WO2022215532A1 - 蛍光特性を示す新規なポリペプチド、およびその利用 - Google Patents

蛍光特性を示す新規なポリペプチド、およびその利用 Download PDF

Info

Publication number
WO2022215532A1
WO2022215532A1 PCT/JP2022/013700 JP2022013700W WO2022215532A1 WO 2022215532 A1 WO2022215532 A1 WO 2022215532A1 JP 2022013700 W JP2022013700 W JP 2022013700W WO 2022215532 A1 WO2022215532 A1 WO 2022215532A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
amino acid
seq
acid sequence
fluorescent
Prior art date
Application number
PCT/JP2022/013700
Other languages
English (en)
French (fr)
Inventor
敦史 宮脇
亮子 安藤
雅彦 平野
典代 竹田
Original Assignee
国立研究開発法人理化学研究所
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所, 国立大学法人東北大学 filed Critical 国立研究開発法人理化学研究所
Priority to EP22784517.9A priority Critical patent/EP4321539A1/en
Priority to US18/285,732 priority patent/US20240209039A1/en
Priority to JP2023512930A priority patent/JPWO2022215532A1/ja
Publication of WO2022215532A1 publication Critical patent/WO2022215532A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/60Fusion polypeptide containing spectroscopic/fluorescent detection, e.g. green fluorescent protein [GFP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16041Use of virus, viral particle or viral elements as a vector
    • C12N2740/16043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the present invention relates to a novel polypeptide exhibiting fluorescence properties and its use.
  • Fluorescent proteins have become an indispensable tool for visualizing cells, tissues, or individual organisms.
  • Non-Patent Documents 1 to 5 various bioimaging techniques using fluorescent proteins have been developed, and various known modifications of fluorescent proteins have been reported.
  • the photostability of fluorescent dyes is one of the most pressing issues in bioimaging technology. Bleaching makes it difficult to observe fluorescent signals from low copy number molecules of interest over a sufficiently long period of time. Particularly in single-molecule imaging or imaging in which the amount of fluorescent dye to be introduced is limited, bleaching is a fatal problem. Moreover, the occurrence of discoloration makes it difficult to quantitatively evaluate the phenomenon of interest. Under these circumstances, there is a demand for the development of a fluorescent protein with better photostability than the previously reported fluorescent proteins.
  • the inventors of the present application succeeded in isolating a novel green fluorescent protein from the jellyfish (Cytaeis uchidae).
  • an object of the present invention is to provide a novel fluorescent protein exhibiting useful properties and its use.
  • the present invention includes any one of the following aspects.
  • ⁇ 1> A polypeptide having fluorescence properties, as described in any one of the following (1) to (3).
  • ⁇ 2> The polypeptide according to ⁇ 1>, which exhibits higher photostability than EGFP or has brighter fluorescence than EGFP.
  • ⁇ 3> Having an amino acid sequence in which the 168th amino acid in the amino acid sequence set forth in SEQ ID NO: 1 is alanine and which exhibits a sequence identity of 85% or more to the amino acid sequence set forth in SEQ ID NO: 1, ⁇ 1 > or the polypeptide according to ⁇ 2>.
  • ⁇ 4> The polynucleotide according to any one of (1) to (3) below.
  • a polynucleotide encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 1; (2) Polypeptide that has an amino acid sequence in which 1 or more and 32 or less amino acids are substituted, deleted, inserted, and/or added in the amino acid sequence set forth in SEQ ID NO: 1 and that encodes a polypeptide having fluorescence properties nucleotide, (3) A polynucleotide that has 85% or more sequence identity to the amino acid sequence set forth in SEQ ID NO: 1 and encodes a polypeptide having fluorescent properties.
  • An expression cassette comprising: (a) an expression control region that is functional in the expression host; and (b) the polynucleotide according to ⁇ 4>.
  • ⁇ 6> A vector comprising the polynucleotide of ⁇ 4> or the expression cassette of ⁇ 5>.
  • ⁇ 7> A transformant having the polynucleotide of ⁇ 4>, the expression cassette of ⁇ 5>, or the vector of ⁇ 6>.
  • ⁇ 8> The transformant according to ⁇ 7>, which is a non-human transgenic organism.
  • ⁇ 9> A fusion polypeptide comprising the polypeptide according to any one of ⁇ 1> to ⁇ 3> and another polypeptide.
  • the fusion polypeptide of ⁇ 9> comprising two or more linked polypeptides of any one of ⁇ 1> to ⁇ 3>.
  • ⁇ 11> The polypeptide according to any one of ⁇ 1> to ⁇ 3>, the polynucleotide according to ⁇ 4>, the expression cassette according to ⁇ 5, the vector according to ⁇ 6>, ⁇ 7> or ⁇ 8 >, or a kit comprising the fusion polypeptide of ⁇ 9> or ⁇ 10>.
  • ⁇ 12> A production step of producing the polypeptide according to any one of ⁇ 1> to ⁇ 3> or the fusion polypeptide according to ⁇ 9> or ⁇ 10> in a cell, and excitation of irradiating the cell with excitation light
  • a fluorescence observation method comprising a light irradiation step and an observation step of observing fluorescence derived from the polypeptide or fusion polypeptide.
  • the present invention provides fluorescent polypeptides with very high photostability.
  • the fluorescent polypeptide of the present invention is effective in that it can be used in many fields such as molecular biology.
  • FIG. 1 shows fluorescence excitation and emission spectra observed in C. uchidae in an example of the present invention.
  • FIG. FIG. 2 shows absorption spectra of StayGold (CU17S/V168A) in Examples of the present invention.
  • FIG. FIG. 2 shows fluorescence excitation and emission spectra of StayGold (CU17S/V168A) in an example of the present invention.
  • FIG. Figure 2 shows an alignment of the amino acid sequences of StayGold, CU17S and EGFP proteins of the invention.
  • Fig. 2 shows a simple comparison of changes in fluorescence intensity over time for five types of green fluorescent proteins when using purified proteins in an example of the present invention.
  • FIG. 3 shows standardized bleaching curves of five fluorescent proteins using purified proteins in an example of the present invention.
  • FIG. FIG. 2 shows standardized fading curves of 16 fluorescent proteins in Examples of the present invention.
  • FIG. Fig. 3 shows a simple comparison of changes in fluorescence intensity over time of five types of green fluorescent proteins in living cells in an example of the present invention.
  • FIG. 2 shows normalized bleaching curves of five green fluorescent proteins in living cells in an example of the present invention.
  • FIG. FIG. 2 shows a comparison of photobleaching between StayGold-expressing cells and EGFP-expressing cells and a comparison of photobleaching between StayGold-expressing cells and mNeonGreen-expressing cells in Examples of the present invention.
  • 1 shows the results of labeling microtubules with tdStayGold in an example of the present invention.
  • 4 shows the results of labeling Golgi membranes with tdStayGold(long) in an example of the present invention.
  • 4 shows the results of labeling with a fusion protein of tdoxStayGold and post-synaptic protein PSD-95 in an example of the present invention.
  • 4 shows the results of labeling the endoplasmic reticulum membrane with tdStayGold alpha in an example of the present invention.
  • 2 shows the results of labeling the lumen of the endoplasmic reticulum with er-(n2)oxStayGold(c4) in an example of the present invention.
  • 4 shows the results of labeling mitochondria with mt(n1)-StayGold in Examples of the present invention.
  • FIG. 2 shows pseudo-native PAGE results for StayGold variants introduced with L155T or Y187A mutations in Examples of the present invention.
  • FIG. 10 shows the results of pseudo-native PAGE on the StayGold variant having the L155T mutation and the StayGold variant further mutated in an example of the present invention.
  • polynucleotide can also be referred to as “nucleic acid” or “nucleic acid molecule”.
  • Polynucleotide unless otherwise specified, encompasses polynucleotides containing known analogues of naturally occurring nucleotides that can function similarly to naturally occurring nucleotides.
  • nucleotide sequence can be rephrased as “nucleic acid sequence” or “nucleotide sequence”.
  • base sequence is intended a sequence of deoxyribonucleotides or a sequence of ribonucleotides.
  • a polynucleotide may be single-stranded or double-stranded, and if single-stranded, it may be a sense strand or an antisense strand.
  • gene refers to a “polynucleotide” encoding a protein.
  • expression control region of a gene refers to a “polynucleotide” that controls gene expression.
  • expression control regions include promoter regions, enhancer regions, and the like.
  • an "expression cassette” refers to an expression unit that includes an expression control region that is functional in an expression host and a polynucleotide operably linked to the expression control region.
  • the polynucleotide is preferably a gene or a fragment of a gene.
  • An example of the expression cassette is one obtained by genetically engineering the above expression control region and the above polynucleotide.
  • "Operably linked” refers to a state in which expression of the polynucleotide is controlled by an expression control sequence.
  • the expression cassette may be in the form of an expression vector.
  • polypeptide can also be rephrased as “protein”.
  • a “polypeptide” includes a structure in which amino acids are bound by peptide bonds, and may further include structures such as sugar chains or isoprenoid groups.
  • Polypeptide unless otherwise specified, includes polypeptides containing known analogues of naturally occurring amino acids that can function similarly to naturally occurring amino acids.
  • fluorescent polypeptide refers to a polypeptide having fluorescent properties.
  • a polypeptide having fluorescence properties refers to a polypeptide that has the property of emitting fluorescence when irradiated with excitation light of a predetermined wavelength.
  • a and/or B is a concept that includes both A and B and A or B, and can be rephrased as "at least one of A and B".
  • polypeptide having fluorescence properties is a polypeptide having fluorescent properties (fluorescent polypeptide), which is shown in any of the following (1) to (3).
  • a polypeptide having the amino acid sequence set forth in SEQ ID NO: 1 (2) A polypeptide having an amino acid sequence in which 1 to 32 amino acids are substituted, deleted, inserted, and/or added to the amino acid sequence set forth in SEQ ID NO:1.
  • the number of substituted, deleted, inserted, and/or added amino acids is preferably 1 or more and 26 or less, more preferably 1 or more and 21 or less, and 1 or more and 10 is more preferably 1 or more and 8 or less, more preferably 1 or more and 6 or less, and particularly preferably 1 or more and 4 or less.
  • amino acid substitutions, deletions, insertions, and/or additions may be collectively referred to as amino acid mutations.
  • the sequence identity is preferably 88% or more, more preferably 90% or more, more preferably 95% or more, more preferably 96% or more, and 97% or more. 98% or more, or 99% or more is particularly preferable.
  • fluorescent polypeptides include isolated and purified polypeptides, chemically synthesized polypeptides, and polypeptides produced from host cells based on genetic recombination technology. The host cell will be described in detail in the section describing the "transformant".
  • An example of the fluorescent polypeptide according to the present invention is one derived from jellyfish.
  • the present inventors have successfully isolated a novel green fluorescent protein from the jellyfish (Cytaeis uchidae). Furthermore, by modifying the novel fluorescent protein, we succeeded in obtaining a bright variant that does not fade for a long time.
  • An example of a fluorescent polypeptide is the fluorescent polypeptide whose amino acid sequence is shown in SEQ ID NO: 1 and is called "StayGold.” StayGold is brightly fluorescent and significantly more photostable than any previously known fluorescent protein currently available.
  • the main fluorescent properties of StayGold are as follows. Maximum excitation wavelength (nm): 496 Maximum fluorescence wavelength (nm): 505 (green) Molar extinction coefficient (M -1 cm -1 ): 159000 (at 496 nm) Quantum yield (%): 93 Fluorescence lifetime (ns): 2.81
  • the fluorescent polypeptide shown in (2) or (3) above can be regarded as a variant when the fluorescent polypeptide shown in (1) is used as a standard.
  • a polynucleotide encoding the fluorescent polypeptide shown in (1) above is artificially mutated using site-directed mutagenesis. It may be obtained by expressing the introduced one. Examples of site-directed mutagenesis include the Kunkel method (Kunkel et al. (1985): Proc. Natl. Acad. Sci. USA, vol.82.p488-).
  • fluorescent polypeptide shown in (2) or (3) above is a fluorescent polypeptide having the amino acid sequence set forth in SEQ ID NO:4.
  • the fluorescent polypeptide having the amino acid sequence set forth in SEQ ID NO: 4 is one of the fluorescent protein clones isolated from the jellyfish, and is called "CU17S".
  • StayGold is a variant of CU17S obtained by modifying CU17S, in which the amino acid valine (V) at position 168 in the amino acid sequence of SEQ ID NO: 4 (amino acid sequence of CU17S) is substituted with alanine (A).
  • polypeptide according to the present invention also includes a fluorescent polypeptide shown in any of (4) to (6) below.
  • polypeptide having the amino acid sequence set forth in SEQ ID NO: 4 (4) a polypeptide having the amino acid sequence set forth in SEQ ID NO: 4; (5) A polypeptide having an amino acid sequence in which 1 to 32 amino acids are substituted, deleted, inserted, and/or added to the amino acid sequence set forth in SEQ ID NO:4.
  • the number of substituted, deleted, inserted, and/or added amino acids is preferably 1 or more and 26 or less, more preferably 1 or more and 21 or less, and 1 or more and 10 is more preferably 1 or more and 8 or less, more preferably 1 or more and 6 or less, and particularly preferably 1 or more and 4 or less.
  • the sequence identity is preferably 88% or more, more preferably 90% or more, more preferably 95% or more, more preferably 96% or more, and 97% or more. 98% or more, or 99% or more is particularly preferable.
  • fluorescent polypeptide shown in (2) or (3) above is that the 168th amino acid in the amino acid sequence of SEQ ID NO: 1 is alanine, and the amino acid sequence of SEQ ID NO: 1 has 85 have amino acid sequences that exhibit greater than or equal to % sequence identity;
  • fluorescent polypeptide shown in (2) or (3) above is a fluorescent polypeptide having the amino acid sequence set forth in SEQ ID NO:6.
  • the fluorescent polypeptide shown in (2) or (3) above may exhibit fluorescence properties equivalent to those of the fluorescent polypeptide represented by the amino acid sequence shown in SEQ ID NO:1.
  • "exhibiting equivalent fluorescence properties” means an excitation wavelength equivalent to that of the fluorescent polypeptide represented by the amino acid sequence of SEQ ID NO: 1, equivalent fluorescence wavelength, equivalent pH sensitivity, equivalent photostability, Equivalent molar extinction coefficients, equivalent fluorescence quantum efficiencies, equivalent excitation or emission spectral shapes, equivalent excitation and emission wavelength maxima, equivalent excited state lifetimes, and equivalent chromophores It refers to having at least one or more such as maturation speed.
  • “Comparable fluorescence properties” preferably refers to having photostability and fluorescence brightness and comparable quantum yield when introduced into cells.
  • fluorescent polypeptides having excitation wavelengths equivalent to those of StayGold include, but are not limited to, those with maximum excitation wavelengths in the range of 486 nm to 506 nm.
  • fluorescent polypeptides having fluorescence wavelengths equivalent to those of StayGold include, but are not limited to, those having maximum fluorescence wavelengths in the range of 495 nm to 515 nm.
  • Fluorescence of the fluorescent polypeptide is observed to fade over time. As the fading progresses, fluorescence observation becomes difficult.
  • the fluorescent polypeptides of the invention have high photostability. The photostability of fluorescence can be evaluated using resistance to fading as an index. Higher photostability can have the effect of extending the observable time.
  • the fluorescence of the fluorescent polypeptide of the present invention is less likely to fade.
  • An example of the fluorescent protein of the present invention is more resistant to fading and maintains high fluorescence intensity for a long time compared to known fluorescent proteins.
  • the fluorescent polypeptide of the present invention preferably takes 1,000 seconds or longer to halve the number of emitted photons per second per molecule from 1,000 to 500, based on the standard method for evaluating photostability. More preferably, it takes 5,000 seconds or longer.
  • the fluorescent polypeptide of the present invention is resistant to fading, it can be suitably used, for example, for single-molecule imaging or fluorescence observation in cells expressing a low copy number of the fluorescent polypeptide.
  • the fluorescent polypeptide of the present invention has bright fluorescence.
  • the absolute fluorescence brightness can be evaluated using the product of the absolute molar extinction coefficient and fluorescence quantum efficiency as an index.
  • the practical brightness of fluorescence can be evaluated using the product of the effective molar extinction coefficient and the fluorescence quantum efficiency with the maturation speed of the chromophore taken into account as an index.
  • the absolute molar extinction coefficient (M -1 cm -1 ) of the fluorescent polypeptide of the present invention is 100,000 or more, preferably 120,000 or more, more preferably 130,000 or more, still more preferably 140,000 or more, especially Preferably it is 150000 or more.
  • the fluorescence quantum efficiency ⁇ is 0.75 (75%) or more, preferably 0.80 (80%) or more, and more preferably 0.90 (90%) or more.
  • this quantum yield value is significantly higher than that of conventional green fluorescent proteins. It should be noted that the higher the fluorescence quantum yield, the higher the fluorescence intensity and generally the brighter the fluorescence, which is more suitable for use in fluorescence observation.
  • fluorescent polypeptide of the present invention exhibits higher photostability than EGFP or has brighter fluorescence than EGFP.
  • XYG (X indicates any amino acid) is known as an amino acid sequence forming a chromophore.
  • the 57th to 59th amino acid sequences in SEQ ID NO: 1 are GYG. Therefore, even in the fluorescent polypeptide shown in (2) or (3) above, the 57th amino acid in SEQ ID NO: 1 may be substituted, but the 58th to 59th amino acids are preferably maintained without mutation. , 57th to 59th amino acids are more preferably maintained without mutation.
  • the fluorescent polypeptide may be a monomer or a polymer.
  • the fluorescent polypeptide is a monomer.
  • leucine (L) at the 155th amino acid and tyrosine (Y) at the 187th amino acid in the amino acid sequence set forth in SEQ ID NO: 1 are presumed to be particularly involved in the formation of multimers of fluorescent polypeptides. .
  • leucine (L) at the 135th amino acid, proline (P) at the 136th amino acid, glutamic acid (E) at the 138th amino acid, and isoleucine (I) at the 142nd amino acid in the amino acid sequence set forth in SEQ ID NO: 1 , arginine (R) at the 144th amino acid, leucine (L) at the 155th amino acid, cysteine (C) at the 165th amino acid, glutamic acid (E) at the 167th amino acid, tyrosine (Y) at the 187th amino acid. , and tryptophan (W) at amino acid 189 are both involved in the dimerization of the fluorescent polypeptide, i.e. form an interface, so that at least one of these amino acids It can be monomerized by substituting with an amino acid.
  • leucine (L) at the 155th amino acid and tyrosine (Y) at the 187th amino acid in the amino acid sequence shown in SEQ ID NO: 1 may be substituted with an amino acid.
  • fluorescent polypeptides examples include those having the amino acid sequence SEQ ID NO: 29 with a substitution of threonine (T) for leucine (L) at amino acid 155, and tyrosine (Y) at amino acid 187. to alanine (A), which is the amino acid sequence SEQ ID NO:27.
  • T threonine
  • L leucine
  • Y tyrosine
  • A alanine
  • the nucleotide sequence encoding the polypeptide shown in SEQ ID NO:29 is shown in SEQ ID NO:30
  • the nucleotide sequence encoding the polypeptide shown in SEQ ID NO:27 is shown in SEQ ID NO:28.
  • leucine (L) at the 155th amino acid and tyrosine (Y) at the 187th amino acid in the amino acid sequence set forth in SEQ ID NO: 1 leucine (L) at the 135th amino acid in the amino acid sequence set forth in SEQ ID NO: 1 ( L), proline (P) at the 136th amino acid, glutamic acid (E) at the 138th amino acid, isoleucine (I) at the 142nd amino acid, arginine (R) at the 144th amino acid, cysteine at the 165th amino acid ( It is further preferred that there is an amino acid substitution at one or more amino acids selected from the group consisting of C), glutamic acid (E) at amino acid 167 and tryptophan (W) at amino acid 189.
  • amino acids are present at the interface of StayGold proteins, have side chains facing outward, and are presumed to be sites that particularly affect multimerization. Therefore, by substituting these amino acids, StayGold can be more stably monomerized.
  • amino acids asparagine (N) at position 132, proline (P) at position 151, and lysine (K) at position 162 are also present at the protein interface and may affect multimerization.
  • the amino acids after substitution are not particularly limited as long as they are amino acids capable of obtaining the desired effect.
  • substitution of leucine (L) to threonine (T) at position 135, substitution of proline (P) to tyrosine (Y) at position 136, and substitution of tyrosine (Y) at position 138 Substitution of the amino acid glutamic acid (E) to glutamine (Q), substitution of the 142nd amino acid isoleucine (I) to threonine (T), substitution of the 144th amino acid arginine (R) to threonine (T) substitutions, cysteine (C) to glutamine (Q) at amino acid 165, glutamic acid (E) to alanine (A) at amino acid 167, and tryptophan (W) to tyrosine (Y) at amino acid 189
  • the number of mutations for monomerizing the fluorescent polypeptide is not particularly limited. For example, one or more of the mutations described above may be included, two or more may be included, or three or more may be included. Also, among the mutations described above, 6 or less may be included, 5 or less may be included, or 4 or less may be included. again,
  • the fluorescent polypeptide having the amino acid sequence set forth in SEQ ID NO: 6 has a substitution of histidine (H) at 169th amino acid with tyrosine (Y) in SEQ ID NO: 1 (referred to as H169Y) and an amino acid at 174th with a cysteine (C) to isoleucine (I) substitution (referred to as C174I), and a cysteine (C) to isoleucine (I) substitution at amino acid position 208 (referred to as C208I).
  • H169Y/C174I/C208I mutant of StayGold of a fluorescent polypeptide having the amino acid sequence of This mutant has fewer cysteines and thus exhibits more stable folding in the oxidative state and is useful for labeling the lumen of the endoplasmic reticulum, for example.
  • variants with H169Y, C174I or C208I substitutions are useful in brightening the fluorescence of fluorescent proteins. Mutants with the H169Y, C174I or C208I substitutions may also have the L155T or Y187A mutations.
  • a polynucleotide according to the present invention encodes any of the fluorescent polypeptides described above.
  • a polynucleotide encoding a fluorescent polypeptide is specifically a polynucleotide according to any one of (1) to (3) below.
  • a polynucleotide encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 1;
  • This polynucleotide preferably has a sequence identity of 88% or more, more preferably 90% or more, and 95% or more to the base sequence of the polynucleotide described in (1) above. preferably have a sequence identity of 96% or more, more preferably have a sequence identity of 96% or more, more preferably have a sequence identity of 97% or more, 98% or more, or 99% or more sequence identity It is particularly preferred to have
