WO2010137678A1 - 電子輸送材料およびこれを用いた有機電界発光素子 - Google Patents

電子輸送材料およびこれを用いた有機電界発光素子 Download PDF

Info

Publication number
WO2010137678A1
WO2010137678A1 PCT/JP2010/059063 JP2010059063W WO2010137678A1 WO 2010137678 A1 WO2010137678 A1 WO 2010137678A1 JP 2010059063 W JP2010059063 W JP 2010059063W WO 2010137678 A1 WO2010137678 A1 WO 2010137678A1
Authority
WO
WIPO (PCT)
Prior art keywords
represented
compound
following formula
compound according
formula
Prior art date
Application number
PCT/JP2010/059063
Other languages
English (en)
French (fr)
Inventor
洋平 小野
大輔 馬場
学 内田
Original Assignee
チッソ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by チッソ株式会社 filed Critical チッソ株式会社
Priority to KR1020177022637A priority Critical patent/KR20170096234A/ko
Priority to KR1020117028178A priority patent/KR101789339B1/ko
Priority to JP2011516065A priority patent/JP5533863B2/ja
Priority to CN201080018916.XA priority patent/CN102414179B/zh
Publication of WO2010137678A1 publication Critical patent/WO2010137678A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/127Preparation from compounds containing pyridine rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/22Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing two or more pyridine rings directly linked together, e.g. bipyridyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom

Definitions

  • the present invention relates to a novel electron transport material having a pyridyl group, an organic electroluminescence device using the electron transport material (hereinafter, sometimes abbreviated as an organic EL device or simply a device), and the like.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-123983 discloses that an organic EL device can be driven at a low voltage by using a 2,2′-bipyridyl compound, which is a phenanthroline derivative or an analog thereof, as an electron transport material. It is stated that it can be done.
  • Non-patent document 1 Non-patent document 1 (Proceedings of the 10 th International Workshop on Inorganic and Organic Electroluminescence), Patent Document 2 (JP 2002-158093 JP ) And Patent Document 3 (International Publication No. 2007/86552 pamphlet).
  • the compound described in Non-Patent Document 1 has a low Tg and is not practical.
  • the compounds described in Patent Documents 2 and 3 can drive an organic EL device at a relatively low voltage, longer life is desired for practical use.
  • the present invention has been made in view of the problems of such conventional techniques. It is an object of the present invention to provide an electron transport material that contributes to extending the lifetime of an organic EL element. Furthermore, this invention makes it a subject to provide the organic EL element using this electron transport material.
  • a compound having pyridyl, bipyridyl, phenylpyridyl, or pyridylphenyl on either naphthyl or phenyl of 9- (2-naphthyl) -10-phenylanthracene is an organic EL device. It has been found that an organic EL element that can be driven with a long lifetime can be obtained by using it in the electron transport layer, and the present invention has been completed based on this finding. Said subject is solved by each item shown below.
  • At least one of the electron transport layer and the electron injection layer further includes an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, or an alkaline earth. Containing at least one selected from the group consisting of metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes The organic electroluminescent element according to the item [24] or [25].
  • the first invention of the present application is a compound having pyridyl, bipyridyl, phenylpyridyl, or pyridylphenyl represented by the following formula (1).
  • the pyridyl represented by the formula (2) is specifically 2-pyridyl, 3-pyridyl or 4-pyridyl.
  • Bipyridyl represented by the formula (3) is specifically 2,2′-bipyridin-5-yl, 2,2′-bipyridin-6-yl, 2,2′-bipyridin-4-yl, 2, 3'-bipyridin-5-yl, 2,3'-bipyridin-6-yl, 2,3'-bipyridin-4-yl, 2,4'-bipyridin-5-yl, 2,4'-bipyridine-6 -Yl, 2,4'-bipyridin-4-yl, 3,2'-bipyridin-6-yl, 3,2'-bipyridin-5-yl, 3,3'-bipyridin-6-yl, 3,3 '-Bipyridin-5-yl, 3,4'-bipyridin-6-yl, 3,4'-bipyridin-5-yl, 4,2'-bipyridin-3-yl, 4,3'-bipyridine-3- Or 4,4′-b
  • phenylpyridyl represented by the formula (4) is 3-phenylpyridin-2-yl, 4-phenylpyridin-2-yl, 5-phenylpyridin-2-yl, 6-phenylpyridin-2- Yl, 2-phenylpyridin-3-yl, 4-phenylpyridin-3-yl, 5-phenylpyridin-3-yl, 6-phenylpyridin-3-yl, 2-phenylpyridin-4-yl, or 3- Phenylpyridin-4-yl.
  • 5-phenylpyridin-2-yl, 6-phenylpyridin-2-yl, 5-phenylpyridin-3-yl, and 6-phenylpyridin-3-yl are preferable.
  • pyridylphenyl represented by the formula (5) include 4- (2-pyridyl) phenyl, 4- (3-pyridyl) phenyl, 4- (4-pyridyl) phenyl, and 3- (2-pyridyl). It is phenyl, 3- (3-pyridyl) phenyl, 3- (4-pyridyl) phenyl, 2- (2-pyridyl) phenyl, 2- (3-pyridyl) phenyl, or 2- (4-pyridyl) phenyl.
  • 4- (2-pyridyl) phenyl, 4- (3-pyridyl) phenyl, 4- (4-pyridyl) phenyl, 3- (2-pyridyl) phenyl, 3- (3-pyridyl) phenyl, and 3- (4-pyridyl) is preferred.
  • Py may be linked at any position in phenyl or 2-naphthyl, but 4-position and 3-position are preferable in phenyl, and 6-position and 7-position in 2-naphthyl are preferable.
  • the 3-position of phenyl is preferable in that the conjugated system cannot be expanded and the LUMO level is not lowered.
  • the 6-position of 2-naphthyl is particularly preferable in view of easy availability of raw materials.
  • —H of the benzene ring, naphthalene ring, and pyridine ring may be independently substituted with alkyl having 1 to 6 carbon atoms or cycloalkyl having 3 to 6 carbon atoms.
  • alkyl having 1 to 6 carbon atoms are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, isopentyl, 2,2-dimethylpropyl, n-hexyl, isohexyl.
  • Examples of cycloalkyl having 3 to 6 carbon atoms are cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • Specific examples of the compound represented by the formula (1-3) are represented by the following formulas (1-3-1) to (1-3-30).
  • preferred compounds are those represented by formulas (1-3-1) to (1-3-6), formulas (1-3-10) to (1-3-12) and formulas (1-3-16) to (1-3-27).
  • Further preferred compounds are those represented by the formulas (1-3-1) to (1-3-3), (1-3-5), (1-3-10) to (1-3-12), (1-3- 21), (1-3-22), (1-3-24), (1-3-25), and (1-3-27).
  • Specific examples of the compound represented by the formula (1-5) are represented by the following formulas (1-5-1) to (1-5-30). Among these, preferred compounds are those represented by the formulas (1-5-1) to (1-5-6), (1-5-10) to (1-5-12) and (1-5-16) to (1 -5-24). Further preferred compounds are the formulas (1-5-1) to (1-5-3), (1-5-10) to (1-5-12) and (1-5-24).
  • Specific examples of the compound represented by the formula (1-6) are represented by the following formulas (1-6-1) to (1-6-30). Among these, preferred compounds are the formulas (1-6-1) to (1-6-6), (1-6-10) to (1-6-12) and (1-6-16) to (1 -6-21). More preferred compounds are the formulas (1-6-1) to (1-6-6) and (1-6-10) to (1-6-12).
  • the compounds of the present invention can be synthesized using known synthesis methods. The method for synthesizing the compound of the present invention will be described with reference to the compound of formula (1-3-1).
  • 9-phenylanthracene is synthesized in Reaction 1. Bromobenzene is reacted with metallic magnesium in THF to give a Grignard reagent, which is reacted with 9-bromoanthracene in the presence of a catalyst to give 9-phenylanthracene.
  • the coupling of the benzene ring and the anthracene ring is not limited to the above-described method, and it can be performed by the Negishi coupling reaction, the Suzuki coupling reaction, or the like, and these conventional methods can be appropriately used depending on the situation. Further, 9-phenylanthracene may be a commercially available product.
  • reaction 2 the 10-position of 9-phenylanthracene is brominated using N-bromosuccinimide.
  • a commonly used brominating agent other than N-bromosuccinimide can be used.
  • reaction 3 the anthracene ring and the naphthalene ring are coupled.
  • 2-bromo-6-methoxynaphthalene was converted into a Grignard reagent according to a conventional method, and this was reacted with 9-bromo-10-phenylanthracene in the presence of a catalyst to give 9- (6-methoxynaphthalen-2-yl) -10- Synthesize phenylanthracene.
  • Reaction 6 a pyridine ring is bonded to the naphthalene ring by Negishi coupling reaction.
  • 4-bromopyridine is used as a Grignard reagent.
  • isopropylmagnesium chloride is used in an amount of 2 moles.
  • a raw material which does not need to use hydrochloride may be used in an equimolar amount.
  • a zinc chloride tetramethylethylenediamine complex is added to a Grignard reagent to synthesize a zinc chloride complex of pyridine, and this is reacted with the triflate obtained in the reaction 5 in the presence of a palladium catalyst to synthesize a target product.
  • the palladium catalyst used in the Negishi coupling reaction include Pd (PPh 3 ) 4 , PdCl 2 (PPh 3 ) 2 , Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0), tris ( Dibenzylideneacetone) dipalladium (0) chloroform complex, bis (dibenzylideneacetone) palladium (0), bis (tri-t-butylphosphino) palladium (0), or (1,1′-bis (diphenylphosphino) Ferrocene) dichloropalladium (II).
  • Negishi coupling reaction in addition to the Negishi coupling reaction, a commonly used coupling reaction such as a Suzuki coupling reaction can be appropriately used.
  • the Negishi coupling reaction and the Suzuki coupling reaction are described in, for example, “Metal-Catalyzed Cross-Coupling Reactions-Second, Completely Revised and Enlarged Edition”.
  • the zinc chloride complex of pyridine synthesized according to reaction 7 is coupled with dibromopyridine according to reaction 8 to give the bromide of bipyridine.
  • the compound of formula (1-3-4) can be synthesized by reacting this bromide again with the triflate obtained in Reaction 5 as a zinc chloride complex according to Reaction 6.
  • the starting benzene used in the above reactions 1 to 3 If the skeleton and the naphthalene skeleton are replaced, they can be synthesized in the same manner. That is, the Grignard reagent of 2-bromoanthracene and 9-bromoanthracene were coupled, brominated at position 10 of anthracene according to Reaction 2, and then this bromide was reacted with a Grignard reagent of paramethoxybromobenzene or metamethoxybromobenzene.
  • the compound of the present invention When the compound of the present invention is used for an electron injection layer or an electron transport layer in an organic EL device, it is stable when an electric field is applied. These represent that the compound of the present invention is excellent as an electron injecting material or an electron transporting material for an electroluminescent device.
  • the electron injection layer mentioned here is a layer for receiving electrons from the cathode to the organic layer
  • the electron transport layer is a layer for transporting the injected electrons to the light emitting layer.
  • the electron transport layer can also serve as the electron injection layer.
  • the material used for each layer is referred to as an electron injection material and an electron transport material.
  • 2nd invention of this application is an organic EL element containing the compound represented by Formula (1) of this invention in an electron injection layer or an electron carrying layer.
  • the organic EL element of the present invention has a low driving voltage and high durability during driving.
  • the structure of the organic EL device of the present invention has various modes, it is basically a multilayer structure in which at least a hole transport layer, a light emitting layer, and an electron transport layer are sandwiched between an anode and a cathode.
  • Examples of the specific configuration of the device are (1) anode / hole transport layer / light emitting layer / electron transport layer / cathode, (2) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer. / Cathode, (3) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode, etc.
  • the compound of the present invention Since the compound of the present invention has high electron injecting property and electron transporting property, it can be used for an electron injecting layer or an electron transporting layer alone or in combination with other materials.
  • the organic EL device of the present invention emits blue, green, red and white light by combining a hole injection layer, a hole transport layer, a light emitting layer, etc. using other materials with the electron transport material of the present invention. It can also be obtained.
  • the light-emitting material or light-emitting dopant that can be used in the organic EL device of the present invention is daylight fluorescence as described in the Polymer Society of Japan, Polymer Functional Materials Series “Optical Functional Materials”, Joint Publication (1991), P236. Materials, fluorescent brighteners, laser dyes, organic scintillators, various fluorescent analysis reagents and other luminescent materials, supervised by Koji Koji, “Organic EL materials and displays” published by CMMC (2001) P155-156 And a light emitting material of a triplet material as described in P170 to 172.
  • the compounds that can be used as the light emitting material or the light emitting dopant are polycyclic aromatic compounds, heteroaromatic compounds, organometallic complexes, dyes, polymer light emitting materials, styryl derivatives, aromatic amine derivatives, coumarin derivatives, borane derivatives, oxazines. Derivatives, compounds having a spiro ring, oxadiazole derivatives, fluorene derivatives and the like.
  • Examples of the polycyclic aromatic compound are anthracene derivatives, phenanthrene derivatives, naphthacene derivatives, pyrene derivatives, chrysene derivatives, perylene derivatives, coronene derivatives, rubrene derivatives, and the like.
  • heteroaromatic compounds include oxadiazole derivatives, pyrazoloquinoline derivatives, pyridine derivatives, pyran derivatives, phenanthroline derivatives, silole derivatives, thiophene derivatives having a triphenylamino group, quinacridone derivatives having a dialkylamino group or a diarylamino group Etc.
  • organometallic complexes examples include zinc, aluminum, beryllium, europium, terbium, dysprosium, iridium, platinum, osmium, gold, etc., quinolinol derivatives, benzoxazole derivatives, benzothiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, A complex with a benzimidazole derivative, a pyrrole derivative, a pyridine derivative, a phenanthroline derivative, or the like.
  • dyes are xanthene derivatives, polymethine derivatives, porphyrin derivatives, coumarin derivatives, dicyanomethylenepyran derivatives, dicyanomethylenethiopyran derivatives, oxobenzanthracene derivatives, carbostyril derivatives, perylene derivatives, benzoxazole derivatives, benzothiazole derivatives, benzimidazoles And pigments such as derivatives.
  • the polymer light-emitting material are polyparaphenyl vinylene derivatives, polythiophene derivatives, polyvinyl carbazole derivatives, polysilane derivatives, polyfluorene derivatives, polyparaphenylene derivatives, and the like.
  • styryl derivatives are amine-containing styryl derivatives, styrylarylene derivatives, and the like.
  • electron transport materials used in the organic EL device of the present invention are arbitrarily selected from compounds that can be used as electron transport compounds in photoconductive materials and compounds that can be used in the electron transport layer and electron injection layer of organic EL devices. Can be used.
  • electron transport materials include quinolinol metal complexes, 2,2′-bipyridyl derivatives, phenanthroline derivatives, diphenylquinone derivatives, perylene derivatives, oxadiazole derivatives, thiophene derivatives, triazole derivatives, thiadiazole derivatives, oxine derivatives.
  • a compound conventionally used as a charge transport material for holes or a hole injection of an organic EL device is used in a photoconductive material.
  • Any known material used for the layer and the hole transport layer can be selected and used. Specific examples thereof are carbazole derivatives, triarylamine derivatives, phthalocyanine derivatives and the like.
  • Each layer constituting the organic EL element of the present invention can be formed by forming a material to constitute each layer into a thin film by a method such as a vapor deposition method, a spin coating method, or a casting method.
  • the film thickness of each layer thus formed is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm.
  • a vapor deposition method as a method of thinning the light emitting material from the standpoint that a homogeneous film can be easily obtained and pinholes are hardly generated.
  • the vapor deposition conditions differ depending on the type of the light emitting material of the present invention.
  • Deposition conditions generally include boat heating temperature 50 to 400 ° C., vacuum degree 10 ⁇ 6 to 10 ⁇ 3 Pa, deposition rate 0.01 to 50 nm / second, substrate temperature ⁇ 150 to + 300 ° C., film thickness 5 nm to 5 ⁇ m. It is preferable to set appropriately within the range.
  • the organic EL device of the present invention is preferably supported by a substrate in any of the structures described above.
  • the substrate only needs to have mechanical strength, thermal stability, and transparency, and glass, a transparent plastic film, and the like can be used.
  • the anode material metals, alloys, electrically conductive compounds and mixtures thereof having a work function larger than 4 eV can be used. Specific examples thereof include metals such as Au, CuI, indium tin oxide (hereinafter abbreviated as ITO), SnO 2 , ZnO, and the like.
  • Cathode materials can use metals, alloys, electrically conductive compounds, and mixtures thereof with work functions of less than 4 eV. Specific examples thereof are aluminum, calcium, magnesium, lithium, magnesium alloy, aluminum alloy and the like. Specific examples of the alloy are aluminum / lithium fluoride, aluminum / lithium, magnesium / silver, magnesium / indium and the like. In order to efficiently extract light emitted from the organic EL element, it is desirable that at least one of the electrodes has a light transmittance of 10% or more.
  • the sheet resistance as the electrode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness is usually set in the range of 10 nm to 1 ⁇ m, preferably 10 to 400 nm, although it depends on the properties of the electrode material.
  • Such an electrode can be produced by forming a thin film by a method such as vapor deposition or sputtering using the electrode material described above.
  • an organic material comprising the above-mentioned anode / hole injection layer / hole transport layer / light emitting layer / electron transport material of the present invention / cathode is used.
  • a method for creating an EL element will be described.
  • a thin film of an anode material is formed on a suitable substrate by vapor deposition to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode.
  • a light emitting layer thin film is formed thereon.
  • the electron transport material of this invention is vacuum-deposited, a thin film is formed, and it is set as an electron carrying layer.
  • the target organic EL element is obtained by forming the thin film which consists of a substance for cathodes by a vapor deposition method, and making it a cathode.
  • the production order can be reversed, and the cathode, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be produced in this order.
  • the anode When a DC voltage is applied to the organic EL device thus obtained, the anode may be applied with a positive polarity and the cathode with a negative polarity. When a voltage of about 2 to 40 V is applied, a transparent or translucent electrode is applied. Luminescence can be observed from the side (anode or cathode and both). The organic EL element also emits light when an alternating voltage is applied.
  • the alternating current waveform to be applied may be arbitrary.
  • reaction mixture was extracted with 700 ml of toluene, and the organic layer was washed with water.
  • the solvent was once distilled off under reduced pressure, dissolved again in toluene, and passed through an alumina short column (toluene).
  • the solid obtained by evaporating the solvent under reduced pressure was washed with heptane (250 ml) three times to obtain 50 g of 6- (10-phenylanthracen-9-yl) naphthalen-2-yl trifluoromethanesulfonate.
  • the solid obtained by distilling off the solvent under reduced pressure was recrystallized from anisole to give compound (1-3-1): 4- (6- (10-phenylanthracen-9-yl) naphthalen-2-yl) pyridine. 3.2 g was obtained.
  • the structure of the compound was confirmed by NMR measurement.
  • the solid obtained by distilling off the solvent under reduced pressure was washed with methanol, and the compound (1-3-2): 3- (6- (10-phenylanthracen-9-yl) naphthalen-2-yl) pyridine2. 1 g was obtained.
  • the structure of the compound was confirmed by NMR measurement.
  • the reaction solution was cooled to room temperature, and 100 ml of toluene was added to dissolve organic substances, followed by suction filtration.
  • the mixture was stirred at room temperature for 1 hour, and after confirming that 4-bromopyridine was consumed, it was cooled with ice water, and 273 g of zinc chloride tetramethylethylenediamine complex was added with stirring. Thereafter, the mixture was stirred at room temperature for 0.5 hour, 485 g of 1,3-dibromobenzene and 1.2 g of Pd (PPh 3 ) 4 were added, and the mixture was stirred at reflux temperature for 3 hours. The reaction solution was cooled to room temperature, EDTA / Na water was added, and the mixture was separated, and the organic layer was washed with water. The solvent was distilled off under reduced pressure to obtain 165.7 g of 4- (3-bromophenyl) pyridine.
  • Example 1 The elements according to Example 1 and Comparative Example 1 were manufactured, and the driving start voltage (V) in the constant current driving test and the time (hr) for maintaining the luminance of 90% or more of the initial value were measured.
  • V driving start voltage
  • hr time for maintaining the luminance of 90% or more of the initial value
  • Table 1 below shows the material structure of each layer in the fabricated element according to Example 1 and Comparative Example 1.
  • Molybdenum vapor deposition boat, molybdenum vapor deposition boat containing compound (B), molybdenum vapor deposition boat containing compound (1-3-1), molybdenum vapor deposition boat containing lithium fluoride, and A tungsten evaporation boat containing aluminum was installed.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, and first, a vapor deposition boat containing CuPc was heated to deposit to a film thickness of 70 nm to form a hole injection layer, and then NPD entered. The vapor deposition boat was heated and vapor-deposited to a film thickness of 30 nm to form a hole transport layer. Next, the vapor deposition boat containing the compound (A) and the vapor deposition boat containing the compound (B) were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 35 nm.
  • the deposition rate was adjusted so that the weight ratio of compound (A) to compound (B) was approximately 95 to 5.
  • the evaporation boat containing the compound (1-3-1) was heated and evaporated to a film thickness of 15 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the vapor deposition boat containing lithium fluoride is heated to deposit at a deposition rate of 0.003 to 0.1 nm / second so as to have a film thickness of 0.5 nm, and then the vapor deposition boat containing aluminum is heated.
  • the cathode was formed by vapor deposition at a deposition rate of 0.01 to 10 nm / second so that the film thickness was 100 nm, and an organic EL device was obtained.
  • Example 1 An organic EL device was obtained in the same manner as in Example 1 except that the compound (1-3-1) was changed to the compound (C).
  • a constant current driving test was performed using an ITO electrode as an anode and a lithium fluoride / aluminum electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 4.59 V, and the time for maintaining the luminance of 90% or more of the initial value was 39 hours.
  • HI is N4, N4′-diphenyl-N4, N4′-bis (9-phenyl-9H-carbazol-3-yl)-[1,1′-biphenyl] -4,4′-diamine. It has the chemical structure of
  • Table 3 below shows the material structure of each layer in the fabricated devices according to Examples 2 to 9.
  • Molybdenum deposition boat, molybdenum deposition boat containing compound (B), molybdenum deposition boat containing compound (1-3-1), molybdenum deposition boat containing lithium quinoline, magnesium A molybdenum boat and a tungsten evaporation boat containing silver were installed.
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, first, a vapor deposition boat containing HI was heated and vapor-deposited to a film thickness of 40 nm to form a hole injection layer, and then NPD was contained. The vapor deposition boat was heated and vapor-deposited to a film thickness of 30 nm to form a hole transport layer. Next, the vapor deposition boat containing the compound (A) and the vapor deposition boat containing the compound (B) were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 35 nm.
  • the deposition rate was adjusted so that the weight ratio of compound (A) to compound (B) was approximately 95 to 5.
  • the evaporation boat containing the compound (1-3-1) was heated and evaporated to a film thickness of 15 nm to form an electron transport layer.
  • the deposition rate of each layer was 0.01 to 1 nm / second.
  • the vapor deposition boat containing lithium quinoline was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a boat containing magnesium and a boat containing silver were heated at the same time and evaporated to a film pressure of 100 nm to form a cathode.
  • the deposition rate was adjusted so that the atomic ratio of magnesium and silver was 10: 1, and the cathode was formed so that the deposition rate was from 0.1 nm to 10 nm to obtain an organic electroluminescent device.
  • An organic EL device was obtained by the method according to Example 2 except that the compound (1-3-1) was changed to the compound (1-3-2).
  • a constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 5.71 V, and the time for maintaining the luminance of 90% or more of the initial value was 74 hours.
  • An organic EL device was obtained by the method according to Example 2 except that the compound (1-3-1) was replaced with the compound (1-3-5).
  • a constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 5.71 V, and the time for maintaining the luminance of 90% or more of the initial value was 88 hours.
  • An organic EL device was obtained by the method according to Example 2 except that the compound (1-3-1) was replaced with the compound (1-3-22).
  • a constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test starting voltage was 6.97 V, and the time for maintaining the luminance of 90% or more of the initial value was 98 hours.
  • An organic EL device was obtained by the method according to Example 2 except that the compound (1-3-1) was replaced with the compound (1-3-24).
  • a constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test starting voltage was 7.16 V, and the time for maintaining the luminance of 90% or more of the initial value was 143 hours.
  • An organic EL device was obtained by the method according to Example 2 except that the compound (1-3-1) was replaced with the compound (1-3-25).
  • a constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test starting voltage was 7.35 V, and the time for maintaining the luminance of 90% or more of the initial value was 165 hours.
  • An organic EL device was obtained by the method according to Example 2 except that the compound (1-3-1) was replaced with the compound (1-5-24).
  • a constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 6.36 V, and the time for maintaining the luminance of 90% or more of the initial value was 103 hours.
  • An organic EL device was obtained by the method according to Example 2 except that the compound (1-3-1) was replaced with the compound (1-6-4).
  • a constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
  • the driving test start voltage was 6.34 V, and the time for maintaining the luminance of 90% or more of the initial value was 120 hours.
  • an organic electroluminescent element that improves the lifetime of the light emitting element and has an excellent balance with the driving voltage, a display device including the organic electroluminescent element, and a lighting device including the organic electroluminescent element. it can.

