WO2010150862A1 - 蛍光温度プローブおよびそれを用いた温度測定装置 - Google Patents

蛍光温度プローブおよびそれを用いた温度測定装置 Download PDF

Info

Publication number
WO2010150862A1
WO2010150862A1 PCT/JP2010/060788 JP2010060788W WO2010150862A1 WO 2010150862 A1 WO2010150862 A1 WO 2010150862A1 JP 2010060788 W JP2010060788 W JP 2010060788W WO 2010150862 A1 WO2010150862 A1 WO 2010150862A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
fluorescent
seq
polypeptide represented
fluorescent protein
Prior art date
Application number
PCT/JP2010/060788
Other languages
English (en)
French (fr)
Inventor
健治 永井
一平 小寺
卓也 岩崎
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Publication of WO2010150862A1 publication Critical patent/WO2010150862A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/20Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using thermoluminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae

Definitions

  • the present invention relates to a fluorescent temperature probe, a temperature measuring device using the same, and a temperature measuring method.
  • thermocouple thermometer calculates the temperature from the thermoelectromotive force value
  • resistance thermometer calculates the temperature from the electric resistance value.
  • the mercury thermometer calculates the temperature by utilizing the thermal expansion of mercury.
  • the mercury thermometer has a problem in that the object to be measured is limited because of its shape and heat capacity.
  • a temperature sensor using a radiation thermometer, a phosphor or a semiconductor is used for temperature measurement in a region where these thermometers cannot be used.
  • a radiation thermometer calculates temperature using the energy of the thermal radiation which a measurement object discharge
  • the radiation thermometer can only measure the temperature of the surface of the object to be measured, and there is a problem that accurate temperature measurement cannot be performed when there is a spectrum or reflection spectrum unique to the object in a low temperature range. there were.
  • Patent Document 1 discloses a temperature sensor using a phosphor containing a polypyridine metal complex or a derivative thereof.
  • the temperature sensor using this phosphor calculates the temperature from the temperature characteristic curve created by examining the relationship between the fluorescence intensity and the temperature.
  • the relationship between the fluorescence intensity and the temperature does not always follow a clear mathematical expression such as a proportional relationship.
  • an accurate temperature characteristic curve had to be created.
  • the temperature characteristic curve had to be calibrated by examining many points at a fine interval.
  • Patent Document 2 discloses a temperature sensor in which a semiconductor is attached to the tip of an optical fiber. This temperature sensor using a semiconductor calculates the temperature by utilizing the fact that the light transmittance changes depending on the temperature. However, this temperature sensor using a semiconductor has a problem that a standard body indicating standard transmittance is required when creating a temperature characteristic curve indicating the relationship between temperature and light transmittance.
  • Patent Document 3 discloses a temperature sensor that is suitable for temperature measurement under an electric field and a magnetic field, and that can easily create and calibrate a temperature characteristic curve.
  • the temperature is calculated by utilizing the property that the fluorescence spectrum of erbium ions or thulium ions doped in a matrix made of chloride reverses the relationship between fluorescence intensity and temperature before and after a specific wavelength.
  • this temperature sensor has only a few percent change in the ratio of the fluorescence intensity at 520-540 nm and the fluorescence intensity at 540-560 nm with respect to the temperature change from 25 ° C. to 50 ° C. .
  • the range of 10-50 ° C. which is a physiological condition, cannot be measured with high sensitivity. Further, since it is a temperature sensor having a chloride matrix structure, it is difficult to use it dissolved in an aqueous solution. Furthermore, since the temperature sensor is not encoded by a gene, there is a problem that it is impossible to produce a transgenic animal or plant that constantly expresses the temperature sensor.
  • the present invention is suitable for temperature measurement of living organisms, tissues, cells, intracellular organelles, aqueous solutions, or solids such as metals and plastics, and imaging with high spatial resolution ( ⁇ 1 ⁇ m) of absolute temperature distribution. It is an object to provide a proteinaceous fluorescent temperature probe.
  • Another object of the present invention is to provide a temperature measuring apparatus that enables quantitative imaging of temperature without being influenced by fluctuations in probe concentration within the measurement target. Furthermore, an object of the present invention is to provide a temperature measurement method capable of measuring temperature without being influenced by fluctuations in probe concentration within the measurement target.
  • the present inventor uses a temperature probe in which two or more kinds of fluorescent substances having different temperature sensitivities are fused, so that the temperature of the measurement target is not affected by fluctuations in the probe concentration in the measurement target. It was found that quantitative imaging is possible.
  • the present invention [1] Fluorescence obtained by binding a temperature-sensitive fluorescent protein whose fluorescence intensity changes depending on temperature and a fluorescence reference substance that exhibits a change in fluorescence intensity different from the temperature-dependent change in fluorescence intensity of the temperature-sensitive fluorescent protein.
  • Temperature probe [2]
  • the temperature-sensitive fluorescent protein is a temperature-sensitive fluorescent protein having a relative fluorescent intensity at 50 ° C. of 0.8 or lower or 1.2 or higher with respect to a fluorescent intensity at 20 ° C., and the reference fluorescent substance is at 20 ° C.
  • the fluorescence temperature probe according to [1] which is a reference fluorescent protein having a relative fluorescence intensity at 50 ° C.
  • the temperature-sensitive fluorescent protein is mSEGFP which is a polypeptide represented by SEQ ID NO: 28, mOrange which is a polypeptide represented by SEQ ID NO: 2, TagRFP which is a polypeptide represented by SEQ ID NO: 30, sequence MCherry which is a polypeptide represented by No. 4, EBFP which is a polypeptide represented by SEQ ID No. 32, SECFP which is a polypeptide represented by SEQ ID No.
  • Sirius which is a polypeptide represented by SEQ ID No. 6
  • At least one selected from the group consisting of DsRed which is the polypeptide represented by SEQ ID NO: 44, cp147Venus, which is the polypeptide represented by SEQ ID NO: 38, and cp148Venus, which is the polypeptide represented by SEQ ID NO: 40
  • Topaz which is a temperature-sensitive fluorescent protein
  • the reference fluorescent substance is a polypeptide represented by SEQ ID NO: 8
  • a polypeptide represented by SEQ ID NO: 36 EYFP the polypeptide represented by SEQ ID NO: 10 Venus
  • the polypeptide represented by SEQ ID NO: 38, cp147Venus the polypeptide represented by SEQ ID NO: 40, cp148Venus, represented by SEQ ID NO: 42
  • the polypeptide is selected from the group consisting of cp173Venus, a polypeptide represented by SEQ ID NO: 44, mSEGFP, a
  • At least one reference fluorescent protein (except when the temperature-sensitive fluorescent protein and the reference fluorescent substance are the same fluorescent protein), the fluorescent temperature probe according to any one of [1] to [3], [5] The fluorescence according to any one of [2] to [4], wherein the temperature-sensitive fluorescent protein and the reference fluorescent protein are a fusion protein bound directly or by a linker peptide, or a functionally equivalent variant thereof.
  • the reference fluorescent substance is Cy3, Cy5, FITC, rhodamine, FAM, TxR, peridinin chlorophyllin protein, cascade blue, AMCA, reactive indocarbocyanine, TRITC, allophycocyanin (APC), phycocyanin (PC), DAPI, HEX (4,5,2 ′, 4 ′, 5 ′, 7′-hexachloro-6-carboxyfluorescein), 5-IAF, TAMRA (6-carboxytetramethylrhodamine), and TET (4,7,2
  • the fluorescent temperature probe according to [1] selected from the group consisting of ', 7'-tetrachloro-6-carboxyfluorescein), [7] A polypeptide in which the fluorescent probe has the amino acid sequence represented by SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, or SEQ
  • a fluorescent temperature probe obtained by linking a temperature-sensitive fluorescent protein whose relative fluorescent intensity greatly changes in the range of 20 to 50 ° C. and a reference fluorescent substance whose relative fluorescent intensity is small in a fixed ratio.
  • Reference fluorescent substances are Topaz, EYFP, Venus, DsRed, Cy3, Cy5, FITC, rhodamine, FAM, TxR, peridinin chlorophyllin protein, cascade blue, AMCA, reactive indocarbocyanine, TRITC, allophycocyanin (APC) ), Phycocyanin (PC), DAPI, HEX (4,5,2 ', 4', 5 ', 7'-hexachloro-6-carboxyfluorescein), 5-IAF, TAMRA (6-carboxytetramethylrhodamine), TET
  • a temperature measuring device including the fluorescent temperature probe according to any one of [13] to [17]. [19] The fluorescence temperature probe, a means for exciting the fluorescence temperature probe, a means for detecting a fluorescence spectrum generated by excitation of the temperature probe, a means for calculating a temperature from the detected spectrum, and a calculated temperature The temperature measuring device according to [18], further comprising: means for displaying.
  • a fluorescent temperature probe capable of measuring a temperature with high accuracy even under an electric field and a magnetic field, and capable of easily creating a temperature characteristic curve and performing temperature calibration, and a temperature measuring device using the same Can be provided.
  • Blue fluorescent protein that is sensitive to temperature Left: A shows the fluorescence spectrum of Sirius, B shows the SECFP, and C shows the EBFP fluorescence spectrum. Ex represents the wavelength of the excitation light, and Em represents the range of the fluorescence wavelength. Right side: Changes in fluorescence intensity from low temperature to high temperature and high temperature to low temperature ( ⁇ indicates low temperature ⁇ high temperature, ⁇ indicates high temperature ⁇ low temperature). A yellow fluorescent protein that is not affected by temperature and is stable. Left: A is the topaz, B is the EYFP, and C is the Venus fluorescence spectrum. Ex represents the wavelength of the excitation light, and Em represents the range of the fluorescence wavelength.
  • Temperature sensitivity of Fluorescein (Ex: 479 nm / Em: 500-608 nm). Left side: Fluorescein fluorescence spectrum. Right side: Changes in fluorescence intensity from low temperature to high temperature and high temperature to low temperature ( ⁇ indicates low temperature ⁇ high temperature, ⁇ indicates high temperature ⁇ low temperature). Temperature sensitivity of circular permutation Venus (Ex: 500 nm / Em: 515-650 nm). Left: A shows the fluorescence spectrum of cp147 Venus, B shows the fluorescence spectrum of cp 148 Venus, and C shows the fluorescence spectrum of cp173 Venus.
  • the present invention covalently binds or complexes at least one fluorescent protein (temperature sensitive fluorescent protein) having different temperature sensitivity of fluorescence intensity and at least one reference fluorescent substance. (Bonded with a metal complex or avidin-biotin). That is, at least one temperature-sensitive fluorescent protein whose fluorescence intensity changes depending on temperature, and at least one fluorescent reference substance that exhibits a change in fluorescence intensity different from the temperature-dependent change in fluorescence intensity of the temperature-sensitive fluorescent protein, And a fluorescent temperature probe to which is bound.
  • Temporal-sensitive fluorescent protein is a fluorescent tank quality whose fluorescence intensity changes depending on temperature.
  • relative fluorescence intensity at 50 ° C. (hereinafter referred to as 20 ° C. in this specification) Is not limited as long as the fluorescence intensity at 50 ° C. with respect to the fluorescence intensity is changed to “relative fluorescence intensity”.
  • relative fluorescence intensity For example, 0.8 or less, preferably 0.7 or less, more preferably 0.6 or less, and still more preferably
  • the relative fluorescence intensity of the temperature-sensitive fluorescent protein the better.
  • the relative fluorescence intensity is 1.2 or more, preferably 1.3 or more, more preferably 1.4 or more, and further Preferably it is 1.5 or more, particularly preferably 1.6 or more, and the upper limit is not particularly limited, but preferably 2.0 or less can be used. This is because as the relative fluorescence intensity is smaller or larger, the sensitivity to temperature is higher and the change in fluorescence intensity due to temperature is larger.
  • the relative fluorescence intensity can be obtained by dividing the fluorescence intensity at 50 ° C. by the fluorescence intensity at 20 ° C.
  • the temperature-sensitive fluorescent protein used in the present invention includes mSEGFP, which is the polypeptide represented by SEQ ID NO: 28, mOrange, which is the polypeptide represented by SEQ ID NO: 2, and the polypeptide represented by SEQ ID NO: 30.
  • TagRFP which is a peptide
  • mCherry which is a polypeptide represented by SEQ ID NO: 4
  • EBFP which is a polypeptide represented by SEQ ID NO: 32
  • SECFP which is a polypeptide represented by SEQ ID NO: 34 (Rekas A et al.
  • the “reference fluorescent substance” is a fluorescent substance having a temperature sensitivity different from that of the temperature-sensitive fluorescent protein.
  • the relative fluorescent intensity at 50 ° C. when the reference is 20 ° C. is 1, or close to 1, and higher than 1. It contains a fluorescent material or a fluorescent material smaller than one.
  • Common fluorescent chemicals such as Topaz, EYFP, Venus, DsRed, cp147 Venus, cp148 Venus, cp173 Venus, mSEGFP, mOrange, Cy3, Cy5, FITC, rhodamine, FAM, TxR, peridinin chlorophyllin protein, cascade blue, AMCA, reactive indocarbocyanine, TRITC, allophycocyanin (APC), phycocyanin (PC), DAPI, HEX (4,5,2 ', 4', 5 ', 7'-hexachloro-6-carboxyfluorescein), 5 -IAF, TAMRA (6-carboxytetramethylrhodamine), TET (4,7,2 ', 7'-tetrachloro-6-carboxyfluorescein), etc.
  • the relative fluorescence intensity at 50 ° C. with respect to 20 ° C. of the “reference fluorescent substance” is 0.6 to 1.5, preferably 0.7 to 1.4, more preferably 0.8 to 1.3, and particularly preferably 0.85 to 1.2.
  • the reference fluorescent substance used in the present invention includes Topaz, which is the polypeptide represented by SEQ ID NO: 8, EYFP, which is the polypeptide represented by SEQ ID NO: 36, and the polypeptide represented by SEQ ID NO: 10.
  • a peptide represented by Venus a polypeptide represented by SEQ ID NO: 38, cp147Venus, a polypeptide represented by SEQ ID NO: 40, cp148Venus, a polypeptide represented by SEQ ID NO: 42, or a sequence represented by SEQ ID NO: 44
  • the difference in relative fluorescence intensity between the temperature-sensitive fluorescent protein and the reference fluorescent substance is preferably 0.2 or more, more preferably 0.3 or more, still more preferably 0.4 or more, particularly preferably 0.5 or more, particularly 0.6 to 0.8.
  • Preferred combinations of temperature sensitive fluorescent protein and reference fluorescent material include Sirius-Venus, Venus-Sirius, Sirius-mOrange, mOrange-Sirius, Topaz-Sirius, Sirius-Topaz, Sirius-DsRed, DsRed-Sirius, Venus-mCherry, mCherry-Venus, SECFP-Venus, Venus-SECFP, SECFP-DsRed, DsRed-SECFP, Topaz-SECFP, EBFP-Venus, Venus-EBFP, EBFP-DsRed, DsRed-EBFP, Topaz-EBFP, Sirius-EYFP, EYFP- Sirius, EYFP-mCherry, mCherry-EYFP, SECFP-EYFP, EYFP-SECF, EBFP-EYFP, EYFP-EBFP, cp173Venus-Sirius, Sirius-cp173Venus, cp
  • the fluorescent temperature probe of the present invention may be a fusion protein in which the temperature sensitive fluorescent protein and the reference fluorescent protein are bound directly or by a linker peptide, or a functionally equivalent variant thereof.
  • the functional equivalent variant of the present invention is a functional equivalent variant of a fusion protein in which the temperature sensitive fluorescent protein and the reference fluorescent protein are bound directly or by a linker peptide.
  • “functionally equivalent variant” means that the amino acid sequence has one or more (particularly one or several) amino acids deleted, substituted, or added in the amino acid sequence of the original protein. It means an amino acid sequence that exhibits substantially the same activity as the original fusion protein.
  • the number of amino acid deletions, substitutions or additions is, for example, 10, preferably 1 to 10, more preferably 1 to 5, and still more preferably 1 to 2.
  • Sirius-Venus which is a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 12
  • Venus-Sirius which is a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 14
  • sequence Sirius-mOrange which is a polypeptide consisting of the amino acid sequence represented by No. 16, mOrange-Sirius which is a polypeptide consisting of the amino acid sequence represented by SEQ ID No. 18, and a polypeptide consisting of the amino acid sequence represented by SEQ ID No.
  • the fluorescent temperature probe of the present invention can measure the temperature by the difference in relative fluorescence intensity in the range of 20 to 50 ° C., which has not been conventionally provided, but is about 0 to 100 ° C., preferably 5 to 80 ° C. More preferably, the temperature can be measured well in the range of 10 to 60 ° C. When measuring temperature at higher temperatures, it can be combined with other temperature probes.
  • a sensor suitable for temperature measurement at a high temperature such as 100 ° C. or more, for example, a system in which fluorescent molecules are placed in a network polymer that expands and contracts depending on temperature, and water is emitted when the temperature rises, etc. It is done.
  • the relative fluorescence intensity can be obtained by binding at least one temperature-sensitive fluorescent protein and at least one reference fluorescent substance directly or through a linker peptide having an appropriate length as described above. Can be linked at a predetermined ratio (particularly 1: 1) such as 1: 1, 2: 1, 1: 2. In the present invention, since the temperature is measured by the difference in relative fluorescence intensity between the reference fluorescent substance and the temperature sensitive fluorescent protein, it is desirable that the ratio of these bonds is constant.
  • the ratio between the reference fluorescent substance and the temperature sensitive fluorescent protein is Even in such a case, the ratio between the two can be estimated by measuring the fluorescence intensity at a predetermined temperature, and can be used as a fluorescence temperature probe.
  • the length of the peptide linker is not particularly limited, and a peptide linker having a length of about 2 to 20 amino acids can be used.
  • the amino acid used for the peptide linker is not limited, and for example, glycine (G), serine (S), threonine (T), and the like can be used.
  • peptide linkers such as GGS, GGGS, and GGGGS can be used.
  • the fluorescent protein When the fluorescent protein is expressed in eukaryotic cells such as yeast and has a sugar chain, it may be led to an aldehyde with an oxidizing agent such as periodate and reacted with a reference fluorescent substance having an amino group.
  • the reference fluorescent substance and the temperature sensitive fluorescent protein may be linked using a divalent linking group having an NHS group and a maleimide group.
  • a particularly preferred embodiment of the present invention is that a temperature-sensitive fluorescent protein having a large difference in relative fluorescent intensity at 50 ° C. relative to 20 ° C. and a reference fluorescent protein serving as a reference fluorescent substance directly or of a suitable length peptide
  • the temperature-sensitive fluorescent protein and the reference fluorescent substance are included in the measurement target at a certain ratio (for example, 1: 1), and therefore the fluorescence of the temperature-sensitive fluorescent protein at a specific temperature.
  • the ratio between the intensity and the fluorescence intensity of the reference fluorescent substance is constant, and the temperature of the measurement object can be determined by measuring the ratio.
  • the DNA of the present invention contains a polynucleotide encoding the polypeptide of the fluorescent temperature probe.
  • the DNA according to the present invention is not particularly limited as long as it encodes the polypeptide of the fluorescent temperature probe of the present invention (for example, including the fusion protein or a functionally equivalent variant thereof).
  • DNA having the base sequence represented by SEQ ID NO: 11, 13, 15, 17, 19, 21, 23, or 25 can be exemplified.
  • the DNA composed of the base sequence represented by SEQ ID NO: 11 in the sequence listing encodes Sirius-Venus composed of the amino acid sequence represented by SEQ ID NO: 12 in the sequence listing.
  • the DNA comprising the base sequence represented by SEQ ID NO: 13 in the sequence listing encodes Venus-Sirius comprising the amino acid sequence represented by SEQ ID NO: 14 in the sequence listing.
  • the DNA consisting of the base sequence represented by SEQ ID NO: 15 of the sequence listing encodes Sirius-mOrange consisting of the amino acid sequence represented by SEQ ID NO: 16 of the sequence listing.
  • the DNA composed of the base sequence represented by SEQ ID NO: 17 in the sequence listing encodes mOrange-Sirius composed of the amino acid sequence represented by SEQ ID NO: 18 in the sequence listing.
  • the DNA consisting of the base sequence represented by SEQ ID NO: 19 in the sequence listing encodes Topaz-Sirius composed of the amino acid sequence represented by SEQ ID NO: 20 in the sequence listing.
  • the DNA consisting of the base sequence represented by SEQ ID NO: 21 in the sequence listing encodes Sirius-Topaz composed of the amino acid sequence represented by SEQ ID NO: 22 in the sequence listing.
  • the DNA comprising the base sequence represented by SEQ ID NO: 23 in the sequence listing encodes Venus-mCherry comprising the amino acid sequence represented by SEQ ID NO: 24 in the sequence listing.
  • the DNA composed of the base sequence represented by SEQ ID NO: 25 in the sequence listing encodes mCherry-Venus composed of the amino acid sequence represented by SEQ ID NO: 26 in the sequence listing.
  • the vector according to the present invention is not particularly limited as long as it contains the DNA according to the present invention.
  • the DNA according to the present invention by inserting the DNA according to the present invention into a known expression vector appropriately selected according to the host cell to be used. Mention may be made of the resulting vector.
  • known cloning vectors and expression vectors containing the DNA of the present invention can be mentioned.
  • the recombinant cell according to the present invention is not particularly limited as long as it contains the vector according to the present invention.
  • a cell transformed with a known vector appropriately selected according to the host cell used, or the vector Mention may be made of transfected cells.
  • the host cell include commonly used known microorganisms such as Escherichia coli or yeast (Saccharomyces cerevisiae), or known cultured cells such as animal cells (eg, CHO cells, HEK-293 cells, or COS). Cell) or insect cells (eg BmN4 cells).
  • Temperature measuring device The present invention is further operated by means for exciting the temperature probe, means for detecting a fluorescence spectrum generated by excitation of the temperature probe, means for calculating the temperature from the detected spectrum, and And a temperature measuring device provided with means for displaying the temperature.
  • the excitation wavelength of the probe is shown in Figs.
  • the means for exciting the temperature probe that can be used in the present invention is not particularly limited as long as it is a light source capable of exciting fluorescent proteins or fluorescent molecules, and a laser light source is preferably used.