  • the polynucleotide according to the present invention can exist in the form of RNA or DNA.
  • RNA is, for example, mRNA.
  • Forms of DNA are, for example, cDNA or genomic DNA.
  • DNA may be double-stranded or single-stranded.
  • nucleotide sequences shown in SEQ ID NOS: 2 and 3 which are examples of the polynucleotides of the present invention, are cDNAs encoding the fluorescent polypeptide shown in SEQ ID NO: 1, and the nucleotide sequences shown in SEQ ID NOS: 5 and 7 are, respectively, cDNAs encoding the fluorescent polypeptides shown in SEQ ID NOS: 4 and 6.
  • Polynucleotides of the present invention may also contain additional sequences, such as untranslated region (UTR) sequences.
  • UTR untranslated region
  • the method for obtaining (isolating) the polynucleotide according to the present invention is not particularly limited. DNA or cDNA libraries may be screened. Alternatively, polynucleotides according to the present invention may be synthesized according to nucleic acid synthesis methods such as the phosphoramidite method.
  • a method for obtaining the polynucleotide according to the present invention a method using a nucleic acid amplification method such as PCR can be mentioned.
  • primers are prepared from the 5' and 3' sequences (or their complementary sequences) of the cDNA of the polynucleotide, and these primers are used to perform PCR using genomic DNA or cDNA as a template. to amplify the DNA region sandwiched between the two primers. As a result, a large amount of DNA fragments containing the polynucleotide of the present invention can be obtained.
  • a polynucleotide (eg, DNA) according to the present invention may be used as a vector by inserting it into an appropriate vector.
  • the type of vector may be an autonomously replicating vector such as a plasmid, or a vector that is integrated into the genome of the host cell when introduced into the host cell and replicates together with the chromosome of the host cell. good.
  • the above vector is preferably an expression vector.
  • the polynucleotides of the present invention are operably linked to elements required for transcription, such as promoter sequences.
  • a promoter sequence is a DNA sequence which exhibits transcriptional activity in a host cell.
  • the type of promoter sequence to be used may be appropriately selected according to the type of host cell and the purpose of using the fluorescent polypeptide of the present invention. As the type of the host cell, for example, [4. transformants and methods for producing transformants].
  • Promoter sequences operable in host cells include Bacillus stearothermophilus maltogenic amylase gene, Bacillus licheniformis alpha-amylase gene, Bacillus licheniformis alpha-amylase gene. Promoter of Bacillus amyloliquefaciens BAN amylase gene, Bacillus Subtilis alkaline protease gene or Bacillus pumilus xylosldase gene; PR of phage lambda promoter or PL promoter; E.
  • coli lac promoter, trp promoter, tac promoter; polyhedrin promoter, P10 promoter, Autographa californica polyhedrosis basic protein promoter, baculovirus immediate early gene 1 promoter, baculovirus 39K delayed Early gene promoter, yeast glycolytic gene-derived promoter, alcohol dehydrogenase gene promoter, TPI1 promoter, ADH2-4c promoter, ADH3 promoter, tpiA promoter, cauliflower mosaic virus 35S promoter, SV40 promoter, MT-1 (metallothionein gene) promoter , cytomegalo promoter or adenovirus 2 major late promoter.
  • polyhedrin promoter P10 promoter
  • Autographa californica polyhedrosis basic protein promoter baculovirus immediate early gene 1 promoter
  • baculovirus 39K delayed Early gene promoter yeast glycolytic gene-derived promoter, alcohol dehydrogenase gene promoter, TPI1 promoter, ADH2-4c promoter, ADH
  • polynucleotides of the invention may optionally be operably linked to a suitable terminator (e.g., polyadenylation signal, mammalian growth hormone terminator, TPI1 terminator or ADH3 terminator).
  • a suitable terminator e.g., polyadenylation signal, mammalian growth hormone terminator, TPI1 terminator or ADH3 terminator.
  • Appropriate types of terminators may be selected according to the types of host cells.
  • the vector according to the present invention may further have elements such as transcription enhancer sequences.
  • a vector according to the present invention may further have a DNA sequence that enables replication of the vector in a host cell.
  • the host cell is a mammalian cell that expresses the Large T antigen
  • DNA sequences include the SV40 origin of replication and the like.
  • the vector according to the present invention may further have a selectable marker.
  • Selectable markers can include, for example, drug resistance genes for drugs such as ampicillin, kanamycin, tetracycline, chloramphenicol, neomycin or hygromycin. These selectable markers apply to any kind of vector.
  • An expression cassette according to the present invention refers to an expression cassette containing (a) an expression control region that is functional in an expression host; and (b) a polynucleotide according to the present invention.
  • the expression cassette according to the present invention may be in the form of the expression vector described above.
  • Transformant and method for producing transformant (Transformant and method for producing transformant)
  • a transformant having a polynucleotide according to the present invention, an expression cassette according to the present invention, or a vector according to the present invention is a transformant having a polynucleotide according to the present invention, an expression cassette according to the present invention, or a vector according to the present invention.
  • Transformants can be produced by introduction into suitable host cells.
  • the produced transformant contains the entire length of the polynucleotide according to the present invention or at least a part of the polynucleotide, and can express any of the fluorescent polypeptides according to the present invention.
  • progeny of the transformant obtained using the transformant of the present invention also contain the full length of the polynucleotide of the present invention or at least part of the polynucleotide, Any of the fluorescent polypeptides of the invention can be expressed.
  • the full length or a part of the polynucleotide according to the present invention is integrated into the genome.
  • the polynucleotide of the present invention, the expression cassette of the present invention, and the vector of the present invention are collectively referred to as the "foreign nucleic acid molecule" of the present invention.
  • the method for introducing the foreign nucleic acid molecule of the present invention into host cells may be selected according to the type of host cell, as exemplified below. Also, the method for obtaining progeny of the transformant according to the present invention may be selected according to the type of transformant.
  • Examples of host cells include bacterial cells, yeast cells, fungal cells other than yeast cells, and higher eukaryotic cells.
  • Higher eukaryotic cells include, for example, plant cells and animal cells. Animal cells include insect cells, amphibian cells, reptile cells, avian cells, fish cells, mammalian cells and the like. Examples of bacterial cells also include Gram-positive bacteria such as Bacillus or Streptomyces; Gram-negative bacteria such as E. coli.
  • Examples of yeast cells include cells belonging to Saccharomyces or Schizosaccharomyces, such as Saccharomyces cerevisiae or Saccharomyces kluyveri. Examples of fungal cells other than yeast cells include cells of filamentous fungi.
  • filamentous fungal cells include, for example, cells of filamentous fungi belonging to Aspergillus, Neurospora, Fusarium, or Trichoderma.
  • insect cells include, for example, silkworm cells.
  • mammalian cells include HEK293 cells, HeLa cells, COS cells, BHK cells, CHL cells or CHO cells.
  • Transformation of host cells may be appropriately selected according to the type of host cells, and examples thereof include protoplast method, method using competent cells, electroporation method, spheroblast method, lithium acetate method, calcium phosphate method, It can be carried out by the lipofection method, the Agrobacterium method, the particle gun method, and the like.
  • Other methods of transforming host cells include methods of transforming by obtaining host cells that have integrated the foreign nucleic acid molecule of the present invention into the host chromosome. Integration of foreign nucleic acid molecules into the host chromosome can be accomplished, for example, by homologous or heterologous recombination.
  • Yet another method of transforming host cells is to co-introduce a foreign nucleic acid molecule of the invention and a baculovirus into the host cell to obtain recombinant baculovirus in the culture supernatant of the host cell, followed by recombinant baculovirus.
  • Examples thereof include a method of infecting a host cell with a virus and causing the host cell to produce the fluorescent polypeptide of the present invention.
  • Co-introduction methods include, for example, the calcium phosphate method and the lipofection method.
  • the above transformant is cultured or grown under conditions that allow expression of the introduced foreign nucleic acid molecule.
  • transformants can be, for example, tissues, organs and individuals that have been transformed with an exogenous nucleic acid molecule according to the invention.
  • transformants other than cells are sometimes preferred to be of non-human origin, and individuals are particularly preferred to be of non-human origin.
  • Transformed individuals derived from non-humans are referred to as non-human transgenic organisms.
  • Non-human transgenic organisms and methods for producing the same A non-human transgenic organism according to the invention is, for example, a higher organism.
  • transgenic plants include those of dicotyledons such as Arabidopsis thaliana; monocotyledons such as Brachypodium distachyon, rice, wheat and barley;
  • Transgenic animals include, for example, transgenic zebrafish, mice, rats, pigs, and the like.
  • a method for producing a non-human transgenic organism according to the present invention may be selected according to the type of transgenic organism.
  • a method for producing a transgenic animal includes, for example, ex vivo introduction of a foreign nucleic acid molecule according to the present invention into a fertilized egg collected from a donor organism according to a microinjection method or the like; infecting cells of an early developing embryo derived from a donor organism;
  • the foreign nucleic acid molecule according to the present invention is introduced into plant cells according to the Agrobacterium method; the particle gun method; the electroporation method;
  • a transformed plant individual may be obtained through the process of .
  • the method of obtaining offspring of the non-human transgenic organism according to the present invention may be selected according to the type of the non-human transgenic organism.
  • a method of obtaining progeny by mating can be used.
  • progeny may be obtained using asexual reproduction techniques according to the type of plant.
  • the invention also encompasses, for example, using the non-human transgenic organisms of the invention to clone them.
  • the clone produced contains the full length of the polynucleotide according to the present invention in the genome, or at least a part of the polynucleotide, in the same way as the original non-human transgenic organism, and the present invention can express any of the fluorescent polypeptides according to Clone is a concept that includes both embryonic cell clones and somatic cell clones.
  • Methods for creating clones include, for example, nuclear transplantation, in which a donor's cell nucleus is transplanted into a recipient, unfertilized egg whose nucleus has been removed.
  • the donor cell nucleus includes 1) the somatic cell nucleus of the original non-human transgenic organism, or 2) the embryonic cell nucleus derived from the original non-human transgenic organism.
  • the donor's cell nucleus contains the full-length polynucleotide according to the present invention, or at least a part of the polynucleotide in the genome.
  • the method of nuclear transplantation of the donor's cell nucleus is not particularly limited. and a method of introducing donor cells without fusion.
  • a fusion polypeptide according to the present invention a recombinant antibody in which an arbitrary antibody protein is genetically linked to a fluorescent polypeptide
  • a fusion polypeptide comprising a fluorescent polypeptide according to the present invention and another polypeptide (hereinafter referred to as a fusion polypeptide according to the present invention) is also within the scope of the present invention.
  • a fusion polypeptide is, for example, a fusion protein produced by expression of an expression cassette and/or vector according to the present invention; a fusion protein in which any protein is labeled with a fluorescent polypeptide according to the present invention; a fluorescent polypeptide according to the present invention and a predetermined peptide sequence for stabilizing fluorescence; a FRET probe comprising a fluorescent polypeptide according to the present invention and another fluorescent polypeptide; and the like. That is, the type of other polypeptide to be fused with the fluorescent polypeptide of the present invention is not particularly limited.
  • Fusion polypeptides in which any other polypeptide is linked to both the N-terminus and C-terminus of the fluorescent polypeptide of the present invention, or to either the N-terminus or the C-terminus, are also within the scope of the present invention. Any other polypeptide that is linked is not limited in length and sequence.
  • both the N-terminus and the C-terminus, or either the N-terminus or the C-terminus of a fluorescent polypeptide of the invention and any other polypeptide consist of any amino acid sequence.
  • Linked via the insert sequence one example of the fusion protein of the present invention has an insertion sequence consisting of an arbitrary amino acid sequence, with any of the 1st to 5th amino acids at the N-terminus of the fluorescent polypeptide of the present invention as the insertion position. ing.
  • any of these insertion sequences can be an amino acid sequence consisting of 3 or more, 5 or more, 7 or more, or 10 or more amino acids.
  • the inserted sequence can be an amino acid sequence of 30 or fewer, 20 or fewer, or 15 or fewer amino acids.
  • the C-terminus of the fluorescent polypeptide of the present invention is linked to any other polypeptide
  • the C-terminus of the fluorescent polypeptide of the present invention and any other polypeptide are Examples thereof include those linked via an amino acid sequence consisting of 10 amino acids set forth in SEQ ID NO: 8 (referred to as insertion sequence c4).
  • insertion sequence n1 or n2 examples include those in which an amino acid sequence consisting of 9 amino acids set forth in SEQ ID NO: 9 or SEQ ID NO: 10 (referred to as insertion sequence n1 or n2, respectively) is inserted at any position between the amino acids.
  • an insertion sequence n1 (SEQ ID NO: 9) is inserted between the 4th and 5th amino acids at the N-terminus of the fluorescent polypeptide of the present invention, or the fluorescent polypeptide of the present invention.
  • Examples include those in which the insertion sequence n2 (SEQ ID NO: 10) is inserted between the 3rd and 4th amino acids of the N-terminus of the polypeptide.
  • the fusion protein includes those having both the insertion sequence c4 and the insertion sequence n1 or n2. By having an insertion sequence as described above, the photostability of the fusion protein can be improved.
  • both the N-terminus and C-terminus of the fluorescent polypeptide of the present invention, or either the N-terminus or the C-terminus, and any other polypeptide are linked via an insertion sequence consisting of any amino acid sequence. If so, more stable fluorescence can be obtained than by binding any other polypeptide directly to the fluorescent polypeptide of the present invention.
  • a fusion protein includes two or more linked fluorescent polypeptides of the same type or different types of the present invention. That is, they are a tandem dimer in which two fluorescent polypeptides of the present invention of the same type or different types are linked, and a fusion protein in which three or more fluorescent polypeptides are linked.
  • the fluorescent polypeptides may be linked via an insertion sequence having any sequence.
  • the fluorescent polypeptide of the present invention may have an insertion sequence consisting of an arbitrary amino acid sequence, with any position between the 1st to 5th amino acids at the N-terminus of the present invention.
  • the amino acid sequence and amino acid sequence length of the inserted sequence are not limited, but are, for example, 10 amino acids or more and 150 amino acids or less. Insertion sequences may be applied as described above. Any other polypeptide may also be added to both the N-terminus and the C-terminus, or either the N-terminus or the C-terminus of the linked fluorescent polypeptide.
  • the amino acid sequence and amino acid sequence length of the added polypeptide are not limited, but are, for example, 5 amino acids or more and 20 amino acids or less.
  • each amino acid sequence of each protein may be linked via a linker sequence known as an insertion sequence.
  • each amino acid sequence may be linked using an EV linker, an alpha linker, or the like.
  • tandem dimers in which two fluorescent polypeptides of the present invention are linked include those having the amino acid sequence of SEQ ID NO: 13 (referred to as tdStayGold), those having the amino acid sequence of SEQ ID NO: 15 (referred to as tdStayGold(long)), One having the amino acid sequence of SEQ ID NO: 17 (referred to as tdoxStayGold) and one having the amino acid sequence of SEQ ID NO: 19 (referred to as tdStayGold alpha).
  • the nucleotide sequence encoding the polypeptide shown in SEQ ID NO: 13 is SEQ ID NO: 14, the nucleotide sequence encoding the polypeptide shown in SEQ ID NO: 15 is SEQ ID NO: 16, and the nucleotide sequence encoding the polypeptide shown in SEQ ID NO: 17 is arranged.
  • SEQ ID NO: 20 shows the base sequences encoding the polypeptides shown in Nos. 18 and 19, respectively.
  • tandem dimers in which two fluorescent polypeptides of the present invention are linked 85% or more, 88% or more, 90% or more, 95% or more, 96% or more with respect to the amino acid sequences of the tandem dimers exemplified above
  • those having amino acid sequences exhibiting 90% or more, 97% or more, 98% or more, or 99% or more sequence identity are also included.
  • the fusion polypeptide of the present invention may be chemically synthesized by the same method as the fluorescent polypeptide of the present invention, or produced using genetic recombination technology.
  • a fusion protein in which a tandem dimer in which two fluorescent polypeptides of the present invention are linked as described above is fused to a target protein to be visualized. can be done.
  • antibody Also included in the scope of the present invention are recombinant antibodies in which any antibody protein is genetically engineered to link to the fluorescent polypeptide of the present invention.
  • the antibody may be an antibody fragment that maintains the ability to specifically bind to an antigen.
  • the invention also includes methods of producing pluripotent stem cells from cells of the non-human transgenic organisms of the invention.
  • a method for producing pluripotent stem cells includes introducing reprogramming factors into cells (sometimes referred to as starting cells) collected from the non-human transgenic organism according to the present invention, or treating the cells with reprogramming factors. thereby comprising a step of producing pluripotent stem cells (initialization step).
  • the non-human transgenic organisms are, for example, non-human transgenic higher animals, especially non-human transgenic mammals.
  • pluripotent stem cells exhibit at least multipotency, and more preferably exhibit pluripotency or earlier.
  • multipotency refers to the ability to differentiate into some cell types such as nervous system or hematopoietic system.
  • pluripotency refers to the ability to differentiate into all cells and tissues that make up an individual, although it cannot form an individual itself.
  • pluripotent stem cells obtained is the so-called "induced Pluripotent Stem Cell”.
  • “Induced pluripotent stem cells” are cells having properties similar to ES cells (Embryonic Stem Cells), more specifically, undifferentiated cells, which are totipotent (pluripotency) and undifferentiated depending on culture conditions. It includes cells that have the ability to proliferate.
  • the use of the fluorescent polypeptide or fusion polypeptide according to the present invention is not particularly limited, and it can be widely used for fluorescence observation.
  • the fluorescence observation method comprises a production step of producing the polypeptide or fusion polypeptide according to the present invention in cells, an excitation light irradiation step of irradiating the cells with excitation light, and fluorescence derived from the polypeptide or fusion polypeptide. and an observation step of observing the
  • the fluorescence observation step described above is a step of observing fluorescence emitted from the polypeptide or fusion polypeptide of the present invention.
  • the observing step is performed by detecting fluorescence emitted from the polypeptide or fusion polypeptide of the present invention.
  • Fluorescence detection methods are not particularly limited, but include, for example, fluorescence detection means such as UV transilluminators or LED transilluminators, fluorescence microscopes, fluorescence detectors, or flow cytometry.
  • fluorescence microscopy single-molecule imaging (TIRFM) and light sheet microscopy
  • less preferred tools include structured illumination (SIM) and Nipkow disk confocal (multifocal) microscopy.
  • fluorescence detection means described above, the presence or absence of fluorescence emission, the distribution of fluorescence emission, or the intensity of fluorescence may be measured temporarily or over time.
  • Koehler illumination for example, to illuminate the object using the objective lens of the microscope.
  • Koehler illumination a higher effect of photostability of the fluorescent polypeptide of the present invention is obtained than when using critical illumination.
  • the fluorescence derived from the polypeptide or fusion polypeptide may be observed by taking two-dimensional or three-dimensional images or videos.
  • the analysis or processing of the captured fluorescence image or video may be processed using appropriate information processing technology. For example, a process of accumulating a large amount of image or moving image information and performing machine learning (AI learning) using artificial intelligence can be employed.
  • AI learning machine learning
  • fluorescence observation is a method comprising the step of introducing the fluorescent polypeptide or fusion polypeptide of the present invention into cells (introduction step) and the "fluorescence observation step".
  • Methods for introducing fluorescent polypeptides into cells include, for example, the microinjection method of injecting purified fluorescent polypeptides into cells.
  • polypeptide X One purpose of fluorescence observation is to analyze the localization or dynamics of polypeptides. Visualization and analysis of the localization or dynamics of polypeptide X in cells using a fusion polypeptide obtained by genetically engineering a fluorescent polypeptide according to the present invention and another polypeptide (referred to as polypeptide X). It becomes possible.
  • polypeptide X is not particularly limited, examples thereof include intracellularly localized proteins, intracellular organelle-specific proteins, and targeting signals.