Abstract

本発明の式(1)で表される化合物は有機EL素子の電子輸送材料として有用であり、この電子輸送材料を用いることによって有機EL素子の長寿命化等に寄与する。 式(1)中、Pyは、それぞれ独立して、式(2)、(3)、(4)、または(5)で表される基であり;mおよびnは0または1であるが、m+n=1であり;式中のベンゼン環、ナフタレン環、およびピリジン環の-Hは独立して炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよい。

Description

電子輸送材料およびこれを用いた有機電界発光素子
本発明は、ピリジル基を有する新規な電子輸送材料、この電子輸送材料を用いた有機電界発光素子(以下、有機EL素子または単に素子と略記することがある。)等に関する。
近年、次世代のフルカラーフラットパネルディスプレイとして有機EL素子が注目され、活発な研究がなされている。有機EL素子の実用化を促進するには、素子の駆動電圧の低減、長寿命化が不可欠な要素であり、これらを達成するために新しい電子輸送材料の開発がなされてきた。特に、青色素子の駆動電圧低下、長寿命化は必須である。特許文献1(特開2003-123983号公報)には、フェナントロリン誘導体またはその類似体である2,2’-ビピリジル化合物を電子輸送材料に使用することで有機EL素子を低電圧で駆動させることができると記載されている。しかしながらこの文献の実施例に報告されている素子の特性(駆動電圧、発光効率など)は比較例を基準にした相対値のみであり、実用的な値と判断できる実測値は記載されていない。他に、2,2’-ビピリジル化合物を電子輸送材料に使用した例が、非特許文献1(Proceedings of the 10th International Workshop on Inorganic and Organic Electroluminescence)、特許文献2(特開2002-158093号公報)および特許文献3(国際公開2007/86552パンフレット)に開示されている。非特許文献1に記載されている化合物はTgが低く、実用的ではなかった。特許文献2および3に記載の化合物は比較的低電圧で有機EL素子を駆動させることができるが、実用化に向けてはより長寿命化が望まれている。
特開2003-123983号公報 特開2002-158093号公報 国際公開2007/86552パンフレット
Proceedings of the 10th International Workshop on Inorganic and Organic Electroluminescence (2000)
本発明は、このような従来技術が有する課題に鑑みてなされたものである。本発明は、有機EL素子の長寿命化等に寄与する電子輸送材料を提供することを課題とする。さらに本発明は、この電子輸送材料を用いた有機EL素子を提供することを課題とする。
本発明者らは鋭意検討した結果、9-(2-ナフチル)-10-フェニルアントラセンのナフチルまたはフェニルのどちらか一方に、ピリジル、ビピリジル、フェニルピリジル、またはピリジルフェニルを有する化合物を有機EL素子の電子輸送層に用いることにより、長寿命で駆動できる有機EL素子が得られることを見出し、この知見に基づいて本発明を完成した。
上記の課題は以下に示す各項によって解決される。
[1] 下記式(1)で表される化合物。

