WO2017155101A1 - 蛍光タンパク質 - Google Patents

蛍光タンパク質 Download PDF

Info

Publication number
WO2017155101A1
WO2017155101A1 PCT/JP2017/009759 JP2017009759W WO2017155101A1 WO 2017155101 A1 WO2017155101 A1 WO 2017155101A1 JP 2017009759 W JP2017009759 W JP 2017009759W WO 2017155101 A1 WO2017155101 A1 WO 2017155101A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent protein
amino acid
acid sequence
present disclosure
protein
Prior art date
Application number
PCT/JP2017/009759
Other languages
English (en)
French (fr)
Inventor
永井健治
篠田肇
松田知己
ユアンキン マ
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to EP17763433.4A priority Critical patent/EP3428180A4/en
Priority to US16/083,144 priority patent/US10899804B2/en
Priority to CN201780016246.XA priority patent/CN108834418A/zh
Priority to JP2018504611A priority patent/JP6762069B2/ja
Publication of WO2017155101A1 publication Critical patent/WO2017155101A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/60Fusion polypeptide containing spectroscopic/fluorescent detection, e.g. green fluorescent protein [GFP]

Definitions

  • the present disclosure relates to a green-yellow fluorescent protein having high pH stability, a photoswitching mutant thereof, a fusion protein thereof, a molecular sensor thereof, DNA, an expression cassette, a vector, and a transformant.
  • a fluorescent protein is used as a marker capable of tracking the behavior of molecules in a living body in real time, or as a fluorescence resonance energy transfer (FRET) type biosensor preparation tool for detecting an ion concentration or a physiologically active substance (for example, Patent Document 1). ) Is universal.
  • the present disclosure provides a green-yellow fluorescent protein having high pH stability (having reduced pH sensitivity).
  • the present disclosure is a fluorescent protein having an amino acid sequence in which at least the following mutation is introduced into the 2nd to 225th sequences of the amino acid sequence of SEQ ID NO: 1 It is also called body fluorescent protein.
  • the mutation is selected from the group consisting of F149 TorSor A, L158 TorSor A, H160 TorSor A, Y174 TorSorA, Y192 TorSorA, and combinations of 2 to 5 thereof.
  • the fluorescent protein having the second to 232th sequence of the amino acid sequence of SEQ ID NO: 1, or the second to 232th sequence of the amino acid sequence of SEQ ID NO: 1 Fluorescence having an amino acid sequence in which 1 to several amino acids have been deleted, substituted, and / or added, pH sensitivity (pKa) of 4.0 or less, a dimer type, and a fluorescent color of green-yellow
  • the present invention relates to a protein (hereinafter, a dimeric fluorescent protein according to the present disclosure).
  • the light in which “a mutation that becomes a light switching type” is further introduced into the monomeric fluorescent protein according to the present disclosure and the dimeric fluorescent protein according to the present disclosure.
  • the present invention relates to a fluorescent protein of a switching mutant type.
  • the present disclosure relates to a fusion protein or a molecular sensor including the fluorescent protein according to the present disclosure in one or a plurality of other embodiments.
  • the present disclosure includes a nucleic acid including a base sequence encoding a fluorescent protein, a fusion protein, or a molecular sensor according to the present disclosure, an expression cassette including the base sequence, a vector or trait including them. Concerning the converter.
  • a green-yellow fluorescent protein having high pH stability having reduced pH sensitivity
  • imaging can be performed in an acidic environment
  • cell imaging can be performed in an acidic cell environment such as lysosomes, secretory granules, and autophagosomes.
  • by combining with a cyan or red fluorescent protein having high pH stability for example, multiple types of fluorescence observation can be performed in an acidic environment.
  • biosensors for detecting ion concentrations and physiologically active substances in an acidic environment for example, FRET biosensors, biosensors using circular permutation technology, molecular sensors using split GFP technology, etc. are possible It becomes.
  • a green-yellow fluorescent protein having high pH stability can be provided as a monomer type.
  • the influence of dimer formation in the case of using a fusion protein with another protein can be eliminated, and effective imaging and detection can be performed.
  • FIG. 1 shows the results of size-removed gel filtration chromatography of purified fluorescent protein.
  • the dotted spectrum shows the absorption of 10 ⁇ M DsRed (tetramer), tdTomato (dimer), and mCherry (monomer) in order from the left.
  • the solid line spectrum shows the absorption of mfGFP.
  • FIG. 2 shows the results of measuring the fluorescence characteristics of purified mfGFP.
  • FIG. 3 shows the results of measuring fluorescence intensity by dissolving mfGFP or EGFP in a buffer having a pH of 3 to 9.
  • FIG. 4 shows the results of measuring the photostability of mfGFP or EGFP.
  • FIG. 1 shows the results of size-removed gel filtration chromatography of purified fluorescent protein.
  • the dotted spectrum shows the absorption of 10 ⁇ M DsRed (tetramer), tdTomato (dimer), and mCherry (monomer
  • FIG. 5 shows the results of measuring the maturation rate ratio of mfGFP or EGFP fluorophores.
  • FIG. 6 is an image showing the results of fusing the localization signals to various organelle proteins with mfGFP and expressing them in HeLa cells.
  • FIG. 7 is an image after mfGFP or EGFP is expressed in the cytoplasm of HeLa cells and cultured at 37 ° C./5% for 3 days.
  • FIG. 8 shows the results of measuring the fluorescence intensity of the mfGFP photoswitching mutant in pH 5, 6, 7, and 8 buffers.
  • FIG. 9 shows an example of continuous light switching of mfGFP light switching mutants in pH 5, 6, 7, and 8 buffers.
  • the present disclosure is based on the finding that a green-yellow fluorescent protein derived from the cherry tree jellyfish (scientific name: Olindias formosa) exhibits good pH stability (ie, reduced pH sensitivity).
  • the wild-type green-yellow fluorescent protein (hereinafter, also referred to as dfGFP, SEQ ID NO: 1) cloned from the cherry tree jellyfish is a dimer.
  • SEQ ID NO: 2 also referred to as mfGFP, was obtained.
  • the “green-yellow fluorescent protein” refers to a fluorescent protein having a fluorescent color of green or yellow-green, and in one or a plurality of embodiments, the wavelength at which the fluorescence intensity of the emission spectrum is maximum is included in 495 to 570 nm. Say things.
  • the “monomer-type green-yellow fluorescent protein” refers to all mutants of the monomer-type green-yellow fluorescent protein originating from the amino acid sequence (SEQ ID NO: 1) of the green-yellow fluorescent protein (dfGFP, dimer type). Can be included.
  • the phrase that the fluorescent protein is monomeric means that the same type of fluorescent protein does not polymerize and exists as a single substance. Further, in the present disclosure, that the fluorescent protein is in a dimer form means that two fluorescent proteins of the same species interact with each other to form a stable complex.
  • fluorescent protein having amino acid sequence A means, in one or more embodiments, other amino acids such as N-terminal methionine at the N-terminal or C-terminal position of amino acid sequence A, a signal peptide sequence, It means that amino acid sequences that allow protein purification and combinations thereof can be included. A person skilled in the art can select an amino acid sequence that enables protein purification.
  • the mutation represented by “X 1 NX 2 ” is a general notation method for mutation, and the N-th amino acid residue X 1 (single-letter amino acid residue) of the amino acid sequence is an amino acid. Represents a mutation to be substituted with residue X 2 (single letter amino acid residue).
  • the mutation represented by “X 1 NX 2 or X 3 or X 4 ” indicates that the Nth amino acid residue X 1 (single letter amino acid residue) of the amino acid sequence is amino acid residues X 2 , X 3. Or X 4 (both are amino acid residues represented by one letter).
  • X 1 NX 2 orX 3 orX 4" mutation and is represented by the "X 1 N / X 2 ( N + 1) / X 3 (N + 2) ⁇ Y 1 Y 2 Y 3 Y 4"
  • Each mutation may be counted as one mutation.
  • X 1 and N represented by “X 1 NX 2 ” and the like are the N-th amino acid residue X 1 of the amino acid sequence of SEQ ID NO: 1 in the sequence listing, or the sequence listing, unless otherwise specified.
  • the pH sensitivity of the fluorescent protein refers to a decrease in the fluorescence intensity of the fluorescent protein when the pH of the medium in which the fluorescent protein exists changes from a basic pH to an acidic pH.
  • the pH stability of the fluorescent protein refers to a decrease in the fluorescence intensity of the fluorescent protein when the pH of the medium in which the fluorescent protein is present changes from a basic pH to an acidic pH.
  • the “fluorescence intensity” of a fluorescent protein can be measured using a spectrofluorometer.
  • the pH sensitivity represents a pH at which the fluorescence intensity of the fluorescent protein becomes half of the maximum value when the pH of the medium in which the fluorescent protein exists changes from a basic pH to an acidic pH. Specifically, it can be measured by the method described in the examples.
  • the present disclosure relates to a monomeric green-yellow fluorescent protein having an amino acid sequence in which a monomer-like mutation is introduced into the 2nd to 225th sequences of the amino acid sequence of SEQ ID NO: 1.
  • the “monomer-type mutation” is a mutation selected from the group consisting of F149 TorSorA, L158 TorSorA, H160 TorSorA, Y174 TorSorA, Y192 TorSorA, and combinations of these 2 to 5 mutations. It is.
  • F149TorSorA means “F149T, F149S, or F149A”
  • L158TorSorA means “L158T, L158S, or L158A”
  • H160TorSorA means “H160T, H160S, or H160A”.
  • Y174TorSorA means “Y174T, Y174S, or Y174A”
  • Y192TorSorA means “Y192T, Y192S, or Y192A", respectively.
  • the present disclosure relates to a fluorescent protein having an amino acid sequence in which at least the following mutation is introduced into the 2nd to 225th sequences of the amino acid sequence of SEQ ID NO: 1 in one or a plurality of embodiments.
  • a mutation selected from the group consisting of F149 TorSorA, L158 TorSorA, H160 TorSorA, Y174 TorSorA, and Y192 TorSorA, and combinations of these 2-5.
  • the “mutation that becomes a monomer type” or the “mutation introduced into the 2nd to 225th sequences of the amino acid sequence of SEQ ID NO: 1” is any one of F149 TorSorA, L158 TorSorA, H160 TorSorA, Y174TorSorA, or Y192TorSorA. Or a combination of 2, 3, 4 or 5 mutations selected from F149 TorSorA, L158 TorSorA, H160 TorSorA, Y174 TorSorA, and Y192 TorSorA.
  • the combination of two mutations includes, in a non-limiting embodiment, a combination of Y174 TorSorA and Y192 TorSorA.
  • Other embodiments include a combination of two mutations, Y174T and Y192A.
  • the three mutation combinations include, in a non-limiting embodiment, a combination of F149 TorSorA, L158 TorSorA, and H160 TorSorA.
  • Other embodiments include combinations of three mutations, F149T, L158T and H160T.
  • the five mutation combinations include, but are not limited to, F149 TorSor A, L158 TorSorA, H160 TorSorA, Y174 TorSorA, and Y192 TorSorA.
  • Other embodiments include combinations of 5 mutations of F149T, L158T, H160T, Y174T and Y192A.
  • dfGFP SEQ ID NO: 1
  • SEQ ID NO: 1 which is a dimer form
  • the monomer-type green-yellow fluorescent protein according to the present disclosure may further include K112EorDorQ, E147KorRorQ, Q145EorD in addition to the “monomer-type mutation” from the viewpoint of improving luminance and / or solubility.
  • K166EorDorQ, P162LorVorIorA, P223LorVorIorA, N37SorAorG, E140KorRorQ, K185RorAorG, A150 / E151 / G152 ⁇ PHGPorPHA, and K180TorS, and a combination of 2 to 11 of these may be selected.
  • the positions of these mutations are based on SEQ ID NO: 1.