  • Targeting signals include, for example, nuclear localization signals, mitochondria localization signals, plasma membrane localization signals, and endoplasmic reticulum localization signals.
  • Another purpose of fluorescence observation is the expression analysis of target genes.
  • the activity of the expression control sequence can be measured.
  • the activity of the expression control sequence of the gene of interest reflects the expression level of the gene of interest.
  • the present invention also provides methods for making mutant fluorescent polypeptides based on the fluorescent polypeptides having any of the amino acid sequences set forth in SEQ ID NO: 1, 4 or 6.
  • one aspect of the method for producing a fluorescent polypeptide according to the present invention is i) producing a mutant polypeptide in which at least one or more amino acids have been mutated in amino acids other than the 58th to 59th amino acids in the amino acid sequence set forth in SEQ ID NO: 1, 4 or 6; ii) comparing the fluorescence properties of the mutant polypeptide with the fluorescence properties of the polypeptide prior to mutagenesis; iii) a selection step of selecting mutant polypeptides that have altered fluorescence properties compared to before the mutation in the comparison step.
  • mutant polypeptides that have fluorescence properties but whose fluorescence properties have changed are selected, and mutant polypeptides that have completely lost the fluorescence properties are excluded.
  • kits A kit according to the present invention comprises: 1) a fluorescent polypeptide according to the present invention; 2) a polynucleotide encoding the fluorescent polypeptide according to the present invention; 3) an expression cassette according to the present invention; 4) a vector according to the present invention; ) a transformant according to the present invention; and 6) a fusion polypeptide according to the present invention.
  • the polynucleotide in 2) above is RNA, it can also be applied to individual organisms such as humans as a kit for transient expression without recombination into genomic genes.
  • a kit according to the present invention can be prepared using materials and techniques known in the art.
  • a reagent such as a fluorescent polypeptide or polynucleotide can be prepared in a form suitable for storage by dissolving in a suitable solvent.
  • a suitable solvent water, ethanol, various known buffer solutions, and the like can be used.
  • the kit according to the present invention may further comprise at least one of various reagents and instruments (buffer solutions, test tubes, pipettes, etc.) and instructions for use of the kit, if necessary.
  • the instructions for use of the kit contain, for example, the contents of the detection method according to the present invention described in the above section [7. Observation using fluorescent polypeptide, etc.]. Kits are for reagent use, or for diagnostic use, for example.
  • RNA sequencing and subsequent anchored PCR analysis were performed using total RNA from C. uchidae. Details are as follows.
  • Unigene encodes a polypeptide containing a GFP-like domain.
  • the polypeptide contained two GYG sequences thought to be involved in chromophore synthesis.
  • 5'-RACE-PCR was performed using this polypeptide as a template and the CU17 5' RACE primer, extension to the N-terminal side was observed so as to have an additional GYG sequence.
  • RT-PCR with CU17 1st_Fwd and CU17 Rev primers was then performed, yielding two RNA transcripts encoding different polypeptides (designated CU17L and CU17S).
  • CU17L corresponded to the protein product of #1784 and was thought to be a three-domain fluorescent protein.
  • CU17L itself did not fluoresce in the expression system used by the inventors.
  • none of the domains were fluorescent when expressed separately.
  • CU17S appeared to be a single-domain fluorescent protein.
  • the N-terminal region of CU17S (approximately three-quarters of the total protein length) shared 84.8% sequence identity with the corresponding region of the 1st repeat of CU17L.
  • the C-terminal region of CU17S (approximately one quarter of the total protein length) had 93.3% sequence identity with the corresponding region of the 3rd repeat of CU17L.
  • RT-PCR product was extended 3' with the CU17 3' RACE primer and 5' with the CU17 5' RACE-5 primer.
  • CU17S The amino acid sequence of CU17S is shown in SEQ ID NO:4, and the base sequence of the coding region of the gene is shown in SEQ ID NO:5.
  • CU17S had a completely novel primary structure.
  • ObeCFP the homologue with the highest sequence identity to CU17S, also had only 15.2% sequence identity. According to the amino acid sequence alignment (see also FIG. 4 described below), CU17S is thought to have a ⁇ -can structure similar to that of other fluorescent proteins.
  • a plasmid DNA for E. coli expression with a histidine tag added to the N-terminus of the CU17S protein was constructed, transformed into E. coli, and purified in one-step using a Ni-NTA column. Buffer exchange was then performed using a Sephadex G-25 column.
  • the excitation spectrum and fluorescence spectrum were measured with a spectrofluorophotometer F-4500 (Hitachi High-Technologies Corporation) (excitation wavelength 475 nm, fluorescence wavelength 550 nm).
  • the absorption spectrum was measured with a spectrophotometer U-2910 (Hitachi High-Technologies Corporation).
  • the quantum yield was measured with an absolute PL quantum yield spectrometer Quantaurus-QY (Hamamatsu Photonics Co., Ltd.) (excitation wavelengths 470 nm, 480 nm).
  • FIG. 1 is the fluorescence excitation and fluorescence emission spectra observed in C. uchidae.
  • the fluorescence excitation spectrum of CU17S showed a shoulder around 450 nm and a major peak at 496 nm. This was identical to the fluorescence properties observed in C. uchidae (Fig. 1).
  • Buffer HBSS 15 mM HEPES-NaOH (pH 7.4) included; cooled CCD camera (ORCA-AG, Hamamatsu Photonics); Fluorescence filter cube: Exciter: 488.0 IF 10 (488 ⁇ 5 nm) (Cheshire Optical); Dichroic mirror: DM500 (Olympus); Emitter: BA520IF (520 nm ⁇ ) (Olympus) combined with NDX001(1% transmittance) (Asahi Spectra ) Objective lens: 60 ⁇ objective lens (UPlanSApo 60 ⁇ oil, NA 1.35)
  • the CU17S/V168A protein When the CU17S/V168A protein was expressed in E. coli in the same manner as the CU17S described above and purified, the CU17S/V168A protein could be produced and purified in very large amounts.
  • the CU17S/V168A variant was called StayGold.
  • the amino acid sequence of StayGold is shown in SEQ ID NO:1, and the nucleotide sequence of the coding region of the gene is shown in SEQ ID NO:2.
  • SEQ ID NO: 3 shows the humanized base sequence of codon usage of StayGold.
  • FIG. 2 shows the absorption spectrum of StayGold (CU17S/V168A variant).
  • the absorption spectrum of CU17S/V168A has a high peak at 496 nm with an absolute extinction coefficient of 159,000 M ⁇ 1 ⁇ cm ⁇ 1 at this wavelength.
  • Figure 3 shows the fluorescence excitation and fluorescence emission spectra of StayGold (CU17S/V168A variant).
  • the two graphs in FIG. 3 show the excitation spectrum (dotted line) and fluorescence emission spectrum (solid line) of StayGold, respectively.
  • Figure 4 shows an alignment of the amino acid sequences of StayGold, CU17S and EGFP proteins.
  • Table 1 shows the measurement results of various fluorescent proteins.
  • Suffix d, QY f Fluorescence quantum yield (%) Absolute values were measured using an absolute PL quantum yield measurement C9920-02 (Hamamatsu Photonics).
  • Subscript f brightness of fluorescent proteins in HeLa cells 30 hours after cDNA transfection. Each green fluorescent protein value was corrected by the mCherry value and normalized by the EGFP value.
  • eCE equimolar co-expression of green fluorescent protein and mCherry by using a bicistronic expression system.
  • Subscript g time taken for fluorescence emission rate to drop from 1,000 photons/s per molecule to 500.
  • Subscript h total amount of purified protein recovered from 1 liter of E. coli culture.
  • mNG mNeon Green
  • a standard method for evaluating fluorescent proteins was adopted. First, the molar extinction coefficients of EGFP, SiriusGFP, mNeonGreen and mClover3 at the central wavelength of 488 nm of the irradiation light were calculated. The density of photons reaching the sample was calculated from the irradiance (5.6 W/cm 2 ). Furthermore, considering the fluorescence quantum yield of fluorescent proteins, standardized bleaching curves were obtained for five types of fluorescent proteins.
  • the change in fluorescence intensity accompanying fading was measured using a fluorescence microscope (IX81, Olympus) and an image analyzer (AQUACOSMOS, Hamamatsu Photonics).
  • a xenon lamp (75 W) was used as an excitation light source.
  • the excitation wavelength was set to a center wavelength of 488 nm and a half-width of 10 nm using a band-pass filter, and this excitation light was applied to a fluorescent protein solution sample placed on a stage through an objective lens (UPlanSApo 40x, NA 0.95).
  • a fluorescence image of the sample was acquired with a cooled CCD camera (ORCA-AG, Hamamatsu Photonics) through a 520 nm long-pass filter.
  • the excitation light was continuously irradiated for 90 minutes, and fluorescence images were acquired every 6 seconds.
  • the average brightness of the central circular region (115 pixels in diameter) of the resulting image was obtained, and the brightness of the fluorescence obtained from the sample containing no fluorescent protein was subtracted from this as background light.
  • An attenuation curve due to fluorescence bleaching was obtained by plotting the brightness of the image at each time.
  • FIG. 5 shows a simple comparison of changes in fluorescence intensity over time for five green fluorescent proteins. By this simple comparison, StayGold was brighter and significantly more photostable than the other fluorescent proteins.
  • FIG. 6 shows normalized bleaching curves for five fluorescent proteins using purified proteins.
  • t 1/2 the time required for the fluorescence emission rate to decrease from 1,000 photons/s per molecule at the start of measurement to 500 was calculated (Table 1).
  • EGFP exhibited the highest t 1/2 value of 700 s.
  • StayGold far surpassed that with over 10,000 s. These results indicate that StayGold is more than ten times more photostable than other fluorescent proteins, ie it can emit more than ten times the number of photons before bleaching.
  • FIG. 7 shows standardized bleaching curves for StayGold and 15 fluorescent proteins for a total of 16 fluorescent proteins. As also shown in FIG. 7, StayGold had superior performance among the investigated fluorescent proteins.
  • HeLa cells stably expressing each fluorescent protein throughout the cell by transfection with a lentiviral vector.
  • Cells were cultured in 35 mm glass bottom dishes. Changes in fluorescence intensity due to fading were measured using a fluorescence microscope (IX81, Olympus) and an image analyzer (AQUACOSMOS, Hamamatsu Photonics).
  • a xenon lamp (75 W) was used as an excitation light source.
  • the excitation wavelength was set to a center wavelength of 488 nm and a half width of 10 nm using a band-pass filter, and this excitation light was applied to a cell sample placed on a stage through an objective lens (UPlanSApo, 40 ⁇ , numerical aperture of 0.95).
  • Fluorescent images of cells were acquired with a cooled CCD camera (ORCA-AG, Hamamatsu Photonics) through a 520 nm long-pass filter.
  • the excitation light was continuously irradiated for 60 minutes, and fluorescence images were acquired every 6 seconds.
  • the average brightness of 20 ⁇ 20 pixels inside the cell was obtained from the obtained image, and the brightness of the area without cells was subtracted from this as the background light.
  • a decay curve due to fluorescence bleaching was obtained by plotting the brightness of the cells at each time.
  • the photostability was investigated considering the brightness of the fluorescence from the cultured living cells expressing each of the five types of green fluorescent proteins.
  • Fig. 8 shows a simple comparison of changes in fluorescence intensity over time for five types of green fluorescent proteins in living cells.
  • Fig. 9 shows standardized bleaching curves of 5 types of green fluorescent proteins in living cells.
  • HBSS in FIGS. 8 and 9 means Hank's Balanced Salt Solution.
  • a band-pass filter was used to set the excitation wavelength to a center wavelength of 488 nm and a half-width of 10 nm, and this excitation light was applied to a cell sample placed on a stage through an objective lens (UPlanSApo 60x, numerical aperture 1.35). Fluorescent images of cells were acquired with a cooled CCD camera (ORCA-AG, Hamamatsu Photonics) through a 520 nm long-pass filter. The excitation light was continuously irradiated for 30 minutes, and fluorescence images were acquired every 6 seconds.
  • FIG. 10 shows a comparison of photobleaching between StayGold-expressing cells and EGFP-expressing cells and a comparison of photobleaching between StayGold-expressing cells and mNeonGreen-expressing cells.
  • tandem dimer proteins When the two tandem dimer proteins were expressed in E. coli and purified in the same manner as CU17S and StayGold described above, the tandem dimer proteins could be produced and purified in very large amounts, respectively.
  • These two proteins were named tdStayGold and tdStayGold(long), respectively.
  • the amino acid sequence of tdStayGold is shown in SEQ ID NO: 13, and the nucleotide sequence of the coding region of tdStayGold is shown in SEQ ID NO: 14.
  • the amino acid sequence of tdStayGold(long) is shown in SEQ ID NO: 15, and the nucleotide sequence of the coding region of tdStayGold(long) is shown in SEQ ID NO: 16.
  • tandem dimer proteins are linked via an insert of 132 amino acids between two StayGold variant sequences.
  • tdStayGold(long) has c4 (10 amino acids, SEQ ID NO: 8) added to the C-terminus of tdStayGold.
  • tdStayGold is suitable for fusion to the C-terminus of a certain protein X.
  • the fusion protein will have the structure Protein X-tdStayGold.
  • tdStayGold(long) was found to be suitable for fusion to the N-terminus of a certain protein X. In that case, the fusion protein will have the structure tdStayGold(long)-Protein X.
  • tau human wild-type tau four-repeat
  • tau which is a microtubule-associated protein
  • HeLa cells were transfected with 1 ⁇ g of plasmid DNA (Tau-GG-tdStayGold/pcDNA3) using Lipofectamine 2000, and one day after transfection, fluorescence observation of living cells was performed. Observations were made with a confocal laser scanning microscope (FV3000). Objective lens is UPLSAPO 60XS/1.3 NA, sampling speed is 2.0 ⁇ s/pixel, integration is line 3 times, 3 ⁇ zoom, C.A. is 222 nm, laser is 488 nm, 1.5%, PMT potential is 520 V, detection is 500-600 nm.
  • FIG. 11 shows the results of labeling microtubules with tdStayGold (in FIG. 11, the scale bar is 10 ⁇ m). As shown in FIG. 11, tdStayGold brightly labeled intracellular microtubules. In addition, the fluorescence of tdStayGold did not fade, indicating that microtubule dynamics in living cells could be observed clearly with tdStayGold.
  • Insertion sequence c4 (10 amino acids, SEQ ID NO:8) was added to the C-terminal of the amino acid sequence of the StayGold tandem dimer used in Example 12 to prepare tdStayGold(long) having the amino acid sequence of SEQ ID NO:15.
  • the nucleotide sequence of the coding region of tdStayGold(long) having the amino acid sequence of SEQ ID NO:15 is shown in SEQ ID NO:16.
  • the C-terminus of tdStayGold(long) having the amino acid sequence of SEQ ID NO: 15 was joined to the N-terminus of the amino acid sequence of the Golgi membrane protein Giantin (the amino acid sequence of human Giantin protein 3131-3259).
  • Giantin the amino acid sequence of human Giantin protein 3131-3259.
  • An expression construct was generated that encodes a fusion protein that targets the membrane of the Golgi apparatus.
  • the construct was transfected into HeLa cells, fluorescent proteins were transiently expressed, and fluorescence observation of live cells was performed.
  • HeLa cells were transfected with 1 ug of plasmid DNA (tdStayGold(long)-Coupler-Giantin/pcDNA3) using Lipofectamine 2000. One day after the introduction, the cells were observed with a super-resolution microscope SpinSR10.
  • FIG. 12 shows the results of labeling Golgi membranes with tdStayGold (long) (in FIG. 12, the scale bar is 5 ⁇ m). As shown in Fig. 12, tdStayGold (long) brightly labeled the membrane of the Golgi apparatus in cells, and it was found that the dynamics of the membrane of the Golgi apparatus in living cells could be observed continuously at high resolution and at high speed without bleaching. rice field.
  • a StayGold variant (oxStayGold) was prepared by adding H169Y, C174I, and C208I mutations to StayGold contained in the StayGold tandem dimer having the amino acid sequence of SEQ ID NO: 13. Based on the sequence of oxStayGold, an oxStayGold tandem dimer (tdoxStayGold) having the following structure was constructed.
  • tdoxStayGold (n1)oxStayGold(c4)-EV linker-(n1)oxStayGold
  • amino acid sequence of tdoxStayGold is shown in SEQ ID NO: 17, and the nucleotide sequence of the coding region of tdoxStayGold is shown in SEQ ID NO: 18.
  • An expression construct encoding a fusion protein (PSD-95-Coupler-tdoxStayGold) in which the C-terminus of postsynaptic protein PSD-95 was linked to the N-terminus of tdoxStayGold was prepared, and the fusion protein was transferred to primary cultured neurons of fetal rat hippocampus. Fluorescence observation of living cells was performed after expression.
  • the coupler linker is a linker in which three Gly-Gly-Gly-Gly-Ser sequences are repeated.
  • Camera is ORCA-Flash4.0
  • DM D405/488/561/640
  • CH1 Filter Wheel B525/50, B447/60
  • FIG. 13 shows the results of labeling the protein PSD-95 with tdoxStayGold (in FIG. 13, the scale bar is 20 ⁇ m). As shown in FIG. 13, labeling with tdoxStayGold made it possible to clearly observe glutamate receptors that regulate signal plasticity and PSD-95 localized to signal molecules as backing structures.
  • tdStayGold alpha (n1)StayGold(c4)-alpha linker-(n1)StayGold
  • SEQ ID NO: 19 The amino acid sequence of tdStayGold alpha is shown in SEQ ID NO: 19, and the nucleotide sequence of the coding region of tdStayGold alpha is shown in SEQ ID NO: 20.
  • CytERM cytoplasmic end of an endoplasmic reticulum (ER) signal-anchor membrane protein
  • FIG. 14 shows the results of labeling the endoplasmic reticulum membrane with tdStayGold alpha (the scale bar in FIG. 14 is 20 ⁇ m).
  • a fluorescent protein is attached to the C-terminus of CytERM
  • the ER is labeled by penetrating the membrane from the cytoplasmic side. If fluorescent proteins form multimers, the membranes overlap and vortex-like shapes (bright spots) appear.
  • n1 N-terminus of (n1)
  • StayGold obtained by inserting the insertion sequence n1 into the amino acid sequence of StayGold of SEQ ID NO: 1 at the C-terminus of CytERM
  • many such swirls appeared. (not shown).
  • FIG. 14 almost no vortices appeared when tdStayGold alpha was connected.
  • a StayGold variant ((n2)oxStayGold(c4)) was prepared by inserting insertion sequences n2 and c4 into the amino acid sequence of oxStayGold. Based on (n2)oxStayGold(c4), a StayGold variant (er-(n2)oxStayGold(c4)) having the following structure was prepared.
  • er-(n2)oxStayGold(c4) SP(CRT)-(n2)StayGold(c4)-KDEL
  • SEQ ID NO:21 The amino acid sequence of er-(n2)oxStayGold(c4) is shown in SEQ ID NO:21, and the nucleotide sequence of the coding region of er-(n2)oxStayGold(c4) is shown in SEQ ID NO:22.
  • SP(CRT) was the sequence of the calreticulin signal peptide
  • KDEL was the sequence of the ER retention signal.
  • Plasmid DNA was introduced into HeLa cells using PEI. Observed with a super-resolution microscope N-SIM S. The camera was ORCA-Fusion, the objective lens was SR HP Plan Apo 100X/1.35 Sil ⁇ S, the image acquisition mode was 3D-SIM, the laser was 488 nm, 50%, the excitation time was 15 msec, and the buffer was HBSS, 10 mM HEPES-NaOH (pH 7. Four).
  • FIG. 15 shows the results of labeling the lumen of the endoplasmic reticulum with er-(n2)oxStayGold(c4) (the scale bar in FIG. 15 is 10 ⁇ m).
  • er-(n2)oxStayGold(c4) brightly labeled the intracellular endoplasmic reticulum lumen, and the dynamics of the endoplasmic reticulum lumen in living cells were continuously faded at high resolution and high speed. It was found to be observable without
  • mt-StayGold was generated using StayGold having the amino acid sequence of SEQ ID NO:1.
  • mt-StayGold has the following structure.
  • This gene was incorporated into a cell expression plasmid (CSII-EF-MCS) and transfected into HeLa cells to express mt-StayGold.
  • CSII-EF-MCS cell expression plasmid
  • mt-StayGold emits fluorescence in mitochondria (not shown).
  • HeLa cells stably expressing mt-StayGold using lentivirus. Fluorescent mt-StayGold could be obtained even with lentivirus (not shown).
  • an insertion sequence n1 (9 amino acids) was inserted between the 4th and 5th amino acids of the amino acid sequence of StayGold (SEQ ID NO: 1) in the amino acid sequence of SEQ ID NO: 23. to create mt-(n1)StayGold with the following configuration.
  • mt-(n1)StayGold:CoxVIII ⁇ 2-(n1)StayGold The amino acid sequence of mt-(n1)StayGold is shown in SEQ ID NO:25, and the nucleotide sequence of the coding region of mt-(n1)StayGold is shown in SEQ ID NO:26.
  • Plasmid DNA was introduced into HeLa cells using lentivirus. Images of HeLa cells after introduction of mt-(n1)StayGold were acquired using a fluorescence microscope (IX81, Olympus) and an image analyzer (AQUACOSMOS, Hamamatsu Photonics). Excitation wavelength: 460-495 nm, fluorescence wavelength: 510 nm longpass, dichroic mirror: 505 nm, objective lens: UPlanSApo 60x, NA 1.35, cooled CCD camera: ORCA-AG, binning: 2 x 2, exposure time: 90 ms.
  • FIG. 16 shows the results of labeling mitochondria with mt-(n1)StayGold (the scale bar in FIG. 16 is 20 ⁇ m). mt-(n1)StayGold enabled mitochondria to be brightly labeled, enabling faster and longer imaging.
  • a StayGold variant ((n1)oxStayGold) was prepared by further inserting an insertion sequence n1 into oxStayGold prepared in Example 14.
  • (n1)oxStayGold/pRSET was mutagenized by Site Directed Mutagenesis to prepare a (n1)oxStayGold variant having the amino acid sequence of SEQ ID NO: 31 ((n1)oxStayGold L155T).
  • the nucleotide sequence of the region encoding (n1) oxStayGold L155T is shown in SEQ ID NO:32.
  • (n1) oxStayGold L155T was further mutated based on the crystal structure of StayGold.
  • Table 3 shows the mutations added to (n1)oxStayGold L155T and the fluorescent proteins (AzamiGreen (tetramer), EGFP (monomer), and StayGold (dimer)) used as comparative examples.
  • the amino acid substitution positions shown in Table 3 correspond to the amino acid positions in the amino acid sequence of StayGold (SEQ ID NO: 1) that does not have the insertion sequence n1.
  • the (n1)oxStayGold variants 1, 2, 7 to 12 have asparagine at position 132 in the amino acid sequence of StayGold (SEQ ID NO: 1) aspartic acid (N132D) and proline at position 151 in threonine.
  • (P151T) was a variant having a mutation in which lysine at position 162 was replaced with glutamic acid (K162E).
  • Table 3 also describes the reasons for selecting the mutation added to (n1)oxStayGold L155T.
  • recombinant proteins were expressed by E. coli JM109 DE3 using (n1)oxStayGold variants and expression constructs encoding AzamiGreen (tetramer), EGFP (monomer), and StayGold (dimer). Had made.
  • pseudo-native PAGE was performed. Separation gel is 10% acrylamide, 0.1% SDS. Sample buffer contained 2% SDS, 100 mM DTT. No heat treatment was performed.
  • the StayGold variant had bright fluorescence and markedly superior photostability. So far, improving the photostability of fluorescent proteins has always been accompanied by a decrease in brightness.
  • the fluorescence properties of StayGold differ from those of conventional fluorescent proteins, which are incompatible with brightness and photostability.
  • An example of the fluorescent protein according to the present invention has bright fluorescence and excellent photostability. Therefore, it is useful in a wide range of fields such as molecular biology, biochemical analysis, and medicine.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

新規な蛍光タンパク質、およびその利用を提供すること。本願発明に係るポリペプチドは、以下の(1)~(3)のいずれかに示す、蛍光特性を有するポリペプチドである。 (1)配列番号1に記載のアミノ酸配列を有するポリペプチド、 (2)配列番号1に記載のアミノ酸配列において1以上32個以下のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有するポリペプチド、 (3)配列番号1に記載のアミノ酸配列に対して85%以上の配列同一性を有するポリペプチド。

Description

蛍光特性を示す新規なポリペプチド、およびその利用
 本発明は蛍光特性を示す新規なポリペプチド、およびその利用に関する。
 蛍光タンパク質は、細胞、組織、または生物個体などを可視化するツールとして、欠かせないものとなっている。
 近年、蛍光タンパク質を用いた様々なバイオイメージング技術の開発が進められているおり、様々な公知の蛍光タンパク質の改変体が報告されている(非特許文献1~5)。
Shaner, N. C. et al., Nature Methods 5, 545-551, 2008 Shaner, N. C., Methods in Cell Biology 123, 95-111,2014 Bindels, D. S. et al. Nature Methods 14, 53-56, 2017 Zhong, S. et al. Journal of Neuroscience Methods 313, 68-76, 2019 Shaner, N.C. et al. Nature Methods 10, 407-409, 2013
 蛍光色素の光安定性は、バイオイメージング技術における喫緊課題の一つである。褪色が生じることにより、対象となるべき少コピー数の分子からの蛍光シグナルを、十分に長い時間にわたって観察することが困難となる。とくに一分子イメージング、または、導入する蛍光色素の量が限られるようなイメージングにおいて、褪色は致命的問題となる。また褪色が生じることにより、対象の現象を定量的に評価することが難しくなる。こうした状況において、既報の蛍光タンパク質よりも光安定性に優れた蛍光タンパク質の開発が求められている。
 本願発明者らは、タマクラゲ(Cytaeis uchidae)から新規の緑色蛍光タンパク質を単離することに成功した。
 すなわち本発明は、有用な性質を示す新規な蛍光タンパク質及びその利用を提供することを目的とする。
 上記の課題を解決するために、本願発明は以下のいずれかの一態様を包含する。
<1> 以下の(1)~(3)のいずれかに示す、蛍光特性を有するポリペプチド。
 (1)配列番号1に記載のアミノ酸配列を有するポリペプチド、
 (2)配列番号1に記載のアミノ酸配列において1個以上32個以下のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有するポリペプチド、
 (3)配列番号1に記載のアミノ酸配列に対して85%以上の配列同一性を有するポリペプチド。
<2> EGFPよりも高い光安定性を示す、またはEGFPよりも蛍光が明るい、<1>に記載のポリペプチド。
<3> 配列番号1に記載のアミノ酸配列の168番目のアミノ酸がアラニンであり、且つ、配列番号1に記載のアミノ酸配列に対して85%以上の配列同一性を示すアミノ酸配列を有する、<1>または<2>に記載のポリペプチド。
<4> 以下の(1)~(3)のいずれかに記載のポリヌクレオチド。
 (1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、
 (2)配列番号1に記載のアミノ酸配列において1個以上32個以下のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、蛍光特性を有するポリペプチドをコードするポリヌクレオチド、
 (3)配列番号1に記載のアミノ酸配列に対して85%以上の配列同一性を有し、蛍光特性を有するポリペプチドをコードするポリヌクレオチド。
<5> (a)発現宿主内で機能的な発現制御領域;および(b)<4>に記載のポリヌクレオチド; を含む、発現カセット。
<6> <4>に記載のポリヌクレオチドまたは<5>に記載の発現カセットを含むベクター。
<7> <4>に記載のポリヌクレオチド、<5>に記載の発現カセット、または<6>に記載のベクターを有する形質転換体。
<8> 非ヒトトランスジェニック生物である、<7>に記載の形質転換体。
<9> <1>~<3>のいずれかに記載のポリペプチドと他のポリペプチドとを含む融合ポリペプチド。
<10> 2つ以上連結した<1>~<3>のいずれかに記載のポリペプチドを含む、<9>に記載の融合ポリペプチド。
<11> <1>~<3>のいずれかに記載のポリペプチド、<4>に記載のポリヌクレオチド、<5に記載の発現カセット、<6>に記載のベクター、<7>または<8>に記載の形質転換体、あるいは<9>または<10>に記載の融合ポリペプチドを含む、キット。
<12> <1>~<3>のいずれかに記載のポリペプチドまたは<9>または<10>に記載の融合ポリペプチドを細胞において産生させる産生工程と、励起光を上記細胞に照射する励起光照射工程と、上記ポリペプチドまたは融合ポリペプチドに由来する蛍光を観察する観察工程とを含む、蛍光観察の方法。
 本発明は、非常に高い光安定性を有する蛍光ポリペプチドを提供する。本発明の蛍光ポリペプチドによれば、分子生物学などの多くの分野に利用することができるという効果を奏する。
本発明の実施例における、C. uchidaeにおいて観察される蛍光励起および発光スペクトルを示す。 本発明の実施例における、StayGold(CU17S/V168A)の吸収スペクトルを示す。 本発明の実施例における、StayGold(CU17S/V168A)の蛍光励起および発光スペクトルを示す。 本発明のStayGold、CU17SおよびEGFPタンパク質のアミノ酸配列のアライメントを示す。 本発明の実施例における、精製タンパク質を用いた場合の、5種類の緑色蛍光タンパク質の時間経過に伴う蛍光強度の変化の単純比較を示す。 本発明の実施例における、精製タンパク質を用いた場合の、5種類の蛍光タンパク質の標準化した褪色曲線を示す。 本発明の実施例における、16種類の蛍光タンパク質の標準化した褪色曲線を示す。 本発明の実施例における、生細胞における5種類の緑色蛍光タンパク質の時間経過に伴う蛍光強度の変化の単純比較を示す。 本発明の実施例における、生細胞における5種類の緑色蛍光タンパク質の標準化した褪色曲線を示す。 本発明の実施例における、StayGold発現細胞とEGFP発現細胞との光褪色の比較およびStayGold発現細胞とmNeonGreen発現細胞との光褪色の比較を示す。 本発明の実施例における、tdStayGoldにより微小管をラベリングした結果を示す。 本発明の実施例における、tdStayGold(long)によりゴルジ体膜をラベリングした結果を示す。 本発明の実施例における、tdoxStayGoldとポストシナプスのタンパク質PSD-95との融合タンパク質によるラベリングを行った結果を示す。 本発明の実施例における、tdStayGold alphaにより小胞体膜をラベリングした結果を示す。 本発明の実施例における、er-(n2)oxStayGold(c4)により小胞体内腔をラベリングした結果を示す。 本発明の実施例における、mt(n1)-StayGoldによりミトコンドリアをラベリングした結果を示す。 本発明の実施例における、L155TまたはY187Aの変異を導入したStayGold改変体に関するpseudo-native PAGEの結果を示す。 本発明の実施例における、L155Tの変異を有するStayGold改変体に、さらに変異を導入したStayGold改変体に関するpseudo-native PAGEの結果を示す。
 〔用語などの定義〕
 本明細書において、「ポリヌクレオチド」は、「核酸」または「核酸分子」とも換言できる。「ポリヌクレオチド」は、特に明記しない場合は、天然に存在するヌクレオチドと同様に機能することができる天然に存在するヌクレオチドの既知の類似体を含有するポリヌクレオチドを包含する。また、「塩基配列」は、「核酸配列」または「ヌクレオチド配列」とも換言できる。特に言及のない限り、「塩基配列」はデオキシリボヌクレオチドの配列またはリボヌクレオチドの配列を意図している。また、ポリヌクレオチドは、一本鎖であっても二本鎖構造であってもよく、一本鎖の場合はセンス鎖であってもアンチセンス鎖であってもよい。
 本明細書において、「遺伝子」は、タンパク質をコードしている「ポリヌクレオチド」を指す。
 本明細書において、遺伝子の「発現制御領域」は、遺伝子の発現を制御している「ポリヌクレオチド」を指す。「発現制御領域」の一例としては、プロモータ領域、エンハンサ領域などが挙げられる。
 本明細書において、「発現カセット」は、発現宿主内で機能的な発現制御領域と、当該発現制御領域と作動可能に連結されたポリヌクレオチドとを含む発現単位を指す。発現カセットにおいて、当該ポリヌクレオチドは好ましくは遺伝子または遺伝子の断片である。発現カセットの一例は、上記発現制御領域と上記ポリヌクレオチドとを遺伝子工学的に連結したものである。「作動可能に連結」とは、ポリヌクレオチドの発現が発現制御配列によって制御されている状態を指す。発現カセットは発現ベクターの形態であってもよい。
 本明細書において、「ポリペプチド」は、「タンパク質」とも換言できる。「ポリペプチド」は、アミノ酸がペプチド結合してなる構造を含むが、さらに、例えば、糖鎖、またはイソプレノイド基などの構造を含んでいてもよい。「ポリペプチド」は、特に明記しない場合は、天然に存在するアミノ酸と同様に機能することができる、天然に存在するアミノ酸の既知の類似体を含有するポリペプチドを包含する。
 本明細書において、「蛍光ポリペプチド」とは、蛍光特性を有するポリペプチドを指す。蛍光特性を有するポリペプチドとは、所定波長の励起光の照射を受けることによって、蛍光を発する性質を持つポリペプチドを指す。
 本明細書において、「Aおよび/またはB」は、AおよびBとAまたはBとの双方を含む概念であり、「AおよびBの少なくとも一方」とも換言できる。
 〔1.蛍光特性を有するポリペプチド〕
 本発明に係るポリペプチドは、以下の(1)~(3)のいずれかに示す、蛍光特性を有するポリペプチド(蛍光ポリペプチド)である。
 (1)配列番号1に記載のアミノ酸配列を有するポリペプチド、
 (2)配列番号1に記載のアミノ酸配列において1個以上32個以下のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有するポリペプチド。なお、置換、欠失、挿入、および/または付加されたアミノ酸の個数は、1個以上26個以下であることが好ましく、1個以上21個以下であることがより好ましく、1個以上10個以下であることがより好ましく、1個以上8個以下であることがより好ましく、1個以上6個以下であることがさらに好ましく、1個以上4個以下であることが特に好ましい。以下、アミノ酸の置換、欠失、挿入、および/または付加を、アミノ酸の変異と総称する場合がある。
 (3)配列番号1に記載のアミノ酸配列に対して85%以上の配列同一性を有するポリペプチド。なお、配列同一性は、88%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることがより好ましく、96%以上であることがより好ましく、97%以上であることがさらに好ましく、98%以上、または99%以上であることが特に好ましい。
 蛍光ポリペプチドの由来は限定されず、例えば、化学合成されても、或いは、遺伝子組み換え技術を用いて産生されてもよい。より具体的には、蛍光ポリペプチドは、単離精製されたポリペプチド、化学合成されたポリペプチド、および、遺伝子組み換え技術に基づいて宿主細胞から産生されたポリペプチドをその範疇に含む。なお、宿主細胞については「形質転換体」を説明する欄で詳述する。
 本発明に係る蛍光ポリペプチドの一例は、タマクラゲ由来のものが挙げられる。本願発明者らは、タマクラゲ(Cytaeis uchidae)から新規の緑色蛍光タンパク質を単離することに成功した。さらにその新規蛍光タンパク質を改変することにより、明るく、かつ長時間褪色しない改変体を得ることに成功した。蛍光ポリペプチドの一例は、配列番号1にそのアミノ酸配列を示す蛍光ポリペプチドであり「StayGold」と呼ぶ。StayGoldは、蛍光が明るく、かつ現在利用可能な従来公知のいずれの蛍光タンパク質よりも著しく光安定性が高い。
 なお、StayGoldの蛍光特性の主だったものは、以下の通りである。
最大励起波長(nm):496
最大蛍光波長(nm):505(緑色)
モル吸光係数(M-1cm-1):159000(496 nmにおいて)
量子収率(%):93
蛍光寿命(ナノ秒):2.81
 上記(2)または(3)に示した蛍光ポリペプチドは、(1)に示した蛍光ポリペプチドを基準とした場合に改変体と捉えることができる。(2)または(3)に示した蛍光ポリペプチドは、例えば、部位特異的な突然変異誘発法を用いて、上記(1)に示した蛍光ポリペプチドをコードするポリヌクレオチドに人為的に変異を導入したものを発現させて得てもよい。部位特異的な突然変異誘発法としては、例えば、Kunkel法(Kunkel et al.( 1985):Proc.Natl.Acad.Sci.USA,vol.82.p488-)などが挙げられる。
 上記(2)または(3)に示した蛍光ポリペプチドのある一例は、配列番号4に記載のアミノ酸配列を有する蛍光ポリペプチドである。配列番号4に記載のアミノ酸配列を有する蛍光ポリペプチドは、タマクラゲから単離して得られた蛍光タンパク質クローンの1つであって、「CU17S」と呼ぶ。StayGoldはCU17Sを改変して得たCU17Sの改変体であり、配列番号4に記載のアミノ酸配列(CU17Sのアミノ酸配列)の168番目のアミノ酸バリン(V)がアラニン(A)に置換されている。
 すなわち、その他の態様として、本発明に係るポリペプチドは、以下の(4)~(6)のいずれかに示す、蛍光ポリペプチドも包含する。
 (4)配列番号4に記載のアミノ酸配列を有するポリペプチド、
 (5)配列番号4に記載のアミノ酸配列において1個以上32個以下のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有するポリペプチド。なお、置換、欠失、挿入、および/または付加されたアミノ酸の個数は、1個以上26個以下であることが好ましく、1個以上21個以下であることがより好ましく、1個以上10個以下であることがより好ましく、1個以上8個以下であることがより好ましく、1個以上6個以下であることがさらに好ましく、1個以上4個以下であることが特に好ましい。
 (6)配列番号4に記載のアミノ酸配列に対して85%以上の配列同一性を有するポリペプチド。なお、配列同一性は、88%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることがより好ましく、96%以上であることがより好ましく、97%以上であることがさらに好ましく、98%以上、または99%以上であることが特に好ましい。
 上記(2)または(3)に示した蛍光ポリペプチドの一例は、配列番号1に記載のアミノ酸配列の168番目のアミノ酸がアラニンであり、且つ、配列番号1に記載のアミノ酸配列に対して85%以上の配列同一性を示すアミノ酸配列を有する。
 上記(2)または(3)に示した蛍光ポリペプチドのある一例は、配列番号6に記載のアミノ酸配列を有する蛍光ポリペプチドである。
 上記(2)または(3)に示した蛍光ポリペプチドは、配列番号1に記載のアミノ酸配列で示される蛍光ポリペプチドと同等の蛍光特性を示してもよい。ここで、「同等の蛍光特性」を示すとは、配列番号1に記載のアミノ酸配列で示される蛍光ポリペプチドと同等の励起波長、同等の蛍光波長、同等のpH感受性、同等の光安定性、同等のモル吸光係数、同等の蛍光量子効率、同等の励起スペクトルまたは同等の発光スペクトルの形、同等の励起波長極大および同等の発光波長極大、同等の励起状態寿命、ならびに同等の発色団(クロモフォア)成熟速度などの少なくとも1つ以上を有することを指す。「同等の蛍光特性」は、好ましくは、細胞に導入した際の光安定性および蛍光の明るさならびに同等の量子収率を有することを指す。
 なお、StayGoldと同等の励起波長を有する蛍光ポリペプチドの例として、例えば、最大励起波長が486nm~506nmの範囲内であるものが挙げられるがこれに限定されない。また、StayGoldと同等の蛍光波長を有する蛍光ポリペプチドの例として、例えば、最大蛍光波長が495nm~515nmの範囲内であるものが挙げられるがこれに限定されない。
 蛍光ポリペプチドの蛍光は時間の経過に伴って褪色が観察される。褪色が進むと蛍光観察が困難になる。
 本発明の蛍光ポリペプチドは高い光安定性を有する。蛍光の光安定性は、褪色のしにくさを指標として評価できる。光安定性が高いほど、観察可能な時間が長くなるという効果が奏されうる。
 本発明の蛍光ポリペプチドは、蛍光が褪色しにくい。本発明の蛍光タンパク質の一例では、公知の蛍光タンパク質と比較して、褪色しにくく、長時間高い蛍光強度を維持する。例えば、本発明の蛍光ポリペプチドは、光安定性の評価標準法に基づき、一分子あたり一秒あたりの放出光子数が1、000から500まで半減するのに、好ましくは1,000秒以上、より好ましくは5,000秒以上の時間がかかる。
 本発明の蛍光ポリペプチドは、褪色しにくいため、例えば一分子イメージングまたは少コピー数の蛍光ポリペプチドを発現する細胞での蛍光観察に好適に用いることができる。
 また、本発明の蛍光ポリペプチドは、蛍光が明るい。絶対的な蛍光の明るさは、絶対的モル吸光係数と蛍光の量子効率との積を指標として評価することができる。一方、実際的な蛍光の明るさは、有効モル吸光係数と蛍光の量子効率の積にさらに発色団の成熟スピードを加味したものを指標として評価することができる。
 本発明の蛍光ポリペプチドの絶対的モル吸光係数(M-1cm-1)は100000以上であり、好ましくは120000以上であり、より好ましくは130000以上であり、さらに好ましくは140000以上であり、特に好ましくは150000以上である。また、蛍光の量子効率Φが0.75(75%)以上であり、好ましくは0.80(80%)以上であり、より好ましくは0.90(90%)以上である。
 実施例にも示すが、この量子収率の値は、従来の緑色蛍光タンパク質と比較して顕著に高い。なお、蛍光の量子収率が高いほど、蛍光強度が増大し、蛍光は一般的に明るくなるので、蛍光観察などに用いる上でより好適である。
 本発明の蛍光ポリプチドの一例は、EGFPよりも高い光安定性を示す、またはEGFPよりも蛍光が明るい。
 蛍光ポリペプチドにおいて、発色団を形成するアミノ酸配列としてX-Y-G(Xは任意のアミノ酸を示す)が知られている。上記(1)に示した蛍光ポリペプチドでは、配列番号1における57~59番目のアミノ酸配列がG-Y-Gである。したがって、上記(2)または(3)に示した蛍光ポリペプチドでも、配列番号1における57番目のアミノ酸は置換されてもよいが58番目~59番目のアミノ酸を変異なく維持していることが好ましく、57番目~59番目のアミノ酸全てを変異なく維持していることがより好ましい。
 また、蛍光ポリペプチドは単量体であっても多量体であってもよい。例えば、分子をラベルする場合およびFRET(蛍光共鳴エネルギー移動)のプローブとして用いる場合などでは、蛍光ポリペプチドが単量体であることが好ましい。配列番号1に記載のアミノ酸配列における155番目のアミノ酸のロイシン(L)および187番目のアミノ酸のチロシン(Y)はいずれも、蛍光ポリペプチドの多量体の形成に特に関与していると推定される。
 さらに、配列番号1に記載のアミノ酸配列における135番目のアミノ酸のロイシン(L)、136番目のアミノ酸のプロリン(P)、138番目のアミノ酸のグルタミン酸(E)、142番目のアミノ酸のイソロイシン(I)、144番目のアミノ酸のアルギニン(R)、155番目のアミノ酸のロイシン(L)、165番目のアミノ酸のシステイン(C)、167番目のアミノ酸のグルタミン酸(E)、187番目のアミノ酸のチロシン(Y)、および189番目のアミノ酸のトリプトファン(W)はいずれも、蛍光ポリペプチドの2量体化に関与している、すなわちインターフェイスを形成しているので、これらのアミノ酸の少なくとも一つを他の任意のアミノ酸に置換することで単量体化させることができる。
 蛍光ポリペプチドを単量体とするために、配列番号1に記載のアミノ酸配列における155番目のアミノ酸のロイシン(L)および187番目のアミノ酸のチロシン(Y)の少なくとも一方にアミノ酸置換があることが好ましい。特に、蛍光ポリペプチドを単量体化するために、配列番号1における、155番目のアミノ酸のロイシン(L)からトレオニン(T)への置換、および187番目のアミノ酸のチロシン(Y)からアラニン(A)への置換を有していることが好ましい。このような蛍光ポリペプチドの例として、155番目のアミノ酸のロイシン(L)からトレオニン(T)への置換を有するアミノ酸配列である配列番号29を有するもの、および187番目のアミノ酸のチロシン(Y)からアラニン(A)への置換を有するアミノ酸配列である配列番号27を有するものが挙げられる。なお、配列番号29に示すポリペプチドをコードする塩基配列を配列番号30に、配列番号27に示すポリペプチドをコードする塩基配列を配列番号28にそれぞれ示す。
 配列番号1に記載のアミノ酸配列における155番目のアミノ酸のロイシン(L)および187番目のアミノ酸のチロシン(Y)の置換に加えて、配列番号1に記載のアミノ酸配列における135番目のアミノ酸のロイシン(L)、136番目のアミノ酸のプロリン(P)、138番目のアミノ酸のグルタミン酸(E)、142番目のアミノ酸のイソロイシン(I)、144番目のアミノ酸のアルギニン(R)、165番目のアミノ酸のシステイン(C)、167番目のアミノ酸のグルタミン酸(E)、および189番目のアミノ酸のトリプトファン(W)からなる群から選択される1以上のアミノ酸において、アミノ酸置換があることがさらに好ましい。これらのアミノ酸は、StayGoldのタンパク質の界面に存在し、側鎖がタンパク質の外側に向いており、多量体化に特に影響する箇所と推定される。このため、これらのアミノ酸が置換されることにより、より安定的にStayGoldを単量体化することが可能となる。さらに、132番目のアミノ酸のアスパラギン(N)、151番目のプロリン(P)、および162番目のリシン(K)も、タンパク質の界面に存在しており、多量体化に影響する可能性がある。