  • Examples of means for detecting the fluorescence spectrum include a CCD camera, a CMOS camera, and a photomultiplier.
  • the temperature measurement method of the present invention includes a step of introducing the fluorescent temperature probe into a measurement target, and a step of irradiating the measurement target with excitation light of a temperature-sensitive fluorescent protein and excitation light of a reference fluorescent substance. Measuring the fluorescence intensity of the temperature-sensitive fluorescent protein and the fluorescence intensity of the reference fluorescent substance, and determining the temperature of the measurement object from the ratio of the fluorescence intensity of the temperature-sensitive fluorescent protein and the fluorescence intensity of the reference fluorescent substance. Including.
  • the measurement target is not particularly limited, and examples thereof include solid surfaces such as metals or plastics, liquids such as aqueous solutions or organic solvents, individual organisms, tissues, cells, intracellular organelles, and microorganisms. However, it can be suitably used for measuring the temperature in an individual organism, in a tissue, in a cell, in an intracellular organelle, and in a microorganism, in which it is difficult to measure the temperature particularly by a normal temperature measurement method.
  • Examples of the introduction of a fluorescent temperature probe into an individual organism include, for example, oral administration, intravenous administration, intramuscular administration, intraarterial administration, intraperitoneal administration, intravaginal administration, intracapsular administration, intradermal administration, intrapulmonary administration, inhalation, Subcutaneous administration, eye drop administration, intravitreal administration, subconjunctival administration, intraconjunctival sac administration, or transdermal administration may be mentioned.
  • Examples of the introduction of the fluorescent temperature probe into the tissue include transfection, gene gun, viral vector, electroporation, photoporation, or injection by injection.
  • Examples of the introduction of fluorescent temperature probes into cells, intracellular organelles, and microorganisms include transformation of competent cells, electroporation or transfection.
  • the excitation light of the temperature sensitive fluorescent protein is determined by the temperature sensitive fluorescent protein to be used.
  • mSEGFP is 488 nm
  • mOrange is 533 nm
  • TagRFP is 560 nm
  • mCherry is 580 nm
  • EBFP is 368 nm
  • SECFP is 424 nm
  • Sirius is 355 nm. Further, it is determined by the fluorescent reference material that also uses the excitation light of the reference fluorescent material.
  • Topaz is 515 nm
  • EYFP is 515 nm
  • Venus is 515 nm
  • cp147Venus is 515 nm
  • cp148Venus is 515 nm
  • cp173Venus is 515 nm
  • DsRed is 543 nm.
  • the fluorescence intensity of the temperature-sensitive fluorescent protein to be measured may be a fluorescence intensity of a specific wavelength or a fluorescence spectrum (wavelength area) of a certain range of wavelengths.
  • the fluorescence intensity of the reference fluorescent substance to be measured may be a fluorescence intensity of a specific wavelength or a fluorescence spectrum (wavelength area) of a certain range of wavelengths.
  • the temperature sensitive fluorescent protein mSEGFP may be 515 nm or 480-600 nm
  • mOrange may be 560 nm or 543-650 nm
  • TagRFP may be 575 nm or 550-670 nm
  • mCherry may be 610 nm or 590-700 nm
  • EBFP may be 450 nm or 400-650 nm
  • SECFP may be 475 nm or 450-650 nm
  • Sirius may be 425 nm or 390-650 nm
  • the reference phosphor Topaz may be 530 nm or 510-615 nm.
  • Venus may be 530 nm or 515-650 nm
  • cp147Venus may be 530 nm or 515-650 nm
  • cp148Venus may be 530 nm or 515-650 nm
  • cp173Venus may be 530 nm or 515-650 nm
  • DsRed may be 585 nm or 565-680 nm.
  • the ratio of the fluorescence intensity of the measured temperature-sensitive fluorescent protein and the fluorescence intensity of the reference fluorescent substance can be calculated to determine the temperature of the measurement target.
  • the temperature probe of the present invention is, for example, a fusion protein type in which two fluorescent proteins are linked
  • the temperature of the cell can be measured by incorporating it into the cell.
  • the temperature of a specific organ organ (organelle) can also be measured by expressing the fusion protein in a specific organ such as mitochondria.
  • a transgenic non-human mammal that expresses a fusion protein in which two fluorescent proteins are linked can measure the temperature of a surface or deep cell.
  • the temperature of the cell of the deep part of a transgenic non-human mammal can be measured using a two-photon microscope, for example.
  • the temperature probe of the present invention may be kneaded into a light transmissive resin to form a film, a sheet, or a molded body.
  • Temperature sensitivity of GFP mutant >> The temperature sensitivity of the fluorescence intensity in various wavelength variants of the fluorescent protein was measured.
  • an expression vector containing the respective fluorescent protein was introduced into Escherichia coli, and the resulting expressed protein was used after purification.
  • the temperature of each fluorescent protein was changed from 20 ° C. to 50 ° C., and the fluorescence intensity was measured with a spectrophotometer. As a result, it was found that the temperature sensitivity of the fluorescence intensity varies greatly depending on the type of fluorescent protein (Table 1).
  • Sirius when the temperature was raised from 20 ° C. to 50 ° C., the fluorescence intensity decreased from 1 to 0.36.
  • Sirius is the most temperature sensitive fluorescent protein (Figure 1A).
  • SECFP (FIG. 1B) and EBFP (FIG. 1C) also showed high temperature sensitivity, and the fluorescence intensity at 50 ° C. when the fluorescence intensity at 20 ° C. was 1 was 0.37 and 0.39, respectively.
  • Topaz was a fluorescent protein whose fluorescence intensity was most stable with respect to temperature change as measured by the present inventors.
  • the fluorescence intensity of Topaz measured at 20 ° C. is 1, the fluorescence intensity is 1.09 at 50 ° C. (FIG. 2A).
  • EYFP and Venus had 0.89 (FIG. 2B) and 0.83 (FIG. 2C) fluorescence intensity at 50 ° C. normalized by the fluorescence intensity at 20 ° C., respectively.
  • red fluorescent proteins DsRed, mOrange, TagRFP, mCherry
  • green fluorescent proteins mSEGFP
  • the temperature sensitivity of fluorescein was also analyzed as a representative example of fluorescent substances other than fluorescent proteins.
  • fluorescence intensity of fluorescein measured at 20 ° C. was 1, the fluorescence intensity at 50 ° C. was 0.91, which was almost unchanged (FIG. 4).
  • the yellow fluorescent protein having a relatively small change in fluorescence intensity with respect to temperature was measured for the temperature sensitivity of the circular permutation mutant.
  • the fluorescence intensity at 50 ° C was 0.69, 0.76, and 0.90, respectively, assuming that the fluorescence intensity at 20 ° C was 1 (Fig. 5).
  • a circular permutant is a mutant that cuts a protein at an arbitrary site and connects the N-terminal fragment and the C-terminal fragment.
  • the mutants thus prepared often have almost the same function as the original protein, but the results of this experiment showed different temperature sensitivities in several types of circular permutants. Such an example has not been reported, and will be an important finding in the future development of temperature sensors.
  • Example 1 In this example, a fluorescent protein (Sirius or mCherry) that is easily affected by temperature is combined with a fluorescent protein (Venus, Topaz, or mOrange) that is not easily affected by temperature and is stable.
  • a probe whose intensity changes ratiometrically could be realized. Connecting temperature-sensitive fluorescent protein and low-temperature fluorescent protein with flexible linker amino acid (Gly-Gly-Ser), Topaz-Sirius, Sirius-Venus, Venus-Sirius, Sirius-mOrange, mOrange-Sirius, Venus- A fluorescent temperature probe of mCherry or mCherry-Venus combination was made.
  • the genes for various temperature sensors were constructed by the known FASTR method (Kotera I and Nagai T. Journal Biotechnology 137: 1-7, 2008; Japanese Patent Application 2007-215238) as follows.
  • a DNA vector containing Venus, Topaz, Sirius, mCherry, mOrange, or pRSETB was used as the template DNA for PCR.
  • REM-pRSET-TGA-fw SEQ ID NO: 45: GCTACTGCTCTTCGTGAGAATTCGAAGCTTGATCCGGC
  • REM-pRSET-ACT-rv SEQ ID NO: 46: CTGATAGCTCTTCTAGTGGATCCTTATCGTCATCGTCG
  • REM-ACT-GFP-fw GGCTAGCTCTTCAACTATGGTGAGCAAGGGCGA
  • REM-GGT-GGG-GFP-rv SEQ ID NO: 48: GCTAGGCTCTTCTCCCACCCTTGTACAGCTCGTCCATGC
  • REM-GGG-AGT-GFP-fw SEQ ID NO: 49: GGCTAGCTCTTCAGGGAGTATGGTGAGCAAGGGCGA
  • REM-TGA-GFP-rv SEQ ID NO: 50
  • GCTAGGCTCTTCTTCACTTGTACAGCTCGTCCATGC was used.
  • Toyobo's KOD-plus PCR kit was used.
  • the PCR product was electrophoresed on a 1% agarose gel for about 20 minutes, and the DNA fragment was purified from the gel using the QIAEX kit (Quiagen).
  • QIAEX kit Quiagen
  • 600 ⁇ L of 1 ⁇ Q solution and 10 ⁇ L of glass beads were added, and left in a thermostatic bath at 50 ° C. for 10 minutes. After centrifugation (15,000 rpm, 30 seconds, 4 ° C.), the supernatant was removed leaving the pellet, and 600 ⁇ L of 1 ⁇ Q solution was added and vortexed. Further, centrifugation (15,000 rpm, 30 seconds, 4 ° C.) was performed, the supernatant was removed, and 600 ⁇ L of PE solution was added and vortexed.
  • Centrifugation (15,000 rpm, 30 seconds, 4 ° C.) was performed again, and the supernatant was removed and dried for about 20 minutes. The dried pellet was dissolved by adding 30 ⁇ L of Tris solution (pH 8.0). After centrifugation (15,000 rpm, 30 seconds, 4 ° C.), 30 ⁇ L of DNA solution was recovered.
  • JM109 competent cells
  • SOC solution 300 ⁇ L of the SOC solution was added, and the mixture was cultured on a constant temperature shaker (37 ° C.) for 1 hour.
  • Transformed JM109 (DE3) was cultured overnight on 1 ⁇ LB plates containing 100 ⁇ g / mL ampicillin. A single colony was picked up and permeabilized with LB medium containing 100 ⁇ g / mL of ampicillin. Plasmid DNA was purified according to a standard method, and the DNA sequence was confirmed by a standard method. E.
  • coli expression plasmid Topaz-Sirius / pRSET B , Sirius-Venus / pRSET B , Venus-Sirius / pRSET B , Sirius-mOrange / pRSET B , mOrange-Sirius / pRSET B , Venus-mCherry / pRSET B , Alternatively, mCherry-Venus / pRSET B was obtained. Escherichia coli was transformed with the obtained plasmid, the temperature sensor protein was expressed, and then purified with a Ni-NTA column.
  • FIG. 6 shows the result of measuring the fluorescence intensity with two-wavelength excitation.
  • the ratio of the fluorescence intensity of the reference fluorescent protein at 20 ° C and the fluorescence intensity of the temperature-sensitive fluorescent protein is normalized to 1, and the change in the ratio of the normalized fluorescence intensity between 20 ° C and 50 ° C (normalized fluorescence intensity ratio)
  • the vertical axis indicates the temperature, and the horizontal axis indicates the temperature.
  • Example 2 In this example, two fluorescent proteins were expressed in cells (HeLa cells), and the fluorescence intensity from each fluorescent protein was measured while changing the temperature around the cells, followed by imaging with the fluorescence intensity ratio.
  • DNA encoding Sirius-Venus was excised from the pRSETB vector containing Sirius-Venus obtained in Example 1, and replaced with the pcDNA3 vector.
  • the obtained pcDNA3 vector containing Sirius-Venus was transfected into HeLa cells using SuperFect Transfection Reagent (QIAGEN), and the temperature of the HeLa cells was changed from 25 ° C to 35 ° C.
  • the temperature probe of the present invention achieves a sufficient value in the dynamic range that serves as an index when used in cells. This temperature probe can be used to investigate the mechanism of heat production in brown adipocyte mitochondria.
  • TRPV temperature-dependent channels

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 生物個体内、組織内、細胞内、細胞内小器官内および、水溶液、又は金属やプラスチックなどの固体の温度計測ならびに絶対温度分布の高い空間分解能(<1μm)による画像化に適したタンパク質性の蛍光温度プローブおよび測定対象内のプローブ濃度の変動に左右されずに温度の定量的画像化を可能にする温度測定装置を提供する。 20~50℃の範囲で相対蛍光強度が大きく変化する温度感受性蛍光タンパク質と、相対蛍光強度の変化が小さい基準蛍光物質を一定の比率で連結してなる蛍光温度プローブ。

Description

蛍光温度プローブおよびそれを用いた温度測定装置
 本発明は、蛍光温度プローブおよびそれを用いた温度測定装置、並びに温度測定方法に関する。
 従来から温度の測定には、熱電対温度計、抵抗温度計又は水銀温度計等が用いられている。熱電対温度計は熱起電力値から温度を算出し、抵抗温度計は電気抵抗値から温度を算出する。しかし、熱電対温度計および抵抗温度計においては、測定対象物あるいはその外部からの無関係な電磁誘導ノイズが発生しやすく、また高電圧下では漏電するおそれがあるため、電界下又は磁界下での温度測定には不適であるという問題があった。また、水銀温度計は、水銀の熱膨張を利用することにより温度を算出する。しかし、水銀温度計においては、その形状および熱容量の大きさに問題があるため測定対象物が限られるという問題があった。
 これらの温度計を用いることのできない領域における温度測定には、放射温度計、蛍光体又は半導体を用いた温度センサが用いられている。放射温度計は、測定対象物の放出する熱放射のエネルギを利用して温度を算出する。しかし、放射温度計は測定対象物表面の温度しか測定することができず、また低温域において測定物固有のスペクトル又は反射スペクトルが存在する場合には正確な温度測定をすることができないという問題があった。
 特許文献1には、ポリピリジン金属錯体又はその誘導体を含む蛍光体を用いた温度センサが開示されている。この蛍光体を用いた温度センサは、蛍光強度と温度との関係を調べることにより作成された温度特性曲線により温度を算出する。しかし、この蛍光体を用いた温度センサにおいては、蛍光強度と温度との関係が必ずしも比例関係等の明確な数式に従うものではないため、蛍光強度と温度との関係を細かい間隔で多数点調べて正確な温度特性曲線を作成しなければならないという問題があった。また、この蛍光体を用いた温度センサにおいては、温度センサの劣化等の経時変化に対応するために温度特性曲線の校正を頻繁に行う必要があるが、その校正のたびに蛍光強度と温度との関係を細かい間隔で多数点調べて温度特性曲線の校正をしなければならないという問題もあった。
 特許文献2には、半導体を光ファイバの先端に取り付けた温度センサが開示されている。この半導体を用いた温度センサは、温度により光の透過率が変わることを利用して温度を算出する。しかし、この半導体を用いた温度センサにおいては、温度と光の透過率との関係を示す温度特性曲線を作成する際に標準透過率を示す標準体が必要となるという問題があった。
 特許文献3には、電界下および磁界下での温度計測に適し、かつ温度特性曲線の作成および校正が容易な温度センサが開示されている。この発明では塩化物からなるマトリックスにドープされたエルビウムイオン又はツリウムイオンの蛍光スペクトルが、特定の波長の前後において蛍光強度と温度との関係が逆転する性質を利用して温度を算出する。しかし、この温度センサは公報に記載の図1によれば25℃から50℃への温度変化に対して520-540nmの蛍光強度と540-560nmの蛍光強度の比の変化が数%に過ぎない。従って、生理条件下である10-50℃の範囲を感度良く測定することができない。また、塩化物マトリクス構造からなる温度センサであるため、水溶液に溶かして使用する事が困難である。更に、温度センサが遺伝子にコードされていないため、温度センサを恒常的に発現する遺伝子導入動植物の作成は不可能であるという問題があった。
特開平5-133819号公報 特開昭58-39917号公報 特開2004-28629号公報
 本発明は、生物個体内、組織内、細胞内、細胞内小器官内および、水溶液、又は金属やプラスチックなどの固体の温度計測ならびに絶対温度分布の高い空間分解能(<1μm)による画像化に適したタンパク質性の蛍光温度プローブを提供することを目的とする。
 また、本発明は、測定対象内のプローブ濃度の変動に左右されずに温度の定量的画像化を可能にする温度測定装置を提供することを目的とする。
 更に、本発明は、測定対象内のプローブ濃度の変動に左右されずに温度の測定が可能な温度測定方法を提供することを目的とする。
 本発明者は、上記課題に鑑み検討を重ねた結果、温度感受性が異なる2種以上の蛍光物質を融合した温度プローブを用いることにより、測定対象内のプローブ濃度の変動に左右されずに温度の定量的画像化を可能にすることを見出した。
 すなわち、本発明は、
[1]温度に依存して蛍光強度が変化する温度感受性蛍光タンパク質と、前記温度感受性蛍光タンパク質の温度依存性の蛍光強度の変化と異なる蛍光強度の変化を示す蛍光基準物質とを結合させた蛍光温度プローブ、
[2]前記温度感受性蛍光タンパク質が、20℃における蛍光強度に対する50℃の相対蛍光強度が0.8以下、又は1.2以上の温度感受性蛍光タンパク質であり、前記基準蛍光物質が、20℃における蛍光強度に対する50℃の相対蛍光強度が0.6~1.5の基準蛍光タンパク質である、[1]に記載の蛍光温度プローブ、
[3]温度感受性蛍光タンパク質と基準蛍光物質との相対蛍光強度の差が0.2~0.7である、[2]に記載の蛍光温度プローブ、
[4]前記温度感受性蛍光タンパク質が、配列番号28で表されるポリペプチドであるmSEGFP、配列番号2で表されるポリペプチドであるmOrange、配列番号30で表されるポリペプチドであるTagRFP、配列番号4で表されるポリペプチドであるmCherry、配列番号32で表されるポリペプチドであるEBFP、配列番号34で表されるポリペプチドであるSECFP、配列番号6で表されるポリペプチドであるSirius、配列番号44で表されるポリペプチドであるDsRed、配列番号38で表されるポリペプチドであるcp147Venus、及び配列番号40で表されるポリペプチドであるcp148Venusからなる群から選択される少なくとも1つの温度感受性蛍光タンパク質であり、前記基準蛍光物質が、配列番号8で表されるポリペプチドであるTopaz、配列番号36で表されるポリペプチドであるEYFP、配列番号10で表されるポリペプチドであるVenus、配列番号38で表されるポリペプチドであるcp147Venus、配列番号40で表されるポリペプチドであるcp148Venus、配列番号42で表されるポリペプチドであるcp173Venus、配列番号44で表されるポリペプチドであるDsRed配列番号28で表されるポリペプチドであるmSEGFP、及び配列番号2で表されるポリペプチドであるmOrangeからなる群から選択される少なくとも1つの基準蛍光タンパク質である(但し、温度感受性蛍光タンパク質と基準蛍光物質とが同じ蛍光タンパク質である場合を除く)、[1]~[3]のいずれかに記載の蛍光温度プローブ、
[5]前記温度感受性蛍光タンパク質及び基準蛍光タンパク質が、直接又はリンカーペプチドによって結合されている融合タンパク質、又はその機能的等価改変体である、[2]~[4]のいずれかに記載の蛍光温度プローブ、
[6]前記基準蛍光物質が、Cy3、Cy5、FITC、ローダミン、FAM、TxR、ペリジニンクロロフィリンタンパク質、カスケードブルー、AMCA、反応性インドカルボシアニン、TRITC、アロフィコシアニン(APC)、フィコシアニン(PC)、DAPI、HEX(4,5,2',4',5',7'-ヘキサクロロ-6-カルボキシフルオレセイン)、5-IAF、TAMRA(6-カルボキシテトラメチルローダミン)、及びTET(4,7,2',7'-テトラクロロ-6-カルボキシフルオレセイン)からなる群から選ばれる、[1]に記載の蛍光温度プローブ、
[7]前記蛍光プローブが、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、配列番号24、又は配列番号26で表されるアミノ酸配列からなるポリペプチドである、[1]~[5]のいずれかに記載の蛍光温度プローブ、
[8]前記[2]~[5]及び[7]のいずれかに記載の蛍光温度プローブのポリペプチドをコードするポリヌクレオチドを含むDNA、
[9]前記[8]に記載のDNAを含むベクター、
[10]前記[9]に記載のベクターを含む組み換え体細胞、
[11]前記[1]~[7]のいずれかに記載の蛍光温度プローブと、前記蛍光温度プローブを励起させる手段と、温度プローブの励起によって生じた蛍光スペクトルを検出する手段と、検出されたスペクトルから温度を演算する手段と、演算された温度を表示する手段とを備えた、温度測定装置、
[12]前記[1]~[7]のいずれかに記載の蛍光温度プローブを測定対象に導入する工程、前記測定対象に、温度感受性蛍光タンパク質の励起光、及び基準蛍光物質の励起光を照射する工程、前記温度感受性蛍光タンパク質の蛍光強度及び基準蛍光物質の蛍光強度を測定する工程、及び前記温度感受性蛍光タンパク質の蛍光強度と、基準蛍光物質の蛍光強度の比から測定対象の温度を決定する工程、を含む、温度測定方法、
に関する。
 また、本明細書は、以下の発明を開示する。
[13]20~50℃の範囲で相対蛍光強度が大きく変化する温度感受性蛍光タンパク質と、相対蛍光強度の変化が小さい基準蛍光物質を一定の比率で連結してなる蛍光温度プローブ。
[14]前記基準蛍光物質が、相対蛍光強度の変化が小さい蛍光タンパク質である、[13]に記載の蛍光温度プローブ。
[15]温度感受性蛍光タンパク質と基準蛍光物質の相対蛍光強度の差が0.2~0.7程度である、[13]又は[14]に記載の蛍光温度プローブ。
[16]温度感受性蛍光タンパク質が、mSEGFP、mOrange、TagRFP、mCherry、EBFP、SECFP又はSiriusである、[13]~[15]のいずれかに記載の蛍光温度プローブ。
[17]基準蛍光物質が、Topaz、EYFP、Venus、DsRed、Cy3、Cy5、FITC、ローダミン、FAM、TxR、ペリジニンクロロフィリンタンパク質、カスケードブルー、AMCA、反応性インドカルボシアニン、TRITC、アロフィコシアニン(APC)、フィコシアニン(PC)、DAPI、HEX(4,5,2',4',5',7'-ヘキサクロロ-6-カルボキシフルオレセイン)、5-IAF、TAMRA(6-カルボキシテトラメチルローダミン)、TET(4,7,2',7'-テトラクロロ-6-カルボキシフルオレセイン)からなる群から選ばれる、[13]~[16]のいずれかに記載の蛍光温度プローブ。
[18][13]~[17]のいずれかに記載の蛍光温度プローブを含む温度測定装置。
[19]前記蛍光温度プローブと、前記蛍光温度プローブを励起させる手段と、温度プローブの励起によって生じた蛍光スペクトルを検出する手段と、検出されたスペクトルから温度を演算する手段と、演算された温度を表示する手段とを備えた、[18]に記載の温度測定装置。
 本発明によれば、電界下および磁界下でも高精度に温度を測定することができ、かつ温度特性曲線の作成および温度校正を容易に行うことができる蛍光温度プローブおよびそれを用いた温度測定装置を提供することができる。
