WO2010143285A1 - トルクセンサ - Google Patents

トルクセンサ Download PDF

Info

Publication number
WO2010143285A1
WO2010143285A1 PCT/JP2009/060613 JP2009060613W WO2010143285A1 WO 2010143285 A1 WO2010143285 A1 WO 2010143285A1 JP 2009060613 W JP2009060613 W JP 2009060613W WO 2010143285 A1 WO2010143285 A1 WO 2010143285A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
strain
input
shaft
output
Prior art date
Application number
PCT/JP2009/060613
Other languages
English (en)
French (fr)
Inventor
弘忠 杉浦
雅和 石原
Original Assignee
日東精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東精工株式会社 filed Critical 日東精工株式会社
Priority to PCT/JP2009/060613 priority Critical patent/WO2010143285A1/ja
Priority to SG2011088051A priority patent/SG176279A1/en
Priority to JP2009529335A priority patent/JP4677043B2/ja
Priority to CN200980159788.8A priority patent/CN102803913B/zh
Priority to KR1020117027495A priority patent/KR101306639B1/ko
Publication of WO2010143285A1 publication Critical patent/WO2010143285A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/14Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft
    • G01L3/1464Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving screws and nuts, screw-gears or cams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/14Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft

Definitions

  • the present invention relates to a torque sensor that can detect low torque with high accuracy.
  • Patent Document 1 As a torque sensor configured such that a strain generating body is distorted in accordance with a rotational resistance acting on a gear, there is one disclosed in Patent Document 1.
  • This torque sensor has a planetary gear mechanism interposed between the input shaft and the output shaft, and the planetary gear mechanism transmits the rotational drive of the input shaft that rotates as the motor is driven to the output shaft. It is configured.
  • This planetary gear mechanism has a sun gear attached to the input shaft, a plurality of planetary gears that revolve around the sun gear and revolve around the sun gear, and form an annular shape with inner teeth inside. In addition, it is constituted by an internal gear that meshes with the planetary gear and guides it on the inner ring side.
  • the planetary gear is pivotally supported by a carrier, and the output shaft is attached to the carrier. Further, a strain generating body having a strain gauge attached to the side surface is attached to the outer ring side of the internal gear, and the other end of the strain generating body is fixed to the housing.
  • a rotational resistance acts on the output shaft, the rotational resistance acts on the internal gear in the circumferential direction, and a bending moment acts on the strain generating body.
  • the strain generating body is distorted by this bending moment, and the strain can be detected by the strain gauge detecting the distortion.
  • a planetary gear mechanism is an essential component.
  • the output torque is amplified by the deceleration action of the planetary gear mechanism, and accordingly, the rotational resistance acting on the output shaft also increases. Therefore, the bending moment transmitted to the strain generating body via the internal gear also increases. Therefore, the detectable torque is limited to a torque larger than the input torque, and a low torque cannot be detected.
  • the inertia of the motor acting on the output shaft increases as the square of the reduction ratio. Therefore, in a torque sensor having a planetary gear mechanism, the inertia of the motor acting on the output shaft increases. Therefore, the impact torque of the output shaft increases, and there are various problems such as noise and vibration.
  • the torque sensor of the present invention has been created in view of the above problems, and includes an input shaft that rotates as the drive source is driven, an output shaft that rotates as the input shaft rotates, and the input shaft.
  • a rotation transmitting means capable of transmitting the rotation drive to the output shaft, and a strain generating body that rotatably supports the rotation transmitting means and distorts according to the rotational resistance of the output shaft acting through the rotation transmitting means, Distortion detecting means for detecting the distortion of the strain generating body is provided.
  • the rotation transmission means is an intermediate gear, and the input gear is attached to the input shaft so as to be rotatable integrally therewith, and the output gear is also attached to the output shaft so as to be rotatable integrally therewith.
  • the intermediate gear is meshed with the gear and the output gear so that the rotational drive of the input shaft can be transmitted to the output shaft, and the intermediate gear is rotatably supported by the strain body.
  • the rotation transmitting means is an intermediate sprocket, and the input sprocket is attached to the input shaft so as to be rotatable integrally therewith, and the output sprocket is attached to the output shaft so as to be rotatable integrally therewith.
  • a chain is wrapped around the shaft so that the rotational drive of the input shaft can be transmitted to the output shaft, and the intermediate sprocket is rotatably supported by the strain body, and the intermediate sprocket is engaged with the chain. .
  • strain body is characterized by being provided with a Roval-type cavity hole.
  • the input gear or the input sprocket is arranged in the hollow hole of the strain generating body, and a notch communicating with the hollow hole is formed in the strain generating body, and the intermediate gear or the intermediate sprocket is arranged in the notched portion. It is characterized by that.
  • the rotation transmitting means is rotatably supported by the strain body. Therefore, when a rotational resistance acts on the output shaft, the rotation transmitting means moves in a direction of pressing the side surface of the strain generating body according to the rotational resistance, and a bending moment acts on the strain generating body. With this configuration, the strain generating body is strained, and the strain can be detected by detecting the strain with the strain detecting means. Moreover, since the output torque is not amplified by the configuration that does not require the planetary gear mechanism, the rotational resistance does not increase, and therefore, low torque can be detected.
  • reference numeral 1 denotes a torque sensor, which has a strain body 2 in which a Roberval-type cavity hole 2a is formed.
  • the strain body 2 is housed in a housing 3 composed of an upper lid 3a and a lower lid 3b.
  • the upper surface of the strain body 2 is covered with the upper lid 3a, while the lower surface of the strain body 2 is covered with the lower lid 3b.
  • Covered with A fixed end 2b is integrally formed at one end of the strain generating body 2, and is fixed to the lower lid 3b with a screw S.
  • the fixed end 2b is provided with an insertion hole 2f into which a pin (not shown) can be inserted.
  • the insertion hole in FIG.
  • the strain generating body 2 is housed in a predetermined gap with respect to the inner surface of the housing 3 except for the fixed end 2b, and is distorted according to the rotational resistance of the output shaft 8 described later in detail. At this time, it is configured not to contact the inner surface of the housing 3.
  • the torque sensor 1 has an input gear 5 disposed inside the hollow hole 2a of the strain body 2, and the input gear 5 is attached to the input shaft 4 so as to be integrally rotatable.
  • the input shaft 4 rotates with driving of a motor (not shown) as an example of a drive source, and both ends thereof are rotatably held by the upper lid 3a and the lower lid 3b of the housing 3 via bearings 10 and 11. ing.
  • the strain body 2 is formed with a notch 2c communicating with the hollow hole 2a by notching the other end, and an intermediate gear 7 meshing with the input gear 5 is disposed in the notch 2c. Yes.
  • the intermediate gear 7 is rotatably attached to an intermediate shaft 6 that is rotatably held on the strain body 2 via bearings 12 and 13. It is comprised so that it may rotate with this rotational drive. Further, both ends of the intermediate shaft 6 project from the notch 2c of the strain body 2 and extend to the upper lid 2a and the lower lid 2b of the housing 3.
  • the upper cover 2a and the lower cover 2b of the housing 3 are prevented from coming into contact with the housing 3 when the intermediate shaft 6 moves together with the strain generating body 2 due to the rotational resistance of the output shaft 8 described later in detail.
  • an output gear 9 is disposed inside the housing 3 at a position where it engages with the intermediate gear 7.
  • the output gear 9 is rotatably attached integrally to an output shaft 8 that is rotatably held by bearings 14 and 15 on the upper lid 2a and the lower lid 2b of the housing 3, and the rotation of the input shaft 4 is performed. It is comprised so that it may rotate with a drive. That is, in the torque sensor 1, the input shaft 4 and the output shaft 8 are offset and the rotational drive of the input shaft 4 is transmitted to the output shaft 8 through the intermediate gear 7.
  • the input gear 5, the intermediate gear 7, and the output gear 9 are spur gears whose teeth are parallel to the rotation shaft, and are changed to those having different numbers of teeth, and are output to the output shaft 8.
  • the rotational drive can be set to increase or decrease the speed of the rotational drive of the input shaft 4 freely.
  • the input gear 5 and the output gear 9 have the same number of teeth and are configured not to increase or decrease the speed.
  • Strain gauges 16, 17, 18, and 19, which are examples of strain detection means, are attached to the strain generating body 2, and two pieces are attached to each side surface extending in the longitudinal direction.
  • the operation of the torque sensor 1 according to the first embodiment will be described with reference to FIG. First, when the input shaft 4 rotates with the torque T1 as the motor is driven, the input gear 5 also rotates integrally therewith. Subsequently, the intermediate gear 7 rotates integrally with the intermediate shaft 6 in response to the rotation of the input gear 5. Further, in response to the rotation of the intermediate gear 7, the output gear 9 also rotates integrally with the output shaft 8.
  • the center points of the input gear 5, the intermediate gear 7, and the output gear 9 are arranged on a straight line L extending parallel to the longitudinal side surface of the strain body 2, and the intermediate gear 7 and the output gear 9 are meshed with each other.
  • the point and the meshing point of the intermediate gear 7 and the input gear 5 are also located on the straight line L. That is, the action points of the pressing force F1 and the pressing force F2 are located on the straight line L.
  • the intermediate gear 7 is configured such that the angle formed between the line of action of the pressing force F1 and the straight line L and the angle formed between the line of action of the pressing force F2 and the straight line L are equal. Therefore, the resultant force F1 + F2 acts in a direction perpendicular to the longitudinal side surface of the strain body 2.
  • the resultant force F1 + F2 acts on the strain body 2 as a bending moment, and the strain body 2 is distorted with the fixed end 2b as a fulcrum.
  • torque can be detected.
  • the output torque is not amplified, and therefore the rotational resistance does not increase.
  • a rotational resistance corresponding to the torque output without being amplified acts on the strain generating body 2, so that low torque can be detected.
  • the resultant force F1 + F2 is configured to act in a direction orthogonal to the longitudinal side surface of the strain body 2. Therefore, since the strain generating body 2 can be distorted even with a small bending moment, a low torque can be detected with high accuracy.
  • this is a gear mechanism in which three gears are arranged in a row, and the number of parts can be reduced as compared with a torque sensor having a planetary gear mechanism. Furthermore, since the input gear 5 and the output gear 7 are arranged so as to be included in the strain body 2, the torque sensor 1 can be reduced in size.
  • the torque sensor 21 has a strain-generating body 22 in which a Roberval-type cavity hole 222a is formed.
  • the intermediate shaft 26 is arranged so as to extend in the same direction.
  • a fixed end 22 b is integrally formed at the upper end of the strain generating body 22 and is fixed to the housing 23.
  • the torque sensor 21 has an input shaft 24 that rotates in accordance with the driving of a motor (not shown) as an example of a driving source and extends in the same direction as the longitudinal side surface of the strain generating body 22.
  • An input gear 25 is attached to the input shaft 24 so as to be rotatable integrally therewith.
  • a first intermediate gear 27a that meshes with the input gear 25 is disposed at the upper end of the strain body 22, and a second intermediate gear 27b is disposed at the lower end.
  • the intermediate gears 27a and 27b are rotatably attached integrally to an intermediate shaft 26 that passes through the upper and lower ends of the strain body 22 and is rotatably supported by the strain body 22 via bearings 30 and 31. And is configured to rotate in accordance with the rotational drive of the input shaft 24.
  • an output gear 29 is engaged with the second intermediate gear 27b.
  • the output gear 29 is rotatably attached integrally to an output shaft 28 that is rotatably held in the housing 23 via bearings 32 and 33, and is configured to rotate as the input shaft 24 rotates.
  • the rotational drive of the input shaft 24 is output to the output shaft 28 via the first intermediate gear 27a and the second intermediate gear 27b.
  • the input gear 25, the first intermediate gear 27a, the second intermediate gear 27b, and the output gear 29 are spur gears whose teeth are parallel to the rotation shaft, and these are changed to those having different numbers of teeth.
  • the rotational drive output to the output shaft 28 can be freely set to increase or decrease the speed of the rotational drive of the input shaft 24.
  • the input gear 25 and the output gear 29 have the same number of teeth, and are configured not to increase or decrease the speed.
  • strain gauges 34, 35, 36, and 37 which are examples of strain detection means, are attached to the strain body 2, and two pieces are provided on each side surface extending in the longitudinal direction. It is pasted one by one.
  • FIGS. 6 (a) and 6 (b) the operation of the torque sensor 21 of the second embodiment will be described based on FIGS. 6 (a) and 6 (b).
  • the input gear 25 when the input shaft 24 rotates forward with the torque T1 as the motor is driven, the input gear 25 also rotates integrally therewith. Subsequently, in response to the rotation of the input gear 25, the first intermediate gear 27 and the second intermediate gear rotate together with the intermediate shaft 26. Further, as shown in FIG. 6B, the output gear 29 also rotates integrally with the output shaft 28 in response to the rotation of the second intermediate gear 27 b.
  • the center point of the input gear 25 and the first intermediate gear 27a and the center point of the second intermediate gear 27b and the output gear 29 are on a straight line L parallel to the width direction of the longitudinal side surface of the strain body 22. Is arranged. Therefore, the meshing point of the second intermediate gear 27b and the output gear 29 and the meshing point of the first intermediate gear 27a and the input gear 25 are also located on the straight line L. That is, the action points of the pressing force F1 and the pressing force F2 are located on the straight line L.
  • the first intermediate gear 27a and the second intermediate gear 27b are configured such that the acute angle formed between the line of action of the pressing force F1 and the straight line and the acute angle formed between the line of action of the pressing force F2 and the straight line L are equal.
  • the resultant force F1 + F2 acts in a direction orthogonal to the longitudinal side surface of the strain body 22. Accordingly, the resultant force F1 + F2 acts on the strain body 2 as a bending moment, and the strain body 22 is distorted with the fixed end 22b as a fulcrum.
  • the torque can be detected.
  • the torque sensor 41 of the third embodiment uses sprockets 45, 47, and 49 instead of the input gear 5, the intermediate gear 7, and the output gear 9 in the torque sensor 1 of the first embodiment. It was
  • 41 is a torque sensor, and an input sprocket 45 is attached so as to be rotatable integrally with the input shaft 44.
  • an output sprocket 49 is also attached to the output shaft 48 so as to be rotatable integrally therewith.
  • a chain 50 is wound around the sprockets 45 and 49 so that the rotational drive of the input shaft 44 can be transmitted to the output shaft 48.
  • An intermediate sprocket 47 that is rotatably attached to the intermediate shaft 46 is disposed on the outer ring side of the chain 50 and meshes so as to guide the chain 50.
  • this reaction acts on the other tooth surface of the intermediate sprocket 47 via the chain 50, and the pressing force F2 acts on the tooth surface. Therefore, the resultant force F1 + F2 of the pressing forces F1 and F2 acts on the intermediate shaft 46 that holds the intermediate sprocket 47. Therefore, the resultant force F1 + F2 acts on the strain body 2 as a bending moment, and the strain body 2 is distorted with the fixed end as a fulcrum.
  • the intermediate gears 7, 27a, and 27b or the intermediate sprocket 47 are rotated by the strain generating bodies 2 and 22 through bearings.
  • the intermediate shafts 6 and 26 that are freely held are rotatably attached integrally.
  • the intermediate shaft 86 is fixed to the strain body 2, and accordingly, the intermediate gear 87 is interposed via bearings 88 and 89.
  • the intermediate shaft 86 is rotatably attached. Even if comprised in this way, the effect similar to the torque sensor 1 of 1st Embodiment can be acquired.
  • the input shafts 4 and 24 and the input gears 5 and 25 are excluded, and the intermediate shaft 6 or the intermediate shaft 26 is directly driven by a motor. May be.
  • the pressing force F2 shown in FIGS. 3 and 6 does not act on the intermediate shafts 6 and 26, but the pressing force F1 acts as a bending moment. Therefore, since the strain generating bodies 2 and 22 are distorted, the torque can be detected by detecting the distortion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Retarders (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

【課題】本発明は、低トルクを高精度に検出可能なトルクセンサを提供する。 【解決手段】本発明のトルクセンサ1は、駆動源の駆動に伴って回転する入力軸4と、この入力軸4の回転駆動に伴って回転する出力軸8と、この入力軸4の回転駆動を出力軸8に伝達可能な回転伝達手段6と、この回転伝達手段6を回転自在に支持するとともに、当該回転伝達手段6を介して作用する出力軸8の回転抵抗に応じて歪む起歪体2と、この起歪体2の歪みを検出する歪み検出手段16,17,18,19とを備える。この構成により、出力軸8の回転抵抗が回転伝達手段7に作用すると起歪体2が歪み、この歪みを歪み検出手段16,17,18,19で検出すればトルクを検出することができる。しかも、遊星歯車機構を必要としない構成により、出力トルクは増幅されず、そのため回転抵抗も増大しないので、低トルクを検出することができる。 

Description

トルクセンサ
 本発明は、低トルクを高精度に検出可能なトルクセンサに関する。
 従来、歯車に作用する回転抵抗に応じて起歪体が歪むように構成されたトルクセンサとしては、特許文献1に示すものがある。このトルクセンサは、入力軸と出力軸の間に介在する遊星歯車機構を有しており、当該遊星歯車機構がモータの駆動に伴って回転する入力軸の回転駆動を出力軸に伝達するように構成されている。この遊星歯車機構は、前記入力軸に取付けられる太陽ギアと、当該太陽ギアに噛合してその周囲を公転し、かつ自転する複数の遊星ギアと、環状を成し、内方に内歯を備えるとともに、当該遊星ギアに噛合して内輪側でこれを案内する内歯ギアとから構成されている。また、遊星ギアはキャリアに軸支されており、このキャリアには前記出力軸が取付けられている。さらに、前記内歯ギアの外輪側には、側面に歪みゲージが貼り付けられた起歪体が取付けられており、この起歪体においては他端がハウジングに固定されている。この構成により、出力軸に回転抵抗が作用と、内歯歯車にはその円周方向に当該回転抵抗が作用し、起歪体には曲げモーメントが作用する。この曲げモーメントによって起歪体が歪み、当該歪みを歪みゲージが検出することにより、トルクを検出することが可能である。
特許第3659748号公報
 上記トルクセンサにおいては、遊星歯車機構が必須の構成要件である。しかしながら、遊星歯車機構の減速作用により、出力トルクは増幅し、これに伴い出力軸に作用する回転抵抗も増大する。そのため、内歯ギアを介して起歪体に伝達される曲げモーメントも増大する。従って、検出可能なトルクが入力トルクよりも大きなトルクに限定され、低トルクを検出することができなかった。しかも、出力軸に作用するモータのイナーシャは減速比の二乗と大きくなる。そのため、遊星歯車機構を備えるトルクセンサでは、出力軸に作用するモータのイナーシャが増大する。従って、出力軸の衝撃トルクが増大し、騒音、振動等の様々な問題があった。
 本発明のトルクセンサは、上記課題に鑑みて創成されたものであり、駆動源の駆動に伴って回転する入力軸と、この入力軸の回転駆動に伴って回転する出力軸と、この入力軸の回転駆動を出力軸に伝達可能な回転伝達手段と、この回転伝達手段を回転自在に支持するとともに、当該回転伝達手段を介して作用する出力軸の回転抵抗に応じて歪む起歪体と、この起歪体の歪みを検出する歪み検出手段とを備えることを特徴とする。
 また、前記回転伝達手段が中間歯車であって、前記入力軸にこれと一体に回転可能に入力歯車を取付けるとともに、前記出力軸にもこれと一体に回転可能に出力歯車を取付けて、これら入力歯車と出力歯車とに中間歯車を噛合させて入力軸の回転駆動を出力軸へ伝達可能とし、かつ前記起歪体に中間歯車を回転自在に支持したことを特徴とする。
 また、前記回転伝達手段が中間スプロケットであって、前記入力軸にこれと一体に回転可能に入力スプロケットを取付けるとともに、前記出力軸にもこれと一体に回転可能に出力スプロケットを取付けて、これらスプロケットにチェーンを巻き掛けて入力軸の回転駆動を出力軸へ伝達可能とし、かつ前記起歪体に中間スプロケットを回転自在に支持するとともに、当該中間スプロケットを当該チェーンに噛合させたことを特徴とする。
 また、前記起歪体にはロバーバル型の空洞穴が穿設されていることを特徴とする。
 また、前記起歪体の空洞穴に入力歯車または入力スプロケットを配置するとともに、当該起歪体に空洞穴と連通する切欠部を形成して、この切欠部に前記中間歯車または中間スプロケットを配置したことを特徴とする。
 本発明のトルクセンサにおいては、回転伝達手段が起歪体に回転自在に支持されている。そのため、出力軸に回転抵抗が作用すると、回転伝達手段は当該回転抵抗に応じて起歪体の側面を押圧する方向に移動し、起歪体には曲げモーメントが作用する。この構成により、当該起歪体は歪み、当該歪みを歪み検出手段で検出してトルクを検出することができる。しかも、遊星歯車機構を不要とする構成により、出力トルクが増幅しないので回転抵抗も増大せず、従って低トルクを検出することができる。
第1の実施形態におけるトルクセンサの構成を示す図である。 第1の実施形態におけるトルクセンサの正面視断面図である。 第1の実施形態におけるトルクセンサの平面視要部拡大断面図である。 第2の実施形態におけるトルクセンサの構成を示す図である。 第2の実施形態におけるトルクセンサの正面視断面図である。 第2の実施形態におけるトルクセンサの平面視要部拡大断面図であり、(a)は入力歯車と第一中間歯車噛合状態を示し、(b)は第二中間歯車と出力歯車の噛合状態を示す。 第3の実施形態におけるトルクセンサの平面視断面図である。 第4の実施形態におけるトルクセンサの正面視断面図である。
(第1の実施形態)
 以下、図1ないし図3に基づいて本発明の第1の実施の形態を説明する。
 図1および図2において、1はトルクセンサであり、ロバーバル型の空洞穴2aが形成された起歪体2を有している。この起歪体2は、上蓋3aと下蓋3bとから成るハウジング3に収納されており、当該起歪体2の上面は上蓋3aに覆われ、一方当該起歪体2の下面は下蓋3bに覆われている。また、この起歪体2の一端には固定端2bが一体成形されており、下蓋3bにねじSで固定されている。さらに、図1に示すように、この固定端2bにはピン(図示せず)を挿入可能な挿入孔2fが穿設されており、一方上蓋3aにも当該ピンを挿入可能な挿入孔(図示せず)が穿設されている。そして、これら挿入孔2fにピンを挿入して、起歪体2と上蓋3aは固定されている。その上、この起歪体2は、その固定端2bを除き、前記ハウジング3の内面に対して所定の隙間を設けて収納されており、詳細を後述する出力軸8の回転抵抗に応じて歪むとき、当該ハウジング3の内面に接触しないように構成されている。
 また、前記トルクセンサ1は、前記起歪体2の空洞穴2aの内部に配置される入力歯車5を有しており、この入力歯車5は入力軸4に一体に回転可能に取付けられている。この入力軸4は駆動源の一例であるモータ(図示せず)の駆動に伴い回転するとともに、その両端がハウジング3の上蓋3aおよび下蓋3bにベアリング10,11を介して回転自在に保持されている。
 さらに、前記起歪体2にはその他端を切り欠いて前記空洞穴2aと連通する切欠部2cが形成さており、この切欠部2cには前記入力歯車5と噛合する中間歯車7が配置されている。この中間歯車7は、図2に示すように、前記起歪体2にベアリング12,13を介して回転自在に保持された中間軸6に一体に回転可能に取付けられており、前記入力軸4の回転駆動に伴い回転するように構成されている。また、この中間軸6においては、その両端が起歪体2の切欠部2cから突出してハウジング3の上蓋2aおよび下蓋2bまで延びている。そこで、詳細を後述する出力軸8の回転抵抗により、当該中間軸6が起歪体2と一体となって移動する際、ハウジング3に接触しないように、当該ハウジング3の上蓋2aおよび下蓋2bには当該中間軸6の径よりも大径の有底穴3c,3bが穿設されている。
 その上、前記ハウジング3の内部には、前記中間歯車7と噛合する位置に出力歯車9が配置されている。この出力歯車9は、前記ハウジング3の上蓋2aおよび下蓋2bにベアリング14,15を介して回転自在に保持された出力軸8に一体に回転可能に取付けられており、前記入力軸4の回転駆動に伴い回転するように構成されている。つまり、トルクセンサ1においては、前記入力軸4と出力軸8とがオフセット配置されるとともに、入力軸4の回転駆動は前記中間歯車7を介して出力軸8に伝達される。ここで、前記入力歯車5、中間歯車7、および出力歯車9は、歯すじが回転軸に平行な平歯車であり、これらを歯数の異なるものに変更することで、出力軸8に出力される回転駆動は、入力軸4の回転駆動に対して増速あるいは減速を自在に設定することが可能である。なお、トルクセンサ1においては、入力歯車5および出力歯車9の歯数は同一であり、増減速しないように構成されている。
 前記起歪体2には歪み検出手段の一例である歪みゲージ16,17,18,19が貼り付けられており、長手方向に延びる側面にそれぞれ二枚ずつ貼り付けられている。
 次に、第1の実施形態のトルクセンサ1による作用を図3に基づいて説明する。まず、モータの駆動に伴って入力軸4がトルクT1で回転すると、入力歯車5もこれと一体になって回転する。続いて、この入力歯車5の回転を受けて、中間歯車7は中間軸6と一体に回転する。さらに、この中間歯車7の回転を受けて、出力歯車9も出力軸8と一体に回転する。
 ここで、出力軸8に回転抵抗T2が加わると、当該回転抵抗T2は出力歯車9から噛合中間歯車7へ伝達される。これにより、出力歯車9と噛合している中間歯車7の歯面は当該出力歯車9に押圧され、当該歯面にはその直交方向に押圧力F1が作用する。一方、入力歯車5に噛合してる中間歯車7の歯面は当該入力歯車5に押圧され、当該歯面にはその直交方向に押圧力F2が作用する。そのため、中間歯車7には押圧力F1と押圧力F2との合力F1+F2が作用し、当該中間歯車7を保持する中間軸6にも合力F1+F2が作用する。
 また、前記入力歯車5、中間歯車7および出力歯車9の中心点は起歪体2の長手方向側面と平行に延びる直線Lの線上に配置されており、前記中間歯車7と出力歯車9の噛合点、および中間歯車7と入力歯車5の噛合点も当該直線Lの線上に位置する。つまり、押圧力F1および押圧力F2の作用点は当該直線Lの線上に位置する。しかも、中間歯車7は、押圧力F1の作用線と当該直線Lとが成す角、および押圧力F2の作用線と当該直線Lとが成す角は等しくなるように構成されている。そのため、合力F1+F2は起歪体2の長手方向側面に直交する方向に作用する。従って、起歪体2には合力F1+F2が曲げモーメントとして作用し、当該起歪体2は固定端2bを支点として歪む。この起歪体2の歪みを歪みゲージ16,17,18,19で検出することにより、トルクを検出することができる。
 前述した第1の実施形態のトルクセンサ1においては、遊星歯車機構を備えるがため出力トルクを増幅せざるを得ない従来のトルクセンサとは異なり、出力トルクは増幅しないので回転抵抗も増大しない。そのため、起歪体2には増幅されずに出力されたトルクに応じた回転抵抗が作用するので、低トルクを検出することができる。しかも、合力F1+F2が起歪体2の長手方向側面に直交する方向に作用するように構成されている。そのため、小さな曲げモーメントであっても起歪体2を歪ませることができるので、低トルクを精度良く検出することができる。また、三個の歯車を一列に配置しただけの歯車機構であり、遊星歯車機構を備えるトルクセンサと比較して、部品点数を少なくすることができる。さらに、入力歯車5および出力歯車7は起歪体2に内包されるように配置されているので、トルクセンサ1を小型化することができる。
(第2の実施形態)
 以下、図4ないし図6に基づいて本発明の第2の実施形態を説明する。ここで、第2の実施形態のトルクセンサ21は、前述した第1の実施形態のトルクセンサ1の起歪体2を縦に配置して、これに伴い各種構成部品の配置を変更したものである。
 前記トルクセンサ21は、図4および図5に示すように、ロバーバル型の空洞穴222aが形成された起歪体22を有しており、この起歪体22はその長手方向側面が詳細を後述する中間軸26と同一方向に延びるように配置されている。また、この起歪体22の上端には固定端22bが一体成形されており、ハウジング23に固定されている。
 また、トルクセンサ21は、駆動源の一例であるモータ(図示せず)の駆動に伴い回転するとともに、起歪体22の長手方向側面と同一方向に延びる入力軸24を有している。この入力軸24にはこれと一体に回転可能に入力歯車25が取付けられている。
 前記起歪体22の上端には前記入力歯車25と噛合する第一中間歯車27aが配置されており、一方下端には第二中間歯車27bが配置されている。これら中間歯車27a,27bは、起歪体22の上端および下端を貫いて当該起歪体22にベアリング30,31を介して回転自在に保持された中間軸26に一体に回転可能に取付けられており、前記入力軸24の回転駆動に伴い回転するように構成されている。
 また、前記第二中間歯車27bには出力歯車29が噛合してある。この出力歯車29は、ハウジング23にベアリング32,33を介して回転自在に保持された出力軸28に一体に回転可能に取付けられており、前記入力軸24の回転駆動に伴い回転するように構成されている。この構成により、前記入力軸24の回転駆動は、第一中間歯車27aおよび第二中間歯車27bを介して出力軸28に出力される。ここで、これら入力歯車25、第一中間歯車27a、第二中間歯車27b、および出力歯車29は、歯すじが回転軸に平行な平歯車であり、これらを歯数の異なるものに変更することで、出力軸28に出力される回転駆動は、入力軸24の回転駆動に対して増速あるいは減速を自在に設定することが可能である。なお、トルクセンサ21においては、入力歯車25および出力歯車29の歯数は同一であり、増減速しないように構成されている。
 前記起歪体2には、図4および図5に示すように、歪み検出手段の一例である歪みゲージ34,35,36,37が貼り付けられており、長手方向に延びる側面にそれぞれ二枚ずつ貼り付けられている。
 次に、第2の実施形態のトルクセンサ21による作用を図6(a),(b)に基づいて説明する。まず、図6(a)に示すように、モータの駆動に伴って入力軸24がトルクT1で正回転すると、入力歯車25もこれと一体になって回転する。続いて、この入力歯車25の回転を受けて、第一中間歯車27および第二中間歯車は中間軸26と一体に回転する。さらに、図6(b)に示すように、この第二中間歯車27bの回転を受けて、出力歯車29も出力軸28と一体に回転する。
 ここで、図6(b)に示すように、出力軸28に回転抵抗T2が加わると、当該回転抵抗T2は出力歯車29から第一中間歯車27aおよび第二中間歯車27bへ伝達される。このとき、出力歯車29と噛合している第二中間歯車27bの歯面は当該出力歯車29に押圧され、当該歯面にはその直交方向に押圧力F1が作用する。一方、図6(a)に示すように、入力歯車25に噛合してる第一中間歯車27aの歯面は当該入力歯車25に押圧され、当該歯面にはその直交方向に押圧力F2が作用する。そのため、第一中間歯車27aおよび第二中間歯車27bを保持する中間軸26には押圧力F1と押圧力F2との合力F1+F2が作用する。
 また、前記入力歯車25および第一中間歯車27aの中心点、並びに第二中間歯車27bおよび出力歯車29の中心点は、起歪体22の長手方向側面の幅方向に平行な直線Lの線上に配置されている。そのため、前記第二中間歯車27bと出力歯車29の噛合点、および第一中間歯車27aと入力歯車25の噛合点も当該直線Lの線上に位置する。つまり、押圧力F1および押圧力F2の作用点は当該直線Lの線上に位置する。しかも、これら第一中間歯車27aおよび第二中間歯車27bは、押圧力F1の作用線と当該直線とが成す鋭角、および押圧力F2の作用線と当該直線Lとが成す鋭角は等しくなるように構成されている。そのため、合力F1+F2は起歪体22の長手方向側面に直交する方向に作用する。従って、起歪体2には合力F1+F2が曲げモーメントとして作用し、当該起歪体22は固定端22bを支点として歪む。この起歪体2の歪みを歪みゲージ34,35,36,37で検出することにより、トルクを検出することができる。
(第3の実施形態)
 以下、図7に基づいて本発明の第3の実施形態を説明する。ここで、第3の実施形態のトルクセンサ41は、第1の実施形態ののトルクセンサ1において、入力歯車5、中間歯車7、および出力歯車9に代えて、スプロケット45,47,49を用いたものである
 図7において、41はトルクセンサであり、入力軸44と一体に回転可能に入力スプロケット45が取付けられている。一方、出力軸48にもこれと一体に回転可能に出力スプロケット49が取付けられている。これらスプロケット45,49にはチェーン50が巻けられており、入力軸44の回転駆動が出力軸48へ伝達可能に構成されている。また、前記チェーン50の外輪側には、中間軸46に一体に回転可能に取付けられる中間スプロケット47が配置されており、当該チェーン50を案内するように噛合している。
 第3の実施形態のトルクセンサ41においては、図7に示すように、モータの駆動に伴って入力軸44がトルクT1で回転すると、入力スプロケット45もこれと一体になって回転する。これを受け、チェーン50は循環移動するとともに、出力スプロケット49は従動する。このとき、チェーン50の外輪側に配置されている中間スプロケット47もチェーン50の循環移動に伴い回転する。ここで、出力軸48に回転抵抗T2を加えると、当該回転抵抗はチェーン50を介して中間スプロケット47に伝達される。このとき、中間スプロケット47の歯面には押圧力F1が作用する。さらに、この反作用がチェーン50を介して中間スプロケット47の他の歯面に作用し、当該歯面には押圧力F2が作用する。そのため、中間スプロケット47を保持する中間軸46には押圧力F1とF2との合力F1+F2が作用する。従って、起歪体2には合力F1+F2が曲げモーメントとして作用し、当該起歪体2は固定端を支点として歪む。この起歪体2の歪みを歪みゲージ16,17,18,19で検出することにより、トルクを検出することができる。
(第4の実施形態)
 前述の第1、第2および第3の実施形態のトルクセンサ1,21、41においては、中間歯車7,27a,27b、あるいは中間スプロケット47は、起歪体2、22にベアリングを介して回転自在に保持された中間軸6,26に、一体に回転可能に取付けられている。ここで、第4の実施形態のトルクセンサ81においては、図8に示すように、中間軸86は起歪体2に固定されており、これに伴い中間歯車87がベアリング88,89を介して当該中間軸86に回転自在に取付けられている。このように構成しても第1の実施形態のトルクセンサ1と同様の効果を得ることができる。
 なお、第1および第2の実施形態のトルクセンサ1,21においては、入力軸4,24および入力歯車5,25を排除して中間軸6あるいは中間軸26がモータにより直接駆動されように構成してもよい。この場合、中間軸6,26には、図3および図6に示す押圧力F2は作用しないが、押圧力F1が曲げモーメントとして作用する。そのため、起歪体2,22は歪むので、当該歪み検出することにより、トルクを検出することがきる。

1 トルクセンサ
2 起歪体
2a 空洞穴
2b 固定端
2c 切欠部
2d 上方軸取付部
2e 下方軸取付部
2f ピン挿入孔
3 ハウジング
3a 上蓋
3b 下蓋
3c 有底穴
3d 有底穴
4 入力軸
5 入力歯車
6 中間軸
7 中間歯車
8 出力軸
9 出力歯車
10 ベアリング
11 ベアリング
12 ベアリング
13 ベアリング
14 ベアリング
15 ベアリング
16 歪みゲージ
17 歪みゲージ
18 歪みゲージ
19 歪みゲージ

21 トルクセンサ
22 起歪体
22a 空洞穴
22b 固定端
23 ハウジング
24 入力軸
25 入力歯車
26 中間軸
27a 第一中間歯車
27b 第二中間歯車
28 出力軸
29 出力歯車
30 ベアリング
31 ベアリング
32 ベアリング
33 ベアリング
34 歪みゲージ
35 歪みゲージ
36 歪みゲージ
37 歪みゲージ

41 トルクセンサ
44 入力軸
45 入力スプロケット
46 中間軸
47 中間スプロケット
48 出力軸
49 出力スプロケット
50 チェーン

81 トルクセンサ
86 中間軸
87 中間歯車
88 ベアリング
89 ベアリング

Claims (5)

  1.  駆動源の駆動に伴って回転する入力軸と、この入力軸の回転駆動に伴って回転する出力軸と、この入力軸の回転駆動を出力軸に伝達可能な回転伝達手段と、この回転伝達手段を回転自在に支持するとともに、当該回転伝達手段を介して作用する出力軸の回転抵抗に応じて歪む起歪体と、この起歪体の歪みを検出する歪み検出手段とを備えることを特徴とするトルクセンサ。
  2.  前記回転伝達手段が中間歯車であって、前記入力軸にこれと一体に回転可能に入力歯車を取付けるとともに、前記出力軸にもこれと一体に回転可能に出力歯車を取付けて、これら入力歯車と出力歯車とに中間歯車を噛合させて入力軸の回転駆動を出力軸へ伝達可能とし、かつ前記起歪体に中間歯車を回転自在に支持したことを特徴とする請求項1に記載のトルクセンサ。
  3.  前記回転伝達手段が中間スプロケットであって、前記入力軸にこれと一体に回転可能に入力スプロケットを取付けるとともに、前記出力軸にもこれと一体に回転可能に出力スプロケットを取付けて、これらスプロケットにチェーンを巻き掛けて入力軸の回転駆動を出力軸へ伝達可能とし、かつ前記起歪体に中間スプロケットを回転自在に支持するとともに、当該中間スプロケットを当該チェーンに噛合させたことを特徴とする請求項1に記載のトルクセンサ。
  4.  前記起歪体にはロバーバル型の空洞穴が穿設されていることを特徴とする請求項1ないし請求項3の何れかに記載のトルクセンサ。
  5.  前記起歪体の空洞穴に入力歯車または入力スプロケットを配置するとともに、当該起歪体に空洞穴と連通する切欠部を形成して、この切欠部に前記中間歯車または中間スプロケットを配置したことを特徴とする請求項4に記載のトルクセンサ。
PCT/JP2009/060613 2009-06-10 2009-06-10 トルクセンサ WO2010143285A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2009/060613 WO2010143285A1 (ja) 2009-06-10 2009-06-10 トルクセンサ
SG2011088051A SG176279A1 (en) 2009-06-10 2009-06-10 Torque sensor
JP2009529335A JP4677043B2 (ja) 2009-06-10 2009-06-10 トルクセンサ
CN200980159788.8A CN102803913B (zh) 2009-06-10 2009-06-10 转矩传感器
KR1020117027495A KR101306639B1 (ko) 2009-06-10 2009-06-10 토크센서

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/060613 WO2010143285A1 (ja) 2009-06-10 2009-06-10 トルクセンサ

Publications (1)

Publication Number Publication Date
WO2010143285A1 true WO2010143285A1 (ja) 2010-12-16

Family

ID=43308553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060613 WO2010143285A1 (ja) 2009-06-10 2009-06-10 トルクセンサ

Country Status (5)

Country Link
JP (1) JP4677043B2 (ja)
KR (1) KR101306639B1 (ja)
CN (1) CN102803913B (ja)
SG (1) SG176279A1 (ja)
WO (1) WO2010143285A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116524A (ja) * 2015-12-23 2017-06-29 健騰精密機電股▲ふん▼有限公司 軸方向回転式トルク検出器
JP2018503828A (ja) * 2015-01-29 2018-02-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 回転可能に支持されたシャフトのトルクを間接的に検出するセンサ装置
JP2018091832A (ja) * 2016-11-30 2018-06-14 健騰精密機電股▲ふん▼有限公司 軸方向回転式トルク検出器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130096823A (ko) 2012-02-23 2013-09-02 엘지전자 주식회사 태양 전지 모듈

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184532U (ja) * 1984-11-07 1986-06-04
JPH0735630A (ja) * 1993-07-21 1995-02-07 Kobe Steel Ltd スリップ判定装置
JPH08114494A (ja) * 1994-10-18 1996-05-07 Yamato Scale Co Ltd 質量又は重量計量装置
JPH1062272A (ja) * 1996-08-26 1998-03-06 Shimpo Ind Co Ltd 遊星歯車式変速機の負荷トルク検出装置
JP2003307461A (ja) * 2002-04-16 2003-10-31 Teac Corp トルク検出装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640288B2 (ja) * 1973-05-30 1981-09-19
JPS5023276A (ja) * 1973-06-29 1975-03-12
JPS529479A (en) * 1975-07-07 1977-01-25 Haaku Inc Torque measuring device for gear train
JPS5666719A (en) * 1979-11-05 1981-06-05 Yasuda Seisakusho:Kk Detector for delivered power
JPS58189535A (ja) * 1982-04-30 1983-11-05 Nissan Motor Co Ltd トルク計測方法
JPS6035233A (ja) * 1983-08-06 1985-02-23 Kataoka Kikai Seisakusho:Kk トルク検出方法及び巻取トルク検出装置
JPS6373127A (ja) * 1986-09-16 1988-04-02 Nishimura Seisakusho:Kk トルク検出機構
JP2556095Y2 (ja) * 1987-12-29 1997-12-03 日本輸送機 株式会社 電気式パワーステアリングにおけるトルク検出装置
JPH0731090B2 (ja) * 1990-05-22 1995-04-10 山陽オーバルメンテナンス株式会社 トルクリミッタ
JP3072481B2 (ja) * 1998-05-25 2000-07-31 本田技研工業株式会社 駆動力補助装置付き自転車
TW507066B (en) * 2000-08-09 2002-10-21 Tanita Seisakusho Kk Balance composed of load sensor unit with stopper mechanism
JP2003065834A (ja) * 2001-08-29 2003-03-05 Shimadzu Corp 電子天びん
NL1023681C2 (nl) * 2003-06-17 2004-12-20 Spinpower B V Overbrengingsstelsel, en werkwijze voor het meten van een aandrijfkracht daarin.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184532U (ja) * 1984-11-07 1986-06-04
JPH0735630A (ja) * 1993-07-21 1995-02-07 Kobe Steel Ltd スリップ判定装置
JPH08114494A (ja) * 1994-10-18 1996-05-07 Yamato Scale Co Ltd 質量又は重量計量装置
JPH1062272A (ja) * 1996-08-26 1998-03-06 Shimpo Ind Co Ltd 遊星歯車式変速機の負荷トルク検出装置
JP2003307461A (ja) * 2002-04-16 2003-10-31 Teac Corp トルク検出装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503828A (ja) * 2015-01-29 2018-02-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 回転可能に支持されたシャフトのトルクを間接的に検出するセンサ装置
US10184848B2 (en) 2015-01-29 2019-01-22 Robert Bosch Gmbh Sensor arrangement for indirect detection of a torque of a rotatably mounted shaft
JP2017116524A (ja) * 2015-12-23 2017-06-29 健騰精密機電股▲ふん▼有限公司 軸方向回転式トルク検出器
JP2018091832A (ja) * 2016-11-30 2018-06-14 健騰精密機電股▲ふん▼有限公司 軸方向回転式トルク検出器

Also Published As

Publication number Publication date
JPWO2010143285A1 (ja) 2012-11-22
KR20120018330A (ko) 2012-03-02
CN102803913B (zh) 2014-09-10
CN102803913A (zh) 2012-11-28
KR101306639B1 (ko) 2013-09-10
JP4677043B2 (ja) 2011-04-27
SG176279A1 (en) 2012-01-30

Similar Documents

Publication Publication Date Title
JP5686876B1 (ja) 変速制御システム
WO2010089796A1 (ja) ギヤ付きモータアセンブリ
CN105523138B (zh) 自行车用辅助单元
JP6453127B2 (ja) 自転車のドライブユニット
JP5628880B2 (ja) 駆動ユニット
WO2010143285A1 (ja) トルクセンサ
KR20140022820A (ko) 토크 감지 유닛이 구비된 파워 렌치
JP2014019181A (ja) 自転車用駆動ユニット
JP2017095058A (ja) 自転車用ドライブユニット
JP2007230549A (ja) ステアリング装置
US20180180153A1 (en) Reducer module with real-time torque sensing
JP2009162268A (ja) シフトレンジ切替装置
WO2018123561A1 (ja) トルク検出装置
JP4203797B2 (ja) 電動パワーステアリング装置
CN108068982B (zh) 检测转矩、控制混合驱动的车辆的附加驱动装置的装置
JP4982599B2 (ja) ディファレンシャル装置
JPH0399240A (ja) トルク検出装置
JP2012040656A (ja) 自動ねじ締め機
JP2006242233A (ja) 差動歯車装置
JP2006283874A (ja) 回転伝動装置
JP2006275274A (ja) 回転伝動装置
JP2007292225A (ja) ブレーキユニット
JP2010023561A5 (ja)
JP4949888B2 (ja) 摩擦式差動遊星動力伝達装置
JP4346638B2 (ja) 自動車ブレーキスピードテスト用一方向クラッチ内蔵型減速機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159788.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2009529335

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845810

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117027495

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845810

Country of ref document: EP

Kind code of ref document: A1