 上述のタンパク質の多量体化に影響を及ぼすと推定されるアミノ酸置換について、置換後のアミノ酸は特に限定されず、所望の効果を得ることができるアミノ酸であればよい。例えば、配列番号1に記載のアミノ酸配列における、135番目のアミノ酸のロイシン(L)からトレオニン(T)への置換、136番目のアミノ酸のプロリン(P)からチロシン(Y)への置換、138番目のアミノ酸のグルタミン酸(E)からグルタミン(Q)への置換、142番目のアミノ酸のイソロイシン(I)からトレオニン(T)への置換、144番目のアミノ酸のアルギニン(R)からトレオニン(T)への置換、165番目のアミノ酸のシステイン(C)からグルタミン(Q)への置換、167番目のアミノ酸のグルタミン酸(E)からアラニン(A)、および189番目のアミノ酸のトリプトファン(W)からチロシン(Y)への置換からなる群から選択される1以上のアミノ酸置換であってもよい。
 蛍光ポリペプチドを単量体化するための変異の数は特に限定されない。例えば、上述した変異の内、1以上含むものであってもよく、2以上含むものであってもよく、3以上含むものであってもよい。また、上述した変異の内、6以下含むものであってもよく、5以下含むものであってもよく、4以下含むものであってもよい。また、
 また、配列番号6に記載のアミノ酸配列を有する蛍光ポリペプチドは、配列番号1における、169番目のアミノ酸のヒスチジン(H)からチロシン(Y)への置換(H169Yとする)および、174番目のアミノ酸のシステイン(C)からイソロイシン(I)への置換(C174Iとする)、および208番目のアミノ酸のシステイン(C)からイソロイシン(I)への置換(C208Iとする)を有する、配列番号6に記載のアミノ酸配列を有する蛍光ポリペプチドの変異体(StayGoldのH169Y/C174I/C208I変異体)である。この変異体は、システインが少ないため、酸化状態でより安定したフォールディングを示すので、例えば小胞体内腔の標識に有用である。さらに、H169Y、C174IまたはC208Iの置換を有する変異体は、蛍光タンパク質の蛍光が明るくなる点においても有用である。H169Y、C174IまたはC208Iの置換を有する変異体は、同時に、L155TまたはY187Aの変異を有していてもよい。
 〔2.蛍光ポリペプチドをコードするポリヌクレオチド〕
 本発明に係るポリヌクレオチドは、上記蛍光ポリペプチドのいずれかをコードするものである。
 蛍光ポリペプチドをコードするポリヌクレオチドは、具体的には、以下の(1)~(3)のいずれかに記載のポリヌクレオチドである。
 (1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、
 (2)配列番号1に記載のアミノ酸配列において1個以上32個以下のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、蛍光特性を有するポリペプチドをコードするポリヌクレオチド、
 (3)配列番号1に記載のアミノ酸配列に対して85%以上の配列同一性を有し、蛍光特性を有するポリペプチドをコードするポリヌクレオチド。このポリヌクレオチドは、上記(1)に記載のポリヌクレオチドの塩基配列に対して88%以上の配列同一性を有することが好ましく、90%以上の配列同一性を有することがより好ましく、95%以上の配列同一性を有することが好ましく、96%以上の配列同一性を有することがより好ましく、97%以上の配列同一性を有することがさらに好ましく、98%以上、または99%以上の配列同一性を有することが特に好ましい。
 本発明に係るポリヌクレオチドは、RNAの形態、またはDNAの形態で存在し得る。RNAの形態とは、例えば、mRNAである。DNAの形態とは、例えば、cDNAまたはゲノムDNAである。DNAは、二本鎖であっても、一本鎖であってもよい。
 本発明に係るポリヌクレオチドの一例である、配列番号2および3に示す塩基配列はそれぞれ、配列番号1に示す蛍光ポリペプチドをコードするcDNAであり、配列番号5および7に示す塩基配列はそれぞれ、配列番号4および6に示す蛍光ポリペプチドをコードするcDNAである。また、本発明に係るポリヌクレオチドは、非翻訳領域(UTR)の配列などの付加的な配列を含むものであってもよい。
 本発明に係るポリヌクレオチドを取得する(単離する)方法は、特に限定されるものではないが、例えば、上記ポリヌクレオチドの塩基配列の一部と特異的にハイブリダイズするプローブを調製し、ゲノムDNAライブラリーまたはcDNAライブラリーをスクリーニングすればよい。或いは、本発明に係るポリヌクレオチドを、ホスホロアミダイト法などの核酸合成法に従って合成してもよい。
 また、本発明に係るポリヌクレオチドを取得する方法として、PCRなどの核酸増幅法を用いる方法を挙げることができる。例えば、当該ポリヌクレオチドのcDNAのうち、5’側および3’側の配列(またはその相補配列)の中からそれぞれプライマーを調製し、これらプライマーを用いてゲノムDNAまたはcDNAなどを鋳型にしてPCRなどを行い、両プライマー間に挟まれるDNA領域を増幅する。これによって、本発明に係るポリヌクレオチドを含むDNA断片を大量に取得できる。
 〔3.ベクター、発現カセット〕
 本発明に係るポリヌクレオチド(例えばDNA)は、適当なベクター中に挿入して、ベクターとして利用してもよい。ベクターの種類は、プラスミドのような自律的に複製するベクターでもよいし、或いは、宿主細胞に導入された際に宿主細胞のゲノムに組み込まれ、宿主細胞の染色体と共に複製されるものであってもよい。
 上記ベクターは、好ましくは発現ベクターである。発現ベクターにおいて、本発明に係るポリヌクレオチドは、例えば、プロモータ配列などの、転写に必要な要素が、機能的に連結されている。プロモータ配列は宿主細胞において転写活性を示すDNA配列である。用いるプロモータ配列の種類は、宿主細胞の種類および本発明に係る蛍光ポリペプチドを利用する目的に応じて適宜選択すればよい。宿主細胞の種類としては、例えば〔4.形質転換体、および形質転換体の作製方法〕において記載したものが挙げられる。
 宿主細胞内で作動可能なプロモータ配列としては、バチルス・ステアロテルモフィルス・マルトジェニック・アミラーゼ遺伝子(Bacillus stearothermophilus maltogenic amylase gene)、バチルス・リケニホルミスαアミラーゼ遺伝子(Bacillus licheniformis alpha-amylase gene)、バチルス・アミロリケファチエンス・BANアミラーゼ遺伝子(Bacillus amyloliquefaciens BAN amylase gene)、バチルス・サブチリス・アルカリプロテアーゼ遺伝子(Bacillus Subtilis alkaline protease gene)もしくはバチルス・プミルス・キシロシダーゼ遺伝子(Bacillus pumilus xylosldase gene)のプロモータ;ファージ・ラムダのPRプロモータまたはPLプロモータ;大腸菌の、lacプロモータ、trpプロモータ、tacプロモータ;ポリヘドリンプロモータ、P10プロモータ、オートグラファ・カリホルニカ・ポリヘドロシス塩基性タンパクプロモータ、バキュロウイルス即時型初期遺伝子1プロモータ、バキュロウイルス39K遅延型初期遺伝子プロモータ、酵母解糖系遺伝子由来のプロモータ、アルコールデヒドロゲナーゼ遺伝子プロモータ、TPI1プロモータ、ADH2-4cプロモータ、ADH3プロモータ、tpiAプロモータ、カリフラワーモザイクウイルスの35Sプロモータ、SV40プロモータ、MT-1(メタロチオネイン遺伝子)プロモータ、サイトメガロプロモータまたはアデノウイルス2主後期プロモータなどが挙げられる。
 発現ベクターにおいて、本発明に係るポリヌクレオチドは、必要に応じて、適切なターミネータ(例えば、ポリアデニレーションシグナル、哺乳動物の成長ホルモンターミネータ、TPI1ターミネータまたはADH3ターミネータ)に機能的に結合されてもよい。適切なターミネータの種類は、宿主細胞の種類に応じて適宜選択すればよい。
 本発明に係るベクターは、さらに、転写エンハンサ配列などの要素を有していてもよい。
 本発明に係るベクターは、さらに、該ベクターの宿主細胞内での複製を可能にするDNA配列を有していてもよい。宿主細胞がLarge T抗原を発現する哺乳動物細胞の場合、かかるDNA配列としては、SV40複製起点などが挙げられる。
 本発明に係るベクターはさらに選択マーカーを有していてもよい。選択マーカーとしては、例えば、アンピシリン、カナマイシン、テトラサイクリン、クロラムフェニコール、ネオマイシン若しくはヒグロマイシンのような薬剤に対する、薬剤耐性遺伝子を挙げることができる。これらの選択マーカーは、任意の種類のベクターに対し適用される。
 本発明に係る発現カセットとは、(a)発現宿主内で機能的な発現制御領域;および、(b)本発明に係るポリヌクレオチド;を含む、発現カセットを指す。本発明に係る発現カセットは、上記した発現ベクターの態様であってもよい。
 〔4.形質転換体、および形質転換体の作製方法〕
 (形質転換体、および形質転換体の作製方法)
 本発明に係るポリヌクレオチド、本発明に係る発現カセット、または、本発明に係るベクターを有する形質転換体は、本発明に係るポリヌクレオチド、本発明に係る発現カセット、または、本発明に係るベクターを適当な宿主細胞に導入することによって形質転換体を作製することができる。作製された形質転換体は、本発明に係るポリヌクレオチドの全長を含んでいるか、少なくとも当該ポリヌクレオチドの一部を含んでいて、本発明に係る蛍光ポリペプチドのいずれかを発現可能である。同様に、本発明に係る形質転換体を用いて得られた当該形質転換体の子孫も、本発明に係るポリヌクレオチドの全長を含んでいるか、少なくとも当該ポリヌクレオチドの一部を含んでいて、本発明に係る蛍光ポリペプチドのいずれかを発現可能である。作製された形質転換体またはその子孫において、本発明に係るポリヌクレオチドの全長またはその一部は、ゲノム中に組み込まれていることが好ましい。
 なお、以下の説明において、本発明に係るポリヌクレオチド、本発明に係る発現カセット、および、本発明に係るベクターを、本発明の「外来(foreign)核酸分子」と総称する。本発明の外来核酸分子を宿主細胞に導入する方法は、下記に例示をする通り、宿主細胞の種類に応じて選択すればよい。また、本発明に係る形質転換体の子孫を得る方法も、形質転換体の種類に応じて選択すればよい。
 宿主細胞としては、例えば、細菌細胞、酵母細胞、酵母細胞以外の真菌細胞、および高等真核細胞などが挙げられる。高等真核細胞としては、例えば、植物細胞、動物細胞が挙げられる。動物細胞としては、昆虫細胞、両生類細胞、爬虫類細胞、鳥類細胞、魚類細胞、哺乳動物細胞などが挙げられる。また、細菌細胞の例としては、バチルスまたはストレプトマイセスなどのグラム陽性菌;大腸菌などのグラム陰性菌;が挙げられる。酵母細胞の例としては、サッカロマイセスまたはシゾサッカロマイセスに属する細胞が挙げられ、例えば、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)またはサッカロマイセス・クルイベリ(Saccharomyces kluyveri)などが挙げられる。酵母細胞以外の真菌細胞の例としては、糸状菌の細胞が挙げられる。糸状菌の細胞の例としては、例えば、アスペルギルス、ニューロスポラ、フザリウム、またはトリコデルマに属する糸状菌の細胞が挙げられる。昆虫細胞の例としては、例えば、カイコの細胞などが挙げられる。哺乳動物細胞の例としては、HEK293細胞、HeLa細胞、COS細胞、BHK細胞、CHL細胞またはCHO細胞などが挙げられる。
 宿主細胞の形質転換は、宿主細胞の種類等に応じて適宜選択すればよく、例えば、プロトプラスト法、コンピテント細胞を用いる方法、エレクトロポレーション法、スフェロブラスト法、酢酸リチウム法、リン酸カルシウム法、リポフェクション法、アグロバクテリウム法およびパーティクルガン法などにより行うことができる。また、宿主細胞の形質転換のその他の方法としては、本発明の外来核酸分子を宿主染色体に組み込んだ宿主細胞を得ることによって形質転換を行う方法が挙げられる。外来核酸分子の宿主染色体への組み込みは、例えば、相同組換えまたは異種組換えにより行うことができる。宿主細胞の形質転換のさらに他の方法としては、本発明の外来核酸分子およびバキュロウイルスを宿主細胞に共導入して宿主細胞の培養上清中に組換えバキュロウイルスを得、次いで、組換えバキュロウイルスを宿主細胞に感染させて、本発明に係る蛍光ポリペプチドを当該宿主細胞に産生させる方法等が挙げられる。共導入の方法としては、例えば、リン酸カルシウム法またはリポフェクション法などを挙げることができる。
 上記の形質転換体は、導入された外来核酸分子の発現が可能な条件下で、培養または育成する。
 なお、形質転換体の態様は、細胞に限定されない。すなわち、形質転換体は、例えば、本発明に係る外来核酸分子で形質転換された組織、器官、および個体であってもよい。ただし、細胞以外の形質転換体は、非ヒト由来のものであることが好ましい場合があり、特に個体は非ヒト由来のものであることが好ましい。なお、形質転換されている個体であって、非ヒト由来のものを非ヒトトランスジェニック生物と称する。
 (非ヒトトランスジェニック生物、およびその作製方法)
 本発明に係る非ヒトトランスジェニック生物は、例えば、高等生物である。トランスジェニック植物としては、例えば、シロイヌナズナなどの双子葉植物;ミナトカモジグサ(Brachypodium distachyon)、イネ、コムギ、オオムギなどの単子葉植物;のトランスジェニックが挙げられる。トランスジェニック動物としては、例えば、ゼブラフィッシュ、マウス、ラット、ブタなどのトランスジェニックが挙げられる。
 本発明に係る非ヒトトランスジェニック生物の作製方法は、トランスジェニック生物の種類に応じて選択をすればよい。トランスジェニック動物の作製法は、例えば、マイクロインジェクション法などに従って、生体外において、本発明に係る外来核酸分子をドナー生物から採取した受精卵に導入すること;生体外において、レトロウイルスなどのウイルスベクターを、ドナー生物に由来する初期発生胚の細胞に感染させること;などの方法が挙げられる。トランスジェニック植物の作製においては、例えば、アグロバクテリウム法;パーティクルガン法;エレクトロポレーション法;などに従って、本発明に係る外来核酸分子を植物細胞に導入し、続いて、必要に応じてカルス化のプロセスを経て、形質転換植物個体を得ればよい。
 また、本発明に係る非ヒトトランスジェニック生物の子孫を得る方法も、当該非ヒトトランスジェニック生物の種類に応じて選択すればよい。高等生物の場合は、例えば、交配によって子孫を得る方法などが挙げられる。高等生物のうち植物の場合は、当該植物の種類に応じた無性生殖の手法を用いて子孫を得てもよい。
 (非ヒトトランスジェニック生物のクローン、およびクローンの作製方法)
 本発明は、例えば、本発明に係る非ヒトトランスジェニック生物を用いて、そのクローンを作製することも包含する。作製されたクローンは、元となった非ヒトトランスジェニック生物と同様に、ゲノム中に、本発明に係るポリヌクレオチドの全長を含んでいるか、少なくとも当該ポリヌクレオチドの一部を含んでいて、本発明に係る蛍光ポリペプチドのいずれかを発現可能である。なお、クローンとは、胚細胞クローンも体細胞クローンも含む概念である。
 クローンの作製方法としては、例えば、レシピエントとなる、核除去された未受精卵に対して、ドナーの細胞核を移植する、核移植の方法が挙げられる。ここで、ドナーの細胞核とは、1)元となった非ヒトトランスジェニック生物の体細胞核、または、2)元となった非ヒトトランスジェニック生物に由来する胚細胞核、が挙げられる。なお、ドナーの細胞核は、ゲノム中に、本発明に係るポリヌクレオチドの全長を含んでいるか、少なくとも当該ポリヌクレオチドの一部を含んでいる。
 なお、ドナーの細胞核を核移植する方法は特に限定されず、例えば、1)核除去された未授精卵とドナーの細胞とを細胞融合させる方法、2)核除去された未授精卵に、細胞融合を介さずにドナーの細胞を導入する方法、などが挙げられる。
 〔5.本発明に係る融合ポリペプチド、蛍光ポリペプチドに任意の抗体タンパク質が遺伝子工学的に連結されたリコンビナント抗体〕
 (融合ポリペプチド)
 本発明に係る蛍光ポリペプチドと他のポリペプチドとを含む融合ポリペプチド(以下、本発明に係る融合ポリペプチドと称する)も本発明の範疇である。融合ポリペプチドは、例えば、本発明に係る発現カセットおよび/またはベクターの発現によって産生される融合タンパク質;任意のタンパク質を本発明に係る蛍光ポリペプチドで標識した融合タンパク質;本発明に係る蛍光ポリペプチドと、蛍光を安定化させるための所定のペプチド配列とが融合してなる融合タンパク質;本発明に係る蛍光ポリペプチドと他の蛍光ポリペプチドとを備えたFRET用プローブ;などが挙げられる。すなわち、本発明に係る蛍光ポリペプチドと融合させる他のポリペプチドの種類は特に限定されない。
 また、本発明に係る蛍光ポリペプチドのN末端およびC末端の両方、またはN末端またはC末端のいずれかに任意の他のポリペプチドを連結した融合ポリペプチドも本発明の範疇である。連結される任意の他のポリペプチドは、長さおよび配列は限定されない。
 本発明に係る融合タンパク質の一例では、本発明の蛍光ポリペプチドのN末端およびC末端の両方、またはN末端もしくはC末端のいずれかと、任意の他のポリペプチドとは、任意のアミノ酸配列からなる挿入配列を介して連結されている。また、本発明に係る融合タンパク質のある一例では、本発明の蛍光ポリペプチドのN末端の1~5番目のアミノ酸の間のいずれかを挿入位置として、任意のアミノ酸配列からなる挿入配列を有している。
 これらの挿入配列はいずれも、3個以上、5個以上、7個以上または10個以上のアミノ酸からなるアミノ酸配列であり得る。または、挿入配列は30個以下、20個以下、または15個以下のアミノ酸からなるアミノ酸配列であり得る。
 例えば、本発明の蛍光ポリペプチドのC末端と、任意の他のポリペプチドとが連結してなる融合タンパク質において、本発明に係る蛍光ポリペプチドのC末端と、任意の他のポリペプチドとが、配列番号8に記載の10個のアミノ酸からなるアミノ酸配列(挿入配列c4と称する)を介して連結されているものが挙げられる。
 また、本発明の蛍光ポリペプチドのN末端またはC末端のいずれかと、任意の他のポリペプチドとが連結してなる融合タンパク質において、本発明に係る蛍光ポリペプチドのN末端の1~5番目のアミノ酸の間のいずれかの位置に、配列番号9または配列番号10に記載の9個のアミノ酸からなるアミノ酸配列(それぞれ挿入配列n1またはn2と称する)が挿入されているものが挙げられる。一例では本発明に係る蛍光ポリペプチドのN末端の4番目のアミノ酸と5番目のアミノ酸の間の位置に、挿入配列n1(配列番号9)が挿入されているもの、または、本発明に係る蛍光ポリペプチドのN末端の3番目のアミノ酸と4番目のアミノ酸の間の位置に、挿入配列n2(配列番号10)が挿入されているものが挙げられる。なお融合タンパク質は挿入配列c4と挿入配列n1またはn2とを両方有しているものも包含する。上述のような挿入配列を有することによって、融合タンパク質の光安定性を向上させることができる。
 また、本発明の蛍光ポリペプチドのN末端およびC末端の両方、またはN末端もしくはC末端のいずれかと、任意の他のポリペプチドとが、任意のアミノ酸配列からなる挿入配列を介して連結されている場合、本発明の蛍光ポリペプチドに直接任意の他のポリペプチドを結合させるよりも安定した蛍光を得ることができる。
 融合タンパク質のさらに別の例は、2つ以上連結した本発明の同一種類または異なる種類の蛍光ポリペプチドを含む。すなわち本発明の同一種類または異なる種類の蛍光ポリペプチドが2つ連結したタンデムダイマー、および3つまたはそれ以上連結した融合タンパク質である。本発明の蛍光ポリペプチドのこのようなタンデムダイマー、および3つまたはそれ以上連結した融合タンパク質は、蛍光ポリペプチド同士が、任意の配列を有する挿入配列を介して連結されていてもよい。本発明の蛍光ポリペプチドのN末端の1~5番目のアミノ酸の間のいずれかを挿入位置として、任意のアミノ酸配列からなる挿入配列を有していてもよい。挿入配列のアミノ酸配列およびアミノ酸配列長は限定されないが、例えば、10アミノ酸以上150アミノ酸以下である。挿入配列は上述したとおりのものが適用されてもよい。また、連結された蛍光ポリペプチドのN末端およびC末端の両方、またはN末端またはC末端のいずれかに任意の他のポリペプチドがさらに付加されていてもよい。付加されるポリペプチドのアミノ酸配列およびアミノ酸配列長は限定されないが、例えば、5アミノ酸以上20アミノ酸以下である。
 タンデムダイマー、および3つまたはそれ以上連結した融合タンパク質は、挿入配列として公知のリンカー配列を介して各タンパク質のアミノ酸配列が結合されてもよい。例えば、目的に応じて、EVリンカー、およびalphaリンカー等を用いて、各アミノ酸配列を結合してもよい。
 本発明の蛍光ポリペプチドが2つ連結したタンデムダイマーの例として、配列番号13のアミノ酸配列を有するもの(tdStayGoldと称する)、配列番号15のアミノ酸配列を有するもの(tdStayGold(long)と称する)、配列番号17のアミノ酸配列を有するもの(tdoxStayGoldと称する)、および配列番号19のアミノ酸配列を有するもの(tdStayGold alphaと称する)が挙げられる。なお、配列番号13に示すポリペプチドをコードする塩基配列を配列番号14、配列番号15に示すポリペプチドをコードする塩基配列を配列番号16、配列番号17に示すポリペプチドをコードする塩基配列を配列番号18、配列番号19に示すポリペプチドをコードする塩基配列を配列番号20にそれぞれ示す。なお、本発明の蛍光ポリペプチドが2つ連結したタンデムダイマーの他の例として、上記例示したタンデムダイマーのアミノ酸配列に対して、85%以上、88%以上、90%以上、95%以上、96%以上、97%以上、98%以上、または99%以上の配列同一性を示すアミノ酸配列を有するものも挙げられる。
 本発明に係る融合ポリペプチドは、本発明に係る蛍光ポリペプチドと同様の方法によって、化学合成されても、或いは、遺伝子組み換え技術を用いて産生されてもよい。
 上述のような本発明の蛍光ポリペプチドが2つ連結したタンデムダイマーを可視化したい対象のタンパク質に融合した融合タンパク質は、当該対象のタンパク質の細胞内での蛍光の観察による動態解析に好適に用いることができる。
 (抗体)
 また、本発明に係る蛍光ポリペプチドに任意の抗体タンパク質が遺伝子工学的に連結されたリコンビナント抗体も本発明の範疇に含まれる。なお、抗体とは、抗原との特異的な結合能を維持した抗体断片であってもよい。
 〔6.多能性幹細胞、および多能性幹細胞の作製方法〕
 本発明は、本発明に係る非ヒトトランスジェニック生物の細胞から、多能性幹細胞を作製する方法も包含する。多能性幹細胞を作製する方法は、本発明に係る非ヒトトランスジェニック生物から採取した細胞(出発細胞と称する場合もある)に初期化因子を導入する、或いは当該細胞を初期化因子で処理することによって、多能性幹細胞を作製する工程(初期化工程)、を含んでなる。なお、非ヒトトランスジェニック生物は、例えば、非ヒトトランスジェニック高等動物であり、中でも非ヒトトランスジェニック哺乳動物である。
 (得られる多能性幹細胞)
 得られる多能性幹細胞は少なくともmultipotencyを示し、より好ましくはpluripotencyを示す状態かそれ以前の状態を示す。なお、本発明において、multipotencyとは、例えば神経系または造血系など一部の細胞種に分化できる能力を指す。また、本発明において、pluripotencyとは、個体自体を構成することは出来ないが、個体を構成するすべての細胞および組織に分化できる能力を指す。得られる多能性幹細胞の一例は、いわゆる「誘導多能性幹細胞(induced Pluripotent Stem Cell)」である。「誘導多能性幹細胞」とは、ES細胞(Embryonic Stem Cell)に近い性質を有する細胞であり、より具体的には、未分化細胞であって、培養条件によって全能性(pluripotency)および未分化増殖能を有する細胞を包含する。
 〔7. 蛍光観察の方法〕
 本発明に係る蛍光ポリペプチドまたは融合ポリペプチドの用途は特に限定されず、広く蛍光観察の用途に用いることができる。蛍光観察の方法は、本発明に係るポリペプチドまたは融合ポリペプチドを細胞において産生させる産生工程と、励起光を上記細胞に照射する励起光照射工程と、上記ポリペプチドまたは融合ポリペプチドに由来する蛍光を観察する観察工程とを含む。
 上記の産生工程は、例えば、上記の〔4.形質転換体、および形質転換体の作製方法〕欄に記載の方法で行うことができる。また、上記の蛍光観察工程は、本発明に係るポリペプチドまたは融合ポリペプチドから発される蛍光発光を観察する工程である。観察工程は、本発明に係るポリペプチドまたは融合ポリペプチドから発される蛍光発光を検出することにより行われる。蛍光の検出方法は特に限定されないが、例えば、UVトランスイルミネーターもしくはLEDトランスイルミネーター、蛍光顕微鏡、蛍光検出器、またはフローサイトメトリーなどの蛍光検出手段が挙げられる。最も好ましい手段として、蛍光顕微鏡、一分子イメージング(全反射照明TIRFM)およびライトシート顕微鏡、やや好ましい手段として、構造化照明(SIM)およびニポウディスク共焦点(マルチ焦点)顕微鏡などが挙げられる。上述の蛍光検出手段を用いて、蛍光発光の有無、蛍光発光の分布、または、蛍光強度などを、一時的に、または経時的に測定すればよい。
 励起光照射工程における励起光の照射の方式として、例えば顕微鏡の対物レンズを用いた対象物への照明はケーラー照明を用いることが好ましい。ケーラー照明を用いる場合の方が、クリティカル照明を用いる場合よりも本発明の蛍光ポリペプチドの光安定性の高い効果が得られる。
 観察工程において、ポリペプチドまたは融合ポリペプチドに由来する蛍光を2次元または3次元の画像または動画を撮影することにより観察してもよい。
 さらに、撮影された蛍光の画像または動画の解析または処理を、適切な情報処理技術を用いて情報処理を行ってもよい。例えば、画像または動画の情報を多量に蓄積し、人工知能によって機械学習(AI学習)を行う処理を採用することも可能である。
 蛍光観察の他の例としては、本発明に係る蛍光ポリペプチドまたは融合ポリペプチドを細胞内に導入する工程(導入工程)と、上記「蛍光観察工程」とを含む方法が挙げられる。細胞内に蛍光ポリペプチドなどを導入する方法としては、例えば、精製した蛍光ポリペプチドなどを細胞内に注入するマイクロインジェクション法などが挙げられる。
 蛍光観察の1つの目的は、ポリペプチドの局在または動態の分析である。本発明に係る蛍光ポリペプチドと他のポリペプチド(ポリペプチドXとする)とを遺伝子工学的に融合した融合ポリペプチドを用いると、細胞内におけるポリペプチドXの局在または動態を可視化して解析可能となる。ポリペプチドXの種類は特に限定されないが、例えば、細胞内に局在するタンパク質、細胞内小器官に特異的なタンパク質、およびターゲティングシグナルなどが挙げられる。ターゲティングシグナルとは、例えば、核移行シグナル、ミトコンドリア移行シグナル、形質膜移行シグナル、小胞体移行シグナルなどが挙げられる。
 蛍光観察の他の目的は、目的遺伝子の発現解析である。上記の産生工程を、目的遺伝子の発現制御配列の制御下で行うことによって、当該発現制御配列の活性を測定可能である。目的遺伝子の発現制御配列の活性は、目的遺伝子の発現レベルを反映する。
 〔8.蛍光ポリペプチドの作製法〕
 本発明は、配列番号1、4または6に記載のアミノ酸配列のいずれかを有する蛍光ポリペプチドに基づいて、変異型の蛍光ポリペプチドを作製する方法も提供する。
 すなわち、本発明に係る、蛍光ポリペプチドの作製方法の一態様は、
i)配列番号1、4または6に記載のアミノ酸配列における58番目~59番目以外のアミノ酸において少なくとも1個以上のアミノ酸の変異を生じさせた変異型ポリペプチドを作製する工程と、
ii)上記変異型ポリペプチドの蛍光特性と、変異を生じさせる前のポリペプチドの蛍光特性とを比較する比較工程と、
iii)上記比較工程において、変異を生じさせる前と比較して蛍光特性が変化した変異型ポリペプチドを選択する選択工程と、を含む、方法である。
 変異型ポリペプチドを作製する工程において、発色団を形成するアミノ酸配列X-Y-G(Xは任意のアミノ酸を示す)のうち-Y-Gは固定して、その他のアミノ酸に変異を加えるようにしている。これにより蛍光特性を保持した変異型ポリペプチドを効率的に製造することが可能となる。なお、配列番号1、4および6それぞれにおいて、変異を生じさせるアミノ酸の個数や、アミノ酸の変異を生じさせる方法については、例えば、上述の〔1.蛍光特性を有するポリペプチド〕欄の記載を参照すればよい。
 また、上記の選択工程では、蛍光特性を有するが当該蛍光特性が変化している変異型ポリペプチドを選択し、蛍光特性を完全に喪失した変異型ポリペプチドは除外する。
 なお、上記した変異型の蛍光ポリペプチドを作製する方法は、変異型の蛍光ポリペプチドをスクリーニングする方法と捉えることもできる。
 〔9.本発明に係るキット〕
 (キット)
 本発明に係るキットは、1)本発明に係る蛍光ポリペプチド、2)本発明に係る蛍光ポリペプチドをコードするポリヌクレオチド、3)本発明に係る発現カセット、4)本発明に係るベクター、5)本発明に係る形質転換体、および、6)本発明に係る融合ポリペプチド、からなる群より選択される少なくとも1種以上を含んでなる。上記2)のポリヌクレオチドがRNAの場合は、ゲノム遺伝子への組み換えを伴わない一時的発現用のキットとして、ヒトなどの生物個体にも適用することができる。
 本発明に係るキットは、当技術分野において公知の材料および手法を用いて調製することができる。蛍光ポリペプチドまたはポリヌクレオチドなどの試薬は、好適な溶媒に溶解することにより保存に適した形態に調製することができる。溶媒としては、水、エタノールおよび公知の各種緩衝液などを用いることができる。
 本発明に係るキットは、さらに必要に応じて、各種試薬および器具(緩衝溶液、試験管およびピペットなど)ならびにキットの使用説明書などの少なくとも1つを備えていてもよい。なお、キットの使用説明書には、例えば、上述の〔7.蛍光ポリペプチドを用いた観察など〕の欄で説明した、本発明に係る検出方法の内容が記録されている。キットは、例えば、試薬用途、または診断用途に用いるものである。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 以下の実施例により本発明を具体的に説明するが、本発明は実施例によって限定されるものではない。
 〔1.タマクラゲ由来の遺伝子のクローニング〕
 (材料および方法)
 タマクラゲ(学名;Cytaeis uchidae Rees, 1962)(Phylum Cnidaria, Hydrozoa, Anthomedusae, Cytaeidae, Cytaeis(刺胞動物門、ヒドロ虫綱、花クラゲ目、タマクラゲ科、タマクラゲ属))からRNAを抽出した。C. uchidae 由来のトータルRNAを用いてRNAシーケンシングおよびその後アンカーPCR解析を行った。詳細は以下に示すとおりである。
 Unigene(#1784)がGFP様ドメインを含むポリペプチドをコードすることを発見した。当ポリペプチドは発色団合成に関与すると考えられるGYG配列を2つ含んでいた。このポリペプチドを鋳型としてCU17 5’ RACEプライマーを用いた5’-RACE-PCRを行ったところ、さらなるGYG配列を有するようにN末端側への伸長が認められた。次に、CU17 1st_FwdプライマーおよびCU17 Revプライマーを用いたRT-PCRを行ったところ、異なるポリペプチド(CU17LおよびCU17Sと命名)をコードする2つのRNA転写物を得た。
 CU17Lは#1784のタンパク質生成物に対応しており、3つのドメインの蛍光タンパク質であると思われた。しかし、CU17L自体は発明者が用いた発現系で蛍光を発しなかった。また、別個に発現させた場合、蛍光を発するドメインはなかった。一方で、CU17Sは単一ドメインの蛍光タンパク質であると思われた。興味深いことに、CU17SのN末端領域(タンパク質全長の約4分の3)はCU17Lの1stリピートの対応する領域と84.8%の配列同一性を有していた。また、CU17SのC末端領域(タンパク質全長の約4分の1)はCU17Lの3rdリピートの対応する領域と93.3%の配列同一性を有していた。CU17S転写物の実存を調べるために、RT-PCR産物をCU17 3’ RACEプライマーを用いて3’側を伸長し、さらにCU17 5’ RACE-5プライマーを用いて5’側を伸長した。これらのアンカーPCRおよびRT-PCRの解析は、C. uchidaeの#17株から調製したトータルRNAを用いて行った。
 (結果)
 以上の結果、適切な位置に発色団を形成するトリペプチドGYGを有する蛍光タンパク質をコードしているとみられる転写物を同定した。このクローンをCU17Sと名付けた。CU17Sのアミノ酸配列は、配列番号4に、遺伝子のコード領域の塩基配列は、配列番号5に示す。CU17Sは、全く新規な一次構造を有していた。CU17Sと最も配列同一性の高いホモログであるObeCFPでも配列同一性はたったの15.2%であった。アミノ酸配列のアライメント(後述の図4も参照)によると、CU17Sは他の蛍光タンパク質と類似のβ-can構造を有すると考えられる。
 〔2.大腸菌におけるCU17Sタンパク質の発現〕
 (材料および方法)
 <大腸菌発現用ベクターの大腸菌における発現、培養およびタンパク質の精製>
 cDNAを、大腸菌用発現ベクター(pRSETB)に挿入した後、大腸菌(JM109(DE3))に導入し、培養してコロニーを得た。得られたコロニーに、UVイルミネーター、青色LEDおよび緑色LEDをそれぞれ用いて光を照射し、蛍光を発するか否か確認した。
 また、CU17Sタンパク質のN-末端にヒスチジンタグを付加した大腸菌発現用のプラスミドDNAを構築して大腸菌に形質転換し、Ni-NTAカラムを用いてone-stepで精製した。次にSephadex G-25カラムを用いてバッファー交換を行った。
 (結果)
 緑色蛍光を発光するコロニーが得られ、このコロニーから、蛍光タンパク質のクローンを得た。CU17Sタンパク質を大腸菌で発現させた結果、十分な精製タンパク質を得た。
 〔3.CU17Sの蛍光特性の分析〕
 (材料および方法)
 <CU17Sの吸収スペクトル、蛍光スペクトルおよび量子収率の測定>
 上述の〔1.〕および〔2.〕で得たCU17Sの蛍光特性について分析するため、吸収スペクトル、蛍光スペクトルおよび量子収率の測定を行った。
 励起スペクトル及び蛍光スペクトルは分光蛍光光度計F-4500(株式会社日立ハイテクノロジーズ)によって測定された(励起波長475nm、蛍光波長550nm)。吸収スペクトルは分光光度計 U-2910(株式会社日立ハイテクノロジーズ)によって測定された。量子収率は絶対PL量子収率測定装置Quantaurus-QY(浜松ホトニクス株式会社)によって測定された(励起波長470 nm、480 nm)。
 (結果)
 図1は、C. uchidaeにおいて観察される蛍光励起および蛍光発光スペクトルである。CU17Sの蛍光励起スペクトルは450nm付近に肩が現れ496nmに主要なピークを示した。これは、C. uchidaeにおいて観察される蛍光特性(図1)と同一であった。
 〔4.CU17Sの光安定性の分析〕
 (材料および方法)
 HeLa細胞に、CU17Sの遺伝子をLipofectamine 2000 reagentを用いてトランスフェクションした。トランスフェクションの1日後に、光安定性を調べた。なお、測定の条件は以下の通りである。
 バッファ:HBSS 15 mM HEPES-NaOH (pH7.4)を含む;cooled CCD camera (ORCA-AG, Hamamatsu Photonics);
蛍光フィルターキューブ:Exciter: 488.0 IF 10 (488 ± 5 nm) (Cheshire Optical);Dichroic mirror: DM500 (Olympus);Emitter: BA520IF (520 nm <) (Olympus) combined with NDX001(1% transmittance) (Asahi Spectra)
対物レンズ:60× objective lens (UPlanSApo 60× oil, N.A. 1.35)
 (結果)
 HeLa細胞にCU17Sを発現させた場合、CU17Sの緑色蛍光は、細胞質区間および核区間に局在していた。蛍光顕微鏡を用いた定量的な観察の結果、大腸菌と哺乳類細胞との両方においてCU17Sは発色団の成熟が不十分であったにも関わらず、緑色蛍光は実質的に褪色しなかった。
 しかし、一般的に蛍光タンパク質の明るさ(成熟)と光安定性とには負の相関があると考えられているため、CU17Sの優れた光安定性を維持したまま発色団の成熟の向上は期待できないと思われた。
 〔5.CU17Sに基づく改変体の作製〕
 (材料および方法)
 ランダム突然変異によりCU17S改変体を作製した。改変体作成に用いたプライマーは配列番号11および12に示す。
 (結果)
 CU17Sのアミノ酸配列において168番目のアミノ酸をバリンからアラニンに置換した改変体タンパク質を得た。
 CU17S/V168Aタンパク質を、上述のCU17Sと同様の方法で大腸菌で発現させ、精製したところ、CU17S/V168Aタンパク質を非常に大量に生産および精製することができた。CU17S/V168A改変体をStayGoldと称した。StayGoldのアミノ酸配列は、配列番号1に、遺伝子のコード領域の塩基配列は、配列番号2に示す。StayGoldのcodon usageをHumanizeした塩基配列を配列番号3に示す。
 〔6.StayGold(CU17S/V168A改変体)の蛍光特性の分析〕
 (材料および方法)
 得られたStayGold(CU17S/V168A改変体)の蛍光タンパク質を用い、〔3.〕に記載した方法と同様の方法で蛍光特性の分析を行った。
 (結果)図2は、StayGold(CU17S/V168A改変体)の吸収スペクトルを示す。CU17S/V168Aの吸収スペクトルは、496 nmに高いピークを有し、この波長における絶対吸光係数は159,000 M-1・cm-1であった。
 図3は、StayGold(CU17S/V168A改変体)の蛍光励起および蛍光発光スペクトルを示す。図3中の二つのグラフは、それぞれStayGoldの励起スペクトル(点線で示す)および蛍光発光スペクトル(実線で示す)を示す。
 CU17S/V168Aの蛍光励起および蛍光発光スペクトルは、CU17Sと同様であり、量子収率Φは0.93であった。このV168Aの変異はタンパク発現および発色団成熟の両方を向上させた。
 図4は、StayGold、CU17SおよびEGFPタンパク質のアミノ酸配列のアライメントを示す。
 表1に各種蛍光タンパク質の測定結果を示す。
Figure JPOXMLDOC01-appb-T000001
 添え字a, λab:吸収ピーク波長(nm)
 添え字b,λem:最大蛍光波長(nm)
 添え字c, ε:モル吸光係数(M-1cm-1)吸収ピーク波長におけるモル吸光係数値を表示。カッコ内は488 nm(励起バンドパスフィルターの中心波長)におけるモル吸光係数値を表示。
 添え字d, QYf:蛍光量子収率(%)絶対PL量子収率測定C9920-02(浜松ホトニクス)を使って絶対的値を測定。
 添え字e: ε×QYfにより求められる、蛍光タンパク質の絶対的明るさを表す数値。
添え字f, cDNAトランスフェクションから30時間後のHeLa細胞における蛍光タンパク質の明るさ。各緑色蛍光タンパク質の値はmCherryの値で補正され、EGFPの値によって標準化された。
eCE: バイシストロン性発現系を用いることによる緑色蛍光タンパク質とmCherryとの等モル共発現。
 添え字g, 蛍光発光率が1,000 photons/s per moleculeから500まで下がるのにかかる時間。
 添え字h, 大腸菌培養液1リットルから回収された精製タンパク質の総量。
 mNG: mNeonGreen
 これらの結果から、StayGoldは、明るさに関してEGFPまたはmNeonGreenのような公知の明るい緑色蛍光タンパク質を超えることが示された。また、StayGoldは、非常に優れた光安定性を有していることがわかった。
 〔7.StayGoldの光安定性の分析(精製タンパク質)〕
 (7-1.緑色蛍光タンパク質の比較)
 StayGoldと4つの既報の緑色蛍光タンパク質:EGFP、SiriusGFP、mNeonGreenおよびmClover3との光安定性を比較した。SiriusGFPは、近年報告された、光安定性の向上したEGFPの改変体である。SiriusGFPは、EGFPに対して、光安定性が2倍増加しているが明るさが3倍低下を示す。
 (材料および方法)
 5種類の蛍光タンパク質を完全に並行して同一の条件下で処理した。蛍光タンパク質を大腸菌で発現および精製したところ、StayGoldは最も高収率であった。可溶画分は1L培養培地あたり~200mgの濃度であった(表1)。
 <タンパク質濃度の測定>
 Bradford assay kitによって測定した。
 <光褪色の観察>
 ポリアクリルアミドゲル中に分散する1μMの蛍光タンパク質溶液を作製した。溶液/ゲル混合物を2つのカバーグラスの間にはさみ、アークランプ照射(5.6 W/cm2)を用いた褪色イメージング実験に供した。
 評価方法として、蛍光タンパク質を評価する標準方法を採用した。まず、照射光の中心波長488nmにおけるEGFP、SiriusGFP、mNeonGreenおよびmClover3のモル吸光係数を算出した。放射照度(5.6 W/cm2)からサンプルに届く光子の密度を算出した。さらに蛍光タンパク質の蛍光の量子収率を考慮して、5種類の蛍光タンパク質について標準化褪色曲線を得た。
 褪色に伴う蛍光強度の変化の測定を蛍光顕微鏡(IX81, オリンパス)と画像解析装置(AQUACOSMOS,浜松ホトニクス)を用いて行った。励起光源にはキセノンランプ(75W)を使用した。励起波長をバンドパスフィルタにより中心波長488nm、半値幅10nmとし、この励起光を、対物レンズ(UPlanSApo 40x, NA 0.95)を通してステージに置いた蛍光タンパク質溶液の試料に照射した。試料の蛍光像を、520 nmのロングパスフィルタを通して、冷却CCDカメラ(ORCA-AG, 浜松ホトニクス)で取得した。励起光を90分間照射し続け、6秒ごとに蛍光の画像を取得した。得られた画像の中央部の円形の領域(直径115画素)の輝度の平均値をもとめ、これから蛍光タンパク質を含まない試料から得られた蛍光の輝度を背景光として減算した。各時間の画像の輝度をプロットすることで蛍光の褪色による減衰カーブを得た。
 (結果)
 図5は、5種類の緑色蛍光タンパク質の時間経過に伴う蛍光強度の変化の単純比較を示す。この単純比較によれば、StayGoldは他の蛍光タンパク質よりも明るく、かつより顕著に光安定性であった。
 図6は、精製タンパク質を用いた場合の、5種類の蛍光タンパク質の標準化した褪色曲線を示す。それぞれの蛍光タンパク質について、蛍光発光率が測定開始時の1,000 photons/s per moleculeから500まで下がるのにかかる時間(t1/2)を算出した(表1)。他の公知の蛍光タンパク質の中では、EGFPが700 sという最も高いt1/2値を示した。しかし、StayGoldはそれをはるかに上回り、10,000 sを超える値を示した。これらの結果は、StayGoldが他の蛍光タンパク質よりも10倍以上光安定性が高い、すなわち褪色するまでに10倍以上の数の光子を放出できることを示している。
 (7-2.さまざまな色の蛍光タンパク質の比較)
 さらにStayGoldと、15の蛍光タンパク質:EGFP、SiriusGFP、mNeonGreen、mClover3、TagRFP-T、mOrange2、mScarlet-H、mCardinal、mCherry、mScarlet-I、mTFP1、Venus、Achilles、mGold、およびmVenusとの光安定性を比較した。
 最近の20年間でTagRFP-T、mOrange2、およびmScarlet-Hなどの強力な蛍光タンパク質がいくつか開発されてきた。主に赤色および橙色の蛍光タンパク質について光安定性が改良されてきた。異なる色の蛍光タンパク質間の直接的な比較は不可能であるが、標準法を施行し、t1/2の算出に基づいて褪色性を定量的に比較評価することが可能である。
 (材料および方法)
 (7-1.の緑色蛍光タンパク質の比較)のときと同様の方法で行った。
 (結果)
 図7はStayGoldと15の蛍光タンパク質との計16種類の蛍光タンパク質の標準化した褪色曲線を示す。図7にも示される通り、調査した蛍光タンパク質の中でStayGoldは優位な性能を有していた。
 〔8.StayGoldの光褪色性の分析(生細胞)〕
 生細胞を用いて、StayGoldと4つの緑色蛍光タンパク質:EGFP、SiriusGFP、mNeonGreenおよびmClover3との光褪色性を比較した。
 (材料および方法)
 レンチウイルスベクターによる遺伝子導入により、それぞれの蛍光タンパク質を細胞全体に安定して発現させるHeLa 細胞を作製した。細胞を35mmのガラスボトムディッシュに培養した。褪色に伴う蛍光強度の変化の測定を蛍光顕微鏡(IX81, オリンパス)と画像解析装置(AQUACOSMOS,浜松ホトニクス)を用いて行った。励起光源にはキセノンランプ(75W)を使用した。励起波長をバンドパスフィルタにより中心波長488nm、半値幅10nmとし、この励起光を、対物レンズ(UPlanSApo 40倍、開口数0.95)を通してステージに置いた細胞試料に照射した。細胞の蛍光像を、520 nmのロングパスフィルタを通して、冷却CCDカメラ(ORCA-AG, 浜松ホトニクス)で取得した。励起光を60分間照射し続け、6秒ごとに蛍光の画像を取得した。得られた画像で細胞内の20×20画素の輝度の平均値を求め、これから細胞がない部分の輝度を背景光として減算した。各時間の細胞の輝度をプロットすることで蛍光の褪色による減衰カーブを得た。