温度の影響を受けやすい青色蛍光タンパク質。左側:AはSirius、BはSECFP、CはEBFPの蛍光スペクトルを示す。Exが励起光の波長を、Emは蛍光の波長の範囲を示す。右側:低温→高温、高温→低温の蛍光強度の変化を示す(●が低温→高温、○が高温→低温)。 温度の影響を受けにくく安定している黄色蛍光タンパク質。左側:AはTopaz、BはEYFP、CはVenusの蛍光スペクトルを示す。Exが励起光の波長を、Emは蛍光の波長の範囲を示す。右側:低温→高温、高温→低温の蛍光強度の変化を示す(●が低温→高温、○が高温→低温)。 青色蛍光タンパク質と黄色蛍光タンパク質の変化量の中間に位置している蛍光タンパク質。左側:AはDsRed、BはmSEGFP、CはmOrange、DはTagRFP、EはmCherryの蛍光スペクトルを示す。Exが励起光の波長を、Emは蛍光の波長の範囲を示す。右側:低温→高温、高温→低温の蛍光強度の変化を示す(●が低温→高温、○が高温→低温)。 Fluorescein(Ex: 479 nm/Em: 500-608 nm)の温度感受性。左側:Fluoresceinの蛍光スペクトルを示す。右側:低温→高温、高温→低温の蛍光強度の変化を示す(●が低温→高温、○が高温→低温)。 円順列変異体Venus(Ex: 500 nm/Em: 515-650 nm)の温度感受性。左側:Aはcp147 Venus、Bはcp 148 Venus、Cはcp173 Venusの蛍光スペクトルを示す。右側:低温→高温、高温→低温の蛍光強度の変化を示す(●が低温→高温、○が高温→低温)。 融合蛍光タンパク質の規格化蛍光強度レシオ値の変化を示す。50℃における基準蛍光タンパク質の蛍光強度と温度感受性蛍光タンパク質の蛍光強度との比の値を1に規格化した場合の20℃~50℃の蛍光強度の比の変化を示す。 遺伝子コードされた蛍光温度センサを用いた細胞内温度イメージングを示す。基準蛍光タンパク質(Venus)の蛍光強度を、温度感受性蛍光タンパク質(Sirius)の蛍光強度で割った値を疑似カラーで表示している。
[1]蛍光温度プローブ
 1つの好ましい実施形態において、本発明は蛍光強度の温度感受性が異なる少なくとも1種の蛍光タンパク質(温度感受性蛍光タンパク質)と少なくとも1種の基準蛍光物質を共有結合又は複合体化(金属錯体、或いはアビジン-ビオチンなどにより結合)したものが挙げられる。すなわち、温度に依存して蛍光強度が変化する少なくとも1つの温度感受性蛍光タンパク質と、前記温度感受性蛍光タンパク質の温度依存的な蛍光強度の変化と異なる蛍光強度の変化を示す少なくとも1つの蛍光基準物質とを結合させた蛍光温度プローブを挙げることができる。
 「温度感受性蛍光タンパク質」とは、温度に依存して蛍光強度が変化する蛍光タンク質であり、例えば20℃を基準にしたときの50℃の相対蛍光強度(以下、本明細書では20℃における蛍光強度に対する50℃の蛍光強度を「相対蛍光強度」とする)が変化するものであれば限定されるものではないが、例えば0.8以下、好ましくは0.7以下、より好ましくは0.6以下、更に好ましくは0.5以下、特に好ましくは0.4以下であり、下限は0.01以上、好ましくは0.05以上、より好ましくは0.1以上であり、特には0.2~0.4である温度感受性蛍光タンパク質を好ましく使用できる。温度感受性蛍光タンパク質の相対蛍光強度)は、小さいほど好ましい。また、温度感受性蛍光タンパク質として、前記相対蛍光強度が温度の上昇により増加する蛍光タンパク質を用いることも可能であり、例えば前記相対蛍光強度が1.2以上、好ましくは1.3以上、より好ましくは1.4以上、更に好ましくは1.5以上、特に好ましくは1.6以上であり、上限は特に限定されるものではないが、好ましくは2.0以下のものを用いることができる。前記相対蛍光強度が小さいか又は大きいほど、温度の感受性が高く、温度による蛍光強度の変化が大きいからである。なお、前記相対蛍光強度は、50℃の蛍光強度を、20℃における蛍光強度によって割り算することによって得ることができる。
 具体的には、本発明に用いる温度感受性蛍光タンパク質としては、配列番号28で表されるポリペプチドであるmSEGFP、配列番号2で表されるポリペプチドであるmOrange、配列番号30で表されるポリペプチドであるTagRFP、配列番号4で表されるポリペプチドであるmCherry、配列番号32で表されるポリペプチドであるEBFP、配列番号34で表されるポリペプチドであるSECFP(Rekas AらJBC 277:50573-50578, 2003)、又は配列番号6で表されるポリペプチドであるSirius、配列番号44で表されるポリペプチドであるDsRed、配列番号38で表されるポリペプチドであるcp147Venus、及び配列番号40で表されるポリペプチドであるcp148Venusを挙げることができ、これらのポリペプチドを2つ以上組み合わせて用いることも可能である。
 「基準蛍光物質」とは、前記温度感受性蛍光タンパク質と温度感受性が異なる蛍光物質であり、例えば20℃を基準にしたときの50℃の相対蛍光強度が1、又は1に近く、1よりも大きい蛍光物質、又は1よりも小さい蛍光物質を含む。一般の蛍光性の化学物質、例えばTopaz、EYFP、Venus、DsRed、cp147 Venus、cp148 Venus、cp173 Venus、mSEGFP、mOrange、Cy3、Cy5、FITC、ローダミン、FAM、TxR、ペリジニンクロロフィリンタンパク質、カスケードブルー、AMCA、反応性インドカルボシアニン、TRITC、アロフィコシアニン(APC)、フィコシアニン(PC)、DAPI、HEX(4,5,2',4',5',7'-ヘキサクロロ-6-カルボキシフルオレセイン)、5-IAF、TAMRA(6-カルボキシテトラメチルローダミン)、TET(4,7,2',7'-テトラクロロ-6-カルボキシフルオレセイン)などは、温度変化による蛍光強度の変化は小さいかほとんど或いは全く無く、基準蛍光物質として使用できる。更に、Topaz、EYFP、Venus、DsRedなどは、相対蛍光強度が1に近いため、「基準蛍光物質」として使用することができる。「基準蛍光物質」の20℃を基準にしたときの50℃の相対蛍光強度は、0.6~1.5、好ましくは0.7~1.4、より好ましくは0.8~1.3、特に好ましくは0.85~1.2である。
 より具体的には、本発明に用いる基準蛍光物質としては、配列番号8で表されるポリペプチドであるTopaz、配列番号36で表されるポリペプチドであるEYFP、配列番号10で表されるポリペプチドであるVenus、配列番号38で表されるポリペプチドであるcp147Venus、配列番号40で表されるポリペプチドであるcp148Venus、配列番号42で表されるポリペプチドであるcp173Venus、又は配列番号44で表されるポリペプチドであるDsRed、配列番号28で表されるポリペプチドであるmSEGFP、及び配列番号2で表されるポリペプチドであるmOrangeを挙げることができ、これらのポリペプチドを2つ以上組み合わせて用いることも可能である。
 本発明の蛍光温度プローブにおいて、温度感受性蛍光タンパク質と基準蛍光物質の相対蛍光強度の差は、好ましくは0.2以上、より好ましくは0.3以上、更に好ましくは0.4以上、特に好ましくは0.5以上、特に0.6~0.8である。相対蛍光強度の差は、大きいほど温度変化が鋭敏に測定できるので好ましい。
 温度感受性蛍光タンパク質と基準蛍光物質の好ましい組み合わせとしては、Sirius-Venus、Venus-Sirius、Sirius-mOrange、mOrange-Sirius、Topaz-Sirius、Sirius-Topaz、Sirius-DsRed、DsRed-Sirius、Venus-mCherry、mCherry-Venus、SECFP-Venus、Venus-SECFP、SECFP-DsRed、DsRed-SECFP、Topaz-SECFP、EBFP-Venus、Venus-EBFP、EBFP-DsRed、DsRed-EBFP、Topaz-EBFP、Sirius-EYFP、EYFP-Sirius、EYFP-mCherry、mCherry-EYFP、SECFP-EYFP、EYFP-SECF、EBFP-EYFP、EYFP-EBFP、cp173Venus-Sirius、Sirius-cp173Venus、cp147Venus-Sirius、Sirius-cp147Venus、cp148Venus-Sirius、Sirius-cp148Venus、cp173Venus-Topaz、Topaz-cp173Venus、cp147Venus-Topaz、Topaz-cp147Venus、cp148Venus-Topaz、又はTopaz-cp148Venus、などを挙げることができる。
 本発明の蛍光温度プローブは、前記温度感受性蛍光タンパク質及び基準蛍光タンパク質が、直接又はリンカーペプチドによって結合されている融合タンパク質、又はその機能的等価改変体であってもよい。本発明の機能的等価改変体は、前記温度感受性蛍光タンパク質及び基準蛍光タンパク質が、直接又はリンカーペプチドによって結合されている融合タンパク質の機能的等価改変体である。本明細書において、「機能的等価改変体」とは、そのアミノ酸配列が、元となるタンパク質のアミノ酸配列において1以上(特には1又は数個)のアミノ酸が欠失、置換、又は付加されたアミノ酸配列であって、しかも、元となる融合タンパク質と実質的に同じ活性を示すタンパク質を意味する。前記アミノ酸の欠失、置換、又は付加は、例えば10個であり、好ましくは1~10個、より好ましくは1~5個、更に好ましくは1~2個である。
 具体的には、前記融合タンパク質としては、配列番号12で表されるアミノ酸配列からなるポリペプチドであるSirius-Venus、配列番号14で表されるアミノ酸配列からなるポリペプチドであるVenus-Sirius、配列番号16で表されるアミノ酸配列からなるポリペプチドであるSirius-mOrange、配列番号18で表されるアミノ酸配列からなるポリペプチドであるmOrange-Sirius、配列番号20で表されるアミノ酸配列からなるポリペプチドであるTopaz-Sirius、配列番号22で表されるアミノ酸配列からなるポリペプチドであるSirius-Topaz、配列番号24で表されるアミノ酸配列からなるポリペプチドであるVenus-mCherry、又は配列番号26で表されるアミノ酸配列からなるポリペプチドであるmCherry-Venus、を挙げることができる。また、これらの融合タンパク質の機能的等価改変体としては、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、配列番号24、又は配列番号26で表されるアミノ酸配列において、1又は数個のアミノ酸が欠失、置換、及び/又は付加されたアミノ酸配列からなり、しかも、温度感受性タンパク質の機能、及び基準蛍光タンパク質としての機能を維持しているポリペプチドを挙げることができる。
 また、前記温度感受性蛍光タンパク質及び基準蛍光タンパク質のうちのいくつかのアミノ酸配列及び塩基配列は、以下のGenBankのアクセッションNo及び非特許文献に記載されている。
Sirius: ACCESSION AB444952
mseCFP: ACCESSION AB435576
Topaz:Annu. Rev. Biochem. 1998. 67:509-44
Venus: Nature Biotechnology 20, 87-90 (2002)
mCherry, mOrange: PNAS  June 11, 2002  vol. 99  no. 12  7877-7882
EGFP, EYFP: Science Vol. 273. no. 5280, pp. 1392-1395
 本発明の蛍光温度プローブは、従来提供されていなかった20~50℃の範囲において、相対蛍光強度の差により温度を測定できるものであるが、0~100℃程度、好ましくは5~80℃、より好ましくは10~60℃の範囲において温度を良好に測定できる。より高温で温度を測定する場合、他の温度プローブと組み合わせることが可能である。100℃以上のような高温での温度測定に好適なセンサとしては、例えば温度により伸縮する網目状のポリマー内に蛍光分子を入れておき、温度が高くなると水が放出されて光るシステムなどが挙げられる。
 基準蛍光物質が蛍光タンパク質の場合には、前記のように少なくとも1つの温度感受性蛍光タンパク質と少なくとも1つの基準蛍光物質を直接或いは適当な長さのリンカーペプチドを介して結合することにより、相対蛍光強度の異なる2つの蛍光タンパク質を1:1、2:1、1:2などの所定の比率(特に1:1)で連結することができる。本発明では、基準蛍光物質と温度感受性蛍光タンパク質の相対蛍光強度の違いにより温度を測定するため、これらの結合の比率が一定であることが望ましい。なお、基準蛍光物質と温度感受性蛍光タンパク質を化学的に二価の連結基を介して結合したり、ビオチン-アビジン系を用いて複合体化する場合、基準蛍光物質と温度感受性蛍光タンパク質の比率が確定しない場合があり得るが、このような場合でも、所定の温度における蛍光強度を測定することにより、両者の比率を推定でき、蛍光温度プローブとして使用できる。
 前記ペプチドリンカーの長さは、特に限定されるものではなく、通常2~20アミノ酸程度の長さのペプチドリンカーを用いることができる。また、ペプチドリンカーに用いるアミノ酸も、限定されるものではないが、例えば、グリシン(G)、セリン(S)、及びスレオニン(T)などを用いることができる。具体的には、GGS、GGGS、及びGGGGSなどのペプチドリンカーを用いることができる。
 蛍光タンパク質が酵母などの真核細胞で発現されて糖鎖を有する場合、これを過ヨウ素酸塩などの酸化剤でアルデヒドに導き、アミノ基を有する基準蛍光物質と反応させてもよい。或いは、NHS基とマレイミド基を有する二価の連結基を用いて基準蛍光物質と温度感受性蛍光タンパク質を連結してもよい。
 本発明の特に好ましい実施形態は、20℃を基準にしたときの50℃の相対蛍光強度の差が大きい温度感受性蛍光タンパク質と、基準蛍光物質となる基準蛍光タンパク質を直接又は適当な長さのペプチドリンカーで連結し、大腸菌等の微生物で発現させて得た温度プローブであり、測定対象内のプローブ濃度の変動に左右されずに温度の定量的画像化を可能にすることを特徴とする。
 基準蛍光物質と連結されていない温度感受性蛍光タンパク質のみを、蛍光温度プローブとして用い、測定対象内の温度を測定することも可能である。しかしながら、この方法においては、測定対象内の蛍光温度プローブの濃度が変動すると蛍光強度が変化するため、蛍光強度の値から温度を決定することができず、測定対象ごとに検量線を作成し、温度を決定する必要があった。これに対して、本発明においては、温度感受性蛍光タンパク質と、基準蛍光物質とが一定の比率(例えば1:1)で測定対象に含まれているため、特定の温度における温度感受性蛍光タンパク質の蛍光強度と、基準蛍光物質の蛍光強度との比は一定であり、その比を測定することにより、測定対象の温度を決定することができる。
 本発明のDNAは、前記蛍光温度プローブのポリペプチドをコードするポリヌクレオチドを含むものである。本発明によるDNAは、本発明の蛍光温度プローブのポリペプチド(例えば、前記融合タンパク質、又はその機能的等価改変体を含む)をコードする限り、特に限定されるものではないが、例えば、配列表の配列番号11、13、15、17、19、21、23、又は25で表される塩基配列からなるDNAを挙げることができる。配列表の配列番号11で表される塩基配列からなる前記DNAは、配列表の配列番号12で表されるアミノ酸配列からなるSirius-Venusをコードする。配列表の配列番号13で表される塩基配列からなる前記DNAは、配列表の配列番号14で表されるアミノ酸配列からなるVenus-Siriusをコードする。配列表の配列番号15で表される塩基配列からなる前記DNAは、配列表の配列番号16で表されるアミノ酸配列からなるSirius-mOrangeをコードする。配列表の配列番号17で表される塩基配列からなる前記DNAは、配列表の配列番号18で表されるアミノ酸配列からなるmOrange-Siriusをコードする。配列表の配列番号19で表される塩基配列からなる前記DNAは、配列表の配列番号20で表されるアミノ酸配列からなるTopaz-Siriusをコードする。配列表の配列番号21で表される塩基配列からなる前記DNAは、配列表の配列番号22で表されるアミノ酸配列からなるSirius-Topazをコードする。配列表の配列番号23で表される塩基配列からなる前記DNAは、配列表の配列番号24で表されるアミノ酸配列からなるVenus-mCherryをコードする。配列表の配列番号25で表される塩基配列からなる前記DNAは、配列表の配列番号26で表されるアミノ酸配列からなるmCherry-Venusをコードする。
 本発明によるベクターは、本発明による前記DNAを含む限り、特に限定されるものではなく、例えば、用いる宿主細胞に応じて適宜選択した公知の発現ベクターに、本発明による前記DNAを挿入することにより得られるベクターを挙げることができる。例えば、本発明のDNAを含む公知のクローニングベクター及び発現ベクターを挙げることができる。
 本発明による組み換え体細胞は、本発明による前記ベクターを含む限り、特に限定されるものではなく、例えば、用いる宿主細胞に応じて適宜選択した公知のベクターにより形質転換された細胞、又は前記ベクターがトランスフェクションされた細胞を挙げることができる。前記宿主細胞としては、例えば、通常使用される公知の微生物、例えば、大腸菌又は酵母(Saccharomyces cerevisiae)、あるいは、公知の培養細胞、例えば、動物細胞(例えば、CHO細胞、HEK-293細胞、又はCOS細胞)又は昆虫細胞(例えば、BmN4細胞)を挙げることができる。
[2]温度測定装置
 本発明は、更に、上記温度プローブを励起させる手段と、温度プローブの励起によって生じた蛍光スペクトルを検出する手段と、検出されたスペクトルから温度を演算する手段と、演算された温度を表示する手段とを備えた温度測定装置であることを特徴とする。
 上記プローブの励起波長は、図1~4に示す。
 本発明で使用できる温度プローブを励起させる手段としては、蛍光タンパク質ないし蛍光分子を励起可能な光源であれば特に限定されず、レーザー光源が好ましく使用される。蛍光スペクトルを検出する手段としては、CCDカメラ、CMOSカメラ、フォトマルチプライヤーなどが挙げられる。
[3]温度測定方法
 本発明の温度測定方法は、前記蛍光温度プローブを測定対象に導入する工程、前記測定対象に、温度感受性蛍光タンパク質の励起光、及び基準蛍光物質の励起光を照射する工程、前記温度感受性蛍光タンパク質の蛍光強度及び基準蛍光物質の蛍光強度を測定する工程、及び前記温度感受性蛍光タンパク質の蛍光強度と、基準蛍光物質の蛍光強度の比から測定対象の温度を決定する工程を含む。
 測定対象は特に限定されるものではなく、金属又はプラスチックなどの固体表面、水溶液、又は有機溶媒などの液体、生物個体内、組織内、細胞内、細胞内小器官内、及び微生物内などを挙げることができるが、特に通常の温度測定法では温度の測定が困難な、生物個体内、組織内、細胞内、細胞内小器官内、及び微生物内の温度の測定に好適に用いることができる。
 生物個体への蛍光温度プローブの導入としては、例えば、経口投与、静脈内投与、筋肉内投与、動脈内投与、腹腔内投与、膣内投与、嚢内投与、皮内投与、肺内投与、吸入、皮下投与、点眼投与、硝子体内投与、結膜下投与、結膜嚢内投与、又は経皮投与を挙げることができる。また、組織への蛍光温度プローブの導入としては、例えば、トランスフェクション、ジーンガン、ウイルスベクター、電気穿孔法、光穿孔法、又は注射による注入などを挙げることができる。細胞内、細胞内小器官内、及び微生物への蛍光温度プローブの導入としては、コンピテントセルの形質転換、電気穿孔法又はトランスフェクションなどを挙げることができる。
 前記励起光を照射する工程において、温度感受性蛍光タンパク質の励起光は用いる温度感受性蛍光タンパク質により決まっており、例えば、mSEGFPは488nmであり、mOrangeは533nmであり、TagRFPは560nmであり、mCherryは580nmであり、EBFPは368nmであり、SECFPは424nmであり、そしてSiriusは355nmである。また、基準蛍光物質の励起光も用いる蛍光基準物質によって決まっており、例えば、Topazは515nmであり、EYFPは515nmであり、Venusは515nmであり、cp147Venusは515nmであり、cp148Venusは515nmであり、cp173Venusは515nmであり、そしてDsRedは543nmである。
 蛍光強度を測定する工程における、測定される温度感受性蛍光タンパク質の蛍光強度は、特定の波長の蛍光強度でもよく、一定の範囲の波長の蛍光スペクトル(波長の面積)でもよい。また、測定される基準蛍光物質の蛍光強度も、特定の波長の蛍光強度でもよく、一定の範囲の波長の蛍光スペクトル(波長の面積)でもよい。例えば、温度感受性蛍光タンパク質のmSEGFPは、515nm又は480~600nmでよく、mOrangeは、560nm又は543~650nmでよく、TagRFPは575nm又は550~670nmでよく、mCherryは、610nm又は590~700nmでよく、EBFPは、450nm又は400~650nmでよく、SECFPは475nm又は450~650nmでよく、そしてSiriusは、425nm又は390~650nmでよく、また基準蛍光物質のTopazは、530nm又は510~615nmでよく、EYFPは530nm又は510~615nmでよく、Venusは、530nm又は515~650nmでよく、cp147Venusは530nm又は515~650nmでよく、cp148Venusは530nm又は515~650nmでよく、cp173Venusは530nm又は515~650nmでよく、そしてDsRedは、585nm又は565~680nmでよい。
 前記温度を決定する工程においては、測定された温度感受性蛍光タンパク質の蛍光強度と、基準蛍光物質の蛍光強度の比を計算し、その測定対象の温度を決定することができる。
 前記のように、本発明の温度プローブは、例えば2つの蛍光タンパク質を連結した融合タンパク質タイプのものは、細胞内に組み込むことで、細胞の温度を測定することができる。融合タンパク質をミトコンドリアなどの特定の器官内で発現させることにより、特定の器官(オルガネラ)の温度を測定することもできる。更に、例えば2つの蛍光タンパク質を連結した融合タンパク質を発現させたトランスジェニック非ヒト哺乳動物は、表面もしくは深部の細胞の温度を測定することができる。なお、トランスジェニック非ヒト哺乳動物の深部の細胞の温度は、例えば二光子顕微鏡を用いて測定できる。
 或いは、本発明の温度プローブは、光透過性の樹脂に練り込み、フィルム、シート、或いは成形体としてもよい。
 以下、本発明を実施例を用いてより詳細に説明するが、本発明がこれら実施例に限定されないことはいうまでもない。
略号
 本明細書では、以下の略号が用いられる。
DNA       deoxyribonucleic acid
EGFP      enhanced green fluorescent protein
FASTR     fully automated single-tube recombination
PCR       polymerase chain reaction
《参考例1:GFP変異体の温度感受性》
 蛍光タンパク質の様々な波長変異体における蛍光強度の温度感受性を測定した。各蛍光タンパク質は、それぞれの蛍光タンパク質を含む発現ベクターを大腸菌に導入し、得られた発現タンパク質を、精製して用いた。それぞれの蛍光タンパク質の温度を20℃~50℃まで変化させ、分光光度計で蛍光強度を測定した。その結果、蛍光タンパク質の種類により、蛍光強度の温度感受性が大きく異なることを見出した(表1)。
Figure JPOXMLDOC01-appb-T000001
 全体的な傾向として、青色系の蛍光タンパク質(Sirius、SECFP、EBFP)は、温度の影響を受けやすいことが分かった。
 Siriusの場合は、20℃から50℃に温度を上げた時、蛍光強度が1から0.36へ下がった。本研究で測定した蛍光タンパク質の中でSiriusは最も温度感受性の高い蛍光タンパク質である(図1A)。SECFP(図1B)やEBFP(図1C)も同様に高い温度感受性を示し、20℃の時の蛍光強度を1とした場合の50℃での蛍光強度はそれぞれ0.37と0.39であった。
 黄色系の蛍光タンパク質(Topaz、EYFP、Venus)は、温度の影響を受けにくく、温度に対して蛍光強度が安定していることが明らかになった(表1)。
 Topazは、本発明者が測定した中では温度の変化に対して蛍光強度が最も安定している蛍光タンパク質であった。20℃で測定したTopazの蛍光強度を1とすると、50℃では蛍光強度は1.09となった(図2A)。EYFPとVenusは、20℃の時の蛍光強度で規格化した50℃の時の蛍光強度がそれぞれ0.89(図2B)と0.83(図2C)であった。
 また、赤色系の蛍光タンパク質(DsRed、mOrange、TagRFP、mCherry)と緑色蛍光タンパク質(mSEGFP)では、これまでの計測したタンパク質の中間的な値を示した。20℃で測定した蛍光強度を1とした時の50℃で蛍光強度は、それぞれ、0.79(図3A)、0.60(図3B)、0.59(図3C)、0.54(図3D)、0.65(図3E)であった。
 一方で、蛍光タンパク質以外の蛍光物質の代表例としてフルオレセインの温度感受性も解析した。20℃で測定したフルオレセインの蛍光強度を1とした時、50℃での蛍光強度は0.91であり、ほとんど変化しなかった(図4)。
 また、比較的温度に対する蛍光強度の変化が少なかった黄色蛍光タンパク質について、円順列変異体の温度感受性について測定を行った。cp147 Venus、cp148 Venus、cp173 Venusについて、20℃の時の蛍光強度を1とした時に、50℃の時の蛍光強度は、それぞれ、0.69、0.76、0.90であった(図5)。
 なお、円順列変異体とは、タンパク質を任意の部位で切断し、N末端断片とC末端断片とを入れ替えてつなげる変異体である。このようにして作成された変異体は、元のタンパク質とほぼ同等の機能を有することが多いが、今回の実験結果は、数種類の円順列変異体において異なる温度感受性を示すものであった。このような例は報告が無く、今後温度センサを開発する上で重要な知見となるものである。
《実施例1》
 本実施例では、温度の影響を受けやすい蛍光タンパク質(Sirius、又はmCherry)と温度の影響を受けにくく安定している蛍光タンパク質(Venus、Topaz、又はmOrange)を組み合わせることで、温度に対して蛍光強度がレシオメトリックに変化するプローブが実現可能か検討した。温度感受性の高い蛍光タンパク質と温度感受性の低い蛍光タンパク質をフレキシブルなリンカーアミノ酸(Gly-Gly-Ser)でつなぎ、Topaz-Sirius、Sirius-Venus、Venus-Sirius、Sirius-mOrange、mOrange-Sirius、Venus-mCherry、又はmCherry-Venusの組合せの蛍光温度プローブを作成した。
 各種温度センサの遺伝子の構築は、以下の様に公知のFASTR法(Kotera I and特Nagai T. Journal Biotechnology 137:1-7, 2008; 特願 2007-215238)により行った。PCRの鋳型DNAとしてVenus、Topaz、Sirius、mCherry、mOrange、又はpRSETBを含むDNAベクターを用いた。発現ベクターであるpRSETBの増幅はプライマーの組み合わせとしてREM-pRSET-TGA-fw(配列番号45:GCTACTGCTCTTCGTGAGAATTCGAAGCTTGATCCGGC)とREM-pRSET-ACT-rv(配列番号46:CTGATAGCTCTTCTAGTGGATCCTTATCGTCATCGTCG)を用いた。融合タンパク質のN末端側用のVenus、Topaz、Sirius、mOrange、又はmCherryの増幅はプライマーの組み合わせとしてREM-ACT-GFP-fw(配列番号47:GGCTAGCTCTTCAACTATGGTGAGCAAGGGCGA)とREM-GGT-GGG-GFP-rv(配列番号48:GCTAGGCTCTTCTCCCACCCTTGTACAGCTCGTCCATGC)を用いた。C末端側用Venus、Topaz、Sirius、mOrange、又はmCherrysの増幅はプライマーの組み合わせとしてREM-GGG-AGT-GFP-fw(配列番号49:GGCTAGCTCTTCAGGGAGTATGGTGAGCAAGGGCGA)とREM-TGA-GFP-rv(配列番号50:GCTAGGCTCTTCTTCACTTGTACAGCTCGTCCATGC)を用いた。PCR反応は東洋紡のKOD-plusPCRキットを利用した。鋳型DNA(5ng)1μLと10pmol/μLのフォワード及びリバースのプライマー各1μLをキットに附属の10×KOD-plus溶液2μL、MgSO0.4μL、dNTP1μL、1U/μL KOD-plus 0.2μL、超純水9.4μLと混合した。PCRサイクルは、94℃/2分を1回、94℃/15秒→67℃/30秒→68℃/3分を35回、68℃/5分→4℃/10分を1回行った。PCR産物は1%アガロースゲルで約20分間電気泳動し、QIAEXキット(Quiagen)を用いて、ゲルからDNA断片の精製を行った。切り出したゲルに1×Q溶液600μLとガラスビーズ10μLを加え、50℃の恒温槽に10分間静置した。遠心分離(15,000rpm、30秒、4℃)後、ペレットを残して上清を取り除き、1×Q溶液600μLを加えてボルテックスした。更に遠心分離(15,000rpm、30秒、4℃)を行い、上清を取り除いてPE溶液600μLを加えてボルテックスした。再度、遠心分離(15,000rpm、30秒、4℃)を行い、上清を取り除いて約20分間乾燥させた。乾燥させたペレットは、Tris溶液(pH8.0)30μLを加えて溶解した。遠心分離(15,000rpm、30秒、4℃)後、DNA溶液30μLを回収した。次に、インサート(N末側用蛍光タンパク質遺伝子とC末側用蛍光タンパク質遺伝子)4μLとベクター(pRSETb)2μL、10mM ATP1μL、T4 DNA Ligase buffer(NEB)1μL、Tango buffer(Fermentas)1μL、LguI(Fermentas)1μL、DpnI(NEB)0.5μL、超純水8.5μL混ぜて、室温で2時間静置した。反応後の溶液5μLを用いて、50μLのコンピテント細胞(JM109(DE3))を形質転換し、SOC溶液300μLを加えて恒温振盪器(37℃)で1時間培養した。形質転換されたJM109(DE3)は、アンピシリン100μg/mLを含む1xLBプレート上で一晩培養した。単一コロニーをピックアップしてアンピシリン100μg/mLを含むLB培地で浸透培養し、定法に則りプラスミドDNAを精製し、DNA配列を定法により確認した。以上の工程により大腸菌発現プラスミド、Topaz-Sirius/pRSETB、Sirius-Venus/pRSETB、Venus-Sirius/pRSETB、Sirius-mOrange/pRSETB、mOrange-Sirius/pRSETB、Venus-mCherry/pRSETB、又はmCherry-Venus/pRSETBを得た。
 得られたプラスミドにより大腸菌を形質転換し、温度センサタンパク質を発現後、Ni-NTAカラムにより精製した。
 これらの温度センサを、分光光度計の中で20℃から50℃に温度を変化させ、プローブのそれぞれの蛍光タンパク質の蛍光強度の変化を測定した。図6に、2波長励起で蛍光強度を測定した結果を示す。20℃における基準蛍光タンパク質の蛍光強度と温度感受性蛍光タンパク質の蛍光強度との比の値を1に規格化し、20℃~50℃の規格化蛍光強度の比の変化(規格化蛍光強度レシオ)を縦軸に示し、横軸は温度を示す。50℃の比を1とした場合に、20℃においてその比が0.5まで低下する場合をダイナミックレンジが100%であるとして、それぞれの蛍光温度プローブのダイナミックレンジを計算し、表2に示した。その結果、最も大きな変化率を見せたTopaz-Siriusにおいて、128%のダイナミクレンジを達成した。
Figure JPOXMLDOC01-appb-T000002
《実施例2》
 本実施例では、細胞内(HeLa細胞)で2つの蛍光タンパク質を発現させて、細胞周囲の温度を変化させながらそれぞれの蛍光タンパク質からの蛍光強度を測定後、蛍光強度比でイメージングを行った。
 具体的には、実施例1で得られたSirius-Venusを含むpRSETBベクターから、Sirius-VenusをコードするDNAを切り出し、pcDNA3ベクターに入れ替えた。得られたSirius-Venusを含むpcDNA3ベクターを、SuperFect Transfection Reagent(QIAGEN社)を用いてHeLa細胞にトランスフェクションし、25℃~35℃にHeLa細胞の温度を変化させた。基準蛍光タンパク質(Venus)の蛍光強度を、温度感受性蛍光タンパク質(Sirius)の蛍光強度で割った値を疑似カラーで表示した(図7)。培養液の温度を25℃~35℃に変化させた場合、細胞内に発現させている蛍光温度プローブの比が変化する様子を示している。
 図6で得られた結果に比べて、温度変化による蛍光強度比の変化は小さかったが、25℃~35℃の範囲内で、HeLa細胞の温度を測定できることが明らかになった。
 以上の実施例から、蛍光タンパク質の温度に対する感受性は、蛍光タンパク質の種類により大きく異なることが明らかになった。そこで、感受性の高い蛍光タンパク質と低い蛍光タンパク質を組み合わせることで、感度の高い温度プローブを開発することに成功した。この温度プローブは20℃から50℃へ温度を変化させたときに、最も高いもので128%ものダイナミックレンジを示し、温度プローブとして十分な性能を有していることが確認された。
 本発明の温度プローブは、細胞で用いる際の指標となるダイナミックレンジにおいて、十分な数値を達成している。この温度プローブを用いて、褐色脂肪細胞のミトコンドリアにおける熱産生のメカニズムを検討することができる。
 またこれ以外にも、例えば、生体の温度プローブである温度依存性チャネル(TRPV)の動態を細胞内で可視化したり、ミトコンドリアのUCP以外での熱産生を探索したりするなど、様々な応用例が考えられる。
 以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は本発明の範囲に含まれる。