Figure JPOXMLDOC01-appb-I000028
式(1)中、
Pyは独立して、式(2)、(3)、(4)、または(5)で表される基であり;

Figure JPOXMLDOC01-appb-I000029
mおよびnは0または1であるが、m+n=1であり;
式中のベンゼン環、ナフタレン環、およびピリジン環の-Hは独立して炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよい。
[2] 下記式(1-1)または(1-2)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000030
式(1-1)または(1-2)中、
Pyは、式(2)、(3)、(4)、または(5)で表される基であり;

Figure JPOXMLDOC01-appb-I000031
式中のベンゼン環、ナフタレン環、およびピリジン環の-Hは独立して炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよい。
[3] 下記式(1-3)、(1-4)、(1-5)、または(1-6)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000032
式(1-3)~(1-6)のそれぞれにおいて、
Pyは、式(2)、(3)、(4)または(5)で表される基であり;

Figure JPOXMLDOC01-appb-I000033
式中のベンゼン環、ナフタレン環、およびピリジン環の-Hは独立して炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよい。
[4] 下記式(1-3)または(1-4)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000034
式(1-3)および(1-4)において、
Pyは、式(2)、(3)、(4)または(5)で表される基であり;

Figure JPOXMLDOC01-appb-I000035
式中のベンゼン環、ナフタレン環、およびピリジン環の-Hは独立して炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよい。
[5] 下記式(1-5)または(1-6)で表される、前記[1]項に記載の化合物。

式(1-5)および(1-6)において、
Pyは、式(2)、(3)、(4)または(5)で表される基であり;

Figure JPOXMLDOC01-appb-I000037
式中のベンゼン環、ナフタレン環、およびピリジン環の-Hは独立して炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよい。
[6] 下記式(1-3-1)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000038
[7] 下記式(1-3-2)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000039
[8] 下記式(1-3-3)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000040
[9] 下記式(1-3-5)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000041
[10] 下記式(1-3-12)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000042
[11] 下記式(1-3-21)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000043
[12] 下記式(1-3-22)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000044
[13] 下記式(1-3-24)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000045
[14] 下記式(1-3-25)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000046
[15] 下記式(1-3-27)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000047
[16] 下記式(1-4-2)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000048
[17] 下記式(1-5-11)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000049
[18] 下記式(1-5-24)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000050
[19] 下記式(1-6-1)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000051
[20] 下記式(1-6-2)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000052
[21] 下記式(1-6-4)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000053
[22] 下記式(1-6-5)で表される、前記[1]項に記載の化合物。

Figure JPOXMLDOC01-appb-I000054
[23] 前記[1]~[22]のいずれか1項に記載の化合物を含有する電子輸送材料。
[24] 陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層と、前記陰極と該発光層との間に配置され、前記[23]項に記載の電子輸送材料を含有する電子輸送層および/または電子注入層とを有する有機電界発光素子。
[25] 電子輸送層および電子注入層の少なくとも1つは、さらに、キノリノール系金属錯体、ビピリジン誘導体、フェナントロリン誘導体およびボラン誘導体からなる群から選択される少なくとも1つを含有する、前記[24]項に記載の有機電界発光素子。
[26] 電子輸送層および電子注入層の少なくとも1つが、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、前記[24]項または[25]項に記載の有機電界発光素子。
本発明の化合物は薄膜状態で電圧を印加しても安定であり、また、電荷の輸送能力が高いという特徴を持つ。本発明の化合物は有機EL素子における電荷輸送材料として適している。本発明の化合物を有機EL素子の電子輸送層に用いることで、長い寿命を有する有機EL素子を得ることができる。本発明の有機EL素子を用いることにより、フルカラー表示等の高性能のディスプレイ装置を作成できる。
以下、本発明をさらに詳細に説明する。なお、本明細書においては、例えば「式(1-3-1)で表される化合物」のことを「化合物(1-3-1)」と称することがある。「式(1-3-2)で表される化合物」のことを「化合物(1-3-2)」と称することがある。その他の式記号、式番号についても同様に扱われる。
<化合物の説明>
本願の第1の発明は下記の式(1)で表される、ピリジル、ビピリジル、フェニルピリジル、またはピリジルフェニルを有する化合物である。

Figure JPOXMLDOC01-appb-I000055
式(1)中、Pyは独立して、式(2)、(3)、(4)、または(5)で表される基であり、mおよびnは0または1であるが、m+n=1である。
式(2)で表されるピリジルは、具体的には2-ピリジル、3-ピリジルまたは4-ピリジルである。
式(3)で表されるビピリジルは、具体的には2,2’-ビピリジン-5-イル、2,2’-ビピリジン-6-イル、2,2’-ビピリジン-4-イル、2,3’-ビピリジン-5-イル、2,3’-ビピリジン-6-イル、2,3’-ビピリジン-4-イル、2,4’-ビピリジン-5-イル、2,4’-ビピリジン-6-イル、2,4’-ビピリジン-4-イル、3,2’-ビピリジン-6-イル、3,2’-ビピリジン-5-イル、3,3’-ビピリジン-6-イル、3,3’-ビピリジン-5-イル、3,4’-ビピリジン-6-イル、3,4’-ビピリジン-5-イル、4,2’-ビピリジン-3-イル、4,3’-ビピリジン-3-イル、または4,4’-ビピリジン-3-イルである。この中では、2,2’-ビピリジン-5-イル、2,2’-ビピリジン-6-イル、2,3’-ビピリジン-5-イル、2,3’-ビピリジン-6-イル、2,4’-ビピリジン-5-イル、2,4’-ビピリジン-6-イル、3,2’-ビピリジン-6-イル、3,2’-ビピリジン-5-イル、3,3’-ビピリジン-6-イル、3,3’-ビピリジン-5-イル、3,4’-ビピリジン-6-イル、3,4’-ビピリジン-5-イル、4,2’-ビピリジン-3-イル、4,3’-ビピリジン-3-イル、および4,4’-ビピリジン-3-イルが好ましい。そして、2,2’-ビピリジン-5-イル、2,2’-ビピリジン-6-イル、2,3’-ビピリジン-5-イル、2,3’-ビピリジン-6-イル、2,4’-ビピリジン-5-イル、2,4’-ビピリジン-6-イル、3,2’-ビピリジン-5-イル、3,2’-ビピリジン-6-イル、3,4’-ビピリジン-6-イル、および3,4’-ビピリジン-5-イルがさらに好ましい。
式(4)で表されるフェニルピリジルは、具体的には3-フェニルピリジン-2-イル、4-フェニルピリジン-2-イル、5-フェニルピリジン-2-イル、6-フェニルピリジン-2-イル、2-フェニルピリジン-3-イル、4-フェニルピリジン-3-イル、5-フェニルピリジン-3-イル、6-フェニルピリジン-3-イル、2-フェニルピリジン-4-イル、または3-フェニルピリジン-4-イルである。この中では5-フェニルピリジン-2-イル、6-フェニルピリジン-2-イル、5-フェニルピリジン-3-イル、および6-フェニルピリジン-3-イルが好ましい。
式(5)で表されるピリジルフェニルは、具体的には4-(2-ピリジル)フェニル、4-(3-ピリジル)フェニル、4-(4-ピリジル)フェニル、3-(2-ピリジル)フェニル、3-(3-ピリジル)フェニル、3-(4-ピリジル)フェニル、2-(2-ピリジル)フェニル、2-(3-ピリジル)フェニル、または2-(4-ピリジル)フェニルである。この中では、4-(2-ピリジル)フェニル、4-(3-ピリジル)フェニル、4-(4-ピリジル)フェニル、3-(2-ピリジル)フェニル、3-(3-ピリジル)フェニル、および3-(4-ピリジル)が好ましい。
式(1)において、Pyが連結するのはフェニルにおいても、2-ナフチルにおいても任意の位置でよいが、フェニルにおいては4位および3位が、2-ナフチルにおいては6位および7位が好ましい。特にフェニルの3位は共役系を拡げないという点と、LUMOの準位を下げないという点において好ましい。また、2-ナフチルの6位は原料が入手しやすいという点で特に好ましい。
式(1)中のベンゼン環、ナフタレン環、およびピリジン環の-Hは独立して炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよい。炭素数1~6のアルキルの例はメチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル、n-ペンチル、イソペンチル、2,2-ジメチルプロピル、n-ヘキシル、イソヘキシルである。炭素数3~6のシクロアルキルの例はシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルである。
<化合物の具体例>
本発明の化合物の具体例は以下に列記する式によって示されるが、本発明はこれらの具体的な構造の開示によって限定されることはない。
<式(1-3)で表される化合物の具体例>
式(1-3)で表される化合物の具体例は下記の式(1-3-1)~(1-3-30)で示される。これらの中で好ましい化合物は式(1-3-1)~(1-3-6)、式(1-3-10)~(1-3-12)および式(1-3-16)~(1-3-27)である。さらに好ましい化合物は式(1-3-1)~(1-3-3)、(1-3-5)、(1-3-10)~(1-3-12)、(1-3-21)、(1-3-22)、(1-3-24)、(1-3-25)、および(1-3-27)である。
Figure JPOXMLDOC01-appb-I000056
Figure JPOXMLDOC01-appb-I000057
Figure JPOXMLDOC01-appb-I000058
<式(1-4)で表される化合物の具体例>
式(1-4)で表される化合物の具体例は下記の式(1-4-1)~(1-4-27)で示される。これらの中で好ましい化合物は式(1-4-1)~(1-4-6)、(1-4-10)~(1-4-12)および(1-4-16)~(1-4-21)である。
Figure JPOXMLDOC01-appb-I000059
Figure JPOXMLDOC01-appb-I000060
Figure JPOXMLDOC01-appb-I000061
<式(1-5)で表される化合物の具体例>
式(1-5)で表される化合物の具体例は下記の式(1-5-1)~(1-5-30)で示される。これらの中で好ましい化合物は式(1-5-1)~(1-5-6)、(1-5-10)~(1-5-12)および(1-5-16)~(1-5-24)である。さらに好ましい化合物は式(1-5-1)~(1-5-3)、(1-5-10)~(1-5-12)および(1-5-24)である。
Figure JPOXMLDOC01-appb-I000062
Figure JPOXMLDOC01-appb-I000063
Figure JPOXMLDOC01-appb-I000064
Figure JPOXMLDOC01-appb-I000065
<式(1-6)で表される化合物の具体例>
式(1-6)で表される化合物の具体例は下記の式(1-6-1)~(1-6-30)で示される。これらの中で好ましい化合物は式(1-6-1)~(1-6-6)、(1-6-10)~(1-6-12)および(1-6-16)~(1-6-21)である。より好ましい化合物は式(1-6-1)~(1-6-6)および(1-6-10)~(1-6-12)である。
Figure JPOXMLDOC01-appb-I000066
Figure JPOXMLDOC01-appb-I000067
Figure JPOXMLDOC01-appb-I000068
<化合物の合成法>
本発明の化合物は既知の合成方法を利用して合成することができる。式(1-3-1)の化合物を例に本発明の化合物の合成法を説明する。

Figure JPOXMLDOC01-appb-I000069
先ず、反応1で9-フェニルアントラセンを合成する。ブロモベンゼンをTHF中で金属マグネシウムと反応させグリニャール試薬とし、これに触媒の存在下9-ブロモアントラセンを反応させて9-フェニルアントラセンとする。ベンゼン環とアントラセン環をカップリングするには上記の方法に限らず、根岸カップリング反応、鈴木カップリング反応などによっても可能であり、状況に応じてこれらの常法が適宜使用できる。また、9-フェニルアントラセンは市販品を用いることもできる。

Figure JPOXMLDOC01-appb-I000070
反応2ではN-ブロモスクシンイミドを用いて9-フェニルアントラセンの10位を臭素化する。ここでもN-ブロモスクシンイミド以外の常用される臭素化剤を使用することができる。

Figure JPOXMLDOC01-appb-I000071
反応3ではアントラセン環とナフタレン環をカップリングする。先ず2-ブロモ-6-メトキシナフタレンを常法に従ってグリニャール試薬とし、これに触媒の存在下9-ブロモ-10-フェニルアントラセンを反応させて9-(6-メトキシナフタレン-2-イル)-10-フェニルアントラセンを合成する。

Figure JPOXMLDOC01-appb-I000072
反応4では9-(6-メトキシナフタレン-2-イル)-10-フェニルアントラセンのメトキシ基を脱メチルしてナフトールにする。ここでも脱メチル化反応に常用される試薬が適宜使用できる。

Figure JPOXMLDOC01-appb-I000073
反応5でナフトールの-OHをトリフルオロメチルスルホネート(トリフラート)にする。反応式中の-OTfは-OSOCFの略である。

Figure JPOXMLDOC01-appb-I000074
反応6で根岸カップリング反応によってナフタレン環にピリジン環を結合させる。先ず4-ブロモピリジンをグリニャール試薬とする。ここでは原料に安定な4-ブロモピリジン塩酸塩を用いているためイソプロピルマグネシウムクロリドを2倍モル使用しているが、塩酸塩を用いる必要がない原料については等モルで差し支えない。グリニャール試薬に塩化亜鉛テトラメチルエチレンジアミン錯体を加えてピリジンの塩化亜鉛錯体を合成し、これにパラジウム触媒の存在下反応5で得たトリフラートを反応させて目的物を合成する。
根岸カップリング反応で用いられるパラジウム触媒の具体例としては、Pd(PPh、PdCl(PPh、Pd(OAc)、トリス(ジベンジリデンアセトン)二パラジウム(0)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体、ビス(ジベンジリデンアセトン)パラジウム(0)、ビス(トリt-ブチルホスフィノ)パラジウム(0)、または(1,1’-ビス(ジフェニルホスフィノ)フェロセン)ジクロロパラジウム(II)があげられる。
この段においては根岸カップリング反応以外にも、鈴木カップリング反応など常用されるカップリング反応を適宜用いることができる。根岸カップリング反応、鈴木カップリング反応は例えば、「Metal-Catalyzed Cross-Coupling Reactions - Second, Completely Revised and Enlarged Edition」などに記載されている。
式(1-3-1)以外の化合物についても、目的物に合わせて原料を適宜用いることにより、上記の合成法に準じて合成することができる。例えば、式(1-3-4)の化合物を例に説明する。

Figure JPOXMLDOC01-appb-I000075

Figure JPOXMLDOC01-appb-I000076
反応7に従って合成したピリジンの塩化亜鉛錯体を、反応8によってジブロモピリジンとカップリングしてビピリジンの臭化物を得る。この臭化物を反応6に準じて再度塩化亜鉛錯体として、反応5で得たトリフラートと反応させることにより式(1-3-4)の化合物を合成することができる。
また、式(1-3-16)の化合物であれば、反応8でジブロモピリジンの代わりにパラジブロモベンゼンを用いることで4-(2-ピリジル)ブロモベンゼンを合成し、これを上記と同様に塩化亜鉛錯体として、次いで反応5で得たトリフラートと反応させることによって合成することができる。
式(1-4-1)~(1-4-27)の化合物の場合は、前記の反応3において2-ブロモ-6-メトキシナフタレンの代わりに2-ブロモ-7-メトキシナフタレンを使用すればよい。
式(1-5-1)~(1-5-30)あるいは式(1-6-1)~(1-6-30)の化合物の場合は、前記の反応1~3において用いる原料のベンゼン骨格とナフタレン骨格を置き換えれば同様に合成できる。すなわち、2-ブロモアントラセンのグリニャール試薬と9-ブロモアントラセンをカップリングし、反応2に準じてアントラセンの10位を臭素化し、次いでこの臭化物をパラメトキシブロモベンゼンまたはメタメトキシブロモベンゼンのグリニャール試薬と反応させて9-(4-または3-メトキシフェニル)-10-(2-ナフチル)アントラセンを得る。この化合物についてメトキシ基の脱メチル化反応以降の手順は前記に準じて行えばよい。さらに、具体的に例示した化合物以外についても、目的物に合わせて原料を適宜用いることにより、上記の合成法に準じて合成することができるのは言うまでもない。
本発明の化合物を、有機EL素子における、電子注入層または電子輸送層に用いた場合、電界印加時において安定である。これらは、本発明の化合物が、電界発光型素子の電子注入材料、または電子輸送材料として優れていることを表す。ここで言う電子注入層とは陰極から有機層へ電子を受け取る層であり、電子輸送層とは注入された電子を発光層へ輸送するための層である。また、電子輸送層が電子注入層を兼ねることも可能である。それぞれの層に用いる材料を、電子注入材料および電子輸送材料という。
<有機EL素子の説明>
本願の第2の発明は、電子注入層、または電子輸送層に、本発明の式(1)で表される化合物を含有する有機EL素子である。本発明の有機EL素子は、駆動電圧が低く、駆動時の耐久性が高い。
本発明の有機EL素子の構造は各種の態様があるが、基本的には陽極と陰極との間に少なくとも正孔輸送層、発光層、電子輸送層を挟持した多層構造である。素子の具体的な構成の例は、(1)陽極/正孔輸送層/発光層/電子輸送層/陰極、(2)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極、(3)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極、等である。
本発明の化合物は、高い電子注入性および電子輸送性を持っているので、単体又は他の材料と併用して電子注入層、または電子輸送層に使用できる。本発明の有機EL素子は、本発明の電子輸送材料に他の材料を用いた正孔注入層、正孔輸送層、発光層、などを組み合わせることで、青色、緑色、赤色や白色の発光を得ることもできる。
本発明の有機EL素子に使用できる発光材料または発光性ドーパントは、高分子学会編、高分子機能材料シリーズ“光機能材料”、共同出版(1991)、P236に記載されているような昼光蛍光材料、蛍光増白剤、レーザー色素、有機シンチレータ、各種の蛍光分析試薬等の発光材料、城戸淳二監修、“有機EL材料とディスプレイ”シーエムシー社出版(2001)P155~156に記載されているようなドーパント材料、P170~172に記載されているような3重項材料の発光材料等である。
発光材料または発光性ドーパントとして使用できる化合物は、多環芳香族化合物、ヘテロ芳香族化合物、有機金属錯体、色素、高分子系発光材料、スチリル誘導体、芳香族アミン誘導体、クマリン誘導体、ボラン誘導体、オキサジン誘導体、スピロ環を有する化合物、オキサジアゾール誘導体、フルオレン誘導体等である。多環芳香族化合物の例は、アントラセン誘導体、フェナントレン誘導体、ナフタセン誘導体、ピレン誘導体、クリセン誘導体、ペリレン誘導体、コロネン誘導体、ルブレン誘導体等である。ヘテロ芳香族化合物の例は、ジアルキルアミノ基またはジアリールアミノ基を有するオキサジアゾール誘導体、ピラゾロキノリン誘導体、ピリジン誘導体、ピラン誘導体、フェナントロリン誘導体、シロール誘導体、トリフェニルアミノ基を有するチオフェン誘導体、キナクリドン誘導体等である。有機金属錯体の例は、亜鉛、アルミニウム、ベリリウム、ユーロピウム、テルビウム、ジスプロシウム、イリジウム、白金、オスミウム、金、等と、キノリノール誘導体、ベンゾキサゾ-ル誘導体、ベンゾチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、ベンゾイミダゾール誘導体、ピロール誘導体、ピリジン誘導体、フェナントロリン誘導体等との錯体である。色素の例は、キサンテン誘導体、ポリメチン誘導体、ポルフィリン誘導体、クマリン誘導体、ジシアノメチレンピラン誘導体、ジシアノメチレンチオピラン誘導体、オキソベンズアントラセン誘導体、カルボスチリル誘導体、ペリレン誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体等の色素が挙げられる。高分子系発光材料の例は、ポリパラフェニルビニレン誘導体、ポリチオフェン誘導体、ポリビニルカルバゾ-ル誘導体、ポリシラン誘導体、ポリフルオレン誘導体、ポリパラフェニレン誘導体等である。スチリル誘導体の例は、アミン含有スチリル誘導体、スチリルアリーレン誘導体等である。
本発明の有機EL素子に使用される他の電子輸送材料は、光導電材料において電子伝達化合物として使用できる化合物、有機EL素子の電子輸送層および電子注入層に使用できる化合物の中から任意に選択して用いることができる。
このような電子輸送材料の具体例は、キノリノール系金属錯体、2,2’-ビピリジル誘導体、フェナントロリン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、オキサジアゾール誘導体、チオフェン誘導体、トリアゾール誘導体、チアジアゾール誘導体、オキシン誘導体の金属錯体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ガリウム錯体、ピラゾール誘導体、パ-フルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、ベンゾキノリン誘導体、イミダゾピリジン誘導体、ボラン誘導体等である。
本発明の有機EL素子に使用される正孔注入材料および正孔輸送材料については、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物や、有機EL素子の正孔注入層および正孔輸送層に使用されている公知のものの中から任意のものを選択して用いることができる。それらの具体例は、カルバゾ-ル誘導体、トリアリールアミン誘導体、フタロシアニン誘導体等である。
本発明の有機EL素子を構成する各層は、各層を構成すべき材料を蒸着法、スピンコート法またはキャスト法等の方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm~5000nmの範囲である。なお、発光材料を薄膜化する方法は、均質な膜が得やすく、かつピンホールが生成しにくい等の点から蒸着法を採用するのが好ましい。蒸着法を用いて薄膜化する場合、その蒸着条件は、本発明の発光材料の種類により異なる。蒸着条件は一般的に、ボート加熱温度50~400℃、真空度10-6~10-3Pa、蒸着速度0.01~50nm/秒、基板温度-150~+300℃、膜厚5nm~5μmの範囲で適宜設定することが好ましい。
本発明の有機EL素子は、前記のいずれの構造であっても、基板に支持されていることが好ましい。基板は機械的強度、熱安定性および透明性を有するものであればよく、ガラス、透明プラスチックフィルム等を用いることができる。陽極物質は4eVより大きな仕事関数を有する金属、合金、電気伝導性化合物およびこれらの混合物を用いることができる。その具体例は、Au等の金属、CuI、インジウムチンオキシド(以下、ITOと略記する)、SnO、ZnO等である。
陰極物質は4eVより小さな仕事関数の金属、合金、電気伝導性化合物、およびこれらの混合物を使用できる。その具体例は、アルミニウム、カルシウム、マグネシウム、リチウム、マグネシウム合金、アルミニウム合金等である。合金の具体例は、アルミニウム/弗化リチウム、アルミニウム/リチウム、マグネシウム/銀、マグネシウム/インジウム等である。有機EL素子の発光を効率よく取り出すために、電極の少なくとも一方は光透過率を10%以上にすることが望ましい。電極としてのシート抵抗は数百Ω/□以下にすることが好ましい。なお、膜厚は電極材料の性質にもよるが、通常10nm~1μm、好ましくは10~400nmの範囲に設定される。このような電極は、上述の電極物質を使用して、蒸着やスパッタリング等の方法で薄膜を形成させることにより作製することができる。
次に、本発明の発光材料を用いて有機EL素子を作成する方法の一例として、前述の陽極/正孔注入層/正孔輸送層/発光層/本発明の電子輸送材料/陰極からなる有機EL素子の作成法について説明する。適当な基板上に、陽極材料の薄膜を蒸着法により形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上に発光層の薄膜を形成させる。この発光層の上に本発明の電子輸送材料を真空蒸着し、薄膜を形成させ、電子輸送層とする。さらに陰極用物質からなる薄膜を蒸着法により形成させて陰極とすることにより、目的の有機EL素子が得られる。なお、上述の有機EL素子の作製においては、作製順序を逆にして、陰極、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
このようにして得られた有機EL素子に直流電圧を印加する場合には、陽極を+、陰極を-の極性として印加すればよく、電圧2~40V程度を印加すると、透明又は半透明の電極側(陽極又は陰極、および両方)より発光が観測できる。また、この有機EL素子は、交流電圧を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。
[実施例]
以下に、本発明を実施例に基づいて更に詳しく説明する。まず、実施例で用いた化合物の合成例について、以下に説明する。
[合成例1]化合物(1-3-1)の合成
<9-ブロモ-10-フェニルアントラセンの合成>
9-フェニルアントラセン104gおよびN-ブロモスクシンイミド80gを含有するクロロホルム溶液580mlに、窒素雰囲気下、ヨウ素0.2gを含有するクロロホルム溶液10mlを室温で攪拌しながら滴下した。滴下終了後、還流温度で3時間攪拌した。反応液を室温まで冷却した後、沈殿物を吸引濾過にて除去して、トルエン500mlを加え分液した。有機層を水洗し、溶媒を減圧留去して得られた固体をメタノール250mlで洗浄して、9-ブロモ-10-フェニルアントラセン135gを得た。
<9-(6-メトキシナフタレン-2-イル)-10-フェニルアントラセンの合成>
窒素雰囲気下、マグネシウム10.7gおよび少量のヨウ素の入ったフラスコに、2-ブロモ-6-メトキシナフタレン70gを含有するTHF溶液を滴下してグリニャール試薬を調製した。9-ブロモ-10-フェニルアントラセン67g、塩化ニッケル0.5gおよびTHF140mlの入ったフラスコに、窒素雰囲気下、このグリニャール試薬を室温で攪拌しながら滴下した。滴下終了後さらに30分攪拌し、トルエンを加えて分液した。有機層を水洗し、溶媒を減圧留去して得られた固体を真空乾燥して、9-(6-メトキシナフタレン-2-イル)-10-フェニルアントラセン80gを得た。
<6-(10-フェニルアントラセン-9-イル)ナフタレン-2-オールの合成>
9-(6-メトキシナフタレン-2-イル)-10-フェニルアントラセン50gを含有するジクロロメタン溶液400mlに、三臭化ホウ素39gを含有するジクロロメタン溶液120mlを塩氷温度で攪拌しながら滴下した。滴下終了後さらに室温で14時間攪拌した後、氷水で冷却しながら水300mlを加えた。この反応混合物から酢酸エチル1lを用いて抽出し、有機層を水洗した。溶媒を減圧留去して得られた固体を真空乾燥して、6-(10-フェニルアントラセン-9-イル)ナフタレン-2-オール51gを得た。
<6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル トリフルオロメタンスルホネートの合成>
6-(10-フェニルアントラセン-9-イル)ナフタレン-2-オール51g、ピリジン12.3gおよびトルエン600mlの入ったフラスコに、窒素雰囲気、トリフルオロメタンスルホン酸無水物40gをトルエン100mlに溶かした溶液を、氷浴温度で攪拌しながら滴下した。滴下終了後、さらに室温で19時間攪拌した。この反応混合物からトルエン700mlを用いて抽出し、有機層を水洗した。溶媒を一旦減圧留去して再度トルエンに溶解し、アルミナショートカラム(トルエン)を通した。溶媒を減圧留去して得られた固体をヘプタン(250ml)で3回洗浄し、6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル トリフルオロメタンスルホネート50gを得た。
<化合物(1-3-1)の合成>
4-ブロモピリジン塩酸塩9.3gおよびTHF45mlを入れたフラスコをドライアイス/メタノール浴で冷却し、窒素雰囲気下、2MイソプロピルマグネシウムクロリドTHF溶液25mlを攪拌しながら滴下した。滴下終了後一旦0℃まで昇温した後、氷水で冷却して、2MイソプロピルマグネシウムクロリドTHF溶液25mlを攪拌しながら滴下した。滴下終了後、さらに室温で1時間半攪拌し、4-ブロモピリジンが消費されたことを確認して、フラスコを氷水で冷却し、塩化亜鉛テトラメチルエチレンジアミン錯体(12.6g)を攪拌しながら加えた。その後室温で14時間攪拌し、6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル トリフルオロメタンスルホネート19g、Pd(PPh1.7gおよびTHF50mlを加え、還流温度で9時間加熱攪拌した。反応液を室温まで冷却し、水洗して塩を除去した後、分液した有機層をアルミナカラムクロマトグラフィー(トルエン/酢酸エチル=10/1(容量比))で精製した。溶媒を減圧留去して得られた固体をアニソールから再結晶して、化合物(1-3-1):4-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジン3.2gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCl):8.75(d,2H),8.3(m,1H),8.15(dd,1H),8.05(m,2H),7.85(d,1H),7.65-7.75(m,7H),7.6(t,2H),7.55-7.6(m,1H),7.5(m,2H),7.35(m,4H).
[合成例2]化合物(1-3-2)の合成
フラスコに3-ピリジンボロン酸2.8g、6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル トリフルオロメタンスルホネート10.0g、Pd(PPh0.7g、リン酸カリウム8.0g、1,2,4-トリメチルベンゼン40ml、2-プロパノール4ml、および水4mlを入れ、還流温度で6時間攪拌した。反応液を室温まで冷却した後、水洗して塩を除去し、分液した有機層をシリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル=95/5(容量比))で精製した。溶媒を減圧留去して得られた固体をメタノールで洗浄し、化合物(1-3-2):3-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジン2.1gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCl):9.1(dd,1H),8.7(dd,1H),8.2(d,1H),8.2~8.1(d,1H),8.1~8.0(m,1H),8.0(m,2H),7.8(dd,1H),7.7 (m,4H),7.7~7.6(dd,1H),7.6 (m,2H),7.6~7.5(m,1H),7.5(m,2H),7.5~7.4(m,1H),7.4~7.3(m,4H).
[合成例3]化合物(1-3-3)の合成
2-ブロモピリジン4.1gおよびTHF20mlが入ったフラスコに、窒素雰囲気下、2MイソプロピルマグネシウムクロリドTHF溶液14.3mlを、室温で攪拌しながら滴下した。滴下終了後氷水で冷却し、攪拌しながら塩化亜鉛テトラメチルエチレンジアミン錯体7.2gを加えた。その後室温で0.5時間攪拌し、次いで6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル トリフルオロメタンスルホネート12.4g、Pd(PPh0.3gを加え、還流温度で0.5時間攪拌した。反応液を室温まで冷却した後、触媒の金属イオンを除去するため、目的の化合物に対しておよそ2倍モルに相当するエチレンジアミン四酢酸・四ナトリウム塩二水和物を適量の水に溶解した溶液(以後、EDTA・4Na水溶液と略記する。)を加え攪拌した。液中の固体を吸引濾過で採取し、メタノール次いで酢酸エチルで洗浄後トルエンに溶解し、シリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル=95/5(容量比))で精製した。溶媒を減圧留去して得られた固体をクロロベンゼンから再結晶して、化合物(1-3-3):2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジン5.6gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCL3):8.8(m,1H),8.7(m,1H),8.25(dd,1H),8.2(d,1H),8.0(m,2H),7.95(d,1H),7.8(td,1H),7.75(m,4H),7.65~7.5(m,6H),7.35~7.25(m,5H).
[合成例4]化合物(1-3-5)の合成
<4,4,5,5-テトラメチル-2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-1,3,2-ジオキサボロランの合成>
アルゴン雰囲気下、フラスコに6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル トリフルオロメタンスルホネート180.9g、ビスピナコラートジボロン129.5g、ビス(ジベンジリデンアセトン)パラジウム(0)19.6g、トリシクロヘキシルホスフィン19.1g、酢酸カリウム66.7g、炭酸カリウム47.0g、およびアニソール300mlを入れて、還流温度で3時間撹拌した。反応液を室温まで冷却してからトルエンを加えて攪拌し、有機物を溶解させた後、セライトを敷いた桐山ロートを用いて吸引濾過にて無機固形物を濾別した。得られた濾液にヘプタンを加え、析出した固体をヘプタンで洗浄して、4,4,5,5-テトラメチル-2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-1,3,2-ジオキサボロラン109.0gを得た。
<化合物(1-3-5)の合成>
フラスコに4,4,5,5-テトラメチル-2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-1,3,2-ジオキサボロラン15.0g、5-ブロモ-2,3’-ビピリジン8.3g、Pd(PPh1.0g、リン酸カリウム12.6g、1,2,4-トリメチルベンゼン60ml、2-プロパノール12ml、および水2.4mlを入れて、還流温度で5時間攪拌した。反応液を室温まで冷却した後、液中の固体を吸引濾過にて採取し、EDTA・4Na水、次いでエタノールで洗浄した。この固体をクロロベンゼンに投入し、還流温度で溶解させてから、不溶分を吸引濾過で濾別した。溶液を濃縮し、クロロベンゼンから再結晶して、化合物(1-3-5):5-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-2,3’-ビピリジン5.7gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCl):9.3(s,1H),9.2(s,1H),8.7(m,1H),8.45(d,1H),8.3(s,1H),8.2(m,2H),8.05(m,2H),7.95(d,1H),7.9(dd,1H),7.4-7.8(m,11H),7.35(m,4H).
[合成例5]化合物(1-3-12)の合成
フラスコに4,4,5,5-テトラメチル-2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-1,3,2-ジオキサボロラン5.0g、6-ブロモ-2,4’-ビピリジン2.3g、Pd(PPh0.3g、リン酸カリウム4.2g、1,2,4-トリメチルベンゼン20ml、2-プロパノール4ml、および水1mlを入れて、還流温度で3時間攪拌した。反応液を室温まで冷却した後水およびメタノールを加え、析出した固体を吸引濾過にて採取した。この固体を水、次いでメタノールで洗浄し、トルエンに溶解して、シリカゲルクロマトグラフィー(トルエン/酢酸エチル=60/40(容量比))で精製した。溶媒を減圧留去した後、クロロベンゼンから再結晶して、化合物(1-3-12):6-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-2,4’-ビピリジン1.3gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCl):8.8(dd,2H),8.75(m,1H),8.45(dd,1H),8.2(d,1H),8.1(dd,2H),8.05(m,3H),8.0(t,1H),7.85(d,1H),7.75(m,4H),7.7(dd,1H)),7.6(m,2H),7.55(m,1H),7.5(m,2H),7.35(m,4H).
[合成例6]化合物(1-3-21)の合成
フラスコに4,4,5,5-テトラメチル-2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-1,3,2-ジオキサボロラン15.0g、4-(3-ブロモフェニル)ピリジン6.9g、Pd(PPh1.0g、リン酸カリウム12.6g、1,2,4-トリメチルベンゼン60ml、2-プロパノール12mlおよび水3mlを入れて、還流温度で4時間攪拌した。反応液を室温まで冷却した後、水およびクロロベンゼンを加えて分液した。溶媒を減圧留去した後、再度トルエンに溶解し、シリカゲルクロマトグラフィー(トルエン/酢酸エチル=80/20(容量比))で精製した。溶媒を減圧留去して得られた固体をクロロベンゼンから再結晶して、化合物(1-3-21):4-(3-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)フェニル)ピリジン9.7gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCl):8.7(dd,2H),8.3(m,1H),8.15(d,1H),8.0(m,3H),7.9(m,2H),7.50-7.75(m,14H),7.3(m,4H).
[合成例7]化合物(1-3-22)の合成
<5-ブロモ-3,2’-ビピリジンの合成>
3,5-ジブロモピリジン52.1gおよびTHF300mlが入ったフラスコに、窒素雰囲気下、2MイソプロピルマグネシウムクロリドTHF溶液121mlを、室温で攪拌しながら滴下した。滴下終了後、氷水で冷却し、塩化亜鉛テトラメチルエチレンジアミン錯体81.0gを攪拌しながら加えた。その後、さらに室温で1時間攪拌し、2-ヨードピリジン45.1g、Pd(PPh2.5gを加え、水浴で冷却しながら3時間攪拌した。反応溶液にEDTA・4Na水およびトルエンを加え分液した。有機層の溶媒を一旦減圧留去し、固体をトルエンに溶解してシリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル=90/10(容量比))で精製した。溶媒を減圧留去して得た固体をヘプタンから再結晶して、5-ブロモ-3,2’-ビピリジン39.0gを得た。
<化合物(1-3-22)の合成>
フラスコに4,4,5,5-テトラメチル-2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-1,3,2-ジオキサボロラン11.1g、5-ブロモ-3,2’-ビピリジン5.6g、Pd(PPh0.8g、リン酸カリウム9.3g、1,2,4-トリメチルベンゼン50ml、t-ブチルアルコール5ml、および水5mlを入れて、還流温度で3時間攪拌した。反応液を室温まで冷却した後、水およびトルエンを加え分液した。有機層の溶媒を一旦減圧留去し、固体をトルエンに溶解してシリカゲルクロマトグラフィー(トルエン/酢酸エチル=80/20(容量比))で精製した。溶媒を減圧留去して得た固体をトルエンから再結晶して、化合物(1-3-22):5-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-3,2’-ビピリジン7.6gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCL3):9.25(m,1H),9.1(m,1H),8.8(m,1H),8.75(t,1H),8.35(m,1H),8.15(d,1H),8.05(m,2H),7.85~7.95(m,3H),7.75(dd,4H),7.7(dd,1H),7.6(m,2H),7.55(m,1H),7.5(m,2H),7.3~7.4(m,5H).
[合成例8]化合物(1-3-24)の合成
フラスコに4,4,5,5-テトラメチル-2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-1,3,2-ジオキサボロラン15.0g、5-ブロモ-3,4’-ビピリジン(8.3g)、Pd(PPh1.0g、リン酸カリウム12.6g、1,2,4-トリメチルベンゼン60ml、2-プロパノール12ml、および水2.4mlを入れて、還流温度で3時間攪拌した。反応液を室温まで冷却した後、液中の固体を吸引濾過にて採取した。この固体をEDTA・4Na水、次いでエタノールで洗浄し、トルエンに溶解して活性炭ショートカラム(トルエン)にて精製した。溶媒を減圧留去して得た固体をクロロベンゼンから再結晶して、化合物(1-3-24):5-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-3,4’-ビピリジン6.2gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCL3):9.15(m,1H),8.95(m,1H),8.8(dd,2H),8.3(m,2H),8.2(d,1H),8.05(m、2H),7.9(dd,1H),7.5~7.75(m,12H),7.4~7.3(m,4H).
[合成例9]化合物(1-3-25)の合成
<3-ブロモ-5-フェニルピリジンの合成>
3,5-ジブロモピリジン33.2gおよびTHF150mlが入ったフラスコに、窒素雰囲気下、2MイソプロピルマグネシウムクロリドTHF溶液77mlを、室温で攪拌しながら滴下した。滴下終了後、さらに1時間室温で撹拌した後、氷水で冷却し、塩化亜鉛テトラメチルエチレンジアミン錯体34.3gを攪拌しながら徐々に加えた。室温で1時間攪拌した後、ヨードベンゼン57.1gおよびPd(PPh(1.6g)を加えて、室温で43時間攪拌した。反応溶液にEDTA・4Na水およびトルエンを加え、分液した。有機層の溶媒を一旦減圧留去し、固体をトルエンに溶解してシリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル=90/10(容量比))で精製した。溶媒を減圧留去して固体の3-ブロモ-5-フェニルピリジン25.0gを得た。
<化合物(1-3-25)の合成>
フラスコに4,4,5,5-テトラメチル-2-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)-1,3,2-ジオキサボロラン10.1g、3-ブロモ-5-フェニルピリジン5.2g、Pd(PPh0.7g、リン酸カリウム8.5g、1,2,4-トリメチルベンゼン50ml、t-ブチルアルコール5ml、および水5mlを入れて、還流温度で3時間攪拌した。反応液を室温まで冷却した後、液中の固体を吸引濾過にて採取した。この固体を水、次いでメタノールで洗浄し、トルエンに溶解してシリカゲルクロマトグラフィー(トルエン/酢酸エチル=90/10(容量比))で精製した。溶媒を減圧留去して、化合物(1-3-25):3-フェニル-5-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジン6.4gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCL3):9.05(m,1H),8.9(m,1H),8.3(s,1H),8.25(m,1H),8.15(d,1H),8.05(m、2H),7.9(dd,1H),7.45~7.75(m,15H),7.4~7.3(m,4H).
[合成例10]化合物(1-3-27)の合成
<5-ブロモ-2-フェニルピリジンの合成>
フラスコにフェニルボロン酸23.4g、2,5-ジブロモピリジン50g、Pd(PPh4.4g、炭酸ナトリウム40.3gを水150mlに溶解した溶液、およびトルエン500mlを入れて、アルゴン雰囲気下、3時間半還流温度で撹拌した。反応液を室温まで冷却し、分液した有機層の溶媒を一旦減圧留去して、固体をトルエンに溶解し、シリカゲルショートカラム(トルエン)で精製した。溶媒を減圧留去して得た固体をヘプタンから再結晶して、5-ブロモ-2-フェニルピリジン28.8gを得た。
<化合物(1-3-27)の合成>
5-ブロモ-2-フェニルピリジン5.2gおよびTHF20mlが入ったフラスコに、窒素雰囲気下、2MイソプロピルマグネシウムクロリドTHF溶液12.1mlを、室温で攪拌しながら滴下した。滴下終了後、さらに7時間室温で撹拌した。フラスコを氷水で冷却し、塩化亜鉛テトラメチルエチレンジアミン錯体6.1gを攪拌しながら加えた。その後室温で0.5時間攪拌し、6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル トリフルオロメタンスルホネート10.5g、Pd(PPh0.3gを加えて、還流温度で2時間攪拌した。反応液を室温まで冷却し、EDTA・4Na水を加え、液中の固体を吸引濾過にて採取した。この固体をメタノール、次いで酢酸エチルで洗浄し、トルエンに溶解してシリカゲルカラムクロマトグラフィー(トルエン)で精製した。溶媒を減圧留去して得た固体をクロロベンゼンから再結晶して、化合物(1-3-27):2-フェニル-5-(6-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジン2.2gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCL3):9.15(m,1H),8.3(s,1H),8.2(m,2H),8.1(m,2H),8.05(m,2H),7.9(m,2H),7.75(dd,4H),7.7(dd,1H),7.65(m,2H),7.5~7.6(m,5H),7.45(m,1H),7.3~7.4(m,4H).
[合成例11]化合物(1-4-2)の合成
<ナフタレン-2,7-ジイルビス(トリフルオロメタンスルホネート)の合成>
2,7-ジヒドロキシナフタレン22.7gおよびピリジン200mlの入ったフラスコを氷浴で冷却し、窒素雰囲気下、トリフルオロメタンスルホン酸無水物100gを撹拌しながら滴下した。滴下終了後、さらに室温で3時間撹拌した後、水を加えて酢酸エチルで抽出した。有機層の溶媒を一旦減圧留去し、固体をトルエンに溶解してシリカゲルクロマトグラフィー(ヘプタン/トルエン=80/20(容量比))で精製した。溶媒を減圧留去して、ナフタレン-2,7-ジイルビス(トリフルオロメタンスルホネート)42.8gを得た。
<7-(ピリジン-3-イル)ナフタレン-2-イル トリフルオロメタンスルホネートの合成>
3-ブロモピリジン14.0gおよびTHF50mlが入ったフラスコを氷浴で冷却し、窒素雰囲気下、2MイソプロピルマグネシウムクロリドTHF溶液48.7mlを、攪拌しながら滴下した。滴下終了後さらに室温で撹拌し、3-ブロモピリジンが消費されたのを確認してから、再び氷浴で冷却し、塩化亜鉛テトラメチルエチレンジアミン錯体24.6gを攪拌しながら加えた。その後室温で0.5時間攪拌し、ナフタレン-2,7-ジイルビス(トリフルオロメタンスルホネート)41.4g、Pd(PPh0.5gを加えて、還流温度で0.5時間攪拌した。反応液を室温まで冷却し、EDTA・4Na水を加え、酢酸エチルで抽出した。有機層の溶媒を一旦減圧留去し、固体をトルエンに溶解してシリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル=80/20(容量比))で精製した。溶媒を減圧留去して、7-(ピリジン-3-イル)ナフタレン-2-イル トリフルオロメタンスルホネート11.4gを得た。
<化合物(1-4-2)の合成>
フラスコに(10-フェニルアントラセン-9-イル)ボロン酸8.0g、7-(ピリジン-3-イル)ナフタレン-2-イル トリフルオロメタンスルホネート11.4g、Pd(PPh0.9g、リン酸カリウム11.4g、1,2,4-トリメチルベンゼン54ml、2-プロパノール11ml、および水2.2mlを入れて、還流温度で4時間攪拌した。反応液を室温まで冷却した後、液中の固体を吸引濾過にて採取した。この固体を水、次いでEDTA・4Na水で洗浄し、トルエンに溶解して活性アルミナクロマトグラフィー(トルエン/酢酸エチル=60/40(容量比))で精製した。溶媒を減圧留去して、化合物(1-4-2):3-(7-(10-フェニルアントラセン-9-イル)ナフタレン-2-イル)ピリジン6.3gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCL3):9.05(m,1H),8.65(m,1H),8.1-8.15(m,3H),8.05(m,2H),7.85(d,1H),7.7~7.75(m、4H),7.6~7.7(m,3H),7.55(m,1H),7.5(m,2H),7.45(m,1H),7.3~7.4(m,4H).
[合成例12]化合物(1-5-11)の合成例
<9-(4-エトキシフェニル)-10-(ナフタレン-2-イル)アントラセンの合成>
フラスコに4-エトキシフェニルボロン酸38.0g、9-ブロモ-10-(ナフタレン-2-イル)アントラセン57.7g、Pd(PPh1.7g、リン酸カリウム63.9g、および1,2,4-トリメチルベンゼン350mlを入れて、アルゴン雰囲気下、100℃で4時間撹拌した。反応液を室温まで冷却した後、液中の固体を吸引濾過にて採取し、メタノール、次いで水で洗浄した。この固体をクロロベンゼンに加熱溶解し、不溶物を吸引濾過で除去した。溶液を濃縮し、クロロベンゼンから再結晶して、9-(4-エトキシフェニル)-10-(ナフタレン-2-イル)アントラセン58.2gを得た。
<4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェノールの合成>
フラスコに9-(4-エトキシフェニル)-10-(ナフタレン-2-イル)アントラセン45.1gおよびピリジン塩酸塩500.0gを入れて、窒素雰囲気下、還流温度で10時間撹拌した。反応液を室温まで冷却した後、水を加えて析出した固体を吸引濾過にて採取し、メタノールで洗浄して、4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェノール42.0gを得た。
<4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニルトリフルオロメタンスルホネートの合成>
4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェノール42.0gおよびピリジン500mlの入ったフラスコに、窒素雰囲気下、氷浴で冷却しながらトリフルオロメタンスルホン酸無水物45.2gを滴下した。滴下終了後、さらに室温で15時間攪拌した。水を加えて析出した固体を吸引濾過にて採取した。この固体をメタノールで洗浄し、クロロベンゼンから再結晶して、4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニルトリフルオロメタンスルホネート38.3gを得た。
<4,4,5,5-テトラメチル-2-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロランの合成>
フラスコに4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニルトリフルオロメタンスルホネート35.0g、ビスピナコラートジボラン25.2g、ビス(ジベンジリデンアセトン)パラジウム(0)2.2g、トリシクロヘキシルホスフィン2.8g、酢酸カリウム13.0g、およびシクロペンチルメチルエーテル250mlを入れて、還流温度で5.5時間撹拌した。反応液を室温まで冷却した後、不溶物を吸引濾過にて除き、濾液の溶媒を減圧留去した。固体をトルエンに溶解してシリカゲルカラムクロマトグラフィー(トルエン)で精製した。溶媒を減圧留去して、4,4,5,5-テトラメチル-2-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン16.0gを得た。
<化合物(1-5-11)の合成>
フラスコに4,4,5,5-テトラメチル-2-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン5.0g、6-ブロモ-2,3’-ビピリジン2.8g、Pd(PPh0.7g、リン酸カリウム4.2g、1,2,4-トリメチルベンゼン20ml、t-ブチルアルコール4ml、および水4.0mlを入れて、還流温度で9.5時間攪拌した。反応液を室温まで冷却した後、液中の固体を吸引濾過にて採取し、メタノールで洗浄した。この固体をトルエンに加熱溶解し、不溶物を吸引濾過で除去した。溶液を濃縮し、トルエンから再結晶して、化合物(1-5-11):6-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,3’-ビピリジン3.3gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCl):9.4(m,1H),8.7(d,1H),8.55(dd,1H),8.4(d,2H),8.1(d,1H),8.05(m,1H),7.9-8.0(m,4H),7.8(m,3H),7.75(d,2H),7.65(d,2H),7.6(m,3H),7.45(m,1H),7.35(m,4H).
[合成例13]化合物(1-5-24)の合成
フラスコに4,4,5,5-テトラメチル-2-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン5.0g、5-ブロモ-3,4’-ビピリジン2.8g、Pd(PPh0.4g、リン酸カリウム4.2g、1,2,4-トリメチルベンゼン20ml、t-ブチルアルコール4ml、および水0.8mlを入れて、還流温度で4時間攪拌した。反応液を室温まで冷却した後、液中の固体を吸引濾過にて採取し、メタノールで洗浄した。この固体をトルエンに加熱溶解し、不溶物を吸引濾過で除去した。溶液を濃縮し、トルエンから再結晶して、化合物(1-5-24):5-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-3,4’-ビピリジン3.9gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCl):9.1(m,1H),8.95(m,1H),8.8(dd,2H),8.3(m,1H),8.1(d,1H),8.05(m,1H),8.0(s,1H),7.9-7.95(m,3H),7.75-7.8(m,4H),7.6-7.7(m,7H),7.3-7.4(m,4H).
[合成例14]化合物(1-6-1)の合成
<9-ブロモ-10-(ナフタレン-2-イル)アントラセンの合成>
9-(ナフタレン-2-イル)アントラセン39.7gおよびN-ブロモスクシンイミド25.5gをクロロホルム200mlに溶解させた溶液をに、窒素雰囲気下、ヨウ素0.1gをクロロホルム3mlに溶解させた溶液を、室温で攪拌しながら滴下した。滴下終了後、還流温度で3時間攪拌した後、反応液を室温まで冷却し、吸引濾過にて沈殿物を除去した。この濾液にトルエン2000mlを加え水洗した。有機層の溶媒を減圧留去して得られた固体をメタノール100mlで洗浄し、9-ブロモ-10-(ナフタレン-2-イル)アントラセン45gを得た。
<4,4,5,5-テトラメチル-2-(10-(ナフタレン-2-イル)アントラセン-9-イル)1,3,2-ジオキサボロランの合成>
アルゴン雰囲気下、フラスコに9-ブロモ-10-(ナフタレン-2-イル)アントラセン20.0g、ビスピナコラートジボロン15.8g、ビス(ジベンジリデンアセトン)パラジウム(0)0.9g、トリシクロヘキシルホスフィン1.1g、酢酸カリウム(10.2g、およびシクロペンチルメチルエーテル100mlを入れて、還流温度で14時間撹拌した。反応液を室温まで冷却し、トルエン100mlを加えて有機物を溶解させた後、吸引濾過して不溶物を除去した。トルエン溶液をシリカゲルカラムクロマトグラフィー(ヘプタン/トルエン=2/1(容量比))で精製し、溶媒を減圧留去して得た固体をTHF/ヘプタン混合溶媒(1/10(容量比))から再結晶して、4,4,5,5-テトラメチル-2-(10-(ナフタレン-2-イル)アントラセン-9-イル)1,3,2-ジオキサボロラン17.9gを得た。
<4-(3-ブロモフェニル)ピリジンの合成>
4-ブロモピリジン塩酸塩(200g)およびTHF(800ml)が入ったフラスコを-40℃に冷却し、窒素雰囲気下、ここに2MイソプロピルマグネシウムクロリドTHF溶液540mlを、攪拌しながら滴下した。滴下終了後、一旦0℃まで昇温した後、氷水で冷却、攪拌しながら2MイソプロピルマグネシウムクロリドTHF溶液540mlを滴下した。滴下終了後室温で1時間攪拌し、4-ブロモピリジンが消費されたことを確認してから、氷水で冷却し、塩化亜鉛テトラメチルエチレンジアミン錯体273gを攪拌しながら加えた。その後、室温で0.5時間攪拌し、1,3-ジブロモベンゼン485gおよびPd(PPh1.2gを加え、還流温度で3時間攪拌した。反応液を室温まで冷却し、EDTA・Na水を加え、分液して有機層を水洗した。溶媒を減圧留去して、4-(3-ブロモフェニル)ピリジン165.7gを得た。
<式(1-6-1)で表される化合物の合成>
フラスコに4,4,5,5-テトラメチル-2-(10-(ナフタレン-2-イル)アントラセン-9-イル)1,3,2-ジオキサボロラン4.0g、4-(3-ブロモフェニル)ピリジン2.6g、Pd(PPh0.3g、リン酸カリウム4.0g、1,2,4-トリメチルベンゼン20ml、2-プロパノール4ml、および水1mlを入れて、還流温度で6.5時間攪拌した。反応液を室温まで冷却した後、液中の固体を吸引濾過にて採取し、メタノール、次いで水で洗浄した。この固体を更にメタノール、酢酸エチルで洗浄した後、トルエンから再結晶し、次いでクロロベンゼンから再結晶して、化合物(1-6-1):4-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)ピリジン2.1gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCl):8.7(m,2H),8.1(d,1H),8.05(m,1H),8.0(m,1H),7.95(m,1H),7.85(m,1H),7.8(m,1H),7.7-7.75(m,5H),7.6(m,6H),7.3-7.4(m,4H).
[合成例15]化合物(1-6-2)の合成
フラスコに4,4,5,5-テトラメチル-2-(10-(ナフタレン-2-イル)アントラセン-9-イル)1,3,2-ジオキサボロラン6.0g、3-(3-ブロモフェニル)ピリジン3.9g、Pd(PPh0.5g、リン酸カリウム5.9g、1,2,4-トリメチルベンゼン28ml、2-プロパノール5.5ml、および水1mlを入れて、還流温度で9.5時間攪拌した。反応液を室温まで冷却した後、液中の固体を吸引濾過にて採取し、メタノール、次いで水で洗浄した。この固体を更にメタノール、酢酸エチルで洗浄した後、クロロベンゼンから再結晶して、化合物(1-6-2):3-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)ピリジン3.5gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCl):9.0(m,1H),8.6(m,1H),8.1(d,1H),8.05(m,1H),8.0(m,2H),7.9(m,1H),7.7-7.8(m,7H),7.55-7.65(m,4H),7.3-7.4(m,5H).
[合成例16]化合物(1-6-4)の合成
<1-ブロモ-3-エトキシベンゼンの合成>
フラスコに3-ブロモフェノール100.0g、ブロモエタン69.4g、炭酸カリウム95.8g、およびDMF500mlを入れて、窒素雰囲気下、55℃で6時間撹拌した。反応液を室温まで冷却した後、水およびヘプタンを加え抽出した。有機層の溶媒を減圧留去し、1-ブロモ-3-エトキシベンゼン109.0gを得た。
<9-(3-エトキシフェニル)-10-(ナフタレン-2-イル)アントラセンの合成>
フラスコに1-ブロモ-3-エトキシベンゼン72.4g、(10-(ナフタレン-2-イル)アントラセン-9-イル)ボロン酸104.5g、Pd(PPh10.4g、リン酸カリウム127.4g、1,2,4-トリメチルベンゼン600ml、2-プロパノール120ml、および水120mlを入れて、窒素雰囲気下、還流温度で6時間撹拌した。反応液を室温まで冷却した後、液中の固体を吸引濾過にて採取し、メタノールで洗浄して、9-(3-エトキシフェニル)-10-(ナフタレン-2-イル)アントラセン82gを得た。
<3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェノールの合成>
フラスコに9-(3-エトキシフェニル)-10-(ナフタレン-2-イル)アントラセン82gおよびピリジン塩酸塩446.0gを入れて、窒素雰囲気下、還流温度で8時間撹拌した。反応液を室温まで冷却した後、水を加えて析出した固体を吸引濾過にて採取し、メタノール、次いでトルエンで洗浄して、3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェノール76.0gを得た。
<3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニルトリフルオロメタンスルホネートの合成>
3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェノール(76.0g)およびピリジン(1L)の入ったフラスコを氷浴で冷却し、ここに窒素雰囲気下、トリフルオロメタンスルホン酸無水物65.0gを滴下した。滴下終了後、さらに室温で15時間撹拌し、水を加えて析出した固体を吸引濾過にて採取した。この固体をメタノールで洗浄して、3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニルトリフルオロメタンスルホネート90.3gを得た。
<4,4,5,5-テトラメチル-2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロランの合成>
フラスコに3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニルトリフルオロメタンスルホネート90.3g、ビスピナコラートジボラン52.1g、ビス(ジベンジリデンアセトン)パラジウム(0)7.4g、トリシクロヘキシルホスフィン7.2g、酢酸カリウム33.6g、炭酸カリウム23.6g、およびアニソール500mlを入れて、還流温度で5時間撹拌した。反応液を室温まで冷却した後、セライトを敷いた桐山ロートで吸引濾過して不溶物を除去し、濾液をEDTA・4Na水で洗浄した。濾液の溶媒を減圧留去して得た固体をヘプタンで洗浄し、4,4,5,5-テトラメチル-2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン(52.0g)を得た。
<化合物(1-6-4)の合成>
フラスコに4,4,5,5-テトラメチル-2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン15.2g、5-ブロモ-2,2’-ビピリジン8.5g、Pd(PPh1.0g、リン酸カリウム12.7g、1,2,4-トリメチルベンゼン120ml、t-ブチルアルコール12.0ml、および水2.4mlを入れて、還流温度で3時間攪拌した。反応液を室温まで冷却した後、液中の固体を吸引濾過にて採取し、メタノールで洗浄した。この固体をトルエンに加熱溶解し、不溶物を吸引濾過にて除去した。溶液を濃縮し、トルエンから再結晶して、化合物(1-6-4):5-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,2’-ビピリジン8.3gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCl):9.05(m,1H),8.7(m,1H),8.45-8.5(m,2H),8.1-8.15(m,2H),8.05(m,1H),8.0(s,1H),7.5-7.75(m,9H),7.55-7.65(m,4H),7.3-7.4(m,5H).
[合成例17]化合物(1-6-5)の合成
フラスコに4,4,5,5-テトラメチル-2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1,3,2-ジオキサボロラン9.6g、5-ブロモ-2,3’-ビピリジン5.3g、Pd(PPh0.7g、リン酸カリウム8.1g、1,2,4-トリメチルベンゼン40ml、2-プロパノール8.0ml、および水1.6mlを入れて、還流温度で4時間攪拌した。反応液を室温まで冷却した後、液中の固体を吸引濾過にて採取し、メタノールで洗浄した。この固体をクロロベンゼンに加熱溶解し、不溶物を吸引濾過にて除去した。溶液を濃縮し、クロロベンゼンから再結晶して、化合物(1-6-5):5-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2,3’-ビピリジン7.1gを得た。NMR測定により化合物の構造を確認した。
H-NMR(CDCl):9.25(m,1H),9.1(m,1H),8.65(dd,1H),8.4(m,1H),8.1(d,2H),8.05(m,1H),8.0(s,1H),7.95(m,1H),7.85(t,2H),7.7-7.8(m,6H),7.6(m,4H),7.4(m,1H),7.3-7.4(m,4H).
原料の化合物を適宜変更することにより、上述した合成例に準じた方法で、本発明の他の誘導体化合物を合成することができる。
以下、本発明をさらに詳細に説明するために、本発明の化合物を用いた有機EL素子の実施例を示すが、本発明はこれらに限定されるものではない。
実施例1および比較例1に係る素子を作製し、それぞれ、定電流駆動試験における駆動開始電圧(V)、初期値の90%以上の輝度を保持する時間(hr)の測定を行った。以下、実施例および比較例について詳細に説明する。
作製した実施例1および比較例1に係る素子における、各層の材料構成を下記表1に示す。
Figure JPOXMLDOC01-appb-T000077
表1において、「CuPc」は銅フタロシアニン、「NPD」はN4,N4’-ジ(ナフタレン-1-イル)-N4,N4’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン、化合物(A)は9-((6-[1,1’;3,1”テルフェニル]-5’-イル)ナフタレン-2-イル)-10-フェニルアントラセン、化合物(B)はN,N,N,N-7,7-ヘキサフェニル-7H-ベンゾ〔C〕フルオレン-5,9-ジアミンであり、化合物(C)は5,5’-(2-フェニルアントラセン-9,10-ジイル)ジ-2,2’-ビピリジンであり、それぞれ下記の化学構造を有する。
Figure JPOXMLDOC01-appb-I000078
<化合物(1-3-1)を電子輸送層に用いた素子(1)>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨して得られる26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(真空機工(株)製)の基板ホルダーに固定し、CuPcを入れたモリブデン製蒸着用ボート、NPDを入れたモリブデン製蒸着用ボート、化合物(A)を入れたモリブデン製蒸着用ボート、化合物(B)を入れたモリブデン製蒸着用ボート、化合物(1-3-1)を入れたモリブデン製蒸着用ボート、弗化リチウムを入れたモリブデン製蒸着用ボート、およびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、CuPcが入った蒸着用ボートを加熱して膜厚70nmになるように蒸着して正孔注入層を形成し、ついで、NPDが入った蒸着用ボートを加熱して膜厚30nmになるように蒸着して正孔輸送層を形成した。次に、化合物(A)が入った蒸着用ボートと化合物(B)の入った蒸着用ボートを同時に加熱して膜厚35nmになるように蒸着して発光層を形成した。化合物(A)と化合物(B)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、化合物(1-3-1)の入った蒸着用ボートを加熱して膜厚15nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。
その後、弗化リチウム入りの蒸着用ボートを加熱して膜厚0.5nmになるように0.003~0.1nm/秒の蒸着速度で蒸着し、次いでアルミニウム入りの蒸着用ボートを加熱して、膜厚100nmになるように0.01~10nm/秒の蒸着速度で蒸着して陰極を形成し、有機EL素子を得た。
ITO電極を陽極、弗化リチウム/アルミニウム電極を陰極として直流電圧を印加すると、波長約455nmの青色発光を得た。初期輝度2000cd/mを得るための電流密度により定電流駆動試験を実施したところ、駆動試験開始電圧は5.65Vで、初期値の90%(1800cd/m)以上の輝度を保持する時間は110時間であった。
<比較例1>
化合物(1-3-1)を化合物(C)に替えた以外は実施例1に準じた方法で有機EL素子を得た。ITO電極を陽極、弗化リチウム/アルミニウム電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.59Vで、初期値の90%以上の輝度を保持する時間は39時間であった。
以上の結果を表2にまとめた。
Figure JPOXMLDOC01-appb-T000079
正孔注入層に用いる材料を実施例1のCuPcから、化合物自身が赤色領域に発光ピークを持たない化合物であるHIに代え、電子輸送層の材料を表3に示す化合物を用いて、実施例2~9に係る素子を作製し、それぞれ、定電流駆動試験における駆動開始電圧(V)、初期値の90%以上の輝度を保持する時間(hr)の測定を行った。以下、実施例および比較例について詳細に説明する。なお、HIはN4,N4’-ジフェニル-N4,N4’-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1,1’-ビフェニル]-4,4’-ジアミンであり、下記の化学構造を有する。

Figure JPOXMLDOC01-appb-I000080
作製した実施例2~9に係る素子における、各層の材料構成を下記表3に示す。
Figure JPOXMLDOC01-appb-T000081
<化合物(1-3-1)を電子輸送層に用いた素子(2)>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(真空機工(株)製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、NPDを入れたモリブデン製蒸着用ボート、化合物(A)を入れたモリブデン製蒸着用ボート、化合物(B)を入れたモリブデン製蒸着用ボート、化合物(1-3-1)を入れたモリブデン製蒸着用ボート、リチウムキノリンを入れたモリブデン製蒸着用ボート、マグネシウムを入れたモリブデンボートおよび銀を入れたタングステン製蒸着用ボートを装着した。
透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して正孔注入層を形成し、ついで、NPDが入った蒸着用ボートを加熱して膜厚30nmになるように蒸着して正孔輸送層を形成した。次に、化合物(A)が入った蒸着用ボートと化合物(B)の入った蒸着用ボートを同時に加熱して膜厚35nmになるように蒸着して発光層を形成した。化合物(A)と化合物(B)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、化合物(1-3-1)の入った蒸着用ボートを加熱して膜厚15nmになるように蒸着して電子輸送層を形成した。各層の蒸着速度は0.01~1nm/秒であった。
その後、リチウムキノリンが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。ついで、マグネシウムの入ったボートと銀の入ったボートを同時に加熱して膜圧100nmになるように蒸着して陰極を形成した。この時、マグネシウムと銀の原子数比が10対1となるように蒸着速度を調節し、蒸着速度が0.1nmから10nmになるように陰極を形成し有機電界発光素子を得た。
ITO電極を陽極、マグネシウム/銀電極を陰極として、直流電圧を印加すると、波長約460nmの青色発光が得られた。また、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施したところ、駆動試験開始電圧は6.77Vで、初期値の90%(1800cd/m)以上の輝度を保持する時間は108時間であった。
<化合物(1-3-2)を電子輸送層に用いた素子>
化合物(1-3-1)を化合物(1-3-2)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は5.71Vで、初期値の90%以上の輝度を保持する時間は74時間だった。
<化合物(1-3-5)を電子輸送層に用いた素子>
化合物(1-3-1)を化合物(1-3-5)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は5.71Vで、初期値の90%以上の輝度を保持する時間は88時間だった。
<化合物(1-3-22)を電子輸送層に用いた素子>
化合物(1-3-1)を化合物(1-3-22)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は6.97Vで、初期値の90%以上の輝度を保持する時間は98時間だった。
<化合物(1-3-24)を電子輸送層に用いた素子>
化合物(1-3-1)を化合物(1-3-24)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は7.16Vで、初期値の90%以上の輝度を保持する時間は143時間だった。
<化合物(1-3-25)を電子輸送層に用いた素子>
化合物(1-3-1)を化合物(1-3-25)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は7.35Vで、初期値の90%以上の輝度を保持する時間は165時間だった。
<化合物(1-5-24)を電子輸送層に用いた素子>
化合物(1-3-1)を化合物(1-5-24)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は6.36Vで、初期値の90%以上の輝度を保持する時間は103時間だった。
<化合物(1-6-4)を電子輸送層に用いた素子>
化合物(1-3-1)を化合物(1-6-4)に替えた以外は実施例2に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/mを得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は6.34Vで、初期値の90%以上の輝度を保持する時間は120時間だった。
以上の結果を表4にまとめた。
Figure JPOXMLDOC01-appb-T000082
本発明の好ましい態様によれば、特に発光素子の寿命を向上させ、駆動電圧とのバランスも優れた有機電界発光素子、それを備えた表示装置およびそれを備えた照明装置などを提供することができる。