 5種類の緑色蛍光タンパク質をそれぞれ発現させた培養生細胞から蛍光の明るさを考慮した光安定性を調べた。
 図8は、生細胞における5種類の緑色蛍光タンパク質の時間経過に伴う蛍光強度の変化の単純比較を示す。
 図9は、生細胞における5種類の緑色蛍光タンパク質の標準化した褪色曲線を示す。なお、図8および9中のHBSSとはHank’s平衡塩溶液を意味する。
 この結果からもStayGoldが明白な光安定性ならびに優れた明るさを有することが実証された。例えば、StayGoldのt1/2は9,919sであったのに対し、他の蛍光タンパク質で最も高いt1/2であったSirius GPFは522sであった(表1)。図示しないが、HBSSに代えてDMEMを用いて生細胞をインキュベートした場合においても、同様の傾向であった。具体的には、他の蛍光タンパク質で最も高いt1/2であったSirius GPFは558sであったが、StayGoldは10,000sを上回った。このように、StayGoldは、現在利用可能な従来公知のいずれの蛍光タンパク質よりも1ケタあるいは2ケタ以上光安定性が高いことがわかった。
 〔9.StayGoldの光褪色性の分析(細胞観察)〕
 単一視野で光褪色の直接比較をするため、StayGold発現細胞とEGFP発現細胞とを混合して観察した。さらに、StayGold発現細胞とmNeonGreen発現細胞とで同様に1対1の比較を行った。
 (材料および方法)
 レンチウイルスベクターによる遺伝子導入により、それぞれの蛍光タンパク質を細胞全体に安定して発現させるHeLa 細胞を作製した。StayGold発現細胞とEGFP発現細胞、またはStayGold発現細胞とmNeonGreen発現細胞を混合して、35mmのガラスボトムディッシュに培養した。蛍光の褪色の過程を、蛍光顕微鏡(IX81, オリンパス)と画像解析装置(AQUACOSMOS,浜松ホトニクス)を用いて記録した。励起光源にはキセノンランプ(75W)を使用した。励起波長をバンドパスフィルタにより中心波長488nm、半値幅10nmとし、この励起光を、対物レンズ(UPlanSApo 60倍、開口数1,35)を通してステージに置いた細胞試料に照射した。細胞の蛍光像を、520 nmのロングパスフィルタを通して、冷却CCDカメラ(ORCA-AG,浜松ホトニクス)で取得した。励起光を30分間照射し続け、6秒ごとに蛍光の画像を取得した。
 (結果)
 図10はStayGold発現細胞とEGFP発現細胞との光褪色の比較およびStayGold発現細胞とmNeonGreen発現細胞との光褪色の比較を示す。
 図10の結果からStayGoldはEGFPより明るく、光安定性が高いことが証明された。
 StayGold発現細胞とmNeonGreen発現細胞との比較実験においては、2つの細胞集団は最初の蛍光強度が同一であるのでt = 0では区別ができないことに留意すべきである。cDNAトランスフェクションを用いた別々の細胞培養の実験でも、実質的にこれまでで最も明るい蛍光タンパク質であるmNeonGreenと同等の成熟速度で成熟することが観察された。
 多くの場合で酸素分子は蛍光タンパク質にとって諸刃の剣であると考えられている。一方で、発色団の成熟は酸素分子攻撃による酸化反応を必要とし、実質的な明るさの増大には酸素結合度の高さが貢献する。他方で、蛍光発色団の分解は、励起状態に滞在中に起こる酸素分子攻撃によるため、酸素結合度の高さは光安定性を低下させるように働く。
通常の酸素条件に加えて、無酸素および過酸素条件下で蛍光タンパク質発現細胞を用いて蛍光褪色実験を行った(図示せず)。その結果、EGFP、SiriusGFP、mClover3およびmNeonGreenと同様にStayGoldも酸素感受性であることがわかった。
 〔10. StayGold改変体タンデムダイマーの作製〕
 (材料および方法)
 StayGoldの配列を元に、StayGold改変体タンデムダイマーを作製した。
 (結果)
 StayGold改変体のアミノ酸配列が2つ連結したタンデムダイマータンパク質を得た。異なる構造を有する2種類のタンデムダイマータンパク質が得られた。
 2種類のタンデムダイマータンパク質を、上述のCU17SおよびStayGoldと同様の方法で大腸菌で発現させ、精製したところ、それぞれタンデムダイマータンパク質を非常に大量に生産および精製することができた。この2種類のタンパク質をそれぞれtdStayGoldおよびtdStayGold(long)と称した。tdStayGoldのアミノ酸配列は、配列番号13に、tdStayGoldのコード領域の塩基配列は、配列番号14に示す。tdStayGold(long)のアミノ酸配列は、配列番号15に、tdStayGold(long)のコード領域の塩基配列は、配列番号16に示す。
 いずれのタンデムダイマータンパク質も2つのStayGold改変体配列の間に132アミノ酸の挿入配列を介して連結されている。また、tdStayGold(long)はtdStayGoldのC末端にc4(10アミノ酸、配列番号8)がさらに付加されている。
 tdStayGoldはあるタンパク質XのC末端に融合するのに好適に用いられることがわかった。その場合、融合タンパク質は、タンパク質X-tdStayGoldという構造になる。一方、tdStayGold(long)は、あるタンパク質XのN末端に融合するのに好適に用いられることがわかった。その場合、融合タンパク質は、tdStayGold(long)-タンパク質Xという構造になる。
 〔12.StayGold改変体タンデムダイマーによる微小管ラベリング〕
 配列番号13のアミノ酸を有するtdStayGoldのN末端に微小管結合タンパク質であるhuman wild-type tau four-repeat(以下、単に「Tau」と示す)のC末端をGly-Glyリンカーを用いて繋げた融合タンパク質をコードする発現コンストラクトを作製した。
 HeLa細胞にプラスミドDNA(Tau-GG-tdStayGold/pcDNA3)1ugをLipofectamine 2000を用いて導入し、導入してから1日後、生細胞の蛍光観察を行った。共焦点レーザー走査型顕微鏡(FV3000)で観察した。対物レンズはUPLSAPO 60XS/1.3 NA、サンプリングスピードは2.0μs/ピクセル、インテグレーションはlineで3回、3倍ズーム、C.A.は222nm、レーザーは488nm、1.5%、PMT電位は520V、検出は500-600nm。
 (結果)
 図11は、tdStayGoldにより微小管をラベリングした結果を示す(図11中、スケールバーは10μm)。図11に示す通り、tdStayGoldにより、細胞内の微小管が明るくラベリングされた。また、tdStayGoldの蛍光は褪色せず、tdStayGoldによって生細胞における微小管の動態を明瞭に観察できることがわかった。
 〔13.StayGold改変体タンデムダイマーによるゴルジ体膜タンパク質ラベリング〕
 実施例12で用いたStayGoldタンデムダイマーのアミノ酸配列のC末端に挿入配列c4(10アミノ酸、配列番号8)を付加し、配列番号15のアミノ酸配列を有するtdStayGold(long)を作製した。配列番号15のアミノ酸配列を有するtdStayGold(long)のコード領域の塩基配列は配列番号16に示す。
 配列番号15のアミノ酸配列を有するtdStayGold(long)のC末端に、ゴルジ体の膜タンパク質Giantinのアミノ酸配列(ヒトのGiantinタンパク質のアミノ酸配列の3131番-3259番の配列)のN末端を繋げた、ゴルジ体の膜をターゲットとする融合タンパク質をコードする発現コンストラクトを作製した。コンストラクトをHeLa細胞に導入し、一過的に蛍光タンパク質を発現させて生細胞の蛍光観察を行った。
 HeLa細胞にプラスミドDNA(tdStayGold(long)-Coupler-Giantin/ pcDNA3)1ugをLipofectamine 2000を用いて導入した。導入から1日後に超解像顕微鏡SpinSR10で観察した。カメラはORCA-Flash4.0、対物レンズはUPLAPO OHR 100x, NA=1.5、CSU diskは SoRa、倍率は3.2倍、レーザー:488nm, 1%、露光時間:100msec、Z steps:0.25um/slice, 46枚、DM: D405/488/561/640、CH1 Filter Wheel: B525/50, B525/50、バッファー:HBSS, 10mM HEPES-NaOH (pH7.4)。
 (結果)
 図12は、tdStayGold (long)によりゴルジ体の膜をラベリングした結果を示す(図12中、スケールバーは5μm)。図12に示す通り、tdStayGold (long)により、細胞内のゴルジ体の膜が明るくラベリングされ、高解像度、高速で連続的に褪色せずに生細胞におけるゴルジ体の膜の動態が観察できることがわかった。
 〔14.StayGold改変体タンデムダイマーによるポストシナプスタンパク質PSD-95のラベリング〕
 配列番号13のアミノ酸配列を有するStayGoldタンデムダイマーに含まれているStayGoldに対して、さらにH169Y、C174I、C208Iの変異を加えたStayGold改変体(oxStayGold)を作製した。oxStayGoldの配列を基に、以下の構造を有するoxStayGoldタンデムダイマー(tdoxStayGold)を作製した。
 tdoxStayGold: (n1)oxStayGold(c4)-EV linker-(n1)oxStayGold
 tdoxStayGoldのアミノ酸配列は配列番号17に、tdoxStayGoldのコード領域の塩基配列は配列番号18に示す。
 tdoxStayGoldのN末端にポストシナプスのタンパク質PSD-95のC末端を繋げた融合タンパク質(PSD-95-Coupler-tdoxStayGold)をコードする発現コンストラクトを作製し、融合タンパク質をラット胎児海馬の初代培養神経細胞に発現させて生細胞の蛍光観察を行った。なお、Coupler linkerとは、Gly-Gly-Gly-Gly-Serの配列が3反復連なったリンカーである。
 ラット胎児海馬の初代培養神経細胞(DIV4:in vitroの培養で4日目)にプラスミドDNA(PSD95-Coupler-tdoxStayGold/ pcDNA3)4μgをリン酸カルシウム法を用いて導入した。初代培養神経細胞がDIV25(in vitroの培養で25日目)の時に、SpinSR10顕微鏡で観察した。カメラはORCA-Flash4.0、対物レンズはUPLAPO OHR 100x, NA=1.5、CSU disk: 50um、Zoom: x1、レーザー:488nm、 10%、励起時間500msec、Z steps: 0.25um/slice, 30枚、DM: D405/488/561/640、CH1 Filter Wheel: B525/50, B447/60、撮影時の培地:DMEM/F12 (1:1), 2% FBS, N2-supplement (x1), B-27 (x1.5)。
 (結果)
 図13は、tdoxStayGoldによりタンパク質PSD-95をラベリングした結果を示す(図13中、スケールバーは20μm)。図13に示す通り、tdoxStayGoldでラベルすることにより、シグナル可塑性を調節するグルタミン酸受容体およびシグナル分子に局在するPSD-95が裏打ち構造として明瞭に観察することが出来るようになった。
 〔15.StayGold改変体タンデムダイマーによる小胞体膜ラベリング〕
 StayGoldの配列を元に、以下の構造を有する改変体タンデムダイマー(tdStayGold alpha)を作製した。
 tdStayGold alpha: (n1)StayGold(c4)-alpha linker-(n1)StayGold
 tdStayGold alphaのアミノ酸配列は配列番号19に、tdStayGold alphaのコード領域の塩基配列は配列番号20に示す。
 cytoplasmic end of an endoplasmic reticulum (ER) signal-anchor membrane protein (CytERM)というタンパク質にtdStayGold alphaに繋げ、小胞体の膜をターゲットとする融合タンパク質をコードする発現コンストラクトを作製した。コンストラクトをHeLa細胞に導入し、一過的に蛍光タンパク質を発現させて生細胞の蛍光観察を行った。
 HeLa細胞にプラスミドDNA(CytERM-tdStayGold alpha/pcDNA3)1ugをLipofectamine 2000を用いて導入した。widefield顕微鏡(IX83 P2ZF)で観察した。カメラはORCA-Fusion、対物レンズはUPLXAPO 40x, NA=0.95、キューブはU-FBNA (励起:470-495, 蛍光:510-550, DM: 505)、励起光は5%、NDフィルターは10%、励起時間は500msec、バッファーはHBSS, 10mM HEPES-NaOH (pH7.4)。
 (結果)
 図14は、tdStayGold alphaにより小胞体の膜をラベリングした結果を示す(図14中、スケールバーは20μm)。
 CytERMのC末端に蛍光タンパク質をつなげた場合、細胞質側から膜に突き刺さる形でERを標識することになる。もし蛍光タンパク質が多量体を形成すると、膜と膜が重なり合って渦のような形状(輝点)が出現する。
 CytERMのC末端に配列番号1のStayGoldのアミノ酸配列に挿入配列n1を挿入することで得た(n1)StayGoldのN末端につなげた場合は、このような渦(輝点)がいくつも現れた(図示せず)。一方、図14に示す通り、tdStayGold alphaをつなげた場合は渦はほとんど現れなかった。
 〔16.StayGold改変体による小胞体内腔ラベリング〕
 oxStayGoldのアミノ酸配列に、挿入配列n2およびc4を挿入した、StayGold改変体((n2)oxStayGold(c4))を作製した。
 (n2)oxStayGold(c4)に基づいて、以下の構造を有するStayGold改変体(er-(n2)oxStayGold(c4))を作製した。
 er-(n2)oxStayGold(c4): SP(CRT)-(n2)StayGold(c4)-KDEL
 er-(n2)oxStayGold(c4)のアミノ酸配列を配列番号21に、er-(n2)oxStayGold(c4)のコード領域の塩基配列は配列番号22に示す。ここで、SP(CRT)はカルレティキュリンシグナルペプチドの配列であり、KDELはER残留シグナルの配列であった。er-(n2)oxStayGold(c4)をコードするコンストラクトを作製し、融合タンパク質をHeLa細胞に一過的に発現させて生細胞の蛍光観察を行った。
 HeLa細胞にプラスミドDNAをPEIを用いて導入した。超解像顕微鏡N-SIM Sで観察した。
カメラはORCA-Fusion、対物レンズはSR HP Plan Apo 100X/1.35 Sil λS、画像取得モードは3D-SIM、レーザーは488nm, 50%、励起時間は15msec、バッファーはHBSS, 10mM HEPES-NaOH (pH7.4)。
 (結果)
 図15は、er-(n2)oxStayGold(c4)により小胞体の内腔をラベリングした結果を示す(図15中、スケールバーは10μm)。図15に示す通り、er-(n2)oxStayGold(c4)により、細胞内の小胞体内腔が明るくラベリングされ、生細胞における小胞体内腔の動態が高解像、高速で連続的に褪色せずに観察できることがわかった。
 〔17.StayGold改変体によるミトコンドリア膜ラベリング〕
 配列番号1のアミノ酸配列を有するStayGoldを用いてmt-StayGoldを作製した。mt-StayGoldは以下の構成を有する。
 mt-StayGold:CoxVIII×2-StayGold
 mt-StayGoldのアミノ酸配列を配列番号23に、mt-StayGoldのコード領域の塩基配列を配列番号24に示す。ここで、CoxVIII(cytochrome c oxidase subunit VIII)はミトコンドリアに輸送される配列であった。CoxVIIIの配列を2回繰り返したアミノ酸配列(アミノ酸数72、配列番号23の1~72番目のアミノ酸)をStayGoldのアミノ酸配列(配列番号23の75~291番目のアミノ酸)のN末端側に結合した融合タンパク質をコードする発現コンストラクトを用いて、mt-StayGoldを作製した。なお、配列番号23中、73~74番目のアミノ酸はmt-StayGoldの作製時に用いたBamHIに由来する配列である。
 この遺伝子を細胞発現用のプラスミド(CSII-EF-MCS)に組み込み、HeLa細胞にmt-StayGoldが発現するようにトランスフェクションした。その結果、ミトコンドリアにおいて、mt-StayGoldが蛍光を発することがわかった(図示せず)。また、レンチウイルスを用いて、mt-StayGoldを安定発現させるHeLa細胞を作製した。レンチウイルスを用いた場合であっても蛍光を発するmt-StayGoldを得ることができた(図示せず)。
 mt-StayGoldの蛍光強度を改良した蛍光タンパク質として、配列番号23のアミノ酸配列中のStayGold(配列番号1)のアミノ酸配列の4番目と5番目とのアミノ酸の間に挿入配列n1(9アミノ酸)を挿入し、以下の構成を有するmt-(n1)StayGoldを作製した。
 mt-(n1)StayGold:CoxVIII×2-(n1)StayGold
 mt-(n1)StayGoldのアミノ酸配列を配列番号25に、mt-(n1)StayGoldのコード領域の塩基配列を配列番号26に示す。
 HeLa細胞にプラスミドDNAをレンチウイルスを用いて導入した。mt-(n1)StayGold導入後のHeLa細胞を蛍光顕微鏡(IX81, オリンパス)と画像解析装置(AQUACOSMOS, 浜松ホトニクス)を使用して画像を取得した。
 励起波長:460-495 nm, 蛍光波長:510nmロングパス,ダイクロイックミラー:505 nm,対物レンズ:UPlanSApo 60x, NA 1.35, 冷却CCDカメラ:ORCA-AG, ビニング:2 x 2, 露光時間:90 ms。
(結果)
 図16は、mt-(n1)StayGoldにより、ミトコンドリアを標識した結果を示す(図16中、スケールバーは20μm)。mt-(n1)StayGoldにより、ミトコンドリアが明るく標識できるようになり、より高速で長時間のイメージングが可能になった。
 〔18.StayGold改変体の単量体化〕
 (1)Y187A変異およびL155T変異の検討
 配列番号1のStayGoldに対して、Y187AまたはL155Tの変異を加え、StayGold改変体(StayGold Y187A、StayGold L115T)を作製した。StayGold Y187Aのアミノ酸配列を配列番号27、およびStayGold Y187Aのコード領域の塩基配列を配列番号28に示す。StayGold L115Tのアミノ酸配列を配列番号29、およびStayGold L115Tのコード領域の塩基配列を配列番号30に示す。
 表2に示す通り、StayGold改変体、StayGold(二量体)、およびEGFP(単量体)をコードする発現コンストラクトを用いて、大腸菌JM109 DE3によってリコンビナントタンパク質を作った。Ni-NTAを用いてタンパク精製を行った後、pseudo-native PAGEを行った。分離ゲルは10% acrylamide, 0.1% SDS。サンプル・バッファーは2% SDS, 100mM DTTを含んだ。加熱処理は行わなかった。
Figure JPOXMLDOC01-appb-T000002
 (結果)
 図17に結果を示す。図17に示す通り、StayGold Y187AおよびStayGold L155Tが単量体である可能性が示された。
(2)さらなる変異の検討
 実施例14で作製したoxStayGoldに対して、さらに挿入配列n1を挿入したStayGold改変体((n1)oxStayGold)を作製した。(n1)oxStayGold/ pRSETにSite Directed Mutagenesisで変異を導入し、配列番号31のアミノ酸配列を有する(n1)oxStayGold改変体を作製した((n1)oxStayGold L155T)。(n1)oxStayGold L155Tをコードする領域の塩基配列を配列番号32に示す。(n1)oxStayGold L155Tには、StayGoldの結晶構造を元に、さらなる変異を加えた。表3に(n1)oxStayGold L155Tに加えた変異、および比較例として用いた蛍光タンパク質(AzamiGreen(四量体)、EGFP(単量体)、およびStayGold(二量体))を示す。なお、表3に示すアミノ酸置換の位置は、挿入配列n1を有さないStayGold(配列番号1)のアミノ酸配列におけるアミノ酸位置に対応する。さらに、表中、1、2、7~12の(n1)oxStayGold改変体は、StayGold(配列番号1)のアミノ酸配列において、132番目のアスパラギンをアスパラギン酸(N132D)に、151番目のプロリンをトレオニン(P151T)に、162番目のリシンをグルタミン酸(K162E)に、置換する変異を有する改変体であった。また、表3には、(n1)oxStayGold L155Tに加えた変異を選択した理由も記載した。表3に示す通り、(n1)oxStayGold改変体およびAzamiGreen(四量体)、EGFP(単量体)、およびStayGold(二量体)をコードする発現コンストラクトを用いて、大腸菌JM109 DE3によってリコンビナントタンパク質を作った。Ni-NTAを用いてタンパク精製を行った後、pseudo-native PAGEを行った。分離ゲルは10% acrylamide, 0.1% SDS。サンプル・バッファーは2% SDS, 100mM DTTを含んだ。加熱処理は行わなかった。
Figure JPOXMLDOC01-appb-T000003
 (結果)
 図18に結果を示す。図18に示す通り、表2に示す(n1)oxStayGold L155T改変体は単量体である可能性が示され、特に、表2および図18中、1、2、7、8、9、10、11は単量体化のために、有用である変異であることが示唆された。
 〔19.まとめ〕
 以上に示したように、StayGold改変体は、蛍光が明るく、かつ著しく光安定性がすぐれていた。これまで、蛍光タンパク質の光安定性改善には常に明るさの低下が伴っていた。StayGoldの蛍光特性は、明るさと光安定性とが両立しないという従来の蛍光タンパク質の性質とは異なるものであった。
 本発明に係る蛍光タンパク質の一例は、蛍光が明るく、かつ優れた光安定性を有する。そのため、例えば、分子生物学分野、生化学的分析分野、医療分野等の幅広い分野で有用である。

Claims (12)

  1.  以下の(1)~(3)のいずれかに示す、蛍光特性を有するポリペプチド。
     (1)配列番号1に記載のアミノ酸配列を有するポリペプチド、
     (2)配列番号1に記載のアミノ酸配列において1個以上32個以下のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有するポリペプチド、
     (3)配列番号1に記載のアミノ酸配列に対して85%以上の配列同一性を有するポリペプチド。
  2.  EGFPよりも高い光安定性を示す、またはEGFPよりも蛍光が明るい、請求項1に記載のポリペプチド。
  3.  配列番号1に記載のアミノ酸配列の168番目のアミノ酸がアラニンであり、且つ、配列番号1に記載のアミノ酸配列に対して85%以上の配列同一性を示すアミノ酸配列を有する、請求項1または2に記載のポリペプチド。
  4.  以下の(1)~(3)のいずれかに記載のポリヌクレオチド。
     (1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、
     (2)配列番号1に記載のアミノ酸配列において1個以上32個以下のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、蛍光特性を有するポリペプチドをコードするポリヌクレオチド、
     (3)配列番号1に記載のアミノ酸配列に対して85%以上の配列同一性を有し、蛍光特性を有するポリペプチドをコードするポリヌクレオチド。
  5.  (a)発現宿主内で機能的な発現制御領域;および
     (b)請求項4に記載のポリヌクレオチド; 
    を含む、発現カセット。
  6.  請求項4に記載のポリヌクレオチドまたは請求項5に記載の発現カセットを含むベクター。
  7.  請求項4に記載のポリヌクレオチド、請求項5に記載の発現カセット、または請求項6に記載のベクターを有する形質転換体。
  8.  非ヒトトランスジェニック生物である、請求項7に記載の形質転換体。
  9.  請求項1~3のいずれか一項に記載のポリペプチドと他のポリペプチドとを含む融合ポリペプチド。
  10.  2つ以上連結した請求項1~3のいずれか一項に記載のポリペプチドを含む、請求項9に記載の融合ポリペプチド。
  11.  請求項1~3のいずれか一項に記載のポリペプチド、請求項4に記載のポリヌクレオチド、請求項5に記載の発現カセット、請求項6に記載のベクター、請求項7または8に記載の形質転換体、あるいは請求項9または10に記載の融合ポリペプチドを含む、キット。
  12.  請求項1~3のいずれか一項に記載のポリペプチドまたは請求項9または10に記載の融合ポリペプチドを細胞において産生させる産生工程と、
     励起光を上記細胞に照射する励起光照射工程と、
    上記ポリペプチドまたは融合ポリペプチドに由来する蛍光を観察する観察工程とを含む、蛍光観察の方法。
PCT/JP2022/013700 2021-04-07 2022-03-23 蛍光特性を示す新規なポリペプチド、およびその利用 WO2022215532A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22784517.9A EP4321539A1 (en) 2021-04-07 2022-03-23 Novel polypeptide exhibiting fluorescent properties and use for same
US18/285,732 US20240209039A1 (en) 2021-04-07 2022-03-23 Novel polypeptide exhibiting fluorescent properties and use for same
JP2023512930A JPWO2022215532A1 (ja) 2021-04-07 2022-03-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021065373 2021-04-07
JP2021-065373 2021-04-07

Publications (1)

Publication Number Publication Date
WO2022215532A1 true WO2022215532A1 (ja) 2022-10-13

Family

ID=83545380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013700 WO2022215532A1 (ja) 2021-04-07 2022-03-23 蛍光特性を示す新規なポリペプチド、およびその利用

Country Status (4)

Country Link
US (1) US20240209039A1 (ja)
EP (1) EP4321539A1 (ja)
JP (1) JPWO2022215532A1 (ja)
WO (1) WO2022215532A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023460A (zh) * 2022-10-28 2023-04-28 无锡佰翱得生物科学有限公司 一种增强型StayGold黄色荧光蛋白及其应用
CN116143893A (zh) * 2022-08-09 2023-05-23 无锡佰翱得生物科学有限公司 一种增强型单体StayGold蛋白及其应用
CN117430698A (zh) * 2023-10-26 2024-01-23 无锡佰翱得生物科学股份有限公司 与mStayGold荧光蛋白相互作用的纳米抗体及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005526495A (ja) * 2002-01-22 2005-09-08 エヴロゲン, アイピー Aequoreacoerulescens由来の新規な蛍光タンパク質およびその使用方法
JP2006506100A (ja) * 2002-11-12 2006-02-23 ザクリトエ アクツィオネルノエ オブシェストヴォ “エフロージェン” 非オワンクラゲヒドロ虫種由来の蛍光たんぱく質および色素たんぱく質、並びにそれらの使用方法
WO2017155101A1 (ja) * 2016-03-10 2017-09-14 国立大学法人大阪大学 蛍光タンパク質

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005526495A (ja) * 2002-01-22 2005-09-08 エヴロゲン, アイピー Aequoreacoerulescens由来の新規な蛍光タンパク質およびその使用方法
JP2006506100A (ja) * 2002-11-12 2006-02-23 ザクリトエ アクツィオネルノエ オブシェストヴォ “エフロージェン” 非オワンクラゲヒドロ虫種由来の蛍光たんぱく質および色素たんぱく質、並びにそれらの使用方法
WO2017155101A1 (ja) * 2016-03-10 2017-09-14 国立大学法人大阪大学 蛍光タンパク質

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BINDELS, D. S. ET AL., NATURE METHODS, vol. 14, 2017, pages 53 - 56
DEGUCHI RYUSAKU, ONODERA M., NAMIKAWA H. : "Green fluorescent protein (GFP)-like substance in the hydrozoan jellyfish Cytaeis uchidae : Examination of timing and localization of its expression and utilization for biological education", BULLETIN OF MIYAGI UNIVERSITY OF EDUCATION, vol. 47, 1 January 2012 (2012-01-01), pages 95 - 100, XP055977286, ISSN: 0289-4424 *
KUNKEL ET AL., PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 488
SHANER, N. C. ET AL., NATURE METHODS, vol. 5, 2008, pages 545 - 551
SHANER, N. C., METHODS IN CELL BIOLOGY, vol. 123, 2014, pages 95 - 111
SHANER, N.C. ET AL., NATURE METHODS, vol. 10, 2013, pages 407 - 409
ZHONG, S. ET AL., JOURNAL OF NEUROSCIENCE METHODS, vol. 313, 2019, pages 68 - 76

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116143893A (zh) * 2022-08-09 2023-05-23 无锡佰翱得生物科学有限公司 一种增强型单体StayGold蛋白及其应用
CN116143893B (zh) * 2022-08-09 2023-11-10 无锡佰翱得生物科学股份有限公司 一种增强型单体StayGold蛋白及其应用
CN116023460A (zh) * 2022-10-28 2023-04-28 无锡佰翱得生物科学有限公司 一种增强型StayGold黄色荧光蛋白及其应用
CN116023460B (zh) * 2022-10-28 2023-11-10 无锡佰翱得生物科学股份有限公司 一种StayGold黄色荧光蛋白及其应用
WO2024087539A1 (zh) * 2022-10-28 2024-05-02 无锡佰翱得生物科学股份有限公司 一种增强型StayGold黄色荧光蛋白及其应用
CN117430698A (zh) * 2023-10-26 2024-01-23 无锡佰翱得生物科学股份有限公司 与mStayGold荧光蛋白相互作用的纳米抗体及其应用
CN117430698B (zh) * 2023-10-26 2024-04-26 无锡佰翱得生物科学股份有限公司 与mStayGold荧光蛋白相互作用的纳米抗体及其应用

Also Published As

Publication number Publication date
US20240209039A1 (en) 2024-06-27
EP4321539A1 (en) 2024-02-14
JPWO2022215532A1 (ja) 2022-10-13

Similar Documents

Publication Publication Date Title
WO2022215532A1 (ja) 蛍光特性を示す新規なポリペプチド、およびその利用
ES2399563T3 (es) Proteínas verdes fluorescentes modificadas y método para la utilización de las mismas
JP7098196B2 (ja) リガンド蛍光センサータンパク質とその使用
RU2395581C2 (ru) Новые флуоресцентные белки из entacmaea quadricolor и способ их получения
JP2011087581A (ja) Aequoreacoerulescens由来の新規な蛍光タンパク質およびその使用方法
JP6707472B2 (ja) 蛍光団を活性化し、シフトするタグ(fast)
Ding et al. Far-red acclimating cyanobacterium as versatile source for bright fluorescent biomarkers
WO2005054464A1 (ja) 蛍光蛋白質
JP4480674B2 (ja) コペポーダ種由来の蛍光たんぱく質および該たんぱく質の使用方法
US9102750B2 (en) Branchiostoma derived fluorescent proteins
WO2002048174A2 (en) Dimeric fluorescent polypeptides
JP6667897B2 (ja) 蛍光特性を示すポリペプチド、およびその利用
CN109748970B (zh) α-酮戊二酸光学探针及其制备方法和应用
WO2006051944A1 (ja) 蛍光蛋白質
Divéki et al. Limited utility of blue fluorescent protein (BFP) in monitoring plant virus movement
WO2006083382A2 (en) Measuring forster resonance energy transfer with polarized and depolarized light
WO2017155101A1 (ja) 蛍光タンパク質
WO2013163681A1 (en) Fluorescent proteins and uses thereof
CN110305199A (zh) 结合藻红胆素的荧光生物标记物及标记方法
US20080161199A1 (en) Fusion Proteins and Methods for Determining Protein-Protein-Interactions in Living Cells and Cell Lysates, Nucleic Acids Encoding these Fusion Proteins, as well as Vectors and Kits Containing These
US20180194816A1 (en) Fluorescent protein
WO2010060618A1 (en) Monomeric variants of he tetrameric eqfp611
Walker et al. GFP fusion proteins to study signaling in live cells
RU2338785C2 (ru) Флуоресцирующие белки и хромопротеины из видов hydrozoa, не относящихся к aequorea, и способы их получения
CN117106097A (zh) 一种rna-蛋白质复合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784517

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023512930

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18285732

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022784517

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022784517

Country of ref document: EP

Effective date: 20231107