Claims (12)

  1.  温度に依存して蛍光強度が変化する温度感受性蛍光タンパク質と、前記温度感受性蛍光タンパク質の温度依存性の蛍光強度の変化と異なる蛍光強度の変化を示す蛍光基準物質とを結合させた蛍光温度プローブ。
  2.  前記温度感受性蛍光タンパク質が、20℃における蛍光強度に対する50℃の相対蛍光強度が0.8以下、又は1.2以上の温度感受性蛍光タンパク質であり、前記基準蛍光物質が、20℃における蛍光強度に対する50℃の相対蛍光強度が0.6~1.5の基準蛍光タンパク質である、請求項1に記載の蛍光温度プローブ。
  3.  温度感受性蛍光タンパク質と、基準蛍光物質との相対蛍光強度の差が0.2~0.7である、請求項2に記載の蛍光温度プローブ。
  4.  前記温度感受性蛍光タンパク質が、配列番号28で表されるポリペプチドであるmSEGFP、配列番号2で表されるポリペプチドであるmOrange、配列番号30で表されるポリペプチドであるTagRFP、配列番号4で表されるポリペプチドであるmCherry、配列番号32で表されるポリペプチドであるEBFP、配列番号34で表されるポリペプチドであるSECFP、配列番号6で表されるポリペプチドであるSirius、配列番号44で表されるポリペプチドであるDsRed、配列番号38で表されるポリペプチドであるcp147Venus、及び配列番号40で表されるポリペプチドであるcp148Venusからなる群から選択される少なくとも1つの温度感受性蛍光タンパク質であり、前記基準蛍光物質が、配列番号8で表されるポリペプチドであるTopaz、配列番号36で表されるポリペプチドであるEYFP、配列番号10で表されるポリペプチドであるVenus、配列番号38で表されるポリペプチドであるcp147Venus、配列番号40で表されるポリペプチドであるcp148Venus、配列番号42で表されるポリペプチドであるcp173Venus、配列番号44で表されるポリペプチドであるDsRed、配列番号28で表されるポリペプチドであるmSEGFP、及び配列番号2で表されるポリペプチドであるmOrangeからなる群から選択される少なくとも1つの基準蛍光タンパク質である(但し、温度感受性蛍光タンパク質と基準蛍光物質とが同じ蛍光タンパク質である場合を除く)、請求項1~3のいずれか一項に記載の蛍光温度プローブ。
  5.  前記温度感受性蛍光タンパク質及び基準蛍光タンパク質が、直接又はリンカーペプチドによって結合されている融合タンパク質、又はその機能的等価改変体である、請求項2~4のいずれか一項に記載の蛍光温度プローブ。
  6.  前記基準蛍光物質が、Cy3、Cy5、FITC、ローダミン、FAM、TxR、ペリジニンクロロフィリンタンパク質、カスケードブルー、AMCA、反応性インドカルボシアニン、TRITC、アロフィコシアニン(APC)、フィコシアニン(PC)、DAPI、HEX(4,5,2',4',5',7'-ヘキサクロロ-6-カルボキシフルオレセイン)、5-IAF、TAMRA(6-カルボキシテトラメチルローダミン)、及びTET(4,7,2',7'-テトラクロロ-6-カルボキシフルオレセイン)からなる群から選ばれる、請求項1に記載の蛍光温度プローブ。
  7.  前記蛍光プローブが、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20、配列番号22、配列番号24、又は配列番号26で表されるアミノ酸配列からなるポリペプチドである、請求項1~5のいずれか一項に記載の蛍光温度プローブ。
  8.  前記請求項2~5及び7のいずれか一項に記載の蛍光温度プローブのポリペプチドをコードするポリヌクレオチドを含むDNA。
  9.  前記請求項8に記載のDNAを含むベクター。
  10.  前記請求項9に記載のベクターを含む組み換え体細胞。
  11. 請求項1~7のいずれか一項に記載の蛍光温度プローブと、前記蛍光温度プローブを励起させる手段と、温度プローブの励起によって生じた蛍光スペクトルを検出する手段と、検出されたスペクトルから温度を演算する手段と、演算された温度を表示する手段とを備えた、温度測定装置。
  12.  前記請求項1~7のいずれか一項に記載の蛍光温度プローブを測定対象に導入する工程、
    前記測定対象に、温度感受性蛍光タンパク質の励起光、及び基準蛍光物質の励起光を照射する工程、
    前記温度感受性蛍光タンパク質の蛍光強度及び基準蛍光物質の蛍光強度を測定する工程、及び
    前記温度感受性蛍光タンパク質の蛍光強度と、基準蛍光物質の蛍光強度の比から測定対象の温度を決定する工程、
    を含む、温度測定方法。
PCT/JP2010/060788 2009-06-24 2010-06-24 蛍光温度プローブおよびそれを用いた温度測定装置 WO2010150862A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-149338 2009-06-24
JP2009149338A JP2012177549A (ja) 2009-06-24 2009-06-24 蛍光温度プローブおよびそれを用いた温度測定装置

Publications (1)

Publication Number Publication Date
WO2010150862A1 true WO2010150862A1 (ja) 2010-12-29

Family

ID=43386631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060788 WO2010150862A1 (ja) 2009-06-24 2010-06-24 蛍光温度プローブおよびそれを用いた温度測定装置

Country Status (2)

Country Link
JP (1) JP2012177549A (ja)
WO (1) WO2010150862A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103728283A (zh) * 2012-10-12 2014-04-16 中国科学院烟台海岸带研究所 一种纳米级生物复合物及其应用
WO2015022646A3 (en) * 2013-08-12 2015-05-07 Instytut Biologii Doswiadczalnej Im. Marcelego Nenckiego Polska Akademia Nauk Genetically encoded fret-based mmp-9 activity biosensor and use thereof
JP2015091226A (ja) * 2013-09-30 2015-05-14 国立大学法人東京工業大学 細胞内の酸化還元状態をモニターするための蛍光タンパク質、dna、ベクター、形質転換体、及び方法
CN111394381A (zh) * 2020-03-26 2020-07-10 上海海洋大学 mOrange和vp28穿梭载体富集至卤虫无节幼体的方法
WO2022099034A3 (en) * 2020-11-06 2022-06-09 Petrichor Healthcare Capital Management Lp Mitochondrial protein targeting engineered deubiquitinases and methods of use thereof
RU2799016C1 (ru) * 2022-01-27 2023-06-30 Елена Александровна Протасова Способ детекции локальной температуры в живых клетках и построения температурных карт живых клеток

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015129901A1 (ja) * 2014-02-27 2017-03-30 株式会社セルシード アミノ酸誘導体蛍光ポリマー及びそれを利用した蛍光プローブ
CN105547516B (zh) * 2016-01-07 2019-11-12 复旦大学 激光泵浦上转换荧光测温系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124768A (ja) * 1999-05-27 2001-05-11 Univ Rockefeller 細胞の温度を求めるための蛍光ビーズ及びその使用方法
WO2007142208A1 (ja) * 2006-06-05 2007-12-13 Kyoto University 温度感応タンパク質、ポリヌクレオチド、温度感応タンパク質発現プラスミド及び発現細胞、温度感応タンパク質の利用方法
WO2009020197A1 (ja) * 2007-08-03 2009-02-12 National University Corporation Hokkaido University 群青色蛍光タンパク質

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124768A (ja) * 1999-05-27 2001-05-11 Univ Rockefeller 細胞の温度を求めるための蛍光ビーズ及びその使用方法
WO2007142208A1 (ja) * 2006-06-05 2007-12-13 Kyoto University 温度感応タンパク質、ポリヌクレオチド、温度感応タンパク質発現プラスミド及び発現細胞、温度感応タンパク質の利用方法
WO2009020197A1 (ja) * 2007-08-03 2009-02-12 National University Corporation Hokkaido University 群青色蛍光タンパク質

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOMOSUGI, W. ET AL.: "An ultramarine fluorescent protein with increased photostability and pH insensitivity", NAT. METHODS, vol. 6, no. 5, May 2009 (2009-05-01), pages 351 - 353, XP002595745, DOI: doi:10.1038/nmeth.1317 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103728283A (zh) * 2012-10-12 2014-04-16 中国科学院烟台海岸带研究所 一种纳米级生物复合物及其应用
WO2015022646A3 (en) * 2013-08-12 2015-05-07 Instytut Biologii Doswiadczalnej Im. Marcelego Nenckiego Polska Akademia Nauk Genetically encoded fret-based mmp-9 activity biosensor and use thereof
US9914955B2 (en) 2013-08-12 2018-03-13 Instytut Biologii Doświadczalnej im. Marcelego Nenckiego Polska Akademia Nauk Genetically encoded FRET-based MMP-9 activity biosensor and use thereof
JP2015091226A (ja) * 2013-09-30 2015-05-14 国立大学法人東京工業大学 細胞内の酸化還元状態をモニターするための蛍光タンパク質、dna、ベクター、形質転換体、及び方法
CN111394381A (zh) * 2020-03-26 2020-07-10 上海海洋大学 mOrange和vp28穿梭载体富集至卤虫无节幼体的方法
WO2022099034A3 (en) * 2020-11-06 2022-06-09 Petrichor Healthcare Capital Management Lp Mitochondrial protein targeting engineered deubiquitinases and methods of use thereof
RU2799016C1 (ru) * 2022-01-27 2023-06-30 Елена Александровна Протасова Способ детекции локальной температуры в живых клетках и построения температурных карт живых клеток

Also Published As

Publication number Publication date
JP2012177549A (ja) 2012-09-13

Similar Documents

Publication Publication Date Title
WO2010150862A1 (ja) 蛍光温度プローブおよびそれを用いた温度測定装置
Nakano et al. Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response
Yang et al. mBeRFP, an improved large stokes shift red fluorescent protein
Koushik et al. Energy migration alters the fluorescence lifetime of Cerulean: implications for fluorescence lifetime imaging Forster resonance energy transfer measurements
JP4505439B2 (ja) 糖濃度に対するシグナル強度の向上した蛍光標識蛋白質及びその用途
JP5570803B2 (ja) 蛍光タンパク質およびpH測定方法
US8524447B2 (en) Fluorescently labeled fusion protein for assaying adenosine triphosphate
US20090203035A1 (en) Fluorescent proteins with increased photostability
Bayle et al. Combination of novel green fluorescent protein mutant TSapphire and DsRed variant mOrange to set up a versatile in planta FRET-FLIM assay
Zhang et al. Interaction of metastasis-inducing S100A4 protein in vivo by fluorescence lifetime imaging microscopy
Sanagavarapu et al. Calcium binding and disulfide bonds regulate the stability of secretagogin towards thermal and urea denaturation
US10794915B2 (en) Genetically encoded sensors for imaging proteins and their complexes
Banik et al. Fluorescence-based analyses of the effects of full-length recombinant TAF130p on the interaction of TATA box-binding protein with TATA box DNA
JP2011097930A (ja) 光活性化生理機能センサータンパク質
WO2008094316A2 (en) Novel branchiostoma derived fluorescent proteins
JP5283105B2 (ja) 高いエネルギー移動効率を有するbret発現系
WO2017155101A1 (ja) 蛍光タンパク質
JP5076037B2 (ja) 改変蛍光蛋白質
JP6925019B2 (ja) 細胞内の酸素濃度の変化をモニターするための融合タンパク質
JP2011212008A (ja) 蛍光タンパク質およびpH測定方法
US8852882B2 (en) Biosensors and their use
Rusanov et al. FRET-sensor for imaging with lifetime resolution
WO2024089297A1 (en) Novel fluorescent and bioluminescent proteins and reporter systems for ratiometric measurement of luminescence
JP2005040132A (ja) 細胞内ip3測定用分子センサー
ES2452485A1 (es) Mutantes de apoacuorina y metodos para su uso

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792180

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10792180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP