WO2013054604A1 - 早期脱型材およびコンクリート製品の製造方法 - Google Patents

早期脱型材およびコンクリート製品の製造方法 Download PDF

Info

Publication number
WO2013054604A1
WO2013054604A1 PCT/JP2012/071898 JP2012071898W WO2013054604A1 WO 2013054604 A1 WO2013054604 A1 WO 2013054604A1 JP 2012071898 W JP2012071898 W JP 2012071898W WO 2013054604 A1 WO2013054604 A1 WO 2013054604A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
early
raw material
demolding
anhydrous gypsum
Prior art date
Application number
PCT/JP2012/071898
Other languages
English (en)
French (fr)
Inventor
樋口 隆行
ドゥック フーン グェン
茂 富岡
亮悦 吉野
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to CN201280050263.2A priority Critical patent/CN103874671B/zh
Priority to ES12840178.3T priority patent/ES2662106T3/es
Priority to EP12840178.3A priority patent/EP2767521B1/en
Priority to JP2013538472A priority patent/JP5923104B2/ja
Priority to NO12840178A priority patent/NO2767521T3/no
Publication of WO2013054604A1 publication Critical patent/WO2013054604A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • C04B7/323Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/16Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • C04B2103/14Hardening accelerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to an early demolding material for concrete products used in the field of civil engineering and architecture, and a method for producing concrete products.
  • Japanese Unexamined Patent Publication No. 2000-301531 Japanese Unexamined Patent Publication No. 2001-294460 Japanese Unexamined Patent Publication No. 2011-153068 Japanese Unexamined Patent Publication No. 2000-233959 Japan Special Table 2008-519752 gazette
  • An object of the present invention is to provide an early demolding material and a method for producing a concrete product that can enhance the development of initial strength even when mixed cement is used and suppress the generation of latency.
  • the gist of the present invention is as follows. (1) A heat treatment is performed on a mixture of a CaO raw material, a CaSO 4 raw material, and at least one raw material selected from the group consisting of an Al 2 O 3 raw material, an Fe 2 O 3 raw material, and an SiO 2 raw material. And contained in a ratio of 10 to 70 parts by weight of free lime, 10 to 50 parts by weight of hydraulic compound, and 10 to 60 parts by weight of anhydrous gypsum in a total of 100 parts by weight of free lime, hydraulic compound and anhydrous gypsum. An early demolding material containing a heat-treated product.
  • the early demolding material according to the above (1) having a Blaine specific surface area of 2500 to 9000 cm 2 / g.
  • the early demolding material according to the above (1) or (2) further comprising 40 parts by mass or less of particulate Portland cement in 100 parts by mass of the early demolding material.
  • the early demolding material according to any one of the above (1) to (5) further comprising fine lime and / or fine anhydrite.
  • the hydraulic compound is a mixture of 3CaO ⁇ 3Al 2 O 3 ⁇ CaSO 4 or 3CaO ⁇ 3Al 2 O 3 ⁇ CaSO 4 and 4CaO ⁇ Al 2 O 3 ⁇ Fe 2 O 3, and 2CaO ⁇ SiO 2
  • the early demolding material according to any one of (1) to (6) above.
  • the early demolding material according to any one of the above (1) to (7) is blended in an amount of 2 to 15 parts by mass in 100 parts by mass of a cement composition composed of cement and an early demolding material.
  • a method for producing a concrete product characterized in that a steam curing temperature until demolding is 70 ° C. or less, and a maturity from casting to demolding is 210 to 320 ° C. ⁇ hr.
  • the early demolding material of the present invention Due to the early demolding material of the present invention, it is possible to achieve a surface finish and steam curing early compared to the prior art, and it is possible to ensure a predetermined compressive strength even if the curing period is short, even in the case of using mixed cement in a short time. Compressive strength develops, enabling early demolding of the concrete, and also has an effect of suppressing latency formed on the surface of the concrete product and an effect of suppressing shrinkage strain that causes cracking.
  • Part and “%” used in the present invention are based on mass unless otherwise specified.
  • the concrete referred to in the present invention is a general term for cement paste, cement mortar, and cement concrete.
  • the heat-treated product of the present invention is a mixture of a CaO raw material, a CaSO 4 raw material, and at least one raw material selected from the group consisting of an Al 2 O 3 raw material, an Fe 2 O 3 raw material, and a SiO 2 raw material.
  • the product is obtained by heat treatment in the atmosphere.
  • the free lime referred to in the present invention is usually called f-CaO.
  • the hydraulic compound referred to in the present invention is yelimeite (also referred to as Auin) represented by 3CaO.3Al 2 O 3 .CaSO 4 , 3CaO.SiO 2 (abbreviated as C 3 S) and 2CaO.SiO 2 (C calcium silicate represented by 2 S abbreviated), 4CaO ⁇ Al 2 O 3 ⁇ Fe 2 O 3 (C 4 AF for short) and 6CaO ⁇ 2Al 2 O 3 ⁇ Fe 2 O 3 (C 6 a 2 F abbreviated ) And 6CaO.Al 2 O 3 .Fe 2 O 3 (abbreviated as C 6 AF), or calcium ferrite such as 2CaO ⁇ Fe 2 O 3 (abbreviated as C 2 F), and these It is preferable that 1 type or 2 types or more are included.
  • the hydraulic compound is preferably at least one selected from the group consisting of 3CaO ⁇ 3Al 2 O 3 ⁇ CaSO 4, 4CaO ⁇ Al 2 O 3 ⁇ Fe 2 O 3, and 2CaO ⁇ SiO 2, 3CaO ⁇ 3Al 2 O 3 ⁇ CaSO 4 , or a mixture of 3CaO ⁇ 3Al 2 O 3 ⁇ CaSO 4 and 4CaO ⁇ Al 2 O 3 ⁇ Fe 2 O 3 and 2CaO ⁇ SiO 2 is more preferred, and 3CaO ⁇ 3Al 2 O 3 ⁇ CaSO 4 is particularly preferred.
  • the anhydrous gypsum referred to in the present invention is represented as CaSO 4 .
  • Examples of the CaO raw material include limestone and slaked lime.
  • Examples of the Al 2 O 3 raw material include bauxite and aluminum residual ash.
  • Examples of the Fe 2 O 3 raw material include copper calami and commercially available iron oxide.
  • Examples of the SiO 2 raw material include silica.
  • Examples of the CaSO 4 raw material include dihydrate gypsum, hemihydrate gypsum, and anhydrous gypsum. These raw materials may contain impurities, but are not particularly problematic as long as the effects of the present invention are not impaired.
  • Examples of impurities include MgO, TiO 2 , ZrO 2 , MnO, P 2 O 5 , Na 2 O, K 2 O, Li 2 O, sulfur, fluorine, and chlorine.
  • a mixture of a CaO raw material, a CaSO 4 raw material, and at least one raw material selected from the group consisting of an Al 2 O 3 raw material, an Fe 2 O 3 raw material, and an SiO 2 raw material is heat-treated.
  • the method is not particularly limited. For example, it is preferably fired at a temperature of 1000 to 1600 ° C. using an electric furnace or kiln, and more preferably 1200 to 1500 ° C. If the temperature is lower than 1000 ° C, it may be difficult to ensure the fluidity of the concrete immediately after mixing, or the initial strength may not be sufficiently developed. If the temperature exceeds 1600 ° C, anhydrous gypsum may decompose or the initial strength may not be sufficiently developed. It may be enough.
  • the heat treatment time depends on the temperature, the holding time at the maximum temperature is preferably 0 to 2.0 hours, more preferably 0.25 to 1.75 hours.
  • the content of each component in the obtained heat-treated product is preferably in the following range.
  • the content of free lime is 10 to 70 parts, preferably 20 to 60 parts, out of a total of 100 parts of free lime, hydraulic compound and anhydrous gypsum.
  • the content of the hydraulic compound is 10 to 50 parts, preferably 20 to 30 parts, out of a total of 100 parts of free lime, hydraulic compound and anhydrous gypsum.
  • the content of anhydrous gypsum is 10 to 60 parts, preferably 20 to 50 parts, in a total of 100 parts of free lime, hydraulic compound and anhydrous gypsum.
  • the content of calcium carbonate is preferably 0.1 to 10 parts, more preferably 1 to 5 parts, out of a total of 100 parts of free lime, hydraulic compound and anhydrous gypsum. Outside the above range, there may be little improvement in the slump immediately after kneading or the strength development may be reduced.
  • each of the above components can be confirmed by a conventional analysis method.
  • the pulverized sample can be applied to a powder X-ray diffractometer to confirm the generated minerals and analyze the data by the Rietveld method to quantify each component.
  • the amount of each component can also be obtained by calculation based on the identification result of the chemical component and powder X-ray diffraction.
  • the content of calcium carbonate can be quantified from a change in weight accompanying the decarboxylation of calcium carbonate by a differential thermal balance (TG-DTA), differential thermal calorimetry (DSC), or the like.
  • Fineness of early demolding material of the present invention is preferably 2500 ⁇ 9000cm 2 / g in Blaine specific surface area, more preferably 3500 ⁇ 9000cm 2 / g. If it is less than 2500 cm ⁇ 2 > / g, the initial strength may be insufficiently increased, or it may be expanded after a long period of time to decrease the strength. Moreover, when it exceeds 9000 cm ⁇ 2 > / g, the fluidity
  • a CaO raw material, an Al 2 O 3 raw material, and at least one raw material selected from the group consisting of an Al 2 O 3 raw material, an Fe 2 O 3 raw material, and a SiO 2 raw material When the mixture is heat-treated, and the heat-treated product containing free lime, hydraulic compound and anhydrous gypsum is mixed with fine-grain Portland cement and / or fine-grain quicklime and / or fine-grained anhydrous gypsum, the initial strength is exhibited. This is preferable because of improved properties.
  • the fine particle Portland cement preferably has an average particle size of 6 ⁇ m or less, and more preferably 0.1 ⁇ m or more.
  • the average particle size can be measured with a laser diffraction particle size distribution meter.
  • the fine-portion Portland cement those obtained by pulverizing and classifying various Portland cements such as normal, early strength, super early strength, low heat, and moderate heat can be used.
  • the proportion of the fine particle Portland cement is not particularly limited, but usually 40 parts or less is preferable in the total 100 parts of free lime, hydraulic compound, anhydrous gypsum and fine particle Portland cement, and more preferably 10 to 30 parts. If it exceeds 40 parts, the initial strength may be lowered.
  • Fine particulate quicklime can be used by pulverizing limestone or slaked lime to obtain quicklime, and the average particle size is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and usually 0.1 ⁇ m or more. Is preferred.
  • the fine anhydrous gypsum natural anhydrous gypsum, dihydrate gypsum, hemihydrate gypsum and the like can be used by pulverization, and the average particle diameter is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and usually 0. 1 ⁇ m or more is preferable.
  • the proportion of the fine calcium oxide and / or fine anhydrous gypsum is not particularly limited, but usually 60 parts or less is preferable in the total 100 parts of the heat-treated product and the fine calcium oxide and / or fine anhydrous gypsum. If the amount exceeds 60 parts, the fluidity of the concrete may decrease and it may be difficult to fill the formwork, or the initial strength may decrease. Further, the proportion of the fine lime and / or fine anhydrous gypsum is preferably 10 parts or more in a total of 100 parts of the heat-treated product and the fine lime and / or fine anhydrous gypsum. In the present invention, the average particle size of the fine particle Portland cement, fine particle quicklime and fine particle anhydrous gypsum is measured using a laser diffraction particle size distribution meter and dispersed using an ultrasonic device.
  • a CaO raw material, a CaSO 4 raw material, and at least one raw material selected from the group consisting of an Al 2 O 3 raw material, an Fe 2 O 3 raw material, and a SiO 2 raw material are mixed.
  • the initial strength is improved by adding glycerin to heat-treated products obtained by heat-treating them, or those obtained by adding fine-grain Portland cement and / or fine-grain quicklime and / or fine-grained anhydrous gypsum to the heat-treated products.
  • glycerin to heat-treated products obtained by heat-treating them, or those obtained by adding fine-grain Portland cement and / or fine-grain quicklime and / or fine-grained anhydrous gypsum to the heat-treated products.
  • Glycerin used in the present invention is a compound represented by the chemical formula C 3 H 8 O 3 , chemical name 1,2,3-propanetriol or glycerol.
  • the ratio of glycerin to be added to the heat-treated product is not particularly limited, but it is preferably 0 in a total of 100 parts of the heat-treated product or the heat-treated product with fine quicklime and / or fine anhydrous gypsum and glycerin. 1 to 10 parts, more preferably 1 to 5 parts. If it is less than 0.1 part, the initial strength enhancement effect and the improvement of the latency may not be obtained, and if it exceeds 10 parts, the fluidity of the concrete may be deteriorated.
  • glycerin is added to a heat-treated product or a mixture of fine-ported Portland cement and / or fine-particle quicklime and / or fine-particle anhydrous gypsum, and then pulverized simultaneously to adhere to the surface of the pulverized product. From the viewpoint of sex.
  • the amount of the early demolding material of the present invention is not particularly limited because it varies depending on the blending of concrete, but it is 2 to 15 parts in 100 parts of a cement composition comprising cement and early demolding material. 12 parts are preferred. Within the above range, an effect of increasing the compressive strength may be obtained.
  • the cement used in the present invention is usually at least one selected from the group consisting of various Portland cements such as early strength, ultrahigh strength, low heat, and moderate heat, and slag, fly ash, and silica.
  • various Portland cements such as early strength, ultrahigh strength, low heat, and moderate heat
  • slag, fly ash, and silica examples include various mixed cements mixed with seeds, and filler cement mixed with limestone powder.
  • the use of mixed cement is preferable because the environmental load is small and the strength enhancement effect is high when the early demolding material of the present invention is used.
  • the curing conditions from concrete placement to demolding are preferably as follows.
  • the steam curing temperature from casting of concrete to demolding is 70 ° C. or lower, and preferably 60 ° C. or lower. When it is cured at a temperature exceeding 70 ° C., the concrete may be cracked. In general, the steam curing temperature is preferably 40 ° C. or higher.
  • the compression strength may not be sufficiently developed and may not be removed from the mold. If the maturity exceeds 320 ° C. ⁇ hr, the time required for production may be too long, which may be uneconomical. .
  • the maturity from casting to demolding is more preferably 230 to 300 ° C.hr.
  • water reducing agent in addition to sand and gravel, water reducing agent, high performance water reducing agent, AE water reducing agent, high performance AE water reducing agent, fluidizing agent, antifoaming agent, thickener, rust preventive agent, antifreeze agent, shrinkage reducing agent , Polymer emulsions, setting modifiers, cement hardeners, clay minerals such as bentonite, ion exchangers such as zeolite, siliceous fine powder, calcium carbonate, calcium hydroxide, gypsum, calcium silicate, steel fibers, etc.
  • the organic material include fibrous substances such as vinylon fiber, acrylic fiber, and carbon fiber.
  • Example 1 A CaO raw material, a CaSO 4 raw material, and at least one selected from the group consisting of an Al 2 O 3 raw material, an Fe 2 O 3 raw material, and a SiO 2 raw material, which are described in “Usage materials” described below, were mixed. .
  • the obtained mixture was heat-treated in the atmosphere at 1350 ° C. for 0.5 hours using an electric furnace, and the obtained heat-treated product was pulverized with a ball mill to prepare early mold release materials (A to H).
  • the early mold release material (I) which added the fine particle normal Portland cement to the ground product of the heat-treated product was prepared.
  • an early demolding material (at) was prepared by adding glycerin to a heat-treated product or a mixture of the heat-treated product, fine lime and fine gypsum and pulverizing with a ball mill.
  • early release materials and expansion materials for commercial products A to C early mold release material (J) in which fine particle ordinary Portland cement is added to commercial product B, and glycerin added to commercial product A What added only glycerin was used as a comparative example.
  • the composition and content of each component in the heat-treated product were determined by powder X-ray diffraction and elemental analysis.
  • CaO raw material Calcium carbonate (fine limestone powder), 100 mesh, commercially available Al 2 O 3 raw material: bauxite, 90 ⁇ m sieve passage rate 100%, commercially available Fe 2 O 3 raw material: iron oxide powder, Blaine specific surface area 3000 cm 2 / g , Commercially available SiO 2 raw material: silica powder, brane specific surface area 3000 cm 2 / g, commercially available CaSO 4 raw material: dihydrate gypsum, brane specific surface area 5000 cm 2 / g, commercially available cement: ordinary Portland cement, commercial product, density 3 .16 g / cm 3 Fine particle ordinary Portland cement: average particle diameter 3 ⁇ m, density 3.16 g / cm 3 Fine particle quicklime (1): CaO content 97%, average particle size 10 ⁇ m, commercial fine particle anhydrous gypsum (1): natural anhydrous gypsum, average particle size 8 ⁇ m, commercial fine particle quicklime (2): CaO content 97%, average Particle size
  • Early mold release material A 21 parts of free lime, 32 parts of Yelimite, 47 parts of anhydrous gypsum, density 2.90 g / cm 3 , Blaine specific surface area 3500 cm 2 / g.
  • Early mold release material B A product obtained by pulverizing the early mold release material A to a brain specific surface area of 6000 cm 2 / g.
  • Early mold release material C A material obtained by pulverizing the early mold release material A to a brain specific surface area of 9000 cm 2 / g.
  • Early demolding material D 32 parts of free lime, 21 parts of Yelimite, 5 parts of C 4 AF, 5 parts of C 2 S, 37 parts of anhydrous gypsum, density 2.98 g / cm 3 , brain specific surface area 3500 cm 2 / g.
  • Early mold release material E 50 parts of free lime, 10 parts of Yelite, 5 parts of C 4 AF, 5 parts of C 2 S, 30 parts of anhydrous gypsum, density of 3.05 g / cm 3 , and Blaine specific surface area of 3500 cm 2 / g.
  • Early demolding material F Early demolding material A is placed in an alumina crucible and set in an electric furnace, and carbon dioxide is flowed at 0.05 L (liter) / min per liter of the internal volume of the electric furnace, while heating temperature is 600 ° C., 30 Synthesized by minute reaction. 20 parts of free lime, 32 parts of Yelimite, anhydrous gypsum 47, 1 part of calcium carbonate, density 2.90 g / cm 3 , Blaine specific surface area 6000 cm 2 / g.
  • Early mold release material G 70 parts of free lime, 20 parts of Yelimite, 10 parts of anhydrous gypsum, a density of 3.20 g / cm 3 , and a brain specific surface area of 3500 cm 2 / g.
  • Early mold release material H 10 parts of free lime, 50 parts of Yelimite, 40 parts of anhydrous gypsum, density 2.85 g / cm 3 , Blaine specific surface area 3500 cm 2 / g.
  • Early demolding material I 80 parts of early demolding material A was blended with 20 parts of fine ordinary Portland cement with an average particle size of 3 ⁇ m, density 2.95 g / cm 3 , and Blaine specific surface area 4400 cm 2 / g.
  • Early demolding material J 80 parts of commercial product B with 20 parts of fine ordinary Portland cement with an average particle size of 3 ⁇ m, density 2.95 g / cm 3 , Blaine specific surface area 4400 cm 2 / g.
  • Early demolding material a 97 parts of heat-treated product composed of 21 parts of free lime, 32 parts of Yelimite and 47 parts of anhydrous gypsum and 3 parts of glycerin were mixed and pulverized to prepare a brain specific surface area of 3500 cm 2 / g.
  • Early mold release material b 97 parts of the heat-treated product used in the early mold release material A and 3 parts of glycerin were mixed and pulverized to prepare a brain specific surface area of 6000 cm 2 / g.
  • Early mold release material c 97 parts of the heat-treated product used in the early mold release material A and 3 parts of glycerin were mixed and pulverized to prepare a brain specific surface area of 9000 cm 2 / g.
  • Early demolding material d 97 parts of heat-treated product composed of 30 parts of free lime, 20 parts of Yelimite, 5 parts of C 4 AF, 5 parts of C 2 S, 40 parts of anhydrous gypsum and 3 parts of glycerin are mixed and ground to a Blaine specific surface area of 3500 cm 2 / g Prepared.
  • Early demolding material e Mix and grind 97 parts of heat-treated product consisting of 50 parts of free lime, 10 parts of Yelimite, 5 parts of C 4 AF, 5 parts of C 2 S, 30 parts of anhydrous gypsum and 3 parts of glycerin, to a Blaine specific surface area of 3500 cm 2 / g Prepared.
  • Early demolding material f 97 parts of calcined product composed of 30 parts of free lime, 10 parts of Yelimite and 60 parts of anhydrous gypsum and 3 parts of glycerin were mixed and pulverized to prepare a brain specific surface area of 4000 cm 2 / g.
  • Early demolding material g 97 parts of heat-treated product composed of 70 parts of free lime, 20 parts of Yelimite and 10 parts of anhydrous gypsum (Blaine specific surface area 3500 cm 2 / g) and 3 parts of glycerin were mixed and pulverized to prepare a Blaine specific surface area of 3500 cm 2 / g. What you did.
  • Early demolding material h 97 parts of heat-treated product consisting of 10 parts of free lime, 50 parts of Yelimite and 40 parts of anhydrous gypsum and 3 parts of glycerin were mixed and pulverized to prepare a brain specific surface area of 3500 cm 2 / g.
  • Early demolding material i prepared by pulverizing a heat-treated product composed of 21 parts of free lime, 32 parts of Yelimite and 47 parts of anhydrous gypsum to a Blaine specific surface area of 3500 cm 2 / g, and mixing 97 parts of pulverized product and 3 parts of glycerin.
  • Early demolding material j 70 parts heat-treated product composed of 21 parts free lime, 32 parts Yelimite, 47 parts anhydrous gypsum, 13.5 parts fine particulate quicklime (1), 13.5 parts fine particulate anhydrous gypsum (1), glycerin 3 Part was mixed and pulverized to prepare a brain specific surface area of 6000 cm 2 / g.
  • Early demolding material k 50 parts of heat-treated product composed of 21 parts of free lime, 32 parts of Yelimeite, 47 parts of anhydrous gypsum, 23.5 parts of fine particle quick lime (1), 23.5 parts of fine particle anhydrous gypsum (1), glycerin 3 Part was mixed and pulverized to prepare a brain specific surface area of 6000 cm 2 / g.
  • Early demolding material l 40 parts heat-treated product composed of 21 parts free lime, 32 parts Yelimeite, 47 parts anhydrous gypsum, 28.5 parts fine particulate lime (1), 28.5 parts fine particulate anhydrous gypsum (1), glycerin 3 Part was mixed and pulverized to prepare a brain specific surface area of 6000 cm 2 / g.
  • Early demolding material m 30 parts heat-treated product consisting of 21 parts free lime, 32 parts Yelimite, 47 parts anhydrous gypsum, 33.5 parts fine particulate quicklime (1), 33.5 parts fine particulate anhydrous gypsum (1), glycerin 3 Part was mixed and pulverized to prepare a brain specific surface area of 6000 cm 2 / g.
  • Early mold release material n 48.5 parts fine particle quick lime (1), 48.5 parts fine particle anhydrous gypsum (1) and 3 parts glycerin were mixed and pulverized to prepare a brain specific surface area of 5000 cm 2 / g.
  • Early demolding material o 50 parts heat-treated product composed of 21 parts free lime, 32 parts Yelimite, 47 parts anhydrous gypsum, 47 parts fine particulate lime (1) and 3 parts glycerin to a Blaine specific surface area of 6000 cm 2 / g Prepared.
  • Early mold release material p 50 parts of a heat-treated product composed of 21 parts of free lime, 32 parts of Yelimite and 47 parts of anhydrous gypsum, 47 parts of fine anhydrous gypsum (1), and 3 parts of glycerin are mixed and pulverized, and a brain specific surface area of 6000 cm 2 / g Prepared to.
  • Early demolding material q 50 parts heat-treated product composed of 21 parts free lime, 32 parts Yelimite, 47 parts anhydrous gypsum, 23.5 parts fine particulate quicklime (2), 23.5 parts fine particulate anhydrous gypsum (2), glycerin 3 Part was mixed and pulverized to prepare a brain specific surface area of 6000 cm 2 / g.
  • Early demolding material r 99.9 parts of heat-treated product composed of 21 parts of free lime, 32 parts of Yelimite and 47 parts of anhydrous gypsum and 0.1 part of glycerin were mixed and pulverized to prepare a Blaine specific surface area of 3500 cm 2 / g.
  • Early demolding material s 99 parts of heat-treated product composed of 21 parts of free lime, 32 parts of Yelimite and 47 parts of anhydrous gypsum and 1 part of glycerin were mixed and pulverized to prepare a brain specific surface area of 3500 cm 2 / g.
  • Early demolding material t 90 parts of heat-treated product composed of 21 parts of free lime, 32 parts of Yelimite and 47 parts of anhydrous gypsum and 10 parts of glycerin were mixed and pulverized to prepare a brain specific surface area of 3500 cm 2 / g.
  • Commercial product A Commercially available early demolding material containing 50 parts of quicklime, 20 parts of calcium silicate, and 30 parts of anhydrous gypsum. Blaine specific surface area 4500 cm 2 / g. Anhydrite is added later to the clinker.
  • Commercial product B ettringite-based expansion material, density 2.95 g / cm 3 , brain specific surface area 2800 cm 2 / g.
  • Commercial product C ettringite / lime composite expanded material, density 3.08 g / cm 3 , brain specific surface area 2800 cm 2 / g.
  • the specimen was placed in 20 ° C. water to stabilize the temperature, and the base length was measured at a material age of 1 day. Furthermore, it hardened
  • Example 2 Using the early mold release material A, early mold release material B, early mold release material a, early mold release material b, or early mold release material k, a part of the cement is replaced by the amount of blast furnace slag and / or fly ash shown in Table 2. The experiment was performed in the same manner as in Experimental Example 1 except that The results are shown in Table 2. In addition, what mixed glycerol with the commercial item A or the commercial item A was also evaluated.
  • Fly ash Tohoku fly ash type II, Blaine specific surface area 4000 cm 2 / g, density 2.23 g / cm 3
  • Slag Blast furnace slag, manufactured by Sumikin Mining Co., Ltd., Smitment, Blaine specific surface area 4000 cm 2 / g, density 2.91 g / cm 3
  • Example 3 Except for using early demolding material A or early demolding material a, replacing slag with 100 kg / m 3 and fly ash with 50 kg / m 3 cement, and changing steam curing conditions and maturity as shown in Table 3 The same operation as in Example 2 was performed. The results are shown in Table 3.
  • Example 4 Steam curing conditions were 20 minutes at 20 ° C., 40 minutes preheating, 30 minutes warming, 3 hours at 50 ° C., 30 minutes cooling, and 100 parts of cement composition consisting of cement and early demolding material The experiment was performed in the same manner as in Experimental Example 3 except that the amount used was changed as shown in Table 4. The results are shown in Table 4.
  • the early demolding material of the present invention is useful for the production of concrete products, and the production method using the early demolding material of the present invention can be used as a method for increasing the productivity of concrete products with a small environmental load. It should be noted that Japanese Patent Application No. 2011-226165 filed on October 13, 2011 and Japanese Patent Application No. 2011-289924 filed on December 28, 2011, claims, and abstracts The entire contents are hereby incorporated by reference as the disclosure of the specification of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

 混合セメントを使用しても初期強度の発現を増進させる早期脱型材およびコンクリート製品の製造方法を提供する。 CaO原料と、CaSO原料と、さらに、Al原料、Fe原料およびSiO原料からなる群から選ばれる少なくとも1種の原料とを混合したものを熱処理して得られ、かつ、遊離石灰、水硬性化合物および無水石膏の合計100質量部中、遊離石灰10~70質量部、水硬性化合物10~50質量部、無水石膏10~60質量部の割合で含有する熱処理物を含有してなる早期脱型材である。 また、上記に記載の早期脱型材を、セメントと早期脱型材からなるセメント組成物100質量部中、2~15質量部配合し、打設から脱型までの蒸気養生温度を70℃以下、および打設から脱型までのマチュリティを210~320℃・hrとすることを特徴とするコンクリート製品の製造方法である。

Description

早期脱型材およびコンクリート製品の製造方法
 本発明は、土木・建築分野で使用されるコンクリート製品用の早期脱型材、およびコンクリート製品の製造方法に関する。
 一般にコンクリート製品は、鋼製型枠にコンクリートを流し込み、前養生を行ったのち蒸気養生を行ってコンクリートの強度発現を促し、冷却後に脱型して製造される。鋼製型枠は非常に高価であるため、1つの型枠を1日に複数回使用することが望まれているが、コンクリートの脱型には所定の強度が必要なため限界がある。このため短い養生期間で高い圧縮強度を発現させる製造方法が検討されている(特許文献1)。
 また、早期脱型材としては、生石灰、無水石膏、アルカリ金属の硫酸塩を主体としたものや、グリセリン等の特定化合物とアルカリ金属硫酸塩を併用したものなどが知られている(特許文献2、特許文献3、特許文献4、特許文献5)。しかしながら、その性能は充分ではなかった。
日本特開2000-301531号公報 日本特開2001-294460号公報 日本特開2011-153068号公報 日本特開2000-233959号公報 日本特表2008-519752号公報
 近年、環境負荷を低減するため、セメントに高炉スラグやフライアッシュなどの混合材を配合した混合セメントが使用されるケースが増えている。セメントクリンカを削減することでCO排出量を抑えることを目的としている。
 しかしながら、これら混合セメントは初期強度の発現性に乏しく、コンクリート製品の製造においても初期強度の発現を増進させる早期脱型材および製造方法が望まれている。また、コンクリート製品の表面にレイタンス(laitance)と呼ばれる脆弱層が形成されやすいという問題があった。
 本発明の目的は、混合セメントを使用しても初期強度の発現を増進させ、かつレイタンスの生成を抑制する早期脱型材、およびコンクリート製品の製造方法を提供することにある。
 本発明は、以下の構成を要旨とするものである。
(1)CaO原料と、CaSO原料と、さらに、Al原料、Fe原料、およびSiO原料からなる群から選ばれる少なくとも1種の原料と、を混合したものを熱処理して得られ、かつ、遊離石灰、水硬性化合物および無水石膏の合計100質量部中、遊離石灰10~70質量部、水硬性化合物10~50質量部、無水石膏10~60質量部の割合で含有する熱処理物を含有してなる早期脱型材。
(2)2500~9000cm/gのブレーン比表面積を有する上記(1)の早期脱型材。
(3)さらに、早期脱型材100質量部中、微粒子ポルトランドセメントを40質量部以下含有してなる上記(1)または(2)の早期脱型材。
(4)前記微粒子ポルトランドセメントの平均粒径が6μm未満である上記(3)の早期脱型材。
(5)さらに、早期脱型材100質量部中、グリセリンを0.1~10質量部含有してなる上記(1)または(2)の早期脱型材。
(6)さらに、微粒子生石灰および/または微粒子無水石膏を含有してなる上記(1)~(5)のいずれか1項に記載の早期脱型材。
(7)前記水硬性化合物が、3CaO・3Al・CaSO、または3CaO・3Al・CaSOと4CaO・Al・Feと2CaO・SiOとの混合物である上記(1)~(6)のいずれか1項に記載の記載早期脱型材。
(8)上記(1)~(7)のいずれか1項に記載の早期脱型材を、セメントと早期脱型材からなるセメント組成物100質量部中、2~15質量部配合し、打設から脱型までの蒸気養生温度を70℃以下、および打設から脱型までのマチュリティを210~320℃・hrとすることを特徴とするコンクリート製品の製造方法。
(9)セメントとして、スラグおよび/またはフライアッシュを含む混合セメントを使用する上記(8)のコンクリート製品の製造方法。
(10)上記(8)または(9)に記載の製造方法で製造されたコンクリート製品。
 本発明の早期脱型材により、従来と比べ、凝結時間が短く早期に表面仕上げや蒸気養生可能で、養生期間が短くても所定の圧縮強度を確保でき、混合セメントを用いた場合でも短時間で圧縮強度が発現し、コンクリートの早期脱型が可能となり、さらに、コンクリート製品の表面に形成されるレイタンスを抑制する効果や、ひび割れの原因となる収縮ひずみを抑制する効果がある。
 本発明で使用される、「部」、「%」は、特に規定しない限り質量基準である。
 また、本発明で云うコンクリートとは、セメントペースト、セメントモルタル、およびセメントコンクリートを総称するものである。
 本発明の熱処理物とは、CaO原料と、CaSO原料と、さらに、Al原料、Fe原料およびSiO原料からなる群から選ばれる少なくとも1種の原料と、を混合したものを、大気中で熱処理して得られる。
 本発明で云う遊離石灰とは、通常f-CaOと呼ばれるものである。
 本発明で云う水硬性化合物とは、3CaO・3Al・CaSOで表されるyeelimite(アウインとも称される)、3CaO・SiO(CSと略記)や2CaO・SiO(CSと略記)で表されるカルシウムシリケート、4CaO・Al・Fe(CAFと略記)や6CaO・2Al・Fe(CFと略記)や6CaO・Al・Fe(CAFと略記)で表されるカルシウムアルミノフェライト、または2CaO・Fe(CFと略記)などのカルシウムフェライトであり、これらのうちの1種又は2種以上を含むことが好ましい。
 なかでも、水硬性化合物としては、3CaO・3Al・CaSO、4CaO・Al・Fe、および2CaO・SiOからなる群から選ばれる少なくとも1種が好ましく、3CaO・3Al・CaSO、または3CaO・3Al・CaSOと4CaO・Al・Feと2CaO・SiOとの混合物がさらに好ましく、3CaO・3Al・CaSOが特に好ましい。
 本発明で云う無水石膏とは、CaSOとして表されるものである。
 CaO原料としては、石灰石や消石灰などが挙げられる。Al原料としては、ボーキサイトやアルミ残灰などが挙げられる。Fe原料としては銅カラミや市販の酸化鉄などが挙げられる。SiO原料としては珪石などが挙げられる。CaSO原料としては二水石膏、半水石膏および無水石膏などが挙げられる。
 これらの原料には不純物を含む場合があるが、本発明の効果を阻害しない範囲内では特に問題とはならない。不純物としては、MgO、TiO、ZrO、MnO、P、NaO、KO、LiO、硫黄、フッ素、塩素などが挙げられる。
 本発明において、CaO原料と、CaSO原料と、さらに、Al原料、Fe原料およびSiO原料からなる群から選ばれる少なくとも1種の原料と、を混合したものを熱処理する方法は、特に限定されるものではない。例えば、電気炉やキルンなどを用いて、1000~1600℃の温度で焼成することが好ましく、1200~1500℃がより好ましい。1000℃未満では、練り混ぜ直後のコンクリートの流動性の確保が難しい場合や初期強度の発現性が充分でない場合があり、1600℃を超えると無水石膏が分解する場合や初期強度の発現性が不十分になる場合がある。熱処理の時間は、その温度にもよるが、最高温度での保持時間は0~2.0時間が好ましく、0.25~1.75時間がより好ましい。
 得られる熱処理物における各成分の含有量は、以下の範囲であることが好ましい。遊離石灰の含有量は、遊離石灰、水硬性化合物および無水石膏の合計100部中、10~70部であり、20~60部が好ましい。水硬性化合物の含有量は、遊離石灰、水硬性化合物および無水石膏の合計100部中、10~50部であり、20~30部が好ましい。無水石膏の含有量は、遊離石灰、水硬性化合物および無水石膏の合計100部中、10~60部であり、20~50部が好ましい。
 また、早期脱型材を炭酸ガスで処理し、早期脱型材中に炭酸カルシウムを生成させることは練り混ぜ直後のスランプを確保する上で好ましい。炭酸カルシウムの含有量は、遊離石灰、水硬性化合物および無水石膏の合計100部中、0.1~10部であることが好ましく、1~5部がより好ましい。前記範囲外では、練り混ぜ直後のスランプ向上が少ない場合や強度発現性が低下する場合がある。
 上記各成分の含有量は、従来一般の分析方法で確認することができる。例えば、粉砕した試料を粉末X線回折装置にかけ、生成鉱物を確認するとともにデータをリートベルト法にて解析し、各成分を定量することができる。また、化学成分と粉末X線回折の同定結果に基づいて、各成分の量を計算によって求めることもできる。炭酸カルシウムの含有量は、示差熱天秤(TG-DTA)や示差熱熱量測定(DSC)などによって、炭酸カルシウムの脱炭酸に伴う重量変化から定量することができる。
 本発明の早期脱型材の粉末度は、ブレーン比表面積で2500~9000cm/gが好ましく、3500~9000cm/gがより好ましい。2500cm/g未満では、初期強度の増進が不十分の場合や長期に亘って後膨張して強度が低下する場合がある。また、9000cm/gを超えるとコンクリートの流動性が低下する場合がある。
 本発明の早期脱型材では、CaO原料と、Al原料と、さらに、Al原料、Fe原料およびSiO原料からなる群から選ばれる少なくとも1種の原料と、を混合したものを熱処理して得られた、遊離石灰、水硬性化合物、無水石膏を含む熱処理物中に、微粒子ポルトランドセメント、および/または微粒子生石灰、および/または微粒子無水石膏を配合すると初期強度の発現性が向上するため好ましい。
 微粒子ポルトランドセメントとしては、平均粒子径6μm以下であるのが好ましく、0.1μm以上であるのが好ましい。平均粒子径はレーザー回折式粒度分布計で測定できる。
 微粒子ポルトランドセメントとしては、普通、早強、超早強、低熱、中庸熱等の各種ポルトランドセメントを粉砕、分級したものが使用可能である。微粒子ポルトランドセメントを配合する割合は特に限定されるものではないが、通常、遊離石灰、水硬性化合物、無水石膏および微粒子ポルトランドセメントの合計100部中、40部以下が好ましく、10~30部がより好ましい、40部を超えて配合すると初期強度が逆に低下する場合がある。
 微粒子生石灰としては、石灰石や消石灰を焼成して生石灰としたものを粉砕して使用することが可能であり、平均粒子径は20μm以下が好ましく、15μm以下がより好ましく、また、通常0.1μm以上が好ましい。
 微粒子無水石膏としては、天然無水石膏、ニ水石膏、半水石膏などを粉砕して使用することが可能であり、平均粒子径は20μm以下が好ましく、15μm以下がより好ましく、また、通常0.1μm以上が好ましい。
 微粒子生石灰および/または微粒子無水石膏を配合する割合は、特に限定されるものではないが、通常、熱処理物と微粒子生石灰および/または微粒子無水石膏の合計100部中、60部以下が好ましい。60部を超えて置換するとコンクリートの流動性が低下して型枠に充填することが困難になる場合や、初期強度が逆に低下する場合がある。また、微粒子生石灰および/または微粒子無水石膏を配合する割合は、熱処理物と微粒子生石灰および/または微粒子無水石膏の合計100部中、10部以上が好ましい。
 なお、本発明において、微粒子ポルトランドセメント、微粒子生石灰や微粒子無水石膏の平均粒子径は、レーザー回折式粒度分布計を用い、超音波装置を用いて分散させた状態で測定を行う。
 本発明の早期脱型材では、CaO原料と、CaSO原料と、さらに、Al原料、Fe原料およびSiO原料からなる群から選ばれる少なくとも1種の原料と、を混合したものを熱処理して得られる熱処理物、あるいは、熱処理物に微粒子ポルトランドセメントおよび/または微粒子生石灰および/または微粒子無水石膏を添加したものに対して、グリセリンを添加することによって初期強度の発現性を向上させることができる。
 本発明で使用するグリセリンは、化学式でC、化学名1,2,3-プロパントリオールまたはグリセロールで表される化合物である。
 熱処理物に添加するグリセリンの割合は、特に限定されるものではないが、熱処理物、あるいは、熱処理物に微粒子生石灰および/または微粒子無水石膏を添加したものとグリセリンの合計100部中、好ましくは0.1~10部であり、より好ましくは1~5部である。0.1部未満では初期強度の増進効果やレイタンスの改善が得られない場合があり、10部を超えるとコンクリートの流動性が悪くなる場合がある。
 なお、グリセリンは、熱処理物、あるいは、熱処理物に微粒子ポルトランドセメントおよび/または微粒子生石灰および/または微粒子無水石膏の混合物に添加し、次いで、同時粉砕し、粉砕物の表面に付着させることが強度発現性の観点から好ましい。
 本発明の早期脱型材の使用量は、コンクリートの配合によって変化するため特に限定されるものではないが、セメントと早期脱型材からなるセメント組成物100部中、2~15部であり、5~12部が好ましい。前記範囲内の場合、圧縮強度の増進効果が得られる場合がある。
 本発明で使用するセメントとしては、普通、早強、超早強、低熱、および中庸熱などの各種ポルトランドセメント、これらセメントに対して、スラグ、フライアッシュ、およびシリカからなる群から選ばれる少なくとも1種を混合した各種混合セメント、ならびに石灰石粉末を混合したフィラーセメントなどが挙げられる。この中でも混合セメントを用いた場合、環境負荷が小さく、本発明の早期脱型材を用いた場合の強度増進効果が高いことから好ましい。本発明で使用するセメントとしては、スラグおよび/またはフライアッシュを含む混合セメントを使用するのが特に好ましい。
 本発明における、コンクリートの打設から脱型までの養生条件は以下のようになされるのが好ましい。コンクリートの打設から脱型までの蒸気養生温度は70℃以下であり、60℃以下であるのが好ましい。70℃を超える温度で養生するとコンクリートにひび割れが生じる場合がある。また、通常、蒸気養生温度は40℃以上が好ましい。
 またコンクリート打設から脱型までのマチュリティを210~320℃・hrとするのが好ましい。マチュリティとは以下の式によって定義される。
マチュリティM=Σ(T+10)Δt
T:Δt時間におけるコンクリートの温度
Δt:経過時間(hr)
 マチュリティが210℃・hr未満では圧縮強度の発現が不十分で脱型することができない場合があり、320℃・hrを超える場合は製造に要する時間が長くなりすぎて不経済になる場合がある。打設から脱型までのマチュリティは、230~300℃・hrであるのがより好ましい。
 本発明では、砂、砂利の他、減水剤、高性能減水剤、AE減水剤、高性能AE減水剤、流動化剤、消泡剤、増粘剤、防錆剤、防凍剤、収縮低減剤、高分子エマルジョン、凝結調整剤、セメント急硬材、ベントナイトなどの粘土鉱物、ゼオライト等のイオン交換体、シリカ質微粉末、炭酸カルシウム、水酸化カルシウム、石膏、ケイ酸カルシウム、鋼繊維などを併用することが可能である。有機系材料としては、ビニロン繊維、アクリル繊維、炭素繊維などの繊維状物質などが挙げられる。
 以下に実施例および比較例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されないことはもちろんである。
「実験例1」
 下記する「使用材料」に記載される、CaO原料と、CaSO原料と、さらに、Al原料、Fe原料およびSiO原料からなる群から選ばれる少なくとも1種などを混合した。得られた混合物を電気炉を用いて、大気中、1350℃で0.5時間熱処理し、得られた熱処理物をボールミルで粉砕して早期脱型材(A~H)を調製した。また、熱処理物の粉砕品に微粒子普通ポルトランドセメントを添加した早期脱型材(I)を調製した。さらに、熱処理物や、熱処理物と微粒子生石灰と微粒子無水石膏との混合物にグリセリンを添加してボールミルで粉砕した早期脱型材(a~t)を調製した。
 また、表1に示されるように、市販品A~Cの早期脱型材や膨張材、市販品Bに微粒子普通ポルトランドセメントを添加した早期脱型材(J)、市販品Aにグリセリンを添加したもの、グリセリンだけを添加したものを、比較例として使用した。
 なお、熱処理物についての各成分の組成と含有量は、粉末X線回折及び元素分析により求めた。
 単位水量145kg/m、単位セメント量440kg/m、単位早期脱型材量30kg/m(市販品Aにグリセリンを添加したもの、及びグリセリンだけを添加したものは、0.9kg/m)、減水剤2.5kg/m、s/a39.4%、空気量4.5%をコンクリートの基本配合とし、20℃の環境下で表1に示すように早期脱型材の種類を変えながらコンクリートのスランプ、および凝結時間を測定した。
 その後、型枠にコンクリートを充填し、20℃での前置時間40分、昇温30分、最高温度50℃で3時間、冷却30分後に脱型し、脱型直後と20℃大気中で養生後の圧縮強度を測定した。また、コンクリート表面のレイタンスの有無と長さ変化率を評価した。結果を表1に示す。
 なお、早期脱型材は骨材に置換する形で配合し、早期脱型材を添加しない配合についても検討を行った。
(使用材料)
CaO原料:炭酸カルシウム(石灰石微粉末)、100メッシュ、市販品
Al原料:ボーキサイト、90μm篩通過率100%、市販品
Fe原料:酸化鉄粉末、ブレーン比表面積3000cm/g、市販品
SiO原料:ケイ石粉末、ブレーン比表面積3000cm/g、市販品
CaSO原料:ニ水石膏、ブレーン比表面積5000cm/g、市販品
セメント:普通ポルトランドセメント、市販品、密度3.16g/cm
微粒子普通ポルトランドセメント:平均粒子径3μm、密度3.16g/cm
微粒子生石灰(1):CaO含有量97%、平均粒子径10μm、市販品
微粒子無水石膏(1):天然無水石膏、平均粒子径8μm、市販品
微粒子生石灰(2):CaO含有量97%、平均粒子径18μm、市販品
微粒子無水石膏(2):天然無水石膏、平均粒子径15μm、市販品
グリセリン:市販品、精製グリセリン
砂:JIS標準砂
水:水道水
細骨材:日本国新潟県姫川産、5mm下、密度2.62g/cm
粗骨材:日本国新潟県姫川産、25mm下、密度2.64g/cm
減水剤:ナフタレンスルホン酸、商品名「マイテイ150」、花王社製
早期脱型材A:遊離石灰21部、Yeelimite32部、無水石膏47部、密度2.90g/cm、ブレーン比表面積3500cm/g。
早期脱型材B:早期脱型材Aをブレーン比表面積6000cm/gに粉砕したもの。
早期脱型材C:早期脱型材Aをブレーン比表面積9000cm/gに粉砕したもの。
早期脱型材D:遊離石灰32部、Yeelimite21部、CAF5部、CS5部、無水石膏37部、密度2.98g/cm、ブレーン比表面積3500cm/g。
早期脱型材E:遊離石灰50部、Yeelimite10部、CAF5部、CS5部、無水石膏30部、密度3.05g/cm、ブレーン比表面積3500cm/g。
早期脱型材F:早期脱型材Aをアルミナ製るつぼに入れて電気炉内にセットし、炭酸ガスを電気炉の内容積1Lあたり0.05L(リットル)/min流しながら、加熱温度600℃、30分反応させて合成したもの。遊離石灰20部、Yeelimite32部、無水石膏47、炭酸カルシウム1部、密度2.90g/cm、ブレーン比表面積6000cm/g。
早期脱型材G:遊離石灰70部、Yeelimite20部、無水石膏10部、密度3.20g/cm、ブレーン比表面積3500cm/g。
早期脱型材H:遊離石灰10部、Yeelimite50部、無水石膏40部、密度2.85g/cm、ブレーン比表面積3500cm/g。
早期脱型材I:早期脱型材A80部に平均粒子径3μmの微粒子普通ポルトランドセメントを20部配合、密度2.95g/cm、ブレーン比表面積4400cm/g。
早期脱型材J:市販品B80部に平均粒子径3μmの微粒子普通ポルトランドセメントを20部配合、密度2.95g/cm、ブレーン比表面積4400cm/g。
早期脱型材a:遊離石灰21部、Yeelimite32部、無水石膏47部からなる熱処理物97部とグリセリン3部を混合粉砕し、ブレーン比表面積3500cm/gに調製したもの。
早期脱型材b:早期脱型材Aに用いた熱処理物97部とグリセリン3部を混合粉砕し、ブレーン比表面積6000cm/gに調製したもの。
早期脱型材c:早期脱型材Aに用いた熱処理物97部とグリセリン3部を混合粉砕し、ブレーン比表面積9000cm/gに調製したもの。
早期脱型材d:遊離石灰30部、Yeelimite20部、CAF5部、CS5部、無水石膏40部からなる熱処理物97部とグリセリン3部を混合粉砕し、ブレーン比表面積3500cm/gに調製したもの。
早期脱型材e:遊離石灰50部、Yeelimite10部、CAF5部、CS5部、無水石膏30部からなる熱処理物97部とグリセリン3部を混合粉砕し、ブレーン比表面積3500cm/gに調製したもの。
早期脱型材f:遊離石灰30部、Yeelimite10部、無水石膏60部からなる焼成物97部とグリセリン3部を混合粉砕し、ブレーン比表面積4000cm/gに調製したもの。
早期脱型材g:遊離石灰70部、Yeelimite20部、無水石膏10部(ブレーン比表面積3500cm/g)からなる熱処理物97部とグリセリン3部を混合粉砕し、ブレーン比表面積3500cm/gに調製したもの。
早期脱型材h:遊離石灰10部、Yeelimite50部、無水石膏40部からなる熱処理物97部とグリセリン3部を混合粉砕し、ブレーン比表面積3500cm/gに調製したもの。
早期脱型材i:遊離石灰21部、Yeelimite32部、無水石膏47部からなる熱処理物をブレーン比表面積3500cm/gに粉砕し、粉砕物97部とグリセリン3部を混合して調製したもの。
早期脱型材j:遊離石灰21部、Yeelimite32部、無水石膏47部からなる熱処理物を70部、微粒子生石灰(1)を13.5部、微粒子無水石膏(1)を13.5部、グリセリン3部を混合粉砕し、ブレーン比表面積6000cm/gに調製したもの。
早期脱型材k:遊離石灰21部、Yeelimite32部、無水石膏47部からなる熱処理物を50部、微粒子生石灰(1)を23.5部、微粒子無水石膏(1)を23.5部、グリセリン3部を混合粉砕し、ブレーン比表面積6000cm/gに調製したもの。
早期脱型材l:遊離石灰21部、Yeelimite32部、無水石膏47部からなる熱処理物を40部、微粒子生石灰(1)を28.5部、微粒子無水石膏(1)を28.5部、グリセリン3部を混合粉砕し、ブレーン比表面積6000cm/gに調製したもの。
早期脱型材m:遊離石灰21部、Yeelimite32部、無水石膏47部からなる熱処理物を30部、微粒子生石灰(1)を33.5部、微粒子無水石膏(1)を33.5部、グリセリン3部を混合粉砕し、ブレーン比表面積6000cm/gに調製したもの。
早期脱型材n:微粒子生石灰(1)を48.5部、微粒子無水石膏(1)を48.5部、グリセリン3部を混合粉砕し、ブレーン比表面積5000cm/gに調製したもの。
早期脱型材o:遊離石灰21部、Yeelimite32部、無水石膏47部からなる熱処理物を50部、微粒子生石灰(1)を47部、グリセリン3部を混合粉砕し、ブレーン比表面積6000cm/gに調製したもの。
早期脱型材p:遊離石灰21部、Yeelimite32部、無水石膏47部からなる熱処理物を50部、微粒子無水石膏(1)を47部、グリセリン3部を混合粉砕し、ブレーン比表面積6000cm/gに調製したもの。
早期脱型材q:遊離石灰21部、Yeelimite32部、無水石膏47部からなる熱処理物を50部、微粒子生石灰(2)を23.5部、微粒子無水石膏(2)を23.5部、グリセリン3部を混合粉砕し、ブレーン比表面積6000cm/gに調製したもの。
早期脱型材r:遊離石灰21部、Yeelimite32部、無水石膏47部からなる熱処理物99.9部とグリセリン0.1部を混合粉砕し、ブレーン比表面積3500cm/gに調製したもの。
早期脱型材s:遊離石灰21部、Yeelimite32部、無水石膏47部からなる熱処理物99部とグリセリン1部を混合粉砕し、ブレーン比表面積3500cm/gに調製したもの。
早期脱型材t:遊離石灰21部、Yeelimite32部、無水石膏47部からなる熱処理物90部とグリセリン10部を混合粉砕し、ブレーン比表面積3500cm/gに調製したもの。
市販品A:生石灰50部、カルシウムシリケート20部、無水石膏30部を含有した市販の早期脱型材。ブレーン比表面積4500cm/g。無水石膏はクリンカに後から添加。
市販品B:エトリンガイト系膨張材、密度2.95g/cm、ブレーン比表面積2800cm/g。
市販品C:エトリンガイト・石灰複合系膨張材、密度3.08g/cm、ブレーン比表面積2800cm/g。
(試験方法)
凝結試験:JIS A 1147に準拠して実施した。凝結の始発時間を測定し、早期脱型材無混和のプレーンコンクリートを基準として、凝結促進効果を評価した。
スランプ:JIS A 1101に準拠
圧縮強度:JIS A 1108に準拠
レイタンスの有無:圧縮強度測定用の試験体表面に生じたレイタンスの状態を目視で評価した。レイタンスが試験体表面積の30%以上見られるものを×、レイタンスが試験体表面積の10~30%見られるものを△、レイタンスが試験体表面積の0~10%見られるものを○とした。
長さ変化率:JIS A 1129に準拠。試験体を脱型後、20℃水中に入れて温度を安定させたのち、材齢1日で基長を測定した。さらに材齢7日まで20℃水中で養生し、その後、20℃、60%RH室内で気中乾燥養生し、コンクリートに生じる収縮ひずみを材齢56日で測定した。
Figure JPOXMLDOC01-appb-T000001
「実験例2」
 早期脱型材A、早期脱型材B、早期脱型材a、早期脱型材b、または早期脱型材kを用い、表2に示す量の高炉スラグおよび/またはフライアッシュによって、セメントの一部を置換して使用したこと以外は実験例1と同様に行った。結果を表2に示す。なお、市販品Aや市販品Aにグリセリンを混合したものも評価した。
(使用材料)
フライアッシュ:東北フライアッシュII種、ブレーン比表面積4000cm/g、密度2.23g/cm
スラグ:高炉スラグ、住金鉱化社製、スミットメント、ブレーン比表面積4000cm/g、密度2.91g/cm
Figure JPOXMLDOC01-appb-T000002
「実験例3」
 早期脱型材A、または早期脱型材aを用い、スラグを100kg/m、フライアッシュを50kg/mセメントに置換配合し、蒸気養生条件とマチュリティを表3のように変化させたこと以外は実施例2と同様に行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
「実験例4」
 蒸気養生条件を20℃での前置時間40分、昇温30分、最高温度50℃で3時間、冷却30分とし、セメントと早期脱型材からなるセメント組成物100部中、早期脱型材の使用量を表4のように変化させたこと以外は実験例3と同様に行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 本発明の早期脱型材は、コンクリート製品の製造に有用であり、本発明の早期脱型材を用いる製造方法は、環境負荷の小さいコンクリート製品の生産性を高める方法として利用できる。
 なお、2011年10月13日に出願された日本特許出願2011-226165号及び2011年12月28日に出願された日本特許出願2011-289924号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (10)

  1.  CaO原料と、CaSO原料と、さらに、Al原料、Fe原料およびSiO原料からなる群から選ばれる少なくとも1種の原料と、を混合したものを熱処理して得られ、かつ、遊離石灰、水硬性化合物および無水石膏の合計100質量部に対して、遊離石灰10~70質量部、水硬性化合物10~50質量部、及び無水石膏10~60質量部の割合で含有する熱処理物を含有してなる早期脱型材。
  2.  2500~9000cm/gのブレーン比表面積を有する請求項1に記載の早期脱型材。
  3.  さらに、早期脱型材の100質量部中、微粒子ポルトランドセメントを40質量部以下含有してなる請求項1または2に記載の早期脱型材。
  4.  前記微粒子ポルトランドセメントの平均粒径が6μm未満である請求項3に記載の早期脱型材。
  5.  さらに、早期脱型材100質量部中、グリセリンを0.1~10質量部含有してなる請求項1または2に記載の早期脱型材。
  6.  さらに、微粒子生石灰および/または微粒子無水石膏を含有してなる請求項1~5のいずれか1項に記載の早期脱型材。
  7.  前記水硬性化合物が、3CaO・3Al・CaSO、または3CaO・3Al・CaSOと4CaO・Al・Feと2CaO・SiOとの混合物である請求項1~6のいずれか1項に記載の早期脱型材。
  8.  請求項1~7のいずれか1項に記載の早期脱型材を、セメントと早期脱型材からなるセメント組成物100質量部中、2~15質量部配合し、打設から脱型までの蒸気養生温度を70℃以下、および打設から脱型までのマチュリティを210~320℃・hrとすることを特徴とするコンクリート製品の製造方法。
  9.  セメントとして、スラグおよび/またはフライアッシュを含む混合セメントを使用する請求項8に記載のコンクリート製品の製造方法。
  10.  請求項8または9に記載の製造方法で製造されたコンクリート製品。
PCT/JP2012/071898 2011-10-13 2012-08-29 早期脱型材およびコンクリート製品の製造方法 WO2013054604A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280050263.2A CN103874671B (zh) 2011-10-13 2012-08-29 快速脱模剂以及混凝土制品的制造方法
ES12840178.3T ES2662106T3 (es) 2011-10-13 2012-08-29 Método de fabricación de un agente de endurecimiento rápido y producto de hormigón
EP12840178.3A EP2767521B1 (en) 2011-10-13 2012-08-29 Method for manufacturing rapid-hardening agent and concrete product
JP2013538472A JP5923104B2 (ja) 2011-10-13 2012-08-29 早期脱型材およびコンクリート製品の製造方法
NO12840178A NO2767521T3 (ja) 2011-10-13 2012-08-29

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-226165 2011-10-13
JP2011226165 2011-10-13
JP2011-289924 2011-12-28
JP2011289924 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013054604A1 true WO2013054604A1 (ja) 2013-04-18

Family

ID=48081664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071898 WO2013054604A1 (ja) 2011-10-13 2012-08-29 早期脱型材およびコンクリート製品の製造方法

Country Status (7)

Country Link
EP (1) EP2767521B1 (ja)
JP (1) JP5923104B2 (ja)
CN (1) CN103874671B (ja)
ES (1) ES2662106T3 (ja)
MY (1) MY166454A (ja)
NO (1) NO2767521T3 (ja)
WO (1) WO2013054604A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048290A (ja) * 2013-09-03 2015-03-16 電気化学工業株式会社 セメント硬化体の製造方法およびセメント硬化体
JP2015107900A (ja) * 2013-12-05 2015-06-11 電気化学工業株式会社 セメント混和材およびセメント組成物それを用いたセメント硬化体
JP2018001756A (ja) * 2016-06-24 2018-01-11 花王株式会社 水硬性組成物の硬化体の製造方法
RU2756639C1 (ru) * 2021-03-11 2021-10-04 Общество с ограниченной ответственностью "Торговый Дом "ФАРМАКС" Сырьевая смесь и способ приготовления активной минеральной добавки к цементу

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107443548A (zh) * 2017-08-22 2017-12-08 潘春光 一种水渠渠槽预制件的生产方法
RU2733360C1 (ru) * 2020-05-26 2020-10-01 Общество с ограниченной ответственностью "Торговый Дом "ФАРМАКС" Активная синтезированная добавка для цемента и способ ее приготовления
EP3957615A1 (de) * 2020-08-20 2022-02-23 Sika Technology Ag Verwendung von polyol zur verringerung des schwindens von bauchemischen zusammensetzungen

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952748A (ja) * 1995-08-17 1997-02-25 Denki Kagaku Kogyo Kk 混合セメントの刺激材及び混合セメント組成物
JP2000233959A (ja) 1999-02-10 2000-08-29 Taiheiyo Cement Corp クリンカ粉砕物、およびこれを含む早強性セメント組成物、コンクリート並びにコンクリート製品
JP2000301531A (ja) 1999-04-23 2000-10-31 Taiheiyo Cement Corp コンクリート製品の製造方法
JP2001039748A (ja) * 1999-07-26 2001-02-13 Taiheiyo Cement Corp 早強性セメント混和材およびこれを含むコンクリートならびにコンクリート製品
JP2001294460A (ja) 2000-04-10 2001-10-23 Maeta Techno Research Inc コンクリート用超早強型膨張材及びおよびこれを用いたコンクリート製品の製造方法
JP2001316147A (ja) * 2000-05-02 2001-11-13 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JP2002293591A (ja) * 2001-03-29 2002-10-09 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JP2008519752A (ja) 2004-11-12 2008-06-12 ユニヴァーシタ デグリ ストゥディ ディ ミラノ 改善された圧縮強度セメント
JP2008266108A (ja) * 2007-04-25 2008-11-06 Ube Ind Ltd コンクリート混和材、水硬性結合材料、コンクリートおよびコンクリート構造物の構築方法
WO2010143506A1 (ja) * 2009-06-12 2010-12-16 電気化学工業株式会社 膨張材およびその製造方法
JP2011153068A (ja) 2009-12-28 2011-08-11 Kao Corp 水硬性組成物用早強剤

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101456703A (zh) * 2007-12-12 2009-06-17 孙建树 赤泥免烧砖的生产工艺
CN102249585A (zh) * 2011-06-08 2011-11-23 福建省交通科学技术研究所 水泥微膨胀超早强改性剂及其使用方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952748A (ja) * 1995-08-17 1997-02-25 Denki Kagaku Kogyo Kk 混合セメントの刺激材及び混合セメント組成物
JP2000233959A (ja) 1999-02-10 2000-08-29 Taiheiyo Cement Corp クリンカ粉砕物、およびこれを含む早強性セメント組成物、コンクリート並びにコンクリート製品
JP2000301531A (ja) 1999-04-23 2000-10-31 Taiheiyo Cement Corp コンクリート製品の製造方法
JP2001039748A (ja) * 1999-07-26 2001-02-13 Taiheiyo Cement Corp 早強性セメント混和材およびこれを含むコンクリートならびにコンクリート製品
JP2001294460A (ja) 2000-04-10 2001-10-23 Maeta Techno Research Inc コンクリート用超早強型膨張材及びおよびこれを用いたコンクリート製品の製造方法
JP2001316147A (ja) * 2000-05-02 2001-11-13 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JP2002293591A (ja) * 2001-03-29 2002-10-09 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JP2008519752A (ja) 2004-11-12 2008-06-12 ユニヴァーシタ デグリ ストゥディ ディ ミラノ 改善された圧縮強度セメント
JP2008266108A (ja) * 2007-04-25 2008-11-06 Ube Ind Ltd コンクリート混和材、水硬性結合材料、コンクリートおよびコンクリート構造物の構築方法
WO2010143506A1 (ja) * 2009-06-12 2010-12-16 電気化学工業株式会社 膨張材およびその製造方法
JP2011153068A (ja) 2009-12-28 2011-08-11 Kao Corp 水硬性組成物用早強剤

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2767521A4
YOSHIO KASAI, CONCRETE SORAN, 10 June 1998 (1998-06-10), XP008173825 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048290A (ja) * 2013-09-03 2015-03-16 電気化学工業株式会社 セメント硬化体の製造方法およびセメント硬化体
JP2015107900A (ja) * 2013-12-05 2015-06-11 電気化学工業株式会社 セメント混和材およびセメント組成物それを用いたセメント硬化体
JP2018001756A (ja) * 2016-06-24 2018-01-11 花王株式会社 水硬性組成物の硬化体の製造方法
RU2756639C1 (ru) * 2021-03-11 2021-10-04 Общество с ограниченной ответственностью "Торговый Дом "ФАРМАКС" Сырьевая смесь и способ приготовления активной минеральной добавки к цементу

Also Published As

Publication number Publication date
EP2767521B1 (en) 2018-02-28
CN103874671A (zh) 2014-06-18
ES2662106T3 (es) 2018-04-05
JP5923104B2 (ja) 2016-05-24
NO2767521T3 (ja) 2018-07-28
EP2767521A4 (en) 2015-06-17
CN103874671B (zh) 2015-12-02
MY166454A (en) 2018-06-27
JPWO2013054604A1 (ja) 2015-03-30
EP2767521A1 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
TWI478891B (zh) Expandable material and its manufacturing method
JP5923104B2 (ja) 早期脱型材およびコンクリート製品の製造方法
JP5744499B2 (ja) グラウト用セメント組成物およびグラウト材料
WO2014077251A1 (ja) セメント組成物及びその製造方法
EP2650268B1 (en) Cement admixture, cement composition, and hexavalent chromium reduction method using same
TWI815994B (zh) 水泥摻和料、膨脹材料和水泥組成物
JP6234739B2 (ja) セメント硬化体の製造方法およびセメント硬化体
JP6568291B1 (ja) セメント混和材、膨張材、及びセメント組成物
JP5785429B2 (ja) セメント混和材およびセメント組成物
JP6641057B1 (ja) セメント混和材、膨張材、及びセメント組成物
WO2021215509A1 (ja) セメント混和材、膨張材、及びセメント組成物
JP6956502B2 (ja) セメント用混和材並びにセメント組成物および水硬性組成物
JP6207992B2 (ja) セメント混和材およびセメント組成物それを用いたセメント硬化体
JP4606631B2 (ja) セメント混和材及びセメント組成物
JP4173780B2 (ja) 水硬性セメント組成物
JP5744498B2 (ja) セメント急硬材の製造方法
JP6475579B2 (ja) プレキャストコンクリート用膨張材、その製造方法およびプレキャストコンクリートの製造方法
JP7037878B2 (ja) 二次製品用早強混和材および二次製品用早強コンクリート
WO2022196633A1 (ja) セメント混和材、セメント組成物、及びコンクリート製品の製造方法
JP2024071847A (ja) 蒸気養生用膨張組成物、プレストレストコンクリート、およびプレストレストコンクリートの製造方法
JP2005047756A (ja) 水硬性セメント組成物およびそれを使用してなるセメントコンクリート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840178

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012840178

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013538472

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE