括:导频位信道估计模块,用于根据接收频域解调参考符号和本地频域解调参考符号计算,获取目标用户导频位频域信道估计值;以及时偏估计模块,用于分别对每个目标用户,使用各个子载波上的导频位信道估计值进行时偏估计。本发明基于接收导频序列进行多用户的时偏估计,为时偏补偿和时偏上报提供更加准确的测量量,可以降低时偏对接收机性能的影响。

Description

基于导频的时偏估计装置和方法 技术领域 本发明涉及移动通信领域, 尤其涉及移动通信领域的正交频分复用 ( Orthogonal Frequency Division Multiplexing, OFDM ) 系统的基于导频的时 偏估计装置和方法。 背景技术
LTE项目是近两年来 3GPP启动的最大的新技术研发项目, 它改进并增 强了 3G的空中接入技术。 与 3G相比, LTE ( Long Term Evolution, 长期演 进)更具技术优势, 体现在更高的用户数据速率、 分组传送、 降低系统延迟、 系统容量和覆盖的改善以及运营成本的降低等方面。
LTE下行链路釆用 OFDM技术, OFDM具有频谱利用率高、 抗多径千 扰等特点, OFDM系统能够有效地抵抗无线信道带来的影响。 通常, OFDM 系统中存在多个天线, 每个天线上有多个导频位置。 LTE上行链路传输方案 釆用带循环前缀的单载波频分复用多址系统 ( Single Carrier Frequency Division Multiple Access, SC-FDMA ), 在上行釆用带循环前缀的 SC-FDMA 传输方案中, 使用 DFT ( Discrete Fourier Transformation, 离散傅立叶变换 ) 获得频域信号, 然后插入零符号进行频谱搬移, 搬移后的信号再通过 IFFT ( Inverse Fast Fourier Transformation, 反傅立叶变换)(因 jt匕, SC-FDMA系 统也称 DFT-S-OFDM (基于傅立叶变换扩展的正交频分复用) 系统), 可以 降氏发射终端的峰均功率比。 符号定时的偏差会带来频域的相位旋转, 并且会随频域符号累计相位。 时域定时偏差会增加 OFDM对时延扩展的敏感程度,那么系统所能容忍的时 延扩展就会低于其设计值。 为了尽量减小这种负面的影响, 需要尽量减小时 偏。 因此就要对时偏进行估计, 并^ ί'爹正这个偏差。 协议 3GPP TS 36.213: "Evolved Universal Terrestrial Radio Access
(E-UTRA); Physical layer procedures".中给出了时偏( TA )调整上 4艮的相关内 容。 基站根据上行接收信号, 测量出 UE ( User Equipment, 用户设备)上行 同步时偏值, 并将这个时偏调整量(TA )下发给 UE, UE再根据收到的值调 整自己的上发时间, 从而实现上行同步过程, 因此时偏估计是 LTE系统必不 可缺的一个部分。 符号定时偏差与子载波相位之间有对应关系, 随着定时的变化, 子载波 上符号相位也会发生相应的变化。 样值间隔的定时偏差 t。会在频域相邻两个 子载波间产生的相位偏差是:
Figure imgf000004_0001
其中, N是系统釆样频率对应的 FFT ( Fast Fourier Transformation, 快速 傅立叶变换) 点数。 相位偏移会随载波距离线性累计增加, 达到一定程度还 会产生相位翻转。 现有时偏估计技术对噪声较为敏感, 不能在氏信噪比下提供良好的时偏 估计性能, 无法降低时偏对接收机性能的影响。 发明内容 基于上述问题, 为了降低时偏对接收机性能的影响, 有必要提供一种简 单、 易实现、 能有效进行时偏估计的装置。 因此, 本发明提出了一种 OFDM 系统中基于导频的时偏估计装置和方法, 以解决上述问题。 本发明的一个目的在于提供一种正交频分复用系统的基于导频的时偏估 计装置。 该基于导频的时偏估计装置包括: 导频位信道估计模块, 用于在各 个子载波上根据接收频域解调参考符号和本地频域解调参考符号计算得到目 标用户导频位频域信道估计值; 以及时偏估计模块, 用于分别对每个目标用 户, 使用各个子载波上的导频位信道估计值的相位差进行时偏估计。 本发明的另一目的在于提供一种正交频分复用系统的基于导频的时偏估 计方法。 该方法包括: 用于 居接收频域解调参考符号和本地频域解调参考 符号计算得到目标用户的导频位频域信道估计值; 分别对每个目标用户, 使 用各个子载波上的导频位频域信道估计值的相位差进行时偏估计。 该基于导频的时偏估计装置是基于接收导频序列进行多用户的时偏估计 的, 从而为时偏补偿和时偏上报提供更加准确的测量量, 以降低时偏对接收 机性能的影响。 才艮据本发明的基于导频的时偏估计方法可以有效地估计基站和终端之间 的相对时偏, 由于釆用了时域多用户分离和降噪的方法, 该方案可以对单用 户进行时偏估计, 也可以对多个 MIMO ( Multiple-Input Multiple-Output, 多 输入多输出技术) 用户进行时偏估计, 并有一定的抗噪能力, 在低信噪比工 作点下也能获得较准确的估计值。 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说 明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优 点可通过在所写的说明书、 权利要求书、 以及附图中所特别指出的结构来实 现和获得。 附图说明 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明的实施例一起用于解释本发明, 并不构成对本发明的限制。 在附图中: 图 1 是 SC-FDMA 系统导频信号 (PUSCH ( Physical Uplink Shared Channel, 物理上行链路共享信道)信道解调参考信号) 位置示意图; 图 2是 居本发明的一实施例的时偏估计装置图; 图 3 是才艮据本发明另一实施例的时偏估计装置图; 图 4是才艮据本发明一实施例的时偏估计方法流程图; 图 5是 居本发明另一实施例的时偏估计方法流程图。 具体实施方式 功能相克述 为了降低时偏对接收机性能的影响, 本发明实施例提供了一种基于导频 的时偏估计装置, 该装置包括: 导频位信道估计模块, 用于在各个子载波上 才艮据接收的频域解调参考符号和本地频域解调参考符号计算, 获取目标用户 导频位频域信道估计值; 以及时偏估计模块, 用于分别对每个目标用户, 使 用各个子载波上的所述导频位信道估计值的相位差进行时偏估计。 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。 应当理 解, 此处所描述的优选实施例仅用于说明和解释本发明, 并不用于限定本发 明。 装置实施例 才艮据本发明的一个实施例, 如图 2所示, 该基于导频的时偏估计装置包 括: 导频位信道估计模块 A, 用于在各个子载波上根据接收频域解调参考符 号和本地频域解调参考符号计算, 获取目标用户导频位频域信道估计值; 以 及时偏估计模块 D , 用于分别对每个目标用户, 使用各个子载波上的导频位 信道估计值的相位差进行时偏估计。 本实施例中, 时偏估计模块 D通过如下公式计算各个导频位置、 各个接 收天线上的时偏估计值 t。rff i k(m、:
Figure imgf000006_0001
其中, m是目标用户; slot_i是时隙; ka是天线; M是频域信道估计值 的长度; N是 FFT点数; "angle ( )" 是求角度函数; "conj ( )" 是求共轭函 数; H« 为第 k 个子载波的频域信道估计值; Hk+s,shtMm、 k+S 个子载波的频域信道估计值; S是载波间隔因子, 取值整数, 小于 M - S , 当 小区配置是常规循环前缀的时候, S 默认取值 6 , 当小区配置是扩展循环前 缀的时候, S默认取值 2。 相关技术中, 时偏估计对噪声较为敏感, 不能在低信噪比下提供良好的 时偏估计性能。 而本实施例基于接收导频序列进行多用户的时偏估计, 为时 偏补偿和时偏上报提供更加准确的测量量, 可以降低时偏对接收机性能的影 响。 才艮据本发明的另一实施例, 如图 3所示, 正交频分复用系统的时偏估计 装置包括导频位信道估计模块 A、 导频信道估计多用户分离和时域降噪模块 B、 时域信道估计值变换到频域模块 C、 时偏估计模块 D。 各个模块之间串 联连接。 其中, 导频位信道估计模块 A , 用于在各个子载波上根据接收的频域解 调参考符号和本地频域解调参考符号计算, 获取目标用户的导频位频域信道 估计值。 导频信道估计多用户分离和时域降噪模块 B, 用于对导频信道估计 进行多用户分离时域降噪。 时域信道估计值变换到频域模块 C, 用于将降噪 后的时域信道估计值变换到频域。 时偏估计模块 D, 用于使用子载波相位差 分别计算各个导频位置、各个接收天线上的时偏估计值, 并将多个导频位置、 接收天线上的时偏估计值求平均。 导频信道估计多用户分离和时域降噪模块 B还可以包括: 时域信道估计 值获取子模块, 用于将导频位信道估计模块获取的导频位频域信道估计值变 换到时域, 得到时域信道估计值; 冲击响应窗长获取子模块, 用于计算目标 用户的有效信道冲击响应窗长并分离用户; 滤噪子模块, 用于通过得到的时 域信道估计值和目标用户的有效信道冲击响应窗, 将各天线的目标用户的有 效信道冲击响应窗外的噪声均滤掉。 本实施例中, 冲击响应窗长获取子模块中, 通过如下公式计算目标用户 的有效信道冲击响应窗长 Lw:
Lc = max( 1)
2048 其中, 有效信道冲击响应窗长 包括前窗长度和后窗长度, 前窗长度为 Lfore = fLc , 后窗长度为 J^ =^4 , M Lw = Lfore +Lpost , M是频域信道估计值 的长度, 和 ^是窗宽调整因子, "L 」,, 表示下取整函数, 表示循环前缀 长度, Lc是计算出来的 CP对应的窗长参数。 本实施例中, 由于釆用了时域多用户分离和降噪的方法, 该方案可以对 单用户进行时偏估计, 也可以对多个 MIMO ( Multiple-Input Multiple-Output, 多输入多输出技术) 用户进行时偏估计, 并有一定的抗噪能力, 在低信噪比 工作点下也能获得较准确的估计值。 方法实施例 根据本发明的另一方面, 如图 4所示, 根据本发明的基于导频的时偏估 计方法包括: S 100 , 在各个子载波上 居接收频域解调参考符号和本地频域解调参考 符号计算, 获取目标用户的导频位频域信道估计值;
S400 , 以及分别对每个目标用户, 使用各个子载波上的所述导频位频域 信道估计值的相位差进行时偏估计 S400。 优选地, S400又可以包括:
S401 , 当已经获得用户 m的频域信道估计值时, 对目标用户 m, 使用各 个子载波上的频域信道估计值相位差进行时偏估计。 可以利用下述公式分别 计算各个导频位置、 各个接收天线上的时偏值,
N i l
* ∑ angle(Hk slot iMXm) * conj(Hk+S slot iMJm)))
Figure imgf000008_0001
其中, M是频 i或信道估计值的长度; Ν是 FFT点数 ( 20M->2048 ); "angle
( )" 是求角度函数(单位: 弧度); "conj ( )" 是求共轭函数; Hk ot ka m 为 第 k个子载波的频域信道估计值; Ht+^toi»)为第 k+S个子载波的频域信道 估计值; S是载波间隔因子,取值整数,小于 M - S ,当小区配置是 normal CP (常规循环前缀 ) 的时候, S默认取值 6 , 当小区配置是 Extended CP (扩展 循环前缀) 的时候, S默认取值 2。 估计得到时偏值 to dot i ka (m)的单位是 Ts。
S402 , 将多个导频位置、 接收天线上的时偏估计值求平均。 可以对 2个 导频利用下述公式各自算出的 t。求平均, 再对接收天线求平均, 得到当前子 帧的时偏估计值 ^,
可以用估计到得 t0进行时偏补偿,或者给 MAC ( Medium Access Control , 介质访问控制) 层上报, 以便 MAC通知 UE进行定时调整。 本实施例基于接收导频序列进行多用户的时偏估计, 为时偏补偿和时偏 上报提供更加准确的测量量, 因此可以降低时偏对接收机性能的影响。 下面结合附图 5对才艮据本发明另一实施例的技术方案的实施作进一步的 详细描述, 应当理解, 此处所描述的优选实施例仅用于说明和解释本发明, 并不用于限定本发明: 步骤 S100, 居接收频域解调参考符号和本地频域解调参考符号计算得 到目标用户的导频位频域信道估计值; 时隙 slot_i和天线 ka上, 频域接收序 列为 i ,本地频域导频位置为 Xk, 那么信道估计 H sht i 如下式所示:
Y k,,slot _i,ka
H k,slot i,ka a k,slot l≤k≤M 步骤 S200, 对导频信道估计进行多用户分离时域降噪。 步骤 S200进一步包括:
5201, 将频域信道估计做反傅里叶变换 (IDFT) 变换到时域: h(n) = IDFT(H(k))
5202, 计算目标用户的有效信道冲击响应窗长 Jw ,
Lc = max( ,1)
2048 其中, "L」,, 表示下取整函数, 表示循环前缀长度, c是计算出来的 CP (循环前缀) 对应的窗长参数, M是频域信道估计值的长度。 有效信道冲击响应窗长 包括前窗长度和后窗长度, 前窗长度为
Lfore=AfLc, 后窗长度 J^=^4, 和 ^是窗宽调整因子, 可以通过仿真或 测试获得。
Lw = /。re + Lpost。 设用户的个数是 K_User, 时域序列 上存在多个用户的信道估计, 对 用户 m, 则这个用户相对母码的循环移位数 /«ί¾¾„、 = 开始的左右窗
(Lfore +Lpost)个样点为用户 m的有效信道冲击响应窗。 其中, c^)表示第 m个 用户的循环移位偏移 ( cyclic shift )„
S203将各天线的窗外噪声均滤掉。 用户 的窗内抽头
Figure imgf000010_0001
用户 的窗外抽头 在步骤 S200之后, 还包括:
S300 , 将降噪后 的 时域信道估计值 变换到 频域 S300
H(m) (k) = DFT(h (n)); \<m< K User;
5400, 分别对每个目标用户, 使用各个子载波上的导频位频域信道估计 值的相位差进行时偏估计。 其中, 步 4聚 S400进一步包括以下步 4聚:
5401, 对目标用户 m, 使用各个子载波上的信道估计值进行时偏估计; 分别计算各个导频位置、 各个接收天线上的时偏值,
N 1 1 (M~s
* ∑ angle(Hk slot J ka (m) *conj(Hk+Sslot J ka (m)))
2π M-S S 其中, M是频域信道估计值的长度; N是 FFT点数( 20M->2048 ); "angle
( )" 是求角度函数(单位: 弧度); "conj ( )" 是求共轭函数; Hk ot ka m 为 第 k个子载波的频域信道估计值; Ht+^toi»)为第 k+S个子载波的频域信道 估计值; S是载波间隔因子,取值整数, 小于 当小区配置是 normal CP
(常规循环前缀 ) 的时候, S默认取值 6, 当小区配置是 Extended CP (扩展 循环前缀) 的时候, S默认取值 2。
S402, 将多个导频位置、 天线上的时偏估计值求平均。 对 2个导频各自 算出的 ^求平均, 再对接收天线求平均, 得到当前子帧的时偏估计值 ^, 2
- ( ο» )。
估计得到时偏估计值 t 。f fl (m)、 的单位均为 Ts, ( lTs= 1/30720ms )„ 可以用估计到得 T0进行时偏补偿, 或者生成同步命令字上报给 MAC层, 以 便 MAC层通知 UE进行定时调整, 实现上行同步。 综上所述, 通过本发明的上述实施例, 通过对获取的导频位频域信道估 计值进行时偏估计, 降低了时偏对接收机性能的影响。 并且, 釆用本发明的 时偏估计方法可以有效地估计基站和终端之间的相对时偏, 由于釆用了时 i或 多用户分离和降噪的方法, 使得该方案不仅可以对单用户进行时偏估计, 而 且可以对多个 MIMO用户进行时偏估计, 并有一定的抗噪能力, 在氏信噪比 工作点下也能获得较准确的估计值。 本发明适用于 OFDM系统, 任何具有信号处理, 通信等知识背景的工程 师, 都可以根据本发明设计相应的装置, 所作的任何修改、 等同替换、 改进 等, 其均应包含在本发明的思想和范围内。

