WO2010143506A1 - 膨張材およびその製造方法 - Google Patents

膨張材およびその製造方法 Download PDF

Info

Publication number
WO2010143506A1
WO2010143506A1 PCT/JP2010/058516 JP2010058516W WO2010143506A1 WO 2010143506 A1 WO2010143506 A1 WO 2010143506A1 JP 2010058516 W JP2010058516 W JP 2010058516W WO 2010143506 A1 WO2010143506 A1 WO 2010143506A1
Authority
WO
WIPO (PCT)
Prior art keywords
clinker
calcium carbonate
expansion
carbon dioxide
expansion material
Prior art date
Application number
PCT/JP2010/058516
Other languages
English (en)
French (fr)
Inventor
樋口隆行
森泰一郎
石田秀朗
吉野亮悦
盛岡実
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to CN201080025544.3A priority Critical patent/CN102459116B/zh
Priority to KR1020117029502A priority patent/KR101719832B1/ko
Priority to EP10786037.1A priority patent/EP2441738B1/en
Priority to BRPI1010848-3A priority patent/BRPI1010848B1/pt
Priority to RU2012100757/03A priority patent/RU2531223C2/ru
Priority to JP2011518382A priority patent/JP5580306B2/ja
Priority to US13/261,027 priority patent/US8663383B2/en
Publication of WO2010143506A1 publication Critical patent/WO2010143506A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/48Clinker treatment
    • C04B7/52Grinding ; After-treatment of ground cement
    • C04B7/527Grinding ; After-treatment of ground cement obtaining cements characterised by fineness, e.g. by multi-modal particle size distribution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/48Clinker treatment
    • C04B7/52Grinding ; After-treatment of ground cement
    • C04B7/522After-treatment of ground cement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • Y02P40/18Carbon capture and storage [CCS]

