TWI815994B - 水泥摻和料、膨脹材料和水泥組成物 - Google Patents

水泥摻和料、膨脹材料和水泥組成物 Download PDF

Info

Publication number
TWI815994B
TWI815994B TW108141300A TW108141300A TWI815994B TW I815994 B TWI815994 B TW I815994B TW 108141300 A TW108141300 A TW 108141300A TW 108141300 A TW108141300 A TW 108141300A TW I815994 B TWI815994 B TW I815994B
Authority
TW
Taiwan
Prior art keywords
cement
cement admixture
parts
mass
content
Prior art date
Application number
TW108141300A
Other languages
English (en)
Other versions
TW202030167A (zh
Inventor
森泰一郎
島崎大樹
前田拓海
荒野憲之
Original Assignee
日商電化股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018214450A external-priority patent/JP6568291B1/ja
Priority claimed from JP2019132910A external-priority patent/JP6641057B1/ja
Application filed by 日商電化股份有限公司 filed Critical 日商電化股份有限公司
Publication of TW202030167A publication Critical patent/TW202030167A/zh
Application granted granted Critical
Publication of TWI815994B publication Critical patent/TWI815994B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/008Cement and like inorganic materials added as expanding or shrinkage compensating ingredients in mortar or concrete compositions, the expansion being the result of a recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • C04B7/323Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

一種水泥摻和料,含有游離石灰和水硬性化合物且含有SrO作為化學成分,相對於所述游離石灰與所述水硬性化合物的合計100質量份,所述游離石灰的含量為10質量份~98質量份。

Description

水泥摻和料、膨脹材料和水泥組成物
本發明是有關於一種例如在土木、建築領域中使用的水泥摻和料、膨脹材料和水泥組成物。
就混凝土結構物的可靠性、耐久性、美觀等觀點而言,重要的是水泥-混凝土的裂紋減少,理想的是有改善該些的效果的水泥摻和料、即、水泥系膨脹材料的技術的進一步的進展。
迄今為止,提出了添加量少且具有優異的膨脹特性的混凝土膨脹材料(專利文獻1)、以碳酸鈣被覆游離石灰的表面的水泥用膨脹材料(專利文獻2)等。另外,近年來,提出了併用膨脹材料與收縮減少劑(專利文獻3)。 另一方面,提出了包含氧化鈣(calcia)與氧化鍶的固溶體的耐消化性氧化鈣熟料(專利文獻4)。另一方面,已知有鋁酸三鈣、石膏與水發生反應而生成作為膨脹成分的鈣礬石的膨脹材料(非專利文獻1)。 [現有技術文獻] [專利文獻]
專利文獻1:日本專利4244261號公報 專利文獻2:日本專利特開昭54-93020號公報 專利文獻3:日本專利特開2003-12352號公報 專利文獻4:日本專利特開昭57-205363號公報 [非專利文獻]
非專利文獻1:「關於膨脹混凝土所帶來的結構物的高功能化/高耐久化的研討會委員會報告書」、2003年9月19日
[發明所欲解決之課題] 先前的膨脹材料具有膨脹至材齡7日的特性。但是,存在乾燥收縮行為與不摻和膨脹材料的情況相比幾乎不發生變化的課題。另外,膨脹材料與收縮減少劑的併用對抑制乾燥收縮有效果,但存在長期強度表現性降低的課題。 再者,所述專利文獻4中記載的耐消化性氧化鈣熟料以用作鹼性耐火物原料為目的,對於用作以抑制水泥-混凝土的裂紋為目的的膨脹材料並無任何記載。
根據以上所述,本發明的目的在於提供一種水泥摻和料、膨脹材料和水泥組成物,所述水泥摻和料可在水泥-混凝土澆注後的初始材齡(例如材齡2日~7日)對水泥-混凝土賦予大的膨脹,抑制乾燥收縮應變,且抑制長期強度表現性的降低。 [解決課題之手段]
鑑於所述課題進行了努力研究,結果本發明者等人發現,藉由含有游離石灰和水硬性化合物且含有SrO作為化學成分的水泥摻和料,可解決所述課題,從而完成了本發明。即,本發明為如下所述。
[1]一種水泥摻和料,含有游離石灰和水硬性化合物且含有SrO作為化學成分, 相對於水泥摻和料100質量份,所述游離石灰的含量為10質量份~98質量份。 [2]如[1]所述的水泥摻和料,其中相對於水泥摻和料100質量份,所述SrO的含量為0.001質量份~5.0質量份。 [3]如[1]或[2]所述的水泥摻和料,進一步含有無水石膏。 [4]如[1]~[3]中任一項所述的水泥摻和料,其中相對於水泥摻和料100質量份,所述游離石灰的含量為10質量份~95質量份。 [5]如[1]~[4]中任一項所述的水泥摻和料,進一步含有ZrO2 作為化學成分。 [6]如[5]所述的水泥摻和料,其中相對於水泥摻和料100質量份,所述ZrO2 的含量為0.0001質量份~5.0質量份。 [7]如[1]~[6]中任一項所述的水泥摻和料,其中布萊恩(blaine)比表面積為2,000 cm2 /g~6,000 cm2 /g。 [8]如[1]~[7]中任一項所述的水泥摻和料,其中以體積基準計,10 μm以下的粒子的含有率為30體積%~60體積%,且100 μm以下的粒子的含有率A與10 μm以下的粒子的含有率B的比率(A/B)為1.5~4.0。 [9]如[1]~[8]中任一項所述的水泥摻和料,含有選自由3CaO·Al2 O3 、3CaO·3Al2 O3 ·CaSO4 、3CaO·SiO2 、2CaO·SiO2 、4CaO·Al2 O3 ·Fe2 O3 、6CaO·2Al2 O3 ·Fe2 O3 、6CaO·Al2 O3 ·Fe2 O3 和2CaO·Fe2 O3 所組成的群組中的一種或兩種以上作為所述水硬性化合物。 [10]如[9]所述的水泥摻和料,含有3CaO·Al2 O3 作為所述水硬性化合物。 [11]一種膨脹材料,包含如[1]~[10]中任一項所述的水泥摻和料。 [12]一種水泥組成物,含有如[1]~[10]中任一項所述的水泥摻和料而成。 [發明的效果]
根據本發明,可設為目的在於提供一種水泥摻和料、膨脹材料和水泥組成物,所述水泥摻和料可在水泥-混凝土澆注後的初始材齡(例如材齡2日~7日)對水泥-混凝土賦予大的膨脹,抑制乾燥收縮應變,且抑制長期強度表現性的降低。
以下,對本發明的實施方式的水泥摻和料、膨脹材料和水泥組成物進行說明。 再者,只要無特別規定,則本說明書中使用的份及%為質量基準。另外,本發明中所述的水泥-混凝土是指對水泥糊、砂漿、混凝土進行統稱者。
[1.水泥摻和料和膨脹材料] 本實施方式的水泥摻和料含有游離石灰和水硬性化合物且含有SrO作為化學成分。或者,含有游離石灰、水硬性化合物和無水石膏且含有SrO作為化學成分。再者,於對各成分的含量進行說明時,於提及「水泥摻和料100份」的情況下,基本上是指「游離石灰和水硬性化合物的合計100份」,於含有無水石膏時,是指「游離石灰、水硬性化合物和無水石膏的合計100份」。
(游離石灰) 所謂游離石灰通常被稱為f-CaO(free lime)。藉由在本實施方式的水泥摻和料中含有游離石灰而賦予膨脹特性,結果乾燥收縮得到抑制。 相對於水泥摻和料100份,游離石灰的含量較佳為10份~98份,更佳為10份~95份,進而佳為40份~90份。藉由含有10份~98份,可在不降低長期強度表現性的情況下表現出乾燥收縮的抑制效果。 在製作水泥摻和料時的煆燒中,藉由提高其煆燒溫度,或者對CaO原料以外的投入原料的調配量與粒度進行適度地調整等,可增大水泥摻和料中的游離石灰的結晶粒徑,或者提高含量。
(水硬性化合物) 所謂本實施方式的水硬性化合物是3CaO·Al2 O3 (簡稱為C3 A)、3CaO·3Al2 O3 ·CaSO4 所表示的硫鋁酸鈣(Yeelimite)、3CaO·SiO2 (簡稱為C3 S)或2CaO·SiO2 (簡稱為C2 S)所表示的矽酸鈣、4CaO·Al2 O3 ·Fe2 O3 (簡稱為C4 AF)或6CaO·2Al2 O3 ·Fe2 O3 (簡稱為C6 A2 F)、6CaO·Al2 O3 ·Fe2 O3 (簡稱為C6 AF)所表示的鈣鋁鐵氧體、2CaO·Fe2 O3 (簡稱為C2 F)等鈣鐵氧體等,較佳為含有該些中的一種或兩種以上。其中,較佳為含有C3 A、硫鋁酸鈣(特別是3CaO·3Al2 O3 ·CaSO4 )、C4 AF、C2 S中的一種或兩種以上,更佳為含有C3 A。 特別是藉由含有C3 A,可促進f-CaO的燒結。就促進燒結的觀點而言,水硬性化合物中的C3 A的含量較佳為0.5質量%~60質量%,更佳為1質量%~55質量%。再者,C3 A有因鹼含量的差異而結晶結構不同的立方晶(cubic)-C3 A與斜方晶(orthorhombic)-C3 A,但本說明書中的C3 A是指立方晶-C3 A和斜方晶-C3 A的兩者或任一者。
相對於水泥摻和料100份,水硬性化合物的含量較佳為2份~45份,更佳為5份~30份,進而佳為7份~20份。藉由為2份~45份,可賦予高膨脹特性。
(無水石膏) 無水石膏為任意成分,但相對於水泥摻和料100份,添加時的無水石膏的含量較佳為3份~50份,更佳為10份~40份,進而佳為20份~30份。 再者,在水泥摻和料中的無水石膏的含量少的情況下,可另外添加相對於水泥摻和料100份而成為3份~50份的範圍的量的無水石膏。
(SrO) 本實施方式的水泥摻和料含有SrO作為化學成分。若使SrO相對於水泥摻和料(或膨脹材料)固溶一定量,則可減少乾燥收縮(材齡7日以後)。另外,亦可改善貯藏穩定性。
相對於水泥摻和料100質量份,SrO的含量較佳為0.001質量份~5.0質量份,更佳為0.001質量份~0.5質量份,進而佳為0.005質量份~0.5質量份。特別是藉由為0.001質量份~0.5質量份,乾燥收縮的減少效果變得更良好。
(其他成分) 本實施方式的水泥摻和料較佳為進一步含有ZrO2 作為化學成分。相對於水泥摻和料100質量份,ZrO2 的含量較佳為0.001質量份~5.0質量份,更佳為0.0001質量份~0.1質量份,進而佳為0.0003質量份~0.05質量份。特別是藉由為0.0001質量份~0.1質量份,可提高流動性。
本實施方式的水泥摻和料的布萊恩比表面積(Blaine specific surface area)較佳為2,000 cm2 /g~6,000 cm2 /g,更佳為2,500 cm2 /g~5,000 cm2 /g。藉由布萊恩比表面積為2,000 cm2 /g~6,000 cm2 /g,可防止因長期膨脹而破壞混凝土組織,且可良好地維持膨脹性能。 再者,本說明書中的布萊恩比表面積值可按照日本工業標準(Japanese Industrial Standards,JIS)R 5201(水泥的物理試驗方法)求出。
另外,就坍度損失(slump loss)的減少、少量添加下的膨脹量確保、防止爆出(pop out)的觀點而言,較佳為以體積基準計,10 μm以下的粒子的含有率為30體積%~60體積%,且100 μm以下的粒子的含有率A與10 μm以下的粒子的含有率B的比率(A/B)為1.5~4.0。更佳為10 μm以下的粒子的含有率為20體積%~60體積%,100 μm以下的粒子的含有率A與10 μm以下的粒子的含有率B的比率(A/B)為1.8~3.0。 再者,本發明書中的粒子的含有率根據粒度分佈來計算,所述粒度分佈是使用雷射繞射/散射式粒度分佈測定裝置,利用超音波使水泥摻和料在乙醇中分散1分鐘後,在試樣折射率1.770、分散介質折射率1.360的條件下以體積基準測定而得。 本發明的水泥摻和料是將CaO原料、Al2 O3 原料、Fe2 O3 原料、SiO2 原料、CaSO4 原料、SrO原料和ZrO2 原料適宜混合並煆燒而獲得。
作為CaO原料,可列舉石灰石或消石灰,作為Al2 O3 原料,可列舉鋁土礦或鋁殘灰等,作為Fe2 O3 原料,可列舉銅礦渣或市售的氧化鐵,作為SiO2 原料,可列舉矽石等,作為CaSO4 原料,可列舉二水石膏、半水石膏和無水石膏。
SrO原料並無特別限定,例如可列舉天青石、碳鍶石(strontianite)、氧化鍶、碳酸鍶等。 另外,ZrO2 原料並無特別限定,例如可列舉氧化鋯、氫氧化鋯、碳酸鋯、氧氯化鋯、硫酸鋯、乙酸鋯、有機酸鋯、鋯砂等。 再者,在CaO原料、Al2 O3 原料、SiO2 原料、CaSO4 原料中含有SrO或ZrO2 的情況下,不需要重新添加SrO原料或ZrO2 原料。
有時該些原料中含有雜質,但若為不阻礙本發明的效果的範圍內,則並無特別的問題。作為雜質,可列舉MgO、TiO2 、MnO、P2 O5 、Na2 O、K2 O、Li2 O、硫、氟、氯等。
水泥摻和料可藉由將所述原料以成為所希望的礦物組成及SrO成為所希望的化學組成的方式進行調配,適宜粉碎等後進行煆燒來製造。 煆燒方法並無特別限定,但較佳為使用電爐或窯等在1,100℃~1,600℃的溫度下煆燒,更佳為1,200℃~1,500℃。若未滿1,100℃則膨脹性能不充分,若超過1,600℃則無水石膏有時會分解。 另外,在進行粉碎的情況下,較佳為以布萊恩比表面積成為2,000 cm2 /g~6,000 cm2 /g的方式利用公知的方法進行。
如上所述製作的水泥摻和料中的礦物的含量可利用先前一般的分析方法確認。例如可將粉碎的試樣放入粉末X射線繞射裝置中,確認生成礦物,並且藉由里特沃爾德法(Rietveld method)分析資料,對礦物進行定量。另外,亦可基於化學成分與粉末X射線繞射的鑑定結果,藉由計算求出礦物量。在本實施方式中,較佳為基於化學成分與粉末X射線繞射的鑑定結果,藉由計算求出礦物量。 再者,化學成分的含量可藉由螢光X射線求出。
本實施方式的水泥摻和料較佳為含有在同一粒子中存在游離石灰、水硬性化合物、無水石膏和SrO的粒子。另外,在含有ZrO2 的情況下,較佳為其亦存在於同一粒子中。 游離石灰、水硬性化合物、無水石膏和SrO、以及ZrO2 是否存在於同一粒子中可藉由電子顯微鏡等進行確認。具體而言,利用樹脂包埋水泥摻和料,利用氬離子束進行表面處理,在觀察粒子剖面的組織的同時,藉由進行元素分析,可確認游離石灰、水硬性化合物、無水石膏和SrO、以及ZrO2 是否存在於同一粒子內。
所述本實施方式的水泥摻和料較佳為例如用作膨脹材料。即,本實施方式的膨脹材料包含所述水泥摻和料。藉此,可在混凝土澆注後的初始材齡(例如材齡2日~7日)對混凝土賦予大的膨脹,抑制乾燥收縮應變,且抑制長期強度表現性的降低。
[3.水泥組成物] 本實施方式的水泥組成物含有所述水泥摻和料而成。此處,作為水泥組成物中使用的水泥,可列舉:普通、早強、超早強、低熱和中等熱等各種波特蘭水泥;在該些波特蘭水泥中混合了高爐爐渣、粉煤灰或二氧化矽的各種混合水泥;混合了石灰石粉末或高爐緩冷爐渣微粉末等的填料水泥;以及以城市垃圾焚燒灰或下水污泥焚燒灰為原料製造的環境調和型水泥(生態水泥)等波特蘭水泥,可使用該些中的一種或兩種以上。再者,水泥摻和料亦可為本實施方式的膨脹材料。
在本實施方式中,除了水泥、水泥摻和料及砂等細骨料或砂礫等粗骨料之外,亦可於實質上不阻礙本發明的目的的範圍內併用由早強劑、快硬材料、減水劑、AE減水劑、高性能減水劑、高性能AE減水劑、流動化劑、消泡劑、增黏劑、防鏽劑、防凍劑、收縮減少劑、凝結減少劑、水化熱抑制劑、高分子乳液、膨潤土等黏土礦物、水滑石等陰離子交換體、高爐水碎爐渣微粉末或高爐緩冷爐渣微粉末等爐渣、石灰石微粉末、二氧化矽質微粉末、石膏、矽酸鈣等混合材料所組成的群組中的一種或兩種以上。另外,作為有機系材料,亦可與維尼綸纖維、丙烯酸纖維、碳纖維等纖維狀物質併用。
水泥摻和料(或膨脹材料)的使用量(調配量)根據混凝土的調配而變化,因此並無特別限定,但通常在包含水泥和水泥摻和料(或膨脹材料)的水泥組成物100質量份中,較佳為3質量份~12質量份,更佳為4質量份~7質量份。藉由為3質量份以上,可獲得充分的膨脹性能。另外,藉由為12質量份以下,不會過度膨脹,可防止混凝土產生膨脹裂縫。 [實施例]
「實驗例A-1」 將CaO原料、Al2 O3 原料、Fe2 O3 原料、SiO2 原料、CaSO4 原料、以及SrO原料以成為表1所示的礦物比例、作為化學成分的比例的方式進行調配,於混合粉碎後在1,350℃下煆燒,合成熟料,使用球磨機粉碎為以布萊恩比表面積計為3,000 cm2 /g,製作水泥摻和料。 使用該水泥摻和料,在包含水泥與水泥摻和料的水泥組成物100質量份中,使用水泥摻和料7質量份,在20℃的室內製備水/水泥組成物比=50質量%、水泥組成物/砂比=1/3(質量比)的砂漿,進行長度變化率與壓縮強度的測定。 另外,對於水泥摻和料,求出100 μm以下的粒子的含有率A與10 μm以下的粒子的含有率B的比率(A/B)。
(使用材料) CaO原料:石灰石 Al2 O3 原料:鋁土礦 Fe2 O3 原料:氧化鐵 SiO2 原料:矽石 CaSO4 原料:二水石膏 SrO原料:碳鍶石 ZrO2 原料:鋯砂 砂:JIS標準砂 水泥:普通波特蘭水泥、市售品
(試驗方法) 化學組成:根據螢光X射線求出。 100 μm以下的粒子的含有率A與10 μm以下的粒子的含有率B的比率(A/B):使用堀場(HORIBA)公司製造的雷射繞射/散射式粒度分佈測定裝置LA-920。利用超音波使水泥摻和料在乙醇中分散1分鐘,在試樣折射率1.770、分散介質折射率1.360的條件下測定體積基準的粒度分佈。根據所述粒度分佈求出100 μm以下的粒子的含有率A與10 μm以下的粒子的含有率B,計算出A/B。 礦物組成:基於化學組成與粉末X射線繞射的鑑定結果,藉由計算而求出。 壓縮強度:按照JIS R 5201製作4 cm×4 cm×16 cm的試驗體,測定材齡7日(7d)及28日(28d)的壓縮強度。
[表1] 表1
實驗No. 水泥摻和料 膨脹材料添加率(份) 評價 備考
礦物組成(份) 化學組成 布萊恩比表面積 cm2 /g A/B 長度變化率(μ) 壓縮強度(N/mm2
游離石灰 水硬性化合物 CaSO4 SrO 0d 7d 28d 28d與7d的差 7d 28d
硫鋁酸鈣 C4 AF C2 S 合計
1-1 10 31 5 4 40 50 0.010 3000 2.1 7 0 190 -50 -240 34.2 51.4 實施例
1-2 10 32 7 11 50 45 0.010 3000 2.1 7 0 190 -50 -240 34.2 51.4 實施例
1-3 20 30 2 3 35 45 0.010 3000 2.1 7 0 245 0 -245 33.9 51.0 實施例
1-4 40 20 5 5 30 30 0.010 3000 2.1 7 0 435 300 -135 32.8 50.2 實施例
1-5 50 10 5 5 20 30 0.001 3000 2.1 7 0 455 240 -215 32.7 49.2 實施例
1-6 50 10 5 5 20 30 0.010 3000 2.1 7 0 452 300 -152 32.7 49.4 實施例
1-7 50 10 5 5 20 30 0.500 3000 2.1 7 0 445 330 -115 32.8 49.3 實施例
1-8 50 5 0 25 30 20 0.010 3000 2.1 7 0 423 350 -73 32.8 48.7 實施例
1-9 60 5 0 5 10 30 0.010 3000 2.1 7 0 522 400 -122 32.3 48.3 實施例
1-10 90 1 2 2 5 5 0.010 3000 2.1 7 0 1000 780 -220 29.1 48.4 實施例
1-11 95 0 1 1 2 3 0.010 3000 2.1 7 0 1200 900 -300 27.7 48.1 實施例
1-12 95 0 2 2 4 1 0.010 3000 2.1 7 0 1271 1000 -271 27.2 48.2 實施例
1-13 56 2 2 10 14 30 0.010 3000 2.1 7 0 452 300 -152 32.7 49.2 實施例
1-14 100 0 0 0 0 0 0.000 3000 2.1 4 0 449 0 -449 32.7 42.0 比較例
1-15 100 0 0 0 0 0 0.000 3000 2.1 7 0 2005 1000 -1005 21.4 39.3 比較例
1-16 100 0 0 0 0 0 0.010 3000 2.1 4 0 475 100 -375 32.5 34.5 比較例
1-17 100 0 0 0 0 0 0.010 3000 2.1 7 0 2800 1400 -1400 14.1 31.9 比較例
1-18 10 32 7 11 50 45 0.000 3000 2.1 7 0 183 -150 -333 34.2 51.4 比較例
1-19 20 30 2 3 35 45 0.000 3000 2.1 7 0 245 0 -245 33.9 51.0 比較例
1-20 50 10 5 5 20 30 0.000 3000 2.1 7 0 456 140 -316 32.7 47.0 比較例
1-21 70 10 5 5 20 10 0.000 3000 2.1 7 0 1250 250 -1000 27.4 40.8 比較例
1-22 50 10 5 5 20 30 0.000 3000 2.1 7 0 493 170 -323 32.4 47.1 比較例
「實驗例A-2」 在實驗No.1-5中,進一步使用ZrO2 原料,或者調整SrO的量,使熟料中的SrO量和ZrO2 量如下述表2所示般變化,除此之外,進行了與實驗例1相同的實驗。結果如表2所示。 (試驗方法) 流動試驗:按照JIS R 5201-2015「水泥的物理試驗方法」混煉砂漿,測定剛混煉完成後的15點流動值(15-point flow value)。溫度、濕度、砂漿的調配與壓縮強度試驗相同。在試驗中使用了標準砂。
[表2] 表2
實驗No. 水泥摻和料 膨脹材料添加率(份) 評價 備考
礦物組成(份) 化學組成 布萊恩比表面積 cm2 /g A/B 流動試驗(mm) 長度變化率(μ) 壓縮強度(N/mm2
游離石灰 水硬性化合物 CaSO4 SrO ZrO2 0分鐘 60分鐘 0d 7d 28d 28d與7d的差 7d 28d
硫鋁酸鈣 C4 AF C2 S 合計
1-6 50 10 5 5 20 30 0.010 0.0000 3000 2.1 7 180 160 0 452 300 -152 32.7 49.4 實施例
2-1 50 10 5 5 20 30 0.001 0.0001 3000 2.1 7 185 175 0 450 310 -140 32.1 50.1 實施例
2-2 50 10 5 5 20 30 0.010 0.0001 3000 2.1 7 190 185 0 453 335 -118 33.0 50.9 實施例
2-3 50 10 5 5 20 30 0.010 0.0500 3000 2.1 7 200 200 0 455 340 -115 32.4 51.2 實施例
「實驗例B-1」 將CaO原料、Al2 O3 原料、Fe2 O3 原料、SiO2 原料、以及SrO原料以成為表1所示的礦物比例、作為化學成分的比例的方式進行調配,於混合粉碎後在1,350℃下煆燒,合成熟料,使用球磨機粉碎為以布萊恩比表面積計為3,500 cm2 /g,製作水泥摻和料。 使用該水泥摻和料,在包含水泥與水泥摻和料的水泥組成物100質量份中,使用水泥摻和料4質量份或7質量份,在20℃的室內製備水/水泥組成物比=50質量%、水泥組成物/砂比=1/3(質量比)的砂漿,進行長度變化率與壓縮強度的測定。 另外,對於水泥摻和料,求出100 μm以下的粒子的含有率A與10 μm以下的粒子的含有率B的比率(A/B)。
(使用材料) CaO原料:石灰石 Al2 O3 原料:鋁土礦 Fe2 O3 原料:氧化鐵 SiO2 原料:矽石 CaSO4 原料:天然無水石膏 SrO原料:碳鍶石 ZrO2 原料:鋯砂 砂:JIS標準砂 水泥:普通波特蘭水泥、市售品
(試驗方法) 化學組成:根據螢光X射線求出。 100 μm以下的粒子的含有率A與10 μm以下的粒子的含有率B的比率(A/B):使用堀場(HORIBA)公司製造的雷射繞射/散射式粒度分佈測定裝置LA-920。利用超音波使水泥摻和料在乙醇中分散1分鐘,在試樣折射率1.770、分散介質折射率1.360的條件下測定體積基準的粒度分佈。根據所述粒度分佈求出100 μm以下的粒子的含有率A與10 μm以下的粒子的含有率B,計算出A/B。 礦物組成:基於化學組成與粉末X射線繞射的鑑定結果,藉由計算而求出。 長度變化率:按照JIS A 6202,對材齡7日(7d)、材齡28日(28d)分別進行測定 壓縮強度:按照JIS R 5201製作4 cm×4 cm×16 cm的試驗體,測定材齡7日(7d)及28日(28d)的壓縮強度。
[表3] 表3
實驗No. 水泥摻和料 膨脹材料添加率(份) 評價 備考
礦物組成(份) 化學組成 布萊恩比表面積 cm2 /g A/B 長度變化率(×10-6 壓縮強度(N/mm2
游離石灰 水硬性化合物 CaSO4 SrO 0d 7d 28d 28d與7d的差 7d 28d
硫鋁酸鈣 C3 A C2 S 合計
1-1 20 62 10 8 80 0 0.010 3,500 2.1 7 0 240 -10 -250 34.2 51.4 實施例
1-2 17 53 12 18 83 0 0.010 3,500 2.1 7 0 243 -10 -253 34.2 51.4 實施例
1-3 36 55 4 5 64 0 0.010 3,500 2.1 7 0 288 40 -248 33.9 51.0 實施例
1-4 57 29 7 7 43 0 0.010 3,500 2.1 7 0 479 340 -139 32.8 50.2 實施例
1-5 71 14 7 7 29 0 0.001 3,500 2.1 7 0 500 280 -220 32.7 49.2 實施例
1-6 71 14 7 7 29 0 0.010 3,500 2.1 7 0 501 345 -156 32.7 49.4 實施例
1-7 71 14 7 7 29 0 0.500 3,500 2.1 7 0 499 371 -128 32.8 49.3 實施例
1-8 63 6 0 31 38 0 0.010 3,500 2.1 7 0 460 390 -70 32.8 48.7 實施例
1-9 86 7 0 7 14 0 0.010 3,500 2.1 7 0 574 442 -132 32.3 48.3 實施例
1-10 95 1 2 2 5 0 0.010 3,500 2.1 7 0 1,040 820 -220 29.1 48.4 實施例
1-11 98 0 1 1 2 0 0.010 3,500 2.1 7 0 1,242 843 -399 27.7 48.1 實施例
1-12 90 0 5 5 10 0 0.010 3,500 2.1 7 0 1,400 1,045 -355 27.2 48.2 實施例
1-13 80 3 3 14 20 0 0.010 3,500 2.1 7 0 501 341 -160 32.7 49.2 實施例
1-14 100 0 0 0 0 0 0.000 3,500 2.1 4 0 500 40 -460 32.7 42.0 比較例
1-15 100 0 0 0 0 0 0.000 3,500 2.1 7 0 2,050 1,042 -1,008 21.4 39.3 比較例
1-16 100 0 0 0 0 0 0.010 3,500 2.1 4 0 510 141 -369 32.5 34.5 比較例
1-17 100 0 0 0 0 0 0.010 3,500 2.1 7 0 2,850 1,442 -1,408 14.1 31.9 比較例
1-18 10 32 7 11 50 45 0.000 3,500 2.1 7 0 220 -111 -333 34.2 51.4 比較例
1-19 20 30 2 3 35 45 0.000 3,500 2.1 7 0 300 41 -259 33.9 51.0 比較例
1-20 50 10 5 5 20 30 0.000 3,500 2.1 7 0 496 181 -315 32.7 47.0 比較例
1-21 70 10 5 5 20 10 0.000 3,500 2.1 7 0 1,300 291 -1,009 27.4 40.8 比較例
1-22 50 10 5 5 20 30 0.000 3,500 2.1 7 0 530 210 -320 32.4 47.1 比較例
「實驗例B-2」 在實驗No.1-12中,進一步使用ZrO2 原料,或者調整SrO的量,使熟料中的SrO量和ZrO2 量如下述表2所示般變化,除此之外,進行了與實驗例1相同的實驗。另外,如下所述進行流動試驗。結果如表2所示。
(試驗方法) 流動試驗:按照JIS R 5201-2015「水泥的物理試驗方法」混煉砂漿,測定剛混煉完成後(0分鐘)和混煉完成後60分鐘後的各15點流動值。溫度、濕度、砂漿的調配與壓縮強度試驗相同。在試驗中使用了標準砂。
[表4] 表4
實驗No. 水泥摻和料 膨脹材料添加率(份) 評價 備考
礦物組成(份) 化學組成 布萊恩比表面積 cm2 /g A/B 流動試驗(mm) 長度變化率(×10-6 壓縮強度(N/mm2
游離石灰 水硬性化合物 SrO ZrO2 0分鐘 60分鐘 7d 28d 28d與7d的差 7d 28d
硫鋁酸鈣 C3 A C2 S 合計
1-12 90 0 5 5 10 0.010 0.0000 3,500 2.1 7 180 160 1400 1045 -355 27.2 48.2 實施例
2-1 90 0 5 5 10 0.001 0.0001 3,500 2.1 7 185 175 1402 1066 -336 27.4 49.2 實施例
2-2 90 0 5 5 10 0.010 0.0001 3,500 2.1 7 190 185 1398 1090 -308 27.1 48.7 實施例
2-3 90 0 5 5 10 0.010 0.0500 3,500 2.1 7 200 200 1401 1101 -300 26.9 49.2 實施例
[產業上之可利用性]
藉由本發明的水泥摻和料,可在混凝土澆注後的材齡2日~7日對混凝土賦予大的膨脹與抑制乾燥收縮應變,不存在長期強度表現性的降低,因此可在土木、建築領域中廣泛地使用。

Claims (10)

  1. 一種水泥摻和料,含有游離石灰和水硬性化合物,且含有SrO作為化學成分,相對於水泥摻和料100質量份,所述游離石灰的含量為10質量份~95質量份,相對於水泥摻和料100質量份,所述SrO的含量為0.001質量份~5.0質量份。
  2. 如申請專利範圍第1項所述的水泥摻和料,進一步含有無水石膏。
  3. 如申請專利範圍第1項或第2項所述的水泥摻和料,進一步含有ZrO2作為化學成分。
  4. 如申請專利範圍第3項所述的水泥摻和料,其中相對於水泥摻和料100質量份,所述ZrO2的含量為0.0001質量份~5.0質量份。
  5. 如申請專利範圍第1項或第2項所述的水泥摻和料,其中布萊恩比表面積為2,000cm2/g~6,000cm2/g。
  6. 如申請專利範圍第1項或第2項所述的水泥摻和料,其中以體積基準計,10μm以下的粒子的含有率為30體積%~60體積%,且100μm以下的粒子的含有率A與10μm以下的粒子的含有率B的比率,即A/B為1.5~4.0。
  7. 如申請專利範圍第1項或第2項所述的水泥摻和料,含有選自由3CaO.Al2O3、3CaO.3Al2O3.CaSO4、3CaO.SiO2、 2CaO.SiO2、4CaO.Al2O3.Fe2O3、6CaO.2Al2O3.Fe2O3、6CaO.Al2O3.Fe2O3和2CaO.Fe2O3所組成的群組中的一種或兩種以上作為所述水硬性化合物。
  8. 如申請專利範圍第7項所述的水泥摻和料,含有3CaO.Al2O3作為所述水硬性化合物。
  9. 一種膨脹材料,包含如申請專利範圍第1項至第8項中任一項所述的水泥摻和料。
  10. 一種水泥組成物,含有如申請專利範圍第1項至第8項中任一項所述的水泥摻和料而成。
TW108141300A 2018-11-15 2019-11-14 水泥摻和料、膨脹材料和水泥組成物 TWI815994B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-214450 2018-11-15
JP2018214450A JP6568291B1 (ja) 2018-11-15 2018-11-15 セメント混和材、膨張材、及びセメント組成物
JP2019-132910 2019-07-18
JP2019132910A JP6641057B1 (ja) 2019-07-18 2019-07-18 セメント混和材、膨張材、及びセメント組成物

Publications (2)

Publication Number Publication Date
TW202030167A TW202030167A (zh) 2020-08-16
TWI815994B true TWI815994B (zh) 2023-09-21

Family

ID=70730709

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108141300A TWI815994B (zh) 2018-11-15 2019-11-14 水泥摻和料、膨脹材料和水泥組成物

Country Status (6)

Country Link
EP (1) EP3875444B1 (zh)
CN (1) CN113272265A (zh)
ES (1) ES2941780T3 (zh)
SG (1) SG11202104843XA (zh)
TW (1) TWI815994B (zh)
WO (1) WO2020100925A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7085050B1 (ja) 2021-09-29 2022-06-15 デンカ株式会社 セメント混和材、急硬モルタルコンクリート材料、急硬モルタルコンクリート組成物、及び硬化体
JPWO2023171770A1 (zh) * 2022-03-10 2023-09-14
WO2023234041A1 (ja) * 2022-06-03 2023-12-07 デンカ株式会社 セメント材料、セメント組成物、及び硬化体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114877A1 (ja) * 2007-03-16 2008-09-25 Denki Kagaku Kogyo Kabushiki Kaisha 低放射化水硬性組成物、低放射化セメント、及びそれらの製造方法
TW201107266A (en) * 2009-06-12 2011-03-01 Denki Kagaku Kogyo Kk Expansive admixture and method for producing same
JP2011084413A (ja) * 2009-10-13 2011-04-28 Taiheiyo Cement Corp セメント添加材及びセメント組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1344947A (fr) * 1962-09-03 1963-12-06 Procédé de traitement de matériaux cellulosiques, et nouveaux produits en résultant, notamment des bétons
US3303037A (en) * 1966-05-12 1967-02-07 Chem Prestressed Concrete Expansive cements and components thereof
US3884710A (en) * 1972-10-27 1975-05-20 Gen Portland Inc Expansive cement
GB2004529B (en) 1977-09-19 1982-04-21 Raychem Corp Expansive cement compositions
JPS57205363A (en) 1981-06-15 1982-12-16 Nippon Carbide Kogyo Kk Antislaking calcia clinker
JP4244261B2 (ja) 2000-05-02 2009-03-25 電気化学工業株式会社 セメント混和材及びセメント組成物
JP4937468B2 (ja) 2001-06-26 2012-05-23 電気化学工業株式会社 セメント混和剤及びセメント組成物
US7544640B2 (en) * 2002-12-10 2009-06-09 Halliburton Energy Services, Inc. Zeolite-containing treating fluid
JP4101162B2 (ja) * 2003-12-05 2008-06-18 電気化学工業株式会社 アルミナセメント、アルミナセメント組成物及びそれを用いた不定形耐火物
JP2010222171A (ja) * 2009-03-23 2010-10-07 Taiheiyo Cement Corp セメントクリンカ、その製造方法および水硬性セメント
JP5751504B1 (ja) * 2014-03-26 2015-07-22 住友大阪セメント株式会社 セメントクリンカ及びセメント組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114877A1 (ja) * 2007-03-16 2008-09-25 Denki Kagaku Kogyo Kabushiki Kaisha 低放射化水硬性組成物、低放射化セメント、及びそれらの製造方法
TW201107266A (en) * 2009-06-12 2011-03-01 Denki Kagaku Kogyo Kk Expansive admixture and method for producing same
JP2011084413A (ja) * 2009-10-13 2011-04-28 Taiheiyo Cement Corp セメント添加材及びセメント組成物

Also Published As

Publication number Publication date
WO2020100925A1 (ja) 2020-05-22
EP3875444B1 (en) 2023-03-08
SG11202104843XA (en) 2021-06-29
CN113272265A (zh) 2021-08-17
EP3875444A4 (en) 2022-01-19
TW202030167A (zh) 2020-08-16
ES2941780T3 (es) 2023-05-25
EP3875444A1 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
TWI478891B (zh) Expandable material and its manufacturing method
TWI815994B (zh) 水泥摻和料、膨脹材料和水泥組成物
JP6568291B1 (ja) セメント混和材、膨張材、及びセメント組成物
TWI545100B (zh) Cement mix and cement composition
CN103874671A (zh) 快速脱模剂以及混凝土制品的制造方法
JP2007126294A (ja) 高硫酸塩スラグセメント・早強スラグセメントおよびこれらの製造方法
JP6234739B2 (ja) セメント硬化体の製造方法およびセメント硬化体
JP6641057B1 (ja) セメント混和材、膨張材、及びセメント組成物
JP5785429B2 (ja) セメント混和材およびセメント組成物
WO2021215509A1 (ja) セメント混和材、膨張材、及びセメント組成物
CN111247112A (zh) 基于富铝炉渣的粘结剂
JP2014185040A (ja) セメント組成物
JP7509867B2 (ja) セメント混和材、膨張材、及びセメント組成物
JP7181355B1 (ja) セメント混和材、セメント混和材の製造方法及びセメント組成物
JP4514319B2 (ja) セメント混和材及びセメント組成物
JP7260998B2 (ja) 膨張組成物、セメント組成物およびセメント・コンクリート
WO2022196633A1 (ja) セメント混和材、セメント組成物、及びコンクリート製品の製造方法
WO2023234041A1 (ja) セメント材料、セメント組成物、及び硬化体
JP6401951B2 (ja) セメント組成物、およびその製造方法
JP2015107900A (ja) セメント混和材およびセメント組成物それを用いたセメント硬化体
JP2020083732A (ja) セメント組成物
JP2012121774A (ja) セメント急硬材の製造方法及びセメント急硬材
JP2020083733A (ja) セメント組成物
JP2014185041A (ja) セメント組成物