  • the monomer-type green-yellow fluorescent protein according to the present disclosure may further include K112E, E147K, Q145E in addition to the “monomer-type mutation” from the viewpoint of improving luminance and / or solubility.
  • K112E, E147K, Q145E in addition to the “monomer-type mutation” from the viewpoint of improving luminance and / or solubility.
  • a mutation selected from the group consisting of K166E, P162L, P223L, N37S, E140K, K185R, A150 / E151 / G152 ⁇ PHGP, and K180T, and combinations of these 2-11 may be introduced.
  • the monomer-type green-yellow fluorescent protein according to the present disclosure has an N-terminal and a C-terminal of the second to 225th sequences of the amino acid sequence of SEQ ID NO: 1 from the viewpoint of protein folding stability.
  • the amino acid sequences of the N-terminal and C-terminal of other fluorescent proteins may be added to each of the above.
  • the length of the added amino acid sequence is, for example, 6 to 8 amino acids or 7 amino acids.
  • a fluorescent protein having the 8th to 232nd sequence of the amino acid sequence of SEQ ID NO: 2 A fluorescent protein having the 2nd to 232nd sequences of the amino acid sequence of SEQ ID NO: 2, A fluorescent protein having the 8th to 239th sequence of the amino acid sequence of SEQ ID NO: 2, A fluorescent protein having the second to 239th sequences of the amino acid sequence of SEQ ID NO: 2, A fluorescent protein having the amino acid sequence of SEQ ID NO: 2, Is mentioned.
  • the pH sensitivity (pKa) of the monomer type green-yellow fluorescent protein according to the present disclosure is 4.0 or less, preferably less than 4.0, and more preferably 3.9 or less.
  • the monomer-type green-yellow fluorescent protein according to the present disclosure has a pH sensitivity (pKa) of 4.0 or less so long as the function of the monomer-type green-yellow fluorescent protein can be maintained. It may have a mutation. Such mutations include deletions, substitutions, and / or additions of one to several amino acids, and “one to several” refers to 1 to 4, 1 to 3, in one or more embodiments, Includes 1-2, or one.
  • the monomer type green-yellow fluorescent protein according to the present disclosure is at least 90%, 91%, 92%, 93%, 94% and the 8th to 232th sequence of the amino acid sequence of SEQ ID NO: 2. , 95%, 96%, 97%, 98%, 99%, or 99.5% amino acid sequence having a pH sensitivity (pKa) of 4.0 or less and a monomeric green-yellow fluorescent protein It is.
  • the monomer type green-yellow fluorescent protein according to the present disclosure may be a protein synthesized by chemical synthesis or a recombinant protein produced by a gene recombination technique.
  • a method for producing a recombinant protein by a gene recombination technique a method for producing a recombinant protein using a host transformed with an expression vector containing a gene encoding a monomeric green-yellow fluorescent protein according to the present disclosure, Or the method of producing by a cell-free system is mentioned.
  • the monomer-type green-yellow fluorescent protein according to the present disclosure may further have “a mutation that becomes a light switching type”.
  • Examples of the “mutation that becomes an optical switching type” include T197AorG, that is, “T197A or T197G”. The position of this mutation is based on the amino acid sequence of SEQ ID NO: 1.
  • the “mutation that becomes an optical switching type” is T204AorG.
  • a fluorescent protein having the 8th to 232nd sequence of the amino acid sequence of SEQ ID NO: 2 A fluorescent protein having the 2nd to 232nd sequences of the amino acid sequence of SEQ ID NO: 2, A fluorescent protein having the 8th to 239th sequence of the amino acid sequence of SEQ ID NO: 2, A fluorescent protein having the second to 239th sequences of the amino acid sequence of SEQ ID NO: 2, A fluorescent protein having the amino acid sequence of SEQ ID NO: 2, Having a mutation of T204AorG in the amino acid sequence of SEQ ID NO: 2, Is mentioned.
  • the light-switching mutant monomer type green-yellow fluorescent protein according to the present disclosure has at least 90% and 91% of the 8th to 232th sequence of the amino acid sequence of SEQ ID NO: 2 having the mutation of T204AorG. , 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.5% identity and pH sensitivity (pKa) of 4.0
  • pKa pH sensitivity
  • the light-switching fluorescent protein refers to a fluorescent protein (Reversibly Photo-Switchable Fluorescent Protein, RSFP) that can reversibly switch fluorescence.
  • fluorescent protein Reversibly Photo-Switchable Fluorescent Protein, RSFP
  • “light-switching type fluorescent protein capable of reversibly switching light” means that in one or a plurality of embodiments, on and off of fluorescence can be controlled by two light irradiations having different wavelengths, and on A fluorescent protein that can be repeatedly switched between and off.
  • the light-switching mutant monomer type green-yellow fluorescent protein according to the present disclosure having the above-mentioned “mutation that becomes a light-switching type” changes from non-fluorescence to fluorescence upon irradiation with light of a specific wavelength that does not excite fluorescence, Therefore, it is a negative light switching type RSFP that changes from fluorescent to non-fluorescent by light irradiation.
  • the term “monomer-type green-yellow fluorescent protein according to the present disclosure” may include a light-switching mutant monomer-type green-yellow fluorescent protein.
  • the present disclosure is a fusion protein in which the monomeric green-yellow fluorescent protein according to the present disclosure is fused with another protein or peptide, and the fluorescent protein portion has a pH sensitivity (pKa) of 4.0. It is a fusion protein that can function as the following monomeric green-yellow fluorescent protein.
  • the protein to be bound (fused) to the monomer type green-yellow fluorescent protein according to the present disclosure may be a signal sequence, an expression tag, or a protein (necessary) in one or a plurality of non-limiting embodiments. Corresponding linker sequences).
  • the signal sequence and the protein include a cell membrane, an intracellular cytoskeleton (microfilament, intermediate filament, microtubule) and an organelle (nucleus, endoplasmic reticulum) from the viewpoint of imaging. , Golgi, mitochondria, endosome, lysosome, etc.) and signal sequences and proteins that can be localized.
  • the monomeric green-yellow fluorescent protein and the fusion protein according to the present disclosure are monomeric and have reduced pH sensitivity
  • acidic substances such as lysosomes, secretory granules, and autophagosomes are used. It can be used as a fluorescent function indicator or fluorescent marker in a cellular environment, or can be used for cell imaging (for example, in vivo imaging).
  • the monomeric green-yellow fluorescent protein and the fusion protein according to the present disclosure are green-yellow fluorescent proteins with high pH stability, in one or a plurality of non-limiting embodiments, a cyan or red fluorescent protein with high pH stability and By combining them, for example, multiple types of fluorescence observation are possible in an acidic environment, and a biosensor for detecting ion concentration, physiologically active substance, and the like in an acidic environment becomes possible. Therefore, in another aspect, the present disclosure relates to a molecular sensor that has a part or all of the amino acid sequence of the monomer type green-yellow fluorescent protein or fusion protein according to the present disclosure and uses the fluorescence characteristics of the protein.
  • the molecular sensor according to the present disclosure may include all of the molecular sensors that utilize the fluorescence characteristics of the monomer-type green-yellow fluorescent protein according to the present disclosure or the fusion protein according to the present disclosure.
  • Examples of the molecular sensor according to the present disclosure include, but are not limited to, a FRET biosensor, a biosensor using a circular permutation technique, a molecular sensor using a split GFP technique, and the like.
  • Examples of the fluorescence resonance energy transfer (FRET) biosensor include a FRET biosensor in which at least one fluorescent protein component used in FRET is a monomeric green-yellow fluorescent protein according to the present disclosure.
  • the molecular sensor according to the present disclosure may be in a form composed of a protein or a peptide, and is a form in which the monomer-type green-yellow fluorescent protein or fusion protein according to the present disclosure is bound to a substance other than a protein. Also good.
  • Biosensors using circular permutation technology include biosensors that include circular permutants of monomeric green-yellow fluorescent protein according to the present disclosure.
  • circular permutation refers to the production of a new N-terminus and C-terminus within the monomeric green-yellow fluorescent protein according to the present disclosure (ie, the protein is divided into two internally), and the original The mutation which connects the C-terminal and N-terminal of the above by an appropriate linker sequence.
  • Circular permutation in fluorescent proteins has been performed conventionally, see, for example, Baird et al. (Proc. Natl. Acad. Sci. USA, vol96, pp11241-11246 1999).
  • the biosensor using the circular permutation technology in the present disclosure includes a peptide or protein that binds to the N-terminal and C-terminal of the circular permutation of the monomer-type green-yellow fluorescent protein according to the present disclosure.
  • the peptide or protein can be appropriately selected depending on the object to be sensed.
  • the molecular sensor using the split GFP technology examples include a biosensor using the monomer type green-yellow fluorescent protein according to the present disclosure divided into two.
  • a conventional division GFP technique can be referred to.
  • the biosensor using the split GFP technology in the present disclosure includes a configuration in which a peptide or protein is bound to each of the monomer-type green-yellow fluorescent protein according to the present disclosure that is split into two.
  • the peptide or protein can be appropriately selected depending on the object to be sensed.
  • the present disclosure relates to a nucleic acid encoding a monomeric green-yellow fluorescent protein according to the present disclosure, a fusion protein according to the present disclosure, or a molecular sensor according to the present disclosure.
  • the nucleic acid includes single-stranded or double-stranded DNA selected from synthetic DNA, cDNA, genomic DNA, and plasmid DNA, and transcription products of these DNAs.
  • An example of the base sequence of DNA encoding the monomeric green-yellow fluorescent protein according to the present disclosure is the base sequence represented by SEQ ID NO: 3.
  • the present disclosure relates to an expression cassette comprising a nucleic acid encoding a monomeric green-yellow fluorescent protein, fusion protein, or molecular sensor according to the present disclosure.
  • the nucleic acid is operably linked to an expression regulatory sequence according to the host cell to be introduced.
  • expression regulatory sequences include promoters, enhancers, transcription terminators, and the like, and other examples include start codons, intron splicing signals, and stop codons.
  • the present disclosure relates to a vector capable of expressing a monomer type green-yellow fluorescent protein, a fusion protein, or a molecular sensor according to the present disclosure.
  • the present disclosure relates to a vector capable of expressing the monomer type green-yellow fluorescent protein according to the present disclosure, the fusion protein according to the present disclosure, or the molecular sensor according to the present disclosure.
  • the vector according to the present disclosure is an expression vector having the nucleic acid or the expression cassette according to the present disclosure.
  • the vector according to the present disclosure can be used by appropriately selecting an expression vector system according to the cell (host) to be expressed.
  • One or more non-limiting embodiments include plasmids, cosmids, YACS, viral (eg, adenovirus, retrovirus, episomal EBV, etc.) vectors and phage vectors.
  • the present disclosure relates to a transformant that expresses a monomeric green-yellow fluorescent protein, a fusion protein, or a molecular sensor according to the present disclosure.
  • the transformant of the present disclosure is a cell that expresses the disclosed monomer-type green-yellow fluorescent protein, fusion protein, or molecular sensor, or a tissue, organ, or living body that includes the cell. .
  • this indication is related with the transformant which has the nucleic acid or vector which concerns on this indication in one or some embodiment.
  • the transformant of the present disclosure can be produced by introducing the nucleic acid, expression cassette or vector of the present disclosure into a host.
  • the host include animal cells, animal cells that do not contain human organisms, plant cells, insect cells, microorganisms, and the like.
  • the present disclosure relates to an imaging method using a monomer type green-yellow fluorescent protein, a fusion protein, or a molecular sensor according to the present disclosure.
  • the imaging method of the present disclosure includes introducing a monomer type green-yellow fluorescent protein, a fusion protein, or a molecular sensor according to the present disclosure into a cell or the like, and the monomer type green-yellow according to the present disclosure. Detecting the fluorescent signal of a fluorescent protein, fusion protein, or molecular sensor.
  • an imaging method for a human living body is not included.
  • the present disclosure relates to an imaging method using the photoswitching mutant monomer type green-yellow fluorescent protein according to the present disclosure, a fusion protein thereof, or a molecular sensor using them.
  • an imaging method for a human living body is not included.
  • the imaging method of the present disclosure introduces the light-switching mutant monomer type green-yellow fluorescent protein of the present disclosure into a cell or the like, and performs light switching of the light-switching mutant-type fluorescent protein to perform fluorescence. On / off sex and / or detecting the fluorescence signal of the light-switching mutant fluorescent protein.
  • the imaging method of the present disclosure is, in one or more embodiments, super-resolution imaging or super-resolution live imaging, and in one or more embodiments, PALM (photoactivated localization microscopy), STORM (stochastic optical reconstruction microscopy). ), RESOLFT (reversible saturable optical fluorescence transition), NL-SIM (Nonlinear structured illumination microscopy), or SOFI (stochastic optical fluctuation imaging).
  • the present disclosure provides, in other embodiments, a wild-type dimeric green-yellow fluorescent protein (dfGFP, the second to 232th sequences of SEQ ID NO: 1) cloned from the cherry tree jellyfish (scientific name: Olindias formosa), and the dfGFP It is related with the mutant of the dimer type
  • pKa pH sensitivity
  • the dimeric green-yellow fluorescent protein according to the present disclosure has a pH sensitivity (pKa) of 4.0 or less and can maintain the function of the dimeric green-yellow fluorescent protein. It may have a mutation. Such mutations include deletions, substitutions, and / or additions of one to several amino acids, and “one to several” refers to 1 to 4, 1 to 3, in one or more embodiments, Includes 1-2, or one.
  • the dimer-type green-yellow fluorescent protein according to the present disclosure is at least 90%, 91%, 92%, 93%, 94% and the second to 232th sequences of the amino acid sequence of SEQ ID NO: 1. 95%, 96%, 97%, 98%, 99%, or 99.5% amino acid sequence having a pH sensitivity (pKa) of 4.0 or less and a dimeric green-yellow fluorescent protein It is.
  • a mutation that becomes a light switching type may be further introduced.
  • the “mutation that becomes an optical switching type” include T197AorG, that is, “T197A or T197G”. The position of this mutation is based on the amino acid sequence of SEQ ID NO: 1.
  • the “dimeric green-yellow fluorescent protein according to the present disclosure” may include a light-switching mutant dimer-type green-yellow fluorescent protein.
  • the present disclosure also relates to a fusion protein, a molecular sensor, a nucleic acid, an expression cassette, a vector, and a transformant related to the dimeric green-yellow fluorescent protein according to the present disclosure, or an imaging method using the molecular sensor using them. These can be the same as those of the monomer type green-yellow fluorescent protein according to the present disclosure.
  • a fluorescent protein having an amino acid sequence in which at least the following mutation is introduced into the 2nd to 225th sequences of the amino acid sequence of SEQ ID NO: 1.
  • the mutation is selected from the group consisting of F149 TorSor A, L158 TorSor A, H160 TorSor A, Y174 TorSorA, Y192 TorSorA, and combinations of 2 to 5 thereof.
  • the fluorescent protein according to [1] which has an amino acid sequence in which the following mutation is further introduced into the 2nd to 225th sequences of the amino acid sequence of SEQ ID NO: 1.
  • the mutation consists of K112EorDorQ, E147KorRorQ, Q145EorD, K166EorDorQ, P162LorVorIorA, P223LorVorIorA, N37SorAorG, E140KorRorQ, K185RorAorG, A150 / P151A, GPH, A150 / P151A Selected.
  • the fluorescent protein according to [1] or [2] which has an 8th to 232nd sequence of the amino acid sequence of SEQ ID NO: 2.
  • It has an amino acid sequence in which one to several amino acids are deleted, substituted, and / or added in the amino acid sequence of the fluorescent protein according to any one of [1] to [4], and is pH sensitive (pKa ) Is 4.0 or less, is a monomer type, and has a fluorescent color of green-yellow.
  • [6] The amino acid sequence of the fluorescent protein according to any one of [1] to [4] and at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, A fluorescent protein having an amino acid sequence showing 99% or 99.5% identity, having a pH sensitivity (pKa) of 4.0 or less, a monomeric type, and a fluorescent color of green-yellow.
  • the fluorescent protein according to any one of [1] to [6], which has an amino acid sequence in which a mutation of T197AorG is introduced into the 2nd to 225th sequences of the amino acid sequence of SEQ ID NO: 1.
  • the function according to [8] which can function as a fluorescent protein that changes from non-fluorescence to fluorescence by irradiation with light of a specific wavelength that does not excite fluorescence, and changes from fluorescence to non-fluorescence by irradiation with light for fluorescence excitation. Fluorescent protein.
  • a molecular sensor having a part or all of the amino acid sequence of the protein according to any one of [1] to [10] and utilizing the fluorescence characteristics of the protein.
  • [12] A nucleic acid having a base sequence encoding the protein according to any one of [1] to [10] or the molecular sensor according to [11].
  • An expression cassette comprising a base sequence encoding the protein according to any one of [1] to [10] or the molecular sensor according to [11].
  • the protein according to any one of [1] to [10] or the molecular sensor according to [11] can be expressed, or the nucleic acid according to [12] or the expression cassette according to [13] Having a vector.
  • [15] A transformant expressing the protein according to any one of [1] to [10] or the molecular sensor according to [11].
  • the fluorescent protein according to [16] having a pH sensitivity (pKa) of 4.0 or less, a dimer type, and a fluorescent color of green-yellow.
  • It has an amino acid sequence in which 1 to several amino acids are deleted, substituted, and / or added in the 2nd to 232nd sequences of the amino acid sequence of SEQ ID NO: 1, and pH sensitivity (pKa) is 4.
  • a fluorescent protein that is 0 or less, is dimeric, and has a fluorescent color of green-yellow.
  • the fluorescent protein according to any one of [16] to [20] which has an amino acid sequence in which a mutation of T197AorG is introduced into the 2nd to 225th sequences of the amino acid sequence of SEQ ID NO: 1.
  • a molecular sensor having a part or all of the amino acid sequence of the protein according to any one of [16] to [24] and utilizing the fluorescence characteristics of the protein.
  • [26] A nucleic acid having a base sequence encoding the protein according to any one of [16] to [24] or the molecular sensor according to [25].
  • An expression cassette comprising a base sequence encoding the protein according to any one of [16] to [24] or the molecular sensor according to [25].
  • the protein according to any one of [16] to [24] or the molecular sensor according to [25] can be expressed, or the nucleic acid according to [26] or the expression cassette according to [27] Having a vector.
  • dfGFP is a fluorescent protein derived from the cherry tree jellyfish (scientific name: Olindias formosa).
  • RNA was extracted from the cherry tree jellyfish, and mRNA was reverse transcribed into DNA using an oligo T primer to prepare a cDNA library.
  • This cDNA library was amplified by PCR and then inserted into a bacterial expression vector. These plasmids were transformed into Escherichia coli, and colonies emitting fluorescence were selected to identify a gene encoding the fluorescent protein dfGFP.
  • the amino acid sequence of dfGFP encoded by the gene is SEQ ID NO: 1 in the sequence listing.
  • MfGFP having a polyhistidine tag at the N-terminus was introduced into the bacterial expression vector pRSET B and expressed in E. coli. After culturing in LB medium at 23 ° C. for 65 hours, the cells were disrupted with a French press, and the supernatant was gel-filtrated with a Ni-NTA agarose affinity column (Qiagen) and a PD-10 column (GE Healthcare). And re-purified on an AKTA Superdex200 10/300 GL (GE Healthcare) column.
  • FIG. 1 shows the result of size-removal gel filtration chromatography using a Superdex 200 10/30 column.
  • the solvent is a 20 mM HEPES solution of pH 7.4 containing 150 mM NaCl.
  • the spectrum of the dotted line in FIG. 1 shows the absorption of 10 ⁇ M DsRed (tetramer), tdTomato (dimer), and mCherry (monomer) in order from the left.
  • the solid line spectrum shows the absorption of 10 ⁇ M mfGFP. Since the peak position of mfGFP is almost the same as that of mCherry, it can be said that mfGFP is a monomer.
  • Table 1 summarizes the optical properties of mfGFP and EGFP.
  • MfGFP Physical property 5 of mfGFP
  • MfGFP was fused with localization signals to various organelle proteins and expressed in HeLa cells (actin, Golgi apparatus, phosphorus, paxillin, peroxisome, dixin, mitochondria, fibrillarin, vimentin, tubulin, connexin 43, histone H2B, Life Act, VAMP2, LAMP3. Catthepsin B, LC3).
  • FIG. 6 the mfGFP fusion protein showed the correct localization to the target organelle protein.
  • the successful labeling of tubulin which is difficult to localize, suggests the property of mfGFP as a high monomer.
  • High fluorescence intensity was also exhibited in secretory vesicles and lysosomes (pH 4.5-5, 5) whose inside was kept acidic.
  • [MfGFP photoswitching mutant] By introducing a T197A (or T197G) amino acid mutation into mfGFP, a mutant (light switching mutant) capable of controlling the fluorescence / non-fluorescence state in a light wavelength-dependent manner while maintaining the acid resistance of mfGFP was obtained.
  • a mutant light switching mutant capable of controlling the fluorescence / non-fluorescence state in a light wavelength-dependent manner while maintaining the acid resistance of mfGFP was obtained.
  • the T197A mutant was expressed in Escherichia coli and the extract was mixed with buffers of pH 5, 6, 7, and 8, it was found that the fluorescence intensity was not affected by the pH in the above range (FIG. 8).
  • SEQ ID NO: 1 amino acid sequence of dfGFP
  • SEQ ID NO: 2 amino acid sequence of mfGFP
  • SEQ ID NO: 3 base sequence of mfGFP

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

pH安定性が高い(pH感受性が低減された)緑黄色蛍光タンパク質の提供。 一又は複数の実施形態において、配列番号1のアミノ酸配列の2番目から225番目の配列に少なくとも下記の変異が導入されたアミノ酸配列を有する蛍光タンパク質。ここで、前記変異は、F149TorSorA、L158TorSorA、H160TorSorA、Y174TorSorA、及び、Y192TorSorA、並びにこれらの2~5個の組合せからなる群から選択される。

Description

蛍光タンパク質
 本開示は、pH安定性が高い緑黄色蛍光タンパク質、その光スイッチング変異体、それらの融合タンパク質、それらの分子センサ、DNA、発現カセット、ベクター、及び形質転換体に関する。
 蛍光タンパク質は、生体内の分子の挙動をリアルタイムで追跡できるマーカーとして、あるいは、イオン濃度若しくは生理活性物質を検出するための蛍光共鳴エネルギー移動(FRET)型バイオセンサ作製ツールとして(例えば、特許文献1)、汎用されている。
特開2004-187544
 しかし、ほとんどの蛍光タンパク質は酸性環境下で蛍光強度を大きく低下させるため、リソソーム、分泌顆粒、オートファゴソームなどの酸性環境での応用が難しい。現在、pH安定性の高いシアン色及び赤色の蛍光タンパク質は報告されているが、pHに対して安定な緑黄色蛍光タンパク質の報告はない。
 そこで、本開示は、一態様において、pH安定性が高い(pH感受性が低減された)緑黄色蛍光タンパク質を提供する。
 本開示は、一又は複数の実施形態において、配列番号1のアミノ酸配列の2番目から225番目の配列に少なくとも下記の変異が導入されたアミノ酸配列を有する蛍光タンパク質(以下、本開示に係る単量体型蛍光タンパク質ともいう。)に関する。
 ここで、前記変異は、F149TorSorA、L158TorSorA、H160TorSorA、Y174TorSorA、及び、Y192TorSorA、並びにこれらの2~5個の組合せからなる群から選択される。
 本開示は、その他の一又は複数の実施形態において、配列番号1のアミノ酸配列の2番目から232番目の配列を有する蛍光タンパク質、或いは、配列番号1のアミノ酸配列の2番目から232番目の配列において1から数個のアミノ酸が欠失、置換、及び/又は付加されたアミノ酸配列を有し、pH感受性(pKa)が4.0以下であり、二量体型であり、蛍光色が緑黄色である蛍光タンパク質(以下、本開示に係る二量体型蛍光タンパク質)に関する。
 本開示は、その他の一又は複数の実施形態において、本開示に係る単量体型蛍光タンパク質及び本開示に係る二量体蛍光タンパク質に、さらに、「光スイッチング型となる変異」が導入された光スイッチング変異型の蛍光タンパク質に関する。
 本開示は、その他の一又は複数の実施形態において、本開示に係る蛍光タンパク質を含む融合タンパク質又は分子センサに関する。
 本開示は、その他の一又は複数の実施形態において、本開示に係る蛍光タンパク質、融合タンパク質若しくは分子センサをコードする塩基配列を含む核酸、又該塩基配列を含む発現カセット、それらを含むベクター又は形質転換体に関する。
 本開示によれば、一態様において、pH安定性が高い(pH感受性が低減された)緑黄色蛍光タンパク質を提供できる。該蛍光タンパク質によれば、限定されない一又は複数の実施形態において、酸性環境下でのイメージングができ、例えば、リソソーム、分泌顆粒、オートファゴソームなどの酸性細胞環境での細胞イメージングが可能となる。
 また、該蛍光タンパク質によれば、限定されない一又は複数の実施形態において、pH安定性の高いシアン色又は赤色の蛍光タンパク質と組み合わせることで、例えば、酸性環境下で複数種類の蛍光観察が可能となり、また、酸性環境におけるイオン濃度や生理活性物質等を検出するためのバイオセンサ(例えば、FRET型バイオセンサ、円順列変異技術を利用したバイオセンサ、分割GFP技術を利用した分子センサなど)が可能となる。
 また、本開示によれば、一又は複数の実施形態において、単量体型として、pH安定性が高い、緑黄色蛍光タンパク質を提供できる。これにより、限定されない一又は複数の実施形態において、他のタンパク質との融合タンパク質にした場合における二量体形成による影響を排除でき、効果的なイメージングや検出が可能となる。
 また、本開示に係る単量体型蛍光タンパク質及び本開示に係る二量体蛍光タンパク質に、さらに、「光スイッチング型となる変異」が導入された変異体によれば、一又は複数の実施形態において、pHが変動する環境下、又は、酸性環境下における超解像イメージングが可能となる。
図1は、精製蛍光タンパク質のサイズ除去ゲルろ過クロマトグラフフィーの結果を示す。点線のスペクトルは左から順に10μMのDsRed(四量体)、tdTomato(二量体)、mCherry(単量体)の吸収を示す。実線のスペクトルはmfGFPの吸収を示す。 図2は、精製したmfGFPの蛍光特性を測定した結果を示す。 図3は、mfGFP又はEGFPをpH3~9のバッファーに溶解させて蛍光強度を測定した結果を示す。 図4は、mfGFP又はEGFPの光安定性を測定した結果を示す。 図5は、mfGFP又はEGFPの蛍光団の成熟速度比を測定した結果を示す。 図6は、mfGFPに様々なオルガネラ・タンパク質への局在シグナルを融合させHeLa細胞に発現させた結果を示すイメージである。 図7は、mfGFP又はEGFPをHeLa細胞の細胞質に発現させ、3日間37℃/5%で培養した後のイメージである。 図8は、pH5、6、7、8のバッファーにおけるmfGFP光スイッチング変異体の蛍光強度を測定した結果を示す。 図9は、pH5、6、7、8のバッファーにおけるmfGFP光スイッチング変異体の連続光切替の一例を示す。
 本開示は、ハナガサクラゲ(学名:Olindias formosa)に由来する緑黄色蛍光タンパク質が、良好なpH安定性(すなわち、低減されたpH感受性)を示す、という知見に基づく。
 本開示は、また、ハナガサクラゲからクローニングされた野生型緑黄色蛍光タンパク質(以下、dfGFPともいう、配列番号1)は二量体であり、このdfGFPを改変して単量体型の緑黄色蛍光タンパク質(以下、mfGFPともいう、配列番号2)が得られた、という知見に基づく。
 本開示において、「緑黄色蛍光タンパク質」とは、蛍光色が緑色又は黄緑色の蛍光タンパク質をいい、一又は複数の実施形態において、発光スペクトルの蛍光強度が最大となる波長が495~570nmに含まれるものをいう。
 本開示において、「単量体型緑黄色蛍光タンパク質」は、ハナガサクラゲの緑黄色蛍光タンパク質(dfGFP、二量体型)のアミノ酸配列(配列番号1)を起源とする単量体型緑黄色蛍光タンパク質の変異体の全てを含みうる。
 本開示において、蛍光タンパク質が単量体型であるとは、同一種の蛍光タンパク質が重合せず、単体として存在する性質をもつことをいう。また、本開示において、蛍光タンパク質が二量体型であるとは、同一種の蛍光タンパク質どうしが二つ相互作用して安定な複合体を形成する性質をもつことをいう。
 本開示において、「アミノ酸配列Aを有する蛍光タンパク質」とは、一又は複数の実施形態において、アミノ酸配列AのN末端又はC末端の位置にN末端のメチオニンなどの他のアミノ酸、シグナルペプチド配列、タンパク質の精製を可能にするアミノ酸配列、及びこれらの組合せを含むことができることを意味する。タンパク質の精製を可能にするアミノ酸配列は、当業者が選択することができる。
 本開示において、“X1NX2”で表される変異は、一般的な変異の表記方法であって、アミノ酸配列のN番目のアミノ酸残基X1(一文字表記のアミノ酸残基)が、アミノ酸残基X2(一文字表記のアミノ酸残基)に置換される変異を表す。
 本開示において、“X1NX2orX3orX4”で表される変異は、アミノ酸配列のN番目のアミノ酸残基X1(一文字表記のアミノ酸残基)が、アミノ酸残基X2、X3又はX4(いずれも、一文字表記のアミノ酸残基)に置換される変異を表す。
 本開示において、“X1N/X2(N+1)/X3(N+2)⇒Y1234”で表される変異は、アミノ酸配列のNから(N+2)番目の3アミノ酸残基X123がY1234の4アミノ酸残基に置換される変異を表す。また、“X1N/X2(N+1)/X3(N+2)⇒Y123”で表される変異は、アミノ酸配列のNから(N+2)番目の3アミノ酸残基X123がY123の3アミノ酸残基に置換される変異を表す。
 本開示において、“X1NX2orX3orX4”で表される変異及び“X1N/X2(N+1)/X3(N+2)⇒Y1234”で表される変異はそれぞれ、1個の変異としてカウントすることがある。
 本開示において、“X1NX2”等で表されるX1及びNは、特に言及のない場合、配列表の配列番号1のアミノ酸配列のN番目のアミノ酸残基X1、又は、配列表の配列番号1のアミノ酸配列のN番目に相当する位置のアミノ酸残基X1をいう。
 本開示において、蛍光タンパク質のpH感受性とは、蛍光タンパク質が存在する媒体のpHが塩基性pHから酸性pHになるときの蛍光タンパク質の蛍光強度の減少をいう。本開示において、蛍光タンパク質のpH安定性とは、蛍光タンパク質が存在する媒体のpHが塩基性pHから酸性pHになるときの蛍光タンパク質の蛍光強度の減少の少なさをいう。蛍光性タンパク質の「蛍光強度」は、分光蛍光光度計を使用して測定できる。
 本開示において、pH感受性(pKa)とは、蛍光タンパク質が存在する媒体のpHが塩基性pHから酸性pHになるときの、該蛍光タンパク質の蛍光強度が最大値の半分となるpHを表す。具体的には実施例の記載の方法で測定できる。
 [単量体型緑黄色蛍光タンパク質]
 本開示は、一態様において、配列番号1のアミノ酸配列の2番目から225番目の配列に単量体型となる変異が導入されたアミノ酸配列を有する単量体型緑黄色蛍光タンパク質に関する。
 前記「単量体型となる変異」は、一又は複数の実施形態において、F149TorSorA、L158TorSorA、H160TorSorA、Y174TorSorA、及び、Y192TorSorA、並びにこれらの2~5個の変異の組合せからなる群から選択される変異である。ここで、「F149TorSorA」とは、「F149T、F149S、又はF149A」を、「L158TorSorA」とは、「L158T、L158S、又はL158A」を、「H160TorSorA」とは、「H160T、H160S、又はH160A」を、「Y174TorSorA」とは、「Y174T、Y174S、又はY174A」を、「Y192TorSorA」とは、「Y192T、Y192S、又はY192A」を、それぞれ、意味する。
 したがって、本開示は、一又は複数の実施形態において、配列番号1のアミノ酸配列の2番目から225番目の配列に少なくとも下記の変異が導入されたアミノ酸配列を有する蛍光タンパク質に関する。
 F149TorSorA、L158TorSorA、H160TorSorA、Y174TorSorA、及び、Y192TorSorA、並びにこれらの2~5個の組合せからなる群から選択される変異。
 前記「単量体型となる変異」又は前記「配列番号1のアミノ酸配列の2番目から225番目の配列に導入される変異」は、F149TorSorA、L158TorSorA、H160TorSorA、Y174TorSorA、又は、Y192TorSorAのいずれか1つ、或いは、F149TorSorA、L158TorSorA、H160TorSorA、Y174TorSorA、及び、Y192TorSorAから選択される2、3、4又は5つの変異の組合せが挙げられる。
 前記「変異の組合せ」のうち、2変異の組合せとして、限定されない一実施形態において、Y174TorSorA及びY192TorSorAの組合せが挙げられる。その他の実施形態として、Y174T及びY192Aの2変異の組合せが挙げられる。
 前記「変異の組合せ」のうち、3変異の組合せとして、限定されない一実施形態において、F149TorSorA、L158TorSorA、及びH160TorSorAの組合せが挙げられる。その他の実施形態として、F149T、L158T及びH160Tの3変異の組合せが挙げられる。
 前記「変異の組合せ」のうち、5変異の組合せとして、限定されない一実施形態において、F149TorSorA、L158TorSorA、H160TorSorA、Y174TorSorA及びY192TorSorAが挙げられる。その他の実施形態として、F149T、L158T、H160T、Y174T及びY192Aの5変異の組合せが挙げられる。
 二量体型であるdfGFP(配列番号1)が単量体型になることで、限定されない一又は複数の実施形態において、他のタンパク質との融合タンパク質にした場合における二量体形成による影響を排除でき、効果的なイメージングや検出が可能となる。
 本開示に係る単量体型緑黄色蛍光タンパク質は、一又は複数の実施形態において、輝度向上及び/又は溶解度向上の観点から、前記「単量体型となる変異」に加えてさらに、K112EorDorQ、E147KorRorQ、Q145EorD、K166EorDorQ、P162LorVorIorA、P223LorVorIorA、N37SorAorG、E140KorRorQ、K185RorAorG、A150/E151/G152→PHGPorPHA、及び、K180TorS、並びにこれらの2~11個の組合せからなる群から選択される変異が導入されてもよい。なお、これらの変異の位置は、配列番号1を基準としている。輝度向上及び/又は溶解度向上の観点から導入されうる上記変異の数は、一又は複数の実施形態において、1、2、3、4、5、6、7、8、9、10若しくは11、又は全部である。
 本開示に係る単量体型緑黄色蛍光タンパク質は、一又は複数の実施形態において、輝度向上及び/又は溶解度向上の観点から、前記「単量体型となる変異」に加えてさらに、K112E、E147K、Q145E、K166E、P162L、P223L、N37S、E140K、K185R、A150/E151/G152→PHGP、及びK180T、並びにこれらの2~11個の組合せからなる群から選択される変異が導入されてもよい。
 本開示に係る単量体型緑黄色蛍光タンパク質は、一又は複数の実施形態において、タンパク質のフォールディングの安定性の観点から、配列番号1のアミノ酸配列の2番目から225番目の配列のN末及びC末のそれぞれに、その他の蛍光タンパク質(例えば、EGFP等)のN末及びC末のアミノ酸配列を付加してもよい。付加するアミノ酸配列の長さは、例えば、6~8アミノ酸、又は、7アミノ酸である。
 本開示に係る単量体型緑黄色蛍光タンパク質の限定されない一又は複数の実施形態として、
 配列番号2のアミノ酸配列の8番目から232番目の配列を有する蛍光タンパク質、
 配列番号2のアミノ酸配列の2番目から232番目の配列を有する蛍光タンパク質、
 配列番号2のアミノ酸配列の8番目から239番目の配列を有する蛍光タンパク質、
 配列番号2のアミノ酸配列の2番目から239番目の配列を有する蛍光タンパク質、
 配列番号2のアミノ酸配列を有する蛍光タンパク質、
が挙げられる。
 本開示に係る単量体型緑黄色蛍光タンパク質のpH感受性(pKa)は、4.0以下であり、好ましくは、4.0未満であり、より好ましくは3.9以下である。
 本開示に係る単量体型緑黄色蛍光タンパク質は、一又は複数の実施形態において、pH感受性(pKa)が4.0以下の単量体型緑黄色蛍光タンパク質の機能を維持できる範囲で、上述の変異以外の変異を有していてもよい。該変異としては、1から数個のアミノ酸の欠失、置換、及び/又は付加が挙げられ、「1から数個」とは、一又は複数の実施形態において、1~4、1~3、1~2、又は1個を含む。
 本開示に係る単量体型緑黄色蛍光タンパク質は、一又は複数の実施形態において、配列番号2のアミノ酸配列の8番目から232番目の配列と少なくとも90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、又は99.5%の同一性を示すアミノ酸配列を有し、pH感受性(pKa)が4.0以下である単量体型緑黄色蛍光タンパク質である。
 本開示に係る単量体型緑黄色蛍光タンパク質は、一又は複数の実施形態において、化学合成により合成したタンパク質であってもよいし、遺伝子組み換え技術により作製した組み換えタンパク質であってもよい。遺伝子組み換え技術による組み換えタンパク質の作製としては、一又は複数の実施形態において、本開示に係る単量体型緑黄色蛍光タンパク質をコードする遺伝子を含有する発現ベクターで形質転換した宿主を用いて作製する方法、或いは、無細胞系で作製する方法が挙げられる。
 [光スイッチング変異体]
 本開示に係る単量体型緑黄色蛍光タンパク質は、一又は複数の実施形態において、さらに、「光スイッチング型となる変異」が導入されていてもよい。前記「光スイッチング型となる変異」としては、T197AorG、すなわち、「T197A又はT197G」が挙げられる。なおこの変異の位置、配列番号1のアミノ酸配列を基準としている。配列番号2のアミノ酸配列を基準とすると、前記「光スイッチング型となる変異」は、T204AorGとなる。
 したがって、本開示に係る光スイッチング変異型単量体型緑黄色蛍光タンパク質の限定されない一又は複数の実施形態として、
 配列番号2のアミノ酸配列の8番目から232番目の配列を有する蛍光タンパク質、
 配列番号2のアミノ酸配列の2番目から232番目の配列を有する蛍光タンパク質、
 配列番号2のアミノ酸配列の8番目から239番目の配列を有する蛍光タンパク質、
 配列番号2のアミノ酸配列の2番目から239番目の配列を有する蛍光タンパク質、
 配列番号2のアミノ酸配列を有する蛍光タンパク質、
であって、配列番号2のアミノ酸配列においてT204AorGの変異を有するもの、
が挙げられる。
 本開示に係る光スイッチング変異型単量体型緑黄色蛍光タンパク質は、一又は複数の実施形態において、T204AorGの変異を有する配列番号2のアミノ酸配列の8番目から232番目の配列と少なくとも90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、又は99.5%の同一性を示すアミノ酸配列を有し、pH感受性(pKa)が4.0以下であり、光スイッチング型の単量体型緑黄色蛍光タンパク質である。
 本開示において、光スイッチング型の蛍光タンパク質とは、可逆的に蛍光性を光切り替え可能な蛍光タンパク質(Reversibly Photo-Switchable Fluorescent Protein, RSFP)をいう。本開示において「光切替型の可逆的に光切替可能な蛍光タンパク質」とは、一又は複数の実施形態において、蛍光のonとoffを波長の異なる2つの光照射によって制御ができ、かつ、onとoffの切り替えが繰り返し行うことができる蛍光タンパク質をいう。
 上述した「光スイッチング型となる変異」を有する本開示に係る光スイッチング変異型単量体型緑黄色蛍光タンパク質は、蛍光励起しない特定の波長の光照射によって無蛍光性から蛍光性になり、蛍光励起のための光照射によって蛍光性から無蛍光性になるネガティブ光切替型のRSFPである。
 本開示において、単に「本開示に係る単量体型緑黄色蛍光タンパク質」という場合には、光スイッチング変異型の単量体型緑黄色蛍光タンパク質を含みうる。
 [融合タンパク質]
 本開示は、その他の態様において、本開示に係る単量体型緑黄色蛍光タンパク質が他のタンパク質又はペプチドと融合した融合タンパク質であって、該蛍光タンパク質の部分が、pH感受性(pKa)が4.0以下の単量体型緑黄色蛍光タンパク質として機能可能な融合タンパク質である。
 本開示に係る融合タンパク質において、本開示に係る単量体型緑黄色蛍光タンパク質に結合(融合)されるタンパク質は、限定されない一又は複数の実施形態において、シグナル配列、発現タグ、又は、タンパク質(必要に応じてリンカー配列)が挙げられる。前記シグナル配列及び前記タンパク質としては、一又は複数の実施形態において、イメージングをする観点から、細胞膜、細胞内の細胞骨格(マイクロフィラメント、中間径フィラメント、微小管)や細胞小器官(核、小胞体、ゴルジ体、ミトコンドリア、エンドソーム、リソソーム等)に局在化できるシグナル配列やタンパク質が挙げられる。
 本開示に係る単量体型緑黄色蛍光タンパク質及び融合タンパク質は、単量体型であり、また、pH感受性が低減されているため、一又は複数の実施形態において、リソソーム、分泌顆粒、オートファゴソームなどの酸性細胞環境における蛍光性機能指示薬、若しくは蛍光マーカーとして利用でき、或いは細胞イメージング(例えば、in vivoイメージングなど)に利用できる。
 [分子センサ]
 本開示に係る単量体型緑黄色蛍光タンパク質及び融合タンパク質は、pH安定性の高い緑黄色蛍光タンパク質であるため、限定されない一又は複数の実施形態において、pH安定性の高いシアン色又は赤色の蛍光タンパク質と組み合わせることで、例えば、酸性環境下で複数種類の蛍光観察が可能となり、また、酸性環境におけるイオン濃度や生理活性物質等を検出するためのバイオセンサが可能となる。
 したがって、本開示は、その他の態様において、本開示に係る単量体型緑黄色蛍光タンパク質又は融合タンパク質のアミノ酸配列の一部又は全部を有し、該タンパク質の蛍光特性を利用する分子センサに関する。
 本開示に係る分子センサは、本開示に係る単量体型緑黄色蛍光タンパク質又は本開示に係る融合タンパク質の蛍光特性を利用する分子センサの全てを含みうる。
 本開示に係る分子センサ-としては、限定されない一又は複数の実施形態として、FRET型バイオセンサ、円順列変異技術を利用したバイオセンサ、分割GFP技術を利用した分子センサなどが挙げられる。
 蛍光共鳴エネルギー移動(FRET)型バイオセンサとしては、FRETに使用される少なくとも一方の蛍光タンパク質成分が、本開示に係る単量体型緑黄色蛍光タンパク質であるFRET型バイオセンサが挙げられる。本開示に係る分子センサは、タンパク質若しくはペプチドから構成されている形態であってもよく、タンパク質以外の物質に本開示に係る単量体型緑黄色蛍光タンパク質又は融合タンパク質が結合している形態であってもよい。
 円順列変異技術を利用したバイオセンサとしては、本開示に係る単量体型緑黄色蛍光タンパク質の円順列変異体を含むバイオセンサが挙げられる。本開示において円順列変異(circular permutation)とは、本開示に係る単量体型緑黄色蛍光タンパク質の内部に新たにN末とC末を作製し(すなわち、該タンパク質を内部で2分し)、オリジナルのC末とN末とを適当なリンカー配列により繋ぐ変異をいう。蛍光蛋白質における円順列変異は、従来から行われており、例えば、Baird et al.(Proc. Natl. Acad. Sci. USA, vol96, pp11241-11246 1999)等を参照できる。本開示における円順列変異技術を利用したバイオセンサとしては、一又は複数の実施形態において、本開示に係る単量体型緑黄色蛍光タンパク質の円順列変異体のN末及びC末にペプチド又はタンパク質が結合した構成が挙げられる。前記ペプチド又はタンパク質としては、感知する対象に応じて適宜選択されうる。
 分割GFP技術を利用した分子センサとしては、2つに分割された本開示に係る単量体型緑黄色蛍光タンパク質を利用するバイオセンサが挙げられる。分割方法については従来の分割GFP技術を参照できる。本開示における分割GFP技術を利用したバイオセンサとしては、一又は複数の実施形態において、2分割された本開示に係る単量体型緑黄色蛍光タンパク質のそれぞれにペプチド又はタンパク質が結合した構成が挙げられる。前記ペプチド又はタンパク質としては、感知する対象に応じて適宜選択されうる。
 [核酸]
 本開示は、一態様において、本開示に係る単量体型緑黄色蛍光タンパク質、本開示に係る融合タンパク質、又は本開示に係る分子センサをコードする核酸に関する。本開示において、核酸は、合成DNA,cDNA、ゲノムDNA及びプラスミドDNAから選択される一本鎖又は二本鎖DNA、並びにこれらのDNAの転写生成物が挙げられる。
 本開示に係る単量体型緑黄色蛍光タンパク質をコードするDNAの塩基配列の一例が、配列番号3で示される塩基配列である。
 [発現カセット]
 本開示は、一態様において、本開示に係る単量体型緑黄色蛍光タンパク質、融合タンパク質、又は分子センサをコードする核酸を含む発現カセットに関する。該発現カセットにおいて、前記核酸は、導入する宿主細胞に応じた発現調節配列が作動的に連結されている。発現調節配列としては、プロモーター、エンハンサー、転写ターミネーター等が挙げられ、その他には、開始コドン、イントロンのスプライシングシグナル、及び停止コドンなどが挙げられる。
 [ベクター]
 本開示は、一態様において、本開示に係る単量体型緑黄色蛍光タンパク質、融合タンパク質、又は分子センサを発現可能なベクターに関する。本開示は、その他の態様において、本開示に係る単量体型緑黄色蛍光タンパク質、本開示に係る融合タンパク質、又は本開示に係る分子センサを発現可能なベクターに関する。本開示に係るベクターは、一又は複数の実施形態において、本開示に係る核酸又は発現カセットを有する発現ベクターである。
 本開示に係るベクターは、発現させたい細胞(宿主)に応じた発現ベクター系を適宜選択して使用できる。限定されない一又は複数の実施形態として、プラスミド、コスミド、YACS、ウイルス(例えば、アデノウイルス、レトロウイルス、エピソームEBVなど)ベクター及びファージベクターが挙げられる。
 [形質転換体]
 本開示は、一態様において、本開示に係る単量体型緑黄色蛍光タンパク質、融合タンパク質、又は分子センサを発現する形質転換体に関する。本開示の形質転換体は、一又は複数の実施形態において、開示に係る単量体型緑黄色蛍光タンパク質、融合タンパク質、又は分子センサを発現する細胞、又は、該細胞を含む組織、器官、生体である。また、本開示は、一又は複数の実施形態において、本開示に係る核酸又はベクターを有する形質転換体に関する。本開示の形質転換体は、一又は複数の実施形態において、本開示の核酸、発現カセット又はベクターを宿主に導入することによって作成することができる。宿主としては、動物細胞、ヒト生体を含まない動物細胞、植物細胞、昆虫細胞、微生物等が挙げられる。
 [イメージング方法]
 本開示は、一態様において、本開示に係る単量体型緑黄色蛍光タンパク質、融合タンパク質、又は分子センサを用いるイメージング方法に関する。本開示のイメージング方法は、一又は複数の実施形態において、本開示に係る単量体型緑黄色蛍光タンパク質、融合タンパク質、又は分子センサを細胞等に導入すること、及び、本開示に係る単量体型緑黄色蛍光タンパク質、融合タンパク質、又は分子センサの蛍光シグナルを検出することを含む。なお、本態様の一又は複数の実施形態において、ヒト生体に対するイメージング方法は含まれない。
 [光スイッチング変異体を用いたイメージング方法]
 本開示は、一態様において、本開示に係る光スイッチング変異型単量体型緑黄色蛍光タンパク質、その融合タンパク質、又はそれらを用いた分子センサを用いるイメージング方法に関する。なお、本態様の一又は複数の実施形態において、ヒト生体に対するイメージング方法は含まれない。本開示のイメージング方法は、一又は複数の実施形態において、本開示の光スイッチング変異型単量体型緑黄色蛍光タンパク質を細胞等に導入すること、前記光スイッチング変異型蛍光タンパク質の光切替を行って蛍光性をon/offすること、及び/又は、前記光スイッチング変異型蛍光タンパク質の蛍光シグナルを検出することを含む。本開示のイメージング方法は、一又は複数の実施形態において、超解像イメージング若しくは超解像ライブイメージングであって、一又は複数の実施形態において、PALM(photoactivated localization microscopy)、STORM(stochastic optical reconstruction microscopy)、RESOLFT(reversible saturable optical fluorescence transition)、NL-SIM (Nonlinear structured illumination microscopy) 又は、SOFI(stochastic optical fluctuation imaging)が挙げられる。
 [二量体型緑黄色蛍光タンパク質]
 本開示は、その他の態様において、ハナガサクラゲ(学名:Olindias formosa)からクローニングされた野生型の二量体型緑黄色蛍光タンパク質(dfGFP、配列番号1の2番目から232番目の配列)、及び、このdfGFPのアミノ酸配列(配列番号1)を起源とするpH感受性(pKa)が4.0以下である二量体型緑黄色蛍光タンパク質の変異体に関する。
 本開示に係る二量体型緑黄色蛍光タンパク質は、一又は複数の実施形態において、pH感受性(pKa)が4.0以下の二量体型緑黄色蛍光タンパク質の機能を維持できる範囲で、上述の変異以外の変異を有していてもよい。該変異としては、1から数個のアミノ酸の欠失、置換、及び/又は付加が挙げられ、「1から数個」とは、一又は複数の実施形態において、1~4、1~3、1~2、又は1個を含む。
 本開示に係る二量体型緑黄色蛍光タンパク質は、一又は複数の実施形態において、配列番号1のアミノ酸配列の2番目から232番目の配列と少なくとも90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、又は99.5%の同一性を示すアミノ酸配列を有し、pH感受性(pKa)が4.0以下である二量体型緑黄色蛍光タンパク質である。
 本開示に係る二量体型緑黄色蛍光タンパク質は、一又は複数の実施形態において、さらに、「光スイッチング型となる変異」が導入されていてもよい。前記「光スイッチング型となる変異」としては、T197AorG、すなわち、「T197A又はT197G」が挙げられる。なおこの変異の位置、配列番号1のアミノ酸配列を基準としている。本開示において、単に「本開示に係る二量体型緑黄色蛍光タンパク質」という場合には、光スイッチング変異型の二量体型緑黄色蛍光タンパク質を含みうる。
 本開示は、また、本開示に係る二量体型緑黄色蛍光タンパク質に関する融合タンパク質、分子センサ、核酸、発現カセット、ベクター、及び形質転換体、又はそれらを用いた分子センサを用いるイメージング方法に関する。これらについては、本開示に係る単量体型緑黄色蛍光タンパク質と同様とすることができる。
 本開示はさらに以下の限定されない一又は複数の実施形態に関する。
〔1〕 配列番号1のアミノ酸配列の2番目から225番目の配列に少なくとも下記変異が導入されたアミノ酸配列を有する蛍光タンパク質。
 ここで、前記変異は、F149TorSorA、L158TorSorA、H160TorSorA、Y174TorSorA、及び、Y192TorSorA、並びにこれらの2~5個の組合せからなる群から選択される。
〔2〕 配列番号1のアミノ酸配列の2番目から225番目の配列に、さらに下記の変異が導入されたアミノ酸配列を有する、〔1〕記載の蛍光タンパク質。
 ここで、前記変異は、K112EorDorQ、E147KorRorQ、Q145EorD、K166EorDorQ、P162LorVorIorA、P223LorVorIorA、N37SorAorG、E140KorRorQ、K185RorAorG、A150/E151/G152→PHGPorPHA、及び、K180TorS、並びにこれらの2~11個の組合せからなる群から選択される。
〔3〕 配列番号2のアミノ酸配列の8番目から232番目の配列を有する、〔1〕又は〔2〕に記載の蛍光タンパク質。
〔4〕 pH感受性(pKa)が4.0以下であり、単量体型であり、蛍光色が緑黄色である、〔1〕から〔3〕のいずれかに記載の蛍光タンパク質。
〔5〕 〔1〕から〔4〕のいずれかに記載の蛍光タンパク質のアミノ酸配列において1から数個のアミノ酸が欠失、置換、及び/又は付加されたアミノ酸配列を有し、pH感受性(pKa)が4.0以下であり、単量体型であり、蛍光色が緑黄色である、蛍光タンパク質。
〔6〕 〔1〕から〔4〕のいずれかに記載の蛍光タンパク質のアミノ酸配列と少なくとも90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、又は99.5%の同一性を示すアミノ酸配列を有し、pH感受性(pKa)が4.0以下であり、単量体型であり、蛍光色が緑黄色である、蛍光タンパク質。
〔7〕 〔1〕から〔6〕のいずれかに記載の蛍光タンパク質が融合された融合タンパク質であって、該蛍光タンパク質の部分は、pH感受性(pKa)が4.0以下であり、単量体型であり、蛍光色が緑黄色の蛍光タンパク質である、融合タンパク質。
〔8〕 配列番号1のアミノ酸配列の2番目から225番目の配列に、T197AorGの変異が導入されたアミノ酸配列を有する、〔1〕から〔6〕のいずれかに記載の蛍光タンパク質。
〔9〕 蛍光励起しない特定の波長の光照射によって無蛍光性から蛍光性になり、蛍光励起のための光照射によって蛍光性から無蛍光性になる蛍光タンパク質として機能可能な、〔8〕記載の蛍光タンパク質。
〔10〕 〔8〕又は〔9〕に記載の蛍光タンパク質が融合された融合タンパク質であって、該蛍光タンパク質の部分は、pH感受性(pKa)が4.0以下であり、単量体型であり、蛍光色が緑黄色であり、蛍光励起しない特定の波長の光照射によって無蛍光性から蛍光性になり、蛍光励起のための光照射によって蛍光性から無蛍光性になる蛍光タンパク質として機能可能である、融合タンパク質。
〔11〕 〔1〕から〔10〕のいずれかに記載のタンパク質のアミノ酸配列の一部又は全部を有し、該タンパク質の蛍光特性を利用する、分子センサ。
〔12〕 〔1〕から〔10〕のいずれかに記載のタンパク質又は〔11〕に記載の分子センサをコードする塩基配列を有する核酸。
〔13〕 〔1〕から〔10〕のいずれかに記載のタンパク質又は〔11〕に記載の分子センサをコードする塩基配列含む発現カセット。
〔14〕 〔1〕から〔10〕のいずれかに記載のタンパク質又は〔11〕に記載の分子センサを発現可能な、或いは、〔12〕に記載の核酸又は〔13〕に記載の発現カセットを有する、ベクター。
〔15〕 〔1〕から〔10〕のいずれかに記載のタンパク質又は〔11〕に記載の分子センサを発現する形質転換体。
〔16〕 配列番号1のアミノ酸配列の2番目から232番目の配列を有する蛍光タンパク質。
〔17〕 pH感受性(pKa)が4.0以下であり、二量体型であり、蛍光色が緑黄色である、〔16〕に記載の蛍光タンパク質。
〔18〕 配列番号1のアミノ酸配列の2番目から232番目の配列において1から数個のアミノ酸が欠失、置換、及び/又は付加されたアミノ酸配列を有し、pH感受性(pKa)が4.0以下であり、二量体型であり、蛍光色が緑黄色である、蛍光タンパク質。
〔19〕 〔16〕から〔18〕のいずれかに記載の蛍光タンパク質のアミノ酸配列において1から数個のアミノ酸が欠失、置換、及び/又は付加されたアミノ酸配列を有し、pH感受性(pKa)が4.0以下であり、二量体型であり、蛍光色が緑黄色である、蛍光タンパク質。
〔20〕 〔16〕から〔18〕のいずれかに記載の蛍光タンパク質のアミノ酸配列と少なくとも90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、又は99.5%の同一性を示すアミノ酸配列を有し、pH感受性(pKa)が4.0以下であり、二量体型であり、蛍光色が緑黄色である、蛍光タンパク質。
〔21〕 〔16〕から〔20〕のいずれかに記載の蛍光タンパク質が融合された融合タンパク質であって、該蛍光タンパク質の部分は、pH感受性(pKa)が4.0以下であり、二量体型であり、蛍光色が緑黄色の蛍光タンパク質である、融合タンパク質。
〔22〕 配列番号1のアミノ酸配列の2番目から225番目の配列に、T197AorGの変異が導入されたアミノ酸配列を有する、〔16〕から〔20〕のいずれかに記載の蛍光タンパク質。
〔23〕 蛍光励起しない特定の波長の光照射によって無蛍光性から蛍光性になり、蛍光励起のための光照射によって蛍光性から無蛍光性になる蛍光タンパク質として機能可能な、〔22〕記載の蛍光タンパク質。
〔24〕 〔22〕又は〔23〕に記載の蛍光タンパク質が融合された融合タンパク質であって、該蛍光タンパク質の部分は、pH感受性(pKa)が4.0以下であり、単量体型であり、蛍光色が緑黄色であり、蛍光励起しない特定の波長の光照射によって無蛍光性から蛍光性になり、蛍光励起のための光照射によって蛍光性から無蛍光性になる蛍光タンパク質として機能可能である、融合タンパク質。
〔25〕 〔16〕から〔24〕のいずれかに記載のタンパク質のアミノ酸配列の一部又は全部を有し、該タンパク質の蛍光特性を利用する、分子センサ。
〔26〕 〔16〕から〔24〕のいずれかに記載のタンパク質又は〔25〕に記載の分子センサをコードする塩基配列を有する核酸。
〔27〕 〔16〕から〔24〕のいずれかに記載のタンパク質又は〔25〕に記載の分子センサをコードする塩基配列含む発現カセット。
〔28〕 〔16〕から〔24〕のいずれかに記載のタンパク質又は〔25〕に記載の分子センサを発現可能な、或いは、〔26〕に記載の核酸又は〔27〕に記載の発現カセットを有する、ベクター。
〔29〕 〔16〕から〔24〕のいずれかに記載のタンパク質又は〔25〕に記載の分子センサを発現する形質転換体。
〔30〕 〔1〕から〔10〕及び〔16〕から〔24〕のいずれかに記載のタンパク質、〔11〕若しくは〔25〕に記載の分子センサ、〔12〕若しくは〔26〕に記載の核酸、〔13〕若しくは〔27〕に記載の発現カセット、又は〔14〕若しくは〔28〕に記載のベクターが導入された細胞から、前記タンパク質又は前記分子センサの蛍光シグナルを検出することを含む、イメージング方法。
〔31〕 〔8〕から〔10〕及び〔22〕から〔24〕のいずれかに記載の光スイッチング変異型緑黄色蛍光タンパク質が導入された細胞において、前記光スイッチング変異型蛍光タンパク質の光切替を行って蛍光性をon/offすること、及び/又は、前記光スイッチング変異型蛍光タンパク質の蛍光シグナルを検出することを含む、超解像イメージング又は超解像ライブイメージング方法。
 以下、実施例により本開示をさらに詳細に説明するが、これらは例示的なものであって、本開示はこれら実施例に制限されるものではない。
 [dfGFPのクローニング]
 dfGFPはハナガサクラゲ(学名:Olindias formosa)由来の蛍光タンパク質である。まずハナガサクラゲより全RNA抽出し、mRNAをオリゴTプライマーを用いてDNAへと逆転写し、cDNAライブラリーを作成した。このcDNAライブラリーをPCRで増幅したのち、バクテリア発現ベクターへと挿入した。これらのプラスミドを大腸菌に形質転換し、蛍光を発するコロニーを選別することで、ハナガサクラゲの蛍光タンパク質dfGFPをコードする遺伝子を同定した。該遺伝子にコードされるdfGFPのアミノ酸配列が、配列表の配列番号1である。
 [mfGFPの作製]
 配列表の配列番号1のアミノ酸配列にF149T、L158T、H160T、Y174T、Y192A、K112E、E147K、Q145E、K166E、P162L、P223L、N37S、E140K、K185R、A150/E151/G152→PHGP、及びK180Tの変異を部位特異的に導入し、さらに、配列番号1のN末のMをEGFPのN末端7アミノ酸残基(MVSKGEE)に置換し、かつ、配列番号1のC末7アミノ酸残基(EPSASAV)をEGFPのC末端7アミノ酸残基(GMDELYK)に置換し、配列表の配列番号2のアミノ酸配列をコードする遺伝子を作製した(配列番号3)。該遺伝子にコードされるmfGFPのアミノ酸配列が、配列表の配列番号2である。
 [mfGFPの精製]
 N末にポリヒスチジンタグを持つmfGFPをバクテリア発現ベクターpRSETBに導入し、大腸菌で発現させた。23℃65時間LB培地で培養した後、菌体をフレンチプレスで破砕し、上清をNi-NTAアガロースアフィニティカラム(Qiagen社製)、及びPD-10カラム(GE Healthcare社製)によるゲルフィルトレーションで精製し、さらに、AKTA Superdex200 10/300 GL(GE Healthcare)カラムで再精製した。
 [mfGFPが単量体型であることの確認]
 図1に、Superdex200 10/30カラムを用いた、サイズ除去ゲルろ過クロマトグラフフィーの結果を示す。溶媒は150mM NaClを含むpH7.4の20mM HEPES溶液。分子量・分子体積の大きいものほどカラム内を速く流れるため、図中では左側にピークが現れる。
 図1の点線のスペクトルは左から順に10μMのDsRed(四量体)、tdTomato(二量体)、mCherry(単量体)の吸収を示す。実線のスペクトルは10μMの mfGFPの吸収を示す。mfGFPのピーク位置はmCherryのものとほぼ同じなので、mfGFPは単量体であるといえる。
 [mfGFPの物性1]
 精製した蛍光タンパク質の性質を測定した。その結果を図2に示す。蛍光スペクトルメーターを用いた測定により、mfGFPは504nmの励起ピーク、519nmの蛍光ピークを持つことがわかった。吸収スペクトル測定によりmfGFPの吸収ピークにおけるモル吸光係数は83,000M-1・cm-1、絶対蛍光量子収率の測定によりmfGFPの量子収率は0.90であることがわかった。
 [mfGFPの物性2:pH感受性(pKa)]
 30mMクエン酸ナトリウムと30mMホウ酸の混合溶液を用いて、pH3から9のpHバッファーを0.5きざみに作製した。mfGFP又はEGFPを上記のバッファーに溶解させ、蛍光スペクトルメーターを用いて、蛍光強度を測定した(図3)。得られたデータを下に、ヒルの式上にフィッティングしたところ、mfGFPのpKa(蛍光タンパク質が存在する媒体のpHが塩基性pHから酸性pHになるときの、該蛍光タンパク質の蛍光強度が最大値の半分となるpH)としてpKa=3.5という値が得られた。
 [mfGFPの物性3]
 mfGFP又はEGFPをHeLa細胞の細胞質に発現させ、水銀ランプ光と440-480nmバンドパスフィルターを用いて光照射した際の光安定性を調べた(図4)。mfGFPとEGFPの蛍光強度半減時間はそれぞれ1.2分、0.6分であった。この結果は、mfGFPの光安定性はEGFPの約2倍高いことを示唆している。
 [mfGFPの物性4]
 mfGFP、EGFPそれぞれがもつ蛍光団の成熟速度比を調べた。それぞれの蛍光タンパク質を大腸菌に形質転換、無酸素環境下・37℃で1日―1.5日培養させることで、蛍光団が非成熟なタンパク質を作成した。タンパク質を空気に暴露することに伴う蛍光強度の時間変化を測定した(図5)。mfGFPとEGFPの蛍光団成熟にかかる半飽和時間は、それぞれ8.0分、14.9分であったことから、mfGFPの優れた蛍光団生成能が示唆される。
 下記表1に、mfGFPとEGFPの光学特性をまとめた。
Figure JPOXMLDOC01-appb-T000001
 [mfGFPの物性5]
 mfGFPに様々なオルガネラ・タンパク質への局在シグナルを融合させHeLa細胞に発現させた(アクチン、ゴルジ体、リン、パキシリン、ペルオキシソーム、ジキシン、ミトコンドリア、フィブリラリン、ビメンチン、チューブリン、コネキシン43、ヒストンH2B、ライフアクト、VAMP2、LAMP3.CathepsinB,LC3)。その結果を図6に示す。
 図6に示すように、mfGFPの融合タンパク質は、目的のオルガネラ・タンパク質に正しい局在を示した。中でも局在の難しいチューブリンのラベル化に成功したことは、mfGFPの高い単量体としての性質を示唆している。また。内部が酸性に保たれている分泌小胞・リソソーム(pH4.5-5,5)内でも高い蛍光強度を示した。
 [mfGFPの物性6]
 mfGFP又はEGFPをHeLa細胞の細胞質に発現させ、3日間37℃/5%で培養したところ、mfGFPのみリソソーム様の蛍光ドット画像が得られた(図7)。これは、細胞質に存在していた蛍光タンパク質が、非選択的なマクロオートファジーによってリソソームへと運搬された結果だと考えられる。同様に、mfGFPが細胞質からリソソームへ蓄積させる過程をタイムラプスイメージングすることにも成功した(図7)。HeLa細胞のリソソームのpHは約4.7と低く、pH感受性の高いEGFPではこのようなドットは観察されなかった。
 [mfGFP光スイッチング変異体]
 mfGFPに、T197A(またはT197G)アミノ酸変異を導入することで、mfGFPの耐酸性能を保ちながら、その蛍光・非蛍光状態を光波長依存的にコントロールできる変異体(光スイッチング変異体)が得られた。
 T197A変異体を大腸菌に発現させ、その抽出物をpH5、6、7、8のバッファーと混合させたところ、蛍光強度が上記範囲のpHに影響を受けないことが判明した(図8)。また、同サンプルを顕微鏡下で観察したところ、500/24nm光照射により無蛍光状態へと移行、370/36nm光照射により蛍光状態に移行することが判明した(図9)。
配列番号1:dfGFPのアミノ酸配列
配列番号2:mfGFPのアミノ酸配列
配列番号3:mfGFPの塩基配列

Claims (13)

  1.  配列番号1のアミノ酸配列の2番目から225番目の配列に少なくとも下記変異が導入されたアミノ酸配列を有する蛍光タンパク質。
     ここで、前記変異は、F149TorSorA、L158TorSorA、H160TorSorA、Y174TorSorA、及び、Y192TorSorA、並びにこれらの2~5個の組合せからなる群から選択される。
  2.  配列番号1のアミノ酸配列の2番目から225番目の配列に、さらに下記の変異が導入されたアミノ酸配列を有する、請求項1記載の蛍光タンパク質。
     ここで、前記変異は、K112EorDorQ、E147KorRorQ、Q145EorD、K166EorDorQ、P162LorVorIorA、P223LorVorIorA、N37SorAorG、E140KorRorQ、K185RorAorG、A150/E151/G152→PHGPorPHA、及び、K180TorS、並びにこれらの2~11個の組合せからなる群から選択される。
  3.  配列番号1のアミノ酸配列の2番目から225番目の配列に、さらに下記の変異が導入されたアミノ酸配列を有する、請求項1又は2に記載の蛍光タンパク質。
     ここで、前記変異は、T197AorGである。
  4.  配列番号2のアミノ酸配列の8番目から232番目の配列を有する、請求項1から3のいずれかに記載の蛍光タンパク質。
  5.  pH感受性(pKa)が4.0以下であり、単量体型であり、蛍光色が緑黄色である、請求項1から4のいずれかに記載の蛍光タンパク質。
  6.  請求項1から5のいずれかに記載の蛍光タンパク質のアミノ酸配列において1から数個のアミノ酸が欠失、置換、及び/又は付加されたアミノ酸配列を有し、pH感受性(pKa)が4.0以下であり、単量体型であり、蛍光色が緑黄色である、蛍光タンパク質。
  7.  請求項1から6のいずれかに記載の蛍光タンパク質が融合された融合タンパク質であって、該蛍光タンパク質の部分は、pH感受性(pKa)が4.0以下であり、単量体型であり、蛍光色が緑黄色の蛍光タンパク質である、融合タンパク質。
  8.  配列番号1のアミノ酸配列の2番目から232番目の配列を有する蛍光タンパク質、
    或いは、
     配列番号1のアミノ酸配列の2番目から232番目の配列において1から数個のアミノ酸が欠失、置換、及び/又は付加されたアミノ酸配列を有し、pH感受性(pKa)が4.0以下であり、二量体型であり、蛍光色が緑黄色である、蛍光タンパク質。
  9.  請求項1から8のいずれかに記載のタンパク質のアミノ酸配列の一部又は全部を有し、該タンパク質の蛍光特性を利用する、分子センサ。
  10.  請求項1から8のいずれかに記載のタンパク質又は請求項9に記載の分子センサをコードする塩基配列を有する核酸。
  11.  請求項1から8のいずれかに記載のタンパク質又は請求項9に記載の分子センサをコードする塩基配列含む発現カセット。
  12.  請求項1から8のいずれかに記載のタンパク質又は請求項9に記載の分子センサを発現可能な、或いは、請求項10に記載の核酸又は請求項11に記載の発現カセットを有する、ベクター。
  13.  請求項1から8のいずれかに記載のタンパク質又は請求項9に記載の分子センサを発現する形質転換体。
PCT/JP2017/009759 2016-03-10 2017-03-10 蛍光タンパク質 WO2017155101A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17763433.4A EP3428180A4 (en) 2016-03-10 2017-03-10 FLUORESCENT PROTEIN
US16/083,144 US10899804B2 (en) 2016-03-10 2017-03-10 Fluorescent protein
CN201780016246.XA CN108834418A (zh) 2016-03-10 2017-03-10 荧光蛋白质
JP2018504611A JP6762069B2 (ja) 2016-03-10 2017-03-10 蛍光タンパク質

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-046953 2016-03-10
JP2016046953 2016-03-10

Publications (1)

Publication Number Publication Date
WO2017155101A1 true WO2017155101A1 (ja) 2017-09-14

Family

ID=59790417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009759 WO2017155101A1 (ja) 2016-03-10 2017-03-10 蛍光タンパク質

Country Status (5)

Country Link
US (1) US10899804B2 (ja)
EP (1) EP3428180A4 (ja)
JP (1) JP6762069B2 (ja)
CN (1) CN108834418A (ja)
WO (1) WO2017155101A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215532A1 (ja) * 2021-04-07 2022-10-13 国立研究開発法人理化学研究所 蛍光特性を示す新規なポリペプチド、およびその利用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023460B (zh) * 2022-10-28 2023-11-10 无锡佰翱得生物科学股份有限公司 一种StayGold黄色荧光蛋白及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009020197A1 (ja) * 2007-08-03 2009-02-12 National University Corporation Hokkaido University 群青色蛍光タンパク質
WO2011096501A1 (ja) * 2010-02-03 2011-08-11 国立大学法人北海道大学 光増感性蛍光タンパク質

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214206B2 (ja) 2002-12-10 2009-01-28 独立行政法人理化学研究所 Fretを利用した蛍光指示薬

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009020197A1 (ja) * 2007-08-03 2009-02-12 National University Corporation Hokkaido University 群青色蛍光タンパク質
WO2011096501A1 (ja) * 2010-02-03 2011-08-11 国立大学法人北海道大学 光増感性蛍光タンパク質

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAJIME SHINODA ET AL.: "1P0872: An acid insensitive green fluorescent protein from Olindias formosa'', ", DAI 88 KAI ANNUAL MEETING OF THE JAPANESE BIOCHEMICAL SOCIETY GODO TAIKAI) KOEN YOSHISHU, 2015, pages 1P0872, XP009515369 *
See also references of EP3428180A4 *
SHINODA, H. ET AL.: "Novel green fluorescent protein from Olindias formosa with exceptional pH stability", BIOPHYSICS, vol. 55, no. Suppl. 1-2, 2015, pages S298 *
TOMOKI MATSUDA ET AL.: "Tanryotai-gata Hikari Zokan Keiko Tanpakushitsu SuperNova", THE MOLECULAR BIOLOGY SOCIETY OF JAPAN DAI 37 KAI ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN KOEN YOSHISHU, vol. 37, 2014, XP009513280 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215532A1 (ja) * 2021-04-07 2022-10-13 国立研究開発法人理化学研究所 蛍光特性を示す新規なポリペプチド、およびその利用

Also Published As

Publication number Publication date
US20190085039A1 (en) 2019-03-21
JPWO2017155101A1 (ja) 2019-02-14
EP3428180A4 (en) 2019-11-13
CN108834418A9 (zh) 2019-01-08
US10899804B2 (en) 2021-01-26
EP3428180A1 (en) 2019-01-16
JP6762069B2 (ja) 2020-09-30
CN108834418A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
US20240027344A1 (en) Fluorescent Probe for Branched Chain Amino Acids and Use Thereof
JP5570803B2 (ja) 蛍光タンパク質およびpH測定方法
WO2022215532A1 (ja) 蛍光特性を示す新規なポリペプチド、およびその利用
US20130344591A1 (en) Modified Fluorescent Proteins and Methods for Using Same
US8735096B2 (en) Optical control of protein activity and localization by fusion to photochromic protein domains
WO2017155101A1 (ja) 蛍光タンパク質
US6414119B1 (en) Rapidly greening, low oxygen mutant of the aequoria victoria green fluorescent protein
US10030055B2 (en) Polypeptide exhibiting fluorescent properties, and utilization of the same
JP5283105B2 (ja) 高いエネルギー移動効率を有するbret発現系
JP2011212008A (ja) 蛍光タンパク質およびpH測定方法
KR102341951B1 (ko) 형광세기가 증진된 적색형광단백질 변이체
JP5334007B2 (ja) 超長波長の蛍光色を含むマルチカラー蛍光タンパク質
JP5076037B2 (ja) 改変蛍光蛋白質
JP5896679B2 (ja) オオオバボタル由来ルシフェラーゼ
WO2016182019A1 (ja) 蛍光蛋白質
Delgado-Galván et al. Red fluorescent protein (DsRFP) optimization for Entamoeba histolytica expression
KR20140115626A (ko) 적색 형광 단백질 변이체
WO2010060618A1 (en) Monomeric variants of he tetrameric eqfp611
RU2746432C1 (ru) Использование CagFbFP в качестве флуоресцентной метки
US20220267387A1 (en) Flavin mononucleotide-binding protein variants having improved fluorescence intensity derived from arabidopsis thaliana
EP1674478A1 (en) Fusion proteins and method for determining protein-protein-interactions in living cells and cell lysates, nucleic acids encoding these fusion proteins, as well as vectors and kits containing these
TWI412589B (zh) 突變藍色螢光蛋白及其用於螢光共振能量傳遞與藍色螢光魚之方法
JP5980608B2 (ja) ホタル由来ルシフェラーゼ
JP2014060946A (ja) 赤色蛍光タンパク質
EP2686424A1 (en) Star-worm luciferase

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018504611

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017763433

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017763433

Country of ref document: EP

Effective date: 20181010

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763433

Country of ref document: EP

Kind code of ref document: A1