Claims

权 利 要 求 书 一种基于导频的时偏估计装置, 其特征在于, 包括:
导频位信道估计模块, 用于在各个子载波上根据接收频域解调参考 符号和本地频域解调参考符号计算得到目标用户导频位频域信道估计 值; 以及
时偏估计模块, 用于分别对每个目标用户, 使用各个子载波上的所 述导频位频域信道估计值的相位差进行时偏估计。 根据权利要求 1所述的基于导频的时偏估计装置, 其特征在于, 所述时 偏估计模块使用得到的所述导频位频域信道估计值的相位差分别计算各 个导频位置、 各个接收天线上的时偏估计值。 根据权利要求 2所述的基于导频的时偏估计装置, 其特征在于, 所述时 偏估计模块将计算获得的多个导频位置、 接收天线上的时偏估计值求平 均。 根据权利要求 3所述的基于导频的时偏估计装置, 其特征在于, 所述时 偏估计模块通过如下公式计算第 ka天线的第 m用户的第 k个子载波的 时隙为 slot_i的时偏估计值
Figure imgf000012_0001
其中, M是频域信道估计值的长度; N是 FFT点数; S是载波间隔 因子, 取值整数, 小于 M - S , 当小区配置是常规循环前缀的时候, S默 认取值第一值, 当小区配置是扩展循环前缀的时候, S默认取值第二值; "angle ( )" 是求角度函数; "conj ( )" 是求共轭函数; 为第 ka天线的第 m用户的第 k个子载波的时隙为 slot_i的频域信道估计值; Hk+S slot ,»)为第 ka天线的第 m用户的第 k+S个子载波的时隙为 slot_i 的频域信道估计值。 根据权利要求 1-4 中任一项所述的基于导频的时偏估计装置, 其特征在 于, 还包括: 导频信道估计多用户分离和时域降噪模块, 用于对导频信道估计进 行多用户分离时域降噪;
时域信道估计值变换到频域模块, 用于将通过所述时域降噪模块降 噪而得到的降噪后的时域信道估计值变换到频域。
6. 根据权利要求 5所述的基于导频的时偏估计装置, 其特征在于所述导频 信道估计多用户分离和时域降噪模块还可以包括:
时域信道估计值获取子模块, 用于将所述导频位信道估计模块获取 的导频位频域信道估计值变换到时域, 得到时域信道估计值;
冲击响应窗长获取子模块, 用于计算目标用户的有效信道冲击响应 窗长并分离用户;
滤噪子模块, 用于通过得到的时域信道估计值和目标用户的有效信 道冲击响应窗, 将各天线的目标用户的有效信道冲击响应窗外的噪声均 滤掉。
7. 根据权利要求 5所述的基于导频的时偏估计装置, 其特征在于, 所述冲击 响应窗长获取模块中, 通过如下公式计算目标用户的有效信道冲击响应 窗长^:
Lc = max(
2048 其中, 有效信道冲击响应窗长 包括前窗长度和后窗长度, 前窗长 ^ Lfore = fLc , 后窗长度为 Lpst = ApLc , M Lw = Lfore +Lpost , 其中, M是频域信道估计值的长度, 和 ^是窗宽调整因子, "L J" 表示下取整函数, /OT表示循环前缀长度, Lc是计算出来的 CP对应的窗 长参数。 一种基于导频的时偏估计方法, 其特征在于, 包括:
用于在各个子载波上才艮据接收的频域解调参考符号和本地频域解调 参考符号计算得到目标用户的导频位频域信道估计值; 以及
分别对每个目标用户, 使用各个子载波上的所述导频位频域信道估 计值的相位差进行时偏估计。
9. 根据权利要求 8所述的基于导频的时偏估计方法, 其特征在于, 所述分 别对每个目标用户, 使用各个子载波上的所述导频位频域信道估计值的 相位差进行时偏估计的步骤包括: 使用子载波相位差分别计算各个导频 位置、 各个接收天线上的时偏估计值。
10. 根据权利要求 9所述的基于导频的时偏估计方法, 其特征在于, 所述分 别对每个目标用户, 使用各个子载波上的所述导频位频域信道估计值相 位差进行时偏估计的步骤还包括: 将计算获得的多个导频位置、 接收天 线上的时偏估计值求平均。
11. 根据权利要求 8所述的基于导频的时偏估计方法, 其特征在于, 在分别 对每个目标用户, 使用各个子载波上的所述导频位频域信道估计值相位 差进行时偏估计之前, 所述方法还包括:
对导频信道估计进行多用户分离时域降噪;
将通过所述时域降噪模块降噪而得到的降噪后的时域信道估计值变 换到频域。
12. 根据权利要求 11所述的基于导频的时偏估计方法, 其特征在于, 所述对 导频信道估计进行多用户分离时域降噪具体包括:
将所述导频位信道估计模块获取的导频位频域信道估计值变换到时 域, 得到时域信道估计值;
计算目标用户的有效信道冲击响应窗长并分离用户; 通过得到的时域信道估计值和目标用户的有效信道冲击响应窗, 将 各接收天线的目标用户的有效信道冲击响应窗外的噪声均滤掉。
13. 根据权利要求 9所述的基于导频的时偏估计方法, 其特征在于, 通过如 下公式计算第 ka天线的第 m用户的第 k个子载波的时隙为 slot_i的时偏 估计值 t fli
Figure imgf000014_0001
其中, M是频域信道估计值的长度; N是 FFT点数; S是载波间隔 因子, 取值整数, 小于 M - S , 当小区配置是常规循环前缀的时候, S默 认取值第一值, 当小区配置是扩展循环前缀的时候, S默认取值第二值; "angle ( )" 是求角度函数; "conj ( )" 是求共轭函数; H^to 为第 ka天线的第 m用户的第 k个子载波的时隙为 slot_i的频域信道估计值; Hk+S slot ,»)为第 ka天线的第 m用户的第 k+S个子载波的时隙为 slot_i 的频域信道估计值。
14. 才艮据权利要求 11所述的基于导频的时偏估计方法, 其特征在于, 通过如 下公式计算目标用户的有效信道冲击响应窗长 Lw:
Lc = max( i)
2048
其中, 有效信道冲击响应窗长^包括前窗长度和后窗长度, 前窗长 度为 ^ = 4, 后窗长度为 J^ =^4, 则 Lw = Lfore + Lpost , 其中, M是频域信道估计值的长度, 和 ^是窗宽调整因子, "L J" 表示下取整函数, /OT表示循环前缀长度, Lc是计算出来的 CP对应的窗 长参数。
PCT/CN2010/072926 2009-07-03 2010-05-19 基于导频的时偏估计装置和方法 WO2011000244A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012516491A JP5597705B2 (ja) 2009-07-03 2010-05-19 パイロットによるタイムオフセット推測装置及びその方法
US13/259,606 US8837614B2 (en) 2009-07-03 2010-05-19 Pilot-based time offset estimation apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910151594.5 2009-07-03
CN 200910151594 CN101945073B (zh) 2009-07-03 2009-07-03 基于导频的时偏估计装置和方法

Publications (1)

Publication Number Publication Date
WO2011000244A1 true WO2011000244A1 (zh) 2011-01-06

Family

ID=43410485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072926 WO2011000244A1 (zh) 2009-07-03 2010-05-19 基于导频的时偏估计装置和方法

Country Status (4)

Country Link
US (1) US8837614B2 (zh)
JP (1) JP5597705B2 (zh)
CN (1) CN101945073B (zh)
WO (1) WO2011000244A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111131119A (zh) * 2019-12-27 2020-05-08 广东省电信规划设计院有限公司 一种正交频分复用系统高精度定时偏移估计的方法及装置
CN111404850A (zh) * 2020-03-23 2020-07-10 北京星网锐捷网络技术有限公司 一种基于5g 系统的上行信道估计方法和装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102790737B (zh) * 2011-05-17 2017-11-28 中兴通讯股份有限公司 一种系统的同步方法及装置
WO2013063207A1 (en) 2011-10-28 2013-05-02 Corning Incorporated Glass articles with infrared reflectivity and methods for making the same
CN102710562B (zh) * 2012-06-01 2014-12-31 武汉邮电科学研究院 一种基于相位和信道冲击的联合时偏估计方法
US9673967B2 (en) * 2013-02-19 2017-06-06 University Of South Australia Synchronisation using pilots and data
CN108199809B (zh) * 2014-05-23 2021-10-01 华为技术有限公司 一种传输信息的方法,基站和用户设备
US9907092B2 (en) 2014-10-09 2018-02-27 Qualcomm Incorporated Uplink synchronization without preamble in SC-FDMA
WO2016176096A1 (en) 2015-04-30 2016-11-03 Corning Incorporated Electrically conductive articles with discrete metallic silver layers and methods for making same
CN106878213B (zh) * 2015-12-10 2019-12-20 普天信息技术有限公司 一种lte上行频偏估计的方法
CN107204946B (zh) * 2016-03-18 2021-05-04 中兴通讯股份有限公司 一种用于pusch信道的相位补偿方法及装置
US10116483B2 (en) * 2016-04-18 2018-10-30 Qualcomm Incorporated Dynamically convey information of demodulation reference signal and phase noise compensation reference signal
US10382244B2 (en) * 2017-02-14 2019-08-13 Samsung Electronics Co., Ltd. System and method for providing time offset and frequency offset estimation for vehicle to everything communication system
CN107104916A (zh) * 2017-03-20 2017-08-29 西安电子科技大学 适用lte多用户上行链路的迭代相关符号定时估计方法
US10686583B2 (en) * 2017-07-04 2020-06-16 Kandou Labs, S.A. Method for measuring and correcting multi-wire skew
CN112804176B (zh) * 2019-11-13 2022-06-28 大唐移动通信设备有限公司 一种时域偏差估计方法、装置及基站
CN110855595B (zh) * 2019-11-29 2022-04-01 紫光展讯通信(惠州)有限公司 时偏估计方法、装置、接收机及存储介质
CN113132275B (zh) * 2021-03-12 2022-05-24 杭州红岭通信息科技有限公司 一种适用于上行业务的信道估计方法
CN113271279B (zh) * 2021-05-14 2022-07-05 成都爱瑞无线科技有限公司 一种窄带物联网随机接入信道的高精度检测方法
CN114124624B (zh) * 2021-11-19 2023-11-17 成都爱瑞无线科技有限公司 一种基于导频的信道估计方法及系统
CN114726696B (zh) * 2022-03-09 2024-04-12 芯翼信息科技(上海)有限公司 基于窄带系统的频偏估计方法、终端及存储介质
CN114884538B (zh) * 2022-07-11 2022-10-25 四川创智联恒科技有限公司 一种nr上行控制信道的时偏估计方法和系统
CN115987725B (zh) * 2023-03-17 2023-05-23 深圳国人无线通信有限公司 一种基于多用户dmrs信道时偏处理方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1917397A (zh) * 2006-09-19 2007-02-21 北京邮电大学 一种mimo-ofdm系统信道估计的方法
WO2008026891A1 (en) * 2006-08-30 2008-03-06 Posdata Co., Ltd. Apparatus and method for estimating and compensating time offset and/or carrier frequency offset in mimo system based ofdm/ofdma
KR20080041008A (ko) * 2006-11-06 2008-05-09 포스데이타 주식회사 직교 주파수 분할 다중 또는 직교 주파수 분할 다중 접속방식을 지원하는 수신 장치 및 그 방법
US20080130813A1 (en) * 2006-11-30 2008-06-05 Samsung Electronics Co., Ltd. Apparatus and method for compensating timing offset in broadband wireless communication system
CN101267422A (zh) * 2008-03-10 2008-09-17 电子科技大学 一种正交频分复用系统的频域信道估计方法

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5956624A (en) * 1994-07-12 1999-09-21 Usa Digital Radio Partners Lp Method and system for simultaneously broadcasting and receiving digital and analog signals
US5625646A (en) * 1995-06-26 1997-04-29 Motorola, Inc. Method, device, DSP and modem for efficient echo canceler phase roll tracking
US5815529A (en) * 1996-04-04 1998-09-29 Lucent Technologies Inc. Transmission system for digital audio broadcasting that incorporates a rotator in the transmitter
JP3237827B2 (ja) * 1998-04-22 2001-12-10 日本電気株式会社 無線データ通信端末
US6647071B2 (en) * 1998-11-06 2003-11-11 Texas Instruments Incorporated Method and apparatus for equalization and tracking of coded digital communications signals
US6831943B1 (en) * 1999-08-13 2004-12-14 Texas Instruments Incorporated Code division multiple access wireless system with closed loop mode using ninety degree phase rotation and beamformer verification
US6831954B1 (en) * 2000-02-01 2004-12-14 Nokia Corporation Apparatus, and associated method, for compensating for distortion introduced upon a send signal by an amplifier
FR2813464B1 (fr) * 2000-08-29 2006-07-07 Mitsubishi Electric Inf Tech Methode de detection multi-utilisateur
US7012881B2 (en) * 2000-12-29 2006-03-14 Samsung Electronic Co., Ltd. Timing and frequency offset estimation scheme for OFDM systems by using an analytic tone
US6996199B2 (en) * 2001-01-25 2006-02-07 Bandspeed, Inc. Approach for processing data received from a communications channel to reduce noise power and optimize impulse response length to reduce inter-symbol interference and inter-channel interference
NZ509688A (en) * 2001-02-01 2003-06-30 Ind Res Ltd Maximum likelihood sychronisation (estimating time delay) for wireless digital communications system using a pilot symbol
US8290098B2 (en) * 2001-03-30 2012-10-16 Texas Instruments Incorporated Closed loop multiple transmit, multiple receive antenna wireless communication system
KR100425297B1 (ko) * 2001-06-11 2004-03-30 삼성전자주식회사 효율적인 심볼 타이밍 옵셋을 추정하는 ofdm 수신시스템 및 그 방법
US6996164B1 (en) * 2002-01-15 2006-02-07 Viasat, Inc. Self-interference removal using converter compensation in a relayed communication system
AU2003903826A0 (en) * 2003-07-24 2003-08-07 University Of South Australia An ofdm receiver structure
AU2002952566A0 (en) * 2002-11-07 2002-11-21 Dspace Pty Ltd Pilot symbol patterns in communication systems
WO2004093366A2 (en) * 2003-04-09 2004-10-28 Jabil Circuit, Inc. Method for initialization of per tone frequency domain equalizer (feq) through noise reduction for multi-tone based modems
US7251283B2 (en) * 2003-10-20 2007-07-31 Mediatek, Inc. Timing offset compensation in orthogonal frequency division multiplexing systems
US7145937B2 (en) * 2003-10-29 2006-12-05 Viasat, Inc. GMSK spread modulation
EP1531590A1 (en) * 2003-11-11 2005-05-18 STMicroelectronics Belgium N.V. Method and apparatus for channel equalisation with estimation of the channel impulse response length
US7339999B2 (en) * 2004-01-21 2008-03-04 Qualcomm Incorporated Pilot transmission and channel estimation for an OFDM system with excess delay spread
US7469491B2 (en) * 2004-01-27 2008-12-30 Crestcom, Inc. Transmitter predistortion circuit and method therefor
JP4443991B2 (ja) * 2004-04-23 2010-03-31 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、受信装置及び受信方法
CN100359959C (zh) * 2004-06-01 2008-01-02 华为技术有限公司 一种在正交多路频分复用系统中实现信道估计的方法
US7046753B2 (en) * 2004-06-29 2006-05-16 Provigent Ltd. Interference canceller with fast phase adaptation
JP4665514B2 (ja) * 2004-12-28 2011-04-06 ソニー株式会社 無線通信装置及び無線通信方法
JP2008527456A (ja) * 2005-01-18 2008-07-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マルチビューディスプレイ装置
KR100770924B1 (ko) * 2005-02-04 2007-10-26 삼성전자주식회사 무선 통신 시스템에서 주파수 오차 보상 장치 및 방법
US7630428B2 (en) * 2005-07-28 2009-12-08 Itt Manufacturing Enterprises, Inc. Fast digital carrier frequency error estimation algorithm using synchronization sequence
CN1917490A (zh) 2005-08-16 2007-02-21 松下电器产业株式会社 降低正交频分复用信号的峰均比的方法
CN101278497B (zh) * 2005-08-19 2013-06-12 韩国电子通信研究院 用于正交频分复用系统和基于正交频分复用的蜂窝系统的虚拟多天线方法
JP4516505B2 (ja) * 2005-09-21 2010-08-04 シャープ株式会社 Ofdm受信装置
JP4557859B2 (ja) * 2005-09-29 2010-10-06 富士通株式会社 周波数分割多重送受信装置及び送受信方法
EP2148483B1 (en) * 2005-10-28 2017-05-10 Huawei Technologies Co., Ltd. OFDM system with subcarrier group phase rotation
US7613260B2 (en) * 2005-11-21 2009-11-03 Provigent Ltd Modem control using cross-polarization interference estimation
AU2007233563B2 (en) * 2006-04-03 2011-07-14 National Ict Australia Limited Channel estimation for rapid dispersive fading channels
CN101455015A (zh) * 2006-05-25 2009-06-10 夏普株式会社 接收机和传送路径推断方法
JP4832261B2 (ja) * 2006-11-15 2011-12-07 富士通株式会社 チャネル推定装置
DE102006056158B4 (de) * 2006-11-28 2011-11-17 Infineon Technologies Ag Kanalschätzung für OFDM Systeme
US8085873B2 (en) 2007-01-02 2011-12-27 Qualcomm, Incorporated Systems and methods for enhanced channel estimation in wireless communication systems
US8131218B2 (en) * 2007-04-13 2012-03-06 General Dynamics C4 Systems, Inc. Methods and apparatus for wirelessly communicating signals that include embedded synchronization/pilot sequences
US7852909B2 (en) * 2007-05-04 2010-12-14 Beceem Communications Inc. Method and apparatus for estimating frequency offset and timing offset of one or more mobile stations (MSs)
US7848460B2 (en) * 2007-07-12 2010-12-07 Telefonaktiebolaget Lm Ericsson (Publ) Interference suppression method and apparatus
US8085859B2 (en) * 2007-09-28 2011-12-27 Intel Corporation Platform noise mitigation
US7809046B2 (en) * 2007-10-03 2010-10-05 Agere Systems Inc. Timing-offset estimation in modulated signals using weighted correlation values
JP5217373B2 (ja) * 2007-11-13 2013-06-19 住友電気工業株式会社 通信装置及び位相回転量推定方法
JP5233251B2 (ja) * 2007-11-13 2013-07-10 住友電気工業株式会社 通信装置、送信タイミング調整方法、及び送信周波数調整方法
JP5315676B2 (ja) * 2007-11-26 2013-10-16 住友電気工業株式会社 Mimo通信装置及びmimo通信方法
US7995973B2 (en) * 2008-12-19 2011-08-09 Telefonaktiebolaget Lm Ericsson (Publ) Own transmitter interference tolerant transceiver and receiving methods
KR101179931B1 (ko) * 2008-12-11 2012-09-07 한국전자통신연구원 무선 통신 시스템에서 타이밍 옵셋 추정 장치 및 방법
US8249116B2 (en) * 2008-12-24 2012-08-21 Qualcomm Incorporated Methods and systems for timing acquisition robust to channel fading

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026891A1 (en) * 2006-08-30 2008-03-06 Posdata Co., Ltd. Apparatus and method for estimating and compensating time offset and/or carrier frequency offset in mimo system based ofdm/ofdma
CN1917397A (zh) * 2006-09-19 2007-02-21 北京邮电大学 一种mimo-ofdm系统信道估计的方法
KR20080041008A (ko) * 2006-11-06 2008-05-09 포스데이타 주식회사 직교 주파수 분할 다중 또는 직교 주파수 분할 다중 접속방식을 지원하는 수신 장치 및 그 방법
US20080130813A1 (en) * 2006-11-30 2008-06-05 Samsung Electronics Co., Ltd. Apparatus and method for compensating timing offset in broadband wireless communication system
CN101267422A (zh) * 2008-03-10 2008-09-17 电子科技大学 一种正交频分复用系统的频域信道估计方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111131119A (zh) * 2019-12-27 2020-05-08 广东省电信规划设计院有限公司 一种正交频分复用系统高精度定时偏移估计的方法及装置
CN111404850A (zh) * 2020-03-23 2020-07-10 北京星网锐捷网络技术有限公司 一种基于5g 系统的上行信道估计方法和装置
CN111404850B (zh) * 2020-03-23 2022-12-13 北京星网锐捷网络技术有限公司 一种基于5g系统的上行信道估计方法和装置

Also Published As

Publication number Publication date
CN101945073A (zh) 2011-01-12
US8837614B2 (en) 2014-09-16
JP5597705B2 (ja) 2014-10-01
JP2012531767A (ja) 2012-12-10
CN101945073B (zh) 2013-02-27
US20120099631A1 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
WO2011000244A1 (zh) 基于导频的时偏估计装置和方法
CN107306238B (zh) 载波调制信号的接收、发送方法及相应接收机与发射机
EP2437450B1 (en) Device and method for estimating time offset in orthogonal frequency division multiplexing (ofdm) system
CN102694763B (zh) 一种用于td-lte系统整数倍频偏估计的方法
KR101791987B1 (ko) 무선 통신 시스템에서 프리앰블 전송 방법 및 장치
US9001935B2 (en) Method and arrangement in wireless communications system
US8462613B2 (en) Channel estimation for long term evolution (LTE) terminals
US8498354B2 (en) Digital communications receiver and method of estimating residual carrier frequency offset in a received signal
WO2018202038A1 (zh) 一种确定上行同步定时偏差的方法及装置
KR101505091B1 (ko) 직교주파수분할 방식 기반의 무선통신 시스템에서 초기 동기화를 위한 장치 및 방법
US10171278B2 (en) Methods and apparatus for frequency offset estimation
JP2008533846A (ja) マルチキャリアシステムおよびチャネル推定時間フィルタへの伝搬におけるタイミング補正
JP2012519986A (ja) 直交周波数分割多重無線通信システムにおけるキャリア周波数オフセットを補償するための方法及び装置
KR101485785B1 (ko) 무선 통신 시스템에서 주파수 추정 방법 및 장치
WO2009114374A2 (en) I/q imbalance estimation using synchronization signals in lte systems
EP2515459A1 (en) Frequency offset compensation and equalization method and device in an orthogonal frequency division multiplexing system
KR101421406B1 (ko) 광대역 무선접속 통신 시스템에서 주파수 동기를 위한 상관장치 및 방법
US20100208847A1 (en) OFDM Receiver for Dispersive Environment
EP2612457B1 (en) Apparatus and method for I/Q offset cancellation in SC-FDMA systems
CN101119350A (zh) 正交频分复用系统、快速同步的方法和发送端设备
CN104836770B (zh) 一种基于相关平均与加窗的定时估计方法
KR20140112905A (ko) 장치 간 직접 통신을 지원하는 무선 통신 시스템에서 주파수 동기를 위한 방법 및 장치
WO2011147181A1 (zh) 一种信道估计方法及装置、频偏估计方法及装置
WO2011137631A1 (zh) 测距码检测方法和装置
US10212679B1 (en) Method and apparatus for delay spread estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13259606

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 7891/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012516491

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10793539

Country of ref document: EP

Kind code of ref document: A1