Claims (26)

  1. 下記式(1)で表される化合物。

    Figure JPOXMLDOC01-appb-I000001
    式(1)中、
    Pyは独立して、式(2)、(3)、(4)、または(5)で表される基であり;

    Figure JPOXMLDOC01-appb-I000002
    mおよびnは0または1であるが、m+n=1であり;
    式中のベンゼン環、ナフタレン環、およびピリジン環の-Hは独立して炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよい。
  2. 下記式(1-1)または(1-2)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000003
    式(1-1)または(1-2)中、
    Pyは、式(2)、(3)、(4)、または(5)で表される基であり;

    Figure JPOXMLDOC01-appb-I000004
    式中のベンゼン環、ナフタレン環、およびピリジン環の-Hは独立して炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよい。
  3. 下記式(1-3)、(1-4)、(1-5)、または(1-6)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000005
    式(1-3)~(1-6)のそれぞれにおいて、
    Pyは、式(2)、(3)、(4)または(5)で表される基であり;

    Figure JPOXMLDOC01-appb-I000006
    式中のベンゼン環、ナフタレン環、およびピリジン環の-Hは独立して炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよい。
  4. 下記式(1-3)または(1-4)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000007
    式(1-3)および(1-4)において、
    Pyは、式(2)、(3)、(4)または(5)で表される基であり;

    Figure JPOXMLDOC01-appb-I000008
    式中のベンゼン環、ナフタレン環、およびピリジン環の-Hは独立して炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよい。
  5. 下記式(1-5)または(1-6)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000009
    式(1-5)および(1-6)において、
    Pyは、式(2)、(3)、(4)または(5)で表される基であり;

    Figure JPOXMLDOC01-appb-I000010
    式中のベンゼン環、ナフタレン環、およびピリジン環の-Hは独立して炭素数1~6のアルキルまたは炭素数3~6のシクロアルキルで置き換えられていてもよい。
  6. 下記式(1-3-1)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000011
  7. 下記式(1-3-2)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000012
  8. 下記式(1-3-3)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000013
  9. 下記式(1-3-5)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000014
  10. 下記式(1-3-12)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000015
  11. 下記式(1-3-21)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000016
  12. 下記式(1-3-22)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000017
  13. 下記式(1-3-24)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000018
  14. 下記式(1-3-25)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000019
  15. 下記式(1-3-27)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000020
  16. 下記式(1-4-2)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000021
  17. 下記式(1-5-11)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000022
  18. 下記式(1-5-24)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000023
  19. 下記式(1-6-1)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000024
  20. 下記式(1-6-2)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000025
  21. 下記式(1-6-4)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000026
  22. 下記式(1-6-5)で表される、請求項1に記載の化合物。

    Figure JPOXMLDOC01-appb-I000027
  23. 請求項1~22のいずれか1項に記載の化合物を含有する電子輸送材料。
  24. 陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層と、前記陰極と該発光層との間に配置され、請求項23に記載の電子輸送材料を含有する電子輸送層および/または電子注入層とを有する有機電界発光素子。
  25. 前記電子輸送層および電子注入層の少なくとも1つは、さらに、キノリノール系金属錯体、ビピリジン誘導体、フェナントロリン誘導体およびボラン誘導体からなる群から選択される少なくとも1つを含有する、請求項24に記載する有機電界発光素子。
  26. 電子輸送層および電子注入層の少なくとも1つが、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、請求項24または25に記載の有機電界発光素子。
PCT/JP2010/059063 2009-05-29 2010-05-28 電子輸送材料およびこれを用いた有機電界発光素子 WO2010137678A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177022637A KR20170096234A (ko) 2009-05-29 2010-05-28 전자 수송 재료 및 이것을 사용한 유기 전계 발광 소자
KR1020117028178A KR101789339B1 (ko) 2009-05-29 2010-05-28 전자 수송 재료 및 이것을 사용한 유기 전계 발광 소자
JP2011516065A JP5533863B2 (ja) 2009-05-29 2010-05-28 電子輸送材料およびこれを用いた有機電界発光素子
CN201080018916.XA CN102414179B (zh) 2009-05-29 2010-05-28 用于电子传输材料的化合物、电子传输材料及使用其的有机电致发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009130637 2009-05-29
JP2009-130637 2009-05-29

Publications (1)

Publication Number Publication Date
WO2010137678A1 true WO2010137678A1 (ja) 2010-12-02

Family

ID=43222783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059063 WO2010137678A1 (ja) 2009-05-29 2010-05-28 電子輸送材料およびこれを用いた有機電界発光素子

Country Status (4)

Country Link
JP (1) JP5533863B2 (ja)
KR (2) KR101789339B1 (ja)
CN (3) CN102414179B (ja)
WO (1) WO2010137678A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068204A1 (ja) * 2009-12-03 2011-06-09 Jnc株式会社 ピリジンを含む置換基を有するベンゾ[c]カルバゾール化合物および有機電界発光素子
WO2012005214A1 (ja) * 2010-07-05 2012-01-12 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
WO2012060374A1 (ja) * 2010-11-04 2012-05-10 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
WO2012070535A1 (ja) * 2010-11-25 2012-05-31 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
WO2012073541A1 (ja) * 2010-12-03 2012-06-07 Jnc株式会社 ピリジンを含む置換基を有するベンゾ[c]カルバゾール化合物および有機電界発光素子
WO2012102333A1 (ja) * 2011-01-27 2012-08-02 Jnc株式会社 新規アントラセン化合物およびこれを用いた有機電界発光素子
JP2012151033A (ja) * 2011-01-20 2012-08-09 Sony Corp 有機el表示装置およびその製造方法
JP2013107874A (ja) * 2011-10-27 2013-06-06 Jnc Corp 電子輸送材料およびこれを用いた有機電界発光素子
JP2013177375A (ja) * 2012-02-06 2013-09-09 Jnc Corp 電子輸送材料およびこれを用いた有機電界発光素子
JP2013189424A (ja) * 2012-02-17 2013-09-26 Semiconductor Energy Lab Co Ltd ビピリジン化合物、発光素子用材料、有機半導体材料、発光素子、ディスプレイモジュール、照明モジュール、発光装置、照明装置、表示装置及び電子機器
JP2013227251A (ja) * 2012-04-25 2013-11-07 Jnc Corp 電子輸送材料およびこれを用いた有機電界発光素子
WO2015141608A1 (ja) * 2014-03-17 2015-09-24 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
US9478750B2 (en) 2012-02-03 2016-10-25 Jnc Corporation Anthracene derivative and organic electroluminescent element using the same
US9680108B2 (en) 2014-06-11 2017-06-13 Samsung Display Co., Ltd. Organic light-emitting device
US9893289B2 (en) 2014-06-09 2018-02-13 Samsung Display Co., Ltd. Organic light-emitting device
US10026906B2 (en) 2015-01-12 2018-07-17 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US10062850B2 (en) 2013-12-12 2018-08-28 Samsung Display Co., Ltd. Amine-based compounds and organic light-emitting devices comprising the same
US10147882B2 (en) 2013-05-09 2018-12-04 Samsung Display Co., Ltd. Styrl-based compound and organic light emitting diode comprising the same
US10256416B2 (en) 2013-07-01 2019-04-09 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US10290811B2 (en) 2014-05-16 2019-05-14 Samsung Display Co., Ltd. Organic light-emitting device
US10388882B2 (en) 2013-03-04 2019-08-20 Samsung Display Co., Ltd. Anthracene derivatives and organic light emitting devices comprising the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5799772B2 (ja) * 2010-11-25 2015-10-28 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
KR102051952B1 (ko) * 2013-01-08 2019-12-04 에스에프씨주식회사 헤테로아릴 치환기를 갖는 나프틸기를 포함하는 안트라센 유도체 및 이를 포함하는 유기 발광 소자
KR102030584B1 (ko) * 2013-01-08 2019-10-10 에스에프씨주식회사 헤테로아릴 치환기를 갖는 페닐기를 포함하는 안트라센 유도체 및 이를 포함하는 유기 발광 소자

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004063159A1 (ja) * 2003-01-10 2004-07-29 Idemitsu Kosan Co., Ltd. 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2005091686A1 (ja) * 2004-03-19 2005-09-29 Chisso Corporation 有機電界発光素子
JP2006045503A (ja) * 2004-07-09 2006-02-16 Chisso Corp 発光材料およびこれを用いた有機電界発光素子
WO2006067931A1 (ja) * 2004-12-22 2006-06-29 Idemitsu Kosan Co., Ltd. アントラセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007081179A1 (en) * 2006-01-13 2007-07-19 Lg Chem. Ltd. Emitting materials and organic light emitting device using the same
JP2009173642A (ja) * 2007-12-27 2009-08-06 Chisso Corp ピリジルフェニル基を有するアントラセン誘導体化合物及び有機電界発光素子
JP2009256352A (ja) * 2008-04-15 2009-11-05 Samsung Mobile Display Co Ltd ビピリジン系化合物及びそれを含む有機膜を備えた有機発光素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101407492A (zh) * 2003-01-10 2009-04-15 出光兴产株式会社 含氮杂环衍生物以及使用该衍生物的有机电致发光元件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004063159A1 (ja) * 2003-01-10 2004-07-29 Idemitsu Kosan Co., Ltd. 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2005091686A1 (ja) * 2004-03-19 2005-09-29 Chisso Corporation 有機電界発光素子
JP2006045503A (ja) * 2004-07-09 2006-02-16 Chisso Corp 発光材料およびこれを用いた有機電界発光素子
WO2006067931A1 (ja) * 2004-12-22 2006-06-29 Idemitsu Kosan Co., Ltd. アントラセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007081179A1 (en) * 2006-01-13 2007-07-19 Lg Chem. Ltd. Emitting materials and organic light emitting device using the same
JP2009173642A (ja) * 2007-12-27 2009-08-06 Chisso Corp ピリジルフェニル基を有するアントラセン誘導体化合物及び有機電界発光素子
JP2009256352A (ja) * 2008-04-15 2009-11-05 Samsung Mobile Display Co Ltd ビピリジン系化合物及びそれを含む有機膜を備えた有機発光素子

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068204A1 (ja) * 2009-12-03 2011-06-09 Jnc株式会社 ピリジンを含む置換基を有するベンゾ[c]カルバゾール化合物および有機電界発光素子
WO2012005214A1 (ja) * 2010-07-05 2012-01-12 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
JP5807637B2 (ja) * 2010-07-05 2015-11-10 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
CN103189355A (zh) * 2010-11-04 2013-07-03 捷恩智株式会社 电子传输材料及使用其的有机电激发光元件
WO2012060374A1 (ja) * 2010-11-04 2012-05-10 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
CN104744349A (zh) * 2010-11-04 2015-07-01 捷恩智株式会社 电子传输材料及使用其的有机电激发光元件
CN103189355B (zh) * 2010-11-04 2015-08-26 捷恩智株式会社 电子传输材料及使用其的有机电激发光元件
CN104744349B (zh) * 2010-11-04 2017-09-22 捷恩智株式会社 电子传输材料及使用其的有机电激发光元件
WO2012070535A1 (ja) * 2010-11-25 2012-05-31 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
WO2012073541A1 (ja) * 2010-12-03 2012-06-07 Jnc株式会社 ピリジンを含む置換基を有するベンゾ[c]カルバゾール化合物および有機電界発光素子
JP2012151033A (ja) * 2011-01-20 2012-08-09 Sony Corp 有機el表示装置およびその製造方法
WO2012102333A1 (ja) * 2011-01-27 2012-08-02 Jnc株式会社 新規アントラセン化合物およびこれを用いた有機電界発光素子
US9070885B2 (en) 2011-01-27 2015-06-30 Jnc Corporation Anthracene compound and organic electroluminescence element using same
JP2013107874A (ja) * 2011-10-27 2013-06-06 Jnc Corp 電子輸送材料およびこれを用いた有機電界発光素子
US9478750B2 (en) 2012-02-03 2016-10-25 Jnc Corporation Anthracene derivative and organic electroluminescent element using the same
JP2013177375A (ja) * 2012-02-06 2013-09-09 Jnc Corp 電子輸送材料およびこれを用いた有機電界発光素子
JP2013189424A (ja) * 2012-02-17 2013-09-26 Semiconductor Energy Lab Co Ltd ビピリジン化合物、発光素子用材料、有機半導体材料、発光素子、ディスプレイモジュール、照明モジュール、発光装置、照明装置、表示装置及び電子機器
JP2013227251A (ja) * 2012-04-25 2013-11-07 Jnc Corp 電子輸送材料およびこれを用いた有機電界発光素子
US10388882B2 (en) 2013-03-04 2019-08-20 Samsung Display Co., Ltd. Anthracene derivatives and organic light emitting devices comprising the same
US10147882B2 (en) 2013-05-09 2018-12-04 Samsung Display Co., Ltd. Styrl-based compound and organic light emitting diode comprising the same
US10256416B2 (en) 2013-07-01 2019-04-09 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same
US10062850B2 (en) 2013-12-12 2018-08-28 Samsung Display Co., Ltd. Amine-based compounds and organic light-emitting devices comprising the same
WO2015141608A1 (ja) * 2014-03-17 2015-09-24 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
JPWO2015141608A1 (ja) * 2014-03-17 2017-04-06 Jnc株式会社 電子輸送材料およびこれを用いた有機電界発光素子
US10290811B2 (en) 2014-05-16 2019-05-14 Samsung Display Co., Ltd. Organic light-emitting device
US10347842B2 (en) 2014-06-09 2019-07-09 Samsung Display Co., Ltd. Organic light-emitting device
US9893289B2 (en) 2014-06-09 2018-02-13 Samsung Display Co., Ltd. Organic light-emitting device
US9680108B2 (en) 2014-06-11 2017-06-13 Samsung Display Co., Ltd. Organic light-emitting device
US10026906B2 (en) 2015-01-12 2018-07-17 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same

Also Published As

Publication number Publication date
KR20170096234A (ko) 2017-08-23
JP5533863B2 (ja) 2014-06-25
CN102414179A (zh) 2012-04-11
JPWO2010137678A1 (ja) 2012-11-15
KR101789339B1 (ko) 2017-10-23
CN102414179B (zh) 2015-03-11
KR20120026513A (ko) 2012-03-19
CN104311475A (zh) 2015-01-28
CN104292152A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
JP5533863B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP5807637B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP5076901B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP5119929B2 (ja) 新規化合物およびこれを用いた有機電界発光素子
JP5262192B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP5262081B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP5737294B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP4947142B2 (ja) 発光素子材料及び発光素子
JP5907069B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP5799772B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP5176366B2 (ja) 新規ビピリジン誘導体、およびこれを含む有機電界発光素子
JP6402904B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP6428762B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP2013227251A (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP6136311B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP6070047B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
JP5549270B2 (ja) アントラセン誘導体およびこれを用いた有機電界発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080018916.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780632

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011516065

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117028178

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780632

Country of ref document: EP

Kind code of ref document: A1