WO2010140607A1 - 液体定量吐出方法および装置 - Google Patents
液体定量吐出方法および装置 Download PDFInfo
- Publication number
- WO2010140607A1 WO2010140607A1 PCT/JP2010/059315 JP2010059315W WO2010140607A1 WO 2010140607 A1 WO2010140607 A1 WO 2010140607A1 JP 2010059315 W JP2010059315 W JP 2010059315W WO 2010140607 A1 WO2010140607 A1 WO 2010140607A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reducing valve
- pressure reducing
- liquid
- flow path
- buffer tank
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C11/00—Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
- B05C11/10—Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
- B05C11/1002—Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
- B05C11/1034—Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves specially designed for conducting intermittent application of small quantities, e.g. drops, of coating material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/27—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/74—Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
- H01L24/741—Apparatus for manufacturing means for bonding, e.g. connectors
- H01L24/743—Apparatus for manufacturing layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/26—Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01019—Potassium [K]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01043—Technetium [Tc]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/2931—Diverse fluid containing pressure systems
- Y10T137/3115—Gas pressure storage over or displacement of liquid
- Y10T137/3118—Surge suppression
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/2931—Diverse fluid containing pressure systems
- Y10T137/3115—Gas pressure storage over or displacement of liquid
- Y10T137/3127—With gas maintenance or application
Definitions
- the present invention relates to a method and an apparatus for dispensing a liquid quantitatively by depressurizing a compressed gas supplied from a compressed gas source to a constant pressure and quantitatively distributing and dispensing the liquid material.
- the present invention relates to a liquid dispensing method and apparatus (precision dispenser) that can dispense and dispense liquid material with high accuracy.
- a conventional liquid dispensing apparatus dispenses and dispenses a liquid material by reducing the pressure of a compressed gas supplied from a compressed gas source to a constant pressure.
- this type of conventional apparatus has insufficient accuracy of dispensing / dispensing, and when bonding a semiconductor chip to a lead frame, a printed circuit board, etc., there is a problem such as chip separation due to insufficient discharge amount.
- There have been problems such as the occurrence of a short circuit due to an excessive discharge amount of the conductive adhesive.
- a pressure reducing valve for reducing the pressure of the compressed gas supplied from a compressed gas source
- a solenoid valve with a timer for controlling the passage amount of the pressure-reduced gas
- the gas supplied via the solenoid valve A dispensing nozzle that quantitatively distributes and dispenses the liquid material contained in the nozzle, and by directly pressurizing the liquid surface of the liquid material contained in the dispensing nozzle with the compressed air
- a buffer tank for storing compressed gas having a volume larger than the inner volume of the dispensing nozzle is provided in the middle of a pipe line extending from the pressure reducing valve to the electromagnetic valve.
- Patent Document 1 proposes characterized by (Patent Document 1).
- a coating apparatus for applying a coating agent in a syringe to a printed circuit board via a discharge nozzle by supplying compressed air of a predetermined pressure from a regulator communicating with a compressed air source to the syringe for a predetermined time by switching a discharge valve.
- a coating apparatus including a pressure tank that stores compressed air that is communicated and output to the regulator and supplies the compressed air to the discharge valve side (Patent Document 2).
- All of the above devices are provided with a buffer tank (pressure tank) to rapidly increase the pressure inside the syringe immediately after the discharge is opened. Due to the action of these tanks, a high pressure can be obtained even in a short discharge time as compared with an apparatus having no buffer tank. Therefore, a pressure for obtaining a desired discharge amount can be obtained in a short time. This enables high-tact discharge operations.
- a buffer tank pressure tank
- the required volume of the buffer tank needs to be, for example, 10 times or more the volume of the liquid storage container, which has been an obstacle to downsizing the apparatus.
- the present invention provides a liquid quantification that can distribute and dispense liquid materials with higher accuracy than conventional devices by minimizing the pressure reduction of the flow path for supplying compressed gas to the liquid storage container. It is an object to provide a discharge method and apparatus.
- the liquid fixed quantity discharge method of the present invention comprises the following technical means.
- a pressure reducing valve that depressurizes compressed gas supplied from a compressed gas source, a discharge valve that controls a passage amount of gas decompressed by the pressure reducing valve, and a pressure of gas supplied via the discharge valve.
- liquid quantitative discharge method using a liquid storage container that discharges liquid from the nozzle, and a device that is disposed between the pressure reducing valve and the discharge valve and has a buffer tank having a volume larger than the volume of the liquid storage container
- a part or all of the flow path communicating with the buffer tank and the storage container is smaller in diameter than the minimum inner diameter of the flow path communicating with the buffer tank and the pressure reducing valve.
- the pressure drop of the flow path for supplying the compressed gas to the liquid storage container that occurs when the pressure reducing valve is operated is reduced.
- in the first or second invention in the internal flow path of the discharge valve, by providing a portion having a smaller diameter than the minimum internal diameter in the flow path communicating the buffer tank and the pressure reducing valve, The pressure drop of the flow path for supplying the compressed gas to the liquid storage container that occurs when the pressure reducing valve is operated is reduced.
- the flow path length that communicates the buffer tank and the pressure reducing valve is greater than the flow path length that communicates the buffer tank and the liquid storage container.
- a short configuration reduces the pressure drop in the flow path for supplying the compressed gas to the liquid storage container that occurs when the pressure reducing valve is operated.
- the liquid generated when the pressure reducing valve is operated by further providing a second pressure reducing valve between the pressure reducing valve and the compressed gas source. It is characterized by reducing the pressure drop of the flow path for supplying the compressed gas to the storage container.
- the second buffer tank is further provided between the pressure reducing valve and the second pressure reducing valve, so that the liquid storage container generated when the pressure reducing valve is operated is provided. It is characterized by reducing the pressure drop in the flow path for supplying the compressed gas.
- a pressure reducing valve that depressurizes compressed gas supplied from a compressed gas source, a discharge valve that controls a passage amount of gas decompressed by the pressure reducing valve, and a pressure of gas supplied via the discharge valve.
- a liquid quantitative discharge device comprising: a liquid storage container that discharges liquid from a nozzle; and a buffer tank that is disposed between the pressure reducing valve and the discharge valve and that has a volume larger than the volume of the liquid storage container. And a flow rate resistance of a flow path communicating with the storage container is configured to be larger than a flow resistance of a flow path communicating between the buffer tank and the pressure reducing valve.
- a part or all of the flow path communicating with the buffer tank and the storage container is smaller than the minimum inner diameter of the flow path communicating with the buffer tank and the pressure reducing valve. It is characterized by doing.
- the internal flow path of the discharge valve is provided with a portion having a smaller diameter than the minimum internal diameter in the flow path communicating the buffer tank and the pressure reducing valve.
- the flow path length communicating the buffer tank and the pressure reducing valve is greater than the flow path length communicating the buffer tank and the liquid storage container. It is characterized by a short configuration.
- An eleventh aspect of the invention is characterized in that, in any of the seventh to tenth aspects of the invention, a second pressure reducing valve is provided between the pressure reducing valve and the compressed gas source.
- a second buffer tank is further provided between the pressure reducing valve and the second pressure reducing valve.
- a thirteenth invention is characterized in that, in any one of the seventh to twelfth inventions, the internal volume of the buffer tank is 1.5 times or more and less than 10 times the internal volume of the storage container. To do.
- the apparatus since the pressure reduction of the flow path for supplying the compressed gas to the liquid storage container can be minimized, distribution / dispensing can be performed with higher accuracy than in the conventional apparatus. In addition, since it is not necessary to make the buffer tank larger than necessary, the apparatus can be miniaturized. Furthermore, in the configuration in which a plurality of pressure reducing valves and / or buffer tanks are provided, it is possible to avoid giving pressure fluctuations due to the mechanical pressure adjusting operation of the pressure reducing valve directly to the liquid material in the storage container, and thus more stable. It is possible to supply pressure.
- the apparatus of the present invention includes a storage container 8 that communicates with a discharge port that discharges liquid and stores liquid, a pressure reducing valve 11 that decompresses compressed gas supplied from a compressed gas source 1, and A buffer tank 21 that stores compressed gas having a volume larger than the internal volume of the storage container 8, a discharge valve 9 that communicates or blocks the pressure reducing valve 11 and the storage container 8 via the buffer tank 21, and a discharge valve 9
- the timer 10 that controls the amount of gas that has been opened and closed and reduced in pressure is the main component.
- the liquid 20 is not discharged because the space 24 for applying pressure to the liquid 20 stored in the storage container 8 is open to the atmosphere.
- the discharge valve 9 causes the buffer tank 21 and the storage container 8 to communicate with each other and the space 24 is shut off from the atmosphere.
- air is supplied from the buffer tank 21 into the storage container 8.
- the liquid 20 is discharged from the nozzle 13 by increasing the pressure in the space 24.
- the pressure in the pipe 4 is temporarily reduced, which causes a pulsation. This problem becomes conspicuous as the liquid 20 is repeatedly ejected and the volume of the space 24 increases.
- the buffer tank 21 having a relatively large volume compared to the storage container 8 is provided, but also the flow resistance of the flow path connecting the buffer tank 21 and the storage container 8 is reduced. By increasing the pressure, a pressure drop in the flow path (downstream flow path) communicating the buffer tank 21 and the storage container 8 is prevented.
- a part of the inner diameter of the downstream flow path of the buffer tank 21 is smaller than the minimum inner diameter of the upstream flow path of the buffer tank 21, more specifically, the buffer A throttle (small diameter portion or orifice) is provided in the pipe 4, the discharge valve 9, and the pipe 7 constituting the flow path between the tank 21 and the liquid storage container 8, and the flow path between the buffer tank 21 and the compressed gas source 1 is provided. It is disclosed that a portion having a smaller diameter than the inner diameters of the pipeline 3, the pressure reducing valve 11, and the pipeline 2 is provided.
- the flow resistance of the downstream channel of the buffer tank 21 is sufficiently higher than the flow resistance of the upstream channel, for example, the equivalent hydraulic diameter and / or inner diameter of the downstream channel. It can also be realized by making the entire diameter smaller than that of the upstream flow path.
- the pressure drop in the buffer tank 21 can be reduced until the pressure reducing valve 11 is operated and the pressurized gas is supplied, and the desired pressure is stabilized in the space 24.
- the flow resistance of the flow path on the downstream side of the buffer tank 21 is adjusted to be optimal in consideration of the relationship between the speed at which the compressed gas can be supplied to the storage container 8 and the pressure drop of the flow path for supplying the compressed gas to the liquid storage container. To do.
- the length of the pipeline 3 is shorter than the total length of the pipelines 4 and 7 (for example, 2/3 to 1/2 or less). This is because the gas regulated when the discharge valve 9 is opened is supplied more smoothly by adopting such a configuration.
- FIG. 2 is a graph showing a change with time of the gas pressure in the pipe line 4 connecting the discharge valve 9 and the buffer tank 21.
- a curve c indicates a change in gas pressure in the conventional apparatus, and it takes Tc time until the gas pressure in the pipe line 4 returns to the initial state by the operation of the discharge valve 9.
- Curve b shows the change in gas pressure in the apparatus provided with the buffer tank. Although improvement is observed in the apparatus, the pressure change until the gas pressure in the pipe 4 returns to the initial state is relatively steep. It is drawn by a curve.
- Curve a is a change in the gas pressure in the pipeline 4 in the apparatus of the present invention, but it can be confirmed that the pressure reduction in the pipeline 4 is minimal.
- FIG. 3 is a graph showing the change with time of the gas pressure in the buffer tank 21.
- curve (c) shows the change in gas pressure in the conventional apparatus
- curve (b) shows the change in gas pressure in the apparatus provided with the buffer tank
- curve (a) shows the gas pressure in the apparatus of the present invention. Shows changes.
- a certain correlation is recognized between the change in the gas pressure in the buffer tank 21 and the change in the gas pressure in the pipe 4.
- the apparatus of the present invention can minimize the pressure drop in the flow path for supplying the compressed gas to the storage container 8, so that the liquid material can be more accurately compared to the conventional apparatus. Dispensing / dispensing can be controlled.
- the capacity of the buffer tank can be set in a range of 1.5 times to less than 10 times the internal volume of the storage container. If the size of the apparatus does not matter, the volume ratio between the buffer tank and the storage container may be set in the range of 10 to 100 times.
- a plurality of buffer tanks and / or pressure reducing valves may be provided.
- the discharge device of the present embodiment has the configuration shown in FIG. 1, and decompresses the compressed gas supplied from the compressed gas source 1 and the storage container (syringe) 8 communicating with the discharge port for discharging the liquid and storing the liquid.
- the main components are the valve 9 and the timer 10 that controls the passage amount of the decompressed gas by opening and closing the discharge valve 9.
- the pipes 2 to 4 and 7 connecting these components are all of the same pipe diameter selected in the range of ⁇ 1 to 10 mm.
- the length of the pipe line 3 is made shorter than the total length of the pipe lines 4 and 7. Although it actually differs depending on the pipe routing mode and the like, for example, it is disclosed that the length of the pipeline 3 is several tens of centimeters and the total length of the pipelines 4 and 7 is 1 m or more.
- the capacity of the storage container 8 of this embodiment is 1 to 500 cc, and the capacity of the buffer tank 21 is in the range of 1.5 times to less than 10 times that of the storage container 8.
- the dispensing nozzle having the storage container 8 and the nozzle 13 is mounted on, for example, an XYZ robot.
- a gas having a pressure of 3 kg / cm 2 is supplied from the compressed gas source 1, and the pressure is reduced to a selected constant pressure within a range of 0.3 to 1.0 kg / cm 2 by the pressure reducing valve 11. It is adjusted to do.
- the discharge side pipe diameter is configured to be smaller than the supply side pipe diameter for the buffer tank 21. More specifically, the discharge valve 9 on the discharge side of the buffer tank 21 is provided with a reduced portion having a tube diameter of 1 ⁇ m to 5 mm.
- the liquid material is discharged by executing a step of operating the discharge valve 9 and the pressure reducing valve 11 in conjunction with each other.
- the liquid material is dispensed and dispensed by performing the following steps. i) a process in which the air in the buffer tank 21 flows out by opening the discharge valve 9, and the pressure in the buffer tank 21 decreases; ii) a step in which the pressure reducing valve 11 detects that the pressure in the buffer tank 21 has decreased and starts supplying pressure into the buffer tank 21; iii) a step in which the pressure in the decompressed buffer tank is increased by the action of the pressure reducing valve
- the discharge device of the present embodiment has the configuration shown in FIG. 4, and has a configuration in which a second buffer tank 22, a second pressure reducing valve 12, and pipe lines 5 and 6 are further added to the discharge device of the first embodiment. is there.
- a plurality of buffer tanks are provided as in the second embodiment, it is possible to avoid the pressure fluctuation caused by the mechanical pressure regulating operation of the pressure reducing valves 11 and 12 being directly applied to the liquid material in the storage container 8. It is possible to supply a more stable pressure. This point will be supplementarily described below.
- the pressure reducing valve acts to regulate the primary pressure introduced into the pressure reducing valve inside the pressure reducing valve and convert it to a desired secondary pressure.
- a stable primary pressure is preferably introduced into the pressure reducing valve. This is because when the primary pressure introduced into the pressure reducing valve changes, the generated secondary pressure also varies, and the pressure applied to the liquid in the storage container also varies.
- stabilizing the primary pressure is an important factor for stabilizing the pressure applied to the liquid in the storage container.
- the primary pressure can be stabilized by providing a pressure reducing valve.
- the pressure reducing valves are continuously provided, when a pressure with variation is supplied from the upstream side, first, gas (air) is supplied from the primary side of the upstream side pressure reducing valve, and the reduced pressure is supplied to the upstream side pressure reducing valve. Output from the next side. At this time, the pressure output from the secondary side of the upstream pressure reducing valve is regulated to a variation in a range smaller than the variation in pressure supplied to the primary side. This reduced and regulated pressure is supplied to the primary side of the downstream pressure reducing valve. The air supplied to the primary side of the downstream pressure reducing valve is further decompressed by the downstream pressure reducing valve and output from the secondary side.
- the pressure variation output from the secondary side of the downstream pressure reducing valve is regulated to a range smaller than the pressure variation in the upstream pressure reducing valve.
- the configuration in which the pressure reducing valve is connected can supply more stable pressure. Therefore, it is possible to obtain a constant pressure regulation effect even in a configuration in which only the second pressure reducing valve is added without providing the second buffer tank.
- the pressure in the downstream flow path of the buffer tank 22 can be further stabilized.
- the size of the apparatus is larger than that of the apparatus of the first embodiment, but the liquid material can be distributed and dispensed with higher accuracy.
- the present invention is not limited to the discharge / application of a liquid material such as a conductive adhesive, but can be applied to all liquid transport purposes.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Coating Apparatus (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Jet Pumps And Other Pumps (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Ink Jet (AREA)
Abstract
Description
第1の発明は、圧縮気体源より供給される圧縮気体を減圧する減圧弁と、減圧弁で減圧された気体の通過量を制御する吐出弁と、吐出弁を経て供給される気体の押圧によってノズルから液体を吐出する液体貯留容器と、減圧弁と吐出弁との間に配置され、液体貯留容器の容積よりも大きい容積を有するバッファータンクとを備える装置を用いた液体定量吐出方法において、前記バッファータンクと前記貯留容器とを連通する流路の流動抵抗を、前記バッファータンクと前記減圧弁とを連通する流路の流動抵抗よりも大きくすることにより前記減圧弁の作動時に生ずる前記液体貯留容器に圧縮気体を供給する流路の圧力低下を軽減することを特徴とする液体定量吐出方法である。
第2の発明は、第1の発明において、前記バッファータンクと前記貯留容器と連通する流路の一部または全部を前記バッファータンクと前記減圧弁とを連通する流路の最小内径よりも小径とすることで、前記減圧弁の作動時に生ずる前記液体貯留容器に圧縮気体を供給する流路の圧力低下を軽減することを特徴とする。
第3の発明は、第1または2の発明において、前記吐出弁の内部流路に、前記バッファータンクと前記減圧弁とを連通する流路中の最小内径よりも小径の部分を設けることで、前記減圧弁の作動時に生ずる前記液体貯留容器に圧縮気体を供給する流路の圧力低下を軽減することを特徴とする。
第4の発明は、第1ないし3のいずれかの発明において、前記バッファータンクと前記減圧弁とを連通する流路長を、前記バッファータンクと前記液体貯留容器とを連通する流路長よりも短く構成することで、前記減圧弁の作動時に生ずる前記液体貯留容器に圧縮気体を供給する流路の圧力低下を軽減することを特徴とする。
第5の発明は、第1ないし4のいずれかの発明において、さらに、前記減圧弁と前記圧縮気体源との間に第2の減圧弁を設けることで、前記減圧弁の作動時に生ずる前記液体貯留容器に圧縮気体を供給する流路の圧力低下を軽減することを特徴とする。
第6の発明は、第5の発明において、さらに、前記減圧弁と前記第2の減圧弁との間に第2のバッファータンクを設けることで、前記減圧弁の作動時に生ずる前記液体貯留容器に圧縮気体を供給する流路の圧力低下を軽減することを特徴とする。
第7の発明は、圧縮気体源より供給される圧縮気体を減圧する減圧弁と、減圧弁で減圧された気体の通過量を制御する吐出弁と、吐出弁を経て供給される気体の押圧によってノズルから液体を吐出する液体貯留容器と、減圧弁と吐出弁との間に配置され、液体貯留容器の容積よりも大きい容積を有するバッファータンクとを備える液体定量吐出装置であって、前記バッファータンクと前記貯留容器とを連通する流路の流動抵抗が、前記バッファータンクと前記減圧弁とを連通する流路の流動抵抗よりも大きくなるように構成されることを特徴とする液体定量吐出装置である。
第8の発明は、第7の発明において、前記バッファータンクと前記貯留容器と連通する流路の一部または全部を前記バッファータンクと前記減圧弁とを連通する流路の最小内径よりも小径とすることを特徴とする。
第9の発明は、第7または8の発明において、前記吐出弁の内部流路に、前記バッファータンクと前記減圧弁とを連通する流路中の最小内径よりも小径の部分を設けたことを特徴とする。
第10の発明は、第7ないし9のいずれかの発明において、前記バッファータンクと前記減圧弁とを連通する流路長を、前記バッファータンクと前記液体貯留容器とを連通する流路長よりも短く構成したことを特徴とする。
第11の発明は、第7ないし10のいずれかの発明において、さらに、前記減圧弁と前記圧縮気体源との間に第2の減圧弁を設けたことを特徴とする。
第12の発明は、第11の発明において、さらに、前記減圧弁と前記第2の減圧弁との間に第2のバッファータンクを設けたことを特徴とする。
第13の発明は、第7ないし12のいずれかの発明において、前記バッファータンクの内容積が、前記貯留容器の内容積の1.5倍以上~10倍未満の大きさであることを特徴とする。
また、バッファータンクを必要以上に大きくする必要がなくなるため、装置の小型化が可能となる。
さらに、減圧弁および/またはバッファータンクを複数設けた構成においては、減圧弁の機械的な調圧動作による圧力の揺らぎを直接的に貯留容器内の液材に与えること回避できるので、より安定した圧力を供給することが可能である。
バッファータンク21の下流側流路の流動抵抗は、貯留容器8に圧縮気体を供給可能な速度と液体貯留容器に圧縮気体を供給する流路の圧力降下の関係を考慮し、最適となるよう調整する。
本実施例の装置では、例えば、圧縮気体源1から3kg/cm2の圧力の気体を供給し、減圧弁11により0.3~1.0kg/cm2範囲内の選択された一定圧力に減圧するように調整している。
i)吐出弁9を開くことによりバッファータンク21内のエアが流出し、バッファータンク21内の圧力が低下する工程、
ii)バッファータンク21内の圧力が減少したことを減圧弁11が検知してバッファータンク21内への圧力供給を開始する工程、
iii)減圧したバッファータンク内の圧力が減圧弁の作用により上昇する工程、
実施例2のようにバッファータンクを複数設けた構成においては、減圧弁11,12の機械的な調圧動作による圧力の揺らぎを直接的に貯留容器8内の液材に与えることを回避できるので、より安定した圧力を供給することが可能である。この点について以下に補足の説明を行う。
したがって、第2のバッファータンクを設けず、第2の減圧弁のみを増設する構成でも一定の整圧効果を得ることは可能である。しかし、第2の減圧弁で整圧されたエアを第2のバッファータンク22に供給することにより、バッファータンク22の下流側流路の圧力をさらに安定させることが可能となる。
2~7 管路
8 貯留容器
9 吐出弁(電磁弁)
10 タイマー
11 減圧弁(第1の減圧弁)
12 第2の減圧弁
13 ノズル
20 液体
21 バッファータンク(第1のバッファータンク)
22 第2のバッファータンク
24 空間
Claims (13)
- 圧縮気体源より供給される圧縮気体を減圧する減圧弁と、減圧弁で減圧された気体の通過量を制御する吐出弁と、吐出弁を経て供給される気体の押圧によってノズルから液体を吐出する液体貯留容器と、減圧弁と吐出弁との間に配置され、液体貯留容器の容積よりも大きい容積を有するバッファータンクとを備える装置を用いた液体定量吐出方法において、
前記バッファータンクと前記貯留容器とを連通する流路の流動抵抗を、前記バッファータンクと前記減圧弁とを連通する流路の流動抵抗よりも大きくすることにより前記減圧弁の作動時に生ずる前記液体貯留容器に圧縮気体を供給する流路の圧力低下を軽減することを特徴とする液体定量吐出方法。 - 前記バッファータンクと前記貯留容器と連通する流路の一部または全部を前記バッファータンクと前記減圧弁とを連通する流路の最小内径よりも小径とすることで、前記減圧弁の作動時に生ずる前記液体貯留容器に圧縮気体を供給する流路の圧力低下を軽減することを特徴とする請求項1の液体定量吐出方法。
- 前記吐出弁の内部流路に、前記バッファータンクと前記減圧弁とを連通する流路中の最小内径よりも小径の部分を設けることで、前記減圧弁の作動時に生ずる前記液体貯留容器に圧縮気体を供給する流路の圧力低下を軽減することを特徴とする請求項1または2の液体定量吐出方法。
- 前記バッファータンクと前記減圧弁とを連通する流路長を、前記バッファータンクと前記液体貯留容器とを連通する流路長よりも短く構成することで、前記減圧弁の作動時に生ずる前記液体貯留容器に圧縮気体を供給する流路の圧力低下を軽減することを特徴とする請求項1ないし3のいずれかの液体定量吐出方法。
- さらに、前記減圧弁と前記圧縮気体源との間に第2の減圧弁を設けることで、前記減圧弁の作動時に生ずる前記液体貯留容器に圧縮気体を供給する流路の圧力低下を軽減することを特徴とする請求項1ないし4のいずれかの液体定量吐出方法。
- さらに、前記減圧弁と前記第2の減圧弁との間に第2のバッファータンクを設けることで、前記減圧弁の作動時に生ずる前記液体貯留容器に圧縮気体を供給する流路の圧力低下を軽減することを特徴とする請求項5の液体定量吐出方法。
- 圧縮気体源より供給される圧縮気体を減圧する減圧弁と、減圧弁で減圧された気体の通過量を制御する吐出弁と、吐出弁を経て供給される気体の押圧によってノズルから液体を吐出する液体貯留容器と、減圧弁と吐出弁との間に配置され、液体貯留容器の容積よりも大きい容積を有するバッファータンクとを備える液体定量吐出装置であって、
前記バッファータンクと前記貯留容器とを連通する流路の流動抵抗が、前記バッファータンクと前記減圧弁とを連通する流路の流動抵抗よりも大きくなるように構成されることを特徴とする液体定量吐出装置。 - 前記バッファータンクと前記貯留容器と連通する流路の一部または全部を前記バッファータンクと前記減圧弁とを連通する流路の最小内径よりも小径とすることを特徴とする請求項7の液体定量吐出装置。
- 前記吐出弁の内部流路に、前記バッファータンクと前記減圧弁とを連通する流路中の最小内径よりも小径の部分を設けたことを特徴とする請求項7または8の液体定量吐出装置。
- 前記バッファータンクと前記減圧弁とを連通する流路長を、前記バッファータンクと前記液体貯留容器とを連通する流路長よりも短く構成したことを特徴とする請求項7ないし9のいずれかの液体定量吐出装置。
- さらに、前記減圧弁と前記圧縮気体源との間に第2の減圧弁を設けたことを特徴とする請求項7ないし10のいずれかの液体定量吐出装置。
- さらに、前記減圧弁と前記第2の減圧弁との間に第2のバッファータンクを設けたことを特徴とする請求項11の液体定量吐出装置。
- 前記バッファータンクの内容積が、前記貯留容器の内容積の1.5倍以上~10倍未満の大きさであることを特徴とする請求項7ないし12のいずれかの液体定量吐出装置。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG2011088291A SG176287A1 (en) | 2009-06-03 | 2010-06-02 | Method and device for discharging a fixed amount of liquid |
PL10783389T PL2438998T3 (pl) | 2009-06-03 | 2010-06-02 | Sposób i urządzenie do wyładowywania ustalonej ilości cieczy |
US13/375,814 US8770439B2 (en) | 2009-06-03 | 2010-06-02 | Method and device for discharging a fixed amount of liquid |
EP10783389.9A EP2438998B1 (en) | 2009-06-03 | 2010-06-02 | Method and device for discharging a fixed amount of liquid |
RU2011154140/05A RU2519452C2 (ru) | 2009-06-03 | 2010-06-02 | Способ и устройство для выпуска фиксированного количества жидкости |
KR1020127000123A KR101683660B1 (ko) | 2009-06-03 | 2010-06-02 | 액체 정량 토출 방법 및 장치 |
CN201080023891.2A CN102448620B (zh) | 2009-06-03 | 2010-06-02 | 液体定量排出方法以及装置 |
ES10783389T ES2750244T3 (es) | 2009-06-03 | 2010-06-02 | Método y dispositivo para descargar una cantidad fija de líquido |
HK12107066A HK1166288A1 (en) | 2009-06-03 | 2012-07-18 | Method and device for discharging a fixed amount of liquid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-133587 | 2009-06-03 | ||
JP2009133587A JP5460132B2 (ja) | 2009-06-03 | 2009-06-03 | 液体定量吐出方法および装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010140607A1 true WO2010140607A1 (ja) | 2010-12-09 |
Family
ID=43297740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/059315 WO2010140607A1 (ja) | 2009-06-03 | 2010-06-02 | 液体定量吐出方法および装置 |
Country Status (14)
Country | Link |
---|---|
US (1) | US8770439B2 (ja) |
EP (1) | EP2438998B1 (ja) |
JP (1) | JP5460132B2 (ja) |
KR (1) | KR101683660B1 (ja) |
CN (1) | CN102448620B (ja) |
ES (1) | ES2750244T3 (ja) |
HK (1) | HK1166288A1 (ja) |
HU (1) | HUE046783T2 (ja) |
MY (1) | MY166368A (ja) |
PL (1) | PL2438998T3 (ja) |
RU (1) | RU2519452C2 (ja) |
SG (2) | SG10201401512QA (ja) |
TW (1) | TWI522178B (ja) |
WO (1) | WO2010140607A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6541489B2 (ja) | 2015-07-24 | 2019-07-10 | 武蔵エンジニアリング株式会社 | 液体材料吐出装置 |
JP6778426B2 (ja) * | 2016-09-20 | 2020-11-04 | 武蔵エンジニアリング株式会社 | 液体材料吐出装置 |
KR102283820B1 (ko) * | 2019-10-08 | 2021-07-30 | 주식회사 지오테크놀로지 | 미세 정량 토출용 디스펜서 |
CN110976213B (zh) * | 2019-12-19 | 2020-11-24 | 广东博智林机器人有限公司 | 打胶机器人的收胶控制方法及打胶机器人 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0215588A (ja) | 1988-07-01 | 1990-01-19 | Sawanishi Shikimono Kk | チューブマット式ホットカーペット用ロープの製造法 |
JPH0217264U (ja) * | 1989-04-01 | 1990-02-05 | ||
JPH0215588Y2 (ja) * | 1983-02-28 | 1990-04-26 | ||
JPH0966251A (ja) | 1995-08-31 | 1997-03-11 | Sanyo Electric Co Ltd | 塗布装置 |
JP2002361146A (ja) * | 2001-06-07 | 2002-12-17 | Fuji Photo Film Co Ltd | ビード型塗布装置及びビード型塗布方法 |
JP2006308105A (ja) * | 2006-06-12 | 2006-11-09 | Musashi Eng Co Ltd | 液体定量吐出バルブ |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3504825A (en) * | 1966-08-15 | 1970-04-07 | Gen Motors Corp | Pneumatic control of pressure pouring ladle |
US3736291A (en) * | 1971-10-14 | 1973-05-29 | H Vogel | Poly(arylene oxides) |
SU957986A1 (ru) * | 1981-02-03 | 1982-09-15 | Институт механики металлополимерных систем АН БССР | Устройство дл нанесени покрытий на издели |
SU1085643A1 (ru) * | 1982-10-25 | 1984-04-15 | Институт механики металлополимерных систем АН БССР | Устройство дл нанесени покрытий на издели |
SU1219167A1 (ru) * | 1983-11-28 | 1986-03-23 | Shevchuk Mikhail S | Устройство дл нанесени жидкого покрывающего состава на ленточный материал |
JPH0629184Y2 (ja) * | 1988-07-15 | 1994-08-10 | 本田技研工業株式会社 | 自動2輪車のリヤトランク装置 |
JPH063176A (ja) * | 1992-06-17 | 1994-01-11 | Kenichi Fujiwara | 定量吐出装置 |
KR100644502B1 (ko) * | 1999-05-21 | 2006-11-10 | 마츠시타 덴끼 산교 가부시키가이샤 | 점성재료 도포장치 |
JP2002361144A (ja) * | 2001-06-05 | 2002-12-17 | Tdk Corp | 液体材料吐出装置 |
JP2004105968A (ja) * | 2003-12-22 | 2004-04-08 | Musashi Eng Co Ltd | 液体吐出装置 |
WO2008059909A1 (fr) * | 2006-11-15 | 2008-05-22 | Musashi Engineering, Inc. | Procédé et dispositif pour décharger une matière liquide |
DE102006061370A1 (de) * | 2006-12-22 | 2008-06-26 | Amminex A/S | Verfahren und Vorrichtung zur Ammoniakspeicherung und -zufuhr unter Verwendung von in-situ-Wiedersättigung einer Zufuhreinheit |
NL1033913C2 (nl) * | 2007-05-31 | 2008-12-02 | Heineken Supply Chain Bv | Besturingssysteem voor een drankafgifteinrichting. |
NL1033915C2 (nl) * | 2007-05-31 | 2008-12-02 | Heineken Supply Chain Bv | Inrichting en werkwijze voor het afgeven van drank. |
US8464902B2 (en) * | 2009-01-09 | 2013-06-18 | Nordson Corporation | Apparatus and method for pulsed dispensing of liquid |
-
2009
- 2009-06-03 JP JP2009133587A patent/JP5460132B2/ja active Active
-
2010
- 2010-06-02 US US13/375,814 patent/US8770439B2/en active Active
- 2010-06-02 HU HUE10783389A patent/HUE046783T2/hu unknown
- 2010-06-02 CN CN201080023891.2A patent/CN102448620B/zh active Active
- 2010-06-02 MY MYPI2011005811A patent/MY166368A/en unknown
- 2010-06-02 RU RU2011154140/05A patent/RU2519452C2/ru active
- 2010-06-02 SG SG10201401512QA patent/SG10201401512QA/en unknown
- 2010-06-02 KR KR1020127000123A patent/KR101683660B1/ko active IP Right Grant
- 2010-06-02 EP EP10783389.9A patent/EP2438998B1/en active Active
- 2010-06-02 PL PL10783389T patent/PL2438998T3/pl unknown
- 2010-06-02 SG SG2011088291A patent/SG176287A1/en unknown
- 2010-06-02 ES ES10783389T patent/ES2750244T3/es active Active
- 2010-06-02 WO PCT/JP2010/059315 patent/WO2010140607A1/ja active Application Filing
- 2010-06-03 TW TW099117889A patent/TWI522178B/zh active
-
2012
- 2012-07-18 HK HK12107066A patent/HK1166288A1/xx unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0215588Y2 (ja) * | 1983-02-28 | 1990-04-26 | ||
JPH0215588A (ja) | 1988-07-01 | 1990-01-19 | Sawanishi Shikimono Kk | チューブマット式ホットカーペット用ロープの製造法 |
JPH0217264U (ja) * | 1989-04-01 | 1990-02-05 | ||
JPH0966251A (ja) | 1995-08-31 | 1997-03-11 | Sanyo Electric Co Ltd | 塗布装置 |
JP2002361146A (ja) * | 2001-06-07 | 2002-12-17 | Fuji Photo Film Co Ltd | ビード型塗布装置及びビード型塗布方法 |
JP2006308105A (ja) * | 2006-06-12 | 2006-11-09 | Musashi Eng Co Ltd | 液体定量吐出バルブ |
Also Published As
Publication number | Publication date |
---|---|
HUE046783T2 (hu) | 2020-03-30 |
HK1166288A1 (en) | 2012-10-26 |
EP2438998A1 (en) | 2012-04-11 |
RU2519452C2 (ru) | 2014-06-10 |
PL2438998T3 (pl) | 2020-03-31 |
MY166368A (en) | 2018-06-25 |
TW201103639A (en) | 2011-02-01 |
EP2438998A4 (en) | 2017-11-08 |
CN102448620A (zh) | 2012-05-09 |
US20120132671A1 (en) | 2012-05-31 |
JP5460132B2 (ja) | 2014-04-02 |
CN102448620B (zh) | 2014-05-07 |
KR101683660B1 (ko) | 2016-12-07 |
EP2438998B1 (en) | 2019-09-18 |
JP2010279867A (ja) | 2010-12-16 |
KR20120028967A (ko) | 2012-03-23 |
RU2011154140A (ru) | 2013-07-20 |
SG10201401512QA (en) | 2014-06-27 |
SG176287A1 (en) | 2012-01-30 |
ES2750244T3 (es) | 2020-03-25 |
TWI522178B (zh) | 2016-02-21 |
US8770439B2 (en) | 2014-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1795270B1 (en) | Device for discharging fixed quantity of liquid | |
CN107921467A (zh) | 液体材料吐出装置 | |
US8464902B2 (en) | Apparatus and method for pulsed dispensing of liquid | |
JP5460132B2 (ja) | 液体定量吐出方法および装置 | |
JP4789233B2 (ja) | 液体吐出装置 | |
KR102032065B1 (ko) | 정량 토출 장치 | |
KR101351207B1 (ko) | 액체 계량 분배용 공압 장치의 작동 방법 및 공압 장치 | |
KR102270149B1 (ko) | 도포 장치 및 도포 방법 | |
JPH11244757A (ja) | 液体吐出装置 | |
JP2004209463A (ja) | 吐出装置 | |
JP6426491B2 (ja) | 塗布装置及び塗布方法 | |
JP2004105968A (ja) | 液体吐出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080023891.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10783389 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010783389 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127000123 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011154140 Country of ref document: RU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13375814 Country of ref document: US |