WO2006051944A1 - 蛍光蛋白質 - Google Patents

蛍光蛋白質 Download PDF

Info

Publication number
WO2006051944A1
WO2006051944A1 PCT/JP2005/020843 JP2005020843W WO2006051944A1 WO 2006051944 A1 WO2006051944 A1 WO 2006051944A1 JP 2005020843 W JP2005020843 W JP 2005020843W WO 2006051944 A1 WO2006051944 A1 WO 2006051944A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent protein
protein
donor
acceptor
fluorescent
Prior art date
Application number
PCT/JP2005/020843
Other languages
English (en)
French (fr)
Inventor
Takeharu Nagai
Atsushi Miyawaki
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Priority to US11/719,166 priority Critical patent/US8013119B2/en
Publication of WO2006051944A1 publication Critical patent/WO2006051944A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5035Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on sub-cellular localization
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/542Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching

Definitions

  • the present invention relates to a novel fluorescent protein. More specifically, the present invention relates to a wavelength-converted fluorescent protein using light irradiation-dependent fluorescence energy transfer and a background art relating to the use thereof
  • Green fluorescent protein (GFP) derived from the jellyfish Aequorea victoria has many uses in biological systems. Recently, based on random mutagenesis and semi-rational mutagenesis, various color changes, improved folding properties, increased brightness, or altered pH sensitivity GFP mutants have been created. Other proteins are fused to fluorescent proteins such as GFP by genetic recombination technology, and their expression and transport are monitored.
  • YFP yellow fluorescent protein
  • YFP exhibits the longest wavelength fluorescence among Aequorea GFP mutants.
  • the ⁇ and ⁇ of most YFPs are 60,000 to 100,000 M—m— 1 and 0.6 to 0.8, respectively (Tsien, RY (1998). Ann. Rev. Biochem. 67, 509-544), and these values Is comparable to that of common fluorophores (such as fluorescein and rhodamine).
  • Another example of a GFP mutant is cyan fluorescent protein (CFP), and ECFP (enhanced cyan fluorescent protein) is known.
  • CFP cyan fluorescent protein
  • ECFP enhanced cyan fluorescent protein
  • RFP red fluorescent protein
  • DasRed is known. In this way, four types of fluorescent proteins, green, yellow, cyan, and red, have been developed one after another, and the spectrum range has been greatly expanded.
  • PA-GFP Purge GH and Lipp incott- Schwartz J, Science 297, 1873-1877 (2002)
  • kaede Ando R et al, Proc. Natl .Acad.Sci.USA 99, 12651-12656 (2002).
  • PA-GFP has a problem that it is difficult to divide where the specimen is before the stimulation light irradiation because of the characteristic that fluorescence appears even in the non-fluorescent state force.
  • kaede is converted from green to red by stimulating light irradiation, but it is complicated because it requires excitation light according to both colors, and kaede is linked to an arbitrary protein to form a tetramer. It was not suitable for dynamic observation.
  • the present invention makes it possible to label an arbitrary organelle, cell, or tissue in multiple colors by expressing a fluorescence resonance energy transfer (FRET) acceptor in a stimulus light-dependent manner.
  • FRET fluorescence resonance energy transfer
  • the present inventors have fused a donor fluorescent protein capable of emitting fluorescence with different wavelengths and an acceptor fluorescent protein, and excited the donor protein before light stimulation.
  • the donor protein can fluoresce, and after light stimulation, irradiation with excitation light of the donor protein causes intramolecular FRET between the donor fluorescent protein and the acceptor fluorescent protein, resulting in an acceptor.
  • the fluorescence spectrum of a fluorescent protein can be changed in a stimulating light-dependent manner by constructing a fluorescent protein that can emit fluorescence.
  • the present invention has been completed based on these findings.
  • the fusion protein power of the donor fluorescent protein and the acceptor fluorescent protein is formed, and the donor protein emits fluorescence by irradiating the excitation light of the donor protein before the stimulation light irradiation.
  • irradiation of excitation light of the donor protein causes intramolecular FRET to occur between the donor fluorescent protein and the acceptor fluorescent protein, allowing the acceptor protein to fluoresce, and the donor protein
  • a fluorescent protein characterized in that the fluorescence and the fluorescence of the acceptor protein are fluorescence having different wavelengths.
  • the donor fluorescent protein is a CFP mutant
  • the acceptor fluorescent protein is P A— GFP mutant.
  • the stimulation light is ultraviolet light or violet light.
  • the donor fluorescent protein is a CFP variant lacking the C-terminal 11 amino acids of CFP
  • the acceptor fluorescent protein is a PA-GFP variant lacking the N-terminal 3 amino acids of PA-GFP. It is.
  • the donor fluorescent protein and the acceptor fluorescent protein are fused via a linker sequence.
  • the fluorescent protein of the present invention has any of the following amino acid sequences.
  • a transformant having the above-described DNA or recombinant vector of the present invention is provided.
  • a fused fluorescent protein comprising the above-described fluorescent protein of the present invention and another protein.
  • a method for analyzing the localization or dynamics of a protein in a cell characterized by expressing the above-described fused fluorescent protein of the present invention in the cell.
  • a fluorescent reagent kit comprising the fluorescent protein, DNA, recombinant vector, transformant, or fusion fluorescent protein of the present invention described above. Best form
  • Fluorescent protein of the present invention has a fusion protein strength between a donor fluorescent protein and an acceptor fluorescent protein, and the donor protein can emit fluorescence by irradiating the excitation light of the donor protein before the stimulation light irradiation. After irradiation, irradiation with excitation light of the donor protein causes intramolecular FRET to occur between the donor fluorescent protein and the acceptor fluorescent protein, allowing the acceptor protein to fluoresce. It is a fluorescent protein characterized in that the fluorescence of the acceptor protein is different in wavelength.
  • the combination of the donor fluorescent protein and the acceptor fluorescent protein used in the present invention is not particularly limited as long as the effect of the fluorescent protein of the present invention described above can be achieved.
  • the donor fluorescent protein and acceptor fluorescent protein include cyan fluorescent protein (CFP), yellow fluorescent protein (YEP), green protein (GFP), red fluorescent protein (REP), blue fluorescent protein (BFP), or their fluorescent dyes. Mutants can be used.
  • cyan fluorescent protein, yellow fluorescent protein, green protein, red fluorescent protein, blue fluorescent protein or variants thereof are not only known fluorescent proteins, but also variants thereof (for example, all of ECFP, EYFP, EGFP, ERFP, EBFP, etc. that have enhanced the fluorescence intensity of the fluorescent protein are included.
  • the gene for green fluorescent protein has been isolated and sequenced (Prasher, DC et al. (1992), "Primary struture of the Aequorea victoria green fluorescent protein, uene 111: 229-23"). Numerous amino acid sequences of proteins or their variants have been reported, and are described, for example, in Roger Y. Tsien, Annu. Rev. Biochem. 1998. 67: 509-44, and the references cited therein.
  • GFP yellow fluorescent protein
  • YFP yellow fluorescent protein
  • a mutant thereof for example, those derived from Ewan jellyfish (for example, Aequorea victoria) can be used.
  • the nucleotide sequence of the gene encoding the fluorescent protein used in the present invention is known.
  • a commercially available gene can be used as the gene encoding the fluorescent protein.
  • EGFP vector, EYFP vector, ECFP vector, EBF p vector, etc. commercially available from Clontech can be used.
  • the donor fluorescent protein is a CFP variant and the acceptor fluorescent protein is a PA-GFP variant.
  • a protein that converts from cyan to green-yellow in a stimulus light-dependent manner is prepared by using CFP and PA-GFP as a FRET donor and acceptor, respectively. succeeded in. Specifically, a CFP mutant lacking 11 C-terminal amino acids of CFP was used as the donor fluorescent protein, and the N-terminal 3 amino acids of PA-GFP were deleted as the acceptor fluorescent protein. Using PA-GFP mutant
  • the donor protein emits fluorescence by irradiating the excitation light of the donor protein before the stimulation light irradiation, and the donor fluorescence is emitted by irradiating the excitation light of the donor protein after the stimulation light irradiation.
  • the acceptor protein emits fluorescence.
  • the stimulating light used here is preferably ultraviolet light or violet light.
  • the irradiation time of ultraviolet light or violet light is not particularly limited. For example, force of several milliseconds can be performed for about 10 minutes.
  • the donor fluorescent protein and the acceptor fluorescent protein may be fused via a linker sequence.
  • a linker sequence for example, about 1 to 5 amino acid sequences are listed as a linker sequence.
  • fluorescent protein of the present invention include:
  • the amino acid sequence of SEQ ID NO: 2 has an amino acid sequence having a deletion, substitution and Z or addition of one to several amino acids, and a fusion protein power of a donor fluorescent protein and an acceptor fluorescent protein Therefore, the donor protein can emit fluorescence by irradiating the excitation light of the donor protein before the stimulation light irradiation, and after the stimulation light irradiation, the donor fluorescent protein and acceptor fluorescence can be emitted by irradiating the excitation light of the donor protein.
  • the acceptor protein can fluoresce, and the fluorescence of the donor protein and the acceptor protein are mutually different in fluorescence.
  • the range of "1 to several” in the "amino acid sequence having 1 to several amino acid deletions, substitutions, and Z or addition” as used herein is not particularly limited. It means 1 to 20, preferably 1 to 10, more preferably 1 to 7, more preferably 1 to 5, particularly preferably about 1 to 3.
  • the donor protein can emit fluorescence (480 nm) by irradiating the excitation light (458 nm) of the donor protein before irradiation with the stimulating light (400 nm), and after irradiation with the stimulating light (400 nm), By irradiation with excitation light (458 nm), intramolecular FRET is generated between the donor fluorescent protein and the acceptor fluorescent protein, whereby the acceptor protein can emit fluorescence (520 nm).
  • the method for obtaining the fluorescent protein of the present invention may be a protein synthesized by chemical synthesis with no particular restriction, or may be a recombinant protein produced by a gene recombination technique.
  • a DNA encoding a fluorescent protein In the case of producing a recombinant protein, it is necessary to first obtain a DNA encoding a fluorescent protein.
  • the amino acid sequences and base sequences of various fluorescent proteins used as donor fluorescent proteins and acceptor fluorescent proteins are known to those skilled in the art, and the DNA that codes them can be obtained from commercial products, PCR, etc.
  • the usual genetic recombination method can be used for crawling.
  • the DNA encoding the fluorescent protein of the present invention can be constructed by sequentially linking the DNA encoding the donor fluorescent protein and the acceptor fluorescent protein obtained in this way by a gene recombination technique.
  • the fluorescent protein of the present invention can be produced by introducing this DNA into an appropriate expression system. The expression in the expression system will be described later in this specification.
  • DNA encoding the fluorescent protein of the present invention is provided.
  • Examples of DNA encoding a fluorescent protein having the amino acid sequence set forth in SEQ ID NO: 2 include DNA having the base sequence set forth in SEQ ID NO: 1. Further, in the base sequence described in SEQ ID NO: 1, it is a DNA having a base sequence having deletion, substitution and Z or addition of one to several bases, and having the characteristics described above in the present specification. DNA encoding a fluorescent protein is also included within the scope of the present invention.
  • the range of "1 to several” in the "base sequence having deletion, substitution and Z or addition of one to several bases” as used in the present specification is not particularly limited. It means 50, preferably 1 to 30, more preferably 1 to 20, more preferably 1 to 10, particularly preferably about 1 to 5.
  • the DNA of the present invention can be synthesized, for example, by the phosphoramidite method or the like, or can be produced by polymerase chain reaction (PCR) using a specific primer.
  • PCR polymerase chain reaction
  • the method for producing the DNA of the present invention or a fragment thereof is as described above in the present specification.
  • DNA having mutations can be constructed by appropriately using known techniques such as site-directed mutagenesis, PCR using degenerate oligonucleotides, mutagenesis of nucleic acid-containing cells, or exposure to radiation. can do.
  • known techniques include, for example, Molecular Cloning: A laboratory Mannual, 2 ti, d., Old bpnng Harbor Laboratory, Cold
  • the DNA of the present invention can be used by inserting it into an appropriate vector.
  • the type of the vector used in the present invention is not particularly limited.
  • the vector may be a self-replicating vector (for example, a plasmid), or may be incorporated into the genome of the host cell when introduced into the host cell. It can be replicated along with the chromosomes.
  • the vector used in the present invention is an expression vector.
  • the DNA of the present invention is functionally linked to elements necessary for transcription (for example, a promoter and the like).
  • a promoter is a DNA sequence that exhibits transcriptional activity in a host cell and Depending on the class, it can be appropriately determined.
  • Bacillus' steer opening thermophilus' Ma Noreton'enikku- ⁇ off 1 ⁇ IT heritage is the child (Bacillusstearothermophilus maltogenic amylase gen e) ⁇ Roh Tenoresu 'Rikenihonore ⁇ scan ⁇ A ⁇ Fuse Bacillus licheniformis alpha-amylase gene, Bacillus amyloliquefa ciens BAN amylase gene, Bacillus subtilis alkaline protease gene or Bacillus pumilus xylosidase Promoter of gene (Bacillus pumilus xylosldase gene) or phage 'P
  • Examples of promoters that can operate in mammalian cells include the SV40 promoter, the MT-1 (meta oral thionein gene) promoter, or the adenovirus 2-main late promoter.
  • Examples of promoters that can operate in insect cells include polyhedrin promoter, P10 promoter, autographer 'Califor-force' polyhedrosic basic protein promoter, Baki eurovirus immediate early gene 1 promoter, or Bakiurovirus 39K. There are delayed early gene promoters.
  • Examples of a promoter operable in a yeast host cell include a promoter derived from a yeast glycolytic gene, an alcohol dehydrogenase gene promoter, a TPI1 promoter, and an ADH2-4C promoter.
  • promoters that can operate in filamentous fungal cells include the ADH3 promoter or the tpiA promoter.
  • the DNA of the present invention may be operably linked to an appropriate terminator such as TPI1 terminator or ADH3 terminator for human growth hormone terminator or, for fungal hosts, as necessary.
  • the recombinant vector of the present invention further comprises a polyadenylation signal (eg, derived from the SV40 or adenovirus 5Elb region), a transcriptional enhancer sequence (eg, SV40 antigen), and a translational enhancer sequence (eg, adenovirus VA RNA). ) May be included.
  • the recombinant vector of the present invention may further comprise a DNA sequence that allows the vector to replicate in the host cell.
  • the SV40 origin of replication when the host cell is a mammalian cell.
  • the recombinant vector of the present invention may further contain a selection marker.
  • Selectable markers include, for example, genes whose complement is lacking in the host cell, such as dihydrofolate reductase (DHFR) or Schizosaccharomyces pompi TPI gene, or for example ampicillin, kanamycin, tetracycline, chloramphenic acid. Mention may be made of drug resistance genes such as cole, neomycin or hygromycin.
  • a transformant can be prepared by introducing the DNA or recombinant vector of the present invention into an appropriate host.
  • Examples of host cells into which the DNA or recombinant vector of the present invention is introduced include bacteria, yeasts, fungi, and higher eukaryotic cells that can be used in any cell as long as the DNA construct of the present invention can be expressed.
  • Examples of bacterial cells include Gram-positive bacteria such as Bacillus or Streptomyces, or Gram-negative bacteria such as Escherichia coli. Transformation of these bacteria may be carried out by using a competent cell by a protoplast method or a known method.
  • mammalian cells examples include HEK293 cells, HeLa cells, COS cells, BHK cells, CHL cells, or CHO cells. Methods for transforming mammalian cells and expressing the DNA sequences introduced into the cells are also known, and for example, the electopore method, the calcium phosphate method, the lipofuxion method and the like can be used.
  • yeast cells include cells belonging to Saccharomyces or Schizosaccharomyces, such as Saccharomyces cerevislae or Saccharomyces kluyveri.
  • Examples of the method for introducing the recombinant vector into the yeast host include the electopore position method, the sphere blast method, and the lithium acetate method.
  • Examples of other fungal cells are those belonging to filamentous fungi such as Aspergillus, Neurospora, Fusarium, or Trichoderma.
  • Transformation can be performed by integrating the A construct into the host chromosome to obtain a recombinant host cell. Integration of the DNA construct into the host chromosome can be performed according to known methods, for example, by homologous recombination or heterologous recombination.
  • a recombinant gene transfer vector and a baculovirus are co-introduced into the insect cell to obtain the recombinant virus in the insect cell culture supernatant, and then the recombinant virus is further used. It can infect insect cells and express proteins (eg, Baculovirus Expression Vectors, A Laboratory Manual; and 7 Lund'Foot Mouth ⁇ Loose 'in' Molecular ⁇ ⁇ Biology, Bio / Technology, 6, 47 (1988)).
  • the baculovirus can be, for example, an autographa californica nuclear polyhedrosis virus or the like, which is a virus that infects Drosophila insects, such as Autographa californica nuclear polyhedrosis virus; .
  • Insect cells include Spodoptera frugiperda's ovarian cells Sf9, Sf21 [Baculovirus. Expression. Vectors, Laboratories ⁇ ⁇ Mual, W ⁇ H. Freeman & Campa. w. H. F reeman and Company) , New York (New York), (1992) ],! use the ovarian cell of Trichoplusia ni HiFive (manufactured by Invitrogen), and the like /, can Rukoto.
  • Examples of the method for co-introducing a recombinant gene introduction vector into insect cells and the baculovirus for preparing a recombinant virus include the calcium phosphate method and the lipofusion method.
  • the transformant is cultured in an appropriate nutrient medium under conditions that allow expression of the introduced DNA construct.
  • ordinary protein isolation and purification methods may be used.
  • the protein of the present invention when expressed in a dissolved state in the cells, the cells are collected by centrifugation after culturing and suspended in an aqueous buffer, and then the cells are removed by an ultrasonic crusher or the like. Crush to obtain a cell-free extract.
  • an ordinary protein isolation and purification method that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, Anion exchange chromatography using resin such as Jetylaminoethyl (DEAE) Sepharose, S-Sepharose FF (manufactured by Pharmacia), etc. Cation exchange chromatography using resin, hydrophobic chromatography using resin such as butyl sepharose and phenyl sepharose, gel filtration using molecular sieve, affinity chromatography, chromatofocusing, etc.
  • a purified sample can be obtained by using methods such as electrophoretic methods such as electric point electrophoresis alone or in combination.
  • a fusion protein can be constructed by fusing the fluorescent protein of the present invention with another protein.
  • the method for obtaining the fusion protein of the present invention may be a protein synthesized by chemical synthesis with no particular restriction, or may be a recombinant protein produced by a gene recombination technique.
  • DNA encoding the fluorescent protein of the present invention can be obtained.
  • DNA fragment that encodes the protein to be fused are sequentially ligated by a gene recombination technique to obtain a DNA encoding a desired fusion protein.
  • the fusion protein of the present invention can be produced.
  • the fluorescent protein of the present invention is particularly useful as a label. That is, if the fluorescent protein of the present invention is purified as a fusion protein with a test amino acid sequence, introduced into a cell by a technique such as microinjection, and the distribution of the fusion protein is observed over time, the test amino acid It is possible to detect the targeting activity of the sequence in the cell.
  • the type of other protein (test amino acid sequence) to which the fluorescent protein of the present invention is fused is not particularly limited. For example, it is specific to a protein localized in a cell or an intracellular organelle. Suitable proteins, targeting signals (eg, nuclear translocation signals, mitochondrial pre-sequences) and the like are suitable.
  • the fluorescent protein of the present invention can be expressed in a cell and used in addition to being introduced into the cell by a microinjection method or the like. This In this case, a vector into which the DNA encoding the fluorescent protein of the present invention has been inserted is introduced into the host cell.
  • the fluorescent protein of the present invention can also be used as a reporter protein for measuring promoter activity. That is, a vector in which the DNA encoding the fluorescent protein of the present invention is arranged downstream of the test promoter is introduced into a host cell, and the fluorescence of the fluorescent protein of the present invention generated by the cell force is detected. Thus, the activity of the test promoter can be measured.
  • the test promoter is not particularly limited as long as it functions in the host cell.
  • the vector used for detection of the targeting activity of the test amino acid sequence and measurement of the promoter activity is not particularly limited.
  • pNEO P. Southern , and P. Berg (1982) J. MOl. Appl. Genet. 1: 327
  • p CAGGS H. Niwa'K. Yamamura'and J. Miyazaki. Gene 108,193—200 (1991)
  • pRc / C MV (manufactured by Invitrogen),”
  • pCDM8 (manufactured by Invitrogen), etc.
  • yeast vectors are the yeast vectors" pRS303 “,” pRS304 “,” pRS305 “,” pRS306 “,” pRS313 “,” pRS314 “ ”,“ PRS315 ”, [pR S316] (RSSikorski and P. Hieter (1989) Genetics 122: 19-27),“ pRS423 ”,“ pRS424 ”,“ pRS425 ”,“ pRS426 ”(TWChristianson, RSSikorski, M. Dante, JHShero, and P. Hieter (1992) Gene 110: 119-122) are preferably used.
  • the types of cells that can be used are not particularly limited, and various animal cells such as L cells, BalbC-3T3 cells, NIH3T3 cells, CHO (Chinese hamster ovary) cells, HeLa cells, NRK (normal) rat kidney) cells, yeast cells such as “Saccharomyces cerevisiae”, and E. coli cells can be used.
  • Introduction of a vector into a host cell can be performed by a conventional method such as the calcium phosphate method or the electopore position method.
  • a fusion fluorescent protein obtained by fusing the fluorescent protein of the present invention and another protein (referred to as protein X) obtained as described above is expressed in cells, and the emitted fluorescence is monitored. It becomes possible to analyze the localization and dynamics of protein X in the cell. That is, by observing cells transformed or transfected with DNA encoding the fusion fluorescent protein of the present invention with a fluorescence microscope, the localization and dynamics of protein X in the cells can be visualized and analyzed. [0056] For example, by using a protein specific to intracellular organelles as protein X, the distribution and movement of nuclei, mitochondria, endoplasmic reticulum, Golgi apparatus, secretory vesicles, peroxosome, etc. can be observed.
  • neuronal axons and rod-like processes show remarkably complex movement changes in the developing individuals, so dynamic analysis can be easily performed by fluorescently labeling these sites. Become.
  • the fluorescence of the fluorescent protein of the present invention can be detected as it is in living cells. This detection can be performed using, for example, a fluorescence microscope (Axio Photo Filter Set 09, Carl Zeiss) or an image analyzer (ATTO digital image analyzer).
  • the type of the microscope can be appropriately selected according to the purpose.
  • a normal epi-illumination fluorescence microscope is preferable.
  • a confocal laser microscope is preferable when focusing on resolution, such as when pursuing detailed localization in a cell.
  • an inverted microscope is preferable from the viewpoint of maintaining the physiological state of the cells and preventing contamination.
  • a water immersion lens can be used when using a high magnification lens.
  • An appropriate filter set can be selected according to the fluorescence wavelength of the fluorescent protein.
  • a high-sensitivity cooled CCD camera should be used because it should be taken in a short time. Cooling The CCD camera can cool the CCD to reduce thermal noise and capture a weak fluorescent image clearly in a short exposure.
  • kits are provided for analysis and / or analysis of bioactive substances.
  • the kit of the present invention can be prepared by commonly used materials and techniques known per se.
  • Reagents such as fluorescent protein or DNA can be prepared in a form suitable for storage by dissolving in a suitable solvent.
  • a suitable solvent water, ethanol, various buffers, etc. are used. It is possible to be.
  • Example 1 Phamret gene construction
  • pEGFP-N1 (Clontech) and pECFP-N1 (Clontech) in a saddle type, 5'-ATTGGATCCCACCATGGTGAGCAAGGGCGAG-3 '(SEQ ID NO: 3) and 5,-GCA GAATTCTTACTTGTACAGCTCGTCCATG-3' (SEQ ID NO: 4) as primers PCR was performed, and the PCR product was cleaved with restriction enzymes BamHI and EcoRI and inserted into the BamHI-EcoRI site of pRSETB to construct EGFP / pRSETB and ECFP / pRSETB, respectively.
  • PA-GFP gene was also constructed with reference to literature (Patterson and Lippincott-Schwartz Science 297, 1873-1877, 2002) and EGFP gene strength.
  • literature Patent and Lippincott-Schwartz Science 297, 1873-1877, 2002
  • EGFP gene strength To replace EGFP protein 64th leucine with ferralanin, 65th threonine with serine, 203rd threonine with histidine, and 206th alanine with lysine, the following 3 Mutation was carried out by the method described in the literature (Sawano and Miyawaki Nucleic Acids Res. 28: E78, 2000) using two primers.
  • mSECFP / pRSETB is used as a saddle, 5,-ATTGGATCCCACCATGGTGAGCAAGG GCGAG-3 '(SEQ ID NO: 3), 5,-CGGGGTACCGGCGGCGGTCACGAACTCCAG-3, PCR was performed using (SEQ ID NO: 11) as a primer, and the PCR product was cleaved with restriction enzymes BamHI and Kpnl, and inserted into the BamHI-Kpnl site of PRSETB (mSEGFPdCll / pRSETB).
  • PCR was performed using PA-GFP / pRSETB as a saddle, 5, -CGGGGTACCAAGGGCGAGGAGCTGTTCA CC-3, (SEQ ID NO: 12), 5'-GCAGAATTCTTACTTGTACAGCTCGTCCATG-3 '(SEQ ID NO: 4) as a primer,
  • the PCR product was cleaved with restriction enzymes Kpnl and EcoRI, and inserted into the Kpnl-EcoRI site of mSEGFPdCll / pRSETB to construct Phamret / pRSETB.
  • the nucleotide sequence of the fluorescent protein Phamret of the present invention is shown in SEQ ID NO: 1 in the sequence listing, and the amino acid sequence is shown in SEQ ID NO: 2 in the sequence listing.
  • Phamret / pRSETB was cut with BamHI and EcoRI and inserted into the BamHI-EcoRI site of pcDNA3 to construct Phamret / pcDNA3.
  • Figure 1 shows the structure of Pha mret.
  • HeLaS3 cells were thawed and stored in a 10 cm plastic dish by freezing. Two days later, five 3xl0 pieces were spread on a 35 mm glass bottom dish that had been dispersed and collagen-coated by trypsin treatment. After 24 hours, the medium was replaced with Hank's balanced salt solution, and a color conversion experiment was performed under a microscope. Olympus FV1000 confocal laser microscope was used for the microscope, and PLANApo x60 NA1.2 Water was used for the objective lens.
  • Phamret is excited with a multi-Argon laser 458 nm line (maximum output 3 mW) laser light (laser power 2%), and two fluorescences of 470 to 500 nm (donor channel) and 510 to 560 nm (acceptor channel) are simultaneously emitted. I got it. Before 405 nm laser light irradiation, the donor channel has strong fluorescence ( Figures 2A and 2D), while 405 nm laser light (maximum output 25 mW) is 1.2% When irradiating the cytoplasm (circle 1) with one power, Phamret quickly changed color and fluorescence of the receptor channel became stronger (Fig. 2B, C).
  • Example 4 FRET efficiency from mSECFP to PA-GFP in Phamret after discoloration
  • FIG. 1 shows a structural schematic diagram of Phamret.
  • FIG. 2 shows color conversion of Phamret-expressing HeLa cells by light stimulation.
  • FIG. 3 shows spectra before and after Phamret color conversion.
  • FIG. 4 shows a schematic diagram of the structure and characteristics of Phamret.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明の目的は、刺激光依存的に蛍光共鳴エネルギー移動(FRET)のアクセプターを出現させることにより、任意の細胞内小器官、細胞又は組織を多色で標識することを可能とする蛍光蛋白質を提供することである。本発明によれば、ドナー蛍光蛋白質とアクセプター蛍光蛋白質との融合蛋白質から成り、刺激光照射前はドナー蛋白質の励起光を照射することによりドナー蛋白質が蛍光を発することができ、刺激光照射後は、ドナー蛋白質の励起光を照射することによりドナー蛍光蛋白質とアクセプター蛍光蛋白質との間で分子内FRETが生じることによりアクセプター蛋白質が蛍光を発することができ、ドナー蛋白質の蛍光とアクセプター蛋白質の蛍光とが互いに異なる波長の蛍光であることを特徴とする、蛍光蛋白質が提供される。

Description

明 細 書
蛍光蛋白質
技術分野
[0001] 本発明は、新規な蛍光蛋白質に関する。より詳細には、本発明は、光照射依存的 な蛍光エネルギー移動を利用した波長変換型の蛍光蛋白質及びその利用に関する 背景技術
[0002] クラゲのェクオレア.ビクトリア(Aequorea victoria)に由来する緑色蛍光蛋白質(GF P)は、生物系において多くの用途を有する。最近、ランダム突然変異誘発法および 半合理的 (semi-rational)突然変異誘発法に基づいて、色を変化させたり、折りたたみ 特性を改善したり、輝度を高めたり、あるいは pH感受性を改変したといった様々な G FP変異体が作製されている。遺伝子組み換え技術により他の蛋白質を GFP等の蛍 光蛋白質に融合させて、それらの発現および輸送のモニタリングを行うことが行われ ている。
[0003] 最もよく使用される GFP変異体の一つとして黄色蛍光蛋白質 (YFP)が挙げられる 。 YFPは、クラゲ (Aequorea) GFP変異体の中でも最長波長の蛍光を示す。大部分 の YFPの εおよび Φは、それぞれ 60,000〜100,000M— m—1および 0.6〜0.8であり(Ts ien, R. Y. (1998). Ann. Rev. Biochem. 67, 509-544)、これらの値は、一般的な蛍光 団(フルォレセインおよびローダミンなど)の値に匹敵する。また、 GFP変異体の他の 例として、シアン蛍光蛋白質(CFP)があり、 ECFP (enhanced cyan fluorescent protei n)が知られている。また、イソギンチヤク(Discoma sp.)力もは赤色蛍光蛋白質 (RFP) も単離されており、 DasRedが知られている。このように蛍光蛋白質は、緑色、黄色、シ アン色、赤色の 4種が次々と開発されスペクトルの範囲は大幅に広がっている。
[0004] また、光照射によって色が変化する蛍光蛋白質を利用することにより、光によって特 定の細胞や器官をマーキング (optical marking)することが可能となる。このような光照 射依存的な細胞や組織などの標識については、 PA— GFP (Patterson GH and Lipp incott— Schwartz J, Science 297, 1873—1877 (2002))や kaede (Ando R et al, Proc.Natl .Acad.Sci.USA 99, 12651-12656 (2002))の利用が挙げられる。しかしながら、 PA— GFPは無蛍光の状態力も蛍光が出現するという特徴ゆえに刺激光照射前はどこに 標本があるのか分力りづらいという問題がある。また、 kaedeは刺激光照射により緑か ら赤に変換するが、双方の色に応じた励起光が必要となり煩雑であり、さらに kaedeは 4量体を形成するため任意のタンパク質と連結させたものの動態観察には向いてい なかった。
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、刺激光依存的に蛍光共鳴エネルギー移動 (FRET)のァクセプターを出 現させることにより、任意の細胞内小器官、細胞又は組織を多色で標識することを可 能とする蛍光蛋白質を提供することを解決すべき課題とした。
課題を解決するための手段
[0006] 本発明者らは上記課題を解決するために鋭意検討した結果、互いに異なる波長の 蛍光を発することができるドナー蛍光蛋白質とァクセプター蛍光蛋白質とを融合し、 光刺激前はドナー蛋白質の励起光を照射することによりドナー蛋白質が蛍光を発す ることができ、光刺激後は、ドナー蛋白質の励起光を照射することによりドナー蛍光 蛋白質とァクセプター蛍光蛋白質との間で分子内 FRETが生じてァクセプター蛋白質 が蛍光を発することができる蛍光蛋白質を構築することにより、刺激光依存的に蛍光 タンパク質の蛍光スペクトルを変化させることができることを見出した。本発明はこれら の知見に基づいて完成したものである。
[0007] 即ち、本発明によれば、ドナー蛍光蛋白質とァクセプター蛍光蛋白質との融合蛋白 質力 成り、刺激光照射前はドナー蛋白質の励起光を照射することによりドナー蛋白 質が蛍光を発することができ、刺激光照射後は、ドナー蛋白質の励起光を照射する ことによりドナー蛍光蛋白質とァクセプター蛍光蛋白質との間で分子内 FRETが生じ ることによりァクセプター蛋白質が蛍光を発することができ、ドナー蛋白質の蛍光とァ クセプター蛋白質の蛍光とが互いに異なる波長の蛍光であることを特徴とする、蛍光 蛋白質が提供される。
[0008] 好ましくは、ドナー蛍光蛋白質は CFP変異体であり、ァクセプター蛍光蛋白質が P A— GFP変異体である。
好ましくは、刺激光は紫外光又は紫色光である。
好ましくは、ドナー蛍光蛋白質は、 CFPの C末端の 11アミノ酸を欠失させた CFP変 異体であり、ァクセプター蛍光蛋白質は、 PA— GFPの N末端の 3アミノ酸を欠失させ た PA— GFP変異体である。
好ましくは、ドナー蛍光蛋白質とァクセプター蛍光蛋白質とはリンカ一配列を介して 融合している。
[0009] 好ましくは、本発明の蛍光蛋白質は、以下の何れかのアミノ酸配列を有する。
(a)配列番号 2に記載のアミノ酸配列;又は、
(b)配列番号 2に記載のアミノ酸配列において 1から数個のアミノ酸の欠失、置換及 び Z又は付加を有するアミノ酸配列:
[0010] 本発明の別の側面によれば、上記した本発明の蛍光蛋白質をコードする DNAが 提供される。
本発明のさらに別の側面によれば、上記した本発明の DNAを有する組み換えべク ターが提供される。
本発明のさらに別の側面によれば、上記した本発明の DNA又は組み換えベクター を有する形質転換体が提供される。
[0011] 本発明のさらに別の側面によれば、上記した本発明の蛍光蛋白質と他の蛋白質と から成る融合蛍光蛋白質が提供される。
本発明のさらに別の側面によれば、上記した本発明の融合蛍光蛋白質を細胞内で 発現させることを特徴とする、細胞内における蛋白質の局在または動態を分析する 方法が提供される。
本発明のさらに別の側面によれば、上記した本発明の蛍光蛋白質、 DNA、組み換 えベクター、形質転換体、又は融合蛍光蛋白質を含む、蛍光試薬キットが提供される 発明を実施するための最良の形態
[0012] 以下、本発明の実施の形態について詳細に説明する。
(1)本発明の蛍光蛋白質 本発明の蛍光蛋白質は、ドナー蛍光蛋白質とァクセプター蛍光蛋白質との融合蛋 白質力 成り、刺激光照射前はドナー蛋白質の励起光を照射することによりドナー蛋 白質が蛍光を発することができ、刺激光照射後は、ドナー蛋白質の励起光を照射す ることによりドナー蛍光蛋白質とァクセプター蛍光蛋白質との間で分子内 FRETが生 じることによりァクセプター蛋白質が蛍光を発することができ、ドナー蛋白質の蛍光と ァクセプター蛋白質の蛍光とが互 1ヽに異なる波長の蛍光であることを特徴とする蛍光 蛋白質である。
[0013] 本発明で用いるドナー蛍光蛋白質とァクセプター蛍光蛋白質の組み合わせは、上 記した本発明の蛍光蛋白質の作用効果を達成できるものであれば特に限定されな い。ドナー蛍光蛋白質及びァクセプター蛍光蛋白質としては、例えば、シアン蛍光蛋 白質 (CFP)、黄色蛍光蛋白質 (YEP)、緑色蛋白質 (GFP)、赤色蛍光蛋白質 (RE P)、青色蛍光蛋白質 (BFP)又はそれらの変異体などが使用できる。
[0014] 本明細書で言う、シアン蛍光蛋白質、黄色蛍光蛋白質、緑色蛋白質、赤色蛍光蛋 白質、青色蛍光蛋白質又はそれらの変異体とは、各々公知の蛍光蛋白質だけでなく 、それらの変異体 (例えば、上記蛍光蛋白質の蛍光強度を増強した、 ECFP、 EYFP 、 EGFP、 ERFP、 EBFPなど)の全てを包含する意味である。例えば、緑色蛍光蛋 白質の遺伝子は単離され配列も決定されている (Prasher, D.C.ら (1992), "Primary s tructure of the Aequorea victoria green fluorescent protein , uene 111 : 229— 23ύ)。 その他の蛍光蛋白質又はその変異体のアミノ酸配列も多数報告されており、例えば 、 Roger Y.Tsien, Annu.Rev.Biochem.1998. 67:509-44、並びにその引用文献に記載 されている。緑色蛍光蛋白質 (GFP)、黄色蛍光蛋白質 (YFP)またはそれらの変異 体としては、例えば、ォワンクラゲ(例えば、ェクオレア 'ビクトリア(Aequorea victoria) )由来のものを使用できる。
[0015] 本発明で用いる蛍光蛋白質をコードする遺伝子の塩基配列などは公知である。蛍 光蛋白質をコードする遺伝子は市販のものを使用することもできる。例えば、クロンテ ック社から市販されている、 EGFPベクター、 EYFPベクター、 ECFPベクター、 EBF pベクターなどを用いることができる。
[0016] 本発明で用いることができる蛍光ドナー Z蛍光ァクセプターの組み合わせとしては 、 CFP又はその変異体 ZGFP又はその変異体、又は BFP又はその変異体 ZGFP 又はその変異体などが挙げられる力 これらに限定されるものではない。好ましくは、 ドナー蛍光蛋白質は CFP変異体であり、ァクセプター蛍光蛋白質は PA— GFP変異 体である。
[0017] 本発明の実施例では、 CFPと PA— GFPをそれぞれ FRETのドナー及びァクセプ ターとして利用することにより、刺激光依存的にシアン色から緑黄色に変換する蛋白 質 (Phamret)を作製することに成功した。具体的には、ドナー蛍光蛋白質として、 CF Pの C末端の 11アミノ酸を欠失させた CFP変異体を使用し、ァクセプター蛍光蛋白 質として、 PA—GFPの N末端の 3アミノ酸を欠失させた PA—GFP変異体を使用した
[0018] 本発明の蛍光蛋白質では、刺激光照射前はドナー蛋白質の励起光を照射すること によりドナー蛋白質が蛍光を発し、刺激光照射後は、ドナー蛋白質の励起光を照射 することによりドナー蛍光蛋白質とァクセプター蛍光蛋白質との間で分子内 FRETが 生じることによりァクセプター蛋白質が蛍光を発する。ここで用いる刺激光は、好まし くは、紫外光又は紫色光である。紫外光又は紫色光の照射時間は特に限定されない 力 例えば数ミリ秒力 10分間程度行うことができる。
