WO2010147030A1 - 硬化性シリコーン樹脂組成物 - Google Patents

硬化性シリコーン樹脂組成物 Download PDF

Info

Publication number
WO2010147030A1
WO2010147030A1 PCT/JP2010/059709 JP2010059709W WO2010147030A1 WO 2010147030 A1 WO2010147030 A1 WO 2010147030A1 JP 2010059709 W JP2010059709 W JP 2010059709W WO 2010147030 A1 WO2010147030 A1 WO 2010147030A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silicone
bis
resin composition
formula
Prior art date
Application number
PCT/JP2010/059709
Other languages
English (en)
French (fr)
Inventor
吉仁 武井
和憲 石川
丈章 齋木
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN2010800228323A priority Critical patent/CN102449009B/zh
Priority to KR1020117029222A priority patent/KR101163407B1/ko
Priority to US13/321,748 priority patent/US8304489B2/en
Publication of WO2010147030A1 publication Critical patent/WO2010147030A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/08Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/10Block or graft copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups

Definitions

  • the present invention relates to a curable silicone resin composition.
  • Patent Document 1 a curable silicone resin composition containing (meth) acryl-modified organopolysiloxane and silicone oil has been proposed.
  • an object of this invention is to provide the curable silicone resin composition which is excellent in sclerosis
  • silicone A having a weight average molecular weight of 20,000 to 200,000 and having two or more (meth) acryloyl groups in one molecule
  • 10 parts by mass or more of silicone B having a weight average molecular weight of 1,000 or more and less than 20,000 and having two or more (meth) acryloyl groups in one molecule
  • 2 parts by mass or more of silicone C having a weight average molecular weight of 300 or more and less than 1,000, a (meth) acrylic equivalent of less than 450 g / mol, and having two or more (meth) acryloyl groups in one molecule
  • a composition containing a radical initiator has no curing inhibition in a closed system and has excellent curability, adhesion to glass, etc., heat-resistant coloring stability over time, and transparency and adhesive strength (high shear strength and fracture The mode is good.), That is, the curability, adhesion, heat-resistant coloring stability in the closed system,
  • the present invention provides the following 1 to 9.
  • 100 parts by weight of silicone A having a weight average molecular weight of 20,000 to 200,000 and having two or more (meth) acryloyl groups in one molecule
  • 10 parts by mass or more of silicone B having a weight average molecular weight of 1,000 or more and less than 20,000 and having two or more (meth) acryloyl groups in one molecule
  • 2 parts by mass or more of silicone C having a weight average molecular weight of 300 or more and less than 1,000, a (meth) acrylic equivalent of less than 450 g / mol, and having two or more (meth) acryloyl groups in one molecule
  • a curable silicone resin composition containing a radical initiator 2.
  • Silicone resin composition 3. The curable silicone resin composition according to 1 or 2, wherein the silicone A is represented by the following formula (A1) and the silicone B is represented by the following formula (B1). (Wherein R 1 is a hydrogen atom or a methyl group, R 2 is a hydrocarbon group having 1 to 6 carbon atoms, and R 3 is a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms, respectively.
  • R 4 is a divalent hydrocarbon group having 1 to 8 carbon atoms, n is 1 or 2, and m is an integer of 270 to 2,700.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a hydrocarbon group having 1 to 6 carbon atoms
  • R 3 is a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms, respectively.
  • R 4 is a divalent hydrocarbon group having 1 to 8 carbon atoms, n is 1 or 2, and m is an integer of 14 to 269.
  • R is an alkyl group
  • X 1 and X 2 are groups represented by the following Formula (6), respectively, and a is an integer of 0 to 13.
  • each R is an alkyl group
  • X 3 is a group represented by the following formula (6)
  • a is an integer of 0 to 13
  • b is an integer of 1 or 2 to 13.
  • a + b is 1 or 2 to 13
  • the X 3 is a group represented by the following formula (6).
  • R is an alkyl group
  • X 1 , X 2 and X 3 are groups represented by the following formula (6)
  • a is an integer of 0 to 13
  • b is 1 Is an integer of 13 and a + b is 1-13.
  • R ⁇ 1 > is a hydrogen group or a methyl group
  • R ⁇ 4 > is a bivalent hydrocarbon group.
  • 5 The curable silicone resin composition according to any one of the above 1 to 4, further comprising a condensation catalyst. 6).
  • the bis (alkoxysilyl) alkane is bis- (3-trimethoxysilylpropyl) amine, 1,2-bis (triethoxysilyl) ethane, 1,6-bis (trimethoxysilyl) hexane, 1,7-bis.
  • the curable silicone resin composition of the present invention is excellent in curability in a closed system, adhesiveness, heat-resistant coloring stability, and balance between transparency and adhesive strength.
  • FIG. 1 is a cross-sectional view schematically showing a mold used for curing the curable silicone resin composition of the present invention in Examples.
  • FIG. 2 is a top view schematically showing partly divided mold 8 used for curing the curable silicone resin composition of the present invention in the examples.
  • FIG. 3 is a cross-sectional view schematically showing a test piece for shear test used for evaluation of shear adhesive strength and fracture mode in the present invention.
  • FIG. 4 is a top view schematically showing a test specimen for a shear test used for evaluation of shear adhesive strength and fracture mode in the present invention.
  • the curable silicone resin composition of the present invention is 100 parts by weight of silicone A having a weight average molecular weight of 20,000 to 200,000 and having two or more (meth) acryloyl groups in one molecule; 10 parts by mass or more of silicone B having a weight average molecular weight of 1,000 or more and less than 20,000 and having two or more (meth) acryloyl groups in one molecule; 2 parts by mass or more of silicone C having a weight average molecular weight of 300 or more and less than 1,000, a (meth) acrylic equivalent of less than 450 g / mol, and having two or more (meth) acryloyl groups in one molecule; It is a composition containing a radical initiator.
  • the curable silicone resin composition of the present invention may be hereinafter referred to as “the composition of the present invention”.
  • Silicone A contained in the composition of the present invention has a polysiloxane skeleton in the main chain, two or more (meth) acryloyl groups in one molecule, and a weight average molecular weight of 20,000 to 200,000. It is polysiloxane modified with (meth) acryl.
  • (meth) acryl means one or both of acrylic and methacrylic.
  • the polysiloxane as the main chain is not particularly limited. Examples thereof include organopolysiloxanes, and specific examples include dimethylpolysiloxane and diethylpolysiloxane.
  • the polysiloxane as the main chain may be either linear or branched.
  • silicone A has 2 or more (meth) acryloyl groups in one molecule, and is excellent in curability, adhesion, heat-resistant coloring stability, and balance between transparency and adhesive strength in a closed system. From the viewpoint, the number of (meth) acryloyl groups is preferably 2 to 6.
  • Silicone A can have a silyl group and / or silanol group containing a hydrolyzable group in addition to the (meth) acryloyl group. Silicone A is further excellent in terms of curability, adhesion, heat-resistant coloring stability, and balance between transparency and adhesive strength in a closed system, excellent in moisture and heat resistance, and excellent in surface curability. It is preferable to have at least one silyl group and / or silanol group containing a hydrolyzable group in the molecule.
  • the silyl group containing a hydrolyzable group should just contain one or more hydrolyzable groups in one silyl group.
  • the silanol group may be one in which one or more hydroxy groups are bonded to one silicon atom.
  • the silyl group containing a hydrolyzable group is not particularly limited.
  • an alkoxysilyl group can be mentioned.
  • Silicone A is superior in terms of curability, adhesion, heat-resistant coloring stability, and balance between transparency and adhesion strength in a closed system, excellent in heat-and-moisture resistance, and excellent in surface curability. It preferably has a silyl group.
  • the alkoxysilyl group include a trialkoxysilyl group, a divalent silyl group having a dialkoxy group, a divalent silyl group having a monoalkoxy group and a monoalkyl group.
  • Examples of the alkoxy group in the alkoxysilyl group include a methoxy group and an ethoxy group.
  • Examples of the alkyl group that the alkoxysilyl group can have include a methyl group and an ethyl group.
  • Examples of the silanol group include a trihydroxysilyl group, a divalent silyl group having a dihydroxy group, a divalent silyl group having a monohydroxy group and a monoalkyl group.
  • Examples of the alkyl group include a methyl group and an ethyl group.
  • the (meth) acryloyl group can be bonded to the side chain and / or the terminal of the polysiloxane as the main chain.
  • the (meth) acryloyl group can be bonded to both ends of the polysiloxane as the main chain.
  • the alkoxysilyl group can be bonded to the side chain and / or the terminal of the polysiloxane as the main chain.
  • the alkoxysilyl group can be bonded to both ends of the polysiloxane as the main chain.
  • the (meth) acryloyl group can be bonded to the alkoxysilyl group via a divalent hydrocarbon group.
  • Examples of the group in which the (meth) acryloyl group is bonded to the alkoxysilyl group via a divalent hydrocarbon group include those represented by the following formula (1). (Wherein R 1 is a hydrogen atom or a methyl group, R 2 is a hydrocarbon group having 1 to 6 carbon atoms, and R 3 is a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms, respectively.
  • R 4 is a divalent hydrocarbon group having 1 to 8 carbon atoms, and n is 1 or 2.
  • the (meth) acryloyl group is preferably represented by the formula (1) from the viewpoint of excellent curability in a closed system, adhesiveness, heat-resistant coloring stability, and a balance between transparency and adhesive strength.
  • the group represented by the formula (1) can be bonded to the side chain and / or terminal of, for example, an organopolysiloxane as the main chain.
  • the group represented by the formula (1) can be bonded to both ends of, for example, an organopolysiloxane as a main chain.
  • the hydrocarbon group having 1 to 6 carbon atoms as R 2 includes, for example, an alkyl group such as a methyl group or an ethyl group; an alicyclic hydrocarbon such as a cyclohexyl group A group; an aromatic hydrocarbon group such as a phenyl group.
  • the hydrocarbon group having 1 to 18 carbon atoms as R 3 include an alkyl group such as a methyl group, an ethyl group, a hexyl group, an octyl group, a decyl group, and an octadecyl group; and an alicyclic group such as a cyclohexyl group.
  • the divalent hydrocarbon group having 1 to 8 carbon atoms as R 4 is not particularly limited. Examples include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, and a pentylene group.
  • n is preferably 2 from the viewpoints of excellent curability, adhesion, heat-resistant coloring stability in a closed system, and a balance between transparency and adhesive strength, and excellent wet heat resistance.
  • silicone A what is represented by a following formula (A1) is mentioned, for example.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a hydrocarbon group having 1 to 6 carbon atoms
  • R 3 is a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms
  • R 4 is a divalent hydrocarbon group having 1 to 8 carbon atoms
  • n is 1 or 2
  • m is an integer of 270 to 2,700.
  • R 1 to R 4 and n are as defined in the formula (1).
  • m is preferably an integer of 270 to 1,350 from the viewpoint of excellent curability, adhesion, heat-resistant coloring stability in a closed system, and a balance between transparency and adhesive strength, and excellent workability. .
  • Silicone A is represented by the formula (A1) from the viewpoints of excellent curability, adhesion, heat-resistant coloring stability in a closed system, and a balance between transparency and adhesive strength, and excellent wet heat resistance. Is preferred.
  • the weight average molecular weight of silicone A is 20,000 to 200,000.
  • the weight average molecular weight of the silicone A is 20,000 to 100,000 from the viewpoint of excellent curability, adhesion, heat-resistant coloring stability in a closed system, and a balance between transparency and adhesive strength, and excellent workability. Is preferred.
  • the weight average molecular weight of silicone A is expressed in terms of polystyrene by gel permeation chromatography (GPC) using chloroform as a solvent. Silicone A can be used alone or in combination of two or more.
  • Silicone A is not particularly limited for its production.
  • an organopolysiloxane having a hydroxy group at both ends for example, an organopolysiloxane represented by the formula (IV)] and a compound represented by the formula (V) or a condensate thereof to dealcoholization.
  • each R 1 is a hydrogen atom or a methyl group
  • each R 2 is a hydrocarbon group having 1 to 6 carbon atoms
  • each R 3 is a hydrogen atom or 1 to 18 carbon atoms, respectively.
  • a hydrocarbon group, R 4 is a divalent hydrocarbon group having 1 to 8 carbon atoms
  • n is 2 or 3.
  • m is an integer of 270 to 2,700.
  • R 1 to R 4 have the same meaning as in formula (1).
  • m is synonymous with the formula (A1).
  • the compound represented by the formula (V) is preferably reacted in an amount exceeding 2 mol.
  • Silicone B contained in the composition of the present invention has a polysiloxane skeleton in the main chain, two or more (meth) acryloyl groups in one molecule, and a weight average molecular weight of 1,000 or more and 20,000. Less than (meth) acryl modified polysiloxane. Silicone B can function as a compatibilizer and an adhesion-imparting agent for silicone A and silicone C, and can give flexibility to the resulting cured product. Therefore, by containing silicone B, the curable silicone resin composition of the present invention has excellent balance between curability, adhesiveness, heat-resistant coloring stability, and transparency and adhesive strength in a closed system, and compatibility. Excellent.
  • the polysiloxane as the main chain is not particularly limited.
  • the polysiloxane as the main chain may be either linear or branched.
  • the number of (meth) acryloyl groups that silicone B has is 2 or more per molecule, and is excellent in curability, adhesion, heat-resistant coloring stability, and balance between transparency and adhesive strength in a closed system, From the viewpoint of excellent wet heat resistance, the number of (meth) acryloyl groups is preferably 2-6.
  • Silicone B can have a silyl group and / or silanol group containing a hydrolyzable group in addition to the (meth) acryloyl group. Silicone B is superior in terms of curability in a closed system, adhesiveness, heat-resistant coloring stability, and balance between transparency and adhesive strength, excellent in moisture and heat resistance, and excellent in surface curability. It is preferable to have at least one silyl group and / or silanol group containing a hydrolyzable group in the molecule.
  • the silyl group and silanol group containing a hydrolyzable group are not particularly limited. Examples of the silyl group containing a hydrolyzable group include an alkoxysilyl group.
  • Silicone B is further superior in terms of curability, adhesion, heat-resistant coloring stability, and balance between transparency and adhesive strength in a closed system, and is superior in terms of moisture and heat resistance and surface curability. It preferably has a group. Examples of the alkoxysilyl group include those similar to silicone A. Examples of the alkoxy group in the alkoxysilyl group include those similar to the silicone A.
  • the (meth) acryloyl group can be bonded to the side chain and / or the terminal of the polysiloxane as the main chain.
  • the (meth) acryloyl group can be bonded to both ends of the polysiloxane as the main chain.
  • the alkoxysilyl group can be bonded to the side chain and / or the terminal of the polysiloxane as the main chain.
  • the alkoxysilyl group can be bonded to both ends of the polysiloxane as the main chain.
  • the (meth) acryloyl group can be bonded to the alkoxysilyl group via a divalent hydrocarbon group.
  • Examples of the group in which the (meth) acryloyl group is bonded to the alkoxysilyl group via a divalent hydrocarbon group include those represented by the following formula (1). (Wherein R 1 is a hydrogen atom or a methyl group, R 2 is a hydrocarbon group having 1 to 6 carbon atoms, and R 3 is a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms, respectively.
  • R 4 is a divalent hydrocarbon group having 1 to 8 carbon atoms, and n is 1 or 2.
  • the (meth) acryloyl group is preferably represented by the formula (1) from the viewpoint of excellent curability in a closed system, adhesiveness, heat-resistant coloring stability, and a balance between transparency and adhesive strength.
  • the group represented by the formula (1) in the silicone B, in which the (meth) acryloyl group is bonded to the alkoxysilyl group via a divalent hydrocarbon group, is the same as the formula (1) in the silicone A.
  • the group represented by the formula (1) can be bonded to the side chain and / or terminal of, for example, an organopolysiloxane as the main chain.
  • the group represented by the formula (1) can be bonded to both ends of, for example, an organopolysiloxane as a main chain.
  • silicone B what is represented by a following formula (B1) is mentioned, for example.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a hydrocarbon group having 1 to 6 carbon atoms
  • R 3 is a hydrogen atom or a hydrocarbon group having 1 to 18 carbon atoms, respectively.
  • R 4 are each a divalent hydrocarbon group having a carbon number of 1 ⁇ 8
  • n are each 1 or 2
  • m is an integer of 14-269.
  • R 1 to R 4 and n are as defined in the formula (1).
  • m is preferably an integer of 80 to 250 from the viewpoint of excellent curability in a closed system, adhesiveness, heat-resistant coloring stability, balance between transparency and adhesive strength, and excellent workability.
  • Silicone B is represented by the formula (B1) from the viewpoints of excellent curability, adhesion, heat-resistant coloring stability in a closed system, and a balance between transparency and adhesive strength, and excellent wet heat resistance. Is preferred.
  • the weight average molecular weight of silicone B is 1,000 or more and less than 20,000.
  • the weight average molecular weight of silicone B is excellent from the viewpoints of curability, adhesion, heat-resistant coloring stability in a closed system, and a balance between transparency and adhesion strength, and is excellent in compatibility and moisture-heat adhesion resistance. It is preferably from 000 to less than 20,000.
  • the weight average molecular weight of silicone B is expressed in terms of polystyrene by gel permeation chromatography (GPC) using chloroform as a solvent. Silicone B can be used alone or in combination of two or more.
  • Silicone B is not particularly limited for its production.
  • an organopolysiloxane having a hydroxy group at both ends for example, an organopolysiloxane represented by the formula (IV)] and a compound represented by the formula (V) or a condensate thereof to dealcoholization.
  • each R 1 is a hydrogen atom or a methyl group
  • each R 2 is a hydrocarbon group having 1 to 6 carbon atoms
  • each R 3 is a hydrogen atom or 1 to 18 carbon atoms, respectively.
  • R 4 is a divalent hydrocarbon group having 1 to 8 carbon atoms
  • n is 2 or 3.
  • m is an integer of 14 to 269.
  • R 1 to R 4 have the same meaning as in formula (1).
  • m is synonymous with the formula (B1).
  • the compound represented by the formula (V) is preferably reacted in an amount exceeding 2 mol.
  • the amount of silicone B is 10 parts by mass or more with respect to 100 parts by mass of silicone A.
  • the amount of silicone B is 10% with respect to 100 parts by mass of silicone A from the viewpoint of excellent curability, adhesiveness, heat-resistant coloring stability in a closed system, and a balance between transparency and adhesive strength, and excellent compatibility.
  • the amount is preferably -200 parts by mass, more preferably 100-200 parts by mass.
  • Silicone C contained in the composition of the present invention has a polysiloxane skeleton in the main chain, two or more (meth) acryloyl groups in one molecule, and a (meth) acrylic equivalent of less than 450 g / mol.
  • the polysiloxane as the main chain is not particularly limited.
  • organopolysiloxane is exemplified, and specific examples include dimethylpolysiloxane and diethylpolysiloxane.
  • the polysiloxane as the main chain may be either linear or branched.
  • the number of (meth) acryloyl groups of silicone C is 2 or more per molecule, and it is excellent in curability, adhesiveness, heat-resistant coloring stability in a closed system, and balance between transparency and adhesive strength. From the viewpoint, the number of (meth) acryloyl groups is preferably 2 to 6.
  • Examples of the (meth) acryloyl group include those represented by the following formula (6).
  • R 1 is a hydrogen atom or a methyl group
  • R 4 is a divalent hydrocarbon group.
  • the divalent hydrocarbon group as R 4 preferably has 1 to 8 carbon atoms.
  • a divalent hydrocarbon group having 1 to 8 carbon atoms has the same meaning as in formula (1).
  • the (meth) acryloyl group is preferably represented by the formula (6) from the viewpoint of excellent curability in a closed system, adhesion, heat-resistant coloring stability, and a balance between transparency and adhesive strength.
  • the (meth) acryloyl group can be bonded to the side chain and / or the terminal of the polysiloxane as the main chain.
  • the (meth) acryloyl group can be bonded to both ends of the polysiloxane as the main chain.
  • Silicone C may have a silyl group and / or a silanol group containing a hydrolyzable group. Examples of the silyl group and silanol group containing a hydrolyzable group are the same as described above.
  • silicone C the compound represented by following formula (3), following formula (4), and following formula (5) is mentioned, for example.
  • R is an alkyl group
  • X 1 and X 2 are each groups represented by Formula (6)
  • a is an integer of 0 to 13.
  • each R is an alkyl group
  • X 3 is a group represented by the above formula (6)
  • a is an integer of 0 to 13
  • b is 1 (or 2) to 13 [ That is, it is an integer of 1 or 2 to 13]
  • a + b is 1 (or 2) to 13 [that is, 1 or 2 to 13].
  • at least one R can be X 3 at one end
  • X 3 is a group represented by the above formula (6).
  • R is an alkyl group
  • X 1 , X 2 , and X 3 are groups represented by the above formula (6)
  • a is an integer of 0 to 13
  • b is 1 Is an integer of 13 and a + b is 1-13.
  • the alkyl group as R in the formulas (3) to (5) is not particularly limited. Examples thereof include those similar to R 2 (hydrocarbon group having 1 to 6 carbon atoms) in the above formula (1).
  • a is preferably an integer of 0 to 5 from the viewpoint of excellent curability in a closed system, adhesiveness, heat-resistant coloring stability, and a balance between transparency and adhesive strength.
  • a is preferably an integer of 0 to 5 from the viewpoint of excellent curability in a closed system, adhesiveness, heat-resistant coloring stability, and a balance between transparency and adhesive strength.
  • at least one R can be X 3 at one end, and X 3 is a group represented by the above formula (6).
  • a is preferably an integer of 0 to 5, from the viewpoint of excellent curability in a closed system, adhesiveness, heat-resistant coloring stability, and a balance between transparency and adhesive strength.
  • Silicone C is represented by formula (3), formula (4) and formula (5) from the viewpoint of excellent curability, adhesion, heat-resistant coloring stability in a closed system, and a balance between transparency and adhesive strength. It is preferably at least one selected from the group consisting of the above compounds.
  • the weight average molecular weight of silicone C is 300 or more and less than 1,000.
  • the weight average molecular weight of silicone C is preferably 300 to 500 from the viewpoint of excellent curability in a closed system, adhesiveness, heat-resistant coloring stability, and a balance between transparency and adhesive strength.
  • the weight average molecular weight of silicone C is expressed in terms of polystyrene by gel permeation chromatography (GPC) using chloroform as a solvent.
  • the (meth) acrylic equivalent of silicone C is less than 450 g / mol.
  • the (meth) acrylic equivalent of silicone C is preferably 100 to 200 g / mol from the viewpoint of excellent curability in a closed system, adhesion, heat-resistant coloring stability, and a balance between transparency and adhesive strength.
  • Silicone C can be used alone or in combination of two or more. Silicone C is not particularly limited for its production. For example, a conventionally well-known thing is mentioned.
  • the amount of silicone C is 2 parts by mass or more with respect to 100 parts by mass of silicone A.
  • the amount of silicone C is 2 to 100 parts by mass with respect to 100 parts by mass of silicone A from the viewpoint of excellent curability in the closed system, adhesiveness, heat-resistant coloring stability, and balance between transparency and adhesive strength. However, it is preferably 5 to 50 parts by mass, more preferably 20 to 50 parts by mass.
  • the composition of the present invention may contain a compound represented by the above formula (3), wherein X 2 is R: an alkyl group. R, X 1 and a are as defined above.
  • the radical initiator contained in the composition of the present invention is not particularly limited as long as it allows radical polymerization of a (meth) acryloyl group by heat and / or light. From the viewpoint of excellent curability, adhesion, heat-resistant coloring stability, and balance between transparency and adhesive strength, the radical initiator preferably does not contain a nitrogen atom or a sulfur atom, What consists of a hydrogen atom and an oxygen atom is more preferable.
  • thermal radical initiators examples include 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, lauryl peroxide, t-butyl peroxide, and t-amyl.
  • thermal radical initiators include peroxides of aliphatic hydrocarbons such as peroxybutane; aromatic peroxides such as benzoyl peroxide and cumene hydroperoxide; and azo compounds such as azobisisobutyronitrile.
  • radical initiators by light include carbonyl compounds such as acetophenone compounds, benzoin ether compounds, and benzophenone compounds, sulfur compounds, azo compounds, peroxide compounds, and phosphine oxide compounds. Can be mentioned.
  • benzoin benzoin methyl ether
  • benzoin ethyl ether benzoin isopropyl ether
  • acetoin butyroin
  • toluoin benzyl
  • benzophenone p-methoxybenzophenone
  • diethoxyacetophenone ⁇ , ⁇ -dimethoxy- ⁇ -phenylacetophenone
  • Methylphenylglyoxylate ethylphenylglyoxylate
  • 4,4'-bis dimethylaminobenzophenone
  • 2-hydroxy-2-methyl-1-phenylpropan-1-one 1-hydroxy-cyclohexyl-phenylketone, etc.
  • the amount of the radical initiator is 0.1 to 5 with respect to 100 parts by mass of silicone A from the viewpoint of excellent curability in a closed system, adhesiveness, heat-resistant coloring stability, and balance between transparency and adhesive strength. Part by mass is preferred.
  • the composition of the present invention can further contain a condensation catalyst.
  • a condensation catalyst When the composition of the present invention further contains a condensation catalyst, it is excellent in curability, adhesion, heat-resistant coloring stability, and balance between transparency and adhesive strength in a closed system, and in the air when used as an adhesive. The surface directly exposed to the surface and the protruding portion are excellent in surface curability, and the adhesiveness and shearing adhesive force can be hardly affected.
  • a condensation catalyst is useful from the viewpoint of excellent surface curability.
  • the silicone A and / or the silicone B have one or more silyl groups and / or silanol groups containing a hydrolyzable group in one molecule.
  • the condensation catalyst that can be further contained in the composition of the present invention is not particularly limited as long as it can hydrolyze and condense a hydrolyzable group-containing silyl group or silanol group.
  • organometallic compounds and boron compounds containing metals such as tin, aluminum, titanium, zirconium, hafnium, calcium, and barium can be given. Of these, organotin compounds are preferred from the viewpoint of excellent surface curability.
  • organometallic compounds include metal alkoxide compounds, metal chelate compounds, and metal alkyl compounds.
  • the organotin compound is not particularly limited as long as it is a compound having a tin atom and an organic group.
  • a tin compound represented by the following formulas (I) to (V) specifically, for example, a mixture or a reaction product of a dioctyltin compound (for example, dioctyltin salt) and a normal silicate compound (for example, normal ethylsilicate) (for example, And trade names U-780 and S-1, both manufactured by Nitto Kasei Co., Ltd.)].
  • R 1 represents a hydrocarbon group having 1 to 10 carbon atoms
  • R 2 represents a hydrocarbon group having 1 to 4 carbon atoms
  • p is 1 to 10
  • q is 1 to 4
  • r Represents an integer of 1 to 5.
  • R 1 represents a hydrocarbon group having 1 to 10 carbon atoms (for example, an aliphatic hydrocarbon group such as an octyl group, an alicyclic hydrocarbon group, or an aromatic hydrocarbon group).
  • R 2 represents a hydrocarbon group having 1 to 4 carbon atoms (for example, an aliphatic hydrocarbon group such as an ethyl group).
  • n in Formula (V) is an integer greater than or equal to 1.
  • the condensation catalyst is not particularly limited for its production. The condensation catalysts can be used alone or in combination of two or more.
  • the amount of the condensation catalyst is silicone A, silicone B, and silicone C from the viewpoint of excellent curability, adhesion, heat-resistant coloring stability in a closed system, and a balance between transparency and adhesive strength, and excellent surface curability.
  • the total amount is preferably 0.01 to 10 parts by mass, more preferably 0.01 to 1 part by mass.
  • the composition of the present invention can further contain a bis (alkoxysilyl) alkane.
  • the bis (alkoxysilyl) alkane can function as an adhesion-imparting agent.
  • the composition of the present invention as an adhesion-imparting agent further contains a bis (alkoxysilyl) alkane from the viewpoint of excellent curability in a closed system, adhesiveness, heat-resistant coloring stability, and a balance between transparency and adhesive strength. It is preferable to do this.
  • the bis (alkoxysilyl) alkane that can be contained in the composition of the present invention is a divalent alkane having two alkoxysilyl groups in one molecule.
  • the alkoxy group in the alkoxysilyl group is not particularly limited.
  • a methoxy group and an ethoxy group are mentioned.
  • One alkoxysilyl group can have 1 to 3 alkoxy groups.
  • Examples of the group other than the alkoxy group that can be bonded to the alkoxysilyl group include alkyl groups such as a methyl group and an ethyl group.
  • the divalent alkane (alkylene group) is not particularly limited.
  • the divalent alkane can have a hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom.
  • the number of carbon atoms of the divalent alkane is not particularly limited.
  • the divalent alkane has 2 carbon atoms from the viewpoint of excellent curability, adhesion, heat-resistant coloring stability in a closed system, and a balance between transparency and adhesive strength, and excellent heat-and-moisture resistance and compatibility. ⁇ 10 are preferred.
  • Examples of the bis (alkoxysilyl) alkane include those represented by the following formula (VII).
  • R 7 to R 8 are each an alkyl group
  • R 9 is a divalent alkane
  • a is an integer of 1 to 3, respectively.
  • Examples of the alkyl group include a methyl group and an ethyl group.
  • the divalent alkane as R 9 has the same meaning as the above divalent alkane.
  • Examples of the bis (alkoxysilyl) alkane include 1,2-bis (triethoxysilyl) ethane, 1,4-bis (trimethoxysilyl) butane, 1-methyldimethoxysilyl-4-trimethoxysilylbutane, 4-bis (methyldimethoxysilyl) butane, 1,5-bis (trimethoxysilyl) pentane, 1,4-bis (trimethoxysilyl) pentane, 1-methyldimethoxysilyl-5-trimethoxysilylpentane, 1,5 -Bis (methyldimethoxysilyl) pentane, 1,6-bis (trimethoxysilyl) hexane, 1,4-bis (trimethoxysilyl) hexane, 1,5-bis (trimethoxysilyl) hexane, 2,5-bis (Trimethoxysilyl) hexane, 1,6-bis (methyldimethoxysilyl
  • Bis (alkoxysilyl) alkanes have the formula (VII) from the viewpoint of excellent curability, adhesion, heat-resistant coloring stability in a closed system, and a balance between transparency and adhesion strength, and excellent wet heat resistance.
  • Bis (trialkoxysilyl) alkane is more preferable, bis- (3-trimethoxysilylpropyl) amine, 1,2-bis (triethoxysilyl) ethane, 1,6-bis (trimethoxy) Silyl) hexane, 1,7-bis (trimethoxysilyl) heptane, 1,8-bis (trimethoxysilyl) octane, 1,9-bis (trimethoxysilyl) nonane and 1,10-bis (trimethoxysilyl) More preferred is at least one selected from the group consisting of decane, 1,6-bis (trimethoxysilyl) hexane, - (3-trimethoxysilyl prop
  • the amount of bis (alkoxysilyl) alkane is silicone A100 mass from the viewpoint of excellent curability, adhesion, heat-resistant coloring stability in a closed system, and a balance between transparency and adhesive strength, and excellent wet heat resistance.
  • the amount is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 3 parts by mass with respect to parts.
  • composition of the present invention is superior in terms of curability in a closed system, adhesiveness, heat-resistant coloring stability, and balance between transparency and adhesive strength, and from the viewpoint of excellent wet heat resistance, silicone A and silicone B And a composition comprising silicone C and a radical initiator (a composition containing only the above four components).
  • composition of the present invention is superior in terms of curability, adhesion, heat-resistant coloring stability in a closed system, and balance between transparency and adhesive strength, and from the viewpoint of excellent wet heat resistance, silicone A, It can be set as the composition (composition containing only the above five components) which consists of silicone B, silicone C, a radical initiator, and bis (alkoxy silyl) alkane.
  • composition of the present invention is excellent in curability, adhesion, heat-resistant coloring stability in a closed system, and a balance between transparency and adhesive strength, from the viewpoint of being excellent in wet heat resistance and surface curability,
  • a composition comprising silicone A, silicone B, silicone C, a radical initiator, and a condensation catalyst (a composition containing only the above five components) can be obtained.
  • the composition of the present invention is excellent in curability, adhesion, heat-resistant coloring stability in a closed system, and a balance between transparency and adhesive strength, from the viewpoint of being excellent in wet heat resistance and surface curability, It can be set as the composition (composition containing only the above six components) which consists of silicone A, silicone B, silicone C, a radical initiator, a condensation catalyst, and bis (alkoxysilyl) alkane. .
  • the composition of the present invention may further contain additives as long as the object and effects of the present invention are not impaired.
  • additives include inorganic fillers, antioxidants, lubricants, ultraviolet absorbers, thermal light stabilizers, dispersants, antistatic agents, polymerization inhibitors, antifoaming agents, curing accelerators, solvents, inorganic phosphors, Anti-aging agent, radical inhibitor, adhesion improver, flame retardant, surfactant, storage stability improver, ozone anti-aging agent, thickener, plasticizer, radiation blocker, nucleating agent, coupling agent, conductive
  • property-imparting agents phosphorus peroxide decomposers, pigments, metal deactivators, and physical property modifiers.
  • Various additives are not particularly limited. For example, a conventionally well-known thing is mentioned.
  • composition of the present invention is excellent in storage stability, it is mentioned as one of preferred embodiments that substantially does not contain water.
  • substantially free of water means that the amount of water in the composition of the present invention is 0.1% by mass or less.
  • composition of the present invention can be mentioned as one of preferred embodiments that substantially does not contain a solvent from the viewpoint of excellent work environment properties.
  • substantially free of solvent in the present invention means that the amount of the solvent in the composition of the present invention is 1% by mass or less.
  • composition of the present invention is not particularly limited for its production. For example, manufacturing by mixing silicone A, silicone B, silicone C, radical initiator, bis (alkoxysilyl) alkane, condensation catalyst and additive, which can be used as needed Can do.
  • the composition of the present invention can be produced as a one-pack type or a two-pack type.
  • the composition of the present invention can be used, for example, as an adhesive, a primer, or a sealing material (for example, for an optical semiconductor).
  • a sealing material for example, for an optical semiconductor.
  • the adherend to which the composition of the present invention can be applied include glass, plastic, and rubber.
  • the optical semiconductor to which the composition of the present invention can be applied is not particularly limited.
  • a light emitting diode for example, white LED
  • organic electroluminescent element organic EL
  • laser diode for example, and an LED array
  • LED array can be mentioned.
  • the composition of the present invention is applied to an adherend (eg, glass, plastic, rubber, optical semiconductor, etc.) and the composition of the present invention is applied.
  • adherend eg, glass, plastic, rubber, optical semiconductor, etc.
  • the composition of the present invention is applied.
  • examples include heating the body and / or irradiating the adherend to which the composition of the present invention has been applied to cure the composition of the present invention.
  • a glass laminate can be obtained by applying and curing the composition of the present invention between a plurality of glasses and bonding the plurality of glasses through the composition of the present invention.
  • an optical semiconductor is disposed between a plurality of glasses, the composition of the present invention is applied between the glasses and cured, and the plurality of glasses are bonded via the composition of the present invention to seal the optical semiconductor.
  • the method for applying the composition of the present invention to the adherend is not particularly limited. Examples thereof include a method using a dispenser, a potting method, screen printing, transfer molding, and injection molding.
  • the temperature at which the composition of the present invention is heated is excellent in curability, adhesion, heat-resistant coloring stability in a closed system, and balance between transparency and adhesive strength, and the curing time and pot life are appropriately long. 80 ° C. from the viewpoint that the alcohol as a by-product by the condensation reaction can be further suppressed from foaming, cracks in the cured product can be suppressed, and the smoothness, moldability, and physical properties of the cured product are excellent. It is preferable to cure at around 150 ° C., more preferably around 150 ° C.
  • composition of the present invention is cured by light irradiation
  • light irradiation for example, ultraviolet rays and electron beams can be used.
  • Curing can be performed under substantially anhydrous conditions from the viewpoint of excellent curability and transparency.
  • the phrase “curing is performed under substantially anhydrous conditions” means that the atmospheric humidity of the environment in heating and / or light irradiation is 10% RH or less.
  • a cured product obtained by using the composition of the present invention (when the thickness of the cured product is 2 mm) is an ultraviolet / visible absorption spectrum measuring apparatus (manufactured by Shimadzu Corporation, the same shall apply hereinafter) according to JIS K0115: 2004.
  • the transmittance measured at a wavelength of 400 nm is preferably 80% or more, more preferably 85% or more.
  • the cured product obtained using the composition of the present invention is subjected to a heat resistance test after initial curing [a test in which a cured product (thickness: 2 mm) after initial curing is placed under a condition of 100 ° C. for 500 hours]
  • the transmittance measured at a wavelength of 400 nm using an ultraviolet / visible spectrum measuring apparatus according to JIS K0115: 2004 is preferably 80% or more, and more preferably 85% or more.
  • the cured product obtained using the composition of the present invention preferably has a permeability retention ratio (transmittance after heat test / transmittance at initial curing ⁇ 100) of 70 to 100%, 80 More preferably, it is ⁇ 100%.
  • composition of the present invention is used for applications such as display materials, optical recording medium materials, optical equipment materials, optical component materials, optical fiber materials, optical / electronic functional organic materials, and semiconductor integrated circuit peripheral materials. Can be used.
  • Modified organopolysiloxane 1 100 parts by mass of polydimethylsiloxane having silanol groups at both ends (weight average molecular weight 28,000, trade name ss70, manufactured by Shin-Etsu Chemical Co., Ltd.), methacryloxypropyltrimethoxysilane (trade name KBM503, manufactured by Shin-Etsu Chemical Co., Ltd.) 4 mass And 0.01 parts by mass of tin 2-ethylhexanoate (manufactured by Kanto Chemical Co., Ltd.) as a catalyst were placed in a reaction vessel and reacted for 6 hours while maintaining the pressure at 10 mmHg and the temperature at 80 ° C.
  • modified organopolysiloxane 1 The weight average molecular weight of the modified organopolysiloxane 1 was 35,000 in terms of polystyrene by gel permeation chromatography (GPC) using chloroform as a solvent (hereinafter the same).
  • Modified organopolysiloxane 2 Except that the polydimethylsiloxane as a raw material was changed to 100 parts by mass of polydimethylsiloxane having silanol groups at both ends (weight average molecular weight 6,000, trade name PRX-413, manufactured by Toray Dow Corning), modified organopolysiloxane In the same manner as in siloxane 1, polydimethylsiloxane having methacryloxypropyldimethoxysilyl groups at both ends was produced. The obtained reaction product was subjected to 1 H-NMR analysis, and it was confirmed that both ends of polydimethylsiloxane were methacryloxypropyldimethoxysilyl groups. The obtained polydimethylsiloxane is referred to as modified organopolysiloxane 2. The weight average molecular weight of the modified organopolysiloxane 2 was 15,000.
  • modified organopolysiloxane 3 The obtained polydimethylsiloxane is referred to as modified organopolysiloxane 3.
  • the weight average molecular weight of the modified organopolysiloxane 3 was 63,000 in terms of polystyrene by gel permeation chromatography (GPC) using chloroform as a solvent (hereinafter the same).
  • modified organopolysiloxane 4 The obtained polydimethylsiloxane is referred to as modified organopolysiloxane 4.
  • the weight average molecular weight of the modified organopolysiloxane 4 was 6,000 in terms of polystyrene by gel permeation chromatography (GPC) using chloroform as a solvent (hereinafter the same).
  • radical initiator 1 thermal radical initiator, compound name 1,1,3,3-tetramethylbutyl peroxy-2-ethylhexanoate, trade name perocta O (manufactured by NOF Corporation)
  • Radical initiator 2 Eutectic mixture of photoradical initiator, IRGACURE 184 (1-hydroxy-cyclohexyl-phenyl-ketone) and benzophenone.
  • FIG. 1 is a cross-sectional view schematically showing a mold used for curing the curable silicone resin composition of the present invention in Examples.
  • a mold 8 is made of glass 1 (length 5 cm, width 5 cm, thickness 4 mm) and release paper 3 on the glass 1 [polyethylene terephthalate (PET) film is used as the release paper.
  • PET polyethylene terephthalate
  • FIG. 2 is a top view schematically showing partly divided mold 8 used for curing the curable silicone resin composition of the present invention in the examples. 2A, first the glass 1, the release paper 3 and the spacer 5 are overlapped, the composition is poured into the inside 6, and then the release paper 4 and the glass 2 shown in FIG. 2B. Are overlaid on the spacer 5 in FIG.
  • composition contains a photoradical initiator
  • a light irradiating device (trade name: GS UVSYSTEM TYPE S250-01, manufactured by GS Yuasa Lighting Co., Ltd., using a metal hydrolamp as a light source, integrated light quantity 1 , 800 mJ / cm 2 ) was irradiated for 40 seconds with a light amount of 120 mW / cm at a wavelength of 250 to 380 nm to obtain a cured product with an integrated light amount of 1800 mJ / cm 2 .
  • composition contains a cationic polymerization catalyst
  • the mold 8 was placed in an electric oven and heated at 80 ° C. for 1 hour and then at 150 ° C. for 1 hour to obtain a cured product.
  • FIG. 3 is a cross-sectional view schematically showing a test piece for shear test used for evaluation of shear adhesive strength and fracture mode in the present invention.
  • a test piece 20 for shear test includes a spacer 18 (thickness) between a glass 12 (length 12 cm, width 2.5 cm, thickness 4 mm) and glass 14 (size is the same as the glass 12). Is 0.3 mm, and the inside is cut out so that the application area is 25 mm ⁇ 10 mm.), And the inside 16 is filled with the composition 16. The composition 16 becomes a cured product 16 after curing.
  • FIG. 4 is a top view schematically showing a test specimen for a shear test used for evaluation of shear adhesive strength and fracture mode in the present invention.
  • the spacer 18 is first placed on the glass 12, and the composition 16 is poured into the interior 16 in the frame of the spacer 18, and then in FIG. 4B.
  • the glass 14 shown is overlaid on the spacer 18 as shown in FIG. 4 (C), and then the shear test specimen 20 shown in FIG. 4 (C) is heat-cured or photocured.
  • a shear tensile test (conditions: 23 ° C., RH 55%) was performed using the thus obtained test specimen for shear test, and the shear adhesive strength was measured using a tensile tester. Moreover, the adhesiveness between glass was evaluated by the fracture
  • the evaluation standard of the shear adhesive strength was “ ⁇ ” when the shear adhesive strength was 1.5 MPa or more, and “X” when the shear adhesive strength was less than 1.5 MPa. Further, the case where the fracture mode was cohesive fracture was designated as “CF”, and the case where the fracture mode was interface fracture was designated as “AF”.
  • Comparative Examples 1 curing only by condensation of silanol groups and alkoxy groups containing no silicones A to C, radical initiators, or bis (alkoxysilyl) alkanes are in a closed system. When cured with, the alcohol, which is a by-product of the condensation reaction, did not escape from the system, and was uncured. Comparative example 2 not containing silicone B and silicone C, Comparative example 3 not containing silicone A and silicone C, Comparative example 4 not containing silicone A and silicone B, Comparative example 5 not containing silicone C, No silicone A The comparative example 6 and the comparative example 7 which does not contain silicone B had low adhesiveness. Comparative Example 8 containing epoxy silicone was inferior in heat-resistant coloring stability.
  • Comparative Example 9 containing polysiloxane A and filler was inferior in transparency.
  • Comparative Example 13 which did not contain silicone B and the amount of silicone C was larger than that of Comparative Example 7, the initial cured state became cloudy and was inferior in transparency.
  • Examples 1 to 13 have no curing inhibition in the closed system and excellent curability, adhesion to glass, heat-resistant coloring stability over time, and transparency and adhesion strength (shear strength 1.5 MPa). The balance with the above is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Silicon Polymers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 本発明は密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスに優れる硬化性シリコーン樹脂組成物の提供を目的とする。本発明の硬化性シリコーン樹脂組成物は、重量平均分子量20,000~200,000の、1分子中に2つ以上の(メタ)アクリロイル基を有するシリコーンAを100質量部と、重量平均分子量1,000以上20,000未満の、1分子中に2つ以上の(メタ)アクリロイル基を有するシリコーンBを10質量部以上と、重量平均分子量300以上1,000未満であり、(メタ)アクリル当量が450g/mol未満であり、1分子中に2つ以上の(メタ)アクリロイル基を有するシリコーンCを2質量部以上と、ラジカル開始剤とを含有する硬化性シリコーン樹脂組成物である。

Description

硬化性シリコーン樹脂組成物
 本発明は、硬化性シリコーン樹脂組成物に関する。
 従来、(メタ)アクリル変性オルガノポリシロキサン、およびシリコーンオイルなどを含有する硬化性シリコーン樹脂組成物が提案されている(特許文献1)。
特公平6-51774号公報
 しかしながら、本発明者は、シラノール基とアルコキシ基との縮合による硬化を密閉系内で行う場合、縮合反応の副生成物であるアルコールが系内から抜けず組成物が未硬化になることを見出した。
 また、本発明者は、(メタ)アクリル変性オルガノポリシロキサンなどを含有する組成物は被着体(例えば、ガラス)に対する接着性が低いこと、さらに(メタ)アクリル変性オルガノポリシロキサンおよびフィラーなどを含有する組成物は接着強度には優れるものの透明性に劣ることを見出した。
 そこで、本発明は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスに優れる硬化性シリコーン樹脂組成物を提供することを目的とする。
 本発明者は、上記課題を解決すべく鋭意研究した結果、
 重量平均分子量20,000~200,000の、1分子中に2つ以上の(メタ)アクリロイル基を有するシリコーンAを100質量部と、
 重量平均分子量1,000以上20,000未満の、1分子中に2つ以上の(メタ)アクリロイル基を有するシリコーンBを10質量部以上と、
 重量平均分子量300以上1,000未満であり、(メタ)アクリル当量が450g/mol未満であり、1分子中に2つ以上の(メタ)アクリロイル基を有するシリコーンCを2質量部以上と、
 ラジカル開始剤とを含有する組成物が、密閉系内において硬化阻害がなく硬化性に優れ、ガラス等に対する接着性、経時での耐熱着色安定性、および透明性と接着強度(せん断強度が高く破壊モードが良好である。)とのバランスに優れる、つまり、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスに優れることを見出し、本発明を完成させた。
 また、本願発明者は、硬化系としてラジカル発生のみによる硬化を利用する接着剤は、酸素阻害によって接着剤が外気に直接露出した部分(はみ出し部分)の表面硬化性が不十分であることを見出した。
 このような問題に対して、本願発明者は上記の組成物に縮合触媒を添加することによって表面硬化性が向上することを見出した。
 すなわち、本発明は、下記1~9を提供する。
 1. 重量平均分子量20,000~200,000の、1分子中に2つ以上の(メタ)アクリロイル基を有するシリコーンAを100質量部と、
 重量平均分子量1,000以上20,000未満の、1分子中に2つ以上の(メタ)アクリロイル基を有するシリコーンBを10質量部以上と、
 重量平均分子量300以上1,000未満であり、(メタ)アクリル当量が450g/mol未満であり、1分子中に2つ以上の(メタ)アクリロイル基を有するシリコーンCを2質量部以上と、
 ラジカル開始剤とを含有する硬化性シリコーン樹脂組成物。
 2. 前記シリコーンA、前記シリコーンBおよび前記シリコーンCからなる群から選ばれる少なくとも1種が、1分子中に加水分解性基を含むシリル基および/またはシラノール基を1個以上有する上記1に記載の硬化性シリコーン樹脂組成物。
 3. 前記シリコーンAが下記式(A1)で表され、前記シリコーンBが下記式(B1)で表される上記1または2に記載の硬化性シリコーン樹脂組成物。
Figure JPOXMLDOC01-appb-C000005

(式中、R1はそれぞれ水素原子またはメチル基であり、R2はそれぞれ炭素原子数1~6の炭化水素基であり、R3はそれぞれ水素原子、炭素原子数1~18の炭化水素基であり、R4はそれぞれ炭素原子数1~8の2価の炭化水素基であり、nはそれぞれ1または2であり、mは270~2,700の整数である。)
Figure JPOXMLDOC01-appb-C000006

(式中、R1はそれぞれ水素原子またはメチル基であり、R2はそれぞれ炭素原子数1~6の炭化水素基であり、R3はそれぞれ水素原子、炭素原子数1~18の炭化水素基であり、R4はそれぞれ炭素原子数1~8の2価の炭化水素基であり、nはそれぞれ1または2であり、mは14~269の整数である。)
 4. 前記シリコーンCが、下記式(3)、下記式(4)および下記式(5)で表される化合物からなる群から選ばれる少なくとも1種である上記1~3のいずれかに記載の硬化性シリコーン樹脂組成物。
Figure JPOXMLDOC01-appb-C000007

[式(3)中、Rはそれぞれアルキル基であり、X1、X2はそれぞれ下記式(6)で表される基であり、aは0~13の整数である。
 式(4)中、Rはそれぞれアルキル基であり、X3は下記式(6)で表される基であり、aは0~13の整数であり、bは1または2~13の整数であり、a+bは1または2~13であり、片方の末端において少なくとも1つのRをX3とすることができ、該X3は下記式(6)で表される基である。
 式(5)中、Rはそれぞれアルキル基であり、X1、X2、X3はそれぞれ下記式(6)で表される基であり、aは0~13の整数であり、bは1~13の整数であり、a+bは1~13である。]
Figure JPOXMLDOC01-appb-C000008

[式(6)中、R1は水素基またはメチル基であり、R4は2価の炭化水素基である。]
 5. さらに、縮合触媒を含有する上記1~4のいずれかに記載の硬化性シリコーン樹脂組成物。
 6. 前記縮合触媒の量が、前記シリコーンA、前記シリコーンBおよび前記シリコーンCの合計100質量部に対して、0.01~10質量部である上記5に記載の硬化性シリコーン樹脂組成物。
 7. さらに、ビス(アルコキシシリル)アルカンを含有する上記1~6のいずれかに記載の硬化性シリコーン樹脂組成物。
 8. 前記ビス(アルコキシシリル)アルカンが、ビス-(3-トリメトキシシリルプロピル)アミン、1,2-ビス(トリエトキシシリル)エタン、1,6-ビス(トリメトキシシリル)ヘキサン、1,7-ビス(トリメトキシシリル)ヘプタン、1,8-ビス(トリメトキシシリル)オクタン、1,9-ビス(トリメトキシシリル)ノナンおよび1,10-ビス(トリメトキシシリル)デカンからなる群から選ばれる少なくとも1種である上記7に記載の硬化性シリコーン樹脂組成物。
 9. 前記ビス(アルコキシシリル)アルカンの量が、前記シリコーンA:100質量部に対して、0.01~10質量部である上記7または8に記載の硬化性シリコーン樹脂組成物。
 本発明の硬化性シリコーン樹脂組成物は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスに優れる。
図1は、実施例において本発明の硬化性シリコーン樹脂組成物を硬化させるために使用した型を模式的に表す断面図である。 図2は、実施例において本発明の硬化性シリコーン樹脂組成物を硬化させるために使用した型8を部分的に分けて模式的に表す上面図である。 図3は、本発明において、せん断接着力および破壊モードの評価に使用したせん断試験用試験片を模式的に示す断面図である。 図4は、本発明において、せん断接着力および破壊モードの評価に使用したせん断試験用試験片を模式的に示す上面図である。
 本発明について以下詳細に説明する。
 本発明の硬化性シリコーン樹脂組成物は、
 重量平均分子量20,000~200,000の、1分子中に2つ以上の(メタ)アクリロイル基を有するシリコーンAを100質量部と、
 重量平均分子量1,000以上20,000未満の、1分子中に2つ以上の(メタ)アクリロイル基を有するシリコーンBを10質量部以上と、
 重量平均分子量300以上1,000未満であり、(メタ)アクリル当量が450g/mol未満であり、1分子中に2つ以上の(メタ)アクリロイル基を有するシリコーンCを2質量部以上と、
 ラジカル開始剤とを含有する組成物である。
 本発明の硬化性シリコーン樹脂組成物を以下「本発明の組成物」ということがある。
 シリコーンAについて以下に説明する。
 本発明の組成物に含有されるシリコーンAは、主鎖がポリシロキサン骨格であり、1分子中に2つ以上の(メタ)アクリロイル基を有し、重量平均分子量が20,000~200,000である、(メタ)アクリル変性されたポリシロキサンである。
 なお、本発明において(メタ)アクリルは、アクリルおよびメタクリルのうちの一方または両方を意味する。
 主鎖としてのポリシロキサンは、特に制限されない。例えば、オルガノポリシロキサンが挙げられ、具体的には例えば、ジメチルポリシロキサン、ジエチルポリシロキサンが挙げられる。主鎖としてのポリシロキサンは、直鎖状および分岐状のうちのいずれであってもよい。
 本発明において、シリコーンAが有する(メタ)アクリロイル基は1分子中2個以上であり、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れるという観点から、(メタ)アクリロイル基の数は2~6個であるのが好ましい。
 シリコーンAは、(メタ)アクリロイル基以外に加水分解性基を含むシリル基および/またはシラノール基を有することができる。シリコーンAは、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、耐湿熱接着性に優れ、表面硬化性に優れるという観点から、さらに、1分子中に加水分解性基を含むシリル基および/またはシラノール基を1個以上有するのが好ましい。加水分解性基を含むシリル基は、シリル基1個中に加水分解性基を1個以上含むものであればよい。シラノール基は、1つのケイ素原子に1つ以上のヒドロキシ基が結合するものであればよい。
 加水分解性基を含むシリル基は特に制限されない。例えば、アルコキシシリル基が挙げられる。
 シリコーンAは、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、耐湿熱接着性に優れ、表面硬化性に優れるという観点から、さらに、アルコキシシリル基を有するのが好ましい。
 アルコキシシリル基としては、例えば、トリアルコキシシリル基、ジアルコキシ基を有する2価のシリル基、モノアルコキシ基およびモノアルキル基を有する2価のシリル基が挙げられる。アルコキシシリル基中のアルコキシ基としては、例えば、メトキシ基、エトキシ基が挙げられる。アルコキシシリル基が有することができるアルキル基としては、例えば、メチル基、エチル基が挙げられる。
 シラノール基としては、例えば、トリヒドロキシシリル基、ジヒドロキシ基を有する2価のシリル基、モノヒドロキシ基およびモノアルキル基を有する2価のシリル基が挙げられる。アルキル基としては、例えば、メチル基、エチル基が挙げられる。
 (メタ)アクリロイル基は主鎖としてのポリシロキサンの側鎖および/または末端に結合することができる。(メタ)アクリロイル基は主鎖としてのポリシロキサンの両末端に結合することができる。
 アルコキシシリル基は主鎖としてのポリシロキサンの側鎖および/または末端に結合することができる。アルコキシシリル基は主鎖としてのポリシロキサンの両末端に結合することができる。
 本発明において、(メタ)アクリロイル基は2価の炭化水素基を介してアルコキシシリル基と結合することができる。(メタ)アクリロイル基が2価の炭化水素基を介してアルコキシシリル基と結合する基として、例えば、下記式(1)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000009

(式中、R1は水素原子またはメチル基であり、R2はそれぞれ炭素原子数1~6の炭化水素基であり、R3はそれぞれ水素原子、炭素原子数1~18の炭化水素基であり、R4は炭素原子数1~8の2価の炭化水素基であり、nは1または2である。)
 (メタ)アクリロイル基は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れるという観点から、式(1)で表されるものが好ましい。
 式(1)で示される基は主鎖としての例えばオルガノポリシロキサンの側鎖および/または末端に結合することができる。式(1)で示される基は主鎖としての例えばオルガノポリシロキサンの両末端に結合することができる。
 式(1)で示される基において、R2としての炭素原子数1~6の炭化水素基としては、例えば、メチル基、エチル基のようなアルキル基;シクロヘキシル基のような脂環式炭化水素基;フェニル基のような芳香族炭化水素基が挙げられる。R3としての炭素原子数1~18の炭化水素基としては、例えば、メチル基、エチル基、ヘキシル基、オクチル基、デシル基、オクタデシル基のようなアルキル基;シクロヘキシル基のような脂環式炭化水素基;フェニル基のような芳香族炭化水素基が挙げられる。
 また、式(1)中、R4としての炭素原子数1~8の2価の炭化水素基は特に制限されない。例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンチレン基が挙げられる。
 nは、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、耐湿熱接着性に優れるという観点から、2であるのが好ましい。
 シリコーンAとしては、例えば、下記式(A1)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000010

(式中、R1はそれぞれ水素原子またはメチル基であり、R2はそれぞれ炭素原子数1~6の炭化水素基であり、R3はそれぞれ水素原子、炭素原子数1~18の炭化水素基であり、R4はそれぞれ炭素原子数1~8の2価の炭化水素基であり、nはそれぞれ1または2であり、mは270~2,700の整数である。)
 R1~R4、nは式(1)と同義である。
 mは、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、作業性に優れるという観点から、270~1,350の整数であるのが好ましい。
 シリコーンAは、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、耐湿熱接着性に優れるという観点から、式(A1)で表されるものが好ましい。
 本発明において、シリコーンAの重量平均分子量は20,000~200,000である。
 シリコーンAの重量平均分子量は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、作業性に優れるという観点から、20,000~100,000が好ましい。
 なお本発明において、シリコーンAの重量平均分子量は、クロロホルムを溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)によるポリスチレン換算で表わされるものとする。
 シリコーンAはそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
 シリコーンAはその製造について特に制限されない。例えば、両末端にヒドロキシ基を有するオルガノポリシロキサン[例えば、式(IV)で表されるオルガノポリシロキサン]と、式(V)で表される化合物またはその縮合物とを脱アルコール縮合させることによって製造することができる。

[式(V)中、R1はそれぞれ水素原子またはメチル基であり、R2はそれぞれ炭素原子数1~6の炭化水素基であり、R3はそれぞれ水素原子、炭素原子数1~18の炭化水素基であり、R4はそれぞれ炭素原子数1~8の2価の炭化水素基であり、nは2または3である。式(IV)中、mは270~2,700の整数である。]
 R1~R4は式(1)と同義である。mは式(A1)と同義である。
 密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、加熱減量の抑制に優れるという観点から、両末端にヒドロキシ基を有するオルガノポリシロキサン1モルに対して、式(V)で表される化合物を2モルを超える量で反応させるのが好ましい。
 シリコーンBについて以下に説明する。
 本発明の組成物に含有されるシリコーンBは、主鎖がポリシロキサン骨格であり、1分子中に2つ以上の(メタ)アクリロイル基を有し、重量平均分子量が1,000以上20,000未満である、(メタ)アクリル変性されたポリシロキサンである。
 シリコーンBは、シリコーンAとシリコーンCとの相溶化剤、接着付与剤として機能することができ、得られる硬化物に柔軟性を与えることができる。したがって、本発明の硬化性シリコーン樹脂組成物はシリコーンBを含有することによって、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスに優れ、相溶性に優れる。
 主鎖としてのポリシロキサンは、特に制限されない。例えば、シリコーンAと同様のものが挙げられる。主鎖としてのポリシロキサンは、直鎖状および分岐状のうちのいずれであってもよい。
 本発明において、シリコーンBが有する(メタ)アクリロイル基は1分子中2個以上であり、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、耐湿熱接着性に優れるという観点から、(メタ)アクリロイル基の数は2~6個であるのが好ましい。
 シリコーンBは、(メタ)アクリロイル基以外に加水分解性基を含むシリル基および/またはシラノール基を有することができる。シリコーンBは、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、耐湿熱接着性に優れ、表面硬化性に優れるという観点から、さらに、1分子中に加水分解性基を含むシリル基および/またはシラノール基を1個以上有するのが好ましい。加水分解性基を含むシリル基、シラノール基は特に制限されない。加水分解性基を含むシリル基としては例えばアルコキシシリル基が挙げられる。
 シリコーンBは、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、耐湿熱接着性に優れ、表面硬化性に優れるという観点から、さらにアルコキシシリル基を有するのが好ましい。アルコキシシリル基としては、例えば、シリコーンAと同様のものが挙げられる。アルコキシシリル基中のアルコキシ基としては、例えば、シリコーンAと同様のものが挙げられる。
 (メタ)アクリロイル基は主鎖としてのポリシロキサンの側鎖および/または末端に結合することができる。(メタ)アクリロイル基は主鎖としてのポリシロキサンの両末端に結合することができる。
 アルコキシシリル基は主鎖としてのポリシロキサンの側鎖および/または末端に結合することができる。アルコキシシリル基は主鎖としてのポリシロキサンの両末端に結合することができる。
 本発明において、(メタ)アクリロイル基は2価の炭化水素基を介してアルコキシシリル基と結合することができる。(メタ)アクリロイル基が2価の炭化水素基を介してアルコキシシリル基と結合する基として、例えば、下記式(1)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000012

(式中、R1は水素原子またはメチル基であり、R2はそれぞれ炭素原子数1~6の炭化水素基であり、R3はそれぞれ水素原子、炭素原子数1~18の炭化水素基であり、R4は炭素原子数1~8の2価の炭化水素基であり、nは1または2である。)
 (メタ)アクリロイル基は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れるという観点から、式(1)で表されるものが好ましい。シリコーンBにおける式(1)で表される、(メタ)アクリロイル基が2価の炭化水素基を介してアルコキシシリル基と結合する基は、シリコーンAにおける式(1)と同様である。
 式(1)で示される基は主鎖としての例えばオルガノポリシロキサンの側鎖および/または末端に結合することができる。式(1)で示される基は主鎖としての例えばオルガノポリシロキサンの両末端に結合することができる。
 シリコーンBとしては、例えば、下記式(B1)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000013

(式中、R1はそれぞれ水素原子またはメチル基であり、R2はそれぞれ炭素原子数1~6の炭化水素基であり、R3はそれぞれ水素原子、炭素原子数1~18の炭化水素基であり、R4はそれぞれ炭素原子数1~8の2価の炭化水素基であり、nはそれぞれ1または2であり、mは14~269の整数である。)
 R1~R4、nは式(1)と同義である。
 mは、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、作業性に優れるという観点から、80~250の整数であるのが好ましい。
 シリコーンBは、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、耐湿熱接着性に優れるという観点から、式(B1)で表されるものが好ましい。
 本発明において、シリコーンBの重量平均分子量は1,000以上20,000未満である。
 シリコーンBの重量平均分子量は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、相溶性、耐湿熱接着性に優れるという観点から、6,000以上20,000未満であるのが好ましい。
 なお本発明において、シリコーンBの重量平均分子量は、クロロホルムを溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)によるポリスチレン換算で表わされるものとする。
 シリコーンBはそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
 シリコーンBはその製造について特に制限されない。例えば、両末端にヒドロキシ基を有するオルガノポリシロキサン[例えば、式(IV)で表されるオルガノポリシロキサン]と、式(V)で表される化合物またはその縮合物とを脱アルコール縮合させることによって製造することができる。
Figure JPOXMLDOC01-appb-C000014

[式(V)中、R1はそれぞれ水素原子またはメチル基であり、R2はそれぞれ炭素原子数1~6の炭化水素基であり、R3はそれぞれ水素原子、炭素原子数1~18の炭化水素基であり、R4はそれぞれ炭素原子数1~8の2価の炭化水素基であり、nは2または3である。式(IV)中、mは14~269の整数である。]
 R1~R4は式(1)と同義である。mは式(B1)と同義である。
 密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、加熱減量の抑制に優れるという観点から、両末端にヒドロキシ基を有するオルガノポリシロキサン1モルに対して、式(V)で表される化合物を2モルを超える量で反応させるのが好ましい。
 本発明において、シリコーンBの量は、シリコーンA100質量部に対して、10質量部以上である。
 シリコーンBの量は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、相溶性に優れるという観点から、シリコーンA100質量部に対して、10~200質量部であるが好ましく、100~200質量部であるのがより好ましい。
 シリコーンCについて以下に説明する。
 本発明の組成物に含有されるシリコーンCは、主鎖がポリシロキサン骨格であり、1分子中に2つ以上の(メタ)アクリロイル基を有し、(メタ)アクリル当量が450g/mol未満であり、重量平均分子量が300以上1,000未満ある、(メタ)アクリル変性されたポリシロキサンである。
 本発明の組成物はシリコーンCを含有することによって、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスに優れ、得られる硬化物の強度を高くすることができる。
 主鎖としてのポリシロキサンは特に制限されない。例えばオルガノポリシロキサンが挙げられ、具体的には例えば、ジメチルポリシロキサン、ジエチルポリシロキサンが挙げられる。主鎖としてのポリシロキサンは、直鎖状および分岐状のうちのいずれであってもよい。
 本発明において、シリコーンCが有する(メタ)アクリロイル基は1分子中2個以上であり、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れるという観点から、(メタ)アクリロイル基の数は2~6個であるのが好ましい。
 (メタ)アクリロイル基としては、例えば、下記式(6)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000015

(式中、R1は水素原子またはメチル基であり、R4は2価の炭化水素基である。)
 R4としての2価の炭化水素基はその炭素原子数が、1~8であるのが好ましい。炭素原子数1~8の2価の炭化水素基は式(1)と同義である。
 (メタ)アクリロイル基は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れるという観点から、式(6)で表されるものが好ましい。
 (メタ)アクリロイル基は主鎖としてのポリシロキサンの側鎖および/または末端に結合することができる。(メタ)アクリロイル基は主鎖としてのポリシロキサンの両末端に結合することができる。
 シリコーンCは加水分解性基を含むシリル基および/またはシラノール基を有してもよい。加水分解性基を含むシリル基、シラノール基は上記と同様のものが挙げられる。
 シリコーンCとしては、例えば、下記式(3)、下記式(4)、下記式(5)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000016

[式(3)中、Rはそれぞれアルキル基であり、X1、X2はそれぞれ上記式(6)で表される基であり、aは0~13の整数である。
 式(4)中、Rはそれぞれアルキル基であり、X3は上記式(6)で表される基であり、aは0~13の整数であり、bは1(または2)~13[つまり1または2以上13以下]の整数であり、a+bは1(または2)~13[つまり1または2以上13以下]である。式(4)中、片方の末端において少なくとも1つのRをX3とすることができ、X3は上記式(6)で表される基である。なお片方の末端において少なくとも1つのRをX3とする場合bは1以上とすることができる(以下同様)。
 式(5)中、Rはそれぞれアルキル基であり、X1、X2、X3はそれぞれ上記式(6)で表される基であり、aは0~13の整数であり、bは1~13の整数であり、a+bは1~13である。]
 式(3)~式(5)におけるRとしてのアルキル基は特に制限されない。例えば、上記式(1)におけるR2(炭素原子数1~6の炭化水素基)と同様のものが挙げられる。
 式(3)におけるaは、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れるという観点から0~5の整数であるのが好ましい。
 式(4)中、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れるという観点から、aは0~5の整数であるのが好ましく、bは1(または2)~5[つまり1または2以上5以下]の整数であるのが好ましく、a+bは1(または2)~10[つまり1または2以上10以下]であるのが好ましい。式(4)中、片方の末端において少なくとも1つのRをX3とすることができ、X3は上記式(6)で表される基である。
 式(5)中、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れるという観点から、aは0~5の整数であるのが好ましく、bは1~5の整数であるのが好ましく、a+bは1~10であるのが好ましい。
 シリコーンCは、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れるという観点から、式(3)、式(4)および式(5)で表される化合物からなる群から選ばれる少なくとも1種であるのが好ましい。
 本発明において、シリコーンCの重量平均分子量は300以上1,000未満である。
 シリコーンCの重量平均分子量は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れるという観点から、300~500が好ましい。
 なお本発明において、シリコーンCの重量平均分子量は、クロロホルムを溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)によるポリスチレン換算で表わされるものとする。
 本発明において、シリコーンCの(メタ)アクリル当量は、450g/mol未満である。
 シリコーンCの(メタ)アクリル当量は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れるという観点から、100~200g/molが好ましい。
 シリコーンCはそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
 シリコーンCはその製造について特に制限されない。例えば、従来公知のものが挙げられる。
 本発明において、シリコーンCの量は、シリコーンA100質量部に対して、2質量部以上である。
 シリコーンCの量は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れるという観点から、シリコーンA100質量部に対して、2~100質量部であるが好ましく、5~50質量部であるのがより好ましく、20~50質量部であるのがより好ましい。
 なお、本発明の組成物はシリコーンA~C以外に、上記式(3)で表されX2がR:アルキル基である化合物を含有することができる。R、X1、aは上記と同義である。
 ラジカル開始剤について以下に説明する。
 本発明の組成物に含有されるラジカル開始剤は、熱および/または光によって(メタ)アクリロイル基をラジカル重合させるものであれば特に制限されない。
 ラジカル開始剤は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れるという観点から、窒素原子または硫黄原子を含まないものが好ましく、炭素原子、水素原子および酸素原子からなるものがより好ましい。
 熱によるラジカル開始剤(熱ラジカル開始剤)としては、例えば、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、ラウリルパーオキサイド、t-ブチルパーオキサイド、t-アミルパーオキシブタンのような脂肪族炭化水素のパーオキサイド;ベンゾイルパーオキサイド、クメンヒドロパーオキサイドのような芳香族パーオキサイド;アゾビスイソブチロニトリルのようなアゾ化合物が挙げられる。
 光によるラジカル開始剤(光ラジカル開始剤)としては、例えば、アセトフェノン系化合物、ベンゾインエーテル系化合物、ベンゾフェノン系化合物のようなカルボニル化合物、硫黄化合物、アゾ化合物、パーオキサイド化合物、ホスフィンオキサイド系化合物などが挙げられる。
 具体的には例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アセトイン、ブチロイン、トルオイン、ベンジル、ベンゾフェノン、p-メトキシベンゾフェノン、ジエトキシアセトフェノン、α,α-ジメトキシ-α-フェニルアセトフェノン、メチルフェニルグリオキシレート、エチルフェニルグリオキシレート、4,4′-ビス(ジメチルアミノベンゾフェノン)、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニルケトン等のカルボニル化合物;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド等の硫黄化合物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロ等のアゾ化合物;ベンゾイルパーオキサイド、ジターシャリーブチルパーオキサイド等のパーオキサイド化合物が挙げられる。
 ラジカル開始剤の量は、シリコーンA100質量部に対して、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れるという観点から、0.1~5質量部が好ましい。
 本発明の組成物は、さらに、縮合触媒を含有することができる。本発明の組成物がさらに縮合触媒を含有する場合、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、接着剤として用いた場合は空気中に直接露出した部分、はみ出し部分の表面硬化性に優れ、接着性、せん断接着力にはほぼ影響が無いものとすることができる。本発明の組成物において、シリコーンA、シリコーンBおよびシリコーンCからなる群から選ばれる少なくとも1種が、1分子中に加水分解性基を含むシリル基および/またはシラノール基を1個以上有する場合、さらに縮合触媒を含有するのが表面硬化性に優れるという観点から有用である。なかでも、シリコーンAおよび/またはシリコーンBが1分子中に加水分解性基を含むシリル基および/またはシラノール基を1個以上有するのが好ましい。
 本発明の組成物がさらに含有することができる縮合触媒は、加水分解性基含有シリル基やシラノール基を加水分解、縮合させることができるものであれば特に制限されない。例えば、スズ、アルミニウム、チタン、ジルコニウム、ハフニウム、カルシウム、バリウム等の金属を含む有機金属化合物やホウ素化合物が挙げられる。なかでも、表面硬化性に優れるという観点から、有機スズ化合物が好ましい。また有機金属化合物としては例えば、金属アルコキシド化合物、金属キレート化合物、金属アルキル化合物が挙げられる。
 有機スズ化合物は、スズ原子と有機基とを有する化合物であれば特に制限されない。例えば、下記式(I)~(V)で表されるスズ化合物[具体的には例えばジオクチル錫化合物(例えばジオクチルスズ塩)と正珪酸化合物(例えば正珪酸エチル)との混合物または反応物(例えば、商品名U-780、S-1、いずれも日東化成株式会社製)]が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 式(I)中、R1は炭素数1~10の炭化水素基を示し、R2は炭素原子数1~4の炭化水素基を示し、pは1~10、qは1~4、rは1~5の整数を示す。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 式(II)~(V)中、R1は炭素原子数1~10の炭化水素基(例えばオクチル基のような脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基)を示し、R2は炭素原子数1~4の炭化水素基(例えばエチル基のような脂肪族炭化水素基)を示す。また、式(V)中のnは1以上の整数である。
 縮合触媒はその製造について特に制限されない。縮合触媒はそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
 縮合触媒の量は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、表面硬化性に優れるという観点から、シリコーンA、シリコーンBおよびシリコーンCの合計100質量部に対して、0.01~10質量部であるのが好ましく、0.01~1質量部であるのがより好ましい。
 本発明の組成物は、さらに、ビス(アルコキシシリル)アルカンを含有することができる。本発明の組成物がビス(アルコキシシリル)アルカンを含有する場合、ビス(アルコキシシリル)アルカンは接着付与剤として機能することができる。接着付与剤として本発明の組成物は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れるという観点から、さらにビス(アルコキシシリル)アルカンを含有するのが好ましい。
 本発明の組成物が含有することができるビス(アルコキシシリル)アルカンは、1分子中にアルコキシシリル基を2個有する2価のアルカンである。
 アルコキシシリル基におけるアルコキシ基は特に制限されない。例えば、メトキシ基、エトキシ基が挙げられる。
 1つのアルコキシシリル基は、アルコキシ基を1~3個有することができる。アルコキシシリル基に結合することができる、アルコキシ基以外の基としては、例えば、メチル基、エチル基のようなアルキル基が挙げられる。
 2価のアルカン(アルキレン基)は特に制限されない。2価のアルカンは例えば、酸素原子、窒素原子、硫黄原子のようなヘテロ原子を有することができる。2価のアルカンの炭素原子数は特に制限されない。密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、耐湿熱接着性、相溶性に優れるという観点から、2価のアルカンの炭素原子数は2~10個が好ましい。
 ビス(アルコキシシリル)アルカンとしては、例えば、下記式(VII)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000022

 式中、R7~R8はそれぞれアルキル基であり、R9は2価のアルカンであり、aはそれぞれ1~3の整数である。アルキル基としては、例えば、メチル基、エチル基が挙げられる。R9としての2価のアルカンは上記の2価のアルカンと同義である。
 ビス(アルコキシシリル)アルカンとしては、例えば、1,2-ビス(トリエトキシシリル)エタン、1,4-ビス(トリメトキシシリル)ブタン、1-メチルジメトキシシリル-4-トリメトキシシリルブタン、1,4-ビス(メチルジメトキシシリル)ブタン、1,5-ビス(トリメトキシシリル)ペンタン、1,4-ビス(トリメトキシシリル)ペンタン、1-メチルジメトキシシリル-5-トリメトキシシリルペンタン、1,5-ビス(メチルジメトキシシリル)ペンタン、1,6-ビス(トリメトキシシリル)ヘキサン、1,4-ビス(トリメトキシシリル)ヘキサン、1,5-ビス(トリメトキシシリル)ヘキサン、2,5-ビス(トリメトキシシリル)ヘキサン、1,6-ビス(メチルジメトキシシリル)ヘキサン、1,7-ビス(トリメトキシシリル)ヘプタン、2,5-ビス(トリメトキシシリル)ヘプタン、2,6-ビス(トリメトキシシリル)ヘプタン、1,8-ビス(トリメトキシシリル)オクタン、2,5-ビス(トリメトキシシリル)オクタン、2,7-ビス(トリメトキシシリル)オクタン、1,9-ビス(トリメトキシシリル)ノナン、2,7-ビス(トリメトキシシリル)ノナン、1,10-ビス(トリメトキシシリル)デカン、3,8-ビス(トリメトキシシリル)デカン;ビス-(3-トリメトキシシリルプロピル)アミンのような窒素原子を有するものが挙げられる。
 ビス(アルコキシシリル)アルカンは、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、耐湿熱接着性に優れるという観点から、式(VII)で表されるものが好ましく、ビス(トリアルコキシシリル)アルカンがより好ましく、ビス-(3-トリメトキシシリルプロピル)アミン、1,2-ビス(トリエトキシシリル)エタン、1,6-ビス(トリメトキシシリル)ヘキサン、1,7-ビス(トリメトキシシリル)ヘプタン、1,8-ビス(トリメトキシシリル)オクタン、1,9-ビス(トリメトキシシリル)ノナンおよび1,10-ビス(トリメトキシシリル)デカンからなる群から選ばれる少なくとも1種がさらに好ましく、1,6-ビス(トリメトキシシリル)ヘキサン、ビス-(3-トリメトキシシリルプロピル)アミンが特に好ましい。
 ビス(アルコキシシリル)アルカンはそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
 ビス(アルコキシシリル)アルカンの量は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、耐湿熱接着性に優れるという観点から、シリコーンA100質量部に対して、0.01~10質量部であるのが好ましく、0.1~3質量部であるのがより好ましい。
 本発明の組成物は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、耐湿熱接着性に優れるという観点から、シリコーンAと、シリコーンBと、シリコーンCと、ラジカル開始剤とからなる組成物(以上の4つの成分のみを含有する組成物)とすることができる。
 また、本発明の組成物は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、耐湿熱接着性に優れるという観点から、シリコーンAと、シリコーンBと、シリコーンCと、ラジカル開始剤と、ビス(アルコキシシリル)アルカンとからなる組成物(以上の5つの成分のみを含有する組成物)とすることができる。
 また、本発明の組成物は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、耐湿熱接着性、表面硬化性に優れるという観点から、シリコーンAと、シリコーンBと、シリコーンCと、ラジカル開始剤と、縮合触媒とからなる組成物(以上の5つの成分のみを含有する組成物)とすることができる。
 また、本発明の組成物は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、耐湿熱接着性、表面硬化性に優れるという観点から、シリコーンAと、シリコーンBと、シリコーンCと、ラジカル開始剤と、縮合触媒と、ビス(アルコキシシリル)アルカンとからなる組成物(以上の6つの成分のみを含有する組成物)とすることができる。
 本発明の組成物は、シリコーンA、シリコーンB、シリコーンC、ラジカル開始剤、ビス(アルコキシシリル)アルカン、縮合触媒以外に、本発明の目的や効果を損なわない範囲で必要に応じてさらに添加剤を含有することができる。
 添加剤としては、例えば、無機フィラー、酸化防止剤、滑剤、紫外線吸収剤、熱光安定剤、分散剤、帯電防止剤、重合禁止剤、消泡剤、硬化促進剤、溶剤、無機蛍光体、老化防止剤、ラジカル禁止剤、接着性改良剤、難燃剤、界面活性剤、保存安定性改良剤、オゾン老化防止剤、増粘剤、可塑剤、放射線遮断剤、核剤、カップリング剤、導電性付与剤、リン系過酸化物分解剤、顔料、金属不活性化剤、物性調整剤が挙げられる。各種添加剤は特に制限されない。例えば、従来公知のものが挙げられる。
 本発明の組成物は、貯蔵安定性に優れるという観点から、実質的に水を含まないのが好ましい態様の1つとして挙げられる。本発明において実質的に水を含まないとは、本発明の組成物中における水の量が0.1質量%以下であることをいう。
 また、本発明の組成物は、作業環境性に優れるという観点から、実質的に溶媒を含まないのが好ましい態様の1つとして挙げられる。本発明において実質的に溶媒を含まないとは、本発明の組成物中における溶媒の量が1質量%以下であることをいう。
 本発明の組成物は、その製造について特に制限されない。例えば、シリコーンAと、シリコーンBと、シリコーンCと、ラジカル開始剤と、必要に応じて使用することができる、ビス(アルコキシシリル)アルカンと縮合触媒と添加剤とを混合することによって製造することができる。
 本発明の組成物は、1液型または2液型として製造することが可能である。
 本発明の組成物は、例えば、接着剤、プライマー、封止材(例えば、光半導体用)として使用することができる。
 本発明の組成物を適用することができる被着体としては、例えば、ガラス、プラスチック、ゴムが挙げられる。
 本発明の組成物を適用することができる光半導体は特に制限されない。例えば、発光ダイオード(LED、例えば、白色LED)、有機電界発光素子(有機EL)、レーザーダイオード、LEDアレイが挙げられる。
 本発明の組成物の使用方法としては、例えば、被着体(例えば、ガラス、プラスチック、ゴム、光半導体など)に本発明の組成物を付与し、本発明の組成物が付与された被着体を加熱、および/または本発明の組成物が付与された被着体に光照射をして本発明の組成物を硬化させることが挙げられる。
 例えば、複数のガラスの間に本発明の組成物を付与して硬化させて本発明の組成物を介して複数のガラスを接着させることによって、ガラスの積層体を得ることができる。
 また、複数のガラスの間に光半導体を配置し、ガラスの間に本発明の組成物を付与し硬化させて本発明の組成物を介して複数のガラスを接着させ光半導体を封止することができる。
 本発明の組成物を被着体に付与する方法は特に制限されない。例えば、ディスペンサーを使用する方法、ポッティング法、スクリーン印刷、トランスファー成形、インジェクション成形が挙げられる。
 本発明の組成物を加熱する際の温度は、密閉系内における硬化性、接着性、耐熱着色安定性、および透明性と接着強度とのバランスにより優れ、硬化時間、可使時間を適切な長さとすることができ、縮合反応による副生成物であるアルコールが発泡するのをより抑制でき、硬化物のクラックを抑制でき、硬化物の平滑性、成形性、物性に優れるという観点から、80℃~150℃付近で硬化させるのが好ましく、150℃付近がより好ましい。
 本発明の組成物を光照射で硬化させる場合、例えば、紫外線、電子線を用いることができる。
 硬化は、硬化性、透明性に優れるという観点から、実質的に無水の条件下で行うことができる。本発明において、硬化が実質的に無水の条件下でなされるとは、加熱および/または光照射における環境の大気中の湿度が10%RH以下であることをいう。
 本発明の組成物を用いて得られる硬化物(硬化物の厚さが2mmである場合)は、JIS K0115:2004に準じ紫外・可視吸収スペクトル測定装置(島津製作所社製、以下同様。)を用いて波長400nmにおいて測定された透過率が、80%以上であるのが好ましく、85%以上であるのがより好ましい。
 また、本発明の組成物を用いて得られる硬化物は、初期硬化の後耐熱試験[初期硬化後の硬化物(厚さ:2mm)を100℃の条件下に500時間置く試験]を行いその後の硬化物について、JIS K0115:2004に準じ紫外・可視スペクトル測定装置を用いて波長400nmにおいて測定された透過率が、80%以上であるのが好ましく、85%以上であるのがより好ましい。
 本発明の組成物を用いて得られる硬化物は、その透過性保持率(耐熱試験後の透過率/初期硬化の際の透過率×100)が、70~100%であるのが好ましく、80~100%であるのがより好ましい。
 本発明の組成物は、光半導体以外にも、例えば、ディスプレイ材料、光記録媒体材料、光学機器材料、光部品材料、光ファイバー材料、光・電子機能有機材料、半導体集積回路周辺材料等の用途に用いることができる。
 以下に、実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限定されない。
1.変性オルガノポリシロキサンの製造
(1)変性オルガノポリシロキサン1
 両端にシラノール基を有するポリジメチルシロキサン(重量平均分子量28,000、商品名ss70、信越化学工業社製)100質量部、メタクリルオキシプロピルトリメトキシシラン(商品名KBM503、信越化学工業社製)4質量部、および触媒として2-エチルへキサン酸スズ(関東化学社製)0.01質量部を反応容器に入れ、圧力を10mmHg、温度を80℃に保ちながら6時間反応させた。
 得られた反応物について1H-NMR分析を行い、ポリジメチルシロキサンの両末端がメタクリルオキシプロピルジメトキシシリル基であることを確認した。
 得られたポリジメチルシロキサンを変性オルガノポリシロキサン1とする。
 変性オルガノポリシロキサン1の重量平均分子量は、クロロホルムを溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)によるポリスチレン換算(以下同様)で、35,000であった。
(2)変性オルガノポリシロキサン2
 原料としてのポリジメチルシロキサンを、両端にシラノール基を有するポリジメチルシロキサン(重量平均分子量6,000、商品名PRX-413、東レ・ダウコーニング社製)100質量部に代えたほかは、変性オルガノポリシロキサン1と同様にして両端にメタクリルオキシプロピルジメトキシシリル基を有するポリジメチルシロキサンを製造した。
 得られた反応物について1H-NMR分析を行い、ポリジメチルシロキサンの両末端がメタクリルオキシプロピルジメトキシシリル基であることを確認した。
 得られたポリジメチルシロキサンを変性オルガノポリシロキサン2とする。
 変性オルガノポリシロキサン2の重量平均分子量は15,000であった。
(3)変性オルガノポリシロキサン3
 原料としてポリジメチルシロキサンを両端にシラノール基を有するポリジメチルシロキサン(重量平均分子量=60,000、商品名x-21-5848、信越化学工業社製)に代えたほかは変性オルガノポリシロキサン1と同様にして両端にメタクリルオキシプロピルジメトキシシリル基を有するポリジメチルシロキサンを製造した。
 得られた反応物について1H-NMR分析を行い、ポリジメチルシロキサンの両末端がメタクリルオキシプロピルジメトキシシリル基であることを確認した。
 得られたポリジメチルシロキサンを変性オルガノポリシロキサン3とする。
 変性オルガノポリシロキサン3の重量平均分子量は、クロロホルムを溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)によるポリスチレン換算(以下同様)で、63,000であった。
(4)変性オルガノポリシロキサン4
 両端にヒドロキシ基を有するポリジメチルシロキサン(ss70)を、両端にヒドロキシ基を有するポリジメチルシロキサン(重量平均分子量=3,000、商品名KF-9701、信越化学工業社製)に代えた他は変性オルガノポリシロキサン1と同様にして両端にメタクリルオキシプロピルジメトキシシリル基を有するポリジメチルシロキサンを製造した。
 得られた反応物について1H-NMR分析を行い、ポリジメチルシロキサンの両末端がメタクリルオキシプロピルジメトキシシリル基であることを確認した。
 得られたポリジメチルシロキサンを変性オルガノポリシロキサン4とする。
 変性オルガノポリシロキサン4の重量平均分子量は、クロロホルムを溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)によるポリスチレン換算(以下同様)で、6,000であった。
2.硬化性シリコーン樹脂組成物の製造
 下記第1表に示す成分を同表に示す量(質量部)で用いてそれらを真空機付攪拌機で均一に混合し、硬化性シリコーン樹脂組成物を製造した。
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 第1表に示されている各成分は、以下のとおりである。
 ・シリコーンA-1:上記のようにして製造した変性オルガノポリシロキサン1
 ・シリコーンB-1:上記のようにして製造した変性オルガノポリシロキサン2
 ・シリコーンC-1:商品名x-22-164、信越化学工業社製、分子中にアルコキシシリル基がない、メタクリル変性ジメチルポリシロキサン、Mw=380、アクリル当量190g/mol
 ・シリコーンA-2:上記のようにして製造した変性オルガノポリシロキサン3
 ・シリコーンB-2:上記のようにして製造した変性オルガノポリシロキサン4
 ・シリコーンF-1:商品名x-22-164AS(信越化学工業社製)、分子量=900、アクリル当量450g/mol、構造式は下記式で表される。
Figure JPOXMLDOC01-appb-C000025

 式中、a=10である。
 ・(D)ラジカル開始剤1:熱ラジカル開始剤、化合物名1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、商品名パーオクタO(日本油脂社製)
 ・(D)ラジカル開始剤2:光ラジカル開始剤、IRGACURE 184(1-ヒドロキシ-シクロヘキシル-フェニル-ケトン)とベンゾフェノンとの共融混合物。商品名イルガキュア500(チバ社)
 ・縮合触媒1:ジオクチル錫化合物と正珪酸化合物とを混合した触媒(商品名U-780、日東化成社製)
 ・縮合触媒2:ジオクチル錫化合物と正珪酸化合物とを混合した触媒(商品名S-1、日東化成社製)
 ・縮合触媒3:化合物名モノブチルスズトリス(2-エチルヘキサノエート)(商品名SCAT-24、日東化成社製)
 ・(E)ビス(アルコキシシリル)アルカン:下記式で表されるビス-(3-トリメトキシシリルプロピル)アミン(商品名KBM666P、信越化学工業社製)
Figure JPOXMLDOC01-appb-C000026

 ・(F)ジメチルポリシロキサン:下記式で表される化合物(商品名ss-10、信越化学工業社製、Mw=42,000)
Figure JPOXMLDOC01-appb-C000027

 ・(G)アルコキシオリゴマー:商品名x-40-9246、信越化学工業社製、(Mw=6,000)
 ・(H)ナフテン酸ジルコニル:日本化学産業社製
 ・(I)エポキシシリコーン:エポキシ変性ポリシロキサン(商品名:KF101、信越化学工業社製)
 ・(J)カチオン重合触媒:BF3・Et2O(BF3エチルエテラート錯体、東京化成工業社製)
 ・(K)フィラー:ヒュームドシリカ、商品名アエロジル300、日本アエロジル社製
3.評価
 上記のようにして得た硬化性シリコーン樹脂組成物について、以下の方法で、密閉系初期硬化状態、透過率、透過率保持率、耐熱着色安定性、せん断接着力および破壊モード、せん断接着力評価を評価した。結果を第1表に示す。
<サンプルの作製>
 サンプルの作製について添付の図面を用いて以下に説明する。
 図1は、実施例において本発明の硬化性シリコーン樹脂組成物を硬化させるために使用した型を模式的に表す断面図である。
 図1において、型8は、ガラス1(縦5cm、横5cm、厚さ4mm)と、ガラス1の上の離型紙3[離型紙としてポリエチレンテレフタレート(PET)のフィルムを使用。以下同様。]と、離型紙3の上のシリコーン製のスペーサー5(正方形の外枠の形状を有する。高さ2mm)と、スペーサー5の上の離型紙4と、離型紙4の上のガラス2とを有する。型8の内部6は組成物6で満たされている。組成物6は硬化後硬化物6となる。型8はジグで固定されている(図示せず。)。
 図2は、実施例において本発明の硬化性シリコーン樹脂組成物を硬化させるために使用した型8を部分的に分けて模式的に表す上面図である。
 型8は、図2(A)に示すようにまずガラス1と離型紙3とスペーサー5とを重ね、内部6に組成物を流し、その後図2(B)に示す、離型紙4とガラス2とを、図2(A)のスペーサー5の上に重ねることによって得られる。
<硬化条件>
(1)組成物が熱ラジカル開始剤を含有する場合
 型8を電気オーブンに入れて、150℃で3時間加熱して硬化物を得た。
(2)組成物が光ラジカル開始剤を含有する場合
 型8に光照射装置(商品名:GS UVSYSTEM TYPE S250―01、ジーエス・ユアサ ライティング社製。光源としてメタルハイドロランプを使用し、積算光量1,800mJ/cm2で照射した。)で波長250~380nmの紫外線を光量120mW/cmで40秒間照射し、積算光量1800mJ/cm2として、硬化物を得た。
(3)組成物がカチオン重合触媒を含有する場合
 型8を電気オーブンに入れて、80℃で1時間、さらにその後150℃で1時間加熱して硬化物を得た。
<評価条件>
(1)密閉系初期硬化状態
 型8を用いて組成物を上記の条件で硬化させ、初期の硬化状態を評価した。
 評価基準は、表面が未硬化またはゲル状の場合を「×」、タックが無くなった場合を「○」とした。
(2)透過率、透過率保持率
 透過率評価試験において、型8を用いて組成物を上記の条件で硬化させて得られた初期硬化物、および耐熱試験(初期硬化物をさらに100℃の条件下で500時間加熱する試験)後の硬化物についてそれぞれ、JIS K0115:2004に準じ紫外・可視吸収スペクトル測定装置(島津製作所社製)を用いて波長400nmにおける透過率を測定した。また、耐熱試験後の透過率の初期の透過率に対する保持率を下記計算式によって求めた。
 透過率保持率(%)=(耐熱試験後の透過率)/(初期の透過率)×100
(3)耐熱着色安定性
 型8を用いて組成物を上記の条件で硬化させて得られた初期硬化物、および耐熱試験(初期硬化物を100℃の条件下で500時間加熱する試験)後の硬化物について、耐熱試験後の硬化物が、初期硬化物と比較して黄変したかどうかを目視で観察した。
(4)せん断接着力および破壊モード
 せん断接着力および破壊モードの評価に使用したせん断試験用試験片について添付の図面を用いて以下に説明する。
 図3は、本発明において、せん断接着力および破壊モードの評価に使用したせん断試験用試験片を模式的に示す断面図である。
 図3において、せん断試験用試験片20は、ガラス12(縦12cm、横2.5cm、厚さ4mm)とガラス14(大きさはガラス12と同じ。)との間に、スペーサー18(厚さが0.3mmであり、塗布面積が25mm×10mmとなるように内部が切り抜かれている。)を有し、内部16に組成物16が満たされている。組成物16は硬化後硬化物16となる。
 図4は、本発明において、せん断接着力および破壊モードの評価に使用したせん断試験用試験片を模式的に示す上面図である。
 せん断試験用試験片20は、図4(A)に示すようにまずスペーサー18をガラス12の上に置き、スペーサー18の枠内の内部16に組成物16を流し込み、次いで図4(B)に示すガラス14を図4(C)に示すようにスペーサー18の上に重ね、その後図4(C)に示すせん断試験用試験片20を熱硬化または光硬化させることによって得られる。
 このようにして得られたせん断試験用試験片を用いて、せん断引張試験(条件:23℃、RH55%)を行い、引張試験機を用いてせん断接着力を測定した。また、試験後の硬化物の破壊形態によって、ガラス間における接着性を評価した。
 せん断接着力の評価基準は、せん断接着力が1.5MPa以上の場合を「○」、1.5MPa未満の場合を「×」とした。
 また、破壊モードが凝集破壊である場合を「CF」、破壊モードが界面破壊である場合を「AF」とした。
 第1表に示す結果から明らかなように、シリコーンA~C、ラジカル開始剤、ビス(アルコキシシリル)アルカンを含有しない比較例1(シラノール基とアルコキシ基との縮合のみによる硬化)は密閉系内で硬化させると縮合反応の副生成物であるアルコールが系内から抜けないため未硬化となった。シリコーンBおよびシリコーンCを含有しない比較例2、シリコーンAおよびシリコーンCを含有しない比較例3、シリコーンAおよびシリコーンBを含有しない比較例4、シリコーンCを含有しない比較例5、シリコーンAを含有しない比較例6、シリコーンBを含有しない比較例7は、接着性が低かった。エポキシシリコーンを含有する比較例8は耐熱着色安定性に劣った。ポリシロキサンAとフィラーとを含有する比較例9は透明性に劣った。ポリシロキサンCを含有しない比較例10、ポリシロキサンCの量が2質量部未満である比較例11、ポリシロキサンBの量が10質量部未満である比較例12は、接着性が低かった。シリコーンBを含有せず、シリコーンCの量が比較例7より多い比較例13は、初期硬化状態が白濁となり、透明性に劣った。
 これに対して、実施例1~13は、密閉系内において硬化阻害がなく硬化性に優れ、ガラスに対する接着性、経時での耐熱着色安定性、および透明性と接着強度(せん断強度1.5MPa以上)とのバランスに優れる。
 1、2、12、14   ガラス
 3、4   離型紙
 5、18   スペーサー
 6、16   内部(組成物、硬化物)
 8   型
 20   せん断試験用試験片

Claims (9)

  1.  重量平均分子量20,000~200,000の、1分子中に2つ以上の(メタ)アクリロイル基を有するシリコーンAを100質量部と、
     重量平均分子量1,000以上20,000未満の、1分子中に2つ以上の(メタ)アクリロイル基を有するシリコーンBを10質量部以上と、
     重量平均分子量300以上1,000未満であり、(メタ)アクリル当量が450g/mol未満であり、1分子中に2つ以上の(メタ)アクリロイル基を有するシリコーンCを2質量部以上と、
     ラジカル開始剤とを含有する硬化性シリコーン樹脂組成物。
  2.  前記シリコーンA、前記シリコーンBおよび前記シリコーンCからなる群から選ばれる少なくとも1種が、1分子中に加水分解性基を含むシリル基および/またはシラノール基を1個以上有する請求項1に記載の硬化性シリコーン樹脂組成物。
  3.  前記シリコーンAが下記式(A1)で表され、前記シリコーンBが下記式(B1)で表される請求項1または2に記載の硬化性シリコーン樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (式中、R1はそれぞれ水素原子またはメチル基であり、R2はそれぞれ炭素原子数1~6の炭化水素基であり、R3はそれぞれ水素原子、炭素原子数1~18の炭化水素基であり、R4はそれぞれ炭素原子数1~8の2価の炭化水素基であり、nはそれぞれ1または2であり、mは270~2,700の整数である。)
    Figure JPOXMLDOC01-appb-C000002

    (式中、R1はそれぞれ水素原子またはメチル基であり、R2はそれぞれ炭素原子数1~6の炭化水素基であり、R3はそれぞれ水素原子、炭素原子数1~18の炭化水素基であり、R4はそれぞれ炭素原子数1~8の2価の炭化水素基であり、nはそれぞれ1または2であり、mは14~269の整数である。)
  4.  前記シリコーンCが、下記式(3)、下記式(4)および下記式(5)で表される化合物からなる群から選ばれる少なくとも1種である請求項1~3のいずれかに記載の硬化性シリコーン樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003

    [式(3)中、Rはそれぞれアルキル基であり、X1、X2はそれぞれ下記式(6)で表される基であり、aは0~13の整数である。
     式(4)中、Rはそれぞれアルキル基であり、X3は下記式(6)で表される基であり、aは0~13の整数であり、bは1または2~13の整数であり、a+bは1または2~13であり、片方の末端において少なくとも1つのRをX3とすることができ、該X3は下記式(6)で表される基である。
     式(5)中、Rはそれぞれアルキル基であり、X1、X2、X3はそれぞれ下記式(6)で表される基であり、aは0~13の整数であり、bは1~13の整数であり、a+bは1~13である。]
    Figure JPOXMLDOC01-appb-C000004

    [式(6)中、R1は水素基またはメチル基であり、R4は2価の炭化水素基である。]
  5.  さらに、縮合触媒を含有する請求項1~4のいずれかに記載の硬化性シリコーン樹脂組成物。
  6.  前記縮合触媒の量が、前記シリコーンA、前記シリコーンBおよび前記シリコーンCの合計100質量部に対して、0.01~10質量部である請求項5に記載の硬化性シリコーン樹脂組成物。
  7.  さらに、ビス(アルコキシシリル)アルカンを含有する請求項1~6のいずれかに記載の硬化性シリコーン樹脂組成物。
  8.  前記ビス(アルコキシシリル)アルカンが、ビス-(3-トリメトキシシリルプロピル)アミン、1,2-ビス(トリエトキシシリル)エタン、1,6-ビス(トリメトキシシリル)ヘキサン、1,7-ビス(トリメトキシシリル)ヘプタン、1,8-ビス(トリメトキシシリル)オクタン、1,9-ビス(トリメトキシシリル)ノナンおよび1,10-ビス(トリメトキシシリル)デカンからなる群から選ばれる少なくとも1種である請求項7に記載の硬化性シリコーン樹脂組成物。
  9.  前記ビス(アルコキシシリル)アルカンの量が、前記シリコーンA:100質量部に対して、0.01~10質量部である請求項7または8に記載の硬化性シリコーン樹脂組成物。
PCT/JP2010/059709 2009-06-19 2010-06-08 硬化性シリコーン樹脂組成物 WO2010147030A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800228323A CN102449009B (zh) 2009-06-19 2010-06-08 固化性有机硅树脂组合物
KR1020117029222A KR101163407B1 (ko) 2009-06-19 2010-06-08 경화성 실리콘 수지 조성물
US13/321,748 US8304489B2 (en) 2009-06-19 2010-06-08 Curable silicone resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-146563 2009-06-19
JP2009146563 2009-06-19
JP2010-096325 2010-04-19
JP2010096325A JP4826678B2 (ja) 2009-06-19 2010-04-19 硬化性シリコーン樹脂組成物

Publications (1)

Publication Number Publication Date
WO2010147030A1 true WO2010147030A1 (ja) 2010-12-23

Family

ID=43356351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059709 WO2010147030A1 (ja) 2009-06-19 2010-06-08 硬化性シリコーン樹脂組成物

Country Status (5)

Country Link
US (1) US8304489B2 (ja)
JP (1) JP4826678B2 (ja)
KR (1) KR101163407B1 (ja)
CN (1) CN102449009B (ja)
WO (1) WO2010147030A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105092A (ja) * 2015-12-10 2017-06-15 リンテック株式会社 セラミックグリーンシート製造工程用剥離フィルム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6269652B2 (ja) * 2013-03-15 2018-01-31 横浜ゴム株式会社 硬化性樹脂組成物
WO2016141546A1 (en) * 2015-03-10 2016-09-15 Henkel IP & Holding GmbH A moisture and radiation curable adhesive composition and the use thereof
US10035911B2 (en) * 2016-05-19 2018-07-31 Momentive Performance Materials Inc. Curable, dual cure, one part silicone composition
CN107057366B (zh) * 2017-01-10 2020-10-23 广东信翼科技有限公司 一种可uv固化的有机聚硅氧烷组合物及其在制备半导体电子器件中的应用
CN108504318B (zh) * 2018-03-13 2021-02-09 广东省石油与精细化工研究院 一种高透明度和高强度的硅烷改性聚醚弹性密封胶及其制备方法
JP2021049650A (ja) * 2019-09-20 2021-04-01 日本電産サンキョー株式会社 ゲル状部材の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216232A (ja) * 1994-01-28 1995-08-15 Shin Etsu Chem Co Ltd 紫外線硬化型オルガノポリシロキサン組成物
JP2000169794A (ja) * 1998-12-10 2000-06-20 Tokuyama Corp 離型性付与塗工液並びに離型フィルム
JP2005023291A (ja) * 2002-12-11 2005-01-27 Shin Etsu Chem Co Ltd 放射線硬化性シリコーンゴム組成物、該組成物からなる接着性シリコーンエラストマーフィルム、並びに該組成物を用いる構造体およびその製造方法
JP2008205097A (ja) * 2007-02-19 2008-09-04 Yokohama Rubber Co Ltd:The 発光素子用封止材組成物、その硬化物および発光素子封止体
JP2009167295A (ja) * 2008-01-16 2009-07-30 Jsr Corp 硬化性樹脂組成物及び反射防止膜

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675346A (en) * 1983-06-20 1987-06-23 Loctite Corporation UV curable silicone rubber compositions
US4528081A (en) * 1983-10-03 1985-07-09 Loctite Corporation Dual curing silicone, method of preparing same and dielectric soft-gel compositions thereof
US5137448A (en) * 1984-07-31 1992-08-11 Dentsply Research & Development Corp. Dental impression method with photocuring of impression material in light transmissive tray
US4585669A (en) * 1984-09-28 1986-04-29 General Electric Company Novel dual cure silicone compositions
US5300608A (en) * 1992-03-31 1994-04-05 Loctite Corporation Process for preparing alkoxy-terminated organosiloxane fluids using organo-lithium reagents
JPH0651774A (ja) 1992-07-28 1994-02-25 Kawai Musical Instr Mfg Co Ltd 自動伴奏装置
JP2738235B2 (ja) * 1992-09-07 1998-04-08 信越化学工業株式会社 紫外線及び湿気硬化性オルガノポリシロキサン組成物、その硬化物及びその製造方法
US6140444A (en) * 1999-01-19 2000-10-31 Loctite Corporation Catalyst system, process, and silicone compositions
US6828355B1 (en) * 1999-07-19 2004-12-07 Henkel Corporation Resin-reinforced UV, moisture and UV/moisture dual curable silicone compositions
JP3788911B2 (ja) * 2001-02-07 2006-06-21 信越化学工業株式会社 オルガノポリシロキサン組成物
US6827985B2 (en) * 2001-05-02 2004-12-07 Henkel Corporation Curable silicone compositions having enhanced cure-through-volume
US7309732B1 (en) * 2003-04-21 2007-12-18 Henkel Corporation UV and UV/moisture dual curable compositions with improved cure through volume
US7105584B2 (en) * 2003-04-18 2006-09-12 Nscg, Inc. Dual-cure silicone compounds exhibiting elastomeric properties
US7452937B2 (en) * 2005-11-28 2008-11-18 Henkel Corporation Highly elongated single component, non-corrosive RTV silicone compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216232A (ja) * 1994-01-28 1995-08-15 Shin Etsu Chem Co Ltd 紫外線硬化型オルガノポリシロキサン組成物
JP2000169794A (ja) * 1998-12-10 2000-06-20 Tokuyama Corp 離型性付与塗工液並びに離型フィルム
JP2005023291A (ja) * 2002-12-11 2005-01-27 Shin Etsu Chem Co Ltd 放射線硬化性シリコーンゴム組成物、該組成物からなる接着性シリコーンエラストマーフィルム、並びに該組成物を用いる構造体およびその製造方法
JP2008205097A (ja) * 2007-02-19 2008-09-04 Yokohama Rubber Co Ltd:The 発光素子用封止材組成物、その硬化物および発光素子封止体
JP2009167295A (ja) * 2008-01-16 2009-07-30 Jsr Corp 硬化性樹脂組成物及び反射防止膜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105092A (ja) * 2015-12-10 2017-06-15 リンテック株式会社 セラミックグリーンシート製造工程用剥離フィルム
WO2017098956A1 (ja) * 2015-12-10 2017-06-15 リンテック株式会社 セラミックグリーンシート製造工程用剥離フィルム

Also Published As

Publication number Publication date
KR101163407B1 (ko) 2012-07-12
US8304489B2 (en) 2012-11-06
JP4826678B2 (ja) 2011-11-30
CN102449009A (zh) 2012-05-09
US20120071604A1 (en) 2012-03-22
CN102449009B (zh) 2013-07-24
JP2011021175A (ja) 2011-02-03
KR20110139775A (ko) 2011-12-29

Similar Documents

Publication Publication Date Title
JP5621211B2 (ja) 光半導体封止用シリコーン樹脂組成物
JP4826678B2 (ja) 硬化性シリコーン樹脂組成物
CN104031602B (zh) 固化性有机硅组合物的固化方法
JP5311744B2 (ja) 紫外線硬化性樹脂組成物、当該硬化物、およびこれらから誘導される各種物品
JP5489389B2 (ja) 紫外線硬化性樹脂組成物、当該硬化物、およびこれらから誘導される各種物品
KR101870304B1 (ko) 경화성 수지 조성물 및 이것을 사용한 색 변환 재료
KR101421292B1 (ko) 열경화형 실리콘 조성물 및 이를 이용한 발광 다이오드소자
US9453105B2 (en) Epoxy and alkoxysilyl group-containing silsesquioxane and composition thereof
JP5056998B2 (ja) シリコーン樹脂組成物、これを用いる、シリコーン樹脂含有構造体、光半導体素子封止体、シリコーン樹脂組成物の使用方法
WO2013051600A1 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
US8440848B2 (en) Polyorganosiloxane composition, cured product of the composition, and method for producing the composition
CN105315675A (zh) 紫外光固化组合物
KR20170126945A (ko) 수분 및 방사선 경화성 접착제 조성물 및 그의 용도
JP2019507813A (ja) 光硬化性シリコーン組成物及びその硬化物
KR102315376B1 (ko) 실리콘계 조성물 및 이의 경화물
KR102255081B1 (ko) 경화성 실리콘 조성물
JP7485049B2 (ja) 熱ラジカル硬化可能なオルガノポリシロキサン組成物、該組成物で接着、コーティング又はポッティングされた物品、及び該組成物の硬化物を製造する方法
CN115516038B (zh) 光固性有机硅组合物、粘合剂、有机硅固化物
KR102180945B1 (ko) Led용 봉지재 조성물
JP2011001488A (ja) 硬化性シリコーン樹脂組成物
JP2011162741A (ja) シリコーン樹脂組成物、およびこれを用いる光半導体封止体
JP2013147634A (ja) 光半導体封止用熱硬化性シリコーン樹脂組成物
KR20230161492A (ko) 자외선 경화성 조성물 및 그의 용도
JP2013129733A (ja) 光半導体封止用熱硬化性シリコーン樹脂組成物
JP5560982B2 (ja) シラノール縮合触媒、光半導体封止用熱硬化性シリコーン樹脂組成物およびこれを用いる封止体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080022832.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789405

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13321748

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117029222

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789405

Country of ref document: EP

Kind code of ref document: A1