Definitions

  • the present invention relates to a concrete expansion material used in the field of civil engineering and architecture, and a method for producing the same.
  • Patent Document 1 A concrete expansion material (Patent Document 1) having excellent expansion characteristics with a small addition amount, and a cement expansion material (Patent Document 2) in which the surface of quick lime is coated with calcium carbonate have been proposed.
  • Patent Document 2 a cement expansion material
  • Patent Document 3 the surface of soft calcined lime is carbonated and used as a crushed material for a cement concrete hardened body
  • Non-patent Document 3 a technique for carbonizing lime has been proposed for the purpose of suppressing moisture absorption of lime used as a desulfurization material.
  • the conventional expandable material has a characteristic that it expands greatly from the first to the second day after placing the concrete and then gradually expands to the age of seven days.
  • the hydration reaction of the cement in the concrete is not sufficiently advanced, so the matrix is rough and the creep is large, and the prestress introduced into the reinforcing bars by the expanded material may be easily removed. there were.
  • an expandable material that can be imparted with a small amount of addition, with a small amount of expansion from 1 to 2 days of material age, and from 2 to 7 days of material age, and even from 5 to 7 days. It was.
  • swelling material had the subject that expansion
  • Mixing expansive material with cement to make expansive cement not only saves time and effort in the ready-mixed concrete plant, but also avoids the pop-out phenomenon caused by agglomeration of expansive material due to insufficient kneading There is.
  • the present invention provides an expanded material that can impart large expansion to concrete from 2 to 7 days after concrete placement, has high initial compressive strength, and has excellent storage stability, and a method for producing the same. The task is to do.
  • the present invention is (1) an expansion material obtained by heat-treating clinker or clinker pulverized product containing free lime, a hydraulic compound, and anhydrous gypsum in a carbon dioxide atmosphere to produce calcium carbonate, (2) Free lime, hydraulic compound, anhydrous gypsum, and particles containing calcium carbonate in the same particle (1) expansion material, (3) calcium carbonate content 0.5 (1) or (2) of the expansive material, which is ⁇ 10% by mass, (4) the expansive material of any one of (1) to (3), wherein the Blaine specific surface area is 1500 to 9000 cm 2 / g, (5) (1) to (4), an expansion material obtained by further adding anhydrous gypsum to a product obtained by heat-treating clinker or a clinker pulverized product in a carbon dioxide atmosphere to produce calcium carbonate, (6) The clinker or (1) to (5), an expansion material obtained by further adding a shrinkage reducing agent to a product obtained by heat-treating pulverized clinker in a carbon dioxide atmosphere to produce
  • the present invention it is possible to impart a large expansion to concrete from the 2nd to 7th days of age after placing the concrete, and the concrete has a high compressive strength on the 7th day of age, so that the expansion performance is small even when stored for a long time. There is an effect that a material is obtained.
  • the parts and% used in the present invention are based on mass unless otherwise specified.
  • the concrete referred to in the present invention is a generic term for cement paste, cement mortar, and cement concrete.
  • the expansion material of the present invention is a clinker or clinker pulverized material obtained by appropriately mixing and heat-treating CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material, SiO 2 raw material, and CaSO 4 raw material with carbon dioxide gas. Is obtained.
  • the free lime referred to in the present invention is usually called f-CaO.
  • Examples of the CaO raw material include limestone and slaked lime.
  • Examples of the Al 2 O 3 raw material include bauxite and aluminum residual ash.
  • Examples of the Fe 2 O 3 raw material include copper calami and commercially available iron oxide.
  • Examples of the SiO 2 raw material include silica stone.
  • examples of the CaSO 4 raw material include dihydrate gypsum, hemihydrate gypsum, and anhydrous gypsum. These raw materials may contain impurities, but this is not a problem as long as the effects of the present invention are not impaired.
  • Examples of impurities include MgO, TiO 2 , ZrO 2 , MnO, P 2 O 5 , Na 2 O, K 2 O, Li 2 O, sulfur, fluorine, and chlorine.
  • the heat treatment method of the clinker used for the expansion material of the present invention is not particularly limited, but is preferably fired at a temperature of 1100 to 1600 ° C. using an electric furnace or kiln, and more preferably 1200 to 1500 ° C. . If it is less than 1100 ° C., the expansion performance is not sufficient, and if it exceeds 1600 ° C., anhydrous gypsum may decompose.
  • the ratio of each mineral contained in the clinker used for the expansion material of the present invention is preferably in the following range.
  • the content of free lime is preferably 10 to 70 parts, more preferably 40 to 60 parts, in 100 parts of clinker.
  • the content of the hydraulic compound is preferably 10 to 50 parts, more preferably 20 to 30 parts, in 100 parts of the clinker.
  • the content of anhydrous gypsum is preferably 1 to 50 parts, more preferably 20 to 30 parts, in 100 parts of clinker.
  • the pulverized sample can be applied to a powder X-ray diffractometer to confirm the produced mineral and analyze the data by the Rietveld method to quantify the mineral. Further, based on the identification result of chemical components and powder X-ray diffraction, the amount of minerals can also be obtained by calculation.
  • the treatment conditions of carbon dioxide gas for preparing the expansion material of the present invention are preferably in the following ranges.
  • the flow rate of carbon dioxide gas to the carbonation vessel is preferably 0.01 to 0.1 L / min per liter volume of the carbonation vessel. If it is less than 0.01 L / min, it may take time for carbonation of the clinker, and even if it exceeds 0.1 L / min, further improvement in the carbonation treatment rate cannot be obtained, which is uneconomical.
  • This condition is a condition when a crucible is used as a carbonation treatment container, the crucible is left in an electric furnace and carbon dioxide gas is allowed to flow, and the clinker and carbon dioxide gas are reacted by other methods. This is not the case.
  • Carbonation using exhaust gas discharged from a lime firing furnace instead of carbon dioxide is preferable for improving the expansion characteristics.
  • the temperature of the carbonation vessel is preferably 200 to 800 ° C. If it is less than 200 ° C., the carbonation reaction of the clinker may not proceed. If it exceeds 800 ° C., even if it is changed to calcium carbonate once, the decarboxylation reaction occurs again, and calcium carbonate may not be generated.
  • carbonation of a clinker may carbonize an unpulverized clinker as it is, or may pulverize and then carbonize the clinker.
  • the carbonation treatment container referred to in the present invention is not particularly limited, as long as the clinker and carbon dioxide gas can be brought into contact with each other and reacted, and an electric furnace or a fluidized bed heating furnace may be used, or the clinker is pulverized. It can be a mill.
  • the proportion of calcium carbonate is preferably 0.5 to 10 parts, more preferably 1 to 5 parts, in 100 parts of clinker. If the composition ratio of each mineral is not within the above range, excellent expansion performance, initial compressive strength, and storage stability may not be obtained.
  • the content of calcium carbonate can be quantified from the change in weight associated with the decarboxylation of calcium carbonate by means of a suggestive thermobalance (TG-DTA) or suggestive calorimetry (DSC).
  • the expansion material of the present invention preferably contains particles in which free lime, a hydraulic compound, anhydrous gypsum, and calcium carbonate are present in the same particle. Whether or not free lime, hydraulic compound, anhydrous gypsum, and calcium carbonate are present in the same particle can be confirmed by an electron microscope or the like. Specifically, the expansion material is embedded in resin, surface treatment is performed with an argon ion beam, the structure of the particle cross section is observed, and elemental analysis is performed to confirm that calcium carbonate is present in the same particle. can do.
  • the fineness of the expansion material of the present invention is preferably 1500 to 9000 cm 2 / g, more preferably 2000 to 4000 cm 2 / g in terms of the specific surface area of Blaine. If it is less than 1500 cm ⁇ 2 > / g, it may expand
  • the amount of the expansion material of the present invention is not particularly limited because it varies depending on the blending of concrete, but usually 3 to 12 parts are preferable in 100 parts of a cement composition composed of cement and an expansion material. 9 parts is more preferred. If it is less than 3 parts, sufficient expansion performance may not be obtained, and if it exceeds 12 parts, it may overexpand and may cause expansion cracks in the concrete.
  • various portland cements such as normal, early strength, super early strength, low heat, and moderate heat, various mixed cements obtained by mixing blast furnace slag, fly ash, silica with these cements, And filler cement mixed with limestone powder.
  • the expansion material of the present invention is sand, gravel, water reducing agent, high performance water reducing agent, AE water reducing agent, high performance AE water reducing agent, fluidizing agent, antifoaming agent, thickening agent, rust preventive agent, antifreeze agent, shrinkage reduction.
  • Agent polymer emulsion, and setting modifier, cement hardener, clay minerals such as bentonite, ion exchangers such as zeolite, siliceous fine powder, calcium carbonate, calcium hydroxide, gypsum, calcium silicate, vinylon fiber It can be used in combination with fibrous materials such as acrylic fiber and carbon fiber.
  • shrinkage reducing agent is not limited, but a low molecular weight alkylene oxide copolymer system, a glycol ether / amino alcohol derivative, and an alkylene oxide adduct of a lower alcohol are particularly preferable.
  • Example 1 The CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material, SiO 2 raw material, CaSO 4 raw material are blended so as to have the mineral ratio shown in Table 1, mixed and pulverized, and then heat treated at 1350 ° C. to synthesize clinker. Then, it was pulverized to 3000 cm 2 / g with a Blaine specific surface area using a ball mill. 25 g of this pulverized product is put in an alumina crucible and set in an electric furnace, and the flow rate of carbon dioxide is 0.05 L / min per 1 L of electric furnace volume, the firing temperature is 600 ° C., and the reaction is performed for 1 hour, and the generated calcium carbonate is generated.
  • CaO raw material limestone Al 2 O 3 raw material: bauxite Fe 2 O 3 raw material: iron oxide SiO 2 raw material: silica
  • CaSO 4 raw material dihydrate gypsum carbon dioxide: commercial product sand: JIS standard sand cement: ordinary Portland cement, commercial carbonic acid Calcium powder: Commercial product, 200 mesh product
  • Compressive strength A 4 ⁇ 4 ⁇ 16 cm specimen was prepared according to JIS R 5201, and the compressive strength at 7 days of age was measured.
  • Accelerated storage test 100 g of each expanded material was spread on a 10 ⁇ 10 cm square stainless steel tray and left in a 20 ° C. 60% RH room for 10 days with the upper surface open. Using the sample collected after 10 days, the rate of change in mortar length was confirmed.
  • Accelerated storage test (expanded cement): Each expanded cement composition was filled into a paper bag, heat-sealed, stored in a 35 ° C. 90% RH room for 1 month, and the rate of change in mortar length was confirmed.
  • the expansion material of the comparative example (experiment No.1-12, 1-13, 1-14) which just pulverized the clinker without carbon dioxide treatment
  • the expansion material which just pulverized the clinker without carbon dioxide treatment The comparative expansion material (Experiment No. 1-15) in which calcium carbonate powder was mixed with 2-7d and 5-7d had a small rate of change in length, and the expansion performance decreased when stored for a long time.
  • Example 2 The composition of the clinker is as follows: 100 parts of clinker, 50 parts of free lime, 10 parts of Auin, 5 parts of calcium aluminoferrite (4CaO.Al 2 O 3 .Fe 2 O 3 : C 4 AF), calcium silicate (2CaO.SiO 2 : C 2 S) 5 parts and anhydrous gypsum 30 parts were fixed, and the same procedure as in Example 1 was carried out except that the flow rate of carbon dioxide gas, the treatment temperature, and the reaction time were changed as shown in Table 2. The results are shown in Table 2.
  • Example 3 It carried out similarly to Example 1 except having processed the commercially available expansion
  • Commercial expansion material A 50 parts of free lime, 12 parts of Auin, 5 parts of calcium aluminoferrite (4CaO.Al 2 O 3 .Fe 2 O 3 ), 3 parts of calcium silicate (2CaO.SiO 2 ), 30 parts of anhydrous gypsum.
  • Commercially available expandable material B free lime 52 parts, calcium alumino ferrite (4CaO ⁇ Al 2 O 3 ⁇ Fe 2 O 3) 4 parts of calcium silicate (2CaO ⁇ SiO 2) 10 parts of calcium silicate (3CaO ⁇ SiO 2) 12 parts 20 parts anhydrous gypsum.
  • Example 4 The same procedure as in Example 1 was carried out except that the commercial expansion material A was treated using the exhaust gas of the lime firing furnace instead of carbon dioxide.
  • the exhaust gas composition of the lime firing furnace is CO 2 : 40%, O 2 : 7%, CO: 3%, N 2 : 50%.
  • the results are shown in Table 4.
  • the expanded material (experiment No. 4-1) carbonated using the exhaust gas from the lime firing furnace is more expanded than the expanded material carbonated using carbon dioxide (experiment No. 3-2). It was also confirmed that the expansion performance was improved.
  • Example 5 Prepare clinker having the composition shown in Table 5 using limestone and ordinary Portland cement as raw materials, and prepare an expansion material consisting of 80 parts of clinker which has been carbonized or not carbonized and 20 parts of anhydrous gypsum, The test was conducted in the same manner as in Experimental Example 1 except that 7 parts of the expansion material was used in 100 parts of the cement composition made of the expansion material. The results are shown in Table 5.
  • CaO raw material limestone cement: ordinary Portland cement, commercially available CaSO 4 raw material: anhydrous gypsum, Blaine specific surface area 3000 cm 2 / g
  • a clinker pulverized product containing free lime (f-CaO), a hydraulic compound (auin, C 4 AF, C 2 S, C 3 S), and anhydrous gypsum (CaSO 4 ) is carbonated.
  • the expansion material of the example (experiment No. 5-1) in which anhydrous gypsum was further added to the one that was heat-treated in a gas atmosphere to generate calcium carbonate was the comparative expansion material (experiment No. 5-1) that did not generate calcium carbonate.
  • the rate of change in length of 2-7d and 5-7d is large, the compressive strength of the cement composition is 7 days old, and there is little decrease in expansion performance even after long-term storage. It was confirmed.
  • Shrinkage reducing agent SKGARD, manufactured by Denki Kagaku Kogyo, a commercial product
  • the expansion material (Experiment No. 7-1) of the example in which a shrinkage reducing agent was further added to the clinker pulverized product heated in a carbon dioxide atmosphere to produce calcium carbonate As shown in Table 7, the expansion material (Experiment No. 7-1) of the example in which a shrinkage reducing agent was further added to the clinker pulverized product heated in a carbon dioxide atmosphere to produce calcium carbonate, The length change rate of 2-7d and 5-7d is remarkably improved compared to the comparative expansion material (Experiment No. 7-2) which does not generate calcium carbonate and further has a shrinkage reducing agent added. It was confirmed that
  • the expanded material of the present invention and the method for producing the same can impart large expansion to concrete from 2 to 7 days of age, increase initial compressive strength, improve storage stability, and can be distributed with expanded cement. Since pop-out does not occur even when the mixing time is shortened, it can be used widely in the civil engineering and construction fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

【課題】コンクリート打設後の材齢2日~7日にかけてコンクリートに大きな膨張を付与でき、コンクリートの初期の圧縮強度が高く、貯蔵安定性に優れた膨張材およびその製造方法を提供する。 【解決手段】遊離石灰、水硬性化合物、および無水石膏を含有するクリンカまたはクリンカ粉砕物を炭酸ガス雰囲気で加熱処理し炭酸カルシウムを生成させることを特徴とする膨張材およびその製造方法である。前記膨張材において、遊離石灰、水硬性化合物、無水石膏、および炭酸カルシウムが同一粒子中に存在している粒子を含有してなること、炭酸カルシウムの含有量が0.5~10質量%であること、ブレーン比表面積が1500~9000cm/gであることが好ましい。また、セメントに前記膨張材を配合してセメント組成物とする。製造条件としては、炭酸ガス流量0.01~0.1L/min、温度200~800℃で炭酸カルシウムを生成させることが好ましい。

Description

膨張材およびその製造方法
 本発明は、土木・建築分野において使用されるコンクリート用膨張材およびその製造方法に関する。
 少ない添加量で優れた膨張特性を有するコンクリート膨張材(特許文献1)や、生石灰の表面を炭酸カルシウムで被覆しセメント用膨張材(特許文献2)が提案されている。また、軟焼生石灰の表面を炭酸化してセメントコンクリート硬化体の破砕材として用いることが提案されている(特許文献3)。
 鉄鋼の分野では、脱硫材として使用する石灰の吸湿を抑制する目的で、石灰を炭酸化する技術が提案されている(非特許文献1)。
特許4244261号公報 特開昭54-93020号公報 特開昭58-154779号公報
部分炭酸化による生石灰の吸湿抑制について、鉄と鋼、1978年、Vol.64、No.2、56~65頁
 従来の膨張材は、コンクリートを打設してから1日から2日にかけて大きく膨張し、その後緩やかに材齢7日まで膨張する特性を有する。しかし、材齢1日~2日はコンクリート中のセメントの水和反応が充分に進んでいないためマトリックスが粗でありクリープが大きく、膨張材によって鉄筋に導入されたプレストレスが抜けやすくなる場合があった。このため、少ない添加量で、かつ、材齢1日~2日の膨張量は少なく材齢2日~7日にかけて、さらには5日から7日にかけて大きく膨張を付与できる膨張材が求められていた。また、従来の膨張材は高温多湿な環境で長期間貯蔵した場合、膨張性能が低下し、特にセメントとあらかじめ混合した場合には、膨張性能の低下が顕著になるという課題があった。膨張材をセメントに混合して膨張セメントとしておくことは、生コンクリートプラントでの投入の手間が省けるだけでなく、混練り不足による膨張材の凝集が原因で生じるポップアウト現象を回避できるなどのメリットがある。しかしながら、上述のような課題があるため実現することができなかった。
 そこで、本発明は、コンクリート打設後の材齢2日~7日にかけてコンクリートに大きな膨張を付与でき、コンクリートの初期の圧縮強度が高く、貯蔵安定性に優れた膨張材およびその製造方法を提供することを課題とする。
 本発明は、(1)遊離石灰、水硬性化合物、および無水石膏を含有するクリンカまたはクリンカ粉砕物を炭酸ガス雰囲気で加熱処理し炭酸カルシウムを生成させて得られたことを特徴とする膨張材、(2)遊離石灰、水硬性化合物、無水石膏、および炭酸カルシウムが同一粒子中に存在している粒子を含有してなる(1)の膨張材、(3)炭酸カルシウムの含有量が0.5~10質量%である(1)または(2)の膨張材、(4)ブレーン比表面積が1500~9000cm/gである(1)~(3)のいずれかの膨張材、(5)前記クリンカまたはクリンカ粉砕物を炭酸ガス雰囲気で加熱処理し炭酸カルシウムを生成させて得られたものに、さらに無水石膏を添加してなる(1)~(4)のいずれかの膨張材、(6)前記クリンカまたはクリンカ粉砕物を炭酸ガス雰囲気で加熱処理し炭酸カルシウムを生成させて得られたものに、さらに収縮低減剤を添加してなる(1)~(5)のいずれかの膨張材、(7)セメントに(1)~(6)のいずれかの膨張材を配合してなるセメント組成物、(8)遊離石灰、水硬性化合物、および無水石膏を含有するクリンカまたはクリンカ粉砕物を炭酸ガス雰囲気で加熱処理し、炭酸カルシウムを生成させる(1)~(6)のいずれかの膨張材の製造方法、(9)炭酸化処理容器内にクリンカまたはクリンカ粉砕物を充填し、前記容器の容積1Lあたり炭酸ガス流量を0.01~0.1L/min、容器内の温度を200~800℃として炭酸カルシウムを生成させる(8)の膨張材の製造方法、である。
 本発明により、コンクリート打設後の材齢2日~7日にかけてコンクリートに大きな膨張を付与でき、コンクリートの材齢7日の圧縮強度が高く、長期間貯蔵しても膨張性能の低下が少ない膨張材が得られるという効果を奏する。
 なお、本発明で使用する部、%は、特に規定しない限り質量基準である。
 また、本発明で云うコンクリートとは、セメントペースト、セメントモルタル、セメントコンクリートを総称するものである。
 本発明の膨張材は、CaO原料、Al原料、Fe原料、SiO原料、およびCaSO原料を適宜混合して熱処理して得られるクリンカまたはクリンカ粉砕物を炭酸ガスで処理して得られるものである。
 本発明で云う遊離石灰とは、通常f-CaOと呼ばれるものである。
 本発明で云う水硬性化合物とは、3CaO・3Al・CaSOで表されるアウイン、3CaO・SiO(CSと略記)や2CaO・SiO(CSと略記)で表されるカルシウムシリケート、4CaO・Al・Fe(CAFと略記)や6CaO・2Al・Fe(CFと略記)、6CaO・Al・Fe(CAFと略記)で表されるカルシウムアルミノフェライト、2CaO・Fe(CFと略記)等のカルシウムフェライトなどであり、これらのうちの1種または2種以上を含むことが好ましい。本発明の膨張材に含まれる炭酸カルシウムの形態は特に限定されるものではない。
 CaO原料としては石灰石や消石灰が挙げられ、Al原料としてはボーキサイトやアルミ残灰等が挙げられ、Fe原料としては銅カラミや市販の酸化鉄が、SiO原料としては珪石等が、CaSO原料としては二水石膏、半水石膏および無水石膏が挙げられる。
 これら原料には不純物を含む場合があるが、本発明の効果を阻害しない範囲内では特に問題とはならない。不純物としては、MgO、TiO、ZrO、MnO、P、NaO、KO、LiO、硫黄、フッ素、塩素等が挙げられる。
 本発明の膨張材に使用するクリンカの熱処理方法は特に限定されるものではないが、電気炉やキルン等を用いて1100~1600℃の温度で焼成することが好ましく、1200~1500℃がより好ましい。1100℃未満では膨張性能が充分でなく、1600℃を超えると無水石膏が分解する場合がある。
 本発明の膨張材に使用するクリンカに含まれる各鉱物の割合は、以下の範囲であることが好ましい。遊離石灰の含有量は、クリンカ100部中、10~70部が好ましく、40~60部がより好ましい。水硬性化合物の含有量は、クリンカ100部中、10~50部が好ましく、20~30部がより好ましい。無水石膏の含有量は、クリンカ100部中、1~50部が好ましく20~30部がより好ましい。また、クリンカ中の無水石膏の含有量が少ない場合には、別に無水石膏を添加して膨張材とすることが好ましい。前記範囲外では、膨張量が極端に大きくなって圧縮強度が低下したり、材齢2日から7日にかけての膨張量や材齢5日から7日にかけての膨張量が小さくなる場合がある。
 鉱物の含有量は、従来一般の分析方法で確認することができる。例えば、粉砕した試料を粉末X線回折装置にかけ、生成鉱物を確認するとともにデータをリートベルト法にて解析し、鉱物を定量することができる。また、化学成分と粉末X線回折の同定結果に基づいて、鉱物量を計算によって求めることもできる。
 本発明の膨張材を調製するための炭酸ガスの処理条件は以下の範囲であることが好ましい。
 炭酸化処理容器への炭酸ガスの流量は、炭酸化処理容器の容積1Lあたり0.01~0.1L/minであることが好ましい。0.01L/min未満ではクリンカの炭酸化に時間がかかる場合があり、0.1L/minを超えて高めても更なる炭酸化処理速度の向上が得られず不経済である。なお、本条件は、炭酸化処理容器としてるつぼを使用し、るつぼを電気炉内に静置し、炭酸ガスを流して反応させた場合の条件であり、他の方法でクリンカと炭酸ガスを反応させる場合はこの限りではない。また炭酸ガスの代わりに石灰焼成炉から排出された排気ガスを用いて炭酸化することは、膨張特性を向上させる上で好ましい。
 炭酸化処理容器の温度は200~800℃とすることが好ましい。200℃未満ではクリンカの炭酸化反応が進行しない場合があり、800℃を超えると一度炭酸カルシウムに変化したとしても再び脱炭酸化反応が生じ、炭酸カルシウムを生成させることができない場合がある。
 なお、クリンカの炭酸化は未粉砕のクリンカをそのまま炭酸化しても良いし、クリンカを粉砕してから炭酸化しても良い。本発明でいう炭酸化処理容器は特に限定されるものではなく、クリンカと炭酸ガスを接触させ反応させることが出来ればよく、電気炉でも良いし、流動層式加熱炉でも良いし、クリンカを粉砕するミルでも良い。
 炭酸カルシウムの割合は、クリンカ100部中、0.5~10部であることが好ましく、1~5部がより好ましい。各鉱物の組成割合が前記範囲内にないと優れた膨張性能や初期の圧縮強度、貯蔵安定性が得られない場合がある。
 炭酸カルシウムの含有量は、示唆熱天秤(TG-DTA)や示唆熱熱量測定(DSC)などによって、炭酸カルシウムの脱炭酸に伴う重量変化から定量することができる。
 本発明の膨張材は、同一粒子中に遊離石灰、水硬性化合物、無水石膏、および炭酸カルシウムが存在する粒子を含有していることが好ましい。
 遊離石灰、水硬性化合物、無水石膏、および炭酸カルシウムが同一粒子中に存在しているかどうかは電子顕微鏡などによって確認することができる。具体的には、膨張材を樹脂で包埋し、アルゴンイオンビームで表面処理を行い、粒子断面の組織を観察するとともに、元素分析を行うことで炭酸カルシウムが同一粒子内に存在しているか確認することができる。
 本発明の膨張材の粉末度は、ブレーン比表面積で1500~9000cm/gが好ましく、2000~4000cm/gがより好ましい。1500cm/g未満では長期に渡って膨張しコンクリート組織が壊れる場合があり、9000cm/gを超えると膨張性能が低下する場合がある。
 本発明の膨張材の使用量は、コンクリートの配合によって変化するため特に限定されるものではないが、通常、セメントと膨張材からなるセメント組成物100部中、3~12部が好ましく、5~9部がより好ましい。3部未満では充分な膨張性能が得られない場合があり、12部を超えて使用すると過膨張となりコンクリートに膨張クラックを生じる場合がある。
 本発明のセメント組成物で使用するセメントとしては、普通、早強、超早強、低熱、および中庸熱等の各種ポルトランドセメント、これらセメントに高炉スラグ、フライアッシュ、シリカを混合した各種混合セメント、ならびに石灰石粉末を混合したフィラーセメントなどが挙げられる。
 本発明の膨張材は、砂、砂利、減水剤、高性能減水剤、AE減水剤、高性能AE減水剤、流動化剤、消泡剤、増粘剤、防錆剤、防凍剤、収縮低減剤、高分子エマルジョン、および凝結調整剤、ならびにセメント急硬材、ベントナイト等の粘土鉱物、ゼオライト等のイオン交換体、シリカ質微粉末、炭酸カルシウム、水酸化カルシウム、石膏、ケイ酸カルシウム、ビニロン繊維、アクリル繊維、炭素繊維等の繊維状物質などと併用することができる。特に本発明の膨張材を収縮低減剤と組み合わせることによって、より大きな膨張量をコンクリートに与えることができる。収縮低減剤の種類は限定されるものではないが、特に低分子量アルキレンオキシド共重合体系、グリコールエーテル・アミノアルコール誘導体、低級アルコールのアルキレンオキシド付加物が好ましく、市販品では、電気化学工業製「エスケーガード」、エフピーケー社製「ヒビガード」、竹本油脂社製「ヒビダン」、及び太平洋セメント社製「テトラガード」などが挙げられる。
 以下、実施例で詳細に説明する。
(実験例1)
 CaO原料、Al原料、Fe原料、SiO原料、CaSO原料を表1に示す鉱物割合となるように配合し、混合粉砕した後1350℃で熱処理してクリンカを合成し、ボールミルを用いてブレーン比表面積で3000cm/gに粉砕した。この粉砕物25gをアルミナ製るつぼに入れて電気炉内にセットし、炭酸ガスの流量を電気炉内容積1Lあたり0.05L/min、焼成温度600℃、1hr反応させ、生成した炭酸カルシウムの生成量を定量して膨張材とした。
 この膨張材を使用して、セメントと膨張材からなるセメント組成物100部中、膨張材を4部または7部使用し、水/セメント組成物比=50%、セメント組成物/砂比=1/3のモルタルを20℃の室内で調製して、長さ変化率と圧縮強度の測定を行った。
 なお、比較として、水硬性物質、無水石膏を含まないクリンカを粉砕したものや、それらを炭酸ガス処理した膨張材(実験No.1-8、1-9、1-10、1-11)、炭酸ガス処理をせずクリンカを粉砕しただけの膨張材(実験No.1-12、1-13、1-14)、炭酸ガス処理をせずクリンカを粉砕しただけの膨張材に炭酸カルシウム粉末を混合した膨張材(実験No.1-15)についても同様の実験を行った。また、各膨張材と膨張セメント組成物について促進貯蔵試験を実施した。
〈使用材料〉
CaO原料:石灰石
Al原料:ボーキサイト
Fe原料:酸化鉄
SiO原料:珪石
CaSO原料:二水石膏
炭酸ガス:市販品
砂:JIS標準砂
セメント:普通ポルトランドセメント、市販品
炭酸カルシウム粉末:市販品、200メッシュ品
〈試験方法〉
鉱物組成:化学組成と粉末X線回折の同定結果に基づいて計算により求めた。
炭酸カルシウムの生成量:示唆熱天秤(TG-DTA)の500~750℃の脱炭酸に伴う重量変化より定量した。
膨張材粒子内の鉱物分布:シリコン製の容器に膨張材を入れ、エポキシ樹脂を流しこみ硬化させ、硬化物をイオンビーム加工機(SM-09010、日本電子製)にて断面加工し、SEM-EDS分析装置にて確認した。
長さ変化率:JIS A 6202 付属書1 膨張材のモルタルによる膨張性試験方法に準じ材齢7日(d)までの長さ変化率を測定した。
圧縮強度:JIS R 5201に準じて4×4×16cmの試験体を作成し、材齢7日の圧縮強度を測定した。
促進貯蔵試験(膨張材):各膨張材100gを10×10cm角のステンレス製トレーに載せて広げ、上面を開放した状態で20℃60%RH室内に10日間放置した。10日後に回収したサンプルを用いてモルタルの長さ変化率を確認した。
促進貯蔵試験(膨張セメント):各膨張セメント組成物を紙袋に充填してヒートシールし、35℃90%RH室内で1ヶ月間貯蔵し、モルタルの長さ変化率を確認した。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、遊離石灰(f-CaO)、水硬性化合物(アウイン、CAF、CS)、および無水石膏(CaSO)を含有するクリンカ粉砕物を炭酸ガス雰囲気で加熱処理し炭酸カルシウムを生成させた実施例の膨張材(実験No.1-1~1-7)は、2-7d、5-7dの長さ変化率が大きく、材齢2日~7日にかけてセメント組成物(コンクリート)に大きな膨張を付与でき、コンクリートの材齢7日の圧縮強度が高く、長期間貯蔵しても膨張性能の低下が少ないことが確認された。
 これに対して、水硬性物質、無水石膏を含まない遊離石灰(f-CaO)のみのクリンカを粉砕して炭酸ガス雰囲気で加熱処理しない比較例の膨張材(実験No.1-8、1-9)は、2-7d、5-7dの長さ変化率が小さく、圧縮強度が低く、長期間貯蔵すると膨張性能の低下が大きい。このクリンカを炭酸ガス雰囲気で加熱処理した比較例の膨張材(実験No.1-10、1-11)は、2-7dの長さ変化率は大きいが、5-7dの長さ変化率は小さく、圧縮強度は低く、長期間貯蔵すると膨張性能がやや低下し、添加率を上げると膨張量が極端に大きくなり、圧縮強度がさらに低くなった。
 また、炭酸ガス処理をせずクリンカを粉砕しただけの比較例の膨張材(実験No.1-12、1-13、1-14)、炭酸ガス処理をせずクリンカを粉砕しただけの膨張材に炭酸カルシウム粉末を混合した比較例の膨張材(実験No.1-15)は、2-7d、5-7dの長さ変化率が小さく、長期間貯蔵すると膨張性能が低下した。
(実験例2)
 クリンカの組成を、クリンカ100部中、遊離石灰50部、アウイン10部、カルシウムアルミノフェライト(4CaO・Al・Fe:CAF)5部、カルシウムシリケート(2CaO・SiO:CS)5部、無水石膏30部に固定し、炭酸ガスの流量、処理温度、反応時間を表2に示すように変化させたこと以外は実施例1と同様に行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、炭酸ガス処理条件を、炭酸ガス流量0.01~0.1L/min、温度200~800℃として炭酸カルシウムを生成させる実施例の膨張材の製造方法を採用した場合(実験No.1-4、実験No.2-1~2-9)は、2-7d、5-7dの長さ変化率が大きく、材齢2日~7日にかけてセメント組成物(コンクリート)に大きな膨張を付与でき、コンクリートの材齢7日の圧縮強度が高く、長期間貯蔵しても膨張性能の低下が少ないことが確認された。
 これに対して、炭酸ガス処理の温度を1000℃として炭酸カルシウムが生成しない比較例の膨張材の製造方法を採用した場合(実験No.2-10)には、2-7d、5-7dの長さ変化率が小さく、長期間貯蔵すると膨張性能が低下する。
(実験例3)
 市販の膨張材を処理したこと以外は実施例1と同様に行った。結果を表3に示す。
市販膨張材A:遊離石灰50部、アウイン12部、カルシウムアルミノフェライト(4CaO・Al・Fe)5部、カルシウムシリケート(2CaO・SiO)3部、無水石膏30部。
市販膨張材B:遊離石灰52部、カルシウムアルミノフェライト(4CaO・Al・Fe)4部、カルシウムシリケート(2CaO・SiO)10部、カルシウムシリケート(3CaO・SiO)12部、無水石膏20部。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、遊離石灰、水硬性化合物、および無水石膏を含有するクリンカ粉砕物からなる市販膨張材を炭酸ガス雰囲気で加熱処理し炭酸カルシウムを生成させた実施例の膨張材(実験No.3-1、3-2、3-4、3-5)は、炭酸カルシウムを生成させない比較例の膨張材(実験No.3-3、3-6)と比較して、2-7d、5-7dの長さ変化率が大きく、セメント組成物の材齢7日の圧縮強度が高く、長期間貯蔵しても膨張性能の低下が少ないことが確認された。
(実験例4)
 炭酸ガスの代わりに石灰焼成炉の排ガスを用い、市販膨張材Aを処理したこと以外は実施例1と同様に行った。石灰焼成炉の排ガス組成は、CO:40%、O:7%、CO:3%、N:50%である。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、石灰焼成炉の排ガスを用いて炭酸化した膨張材(実験No.4-1)は、炭酸ガスを用いて炭酸化した膨張材(実験No.3-2)よりも膨張性能が向上することが確認された。
(実験例5)
 原料として石灰石、普通ポルトランドセメントを用いて表5に示す組成のクリンカを調製し、炭酸化処理後、または炭酸化未処理のクリンカ80部と無水石膏20部からなる膨張材を調製し、セメントと膨張材からなるセメント組成物100部中、膨張材を7部使用したこと以外は実験例1と同様に行った。結果を表5に示す。
〈使用材料〉
CaO原料:石灰石
セメント:普通ポルトランドセメント、市販品
CaSO原料:無水石膏、ブレーン比表面積3000cm/g
Figure JPOXMLDOC01-appb-T000005
 表5に示されるように、遊離石灰(f-CaO)、水硬性化合物(アウイン、CAF、CS、CS)、および無水石膏(CaSO)を含有するクリンカ粉砕物を炭酸ガス雰囲気で加熱処理し炭酸カルシウムを生成させたものに、さらに無水石膏を添加した実施例の膨張材(実験No.5-1)は、炭酸カルシウムを生成させない比較例の膨張材(実験No.5-2)と比較して、2-7d、5-7dの長さ変化率が大きく、セメント組成物の材齢7日の圧縮強度が高く、長期間貯蔵しても膨張性能の低下が少ないことが確認された。
(実験例6)
 実験No.3-2で調製した膨張材を用いた膨張セメントでポップアウト試験を実施した。セメントと膨張材からなる膨張セメント組成物100部中、膨張材は7部、水/セメント組成物比=50%、セメント組成物/砂比=1/3のモルタルを20℃の室内で練り混ぜ、材料投入後の練り混ぜ時間を表6に示すように変化させた。なお、実験No.3-3で用いた市販膨張材Aを用い、通常生コンクリートプラントで行われているように、セメントと膨張材を別々にミキサーに投入した場合についても同様に試験を行った。結果を表6に示す。
〈ポップアウト試験方法〉
 練り混ぜたモルタルを20×20×5cmの平板状に成型して表面を平滑にし、20℃60%室内で6ヶ月間養生した後、モルタル表面を観察してポップアウトの有無を確認した。
Figure JPOXMLDOC01-appb-T000006
 表6に示されるように、クリンカ粉砕物を炭酸ガス雰囲気で加熱処理し炭酸カルシウムを生成させた実施例の膨張材を用いた膨張セメント(実験No.6-1、No.6-2)では、練り混ぜ時間が短くなってもポップアウトが生じなかったが、炭酸カルシウムを生成させない比較例の膨張材をセメントと同時に投入したもの(実験No.6-3、No.6-4)では、練り混ぜ時間が短くなるとポップアウトが生じた。
(実験例7)
 実験No.2-3で調製した膨張材と収縮低減剤を用いてモルタル物性を評価した。セメントと膨張材からなる膨張セメント組成物100部中、膨張材は7部配合し、膨張セメント組成物100部に対して収縮低減剤2部を水に置換する形で配合した。(水+収縮低減剤)/セメント組成物比=50%、セメント組成物/砂比=1/3のモルタルを20℃の室内で練り混ぜ、膨張特性を調査した。また実験No.3-3で使用した市販膨張材Aについても同様の試験を行った。結果を表7に示す。
(使用材料)
収縮低減剤:エスケーガード、電気化学工業製、市販品
Figure JPOXMLDOC01-appb-T000007
 表7に示されるように、クリンカ粉砕物を炭酸ガス雰囲気で加熱処理し炭酸カルシウムを生成させたものに、さらに収縮低減剤を添加した実施例の膨張材(実験No.7-1)は、炭酸カルシウムを生成させないものに、さらに収縮低減剤を添加した比較例の膨張材(実験No.7-2)と比較して、2-7d、5-7dの長さ変化率が顕著に改善されることが確認された。
 本発明の膨張材およびその製造方法により、材齢2日~7日にかけてコンクリートに大きな膨張を付与でき、初期の圧縮強度も高まり、貯蔵安定性も向上し膨張セメントと流通させることができ、練り混ぜ時間が短くなってもポップアウトなどが生じないことから、土木・建築分野で幅広く使用することができる。

Claims (9)

  1.  遊離石灰、水硬性化合物、および無水石膏を含有するクリンカまたはクリンカ粉砕物を炭酸ガス雰囲気で加熱処理し炭酸カルシウムを生成させて得られたことを特徴とする膨張材。
  2.  遊離石灰、水硬性化合物、無水石膏、および炭酸カルシウムが同一粒子中に存在している粒子を含有してなる請求項1記載の膨張材。
  3.  炭酸カルシウムの含有量が0.5~10質量%である請求項1記載の膨張材。
  4.  ブレーン比表面積が1500~9000cm/gである請求項1記載の膨張材。
  5.  前記クリンカまたはクリンカ粉砕物を炭酸ガス雰囲気で加熱処理し炭酸カルシウムを生成させて得られたものに、さらに無水石膏を添加してなる請求項1記載の膨張材。
  6.  前記クリンカまたはクリンカ粉砕物を炭酸ガス雰囲気で加熱処理し炭酸カルシウムを生成させて得られたものに、さらに収縮低減剤を添加してなる請求項1記載の膨張材。
  7.  セメントに請求項1~6のいずれか1項記載の膨張材を配合してなるセメント組成物。
  8.  遊離石灰、水硬性化合物、および無水石膏を含有するクリンカまたはクリンカ粉砕物を炭酸ガス雰囲気で加熱処理し、炭酸カルシウムを生成させることを特徴とする請求項1~6のいずれか1項記載の膨張材の製造方法。
  9.  炭酸化処理容器内にクリンカまたはクリンカ粉砕物を充填し、前記容器の容積1Lあたり炭酸ガス流量を0.01~0.1L/min、容器内の温度を200~800℃として炭酸カルシウムを生成させる請求項8記載の膨張材の製造方法。
PCT/JP2010/058516 2009-06-12 2010-05-20 膨張材およびその製造方法 WO2010143506A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201080025544.3A CN102459116B (zh) 2009-06-12 2010-05-20 膨胀材料及其制造方法
KR1020117029502A KR101719832B1 (ko) 2009-06-12 2010-05-20 팽창재 및 그 제조방법
EP10786037.1A EP2441738B1 (en) 2009-06-12 2010-05-20 Expansive admixture and method for producing same
BRPI1010848-3A BRPI1010848B1 (pt) 2009-06-12 2010-05-20 Material expansível e seu processo de preparação
RU2012100757/03A RU2531223C2 (ru) 2009-06-12 2010-05-20 Расширяющаяся добавка для бетона и способ её получения
JP2011518382A JP5580306B2 (ja) 2009-06-12 2010-05-20 膨張材およびその製造方法
US13/261,027 US8663383B2 (en) 2009-06-12 2010-05-20 Expansive material and its preparation process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009141422 2009-06-12
JP2009-141422 2009-06-12

Publications (1)

Publication Number Publication Date
WO2010143506A1 true WO2010143506A1 (ja) 2010-12-16

Family

ID=43308765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058516 WO2010143506A1 (ja) 2009-06-12 2010-05-20 膨張材およびその製造方法

Country Status (9)

Country Link
US (1) US8663383B2 (ja)
EP (1) EP2441738B1 (ja)
JP (1) JP5580306B2 (ja)
KR (1) KR101719832B1 (ja)
CN (1) CN102459116B (ja)
BR (1) BRPI1010848B1 (ja)
RU (1) RU2531223C2 (ja)
TW (1) TWI478891B (ja)
WO (1) WO2010143506A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054604A1 (ja) * 2011-10-13 2013-04-18 電気化学工業株式会社 早期脱型材およびコンクリート製品の製造方法
JP2013100202A (ja) * 2011-11-09 2013-05-23 Denki Kagaku Kogyo Kk 補修用モルタル組成物
JP2014218414A (ja) * 2013-05-10 2014-11-20 電気化学工業株式会社 セメント急結材及びそれを用いたセメント組成物
CN105819723A (zh) * 2016-03-24 2016-08-03 洛阳理工学院 一种混凝土膨胀剂的制备方法
JP2016160146A (ja) * 2015-03-03 2016-09-05 デンカ株式会社 塩害対策用混和材および鉄筋コンクリートの塩害対策方法
JP2018508460A (ja) * 2015-03-20 2018-03-29 ソリディア テクノロジーズ インコーポレイテッドSolidia Technologies, Inc. ケイ酸カルシウムの炭酸塩化による複合材料および結着成分およびそれらの製造方法
JP2020079185A (ja) * 2018-11-14 2020-05-28 デンカ株式会社 膨張組成物、セメント組成物およびセメント・コンクリート
CN113122336A (zh) * 2019-12-31 2021-07-16 中国石油化工股份有限公司 一种生物质热转化制氢方法及系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5744499B2 (ja) * 2010-12-09 2015-07-08 電気化学工業株式会社 グラウト用セメント組成物およびグラウト材料
JP5955623B2 (ja) * 2012-04-26 2016-07-20 太平洋マテリアル株式会社 コンクリート
KR101733328B1 (ko) * 2012-08-27 2017-05-08 요시노 셋고 가부시키가이샤 고팽창 석고 조성물의 제조 방법 및 그 제조 방법으로 얻어진 고팽창 석고 조성물
CN104671688B (zh) * 2015-02-05 2017-01-18 江苏苏博特新材料股份有限公司 一种改性氧化钙类膨胀熟料、其制备方法及其应用
US20190023965A1 (en) 2016-01-20 2019-01-24 Schlumberger Technology Corporation Compositions and methods for well cementing
KR101781108B1 (ko) * 2017-04-03 2017-09-22 한일시멘트 (주) 석회계 팽창재를 활용한 균열방지 및 수축저감재 조성물
WO2020100925A1 (ja) * 2018-11-15 2020-05-22 デンカ株式会社 セメント混和材、膨張材、及びセメント組成物
CN110066123B (zh) 2019-04-30 2020-11-17 镇江苏博特新材料有限公司 一种制备轻质氧化镁和氧化钙的方法及其用于制备钙镁复合膨胀剂的应用
CN110885204B (zh) * 2019-11-13 2021-11-09 中国建筑材料科学研究总院有限公司 长寿命混凝土制品用抗裂增强材料及其制备方法和应用
US20230202921A1 (en) * 2020-04-17 2023-06-29 Denka Company Limited Cement admixture and cement composition
US20230242448A1 (en) * 2020-04-23 2023-08-03 Denka Company Limited Cement admixture, expansion material, and cement composition
RU2767481C1 (ru) * 2021-10-12 2022-03-17 Публичное акционерное общество «Северсталь» (ПАО «Северсталь») Расширяющая добавка на основе железосодержащих пылевидных отходов для расширяющегося цемента
RU2769164C1 (ru) * 2021-10-13 2022-03-28 Публичное акционерное общество «Северсталь» (ПАО «Северсталь») Расширяющая добавка для цемента, содержащая шлак сталеплавильного производства

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493020A (en) 1977-09-19 1979-07-23 Raychem Corp Lime containing particulate composition* cement composition containing same and method of making same
JPS58154779A (ja) 1982-03-10 1983-09-14 Denki Kagaku Kogyo Kk 脆性物体の破砕剤
JP2003206167A (ja) * 2002-01-11 2003-07-22 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JP4244261B2 (ja) 2000-05-02 2009-03-25 電気化学工業株式会社 セメント混和材及びセメント組成物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU69250A1 (ru) * 1945-11-03 1946-11-30 Г.Л. Тиферис Способ искусственной карбонизации изделий из растворов, бетонов и составов на известковом в жущем
US3884710A (en) * 1972-10-27 1975-05-20 Gen Portland Inc Expansive cement
JPS5623936B2 (ja) * 1973-06-29 1981-06-03
SU530865A1 (ru) * 1975-06-18 1976-10-05 Государственный Всесоюзный Институт По Проектированию И Научно-Исследовательским Работам "Южгипроцемент" Расшир ющийс цемент
US4205994A (en) 1977-09-19 1980-06-03 Raychem Corporation Expansive cement and agent therefor
US5846316A (en) 1996-09-12 1998-12-08 Rice; Edward K. Shrinkage-compensating concrete
US6264736B1 (en) * 1997-10-15 2001-07-24 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Pressure-assisted molding and carbonation of cementitious materials
CN1459435A (zh) * 2002-05-24 2003-12-03 张传镁 石膏矿废渣陶粒及其制备方法
EP1384704A1 (en) 2002-07-22 2004-01-28 Domenico Grilli Expanding admixture, non-shrinking waterproofing Portland cement with expanding admixture and the process of its production
CN1718557A (zh) * 2004-07-09 2006-01-11 中联炉石处理资源化股份有限公司 用于水泥或混凝土的膨胀剂及其制造方法
JP4643374B2 (ja) * 2005-06-29 2011-03-02 株式会社竹中工務店 二酸化炭素固定化成型体形成用コンクリート組成物、該組成物からなる二酸化炭素固定化成型体及びその製造方法
WO2007029399A1 (ja) * 2005-09-02 2007-03-15 Denki Kagaku Kogyo Kabushiki Kaisha グラウト用セメント組成物およびそれを用いたグラウト材料
JP4809278B2 (ja) * 2007-03-27 2011-11-09 電気化学工業株式会社 膨張材、セメント組成物、及びそれを用いてなるセメント硬化体
RU2390515C1 (ru) * 2008-11-17 2010-05-27 Алексей Андреевич Брункин Способ обработки бетонной смеси и устройство для его проведения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493020A (en) 1977-09-19 1979-07-23 Raychem Corp Lime containing particulate composition* cement composition containing same and method of making same
JPS58154779A (ja) 1982-03-10 1983-09-14 Denki Kagaku Kogyo Kk 脆性物体の破砕剤
JP4244261B2 (ja) 2000-05-02 2009-03-25 電気化学工業株式会社 セメント混和材及びセメント組成物
JP2003206167A (ja) * 2002-01-11 2003-07-22 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Regarding the inhibition of the hygroscopicity of quicklime by partial carbonation", IRON AND STEEL, vol. 64, no. 2, 1978, pages 56 - 65

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054604A1 (ja) * 2011-10-13 2013-04-18 電気化学工業株式会社 早期脱型材およびコンクリート製品の製造方法
JPWO2013054604A1 (ja) * 2011-10-13 2015-03-30 電気化学工業株式会社 早期脱型材およびコンクリート製品の製造方法
JP2013100202A (ja) * 2011-11-09 2013-05-23 Denki Kagaku Kogyo Kk 補修用モルタル組成物
JP2014218414A (ja) * 2013-05-10 2014-11-20 電気化学工業株式会社 セメント急結材及びそれを用いたセメント組成物
JP2016160146A (ja) * 2015-03-03 2016-09-05 デンカ株式会社 塩害対策用混和材および鉄筋コンクリートの塩害対策方法
JP2018508460A (ja) * 2015-03-20 2018-03-29 ソリディア テクノロジーズ インコーポレイテッドSolidia Technologies, Inc. ケイ酸カルシウムの炭酸塩化による複合材料および結着成分およびそれらの製造方法
JP7019557B2 (ja) 2015-03-20 2022-02-15 ソリディア テクノロジーズ インコーポレイテッド ケイ酸カルシウムの炭酸塩化による複合材料および結着成分およびそれらの製造方法
JP2022031657A (ja) * 2015-03-20 2022-02-22 ソリディア テクノロジーズ インコーポレイテッド ケイ酸カルシウムの炭酸塩化による複合材料および結着成分およびそれらの製造方法
CN105819723A (zh) * 2016-03-24 2016-08-03 洛阳理工学院 一种混凝土膨胀剂的制备方法
JP2020079185A (ja) * 2018-11-14 2020-05-28 デンカ株式会社 膨張組成物、セメント組成物およびセメント・コンクリート
JP7260998B2 (ja) 2018-11-14 2023-04-19 デンカ株式会社 膨張組成物、セメント組成物およびセメント・コンクリート
CN113122336A (zh) * 2019-12-31 2021-07-16 中国石油化工股份有限公司 一种生物质热转化制氢方法及系统

Also Published As

Publication number Publication date
RU2531223C2 (ru) 2014-10-20
US20120067251A1 (en) 2012-03-22
EP2441738B1 (en) 2018-07-04
JPWO2010143506A1 (ja) 2012-11-22
BRPI1010848A2 (pt) 2016-08-23
CN102459116A (zh) 2012-05-16
TWI478891B (zh) 2015-04-01
EP2441738A4 (en) 2013-10-30
KR101719832B1 (ko) 2017-03-24
RU2012100757A (ru) 2013-07-20
KR20120036833A (ko) 2012-04-18
BRPI1010848B1 (pt) 2019-10-08
CN102459116B (zh) 2014-10-01
JP5580306B2 (ja) 2014-08-27
EP2441738A1 (en) 2012-04-18
US8663383B2 (en) 2014-03-04
TW201107266A (en) 2011-03-01

Similar Documents

Publication Publication Date Title
JP5580306B2 (ja) 膨張材およびその製造方法
JP5923104B2 (ja) 早期脱型材およびコンクリート製品の製造方法
JP5876836B2 (ja) セメント混和材、セメント組成物、及びそれを用いた六価クロム低減方法
TWI815994B (zh) 水泥摻和料、膨脹材料和水泥組成物
JP2003171162A (ja) セメント系グラウト組成物
JP6234739B2 (ja) セメント硬化体の製造方法およびセメント硬化体
JP6568291B1 (ja) セメント混和材、膨張材、及びセメント組成物
JP6641057B1 (ja) セメント混和材、膨張材、及びセメント組成物
WO2021215509A1 (ja) セメント混和材、膨張材、及びセメント組成物
JP2002029796A (ja) セメント混和材及びセメント組成物
WO2023153259A1 (ja) セメント、セメント組成物、セメント硬化物、及びセメント硬化物の製造方法
JP4514319B2 (ja) セメント混和材及びセメント組成物
JP7293019B2 (ja) セメント用膨張組成物、セメント組成物、及びセメント用膨張組成物の製造方法
WO2022196633A1 (ja) セメント混和材、セメント組成物、及びコンクリート製品の製造方法
JP2001151547A (ja) セメント混和材及びセメント組成物
JP2003095720A (ja) セメント混和材及びセメント組成物
WO2023068107A1 (ja) 非水硬性セメント組成物及びセメント系材料
JP2015107900A (ja) セメント混和材およびセメント組成物それを用いたセメント硬化体
JP2016017025A (ja) セメント組成物、およびその製造方法
JP2014218414A (ja) セメント急結材及びそれを用いたセメント組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025544.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786037

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010786037

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011518382

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13261027

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117029502

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 9251/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012100757

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1010848

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI1010848

Country of ref document: BR

Free format text: IDENTIFIQUE O SIGNATARIO DA PETICAO NO 020110126386 DE 08/12/2011 E COMPROVE QUE O MESMO TEM PODERES PARA ATUAR EM NOME DO DEPOSITANTE, UMA VEZ QUE BASEADO NO ARTIGO 216 DA LEI 9.279/1996 DE 14/05/1996 (LPI) OS ATOS PREVISTOS NESTA LEI SERAO PRATICADOS PELAS PARTES OU POR SEUS PROCURADORES, DEVIDAMENTE QUALIFICADOS.

ENP Entry into the national phase

Ref document number: PI1010848

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111208