[0019] また、ドナー蛍光蛋白質とァクセプター蛍光蛋白質とがリンカ一配列を介して融合 していてもよい。リンカ一配列としては数個(例えば 1〜5個程度)のアミノ酸配列が挙 げられる。
[0020] 本発明の蛍光蛋白質の具体例としては、
(1) 配列番号 2に記載のアミノ酸配列を有する蛍光蛋白質、又は
(2) 配列番号 2に記載のアミノ酸配列において 1から数個のアミノ酸の欠失、置換及 び Z又は付加を有するアミノ酸配列を有し、かつドナー蛍光蛋白質とァクセプター蛍 光蛋白質との融合蛋白質力 成り、刺激光照射前はドナー蛋白質の励起光を照射 することによりドナー蛋白質が蛍光を発することができ、刺激光照射後は、ドナー蛋 白質の励起光を照射することによりドナー蛍光蛋白質とァクセプター蛍光蛋白質との 間で分子内 FRETが生じることによりァクセプター蛋白質が蛍光を発することができ、 ドナー蛋白質の蛍光とァクセプター蛋白質の蛍光とが互!、に異なる波長の蛍光であ ることを特徴とする蛍光蛋白質
が挙げられる。
[0021] 本明細書で言う「1から数個のアミノ酸の欠失、置換、及び Z又は付加を有するアミ ノ酸配列」における「1から数個」の範囲は特には限定されないが、例えば、 1から 20 個、好ましくは 1から 10個、より好ましくは 1から 7個、さらに好ましくは 1から 5個、特に 好ましくは 1から 3個程度を意味する。
[0022] 上記した配列番号 2に記載のアミノ酸配列を有する蛍光蛋白質 (Phamret)の場合 は、ドナー蛍光蛋白質として、 CFPの C末端の 11アミノ酸を欠失させた CFP変異体 を使用し、ァクセプター蛍光蛋白質として、 PA— GFPの N末端の 3アミノ酸を欠失さ せた PA— GFP変異体を使用している。そして、刺激光 (400nm)照射前はドナー蛋 白質の励起光 (458nm)を照射することによりドナー蛋白質が蛍光 (480nm)を発す ることができ、刺激光 (400nm)照射後は、ドナー蛋白質の励起光 (458nm)を照射 することによりドナー蛍光蛋白質とァクセプター蛍光蛋白質との間で分子内 FRETが 生じることによりァクセプター蛋白質が蛍光(520nm)を発することができる。
[0023] 本発明の蛍光蛋白質の取得方法については特に制限はなぐ化学合成により合成 した蛋白質でもよいし、遺伝子組み換え技術による作製した組み換え蛋白質でもよ い。
[0024] 組み換え蛋白質を作製する場合には、先ず蛍光蛋白質をコードする DNAを入手 することが必要である。ドナー蛍光蛋白質およびァクセプター蛍光蛋白質として使用 する各種の蛍光蛋白質のアミノ酸配列及び塩基配列は当業者に公知で、これらをコ ードする DNAは市販品から入手することが可能である力、または PCR等の通常の遺 伝子組み換え手法によりクローユングすることができる。このようにして入手したドナー 蛍光蛋白質およびァクセプター蛍光蛋白質をコードする DNAを順番に遺伝子組み 換え技術により連結することにより、本発明の蛍光蛋白質をコードする DNAを構築す ることができる。この DNAを適当な発現系に導入することにより、本発明の蛍光蛋白 質を産生することができる。発現系での発現については本明細書中後記する。
[0025] (2)本発明の DNA
本発明によれば、本発明の蛍光蛋白質をコードする DNAが提供される。 配列番号 2に記載のアミノ酸配列を有する蛍光蛋白質をコードする DNAとしては、 配列番号 1に記載の塩基配列を有する DNAが挙げられる。また、配列番号 1に記載 の塩基配列において、 1から数個の塩基の欠失、置換及び Z又は付加を有する塩基 配列を有する DNAであって、本明細書中上記した特徴を有する本発明の蛍光蛋白 質をコードする DNAも、本発明の範囲内に含まれる。
[0026] 本明細書で言う「1から数個の塩基の欠失、置換及び Z又は付加を有する塩基配 列」における「1から数個」の範囲は特には限定されないが、例えば、 1から 50個、好 ましくは 1から 30個、より好ましくは 1から 20個、さらに好ましくは 1から 10個、特に好 ましくは 1から 5個程度を意味する。
[0027] 本発明の DNAは、例えばホスホアミダイト法などにより合成することができるし、特 異的プライマーを用いたポリメラーゼ連鎖反応 (PCR)によって製造することもできる。 本発明の DNA又はその断片の作製方法については、本明細書中上述した通りであ る。
[0028] また、所定の核酸配列に所望の変異を導入する方法は当業者に公知である。例え ば、部位特異的変異誘発法、縮重オリゴヌクレオチドを用いる PCR、核酸を含む細 胞の変異誘発剤又は放射線への露出等の公知の技術を適宜使用することによって 、変異を有する DNAを構築することができる。このような公知の技術は、例えば、 Mol ecular Cloning: A laboratory Mannual, 2 ti,d., し old bpnng Harbor Laboratory, Cold
Spring Harbor, NY. ,1989、並びに Current Protocols in Molecular Biology, Suppleme nt 1〜38, John Wiley & Sons (1987- 1997)に記載されている。
[0029] (3)本発明の組み換えベクター
本発明の DNAは適当なベクター中に挿入して使用することができる。本発明で用 いるベクターの種類は特に限定されず、例えば、自立的に複製するベクター(例えば プラスミド等)でもよいし、あるいは、宿主細胞に導入された際に宿主細胞のゲノムに 組み込まれ、組み込まれた染色体と共に複製されるものであってもよ 、。
[0030] 好ましくは、本発明で用いるベクターは発現ベクターである。発現ベクターにおいて 本発明の DNAは、転写に必要な要素(例えば、プロモータ等)が機能的に連結され ている。プロモータは宿主細胞において転写活性を示す DNA配列であり、宿主の種 類に応じて適宜することができる。
[0031] 細菌細胞で作動可能なプロモータとしては、バチルス 'ステア口テルモフィルス'マ ノレトンエニック · ^フ1 ~~ IT遺 is子 (Bacillusstearothermophilus maltogenic amylase gen e)ゝノ テノレス'リケニホノレ^ス αア^フーセ遺伝子 (Bacillus licheniformis alpha— amylase gene),バチルス 'アミロリケファチェンス · BANアミラーゼ遺伝子 (Bacillus amyloliquefa ciens BAN amylase gene),バチルス ·サブチリス'アルカリプロテアーゼ遺伝子 (Bacill us Subtilis alkaline protease gene)もしくはバチルス'プミルス'キシロシダーゼ遺伝子 (Bacillus pumilus xylosldase gene)のプロモータ、またはファージ 'ラムダの P若しくは
R
Pプロモータ、大腸菌の lac、 trp若しくは tacプロモータなどが挙げられる。
L
[0032] 哺乳動物細胞で作動可能なプロモータの例としては、 SV40プロモータ、 MT- 1 ( メタ口チォネイン遺伝子)プロモータ、またはアデノウイルス 2主後期プロモータなどが ある。昆虫細胞で作動可能なプロモータの例としては、ポリヘドリンプロモータ、 P10 プロモータ、オートグラファ 'カリホル-力 'ポリへドロシス塩基性蛋白プロモータ、バキ ユウロウィルス即時型初期遺伝子 1プロモータ、またはバキユウロウィルス 39K遅延型 初期遺伝子プロモータ等がある。酵母宿主細胞で作動可能なプロモータの例として は、酵母解糖系遺伝子由来のプロモータ、アルコールデヒドロゲナーゼ遺伝子プロ モータ、 TPI1プロモータ、 ADH2-4Cプロモータなどが挙げられる。
糸状菌細胞で作動可能なプロモータの例としては、 ADH3プロモータまたは tpiA プロモータなどがある。
[0033] また、本発明の DNAは必要に応じて、例えばヒト成長ホルモンターミネータまたは 真菌宿主については TPI1ターミネータ若しくは ADH3ターミネータのような適切なタ 一ミネータに機能的に結合されてもよい。本発明の組み換えベクターは更に、ポリア デニレーシヨンシグナル (例えば SV40またはアデノウイルス 5Elb領域由来のもの)、 転写ェンハンサ配列(例えば SV40ェンノヽンサ)および翻訳ェンハンサ配列(例えば アデノウイルス VA RNAをコードするもの)のような要素を有していてもよい。
[0034] 本発明の組み換えベクターは更に、該ベクターが宿主細胞内で複製することを可 能にする DNA配列を具備してもよぐその一例としては SV40複製起点(宿主細胞が 哺乳類細胞のとき)が挙げられる。 [0035] 本発明の組み換えベクターはさらに選択マーカーを含有してもよい。選択マーカー としては、例えば、ジヒドロ葉酸レダクターゼ(DHFR)またはシゾサッカロマイセス'ポ ンべ TPI遺伝子等のようなその補体が宿主細胞に欠けて 、る遺伝子、または例えば アンピシリン、カナマイシン、テトラサイクリン、クロラムフエ二コール、ネオマイシン若し くはヒグロマイシンのような薬剤耐性遺伝子を挙げることができる。
[0036] 本発明の DNA、プロモータ、および所望によりターミネータおよび Zまたは分泌シ グナル配列をそれぞれ連結し、これらを適切なベクターに挿入する方法は当業者に 周知である。
[0037] (4)本発明の形皙転椽体
本発明の DNA又は組み換えベクターを適当な宿主に導入することによって形質転 換体を作製することができる。
本発明の DNAまたは組み換えベクターを導入される宿主細胞は、本発明の DNA 構築物を発現できれば任意の細胞でよぐ細菌、酵母、真菌および高等真核細胞等 が挙げられる。
[0038] 細菌細胞の例としては、バチルスまたはストレブトマイセス等のグラム陽性菌又は大 腸菌等のグラム陰性菌が挙げられる。これら細菌の形質転換は、プロトプラスト法、ま たは公知の方法でコンビテント細胞を用いることにより行えばよい。
[0039] 哺乳類細胞の例としては、 HEK293細胞、 HeLa細胞、 COS細胞、 BHK細胞、 C HL細胞または CHO細胞等が挙げられる。哺乳類細胞を形質転換し、該細胞に導 入された DNA配列を発現させる方法も公知であり、例えば、エレクト口ポーレーシヨン 法、リン酸カルシウム法、リポフエクシヨン法等を用いることができる。
[0040] 酵母細胞の例としては、サッカロマイセスまたはシゾサッカロマイセスに属する細胞 が挙げられ、例えば、サッカロマイセス 'セレビシェ (Saccharomyces cerevislae)または サッカロマイセス.クルィベリ (Saccharomyces kluyveri)等が挙げられる。酵母宿主へ の組み換えベクターの導入方法としては、例えば、エレクト口ポレーシヨン法、スフエロ ブラスト法、酢酸リチウム法等を挙げることができる。
[0041] 他の真菌細胞の例は、糸状菌、例えばァスペルギルス、ニューロスポラ、フザリウム 、またはトリコデルマに属する細胞である。宿主細胞として糸状菌を用いる場合、 DN A構築物を宿主染色体に組み込んで組換え宿主細胞を得ることにより形質転換を行 うことができる。 DNA構築物の宿主染色体への組み込みは、公知の方法に従い、例 えば相同組換えまたは異種組換えにより行うことができる。
[0042] 昆虫細胞を宿主として用いる場合には、組換え遺伝子導入ベクターおよびバキュ口 ウィルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウィルスを得た後、 さらに組換えウィルスを昆虫細胞に感染させ、蛋白質を発現させることができる(例え は、 Baculovirus Expression Vectors, A Laboratory Manual;及び 7ルント'フ—口トコ ~~ ルズ'イン'モレキュラ^ ~ ·バイオロジー、 Bio/Technology, 6, 47(1988)等に記載)。
[0043] バキュロウィルスとしては、例えば、ョトウガ科昆虫に感染するウィルスであるアウト グラファ 'カリフオル-力'ヌクレア一'ポリへドロシス'ウィルス (Autographa californica n uclear polyhedrosis virusノ等 用 、ること; 0できる。
[0044] 昆虫細胞としては、 Spodoptera frugiperdaの卵巣細胞である Sf9、 Sf21〔バキュロウ ィルス.エクスプレッション.ベクターズ、ァ 'ラボラトリ^ ~ ·マ-ユアル、ダブリュ ~ ·エイ チ.フリーマン.アンド.カンパ-一 (w. H. Freeman and Company),ニューヨーク (New York), (1992)]、 Trichoplusia niの卵巣細胞である HiFive (インビトロジェン社製)等を 用!/、ることができる。
[0045] 組換えウィルスを調製するための、昆虫細胞への組換え遺伝子導入ベクターと上 記バキュロウィルスの共導入方法としては、例えば、リン酸カルシウム法又はリポフエ クシヨン法等を挙げることができる。
[0046] 上記の形質転換体は、導入された DNA構築物の発現を可能にする条件下で適切 な栄養培地中で培養する。形質転換体の培養物から、本発明の蛍光融合蛋白質を 単離精製するには、通常の蛋白質の単離、精製法を用いればよい。
[0047] 例えば、本発明の蛋白質が、細胞内に溶解状態で発現した場合には、培養終了後 、細胞を遠心分離により回収し水系緩衝液に懸濁後、超音波破砕機等により細胞を 破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られた上 清から、通常の蛋白質の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、脱 塩法、有機溶媒による沈殿法、ジェチルアミノエチル (DEAE)セファロース等のレジン を用いた陰イオン交換クロマトグラフィー法、 S- Sepharose FF (フアルマシア社製)等の レジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フエ二ルセフ ァロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過 法、ァフィユティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動 等の電気泳動法等の手法を単独あるいは組み合わせて用い、精製標品を得ることが できる。
[0048] (5)本発明の带光 白皙及びそれを含む融合 白皙の利用
本発明の蛍光蛋白質を他の蛋白質と融合させることにより、融合蛋白質を構築する ことができる。
本発明の融合蛋白質の取得方法については特に制限はなぐ化学合成により合成 した蛋白質でもよいし、遺伝子組み換え技術による作製した組み換え蛋白質でもよ い。
[0049] 組み換え蛋白質を作製する場合には、先ず当該蛋白質をコードする DNAを入手 することが必要である。本明細書中上記した方法により、本発明の蛍光蛋白質をコー ドする DNAを入手することができる。また同様に、融合すべき蛋白質をコードする D NA断片も入手する。次いで、これらの DNA断片を順番に遺伝子組み換え技術によ り連結することにより、所望の融合蛋白質をコードする DNAを得ることができる。この DNAを適当な発現系に導入することにより、本発明の融合蛋白質を産生することが できる。
[0050] 本発明の蛍光蛋白質は、特に、標識としての利用価値が高い。即ち、本発明の蛍 光蛋白質を被検アミノ酸配列との融合蛋白質として精製し、マイクロインジェクション 法などの手法により細胞内に導入し、該融合蛋白質の分布を経時的に観察すれば、 被検アミノ酸配列の細胞内におけるターゲッティング活性を検出することが可能であ る。
[0051] 本発明の蛍光蛋白質を融合させる他の蛋白質 (被検アミノ酸配列)の種類は特に 限定されるものではないが、例えば、細胞内に局在する蛋白質、細胞内小器官に特 異的な蛋白質、ターゲティングシグナル (例えば、核移行シグナル、ミトコンドリアプレ 配列)等が好適である。なお、本発明の蛍光蛋白質は、マイクロインジェクション法な どにより細胞内に導入する以外に、細胞内で発現させて用いることも可能である。こ の場合には、本発明の蛍光蛋白質をコードする DNAが発現可能に挿入されたべク ターが宿主細胞に導入される。
[0052] また、本発明の蛍光蛋白質は、レポーター蛋白質としてプロモーター活性の測定に 用いることも可能である。即ち、被検プロモーターの下流に、本発明の蛍光蛋白質を コードする DNAが配置されたベクターを構築し、これを宿主細胞に導入し、該細胞 力 発せられる本発明の蛍光蛋白質の蛍光を検出することにより、被検プロモーター の活性を測定することが可能である。被検プロモーターとしては、宿主細胞内で機能 するものであれば、特に制限はない。
[0053] 上記被検アミノ酸配列のターゲティング活性の検出やプロモーター活性の測定に おいて用いられるベクターとしては、特に制限はないが、例えば、動物細胞用べクタ 一では、「pNEO」 (P. Southern, and P. Berg (1982) J. MOl. Appl. Genet. 1:327)、「p CAGGS」(H.Niwa'K.Yamamura'and J.Miyazaki. Gene 108,193—200(1991))、「pRc/C MV」(インビトロゲン社製)、「pCDM8」(インビトロゲン社製)などが、酵母用ベクター では、「pRS303」 ,「pRS304」 ,「pRS305」 ,「pRS306」 ,「pRS313」 ,「pRS314」 ,「pRS315」 ,[pR S316] (R.S.Sikorski and P.Hieter (1989) Genetics 122: 19-27)、「pRS423」,「pRS424」 ,「pRS425」,「pRS426」 (T.W.Christianson, R.S.Sikorski, M.Dante, J.H.Shero, and P. Hieter (1992) Gene 110: 119- 122)などが好適に用いられる。
[0054] また、使用可能な細胞の種類も特に限定されず、各種の動物細胞、例えば、 L細胞 、 BalbC- 3T3細胞、 NIH3T3細胞、 CHO(Chinese hamster ovary)細胞、 HeLa細胞、 N RK(normal rat kidney)細胞、「Saccharomyces cerevisiae」などの酵母細胞や大月昜菌( E. coli)細胞などを使用することができる。ベクターの宿主細胞への導入は、例えば、 リン酸カルシウム法やエレクト口ポレーシヨン法などの常法により行うことができる。
[0055] 上記のようにして得た、本発明の蛍光蛋白質と他の蛋白質 (蛋白質 Xとする)とを融 合させた融合蛍光蛋白質を細胞内で発現させ、発する蛍光をモニターすることにより 、細胞内における蛋白質 Xの局在や動態を分析することが可能になる。即ち、本発明 の融合蛍光蛋白質をコードする DNAで形質転換またはトランスフエタトした細胞を蛍 光顕微鏡で観察することにより細胞内における蛋白質 Xの局在や動態を可視化して 分析することができる。 [0056] 例えば、蛋白質 Xとして細胞内オルガネラに特異的な蛋白質を利用することにより、 核、ミトコンドリア、小胞体、ゴルジ体、分泌小胞、ペルォキソームなどの分布や動きを 観察できる。
また、例えば、神経細胞の軸索、榭状突起などは発生途中の個体の中で著しく複 雑な走向の変化を示すので、こういった部位を蛍光ラベルすることにより動的解析が 可會 になる。
[0057] 本発明の蛍光蛋白質の蛍光は、生細胞のまま検出することが可能である。この検 出は、例えば、蛍光顕微鏡 (カールツァイス社アキシォフォトフィルターセット 09)や 画像解析装置 (ATTOデジタルイメージアナライザー)などを用いて行うことが可能で ある。
[0058] 顕微鏡の種類は目的に応じて適宜選択できる。経時変化を追跡するなど頻回の観 察を必要とする場合には、通常の落射型蛍光顕微鏡が好ましい。細胞内の詳細な局 在を追及したい場合など、解像度を重視する場合は、共焦点レーザー顕微鏡の方が 好ましい。顕微鏡システムとしては、細胞の生理状態を保ち、コンタミネーシヨンを防 止する観点から、倒立型顕微鏡が好ましい。正立顕微鏡を使用する場合、高倍率レ ンズを用いる際には水浸レンズを用いることができる。フィルターセットは蛍光蛋白質 の蛍光波長に応じて適切なものを選択できる。また、蛍光顕微鏡を用いた生細胞で の経時観察を行う場合には、短時間で撮影を行うべきなので、高感度冷却 CCDカメ ラを使用する。冷却 CCDカメラは、 CCDを冷却することにより熱雑音を下げ、微弱な 蛍光像を短時間露光で鮮明に撮影することができる。
[0059] (6)本発明のキット
本発明によれば、本明細書に記載した蛋白質、融合蛋白質、 DNA、組み換えべク ター又は形質転換体から選択される少なくとも 1種以上を含むことを特徴とする、細胞 内成分の局在の分析及び/又は生理活性物質の分析のためのキットが提供される。 本発明のキットは、それ自体既知の通常用いられる材料及び手法で調製することが できる。
[0060] 蛍光蛋白質又は DNAなどの試薬は、適当な溶媒に溶解することにより保存に適し た形態に調製することができる。溶媒としては、水、エタノール、各種緩衝液などを用 いることがでさる。
以下の実施例により本発明を具体的に説明するが、本発明は実施例によって限定 されるものではない。
実施例
[0061] 実施例 1: Phamretの遺伝子構築
先ず、 pEGFP- N1 (クロンテック)及び pECFP- N1 (クロンテック)を铸型に、 5 ' -ATTGGATCCCACCATGGTGAGCAAGGGCGAG-3 ' (配列番号 3)と、 5,- GCA GAATTCTTACTTGTACAGCTCGTCCATG-3 ' (配列番号 4)をプライマーに用いて PCRを行い、 PCR産物を制限酵素 BamHIと EcoRIで切断し、 pRSETBの BamHI- EcoR Iサイトに挿入して、それぞれ EGFP/pRSETB、 ECFP/pRSETBを構築した。
次に、文献 (Patterson and Lippincott- Schwartz Science 297, 1873-1877, 2002)を 参考にして EGFP遺伝子力も PA- GFP遺伝子を構築した。 EGFPタンパク質の 64番目 のロイシンをフエ-ルァラニン、 65番目のスレオ-ンをセリン、 203番目のスレオニン をヒスチジン、 206番目のァラニンをリジンに置換するために、 EGFP/pRSETBを铸型 に以下の 3つのプライマーを用い、文献 (Sawano and Miyawaki Nucleic Acids Res. 28 : E78, 2000)に記載の方法により変異導入を行った。
[0062] 5,- GTGACCACCTTCAGCTACGGCGTG- 3,(配列番号 5)
5, - TACCTGAGCCACCAGTCCGCC- 3 ' (配列番号 6)
5, - TACCAGTCCAAGCTGAGCAAA- 3,(配列番号 7)
[0063] 次に、 ECFPタンパク質の成熟効率を向上させ、かつ多量体形成を防ぐために 72 番目のセリンをァラニン、 175番目のセリンをグリシンに、 206番目のァラニンをリジン に置換した mSECFPをコードする遺伝子を構築した。方法は上記と同様で、 ECFP/p RSETBを铸型として以下のプライマーを用いて変異を導入した。
5, - CAGTGCTTCGCCCGCTACCCC- 3,(配列番号 8)
5, - GAGGACGGCGGCGTGCAGCTC- 3 ' (配列番号 9)
5, - CACCAGTCCAAGCTGAGCAAA- 3,(配列番号 10)
[0064] 次に、 mSECFP/pRSETBを铸型に、 5, - ATTGGATCCCACCATGGTGAGCAAGG GCGAG-3' (配列番号 3) , 5, - CGGGGTACCGGCGGCGGTCACGAACTCCAG- 3, (配列番号 11)をプライマーに用いて PCRを行い、 PCR産物を制限酵素 BamHIと Kpnl で切断し、 PRSETBの BamHI- Kpnlサイトに挿入した(mSEGFPdCll/pRSETB)。次い で、 PA- GFP/pRSETBを铸型に、 5, - CGGGGTACCAAGGGCGAGGAGCTGTTCA CC- 3,(配列番号 12) , 5 ' -GCAGAATTCTTACTTGTACAGCTCGTCCATG-3 ' ( 配列番号 4)をプライマーに用いて PCRを行 、、 PCR産物を制限酵素 Kpnlと EcoRIで 切断し、 mSEGFPdCll/pRSETBの Kpnl- EcoRIサイトに挿入して Phamret/pRSETBを 構築した。本発明の蛍光蛋白質 Phamretの塩基配列を配列表の配列番号 1に示し、 アミノ酸配列を配列表の配列番号 2に示す。
[0065] 哺乳類細胞で Phamretを発現させるために Phamret/pRSETBを BamHIと EcoRIで切 断して、 pcDNA3の BamHI- EcoRIサイトに挿入し、 Phamret/pcDNA3を構築した。 Pha mretの構造を図 1に示す。
[0066] ¾施例 2: Ph細 ret 安定発現する晡 ¾,街谘着細胞の作成
35mmプラスチック皿上で培養されている lxlO5個の HeLaS3細胞にリポフエクシヨン 法により 1 μ gの Phamret/pcDNA3をトランスフエクシヨンした。 24時間後トリプシン処理 により分散させ、 10cmプラスチック皿に撒きなおした。さらに 24時間後 500 g/mlのジ エネティシンを加えた。 2週間後、蛍光性の細胞コロニーをピックアップし 35mmプラス チック皿に撒き、増殖させた後- 80°Cに凍結保存した。保存にはセルバンカーを使用 した。
[0067] ¾ 列 3 : Ph細 retの紫色光照射による色 橼
凍結保存して 、る Phamret安定発現 HeLaS3細胞を融解し、 10cmプラスチック皿に 撒いた。 2日後トリプシン処理により、分散させコラーゲンコートした 35mmのガラスボト ム皿に 3xl05個撒いた。 24時間後、培地を Hank' s balanced salt solutionに置換し、顕 微鏡下における色変換実験を行った。顕微鏡にはォリンパス社の FV1000共焦点レ 一ザ一顕微鏡を、対物レンズには PLANApo x60 NA1.2 Waterを使用した。マルチア ルゴンレーザーの 458nmライン (最大出力 3mW)のレーザー光 (レーザーパワー 2%)で Phamretを励起し、 470〜500nm (ドナーチャネル)と 510〜560nm (ァクセプターチャネ ル)の 2つの蛍光を同時に取得した。 405nmのレーザー光照射前はドナーチャネルの 蛍光が強いのに対し (図 2A、 D)、 405nmのレーザー光 (最大出力 25mW)を 1.2%のレ 一ザ一パワーで細胞質 (〇印 1)に照射すると、速やかに Phamretが色変換しァクセプ ターチャネルの蛍光が強くなつた(図 2B、 C)。別の細胞の核領域(〇印 2)に 405nm レーザーを照射すると、核領域のみ色変換が生じァクセプターチャネルの蛍光が強 くなつた (図 2C、 F)。 405nmを細胞質の局所あるいは核の一部領域に照射しているに もかかわらず、細胞質全体または核全体が色変換して!/ヽるのは Phamretの拡散による ものである。また、色変換した Phamretが核内に進入しない (図 2E)、あるいは核外に 流出しない (図 2F)のは Phamretの分子量が 60Kdaあり、核膜孔を自由拡散できる最大 分子量の 50Kdaよりも大きいためである。以上の結果から、 Phamretによる細胞内コン パートメントのマーキングが可能であることが証明された。
[0068] 実施例 4:色栾椽後の Phamret内における mSECFPから PA- GFPへの FRET効率
Phamretの 405nm光照射による色変換が mSECFPから PA- GFPへの FRETによるもの であることを定量的に調べるために FV1000の波長スキャン機能を利用して色変換前 後のスペクトルを測定した。本測定のために、 405nmの紫色光を 1分以上にわたって 細胞に照射することにより完全に色変換を行った。色変換前のスペクトルは mSECFP 力 の蛍光が優勢であるのに対し (図 3の白丸)、色変換後は PA-GFPからの蛍光が優 勢になって 、る (図 3の黒丸)。この時 mSECFPからの蛍光が減少して!/、ることから mSE CFPから PA-GFPへの FRETが生じていること、その効率は約 90%であることが明らかと なった。
[0069] 上記の実施例 1から 4に記載した通り、 Phamret (C末端側 11アミノ酸を削った CFPと N末端側 3アミノ酸を削った PA- GFPを Kpnlサイト(Gly— Thr)を介してタンデムに連 結させたタンパク質)においては、刺激光 (紫外光又は紫色光)(例えば、 400nm)を 照射する前は、 455〜490nm (例えば、 458nm)の光励起により CFPからの発光(480nm )が見られるのに対し、刺激光照射後は PA-GFPが光変換する結果、 CFPの励起工 ネルギ一が分子内蛍光共鳴エネルギー移動(分子内 FRET)により PA-GFPに移動し 、 PA-GFPからの発光(520nm)が見られるようになる(図 4)。
産業上の利用可能性
[0070] 本発明により、刺激光照射前の標本の確認が簡便になったのみならず、 1つの励 起光で観察が可能になった。また多量体を形成しないため、任意のタンパク質と連結 させることにより動態解析もより定量的に行えるようになった。
図面の簡単な説明
[図 1]図 1は、 Phamretの構造模式図を示す。
[図 2]図 2は、 Phamret発現 HeLa細胞の光刺激による色変換を示す, [図 3]図 3は、 Phamretの色変換前後のスペクトルを示す。
[図 4]図 4は、 Phamretの構造及び特徴の模式図を示す。

Claims

請求の範囲
[I] ドナー蛍光蛋白質とァクセプター蛍光蛋白質との融合蛋白質力 成り、刺激光照射 前はドナー蛋白質の励起光を照射することによりドナー蛋白質が蛍光を発することが でき、刺激光照射後は、ドナー蛋白質の励起光を照射することによりドナー蛍光蛋白 質とァクセプター蛍光蛋白質との間で分子内 FRETが生じることによりァクセプター蛋 白質が蛍光を発することができ、ドナー蛋白質の蛍光とァクセプター蛋白質の蛍光と が互 ヽに異なる波長の蛍光であることを特徴とする、蛍光蛋白質。
[2] ドナー蛍光蛋白質が CFP変異体であり、ァクセプター蛍光蛋白質が PA— GFP変異 体である、請求項 1に記載の蛍光蛋白質。
[3] 刺激光が紫外光又は紫色光である、請求項 1又は 2に記載の蛍光蛋白質。
[4] ドナー蛍光蛋白質が、 CFPの C末端の 11アミノ酸を欠失させた CFP変異体であり、 ァクセプター蛍光蛋白質が、 PA— GFPの N末端の 3アミノ酸を欠失させた PA— GF P変異体である、請求項 1から 3の何れかに記載の蛍光蛋白質。
[5] ドナー蛍光蛋白質とァクセプター蛍光蛋白質とがリンカ一配列を介して融合している 、請求項 1から 4の何れかに記載の蛍光蛋白質。
[6] 以下の何れかのアミノ酸配列を有する、請求項 1から 5の何れかに記載の蛍光蛋白 質。
(a)配列番号 2に記載のアミノ酸配列;又は、
(b)配列番号 2に記載のアミノ酸配列において 1から数個のアミノ酸の欠失、置換及 び Z又は付加を有するアミノ酸配列:
[7] 請求項 6に記載の蛍光蛋白質をコードする DNA。
[8] 請求項 7に記載の DN Aを有する組み換えベクター。
[9] 請求項 6に記載の DNA又は請求項 7に記載の組み換えベクターを有する形質転換 体。
[10] 請求項 1から 6に記載の蛍光蛋白質と他の蛋白質とから成る融合蛍光蛋白質。
[II] 請求項 10に記載の融合蛍光蛋白質を細胞内で発現させることを特徴とする、細胞内 における蛋白質の局在または動態を分析する方法。
[12] 請求項 1から 6の何れかに記載の蛍光蛋白質、請求項 7に記載の DNA、請求項 8に 記載の組み換えベクター、請求項 9に記載の形質転換体、又は請求項 10に記載の 融合蛍光蛋白質を含む、蛍光試薬キット。
PCT/JP2005/020843 2004-11-15 2005-11-14 蛍光蛋白質 WO2006051944A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/719,166 US8013119B2 (en) 2004-11-15 2005-11-14 Fluorescent protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-330267 2004-11-15
JP2004330267A JP4557685B2 (ja) 2004-11-15 2004-11-15 蛍光蛋白質

Publications (1)

Publication Number Publication Date
WO2006051944A1 true WO2006051944A1 (ja) 2006-05-18

Family

ID=36336609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020843 WO2006051944A1 (ja) 2004-11-15 2005-11-14 蛍光蛋白質

Country Status (3)

Country Link
US (1) US8013119B2 (ja)
JP (1) JP4557685B2 (ja)
WO (1) WO2006051944A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8647887B2 (en) 2009-01-29 2014-02-11 Commonwealth Scientific And Industrial Research Organisation Measuring G protein coupled receptor activation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7897385B2 (en) * 2004-05-20 2011-03-01 Riken Fluorescent protein
US8865124B2 (en) * 2008-02-29 2014-10-21 Japan Science And Technology Agency Probe reagent for measuring oxidative stress
WO2012099279A1 (ja) 2011-01-21 2012-07-26 独立行政法人理化学研究所 酸化ストレスインジケーター発現用核酸構築物とその使用
JP6083731B2 (ja) * 2012-09-11 2017-02-22 国立大学法人埼玉大学 Fret型バイオプローブ及びfret計測方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012627A1 (en) 1999-08-19 2001-02-22 Nps Pharmaceuticals, Inc. Heteropolycyclic compounds and their use as metabotropic glutamate receptor antagonists
JP2002512362A (ja) * 1998-04-17 2002-04-23 ライジェル・ファーマシューティカルズ・インコーポレイテッド 細胞パラメーターにおける変化を検出し、小分子ライブラリィをスクリーンするための複数パラメーターfacs
WO2003053922A2 (en) 2001-12-19 2003-07-03 Merck & Co., Inc. Heteroaryl substituted imidazole modulators of metabotropic glutamate receptor-5
WO2004014370A2 (en) 2002-08-09 2004-02-19 Astrazeneca Ab Oxadiazoles as modulators of metabotropic glutamate receptor-5
WO2004014881A2 (en) 2002-08-09 2004-02-19 Astra Zeneca Ab '1,2,4'oxadiazoles as modulators of metabotropic glutamate receptor-5

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461813B2 (en) 1998-09-21 2002-10-08 Rigel Pharmaceuticals, Inc. Multiparameter FACS assays to detect alterations in cell cycle regulation
JP2002253261A (ja) 2001-03-05 2002-09-10 Inst Of Physical & Chemical Res 蛍光タンパク質
US7247449B2 (en) 2001-10-11 2007-07-24 Riken Fluorescent protein
WO2003054191A1 (fr) 2001-12-20 2003-07-03 Riken Protéines fluorescentes
ATE495247T1 (de) 2002-08-23 2011-01-15 Riken Chromoprotein und fluoroproteine
JP4214206B2 (ja) 2002-12-10 2009-01-28 独立行政法人理化学研究所 Fretを利用した蛍光指示薬
EP2163618A3 (en) 2003-12-03 2010-06-02 Riken Fluorescent protein
WO2006101520A2 (en) * 2004-09-20 2006-09-28 University Of Massachusetts Fluorescent proteins and related methods and compounds
US20090017516A1 (en) 2004-12-21 2009-01-15 Riken Target physiological function inactivator using photosensitizer-labeled fluorescent protein
JP5019771B2 (ja) 2005-03-29 2012-09-05 独立行政法人理化学研究所 蛍光蛋白質を用いた蛋白質の相互作用の分析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512362A (ja) * 1998-04-17 2002-04-23 ライジェル・ファーマシューティカルズ・インコーポレイテッド 細胞パラメーターにおける変化を検出し、小分子ライブラリィをスクリーンするための複数パラメーターfacs
WO2001012627A1 (en) 1999-08-19 2001-02-22 Nps Pharmaceuticals, Inc. Heteropolycyclic compounds and their use as metabotropic glutamate receptor antagonists
WO2003053922A2 (en) 2001-12-19 2003-07-03 Merck & Co., Inc. Heteroaryl substituted imidazole modulators of metabotropic glutamate receptor-5
WO2004014370A2 (en) 2002-08-09 2004-02-19 Astrazeneca Ab Oxadiazoles as modulators of metabotropic glutamate receptor-5
WO2004014881A2 (en) 2002-08-09 2004-02-19 Astra Zeneca Ab '1,2,4'oxadiazoles as modulators of metabotropic glutamate receptor-5

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
AIBA ET AL., CELL, vol. 79, 1994, pages 365
AIBA ET AL., CELL, vol. 79, 1994, pages 377
BASHIR ET AL., NATURE, vol. 363, 1993, pages 347
BASKYS, TRENDS PHARMACOL. SCI., vol. 15, 1992, pages 92
BORTOLOTTO ET AL., NATURE, vol. 368, 1994, pages 740
FELBER L M ET AL: "Evaluation of the CFP-substrate-YFP system for protease studies: advantages and limitations.", BIOTECHNIQUES., vol. 36, no. 5, May 2004 (2004-05-01), pages 878 - 885, XP001184098 *
JOLY ET AL., J. NEUROSCI., vol. 15, 1995, pages 3970
KNOPFEL ET AL., J. MED. CHEM., vol. 38, 1995, pages 1417
MINAKAMI ET AL., BBRC, vol. 199, 1994, pages 1136
NAKANISHI, NEURON, vol. 13, 1994, pages 1031
PIN ET AL., NEUROPHARMACOLOGY, vol. 34, 1995, pages 1
PIN ET AL., PNAS, vol. 89, 1992, pages 10331
PIN, NEUROPHARMACOLOGY, vol. 34, 1995, pages 1
SCHOEPP, NEUROCHEM. INT., vol. 24, 1994, pages 439
WATKINS ET AL., TRENDS PHARMACOL. SCI., vol. 15, 1994, pages 33

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8647887B2 (en) 2009-01-29 2014-02-11 Commonwealth Scientific And Industrial Research Organisation Measuring G protein coupled receptor activation

Also Published As

Publication number Publication date
JP2006136271A (ja) 2006-06-01
US20090176211A1 (en) 2009-07-09
JP4557685B2 (ja) 2010-10-06
US8013119B2 (en) 2011-09-06

Similar Documents

Publication Publication Date Title
JP5117465B2 (ja) 色素蛋白質及び蛍光蛋白質
JP5147915B2 (ja) 蛍光蛋白質
US8207322B2 (en) Fluorescent protein and chromoprotein
US7541451B2 (en) Fluorescent proteins from Fungia
JP2002369690A (ja) 蛍光蛋白質
EP1452591B1 (en) Fluorescent protein
WO2006051944A1 (ja) 蛍光蛋白質
JP4648834B2 (ja) 蛍光蛋白質
JP4381147B2 (ja) 蛍光蛋白質
US20220380419A1 (en) Novel fluorescent protein and utilization thereof
JP4794887B2 (ja) 蛍光蛋白質
WO2006104200A1 (ja) 蛍光蛋白質
AU2008200732A1 (en) Fluorescent protein and chromoprotein

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05805855

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11719166

Country of ref document: US