WO2011068204A1 - ピリジンを含む置換基を有するベンゾ[c]カルバゾール化合物および有機電界発光素子 - Google Patents
ピリジンを含む置換基を有するベンゾ[c]カルバゾール化合物および有機電界発光素子 Download PDFInfo
- Publication number
- WO2011068204A1 WO2011068204A1 PCT/JP2010/071693 JP2010071693W WO2011068204A1 WO 2011068204 A1 WO2011068204 A1 WO 2011068204A1 JP 2010071693 W JP2010071693 W JP 2010071693W WO 2011068204 A1 WO2011068204 A1 WO 2011068204A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- represented
- benzo
- formula
- group
- carbazole compound
- Prior art date
Links
- 0 CC1C(c(cc2)ccc2-c(cc23)ccc2c(c2ccccc2c(-c2ccc(C4/C=C/C=C/C*C4)cc2)c2)c2[n]3-c2cccc3c2cccc3)=CC=CC=C1C Chemical compound CC1C(c(cc2)ccc2-c(cc23)ccc2c(c2ccccc2c(-c2ccc(C4/C=C/C=C/C*C4)cc2)c2)c2[n]3-c2cccc3c2cccc3)=CC=CC=C1C 0.000 description 17
- AWJPULCSDFBFDR-UHFFFAOYSA-N Brc(cc1)cnc1-c1ncccc1 Chemical compound Brc(cc1)cnc1-c1ncccc1 AWJPULCSDFBFDR-UHFFFAOYSA-N 0.000 description 1
- ZHXUWDPHUQHFOV-UHFFFAOYSA-N Brc(cc1)cnc1Br Chemical compound Brc(cc1)cnc1Br ZHXUWDPHUQHFOV-UHFFFAOYSA-N 0.000 description 1
- IMRWILPUOVGIMU-UHFFFAOYSA-N Brc1ncccc1 Chemical compound Brc1ncccc1 IMRWILPUOVGIMU-UHFFFAOYSA-N 0.000 description 1
- SBJULIMRKZNPBF-UHFFFAOYSA-N CC(C(B1OC(C)(C)C(C)(C)O1)C=C1)C=C1c1ncccc1 Chemical compound CC(C(B1OC(C)(C)C(C)(C)O1)C=C1)C=C1c1ncccc1 SBJULIMRKZNPBF-UHFFFAOYSA-N 0.000 description 1
- TUDNJNPJBALQNU-JOBJLJCHSA-N CC/C=C(\C)/N(/C(/CC)=C/CC)c1ccccc1 Chemical compound CC/C=C(\C)/N(/C(/CC)=C/CC)c1ccccc1 TUDNJNPJBALQNU-JOBJLJCHSA-N 0.000 description 1
- FSEYOXZBBYIUCO-UHFFFAOYSA-N CC1(C)OB(c(cc2)cc3c2c(c(cccc2)c2c(B2OC(C)(C)C(C)(C)O2)c2)c2[n]3-c2ccccc2)OC1(C)C Chemical compound CC1(C)OB(c(cc2)cc3c2c(c(cccc2)c2c(B2OC(C)(C)C(C)(C)O2)c2)c2[n]3-c2ccccc2)OC1(C)C FSEYOXZBBYIUCO-UHFFFAOYSA-N 0.000 description 1
- SWRWCXHNLLPJDZ-UHFFFAOYSA-N CCCC[NH+](C)[O-] Chemical compound CCCC[NH+](C)[O-] SWRWCXHNLLPJDZ-UHFFFAOYSA-N 0.000 description 1
- NRGGMCIBEHEAIL-UHFFFAOYSA-N CCc1ncccc1 Chemical compound CCc1ncccc1 NRGGMCIBEHEAIL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/10—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/622—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/626—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
Definitions
- the present invention relates to a benzo [c] carbazole compound having a substituent containing pyridine, an electron transport material, an organic electroluminescent element, a display device, and a lighting device using the same.
- a compound in which an aryl group or heteroaryl group is substituted on the central skeleton of anthracene a compound using a conjugate of bianthracene, binaphthalene, or naphthalene and anthracene as a central skeleton, a carbazole ring, a pyridine ring, or a pyrimidine ring.
- these known materials have sufficient characteristics such as extending the device life and lowering the driving voltage of the light emitting device, which are generally required for electron transport materials. It does not satisfy the balance well. Under such circumstances, it is desired to develop an electron transport material that has an excellent lifetime and driving voltage of the light emitting element.
- an electron transport material having superior characteristics compared to red and green light-emitting elements has not been obtained, and development of an electron transport material suitable for improving the characteristics of blue light-emitting elements is desired. ing.
- an organic electroluminescent device comprising an organic layer containing a compound represented by the following formula (1) as an electron transporting material, in particular, the device.
- the present inventors have found that an organic electroluminescent device having an excellent lifetime and a well-balanced driving voltage can be obtained.
- a benzo [c] carbazole compound represented by the following formula (1) R is aryl having 6 to 24 carbon atoms or heteroaryl having 2 to 24 carbon atoms; A and A ′ are each independently represented by hydrogen, a group represented by the above formula (A-1), a group represented by the above formula (A-2), or the above formula (A-3).
- a and A ′ are not hydrogen
- the ring contained in the structure of R, A and A ′ may be substituted with alkyl having 1 to 6 carbon atoms, cyclohexyl or phenyl, Arbitrary hydrogens in the benzocarbazole skeleton constituting the compound represented by the formula (1) and R, A and A ′ substituted therefor may be substituted with deuterium.
- R is one selected from the group consisting of groups represented by the following formulas (R-1) to (R-20), A and A ′ are each independently hydrogen, groups represented by the following formulas (A-1-1) to (A-1-3), or the following formulas (A-2-1) to (A-2) -18), groups represented by the following formulas (A-3-1) to (A-3-6), and formulas (A-4-1) to (A-4-6)
- both A and A ′ are not hydrogen, and one selected from the group consisting of The benzocarbazole skeleton constituting the compound represented by the formula (1), and any hydrogen in R, A and A ′ substituted therefor may be substituted with deuterium.
- R is one selected from the group consisting of groups represented by the above formulas (R-1) to (R-14), A and A ′ are each independently groups represented by the above formulas (A-1-1) to (A-1-3), and the above formulas (A-2-1) to (A-2-18). ), Groups represented by the above formulas (A-3-1) to (A-3-6), and groups represented by the above formulas (A-4-1) to (A-4-6).
- A is one selected from the group consisting of: The benzo [c] carbazole compound described in the above [1].
- R is one selected from the group consisting of groups represented by the above formulas (R-1) to (R-11), A and A ′ are each independently groups represented by the above formulas (A-1-1) to (A-1-3), and the above formulas (A-2-1) to (A-2-18). ), Groups represented by the above formulas (A-3-1) to (A-3-6), and groups represented by the above formulas (A-4-1) to (A-4-3).
- A is one selected from the group consisting of: The benzo [c] carbazole compound described in the above [1].
- R is a group represented by the above formula (R-1), formula (R-10) or formula (R-11);
- a and A ′ are each independently groups represented by the above formulas (A-1-1) to (A-1-3), and the above formulas (A-2-1) to (A-2-4).
- R is a group represented by the above formula (R-1) or (R-11), A and A ′ are each independently a group represented by the above formulas (A-1-1) to (A-1-3), a group represented by the above formula (A-2-1), A group represented by the formula (A-2-2), a group represented by the above formula (A-2-8), a group represented by the above formula (A-2-12), the above formula (A-3 -1) to (A-3-6) and one selected from the group consisting of the groups represented by the above formulas (A-4-1) to (A-4-3) ,
- a pair of electrodes composed of an anode and a cathode, a light emitting layer disposed between the pair of electrodes, an electron transport material according to the above [25] disposed between the cathode and the light emitting layer.
- An organic electroluminescent device having an electron transport layer and / or an electron injection layer.
- At least one of the electron transport layer and the electron injection layer further includes at least one selected from the group consisting of a quinolinol-based metal complex, a pyridine derivative, a bipyridine derivative, a phenanthroline derivative, a borane derivative, and a benzimidazole derivative.
- a quinolinol-based metal complex a pyridine derivative, a bipyridine derivative, a phenanthroline derivative, a borane derivative, and a benzimidazole derivative.
- At least one of the electron transport layer and the electron injection layer further includes an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, At least one selected from the group consisting of alkaline earth metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes and rare earth metal organic complexes
- the organic electroluminescent element according to [27] which is contained.
- a display device comprising the organic electroluminescent element as described in any one of [26] to [28].
- An illumination device including the organic electroluminescent element according to any one of [26] to [28].
- an organic electroluminescent element excellent in the lifetime of the light emitting element can be obtained.
- the preferred electron transport material of the present invention is particularly suitable for a blue light emitting element, and according to this electron transport material, a blue light emitting element having an element life comparable to a red or green light emitting element can be produced. Can do.
- a high-performance display device such as a full-color display can be obtained.
- Benzo [c] carbazole compound represented by formula (1) The benzo [c] carbazole compound having a substituent containing pyridine of the present invention will be described in detail.
- the benzo [c] carbazole compound of the present invention is a compound represented by the following formula (1). Note that any hydrogen in the benzocarbazole skeleton constituting the compound represented by the formula (1) and R, A and A ′ substituted therefor may be substituted with deuterium.
- R in the formula (1) is aryl having 6 to 24 carbon atoms or heteroaryl having 2 to 24 carbon atoms.
- a and A ′ in formula (1) are each independently hydrogen, a group represented by the above formula (A-1), a group represented by the above formula (A-2), A-3), one selected from the group consisting of the group represented by the above formula (A-4) and aryl having 6 to 18 carbon atoms, either A or A ′
- One is one selected from the group consisting of groups represented by the above formula (A-1), formula (A-2), formula (A-3) and formula (A-4). That is, both A and A ′ do not become the above-mentioned “aryl having 6 to 18 carbon atoms” described in detail below.
- a and A ′ are each independently hydrogen, a group represented by the above formula (A-1), a group represented by the above formula (A-2), It is one selected from the group consisting of a group represented by the formula (A-3) and a group represented by the above formula (A-4), and both A and A ′ are hydrogen.
- An embodiment that satisfies the condition of not present is preferable. That is, in this embodiment, neither A nor A ′ becomes “aryl having 6 to 18 carbon atoms”.
- the bond on the ring is connected to any carbon atom constituting the ring, but two bonds are bonded to the same carbon atom. Hands never join.
- the ring contained in the structure of R, A and A ′ may be substituted with alkyl having 1 to 6 carbon atoms, cyclohexyl or phenyl.
- alkyl having 1 to 6 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, Examples thereof include 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl and 2-ethylbutyl.
- substituents to the ring contained in the structures of R, A and A ′ methyl, isopropyl or t-butyl is preferable, and t-butyl is particularly preferable.
- the number of substituents is, for example, the maximum possible number of substitution, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
- the “aryl having 6 to 24 carbon atoms” in R is preferably an aryl having 6 to 16 carbon atoms, and more preferably an aryl having 6 to 12 carbon atoms.
- aryl include monocyclic aryl phenyl, bicyclic aryl (2-, 3-, 4-) biphenylyl, condensed bicyclic aryl (1-, 2-) naphthyl.
- Terphenylyl which is a tricyclic aryl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o-terphenyl-3'-yl, o -Terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl-4-yl, o-terphenyl -2-yl, o-terphenyl-3-yl, o-terphenyl-4-yl, p-terphenyl-2-yl, p-terphenyl-3-yl, o-terpheny
- the group etc. which the phenyl group substituted by the arbitrary positions of condensed ring system aryl are mention
- the number of substituents is, for example, the maximum possible number of substitution, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
- phenyl, biphenylyl, terphenylyl, naphthyl, phenanthryl, naphthyl substituted with phenyl, and the like are preferable.
- heteroaryl having 2 to 24 carbon atoms in R is preferably a heteroaryl having 2 to 20 carbon atoms, more preferably a heteroaryl having 2 to 15 carbon atoms, and particularly preferably 2 to 10 carbon atoms. Of heteroaryl. Examples of the “heteroaryl” include a heterocyclic group containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as a ring constituent atom.
- R include groups represented by the following formulas (R-1) to (R-20). Of these, groups represented by the following formulas (R-1) to (R-14) are preferred, and groups represented by the following formulas (R-1) to (R-11) are more preferred. The groups represented by the following formulas (R-1), (R-10) and (R-11) are more preferable.
- Examples of the group represented by the above formula (A-1) selected as A or A ′ include 2-pyridinyl, 3-pyridinyl and 4-pyridinyl.
- Examples of the group represented by the above formula (A-2) selected as A or A ′ include 2,2′-bipyridine- (3-, 4-, 5-, 6-) yl, 2,3′- Bipyridine- (3-, 4-, 5-, 6-) yl, 2,4′-bipyridine- (3-, 4-, 5-, 6-) yl, 3,2′-bipyridine- (2-, 4-, 5-, 6-) yl, 3,3′-bipyridine- (2-, 4-, 5-, 6-) yl, 3,4′-bipyridine- (2-, 4-, 5-, 6-) yl, 4,2′-bipyridine- (2-, 3-, 5-, 6-) yl, 4,3′-bipyridin- (2-, 3-, 5-, 6-) yl, 4 4,4'-bipyridine- (2-, 3-, 5-, 6-) yl.
- Examples of the group represented by the above formula (A-3) selected as A or A ′ include (pyridin-2-yl) phenyl-2-yl, (pyridin-3-yl) phenyl-2-yl, ( Pyridin-4-yl) phenyl-2-yl, (pyridin-2-yl) phenyl-3-yl, (pyridin-3-yl) phenyl-3-yl, (pyridin-4-yl) phenyl-3-yl (Pyridin-2-yl) phenyl-4-yl, (pyridin-3-yl) phenyl-4-yl, (pyridin-4-yl) phenyl-4-yl.
- Examples of the group represented by the above formula (A-4) selected as A or A ′ include 1- (2-pyridine) naphthalene- (2-, 3-, 4-, 5-, 6-, 7- , 8-) yl, 1- (3-pyridine) naphthalene- (2-, 3-, 4-, 5-, 6-, 7-, 8-) yl, 1- (4-pyridine) naphthalene- (2 -, 3-, 4-, 5-, 6-, 7-, 8-) yl, 2- (2-pyridine) naphthalene- (1-, 3-, 4-, 5-, 6-, 7-, 8-) yl, 2- (3-pyridine) naphthalene- (1-, 3-, 4-, 5-, 6-, 7-, 8-) yl, 2- (4-pyridine) naphthalene- (1- , 3-, 4-, 5-, 6-, 7-, 8-) yl.
- the “aryl having 6 to 18 carbon atoms” selected as A or A ′ is preferably an aryl having 6 to 14 carbon atoms, more preferably an aryl having 6 to 10 carbon atoms. Examples thereof include the groups exemplified in the description of “aryl having 6 to 24 carbon atoms” in R (limited to those having 18 or less carbon atoms).
- a or A ′ is preferably hydrogen, groups represented by the following formulas (A-1-1) to (A-1-3), or the following formulas (A-2-1) to (A— 2-18), groups represented by the following formulas (A-3-1) to (A-3-6), and formulas (A-4-1) to (A-4-6) And groups represented by the following formulas (A-5-1) to (A-5-11).
- More preferable groups as A or A ′ are groups represented by the above formulas (A-1-1) to (A-1-3), and the above formulas (A-2-1) to (A-2-18).
- More preferable groups as A or A ′ are groups represented by the above formulas (A-1-1) to (A-1-3), and the above formulas (A-2-1) to (A-2-18).
- More preferable groups as A or A ′ are groups represented by the above formulas (A-1-1) to (A-1-3), and the above formulas (A-2-1) to (A-2-4).
- Particularly preferred groups as A or A ′ are groups represented by the above formulas (A-1-1) to (A-1-3), groups represented by the above formula (A-2-1), and the above formulas.
- the most preferable group as A or A ′ is a group represented by the above formula (A-1-3), a group represented by the above formula (A-2-1), or the above formula (A-2-2).
- a and A ' may be groups having the same structure or groups having different structures.
- Specific examples of the compound represented by the above formula (1) include, for example, compounds represented by the following formula (1-1) to formula (1-30), and the following formula (1-531) to formula (1- 864), compounds represented by the following formulas (1-7831) to (1-7860), compounds represented by the following formulas (1-8361) to (1-8585), And compounds represented by formulas (1-8701) to (1-8730) and formulas (1-9231) to (1-9455) shown below.
- the compound of the present invention basically comprises a known compound and a known synthesis method such as Suzuki coupling reaction or Negishi coupling reaction (for example, “Metal-Catalyzed Cross-Coupling Reactions-Second, Completely Revised and It can be synthesized using “Enlarged Edition”. It can also be synthesized by combining both reactions.
- Suzuki coupling reaction or Negishi coupling reaction for example, “Metal-Catalyzed Cross-Coupling Reactions-Second, Completely Revised and It can be synthesized using “Enlarged Edition”. It can also be synthesized by combining both reactions.
- a scheme for synthesizing the compound represented by the formula (1) by Suzuki coupling reaction or Negishi coupling reaction is illustrated below.
- ZnCl 2 ⁇ TMEDA is a tetramethylethylenediamine complex of zinc chloride.
- R represents a linear or branched alkyl group, preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
- X is a halogen.
- the corresponding target product that is, 2- (3-bromophenyl) pyridine, 2- (6-bromonaphthalene-2- Yl) pyridine and 2- (7-bromonaphthalen-2-yl) pyridine, etc. It is possible.
- the above-mentioned target product can also be obtained by a coupling reaction in which 1,4-dibromobenzene or the like is reacted with pyridylboronic acid or pyridylboronic acid ester. be able to.
- a pyridine bonded with phenyl groups or naphthyl groups having various reactive substituents which is a raw material for the synthesis of the compound of the present invention represented by the formula (1), is obtained. be able to.
- 4- (2-pyridyl) phenylboronic acid and 4- (pyridin-2-yl) naphthalen-1-ylboronic acid are synthesized by hydrolyzing the boronic ester according to the following reaction formula (4). Can do.
- R represents a linear or branched alkyl group, preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
- X is a halogen.
- 2- (4-bromophenyl) pyridine or 2- (4-bromonaphthalen-1-yl) pyridine may be lithiated using an organolithium reagent, or magnesium Or an organomagnesium reagent to form a Grignard reagent and react with bis (pinacolato) diboron or 4,4,5,5-tetramethyl-1,3,2-dioxaborolane to produce other 4- (pyridine-2- Yl) phenylboronic acid ester or 4- (pyridin-2-yl) naphthalen-1-ylboronic acid ester can be synthesized.
- R represents a linear or branched alkyl group, preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
- X is a halogen.
- a compound in place of bromides such as 2- (4-bromophenyl) pyridine and 3- (4-bromonaphthalen-1-yl) pyridine, A compound can be synthesized in the same manner using a compound, iodide or trifluoromethanesulfonate.
- ZnCl 2 ⁇ TMEDA in the reaction formula (7) is a tetramethylethylenediamine complex of zinc chloride.
- R represents a linear or branched alkyl group, preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
- X is a halogen.
- a method of synthesizing 5-bromo-2,2′-bipyridine using 2,5-dibromobenzene as a raw material is exemplified, but 2,4-dibromopyridine, 2,6-dibromopyridine or By using 3,5-dibromopyridine, dichloro, diiodo, bis (trifluoromethanesulfonate) or a mixture thereof (for example: 2-bromo-6-iodopyridine) is used instead of dibromo.
- the corresponding target product that is, 6-bromo-2,2′-bipyridine, 4-bromo-2,2′-bipyridine and the like can also be obtained by use.
- the above-mentioned target product can also be obtained by a coupling reaction in which 2,5-dibromopyridine is reacted with pyridylboronic acid or a pyridylboronic acid ester. it can.
- bipyridines having various reactive substituents which are raw materials for the synthesis of the compound of the present invention represented by the formula (1), can be obtained.
- R represents a linear or branched alkyl group, preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
- X is a halogen.
- 5-bromo-2,2′-bipyridine is lithiated using an organic lithium reagent, or converted to a Grignard reagent using magnesium or an organic magnesium reagent, and bis ( Other 2,2′-bipyridineboronic acid esters can be synthesized by reacting with pinacolato) diboron or 4,4,5,5-tetramethyl-1,3,2-dioxaborolane.
- R represents a linear or branched alkyl group, preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
- X is a halogen.
- chloride, iodide or trifluoromethanesulfonate may be used instead of bromide such as 5-bromo-2,2′-bipyridine. Can be synthesized similarly.
- BCz-A is converted to BCz-B by a coupling reaction using a palladium catalyst or an Ullmann reaction, and then demethylated with boron tribromide or pyridine hydrochloride to obtain BCz-C. Thereafter, 7-phenyl-7H-benzo [c] carbazole-5,9-diyl bis (trifluoromethanesulfonate) which is the central skeleton portion of the compound of the present invention is obtained by reacting with trifluoromethanesulfonic anhydride. It is done.
- the above-mentioned third stage reaction is a reaction in which a moiety corresponding to R in the compound represented by the formula (1) is bonded.
- this reaction instead of bromobenzene or iodobenzene, the corresponding aryl or heteroaryl bromide Alternatively, intermediates having different substituents at N can be synthesized by using iodide.
- the central skeleton portion can also be synthesized as follows. First, as shown in the following reaction formula (13 ′), 4,4 ′-(2-nitro-1,4-phenylene) bis (1-methoxynaphthalene) is synthesized by a coupling reaction.
- Suzuki coupling using boronic acid is exemplified in the reaction formula (13 ′)
- Negishi coupling using zinc complex can also be used.
- a cyclization reaction is performed using triethyl phosphite or triphenylphosphine to obtain a benzo [c] carbazole derivative (BCz-A ′).
- the central skeleton of the compound of the present invention is obtained by N-phenylation (BCz-B ′) followed by demethylation (BCz-C ′) by the above-described method, and finally reaction with trifluoromethanesulfonic anhydride.
- the moiety 4- (7-phenyl-5 (((trifluoromethyl) sulfonyl) oxy) -7H-benzo [c] carbazol-9-yl) naphthalen-1-yl trifluoromethanesulfonate is obtained.
- R represents a linear or branched alkyl group, preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
- 7-phenyl-7H-benzo [c] carbazole-5,9-diboronic acid ester has a pyridine having a reactive substituent and a reactive substituent.
- the benzo [c] carbazole compound of the present invention can be synthesized by reacting pyridine having a phenyl group / naphthyl group or bipyridine having a reactive substituent in the presence of a palladium catalyst with a base in the presence of a base. it can.
- Intermediates are synthesized by reacting acid esters, boronic acid or boronic acid esters of pyridyl-substituted phenyl / naphthyl or boronic acid or boronic acid esters of bipyridine in the presence of a palladium catalyst and a base (first step), and further 1 ⁇ Or reacting a molar boronic acid or boronic acid ester of pyridine, a boronic acid or boronic acid ester of pyridyl-substituted phenyl / naphthyl or a boronic acid or boronic acid ester of bipyridine in the presence of a palladium catalyst and a base (second stage)
- purification may be performed as necessary after completion of the first stage reaction.
- the pyridine boronic acid or boronic acid ester different from the first step the pyridyl-substituted phenyl / naphthyl boronic acid or boronic acid ester, or the bipyridine boronic acid or boronic acid ester is used in a 1-fold molar amount to give 5-position.
- benzo [c] carbazole compounds having different substituents at the 9-position can be synthesized.
- benzo [c] carbazole in which the 5-position or 9-position of the benzocarbazolyl group is substituted with an aryl group
- This compound is represented by the formula “A aryl having 6 to 18 carbon atoms” as A or A ′ in the compound represented by the formula (1) (for example, the formula (A-5-1) to the formula (A-5-11)). Group) corresponds to the selected compound.
- a phenyl / naphthyl group-bonded pyridine having a reactive substituent or an aryl halide such as phenyl bromide or naphthalene bromide Can be synthesized in two steps to synthesize the benzo [c] carbazole compound of the present invention.
- the palladium catalyst used in the Suzuki coupling reaction include Pd (PPh 3 ) 4 , PdCl 2 (PPh 3 ) 2 , Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0), tris ( Dibenzylideneacetone) dipalladium (0) chloroform complex, or bis (dibenzylideneacetone) palladium (0).
- a phosphine compound may be added to these palladium compounds in some cases.
- the phosphine compound include tri (t-butyl) phosphine, tricyclohexylphosphine, 1- (N, N-dimethylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (N, N-dibutylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (methoxymethyl) -2- (di-t-butylphosphino) ferrocene, 1,1′-bis (di-t-butylphos Fino) ferrocene, 2,2′-bis (di-t-butylphosphino) -1,1′-binaphthyl, 2-methoxy-2 ′-(di-t-butylphosphino) -1,1′-binaphthy
- the base used in the reaction include sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, sodium t-butoxide, sodium acetate, phosphoric acid
- Examples include tripotassium or potassium fluoride.
- solvent used in the reaction examples include benzene, toluene, xylene, 1,2,4-trimethylbenzene, N, N-dimethylformamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, 1,4- Examples include dioxane, methanol, ethanol, cyclopentyl methyl ether, and isopropyl alcohol. These solvents can be appropriately selected and may be used alone or as a mixed solvent.
- ZnCl 2 ⁇ TMEDA is a tetramethylethylenediamine complex of zinc chloride.
- R represents a linear or branched alkyl group, preferably a linear or branched alkyl group having 1 to 4 carbon atoms. It is.
- the palladium catalyst used in the Negishi coupling reaction include Pd (PPh 3 ) 4 , PdCl 2 (PPh 3 ) 2 , Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0), tris ( Dibenzylideneacetone) dipalladium (0) chloroform complex, bis (dibenzylideneacetone) palladium (0), bis (tri-t-butylphosphino) palladium (0), or (1,1′-bis (diphenylphosphino) Ferrocene) dichloropalladium (II).
- solvent used in the reaction examples include benzene, toluene, xylene, 1,2,4-trimethylbenzene, N, N-dimethylformamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, cyclopentyl methyl ether or 1,4-dioxane.
- solvents can be appropriately selected and may be used alone or as a mixed solvent.
- ⁇ Benzo [c] carbazole compound in which the 5- or 9-position is hydrogen a compound in which the 5-position or the 9-position is hydrogen synthesizes an intermediate using a compound having no methoxy as one of the starting materials in the above reaction formula (13), It can be synthesized by subjecting it to a subsequent coupling reaction.
- FIG. 1 is a schematic cross-sectional view showing an organic electroluminescent element according to this embodiment.
- An organic electroluminescent device 100 shown in FIG. 1 includes a substrate 101, an anode 102 provided on the substrate 101, a hole injection layer 103 provided on the anode 102, and a hole injection layer 103.
- the cathode 108 provided on the electron injection layer 107.
- the organic electroluminescent element 100 is manufactured in the reverse order, for example, the substrate 101, the cathode 108 provided on the substrate 101, the electron injection layer 107 provided on the cathode 108, and the electron injection layer.
- a structure including the hole injection layer 103 provided above and the anode 102 provided on the hole injection layer 103 may be employed.
- each said layer may consist of a single layer, respectively, and may consist of multiple layers.
- the substrate 101 serves as a support for the organic electroluminescent device 100, and usually quartz, glass, metal, plastic, or the like is used.
- the substrate 101 is formed into a plate shape, a film shape, or a sheet shape according to the purpose.
- a glass plate, a metal plate, a metal foil, a plastic film, a plastic sheet, or the like is used.
- glass plates and transparent synthetic resin plates such as polyester, polymethacrylate, polycarbonate, polysulfone and the like are preferable.
- soda lime glass, non-alkali glass, or the like is used, and the thickness only needs to be sufficient to maintain the mechanical strength.
- the upper limit value of the thickness is, for example, 2 mm or less, preferably 1 mm or less.
- the glass material is preferably alkali-free glass because it is better to have less ions eluted from the glass.
- soda lime glass with a barrier coat such as SiO 2 is also commercially available, so it can be used. it can.
- the substrate 101 may be provided with a gas barrier film such as a dense silicon oxide film on at least one surface in order to improve the gas barrier property, and a synthetic resin plate, film or sheet having a low gas barrier property is used as the substrate 101. When used, it is preferable to provide a gas barrier film.
- the anode 102 serves to inject holes into the light emitting layer 105.
- the hole injection layer 103 and / or the hole transport layer 104 are provided between the anode 102 and the light emitting layer 105, holes are injected into the light emitting layer 105 through these layers. .
- Examples of the material for forming the anode 102 include inorganic compounds and organic compounds.
- Examples of inorganic compounds include metals (aluminum, gold, silver, nickel, palladium, chromium, etc.), metal oxides (indium oxide, tin oxide, indium-tin oxide (ITO), indium-zinc oxide) Products (IZO), metal halides (copper iodide, etc.), copper sulfide, carbon black, ITO glass, Nesa glass, and the like.
- Examples of the organic compound include polythiophene such as poly (3-methylthiophene), conductive polymer such as polypyrrole and polyaniline, and the like. In addition, it can select suitably from the substances currently used as an anode of an organic electroluminescent element, and can use it.
- the resistance of the transparent electrode is not particularly limited as long as a current sufficient for light emission of the light emitting element can be supplied, but it is desirable that the resistance is low from the viewpoint of power consumption of the light emitting element.
- an ITO substrate of 300 ⁇ / ⁇ or less functions as an element electrode, but at present, since it is possible to supply a substrate of about 10 ⁇ / ⁇ , for example, 100 to 5 ⁇ / ⁇ , preferably 50 to 5 ⁇ . It is particularly desirable to use a low resistance product of / ⁇ .
- the thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 100 to 300 nm.
- the hole injection layer 103 plays a role of efficiently injecting holes moving from the anode 102 into the light emitting layer 105 or the hole transport layer 104.
- the hole transport layer 104 plays a role of efficiently transporting holes injected from the anode 102 or holes injected from the anode 102 through the hole injection layer 103 to the light emitting layer 105.
- the hole injection layer 103 and the hole transport layer 104 are each formed by laminating and mixing one kind or two or more kinds of hole injection / transport materials or a mixture of the hole injection / transport material and the polymer binder. Is done.
- an inorganic salt such as iron (III) chloride may be added to the hole injection / transport material to form a layer.
- a hole injection / transport material As a hole injection / transport material, it is necessary to efficiently inject and transport holes from the positive electrode between electrodes to which an electric field is applied. The hole injection efficiency is high, and the injected holes are transported efficiently. It is desirable to do. For this purpose, it is preferable to use a substance that has a low ionization potential, a high hole mobility, excellent stability, and is less likely to generate trapping impurities during production and use.
- a compound conventionally used as a charge transport material for holes, a p-type semiconductor, and a hole injection of an organic electroluminescent element are used.
- Any known material used for the layer and the hole transport layer can be selected and used. Specific examples thereof include carbazole derivatives (N-phenylcarbazole, polyvinylcarbazole, etc.), biscarbazole derivatives such as bis (N-allylcarbazole) or bis (N-alkylcarbazole), triarylamine derivatives (aromatic tertiary class).
- polycarbonate and styrene having the above monomers in the side chain Derivatives are preferable, but there is no particular limitation as long as it is a compound that forms a thin film necessary for manufacturing a light-emitting element, can inject holes from the anode, and can transport holes.
- organic semiconductors are strongly influenced by the doping.
- Such an organic semiconductor matrix material is composed of a compound having a good electron donating property or a compound having a good electron accepting property.
- Strong electron acceptors such as tetracyanoquinone dimethane (TCNQ) or 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane (F4TCNQ) are known for doping of electron donor materials.
- TCNQ tetracyanoquinone dimethane
- F4TCNQ 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane
- the light emitting layer 105 emits light by recombining holes injected from the anode 102 and electrons injected from the cathode 108 between electrodes to which an electric field is applied.
- the material for forming the light-emitting layer 105 may be a compound that emits light by being excited by recombination of holes and electrons (a light-emitting compound), can form a stable thin film shape, and is in a solid state It is preferable that the compound exhibits a high emission (fluorescence and / or phosphorescence) efficiency.
- the light emitting layer may be either a single layer or a plurality of layers, each formed of a light emitting material (host material, dopant material). Each of the host material and the dopant material may be one kind or a plurality of combinations.
- the dopant material may be included in the host material as a whole, or may be included partially. As a doping method, it can be formed by a co-evaporation method with a host material, but it may be pre-mixed with the host material and then simultaneously deposited.
- the amount of host material used depends on the type of host material and can be determined according to the characteristics of the host material.
- the amount of the host material used is preferably 50 to 99.999% by weight of the entire light emitting material, more preferably 80 to 99.95% by weight, and still more preferably 90 to 99.9% by weight. .
- the amount of dopant material used depends on the type of dopant material, and can be determined according to the characteristics of the dopant material.
- the standard of the amount of dopant used is preferably 0.001 to 50% by weight of the entire light emitting material, more preferably 0.05 to 20% by weight, and still more preferably 0.1 to 10% by weight.
- the above range is preferable in that, for example, the concentration quenching phenomenon can be prevented.
- the light emitting material of the light emitting device according to this embodiment may be either fluorescent or phosphorescent.
- the host material is not particularly limited, but has previously been known as a phosphor, fused ring derivatives such as anthracene and pyrene, metal chelated oxinoid compounds such as tris (8-quinolinolato) aluminum, bis Bisstyryl derivatives such as styryl anthracene derivatives and distyrylbenzene derivatives, tetraphenylbutadiene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, oxadiazole derivatives, thiadiazolopyridine derivatives, pyrrolopyrrole
- fluorene derivatives, benzofluorene derivatives, and polymer systems polyphenylene vinylene derivatives, polyparaphenylene derivatives, and polythiophene derivatives are preferably used.
- the dopant material is not particularly limited, and a known compound can be used, and can be selected from various materials according to a desired emission color.
- condensed ring derivatives such as phenanthrene, anthracene, pyrene, tetracene, pentacene, perylene, naphthopylene, dibenzopyrene, rubrene, and chrysene
- benzoxazole derivatives benzthiazole derivatives, benzimidazole derivatives, benztriazole derivatives
- Bisstyryl such as oxazole derivatives, oxadiazole derivatives, thiazole derivatives, imidazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazoline derivatives, stilbene derivatives, thiophene derivatives, tetraphenylbutadiene derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives and dist
- blue to blue-green dopant materials include naphthalene, anthracene, phenanthrene, pyrene, triphenylene, perylene, fluorene, indene, chrysene and other aromatic hydrocarbon compounds and derivatives thereof, furan, pyrrole, thiophene, Aromatic complex such as silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyrazine, naphthyridine, quinoxaline, pyrrolopyridine, thioxanthene Ring compounds and their derivatives, distyrylbenzene derivatives, tetraphenylbutadiene derivatives, stilbene derivatives, aldazine derivatives, coumarin derivatives, imidazo
- green to yellow dopant material examples include coumarin derivatives, phthalimide derivatives, naphthalimide derivatives, perinone derivatives, pyrrolopyrrole derivatives, cyclopentadiene derivatives, acridone derivatives, quinacridone derivatives, and naphthacene derivatives such as rubrene.
- a compound in which a substituent capable of increasing the wavelength such as aryl, heteroaryl, arylvinyl, amino, and cyano is introduced into the compound exemplified as the blue to blue-green dopant material is also a suitable example.
- orange to red dopant materials include naphthalimide derivatives such as bis (diisopropylphenyl) perylenetetracarboxylic imide, perinone derivatives, rare earth complexes such as Eu complexes having acetylacetone, benzoylacetone and phenanthroline as ligands, 4 -(Dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran and its analogs, metal phthalocyanine derivatives such as magnesium phthalocyanine and aluminum chlorophthalocyanine, rhodamine compounds, deazaflavin derivatives, coumarin derivatives, quinacridone Derivatives, phenoxazine derivatives, oxazine derivatives, quinazoline derivatives, pyrrolopyridine derivatives, squarylium derivatives, violanthrone derivatives, phenazine derivatives, phenoxazo Derivatives, thi
- a compound into which a group is introduced is also a suitable example.
- a phosphorescent metal complex having iridium or platinum represented by tris (2-phenylpyridine) iridium (III) as a central metal is also a suitable example.
- the dopant can be appropriately selected from compounds described in Chemical Industry, June 2004, page 13, and references cited therein.
- perylene derivatives perylene derivatives, borane derivatives, amine-containing styryl derivatives, aromatic amine derivatives, coumarin derivatives, pyran derivatives, iridium complexes, or platinum complexes are particularly preferable.
- perylene derivatives examples include 3,10-bis (2,6-dimethylphenyl) perylene, 3,10-bis (2,4,6-trimethylphenyl) perylene, 3,10-diphenylperylene, 3,4- Diphenylperylene, 2,5,8,11-tetra-t-butylperylene, 3,4,9,10-tetraphenylperylene, 3- (1'-pyrenyl) -8,11-di (t-butyl) perylene 3- (9′-anthryl) -8,11-di (t-butyl) perylene, 3,3′-bis (8,11-di (t-butyl) perylenyl), and the like.
- JP-A-11-97178, JP-A-2000-133457, JP-A-2000-26324, JP-A-2001-267079, JP-A-2001-267078, JP-A-2001-267076, Perylene derivatives described in JP-A No. 2000-34234, JP-A No. 2001-267075, JP-A No. 2001-217077 and the like may be used.
- borane derivatives examples include 1,8-diphenyl-10- (dimesitylboryl) anthracene, 9-phenyl-10- (dimesitylboryl) anthracene, 4- (9′-anthryl) dimesitylborylnaphthalene, 4- (10 ′ -Phenyl-9'-anthryl) dimesitylborylnaphthalene, 9- (dimesitylboryl) anthracene, 9- (4'-biphenylyl) -10- (dimesitylboryl) anthracene, 9- (4 '-(N-carbazolyl) phenyl) And -10- (dimesitylboryl) anthracene.
- amine-containing styryl derivatives include N, N, N ′, N′-tetra (4-biphenylyl) -4,4′-diaminostilbene, N, N, N ′, N′-tetra (1-naphthyl).
- aromatic amine derivative examples include N, N, N, N-tetraphenylanthracene-9,10-diamine, 9,10-bis (4-diphenylamino-phenyl) anthracene, and 9,10-bis (4- Di (1-naphthylamino) phenyl) anthracene, 9,10-bis (4-di (2-naphthylamino) phenyl) anthracene, 10-di-p-tolylamino-9- (4-di-p-tolylamino-1) -Naphthyl) anthracene, 10-diphenylamino-9- (4-diphenylamino-1-naphthyl) anthracene, 10-diphenylamino-9- (6-diphenylamino-2-naphthyl) anthracene, [4- (4-diphenyl Amino-phenyl) naphthalen-1-yl]
- Examples of coumarin derivatives include coumarin-6 and coumarin-334. Moreover, you may use the coumarin derivative described in Unexamined-Japanese-Patent No. 2004-43646, Unexamined-Japanese-Patent No. 2001-76876, and Unexamined-Japanese-Patent No. 6-298758.
- Examples of the pyran derivative include the following DCM and DCJTB. Also, JP 2005-126399, JP 2005-097283, JP 2002-234892, JP 2001-220577, JP 2001-081090, and JP 2001-052869. Alternatively, pyran derivatives described in the above may be used.
- iridium complex examples include Ir (ppy) 3 described below. Further, the iridium complexes described in JP-A-2006-089398, JP-A-2006-080419, JP-A-2005-298483, JP-A-2005-097263, JP-A-2004-111379, etc. It may be used.
- platinum complex examples include the following PtOEP. Further, the platinum complexes described in JP-A-2006-190718, JP-A-2006-128634, JP-A-2006-093542, JP-A-2004-335122, JP-A-2004-331508, etc. It may be used.
- the electron injection layer 107 plays a role of efficiently injecting electrons moving from the cathode 108 into the light emitting layer 105 or the electron transport layer 106.
- the electron transport layer 106 plays a role of efficiently transporting electrons injected from the cathode 108 or electrons injected from the cathode 108 through the electron injection layer 107 to the light emitting layer 105.
- the electron transport layer 106 and the electron injection layer 107 are each formed by laminating and mixing one or more electron transport / injection materials or a mixture of the electron transport / injection material and the polymer binder.
- the electron injection / transport layer is a layer that is responsible for injecting electrons from the cathode and further transporting the electrons. It is desirable that the electron injection efficiency is high and the injected electrons are transported efficiently. For this purpose, it is preferable to use a substance that has a high electron affinity, a high electron mobility, excellent stability, and is unlikely to generate trapping impurities during production and use. However, considering the transport balance between holes and electrons, if the role of effectively preventing the holes from the anode from flowing to the cathode side without recombination is mainly played, the electron transport capability is much higher. Even if it is not high, the effect of improving the luminous efficiency is equivalent to that of a material having a high electron transport capability. Therefore, the electron injection / transport layer in this embodiment may include a function of a layer that can efficiently block the movement of holes.
- the material (electron transport material) for forming the electron transport layer 106 or the electron injection layer 107 a compound represented by the above formula (1) can be used.
- the content of the compound represented by the above formula (1) in the electron transport layer 106 or the electron injection layer 107 differs depending on the type of the compound and may be determined according to the characteristics of the compound.
- the standard for the content of the compound represented by the formula (1) is preferably 1 to 100% by weight, more preferably 10 to 100% by weight, based on the whole electron transport layer material (or electron injection layer material). More preferably, it is 50 to 100% by weight, and particularly preferably 80 to 100% by weight.
- the compound represented by the formula (1) is not used alone (100% by weight), other materials described in detail below may be mixed.
- Other materials for forming the electron transport layer or electron injection layer include compounds conventionally used as electron transport compounds in photoconductive materials, and known materials used for electron injection layers and electron transport layers of organic electroluminescent devices. Any of these compounds can be selected and used.
- condensed ring aromatic ring derivatives such as naphthalene and anthracene, styryl aromatic ring derivatives represented by 4,4′-bis (diphenylethenyl) biphenyl, perinone derivatives, coumarin derivatives, naphthalimide derivatives, anthraquinones And quinone derivatives such as diphenoquinone, phosphorus oxide derivatives, carbazole derivatives, and indole derivatives.
- metal complexes having electron-accepting nitrogen include hydroxyazole complexes such as hydroxyphenyloxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes, and benzoquinoline metal complexes.
- anthracene derivatives such as 9,10-bis (2-naphthyl) anthracene, styryl aromatic ring derivatives such as 4,4′-bis (diphenylethenyl) biphenyl, 4,4′-bis (N-carbazolyl) biphenyl
- a carbazole derivative such as 1,3,5-tris (N-carbazolyl) benzene is preferably used from the viewpoint of durability.
- pyridine derivatives other than the compound represented by the above formula (1) naphthalene derivatives, anthracene derivatives, phenanthroline derivatives, perinone derivatives, coumarin derivatives represented by the formula (1) , Naphthalimide derivatives, anthraquinone derivatives, diphenoquinone derivatives, diphenylquinone derivatives, perylene derivatives, oxadiazole derivatives (such as 1,3-bis [(4-tert-butylphenyl) 1,3,4-oxadiazolyl] phenylene), thiophene Derivatives, triazole derivatives (N-naphthyl-2,5-diphenyl-1,3,4-triazole, etc.), thiadiazole derivatives, metal complexes of oxine derivatives, quinolinol metal complexes, quinoxaline derivatives, polymers of quinoxaline derivatives, benzazole Compound
- metal complexes having electron-accepting nitrogen can also be used, such as hydroxyazole complexes such as quinolinol-based metal complexes and hydroxyphenyloxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes, and benzoquinoline metal complexes. Is given.
- the above-mentioned materials can be used alone, but they may be mixed with different materials.
- quinolinol metal complexes bipyridine derivatives, phenanthroline derivatives, borane derivatives or benzimidazole derivatives are preferable.
- the quinolinol-based metal complex is a compound represented by the following general formula (E-1).
- R 1 to R 6 are hydrogen or a substituent
- M is Li, Al, Ga, Be, or Zn
- n is an integer of 1 to 3.
- quinolinol-based metal complexes include lithium 8-quinolinolato, tris (8-quinolinolato) aluminum, tris (4-methyl-8-quinolinolato) aluminum, tris (5-methyl-8-quinolinolato) aluminum, tris (3 , 4-dimethyl-8-quinolinolato) aluminum, tris (4,5-dimethyl-8-quinolinolato) aluminum, tris (4,6-dimethyl-8-quinolinolato) aluminum, bis (2-methyl-8-quinolinolato) ( Phenolate) aluminum, bis (2-methyl-8-quinolinolato) (2-methylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (3-methylphenolato) aluminum, bis (2-methyl-8- Quinolinolato) ( -Methylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (2-phenylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (3--methyl
- the bipyridine derivative is a compound represented by the following general formula (E-2).
- G represents a simple bond or an n-valent linking group, and n is an integer of 2 to 8. Further, carbon not used for bonding of pyridine-pyridine or pyridine-G may be substituted.
- G in the general formula (E-2) examples include the following structural formulas.
- each R is independently hydrogen, methyl, ethyl, isopropyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, biphenylyl or terphenylyl.
- pyridine derivatives include 2,5-bis (2,2′-bipyridyl-6-yl) -1,1-dimethyl-3,4-diphenylsilole, 2,5-bis (2,2′- Bipyridyl-6-yl) -1,1-dimethyl-3,4-dimesitylsilole, 2,5-bis (2,2′-bipyridyl-5-yl) -1,1-dimethyl-3,4 Diphenylsilole, 2,5-bis (2,2′-bipyridyl-5-yl) -1,1-dimethyl-3,4-dimesitylsilole 9,10-di (2,2′-bipyridyl-6- Yl) anthracene, 9,10-di (2,2′-bipyridyl-5-yl) anthracene, 9,10-di (2,3′-bipyridyl-6-yl)
- the phenanthroline derivative is a compound represented by the following general formula (E-3-1) or (E-3-2).
- R 1 to R 8 are hydrogen or a substituent, adjacent groups may be bonded to each other to form a condensed ring, G represents a simple bond or an n-valent linking group, and n represents 2 It is an integer of ⁇ 8.
- Examples of G in the general formula (E-3-2) include the same ones as described in the bipyridine derivative column.
- phenanthroline derivatives include 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 9,10-di (1,10-phenanthroline- 2-yl) anthracene, 2,6-di (1,10-phenanthroline-5-yl) pyridine, 1,3,5-tri (1,10-phenanthroline-5-yl) benzene, 9,9′-difluor -Bis (1,10-phenanthroline-5-yl), bathocuproin, 1,3-bis (2-phenyl-1,10-phenanthroline-9-yl) benzene and the like.
- a phenanthroline derivative is used for the electron transport layer and the electron injection layer.
- the substituent itself has a three-dimensional structure, or a phenanthroline skeleton or Those having a three-dimensional structure by steric repulsion with an adjacent substituent or those having a plurality of phenanthroline skeletons linked to each other are preferred.
- a compound containing a conjugated bond, a substituted or unsubstituted aromatic hydrocarbon, or a substituted or unsubstituted aromatic heterocycle in the linking unit is more preferable.
- the borane derivative is a compound represented by the following general formula (E-4), and is disclosed in detail in JP-A-2007-27587.
- R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano
- R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl
- X is an optionally substituted arylene
- Y is a substituted Aryl having 16 or less carbon atoms, substituted boryl, or optionally substituted carbazole
- each n is independently an integer of 0 to 3.
- the compound represented by -1-4) is preferred. Specific examples include 9- [4- (4-Dimesitylborylnaphthalen-1-yl) phenyl] carbazole, 9- [4- (4-Dimesitylborylnaphthalen-1-yl) naphthalen-1-yl. Carbazole and the like.
- R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano
- R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl
- R 21 and R 22 are each independently a hydrogen
- X 1 is an optionally substituted arylene having 20 or less carbon atoms.
- Each n is independently an integer from 0 to 3
- each m is independently an integer from 0 to 4.
- R 31 to R 34 are each independently methyl, isopropyl or phenyl
- R 35 and R 36 are each independently hydrogen, methyl, isopropyl or phenyl. It is.
- R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano
- R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl
- X 1 is an optionally substituted arylene having 20 or less carbon atoms
- N is an integer of 0 to 3 independently.
- R 31 to R 34 are each independently any of methyl, isopropyl or phenyl
- R 35 and R 36 are each independently any of hydrogen, methyl, isopropyl or phenyl It is.
- R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano
- R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl
- X 1 is an optionally substituted arylene having 10 or less carbon atoms
- Y 1 is an optionally substituted aryl having 14 or less carbon atoms
- n is each independently an integer of 0 to 3.
- R 31 to R 34 are each independently methyl, isopropyl or phenyl
- R 35 and R 36 are each independently hydrogen, methyl, isopropyl or phenyl. It is.
- the benzimidazole derivative is a compound represented by the following general formula (E-5).
- Ar 1 to Ar 3 are each independently hydrogen or aryl having 6 to 30 carbon atoms which may be substituted.
- a benzimidazole derivative which is anthryl optionally substituted with Ar 1 is preferable.
- aryl having 6 to 30 carbon atoms include phenyl, 1-naphthyl, 2-naphthyl, acenaphthylene-1-yl, acenaphthylene-3-yl, acenaphthylene-4-yl, acenaphthylene-5-yl, and fluorene-1- Yl, fluoren-2-yl, fluoren-3-yl, fluoren-4-yl, fluoren-9-yl, phenalen-1-yl, phenalen-2-yl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9-phenanthryl, 1-anthryl, 2-anthryl, 9-anthryl, fluoranthen-1-yl, fluoranthen-2-yl, fluoranthen-3-yl, fluoranthen-7-yl, fluoranthen-8-yl, Triphenylene-1-yl, 2-
- benzimidazole derivative examples include 1-phenyl-2- (4- (10-phenylanthracen-9-yl) phenyl) -1H-benzo [d] imidazole, 2- (4- (10- (naphthalene-2) -Yl) anthracen-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 2- (3- (10- (naphthalen-2-yl) anthracen-9-yl) phenyl) -1- Phenyl-1H-benzo [d] imidazole, 5- (10- (naphthalen-2-yl) anthracen-9-yl) -1,2-diphenyl-1H-benzo [d] imidazole, 1- (4- (10 -(Naphthalen-2-yl) anthracen-9-yl) phenyl) -2-phenyl-1H-benzo [d] imidazole, 2- (4- (9,10-di (n)-
- the electron transport layer or the electron injection layer may further contain a substance capable of reducing the material forming the electron transport layer or the electron injection layer.
- a substance capable of reducing the material forming the electron transport layer or the electron injection layer various substances can be used as long as they have a certain reducing ability.
- alkali metal, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkali Group consisting of earth metal oxides, alkaline earth metal halides, rare earth metal oxides, rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes, and rare earth metal organic complexes At least one selected from can be preferably used.
- Preferred reducing substances include alkali metals such as Na (work function 2.36 eV), K (2.28 eV), Rb (2.16 eV) or Cs (1.95 eV), and Ca (2. 9eV), Sr (2.0 to 2.5 eV) or Ba (2.52 eV), and alkaline earth metals such as those having a work function of 2.9 eV or less are particularly preferable.
- a more preferable reducing substance is an alkali metal of K, Rb or Cs, more preferably Rb or Cs, and most preferably Cs.
- alkali metals have particularly high reducing ability, and by adding a relatively small amount to the material forming the electron transport layer or the electron injection layer, the luminance of the organic EL element can be improved and the lifetime can be extended.
- a reducing substance having a work function of 2.9 eV or less a combination of two or more alkali metals is also preferable.
- a combination containing Cs such as Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred.
- Cs such as Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred.
- the cathode 108 serves to inject electrons into the light emitting layer 105 through the electron injection layer 107 and the electron transport layer 106.
- the material for forming the cathode 108 is not particularly limited as long as it is a substance that can efficiently inject electrons into the organic layer, but the same material as that for forming the anode 102 can be used.
- metals such as tin, magnesium, indium, calcium, aluminum, silver, copper, nickel, chromium, gold, platinum, iron, zinc, lithium, sodium, potassium, cesium, and magnesium or their alloys (magnesium-silver Alloys, magnesium-indium alloys, aluminum-lithium alloys such as lithium fluoride / aluminum) and the like are preferred.
- lithium, sodium, potassium, cesium, calcium, magnesium, or alloys containing these low work function metals are effective.
- metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium, or alloys using these metals, and inorganic substances such as silica, titania, and silicon nitride, polyvinyl alcohol, Preferred examples include laminating vinyl chloride, hydrocarbon polymer compounds and the like.
- the method for producing these electrodes is not particularly limited as long as conduction can be achieved, such as resistance heating, electron beam, sputtering, ion plating, and coating.
- the materials used for the above hole injection layer, hole transport layer, light emitting layer, electron transport layer, and electron injection layer can form each layer alone, but as a polymer binder, polyvinyl chloride, polycarbonate , Polystyrene, poly (N-vinylcarbazole), polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polysulfone, polyamide, ethyl cellulose, vinyl acetate resin, ABS Dispersed in solvent-soluble resins such as resins and polyurethane resins, and curable resins such as phenol resins, xylene resins, petroleum resins, urea resins, melamine resins, unsaturated polyester resins, alkyd resins, epoxy resins, and silicone resins It is also possible.
- a polymer binder polyvinyl chloride, polycarbonate , Polystyren
- Each layer constituting the organic electroluminescent element is formed by a method such as vapor deposition, resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, printing method, spin coating method, casting method, or coating method.
- the film can be formed by forming a thin film.
- the film thickness of each layer thus formed is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm. The film thickness can usually be measured with a crystal oscillation type film thickness measuring device or the like.
- the vapor deposition conditions vary depending on the type of material, the target crystal structure and association structure of the film, and the like.
- Deposition conditions generally include boat heating temperature of 50 to 400 ° C., vacuum degree of 10 ⁇ 6 to 10 ⁇ 3 Pa, deposition rate of 0.01 to 50 nm / second, substrate temperature of ⁇ 150 to + 300 ° C., film thickness of 2 nm to 5 ⁇ m. It is preferable to set appropriately within the range.
- an organic electric field composed of an anode / hole injection layer / hole transport layer / a light emitting layer composed of a host material and a dopant material / electron transport layer / electron injection layer / cathode.
- a method for manufacturing a light-emitting element will be described.
- a thin film of an anode material is formed on a suitable substrate by vapor deposition or the like to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode.
- a host material and a dopant material are co-evaporated to form a thin film to form a light emitting layer.
- An electron transport layer and an electron injection layer are formed on the light emitting layer, and a thin film made of a cathode material is formed by vapor deposition. By forming it as a cathode, a desired organic electroluminescent element can be obtained.
- the order of preparation may be reversed, and the cathode, electron injection layer, electron transport layer, light emitting layer, hole transport layer, hole injection layer, and anode may be fabricated in this order. Is possible.
- the anode When a DC voltage is applied to the organic electroluminescent device thus obtained, the anode may be applied with a positive polarity and the cathode with a negative polarity. When a voltage of about 2 to 40 V is applied, the organic electroluminescent device is transparent or translucent. Luminescence can be observed from the electrode side (anode or cathode, and both). The organic electroluminescence device emits light when a pulse current or an alternating current is applied. The alternating current waveform to be applied may be arbitrary.
- the present invention can also be applied to a display device provided with an organic electroluminescent element or a lighting device provided with an organic electroluminescent element.
- a display device or an illuminating device including an organic electroluminescent element can be manufactured by a known method such as connecting the organic electroluminescent element according to the present embodiment and a known driving device, such as direct current driving, pulse driving, or alternating current. It can be driven by appropriately using a known driving method such as driving.
- Examples of the display device include a panel display such as a color flat panel display, and a flexible display such as a flexible color organic electroluminescence (EL) display (for example, JP-A-10-335066 and JP-A-2003-321546). Gazette, JP-A-2004-281086, etc.).
- Examples of the display method of the display include a matrix and / or segment method. Note that the matrix display and the segment display may coexist in the same panel.
- a matrix is a pixel in which pixels for display are arranged two-dimensionally, such as a grid or mosaic, and displays characters and images as a set of pixels.
- the shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 ⁇ m or less is usually used for displaying images and characters on a personal computer, monitor, TV, and a pixel with a side of mm order for a large display such as a display panel. become.
- monochrome display pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type.
- the matrix driving method may be either a line sequential driving method or an active matrix.
- the line-sequential driving has an advantage that the structure is simple. However, the active matrix may be superior in consideration of the operation characteristics, so that it is necessary to properly use it depending on the application.
- a pattern is formed so as to display predetermined information, and a predetermined region is caused to emit light.
- a predetermined region is caused to emit light.
- the time and temperature display in a digital clock or a thermometer, the operation status display of an audio device or an electromagnetic cooker, the panel display of an automobile, and the like can be given.
- the illuminating device examples include an illuminating device such as indoor lighting, a backlight of a liquid crystal display device, and the like (for example, JP 2003-257621 A, JP 2003-277741 A, JP 2004-119211 A).
- the backlight is mainly used for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display board, a sign, and the like.
- a backlight for liquid crystal display devices especially personal computers for which thinning is an issue, considering that conventional methods are made of fluorescent lamps and light guide plates, it is difficult to reduce the thickness.
- the backlight using the light emitting element according to the embodiment is thin and lightweight.
- pseudocumene (1,2,4-trimethylbenzene) 50 ml was added to 7-phenyl-7H-benzo [c] carbazole-5,9-diboronic acid ester (5. 3 g) and 5-bromo-2,2′-bipyridine (5.6 g) were added to a solution of bis (dibenzylideneacetone) palladium (0) (Pd (dba) 2 ) (0.6 g) under a nitrogen atmosphere.
- PCy 3 Tricyclohexylphosphine
- K 3 PO 4 tripotassium phosphate
- Second stage Flask containing 4,4 ′-(2-nitro-1,4-phenylene) bis (1-methoxynaphthalene) (27.7 g) and triethyl phosphite (64 ml) at 145 ° C. for 1 hour Stir.
- the reaction solution was cooled to room temperature, methanol was added, and the precipitated solid was collected by suction filtration. This solid was further washed with methanol to obtain 5-methoxy-9- (4-methoxynaphthalen-1-yl) -7H-benzo [c] carbazole (25.0 g).
- Stage 5 Flask containing 9- (4-hydroxynaphthalen-1-yl) -7-phenyl-7H-benzo [c] carbazol-5-ol (22.0 g) and pyridine (250 ml) in an ice bath After cooling, trifluoromethanesulfonic anhydride (50.2 g) was added dropwise. After completion of the dropwise addition, the reaction was terminated by stirring for 1 hour at room temperature. Thereafter, toluene and water were added for liquid separation, and the organic layer was washed with 1N hydrochloric acid and then sodium bicarbonate.
- the reaction solution was cooled to room temperature, and toluene and water were added for liquid separation.
- the solid obtained by distilling off the solvent under reduced pressure was washed with methanol, then heated and dissolved in chlorobenzene, and filtered while hot. Reprecipitation was performed by adding methanol to a place where an appropriate amount of the solvent was distilled off under reduced pressure.
- the obtained solid was recrystallized from nitrobenzene, and 7-phenyl-5- (pyridin-4-yl) -9- (4- (pyridin-4-yl), which is a compound represented by the formula (1-634) Naphthalen-1-yl) -7H-benzo [c] carbazole (2.9 g) was obtained.
- the reaction solution was cooled to room temperature, and an ethylenediaminetetraacetic acid (EDTA) aqueous solution and toluene were added to separate the layers.
- EDTA ethylenediaminetetraacetic acid
- the solid obtained by distilling off the solvent under reduced pressure was purified by alumina column chromatography (developing solution: toluene / ethyl acetate mixed solvent). At this time, the target product was eluted by gradually increasing the ratio of ethyl acetate in the developing solution.
- Second stage 5,9-dimethoxy-7- (naphthalen-1-yl) -7H-benzo [c] carbazole (42.5 g), pyridine hydrochloride (121 g) and N-methylpyrrolidone (NMP) under nitrogen atmosphere ) (43 ml) was stirred with heating at 200 ° C. for 1.5 hours.
- the reaction solution was cooled to room temperature, and water and ethyl acetate were added for liquid separation. After the solvent was distilled off under reduced pressure, the residue was purified with a silica gel short column to obtain 7- (naphthalen-1-yl) -7H-benzo [c] carbazole-5,9-diol (45 g).
- the reaction solution was cooled to room temperature, and an ethylenediaminetetraacetic acid (EDTA) aqueous solution and toluene were added to separate the layers.
- EDTA ethylenediaminetetraacetic acid
- the solid obtained by distilling off the solvent under reduced pressure was dissolved by heating in chlorobenzene and filtered while hot.
- the solid obtained by distilling off the solvent under reduced pressure was recrystallized from chlorobenzene, and the compound represented by the formula (1-8710) 7- (naphthalen-1-yl) -5,9-bis (4- ( Pyridin-2-yl) phenyl) -7H-benzo [c] carbazole (1.8 g) was obtained.
- the reaction solution was cooled to room temperature, an ethylenediaminetetraacetic acid (EDTA) aqueous solution was added, and a solid was obtained by suction filtration.
- EDTA ethylenediaminetetraacetic acid
- chlorobenzene was added and heated, and unnecessary components were separated by suction filtration. Thereafter, the solvent was distilled off under reduced pressure, recrystallized from chlorobenzene, and 7- (naphthalen-1-yl) -5,9-bis (4- (pyridine-3) which is a compound represented by the formula (1-8711) -Yl) phenyl) -7H-benzo [c] carbazole (4.4 g) was obtained.
- the reaction solution was cooled to room temperature, an ethylenediaminetetraacetic acid (EDTA) aqueous solution was added, and a solid was obtained by suction filtration.
- EDTA ethylenediaminetetraacetic acid
- chlorobenzene was added and heated, and unnecessary components were separated by suction filtration. Thereafter, the solvent was distilled off under reduced pressure, recrystallized from chlorobenzene, and 7- (naphthalen-1-yl) -5,9-bis (4- (pyridine-4) which is a compound represented by the formula (1-8712) -Yl) phenyl) -7H-benzo [c] carbazole (3.5 g) was obtained.
- the organic layer was washed with saturated brine, and the solvent was distilled off under reduced pressure.
- the obtained solid was purified by silica gel column chromatography (developing solution: toluene / ethyl acetate mixed solvent). At this time, the target product was eluted by gradually increasing the ratio of ethyl acetate in the developing solution. Thereafter, the solvent was distilled off under reduced pressure, and the resulting solid was washed with ethyl acetate, and the compound represented by the formula (1-541) 7-phenyl-9- (pyridin-2-yl) -5- (4- ( Pyridin-2-yl) phenyl) -7H-benzo [c] carbazole (0.4 g) was obtained.
- the reaction solution was cooled to room temperature, and an ethylenediaminetetraacetic acid (EDTA) aqueous solution and ethyl acetate were added to separate the layers.
- EDTA ethylenediaminetetraacetic acid
- the solvent was distilled off under reduced pressure, and the resulting solid was purified by activated alumina column chromatography (developing solution: toluene / ethyl acetate mixed solvent), and then purified on silica gel column chromatography (developing solution: toluene / ethyl acetate mixed solvent).
- the reaction solution was cooled to room temperature, and an ethylenediaminetetraacetic acid (EDTA) aqueous solution and toluene were added to separate the layers. Further, the organic layer was washed with saturated brine, and the solvent was distilled off under reduced pressure. The obtained solid was washed with methanol and then with ethyl acetate, and then recrystallized from toluene, and the compound represented by the formula (1-575) 7-phenyl-5- (4- (pyridin-2-yl) phenyl)- 9- (Pyridin-3-yl) -7H-benzo [c] carbazole (1.1 g) was obtained.
- EDTA ethylenediaminetetraacetic acid
- the reaction solution was cooled to room temperature, an ethylenediaminetetraacetic acid (EDTA) aqueous solution was added, and the solid in the solution was collected by suction filtration. Subsequently, the product is purified by activated alumina column chromatography (developing solution: toluene / ethyl acetate mixed solvent) and 7-phenyl-5- (pyridin-3-yl) -9, which is a compound represented by the formula (1-599). -(4- (Pyridin-3-yl) naphthalen-1-yl) -7H-benzo [c] carbazole (1.0 g) was obtained. At this time, the target product was eluted by gradually increasing the ratio of ethyl acetate in the developing solution.
- EDTA ethylenediaminetetraacetic acid
- the reaction solution was cooled to room temperature, and an ethylenediaminetetraacetic acid (EDTA) aqueous solution and toluene were added to separate the solution.
- EDTA ethylenediaminetetraacetic acid
- the residue was purified by silica gel column chromatography (developing solution: toluene / ethyl acetate mixed solvent). At this time, the target product was eluted by gradually increasing the ratio of ethyl acetate in the developing solution.
- Second stage 9- (naphthalen-2-yl) -7-phenyl-7H-benzo [c] carbazol-5-yl trifluoromethanesulfonate (5.4 g), bis (pinacolato) diboron (3.0 g), A flask containing (1,1′-bis (diphenylphosphino) ferrocene) dichloropalladium (II) (0.16 g), potassium acetate (2.9 g) and cyclopentyl methyl ether (30 ml) was stirred at reflux temperature for 4 hours. did. The reaction solution was cooled to room temperature, and water and ethyl acetate were added for liquid separation, and then the solvent was distilled off under reduced pressure.
- the obtained solid was washed with water and then with methanol, further washed with heptane by heating, and purified by activated alumina column chromatography (developing solution: toluene / ethyl acetate mixed solvent).
- developer solution toluene / ethyl acetate mixed solvent.
- the ratio of ethyl acetate in the developing solution was gradually increased.
- the target product was eluted by increasing the amount to 1.
- Examples 1 to 3 and Comparative Examples 1 and 2 The electroluminescent elements according to Examples 1 to 3 and Comparative Examples 1 and 2 were manufactured, and the driving start voltage (V) in the constant current driving test and the time (h) for holding the luminance of 80% or more of the initial luminance were respectively obtained. Measurements were made.
- V driving start voltage
- h time for holding the luminance of 80% or more of the initial luminance
- Table 1 below shows the material structure of each layer in the electroluminescent elements according to Examples 1 to 3 and Comparative Examples 1 and 2 thus manufactured.
- CuPc copper phthalocyanine
- NPD N, N′-diphenyl-N, N′-dinaphthyl-4,4′-diaminobiphenyl
- compound (A) is 9-phenyl-10- [6 -(1,1 ′; 3,1 ′′) terphenyl-5′-yl] naphthalen-2-ylanthracene
- compound (B) is N 5 , N 5 , N 9 , N 9 -7,7-hexaphenyl -7H-benzo [c] fluorene-5,9-diamine
- compound (C) is 5,5 ′-(2-phenylanthracene-9,10-diyl) di-2,2′-bipyridine
- compound ( D) is 2-phenyl-9,10-bis [4- (2-pyridyl) phenyl] anthracene, each having the following chemical structure:
- Example 1 ⁇ Device Using Compound (1-10) for Electron Transport Layer>
- a 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
- This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Vacuum Kiko Co., Ltd.), and a molybdenum vapor deposition boat containing CuPc, a molybdenum vapor deposition boat containing NPD, and a compound (A) are placed therein.
- Molybdenum vapor deposition boat, molybdenum vapor deposition boat containing compound (B), molybdenum vapor deposition boat containing compound represented by formula (1-10), molybdenum vapor deposition containing lithium fluoride A boat and a tungsten evaporation boat containing aluminum were mounted.
- the following layers were sequentially formed on the ITO film of the transparent support substrate.
- the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, the deposition boat containing CuPc was first heated and deposited to a thickness of 100 nm to form a hole injection layer, and then NPD was introduced.
- the vapor deposition boat was heated and vapor-deposited so that it might become a film thickness of 30 nm, and the positive hole transport layer was formed.
- the vapor deposition boat containing the compound (A) and the vapor deposition boat containing the compound (B) were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 35 nm.
- the deposition rate was adjusted so that the weight ratio of compound (A) to compound (B) was approximately 95 to 5.
- the evaporation boat containing the compound represented by the formula (1-10) was heated and evaporated to a thickness of 15 nm to form an electron transport layer.
- the deposition rate of each layer was 0.01 to 1 nm / second.
- the evaporation boat containing lithium fluoride is heated to deposit at a deposition rate of 0.003 to 0.1 nm / second so as to have a film thickness of 0.5 nm, and then the evaporation boat containing aluminum is heated.
- the cathode was formed by vapor deposition at a deposition rate of 0.01 to 10 nm / second so that the film thickness was 100 nm, and an organic electroluminescence device was obtained.
- Example 2 ⁇ Device Using Compound (1-4) for Electron Transport Layer>
- An organic EL device was obtained in the same manner as in Example 1 except that the compound represented by the formula (1-10) was replaced with the compound represented by the formula (1-4).
- a constant current driving test was performed using an ITO electrode as an anode and a lithium fluoride / aluminum electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
- the driving test starting voltage was 7.75 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 393 hours.
- Example 3> ⁇ Device Using Compound (1-744) for Electron Transport Layer>
- An organic EL device was obtained in the same manner as in Example 1 except that the compound represented by the formula (1-10) was changed to the compound represented by the formula (1-744).
- a constant current driving test was performed using an ITO electrode as an anode and a lithium fluoride / aluminum electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
- the driving test start voltage was 5.93 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 213 hours.
- Example 1 An organic EL device was obtained in the same manner as in Example 1 except that the compound represented by the formula (1-10) was changed to the compound (C).
- a constant current driving test was performed using an ITO electrode as an anode and a lithium fluoride / aluminum electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
- the drive test starting voltage was 4.78 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 39 hours.
- Example 2 An organic EL device was obtained in the same manner as in Example 1 except that the compound represented by the formula (1-10) was changed to the compound (D).
- a constant current driving test was performed using an ITO electrode as an anode and a lithium fluoride / aluminum electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
- the driving test start voltage was 4.74 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 24 hours.
- Examples 4 to 13 and Comparative Examples 3 and 4 The electroluminescent elements according to Examples 4 to 13 and Comparative Examples 3 and 4 were manufactured, and the driving start voltage (V) in the constant current driving test and the time (h) for maintaining the luminance of 80% or more of the initial luminance were respectively obtained. Measurements were made.
- V driving start voltage
- h time for maintaining the luminance of 80% or more of the initial luminance
- Table 3 below shows the material structure of each layer in the electroluminescent devices according to Examples 4 to 13 and Comparative Examples 3 and 4 thus manufactured.
- HI refers to N 4 , N 4 ′ -diphenyl-N 4 , N 4 ′ -bis (9-phenyl-9H-carbazol-3-yl)-[1,1′-biphenyl] -4, 4′-diamine
- compound (E) is 9-phenyl-10- (4-phenylnaphthalen-1-yl) anthracene
- compound (F) is 9,10-di ([2,2′-bipyridine] -5- Yl) anthracene
- compound (G) is 2,7-di ([2,4′-bipyridin] -6-yl) -9-phenyl-9H-carbazole.
- Liq The chemical structure is shown below together with “Liq”.
- Example 4 ⁇ Device Using Compound (1-10) for Electron Transport Layer>
- a glass substrate of 26 mm ⁇ 28 mm ⁇ 0.7 mm obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
- This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), and a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing NPD, and compound (E) are placed therein.
- Molybdenum deposition boat molybdenum deposition boat containing compound (B), molybdenum deposition boat containing compound represented by formula (1-10), molybdenum deposition boat containing Liq, A molybdenum boat containing magnesium and a tungsten evaporation boat containing silver were installed.
- the following layers were sequentially formed on the ITO film of the transparent support substrate.
- the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, first, a vapor deposition boat containing HI was heated and vapor-deposited to a film thickness of 40 nm to form a hole injection layer, and then NPD was contained. The vapor deposition boat was heated and vapor-deposited so that it might become a film thickness of 30 nm, and the positive hole transport layer was formed. Next, the vapor deposition boat containing the compound (E) and the vapor deposition boat containing the compound (B) were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 35 nm.
- the deposition rate was adjusted so that the weight ratio of compound (E) to compound (B) was approximately 95 to 5.
- the evaporation boat containing the compound represented by the formula (1-10) was heated and evaporated to a thickness of 15 nm to form an electron transport layer.
- the deposition rate of each layer was 0.01 to 1 nm / second.
- the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
- a boat containing magnesium and a boat containing silver were heated at the same time and evaporated to a film thickness of 100 nm to form a cathode.
- the deposition rate was adjusted so that the atomic ratio of magnesium and silver was 10: 1, and the cathode was formed so that the deposition rate was 0.1 nm to 10 nm, thereby obtaining an organic electroluminescent device.
- Example 5 ⁇ Device Using Compound (1-5) for Electron Transport Layer> An organic EL device was obtained by the method according to Example 4 except that the compound (1-10) was changed to the compound (1-5).
- a constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
- the driving test start voltage was 4.13 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 246 hours.
- Example 6> ⁇ Device Using Compound (1-634) for Electron Transport Layer> An organic EL device was obtained by the method according to Example 4 except that the compound (1-10) was changed to the compound (1-634).
- a constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
- the driving test start voltage was 5.41 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 400 hours.
- Example 7 ⁇ Device Using Compound (1-744) for Electron Transport Layer> An organic EL device was obtained by the method according to Example 4 except that the compound (1-10) was changed to the compound (1-744).
- a constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
- the driving test start voltage was 4.96 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 231 hours.
- Example 8> ⁇ Device Using Compound (1-20) for Electron Transport Layer> An organic EL device was obtained in the same manner as in Example 4 except that the compound (1-10) was changed to the compound (1-20). A constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test starting voltage was 3.54 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 132 hours.
- Example 9 ⁇ Device Using Compound (1-24) for Electron Transport Layer> An organic EL device was obtained by the method according to Example 4 except that the compound (1-10) was changed to the compound (1-24). A constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 . The driving test starting voltage was 5.26 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 265 hours.
- Example 10> ⁇ Device Using Compound (1-743) for Electron Transport Layer>
- An organic EL device was obtained by the method according to Example 4 except that the compound (1-10) was changed to the compound (1-743).
- a constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
- the driving test start voltage was 4.61 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 315 hours.
- Example 11 ⁇ Device Using Compound (1-8710) for Electron Transport Layer> An organic EL device was obtained in the same manner as in Example 4 except that the compound (1-10) was changed to the compound (1-8710).
- a constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
- the driving test starting voltage was 4.83 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 430 hours.
- Example 12 ⁇ Device Using Compound (1-8711) for Electron Transport Layer> An organic EL device was obtained by the method according to Example 4 except that the compound (1-10) was changed to the compound (1-8711).
- a constant current driving test was carried out using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
- the driving test start voltage was 3.85 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 229 hours.
- Example 13> ⁇ Device Using Compound (1-8712) for Electron Transport Layer>
- An organic EL device was obtained by the method according to Example 4 except that the compound (1-10) was changed to the compound (1-8712).
- a constant current driving test was performed using an ITO electrode as an anode and a magnesium / silver electrode as a cathode at a current density for obtaining an initial luminance of 2000 cd / m 2 .
- the driving test start voltage was 4.00 V, and the time for maintaining the luminance of 80% or more of the initial luminance was 240 hours.
- Table 5 below shows the material configuration of each layer in the electroluminescent device according to Reference Example 1 and Comparative Example 5 thus manufactured.
- CuPc copper phthalocyanine
- NPD N, N′-diphenyl-N, N′-dinaphthyl-4,4′-diaminobiphenyl
- compound (A) is 9-phenyl-10- [6 -(1,1 ′; 3,1 ′′) terphenyl-5′-yl] naphthalen-2-ylanthracene
- compound (B) is N 5 , N 5 , N 9 , N 9 -7,7-hexaphenyl -7H-benzo [c] fluorene-5,9-diamine
- compound (C) is 5,5 ′-(2-phenylanthracene-9,10-diyl) di-2,2′-bipyridine, Each has the following chemical structure.
- ⁇ Reference Example 1> ⁇ Device Using Compound (1-335) for Electron Transport Layer> A 26 mm ⁇ 28 mm ⁇ 0.7 mm glass substrate (manufactured by Optoscience Co., Ltd.) obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate. This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Vacuum Kiko Co., Ltd.), and a molybdenum vapor deposition boat containing CuPc, a molybdenum vapor deposition boat containing NPD, and a compound (A) are placed therein.
- a commercially available vapor deposition apparatus manufactured by Vacuum Kiko Co., Ltd.
- Molybdenum vapor deposition boat, molybdenum vapor deposition boat containing compound (B), molybdenum vapor deposition boat containing compound represented by formula (1-335), molybdenum vapor deposition containing lithium fluoride A boat and a tungsten evaporation boat containing aluminum were mounted.
- the following layers were sequentially formed on the ITO film of the transparent support substrate.
- the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, the deposition boat containing CuPc was first heated and deposited to a thickness of 100 nm to form a hole injection layer, and then NPD was introduced.
- the vapor deposition boat was heated and vapor-deposited so that it might become a film thickness of 30 nm, and the positive hole transport layer was formed.
- the vapor deposition boat containing the compound (A) and the vapor deposition boat containing the compound (B) were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 35 nm.
- the deposition rate was adjusted so that the weight ratio of compound (A) to compound (B) was approximately 95 to 5.
- the evaporation boat containing the compound represented by the formula (1-335) was heated and evaporated to a film thickness of 15 nm to form an electron transport layer.
- the deposition rate of each layer was 0.01 to 1 nm / second.
- the evaporation boat containing lithium fluoride is heated to deposit at a deposition rate of 0.003 to 0.1 nm / second so as to have a film thickness of 0.5 nm, and then the evaporation boat containing aluminum is heated.
- the cathode was formed by vapor deposition at a deposition rate of 0.01 to 10 nm / second so that the film thickness was 100 nm, and an organic electroluminescence device was obtained.
- an organic electroluminescent element that improves the lifetime of the light emitting element and has an excellent balance with the driving voltage, a display device including the organic electroluminescent element, and a lighting device including the organic electroluminescent element. it can.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Optics & Photonics (AREA)
- Plural Heterocyclic Compounds (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
上記式(1)中、
Rは炭素数6~24のアリールまたは炭素数2~24のヘテロアリールであり、
AおよびA’は、それぞれ独立して、水素、上記式(A-1)で表される基、上記式(A-2)で表される基、上記式(A-3)で表される基、および上記式(A-4)で表される基からなる群から選択される1つであるが、AおよびA’の両方が水素になることはなく、
R、AおよびA’の構造中に含まれる環は、炭素数1~6のアルキル、シクロヘキシルまたはフェニルで置換されていてもよく、また、
式(1)で表される化合物を構成するベンゾカルバゾール骨格、これに置換するR、AおよびA’における任意の水素は重水素で置換されていてもよい。
AおよびA’は、それぞれ独立して、水素、下記式(A-1-1)~(A-1-3)で表される基、下記式(A-2-1)~(A-2-18)で表される基、下記式(A-3-1)~(A-3-6)で表される基、および下記式(A-4-1)~(A-4-6)で表される基からなる群から選択される1つであるが、AおよびA’の両方が水素になることはなく、また、
式(1)で表される化合物を構成するベンゾカルバゾール骨格、これに置換するR、AおよびA’における任意の水素は重水素で置換されていてもよい、
上記[1]に記載するベンゾ[c]カルバゾール化合物。
AおよびA’は、それぞれ独立して、上記式(A-1-1)~(A-1-3)で表される基、上記式(A-2-1)~(A-2-18)で表される基、上記式(A-3-1)~(A-3-6)で表される基および上記式(A-4-1)~(A-4-6)で表される基からなる群から選択される1つである、
上記[1]に記載するベンゾ[c]カルバゾール化合物。
AおよびA’は、それぞれ独立して、上記式(A-1-1)~(A-1-3)で表される基、上記式(A-2-1)~(A-2-18)で表される基、上記式(A-3-1)~(A-3-6)で表される基および上記式(A-4-1)~(A-4-3)で表される基からなる群から選択される1つである、
上記[1]に記載するベンゾ[c]カルバゾール化合物。
AおよびA’は、それぞれ独立して、上記式(A-1-1)~(A-1-3)で表される基、上記式(A-2-1)~(A-2-4)で表される基、上記式(A-2-7)~(A-2-9)で表される基、上記式(A-2-12)で表される基、上記式(A-2-15)で表される基、上記式(A-3-1)~(A-3-6)で表される基および上記式(A-4-1)~(A-4-3)で表される基からなる群から選択される1つである、
上記[1]に記載するベンゾ[c]カルバゾール化合物。
AおよびA’は、それぞれ独立して、上記式(A-1-1)~(A-1-3)で表される基、上記式(A-2-1)で表される基、上記式(A-2-2)で表される基、上記式(A-2-8)で表される基、上記式(A-2-12)で表される基、上記式(A-3-1)~(A-3-6)で表される基および上記式(A-4-1)~(A-4-3)で表される基からなる群から選択される1つである、
上記[1]に記載するベンゾ[c]カルバゾール化合物。
本発明のピリジンを含む置換基を有するベンゾ[c]カルバゾール化合物について詳細に説明する。本発明のベンゾ[c]カルバゾール化合物は、下記式(1)で表される化合物である。なお、式(1)で表される化合物を構成するベンゾカルバゾール骨格、これに置換するR、AおよびA’における任意の水素は重水素で置換されていてもよい。
また、式(1)中のAおよびA’は、それぞれ独立して、水素、上記式(A-1)で表される基、上記式(A-2)で表される基、上記式(A-3)で表される基、上記式(A-4)で表される基および炭素数6~18のアリールからなる群から選択される1つであるが、AまたはA’のいずれか一方は、上記式(A-1)、式(A-2)、式(A-3)および式(A-4)で表される基からなる群から選択される1つである。すなわち、AおよびA’が共に、以降に詳述する上記「炭素数6~18のアリール」になることはない。
これらの中でも、本発明では、特に、AおよびA’が、それぞれ独立して、水素、上記式(A-1)で表される基、上記式(A-2)で表される基、上記式(A-3)で表される基、および上記式(A-4)で表される基からなる群から選択される1つであって、AおよびA’の両方が水素になることはないという条件を満たす態様が好ましい。すなわち、この態様では、AおよびA’のいずれもが「炭素数6~18のアリール」になることはない。
なお、上記式(A-1)~(A-4)で表される基において、環に掛かっている結合手は環を構成する任意の炭素原子に連結するが、同じ炭素原子に2つの結合手が連結することはない。式(A-4)で表される基において、ピリジン環とナフタレン環とを連結する結合手がナフタレン環の縮合する2つの環に掛かっているのは、この結合手が、ナフタレン環のベンゾ[c]カルバゾールに連結する炭素原子を除く任意の炭素原子に連結していることを表す。
次に、本発明の化合物の製造方法について説明する。
本発明の化合物は、基本的には、公知の化合物を用いて、公知の合成法、例えば鈴木カップリング反応や根岸カップリング反応(例えば、「Metal-Catalyzed Cross-Coupling Reactions - Second, Completely Revised and Enlarged Edition」などに記載)を利用して合成することができる。また、両反応を組み合わせても合成することができる。式(1)で表される化合物を、鈴木カップリング反応または根岸カップリング反応で合成するスキームを以下に例示する。
<反応性の置換基を有するフェニル基またはナフチル基が結合したピリジンの合成>
まず下記反応式(1)でピリジンの塩化亜鉛錯体を合成し、次に下記反応式(2)でピリジンの塩化亜鉛錯体と1,4-ジブロモベンゼンまたは1,4-ジブロモナフタレンとを反応させることにより、2-(4-ブロモフェニル)ピリジンまたは2-(4-ブロモナフタレン-1-イル)ピリジンを合成することができる。
次に、下記反応式(3)に示すように、2-(4-ブロモフェニル)ピリジンまたは2-(4-ブロモナフタレン-1-イル)ピリジンを、有機リチウム試薬を用いてリチオ化するか、マグネシウムや有機マグネシウム試薬を用いてグリニャール試薬とし、ホウ酸トリメチル、ホウ酸トリエチルまたはホウ酸トリイソプロピルなどと反応させることにより、4-(ピリジン-2-イル)フェニルボロン酸エステルおよび4-(ピリジン-2-イル)ナフタレン-1-イルボロン酸エステルを合成することができる。さらに、下記反応式(4)で該ボロン酸エステルを加水分解することにより、4-(2-ピリジル)フェニルボロン酸および4-(ピリジン-2-イル)ナフタレン-1-イルボロン酸を合成することができる。
まず下記反応式(7)でピリジンの塩化亜鉛錯体を合成し、次に下記反応式(8)でピリジンの塩化亜鉛錯体と2,5-ジブロモピリジンとを反応させることにより、5-ブロモ-2,2’-ビピリジンを合成することができる。
次に、下記反応式(9)に示すように、5-ブロモ-2,2’-ビピリジンを、有機リチウム試薬を用いてリチオ化するか、マグネシウムや有機マグネシウム試薬を用いてグリニャール試薬とし、ホウ酸トリメチル、ホウ酸トリエチルまたはホウ酸トリイソプロピルなどと反応させることにより、2,2’-ビピリジンボロン酸エステルを合成することができる。さらに、下記反応式(10)で該2,2’-ビピリジンボロン酸エステルを加水分解することにより、2,2’-ビピリジンボロン酸を合成することができる。
AまたはA’として「炭素数6~18のアリール」(例えば式(A-5-1)~式(A-5-11)で表される基)が選択される場合、これらのアリールに反応性の置換基が結合したものやそのボロン酸/ボロン酸エステルは市販されているものを入手するか、または上述した合成方法を参考にして合成することができる。
まず、下記反応式(13)に示すように、カップリング反応により、1-メトキシ-4-(4-メトキシ-2-ニトロフェニル)ナフタレンを合成する。ここで反応式(13)にはボロン酸を用いた鈴木カップリングを例示したが、亜鉛錯体を用いた根岸カップリングを用いることもできる。次いで亜リン酸トリエチルやトリフェニルホスフィンを用いて環化反応を行い、ベンゾ[c]カルバゾール誘導体(BCz-A)を得る。このBCz-Aをパラジウム触媒を用いたカップリング反応やウルマン反応にてBCz-Bとした後、三臭化ホウ素やピリジン塩酸塩などにて脱メチル化を行いBCz-Cとする。その後、トリフルオロメタンスルホン酸無水物と反応させることで、本発明の化合物の中心骨格部分である7-フェニル-7H-ベンゾ[c]カルバゾール-5,9-ジイル ビス(トリフルオロメタンスルホナート)が得られる。
また、中心骨格部分は以下のようにしても合成することができる。まず、下記反応式(13’)に示すように、カップリング反応により、4,4’-(2-ニトロ-1,4-フェニレン)ビス(1-メトキシナフタレン)を合成する。ここで反応式(13’)にはボロン酸を用いた鈴木カップリングを例示したが、亜鉛錯体を用いた根岸カップリングを用いることもできる。次いで亜リン酸トリエチルやトリフェニルホスフィンを用いて環化反応を行い、ベンゾ[c]カルバゾール誘導体(BCz-A’)を得る。その後、上述の方法でN-フェニル化(BCz-B’)、次いで脱メチル化し(BCz-C’)、最後に、トリフルオロメタンスルホン酸無水物と反応させることで、本発明の化合物の中心骨格部分である4-(7-フェニル-5(((トリフルオロメチル)スルホニル)オキシ)-7H-ベンゾ[c]カルバゾール-9-イル)ナフタレン-1-イル トリフルオロメタンスルホナートが得られる。
下記反応式(14)に示すように、反応式(13)で得られた7-フェニル-7H-ベンゾ[c]カルバゾール-5,9-ジイル ビス(トリフルオロメタンスルホナート)とビス(ピナコラート)ジボロンまたは4,4,5,5-テトラメチル-1,3,2-ジオキサボロランとを、パラジウム触媒と塩基を用いてカップリング反応させることにより、7-フェニル-7H-ベンゾ[c]カルバゾール-5,9-ジボロン酸エステルを合成することができる。
下記反応式(14’)に示すように、反応式(13’)で得られた4-(7-フェニル-5(((トリフルオロメチル)スルホニル)オキシ)-7H-ベンゾ[c]カルバゾール-9-イル)ナフタレン-1-イル トリフルオロメタンスルホナートとビス(ピナコラート)ジボロンまたは4,4,5,5-テトラメチル-1,3,2-ジオキサボロランとを、パラジウム触媒と塩基を用いてカップリング反応させることにより、7-フェニル-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9-(4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ナフタレン-1-イル)-7H-ベンゾ[c]カルバゾールを合成することができる。
下記反応式(15)に示すように、上述の7-フェニル-7H-ベンゾ[c]カルバゾール-5,9-ジイル ビス(トリフルオロメタンスルホナート)と2倍モルのピリジンのボロン酸またはボロン酸エステル、ピリジル置換フェニル/ナフチルのボロン酸またはボロン酸エステルまたはビピリジンのボロン酸またはボロン酸エステルをパラジウム触媒と塩基の存在下で反応させることにより、本発明のベンゾ[c]カルバゾール化合物を合成することができる。ここでは4-ピリジルボロン酸/ボロン酸エステル、4-(ピリジン-2-イル)フェニルボロン酸/ボロン酸エステル、4-(ピリジン-2-イル)ナフタレン-1-イルボロン酸/ボロン酸エステル、および2,2’-ビピリジン-5-イルボロン酸/ボロン酸エステルを用いた合成法を例示したが、それぞれの位置異性体を用いても同様に合成することができる。また、7-フェニル-7H-ベンゾ[c]カルバゾール-5,9-ジイル ビス(トリフルオロメタンスルホナート)の代わりに4-(7-フェニル-5(((トリフルオロメチル)スルホニル)オキシ)-7H-ベンゾ[c]カルバゾール-9-イル)ナフタレン-1-イル トリフルオロメタンスルホナートを用いても本発明のベンゾ[c]カルバゾール化合物を合成することができる。
本発明のベンゾ[c]カルバゾール化合物の鈴木カップリングによる合成法を上述したが、根岸カップリングを利用することもできる。
最後に、下記反応式(19)に示すように、7-フェニル-7H-ベンゾ[c]カルバゾール-5,9-ジイル ビス(トリフルオロメタンスルホナート)に、上述するようにして合成した、4-ピリジル亜鉛錯体、4-(ピリジン-2-イル)フェニル/ナフタレン-1-イル亜鉛錯体または2,2’-ビピリジン-5-イル亜鉛錯体を2倍モル、パラジウム触媒の存在下で反応させることにより、本発明のベンゾ[c]カルバゾール化合物を合成することができる。また、下記反応式(20)に示すように、1倍モルの前記の亜鉛錯体もしくはフェニルやナフチルといったアリール基の亜鉛錯体を上記反応式(17)と同じように2段階に分けて反応させても、本発明のベンゾ[c]カルバゾール化合物を合成することができる。また、7-フェニル-7H-ベンゾ[c]カルバゾール-5,9-ジイル ビス(トリフルオロメタンスルホナート)の代わりに4-(7-フェニル-5(((トリフルオロメチル)スルホニル)オキシ)-7H-ベンゾ[c]カルバゾール-9-イル)ナフタレン-1-イル トリフルオロメタンスルホナートを用いても本発明のベンゾ[c]カルバゾール化合物を合成することができる。
本発明のベンゾ[c]カルバゾール化合物のうち5位または9位が水素である化合物は、上記反応式(13)の出発原料の片方にメトキシを持たない化合物を使用して中間体を合成し、後段のカップリング反応に供することによって合成することができる。
本発明に係るピリジンを含む置換基を有するベンゾ[c]カルバゾール化合物は、例えば、有機電界発光素子の材料として用いることができる。以下に、本実施形態に係る有機電界発光素子について図面に基づいて詳細に説明する。図1は、本実施形態に係る有機電界発光素子を示す概略断面図である。
図1に示された有機電界発光素子100は、基板101と、基板101上に設けられた陽極102と、陽極102の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた発光層105と、発光層105の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた電子注入層107と、電子注入層107の上に設けられた陰極108とを有する。
基板101は、有機電界発光素子100の支持体となるものであり、通常、石英、ガラス、金属、プラスチックなどが用いられる。基板101は、目的に応じて板状、フィルム状、またはシート状に形成され、例えば、ガラス板、金属板、金属箔、プラスチックフィルム、プラスチックシートなどが用いられる。なかでも、ガラス板、およびポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂製の板が好ましい。ガラス基板であれば、ソーダライムガラスや無アルカリガラスなどが用いられ、また、厚みも機械的強度を保つのに十分な厚みがあればよいので、例えば、0.2mm以上あればよい。厚さの上限値としては、例えば、2mm以下、好ましくは1mm以下である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiO2などのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することができる。また、基板101には、ガスバリア性を高めるために、少なくとも片面に緻密なシリコン酸化膜などのガスバリア膜を設けてもよく、特にガスバリア性が低い合成樹脂製の板、フィルムまたはシートを基板101として用いる場合にはガスバリア膜を設けるのが好ましい。
陽極102は、発光層105へ正孔を注入する役割を果たすものである。なお、陽極102と発光層105との間に正孔注入層103および/または正孔輸送層104が設けられている場合には、これらを介して発光層105へ正孔を注入することになる。
正孔注入層103は、陽極102から移動してくる正孔を、効率よく発光層105内または正孔輸送層104内に注入する役割を果たすものである。正孔輸送層104は、陽極102から注入された正孔または陽極102から正孔注入層103を介して注入された正孔を、効率よく発光層105に輸送する役割を果たすものである。正孔注入層103および正孔輸送層104は、それぞれ、正孔注入・輸送材料の一種または二種以上を積層、混合するか、正孔注入・輸送材料と高分子結着剤の混合物により形成される。また、正孔注入・輸送材料に塩化鉄(III)のような無機塩を添加して層を形成してもよい。
発光層105は、電界を与えられた電極間において、陽極102から注入された正孔と、陰極108から注入された電子とを再結合させることにより発光するものである。発光層105を形成する材料としては、正孔と電子との再結合によって励起されて発光する化合物(発光性化合物)であればよく、安定な薄膜形状を形成することができ、かつ、固体状態で強い発光(蛍光および/または燐光)効率を示す化合物であるのが好ましい。
また、特開平11-97178号公報、特開2000-133457号公報、特開2000-26324号公報、特開2001-267079号公報、特開2001-267078号公報、特開2001-267076号公報、特開2000-34234号公報、特開2001-267075号公報、および特開2001-217077号公報などに記載されたペリレン誘導体を用いてもよい。
また、国際公開第2000/40586号パンフレットなどに記載されたボラン誘導体を用いてもよい。
また、特開2006-156888号公報などに記載された芳香族アミン誘導体を用いてもよい。
また、特開2004-43646号公報、特開2001-76876号公報、および特開平6-298758号公報などに記載されたクマリン誘導体を用いてもよい。
また、特開2005-126399号公報、特開2005-097283号公報、特開2002-234892号公報、特開2001-220577号公報、特開2001-081090号公報、および特開2001-052869号公報などに記載されたピラン誘導体を用いてもよい。
また、特開2006-089398号公報、特開2006-080419号公報、特開2005-298483号公報、特開2005-097263号公報、および特開2004-111379号公報などに記載されたイリジウム錯体を用いてもよい。
また、特開2006-190718号公報、特開2006-128634号公報、特開2006-093542号公報、特開2004-335122号公報、および特開2004-331508号公報などに記載された白金錯体を用いてもよい。
電子注入層107は、陰極108から移動してくる電子を、効率よく発光層105内または電子輸送層106内に注入する役割を果たすものである。電子輸送層106は、陰極108から注入された電子、または陰極108から電子注入層107を介して注入された電子を、効率よく発光層105に輸送する役割を果たすものである。電子輸送層106および電子注入層107は、それぞれ、電子輸送・注入材料の一種または二種以上を積層、混合するか、電子輸送・注入材料と高分子結着剤の混合物により形成される。
式中、Gは単なる結合手またはn価の連結基を表し、nは2~8の整数である。また、ピリジン-ピリジンまたはピリジン-Gの結合に用いられない炭素は置換されていてもよい。
式中、R1~R8は水素または置換基であり、隣接する基は互いに結合して縮合環を形成してもよく、Gは単なる結合手またはn価の連結基を表し、nは2~8の整数である。また、一般式(E-3-2)のGとしては、例えば、ビピリジン誘導体の欄で説明したものと同じものがあげられる。
式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよいアリーレンであり、Yは、置換されていてもよい炭素数16以下のアリール、置換ボリル、または置換されていてもよいカルバゾールであり、そして、nはそれぞれ独立して0~3の整数である。
式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、R21およびR22は、それぞれ独立して、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、X1は、置換されていてもよい炭素数20以下のアリーレンであり、nはそれぞれ独立して0~3の整数であり、そして、mはそれぞれ独立して0~4の整数である。
各式中、R31~R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、X1は、置換されていてもよい炭素数20以下のアリーレンであり、そして、nはそれぞれ独立して0~3の整数である。
式中、R31~R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、X1は、置換されていてもよい炭素数10以下のアリーレンであり、Y1は、置換されていてもよい炭素数14以下のアリールであり、そして、nはそれぞれ独立して0~3の整数である。
各式中、R31~R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
式中、Ar1~Ar3はそれぞれ独立に水素または置換されてもよい炭素数6~30のアリールである。特に、Ar1が置換されてもよいアントリルであるベンゾイミダゾール誘導体が好ましい。
好ましい還元性物質としては、Na(仕事関数2.36eV)、K(同2.28eV)、Rb(同2.16eV)またはCs(同1.95eV)などのアルカリ金属や、Ca(同2.9eV)、Sr(同2.0~2.5eV)またはBa(同2.52eV)などのアルカリ土類金属が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち、より好ましい還元性物質は、K、RbまたはCsのアルカリ金属であり、さらに好ましくはRbまたはCsであり、最も好ましいのはCsである。これらのアルカリ金属は、特に還元能力が高く、電子輸送層または電子注入層を形成する材料への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性物質として、これら2種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRb、またはCsとNaとKとの組み合わせが好ましい。Csを含むことにより、還元能力を効率的に発揮することができ、電子輸送層または電子注入層を形成する材料への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。
陰極108は、電子注入層107および電子輸送層106を介して、発光層105に電子を注入する役割を果たすものである。
以上の正孔注入層、正孔輸送層、発光層、電子輸送層、および電子注入層に用いられる材料は単独で各層を形成することができるが、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリ(N-ビニルカルバゾール)、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルフォン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリサルフォン、ポリアミド、エチルセルロース、酢酸ビニル樹脂、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂などに分散させて用いることも可能である。
有機電界発光素子を構成する各層は、各層を構成すべき材料を蒸着法、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、印刷法、スピンコート法、キャスト法、またはコーティング法などの方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm~5000nmの範囲である。膜厚は通常、水晶発振式膜厚測定装置などで測定できる。蒸着法を用いて薄膜化する場合、その蒸着条件は、材料の種類、膜の目的とする結晶構造および会合構造などにより異なる。蒸着条件は一般的に、ボート加熱温度50~400℃、真空度10-6~10-3Pa、蒸着速度0.01~50nm/秒、基板温度-150~+300℃、膜厚2nm~5μmの範囲で適宜設定することが好ましい。
また、本発明は、有機電界発光素子を備えた表示装置または有機電界発光素子を備えた照明装置などにも応用することができる。
有機電界発光素子を備えた表示装置または照明装置は、本実施形態にかかる有機電界発光素子と公知の駆動装置とを接続するなど公知の方法によって製造することができ、直流駆動、パルス駆動、交流駆動など公知の駆動方法を適宜用いて駆動することができる。
まず、シクロペンチルメチルエーテル(CPME)(64ml)に2-(4-ブロモフェニル)ピリジン(15g)およびビス(ピナコラート)ジボロン(19.5g)を加えた溶液に、窒素雰囲気下、酢酸パラジウム(Pd(OAc)2)(0.4g)、トリフェニルホスフィン(PPh3)(1.5g)および酢酸カリウム(AcOK)(18.9g)を室温で攪拌しながら加えた。その後、還流温度で2時間攪拌した後、反応液を室温まで冷却し、エチレンジアミン四酢酸(EDTA)水溶液(35ml)とトルエン(500ml)を加えた。水洗操作にて塩を除去した有機物を活性炭カラムクロマトグラフィー(トルエン)で精製した。このようにして、2-(4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル)ピリジン(11.2g)を得た。
1H-NMR(500MHz,CDCl3):δ=8.97(d,1H),8.74(m,3H),8.11(m,5H),7.76(m,9H),7.54(m,6H),7.47(m,2H),7.45(m,1H),7.35-7.23(m,2H).
まず、シクロペンチルメチルエーテル(50ml)に7-フェニル-7H-ベンゾ[c]カルバゾール-5,9-ジイル ビス(トリフルオロメタンスルホナート)(5.9g)およびビス(ピナコラート)ジボロン(6.1g)を加えた溶液に、窒素雰囲気下、(1,1’-ビス(ジフェニルホスフィノ)フェロセン)ジクロロパラジウム(II)(0.41g)および酢酸カリウム(5.9g)を室温で攪拌しながら加えた。その後、還流温度で4時間攪拌した後、反応液を室温まで冷却し、水と酢酸エチルを加え、水洗操作を行なった。次いでメタノールを加え、加熱還流撹拌することで洗浄した。このようにして、7-フェニル-7H-ベンゾ[c]カルバゾール-5,9-ジボロン酸エステル(5.3g)を得た。
1H-NMR(500MHz,CDCl3):δ=9.02(m,1H),8.98(d,1H),8.86(m,1H),8.80(d,1H),8.75(m,2H),8.55(d,1H),8.45-8.53(m,3H),8.13(dd,1H),8.00-8.08(m,2H),7.75-7.89(m,5H),7.67(m,4H),7.56(m,2H),7.51(t,1H),7.30-7.37(m,2H).
シュードクメン(1,2,4-トリメチルベンゼン)(50ml)に、7-フェニル-7H-ベンゾ[c]カルバゾール-5,9-ジボロン酸エステル(4.9g)および4-(3-ブロモフェニル)ピリジン(4.6g)を加えた溶液に、窒素雰囲気下、トリフェニルホスフィンのパラジウム触媒(Pd(PPh3)4)(0.5g)およびリン酸三カリウム(K3PO4)(12g)を室温で攪拌しながら加えた。その後、160℃で12時間攪拌した後、反応液を室温まで冷却し、エチレンジアミン四酢酸(EDTA)水溶液と酢酸エチルを加え、水洗操作を行なった。水洗操作にて塩を除去した有機物を活性アルミナカラムクロマトグラフィー(トルエン/酢酸エチル=4/6(容量比))で精製した。さらに、トルエンから再結晶を行い、式(1-744)で表される化合物である7-フェニル-5,9-ビス(3-(ピリジン-4-イル)フェニル)7H-ベンゾ[c]カルバゾール(3.5g)を得た。
1H-NMR(500MHz,CDCl3):δ=8.89(d,1H),8.77(d,1H),8.69(m,4H),8.01(d,1H),7.92(m,1H),7.80(m,2H),7.69-7.77(m,4H),7.50-7.67(m,14H),7.47(t,1H).
シュードクメン(1,2,4-トリメチルベンゼン)(50ml)に、7-フェニル-7H-ベンゾ[c]カルバゾール-5,9-ジボロン酸エステル(5.0g)および5-ブロモ-2,3’-ビピリジン(5.0g)を加えた溶液に、窒素雰囲気下、Pd(PPh3)4(0.5g)およびリン酸三カリウム(12g)を室温で攪拌しながら加えた。その後、150℃で20時間攪拌した後、反応液を室温まで冷却し、エチレンジアミン四酢酸(EDTA)水溶液を加え、吸引濾過にて液中の固体を採取した。次いで活性アルミナカラムクロマトグラフィー(展開液:トルエン/酢酸エチル混合溶媒)で精製した。このとき、「有機化学実験のてびき(1)-物質取扱法と分離精製法-」株式会社化学同人出版、94頁に記載の方法を参考にして、展開液中の酢酸エチルの比率を徐々に増加させて目的物を溶出させた。さらに、クロロベンゼンから再結晶を行い、式(1-5)で表される化合物である5,9-ジ([2,3’-ビピリジン]-5-イル)-7-フェニル-7H-ベンゾ[c]カルバゾール(1.9g)を得た。
1H-NMR(500MHz,CDCl3):δ=9.26(m,2H),9.07(m,1H),8.99(d,1H),8.91(m,1H),8.80(d,1H),8.69(m,2H),8.40(m,2H),8.10(dd,1H),8.03(d,1H),7.99(dd,1H),7.91(d,1H),7.84(m,2H),7.76(m,2H),7.66(m,4H),7.50-7.60(m,3H),7,45(m,2H).
シュードクメン(1,2,4-トリメチルベンゼン)(50ml)に、7-フェニル-7H-ベンゾ[c]カルバゾール-5,9-ジボロン酸エステル(5.1g)および6-ブロモ-2,3’-ビピリジン(4.6g)を加えた溶液に、窒素雰囲気下、Pd(PPh3)4(0.5g)およびリン酸三カリウム(12g)を室温で攪拌しながら加えた。その後、120℃で5時間攪拌した後、反応液を室温まで冷却し、メタノールを加え、吸引濾過にて液中の固体を採取した。この固体をエチレンジアミン四酢酸(EDTA)水溶液、次いで水、さらにはメタノールで洗浄した。さらに、クロロベンゼンから再結晶を行い、式(1-20)で表される化合物である5,9-ジ([2,3’-ビピリジン]-6-イル)-7-フェニル-7H-ベンゾ[c]カルバゾール(4.5g)を得た。
1H-NMR(500MHz,CDCl3):δ=9.34(m,1H),9.29(m,1H),9.00(d,1H),8.80(d,1H),8.66(m,2H),8.40-8.48(m,2H),8.26(m,3H),7.93(t,1H),7.79-7.89(m,4H),7.75(s,1H),7.65-7.72(m,5H),7.61(d,1H),7.49-7.58(m,2H),7,37-7.45(m,2H)
シュードクメン(1,2,4-トリメチルベンゼン)(50ml)に、7-フェニル-7H-ベンゾ[c]カルバゾール-5,9-ジボロン酸エステル(5.0g)および5-ブロモ-3,4’-ビピリジン(5.0g)を加えた溶液に、窒素雰囲気下、Pd(PPh3)4(1.2g)およびリン酸三カリウム(11.7g)を室温で攪拌しながら加えた。その後、還流温度で16時間攪拌した後、反応液を室温まで冷却し、エチレンジアミン四酢酸(EDTA)水溶液およびトルエンを加え分液した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル混合溶媒)にて精製し、式(1-24)で表される化合物である5,9-ジ([3,4’-ビピリジン]-5-イル)-7-フェニル-7H-ベンゾ[c]カルバゾール(1.0g)を得た。このとき、展開液中の酢酸エチルの比率を徐々に増加させて目的物を溶出させた。
1H-NMR(500MHz,CDCl3):δ=8.99(m,3H),8.86(m,2H),8.82(d,1H),8.75(m,4H),8.16(m,1H),8.09(m,1H),7.95(d,1H),7.85(t,1H),7.75(dd,1H),7.63-7.72(m,5H),7.51-7.60(m,7H).
1段階目:(4-メトキシナフタレン-1-イル)ボロン酸(43.1g)、1,4-ジブロモ-2-ニトロベンゼン(25.0g)、リン酸三カリウム(182g)、Pd(PPh3)4(2.5g)、シュードクメン(1,2,4-トリメチルベンゼン)(1000ml)、t-ブチルアルコール(200ml)および水(40ml)の入ったフラスコを窒素雰囲気下、還流温度で2時間撹拌した。反応液を室温まで冷却し、水およびトルエンを加え分液後、溶媒を減圧留去し、4,4’-(2-ニトロ-1,4-フェニレン)ビス(1-メトキシナフタレン)(32.5g)を得た。この粗製品は精製せずに次工程に用いた。
1H-NMR(500MHz,CDCl3):δ=9.03(d,1H),8.80(d,1H),8.76(m,4H),8.10(m,1H),8.00(d,1H),7.92(m,1H),7.82(t,1H),7.60-7.68(m,7H),7.47-7.54(m,10H).
まず、3-(3-ブロモフェニル)ピリジン(6.0g)、ビス(ピナコラート)ジボロン(7.8g)、(1,1’-ビス(ジフェニルホスフィノ)フェロセン)ジクロロパラジウム(II)(0.6g)、酢酸カリウム(AcOK)(7.6g)およびシクロペンチルメチルエーテル(CPME)(52ml)の入ったフラスコを還流温度で3時間攪拌した。反応液を室温まで冷却し、エチレンジアミン四酢酸(EDTA)水溶液とトルエンを加え水洗した。溶媒を減圧留去し得られた固体を活性炭カラムクロマトグラフィー(トルエン)で精製し、3-(3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル)ピリジン(6.0g)を得た。
1H-NMR(500MHz,CDCl3):δ=8.98(d,1H),8.92(d,2H),8.76(d,1H),8.62(m,2H),8.05(d,1H),7.93(m,2H),7.87(m,1H),7.45-7.81(m,17H),7.38(t,2H).
1段階目:窒素雰囲気下、5,9-ジメトキシ-7H-ベンゾ[c]カルバゾール38.6g、1-フルオロナフタレン(38.8g)、炭酸セシウム(90.6g)およびジメチルスルホキシド(DMSO)(460ml)の入ったフラスコを145℃で4時間加熱撹拌した。反応液を室温まで冷却した後、吸引濾過にて塩を除去し、DMSOを減圧留去した。得られた固体をメタノールで洗浄した後、シリカゲルカラムクロマトグラフィー(展開液:ヘプタン/トルエン=1/1(容量比))で精製し、5,9-ジメトキシ-7-(ナフタレン-1-イル)-7H-ベンゾ[c]カルバゾール(32.5g)を得た。
1H-NMR(500MHz,CDCl3):δ=9.02(d,1H),8.80(d,1H),8.70(m,2H),8.09(m,2H),8.03(m,5H),7.69-7.83(m,10H),7.55(m,3H),7.48(t,1H),7.39(m,1H),7.30-7.38(m,2H),7.23(m,2H),7.18(s,1H).
まず、7-(ナフタレン-1-イル)-7H-ベンゾ[c]カルバゾール-5,9-ジイル ビス(トリフルオロメタンスルホナート)(6.4g)、ビス(ピナコラート)ジボロン(6.1g)、(1,1’-ビス(ジフェニルホスフィノ)フェロセン)ジクロロパラジウム(II)(0.32g)、酢酸カリウム(5.9g)およびシクロペンチルメチルエーテル(CPME)(50ml)の入ったフラスコを、窒素雰囲気下、還流温度で4時間攪拌した。反応液を室温まで冷却し、水と酢酸エチルを加え、水洗操作を行い、次いでメタノールを加え、加熱還流撹拌することで洗浄した。このようにして、7-(ナフタレン-1-イル)-7H-ベンゾ[c]カルバゾール-5,9-ジボロン酸エステル(5.7g)を得た。
1H-NMR(500MHz,CDCl3):δ=9.03(d,1H),8.87(m,2H),8.81(d,1H),8.09(t,2H),8.03(d,1H),7.67-7.93(m,9H)7.46-7.65(m,9H),7.27-7.39(m,5H),7.17(s,1H).
7-(ナフタレン-1-イル)-7H-ベンゾ[c]カルバゾール-5,9-ジボロン酸エステル(4.8g)、4-(4-ブロモフェニル)ピリジン(4.5g)、リン酸三カリウム(8.5g)、Pd(PPh3)4(0.46g)、1,2,4-トリメチルベンゼン(シュードクメン)(30ml)、t-ブチルアルコール(6ml)および水(1.2ml)の入ったフラスコを、窒素雰囲気下、還流温度で2時間攪拌した。反応液を室温まで冷却し、エチレンジアミン四酢酸(EDTA)水溶液を加え、吸引濾過にて固体を取得した。次いでメタノールで洗浄した後、クロロベンゼンを加え加熱し、不要分を吸引濾過にて濾別した。その後、溶媒を減圧留去し、クロロベンゼンから再結晶し、式(1-8712)で表される化合物である7-(ナフタレン-1-イル)-5,9-ビス(4-(ピリジン-4-イル)フェニル)-7H-ベンゾ[c]カルバゾール(3.5g)を得た。
1H-NMR(500MHz,CDCl3):δ=9.03(d,1H),8.81(d,1H),8.66(m,4H),8.11(d,1H),8.05(t,2H),7.83(t,1H),7.65-7.80(m,9H)7.49-7.59(m,8H),7.36(m,2H),7.29(m,1H),7.16(s,1H).
7-フェニル-7H-ベンゾ[c]カルバゾール-5,9-ジイル ビス(トリフルオロメタンスルホナート)(7.3g)、2-ピリジルジンクブロミド0.5M-THF溶液(50ml)およびPd(PPh3)4(0.96g)の入ったフラスコを、窒素雰囲気下、還流温度で2時間攪拌した。反応液を室温まで冷却し、エチレンジアミン四酢酸(EDTA)水溶液および酢酸エチルを加え分液した。有機層をさらに飽和食塩水で洗浄し、溶媒を減圧留去した。次いでシリカゲルクロマトグラフィー(展開液:酢酸エチル/トルエン=1/20(容量比))で精製を行い、さらにトルエンから再結晶し、式(1-1)で表される化合物である7-フェニル-5,9-ビス(ピリジン-2-イル)-7H-ベンゾ[c]カルバゾール(1.2g)を得た。
1H-NMR(500MHz,CDCl3):δ=8.97(d,1H),8.79(m,1H),8.76(d,1H),8.70(m,1H),8.15(m,2H),8.08(dd,1H),7.73-7.84(m,4H)7.58-7.68(m,6H),7.46-7.55(m,2H),7.33(m,1H),7.21(m,1H).
7-フェニル-7H-ベンゾ[c]カルバゾール-5,9-ジイル ビス(トリフルオロメタンスルホナート)(5.9g)、3-ピリジンボロン酸(2.5g)、炭酸ナトリウム(4.0g)、Pd(PPh3)4(0.5g)、トルエン(40ml)、エタノール(12ml)および水(12ml)の入ったフラスコを、窒素雰囲気下、還流温度で2時間攪拌した。反応液を室温まで冷却し、飽和食塩水および酢酸エチルを加え分液した。溶媒を減圧留去し得られた固体をシリカゲルクロマトグラフィー(展開液:トルエン/酢酸エチル=1/1(容量比))にて精製し、次いでヘプタンから再結晶、さらにエタノールから再結晶し、式(1-2)で表される化合物である7-フェニル-5,9-ビス(ピリジン-3-イル)-7H-ベンゾ[c]カルバゾール(2.1g)を得た。
1H-NMR(500MHz,CDCl3):δ=9.06(m,2H),8.77(m,2H),8.69(m,1H),8.59(m,1H),7.97(m,1H),7.93(d,1H),7.86(m,1H)7.81(t,1H),7.61-7.71(m,6H),7.56(t,1H),7.49(m,2H),7.43(m,1H),7.38(m,1H).
まず、7-フェニル-7H-ベンゾ[c]カルバゾール-5,9-ジイル ビス(トリフルオロメタンスルホナート)(14.7g)、2-ピリジルジンクブロミド0.5M-THF溶液(50ml)、Pd(PPh3)4(0.87g)およびTHF(50ml)の入ったフラスコを、窒素雰囲気下、還流温度で3時間攪拌した。反応液を室温まで冷却し、エチレンジアミン四酢酸(EDTA)水溶液および酢酸エチルを加え分液した。有機層をさらに飽和食塩水で洗浄し、溶媒を減圧留去した。次いでシリカゲルクロマトグラフィー(展開液:酢酸エチル/トルエン=1/100(容量比))で精製、さらにエタノールから再結晶し、7-フェニル-9-(ピリジン-2-イル)-7H-ベンゾ[c]カルバゾール-5-イル トリフルオロメタンスルホナート(5.1g)を得た。
1H-NMR(500MHz,CDCl3):δ=8.97(d,1H),8.80(m,1H),8.75(d,1H),8.72(m,1H),8.15(d,1H),8.10(d,2H),7.73-7.83(m,8H),7.63-7.70(m,5H),7.61(d,1H),7.53(m,1H),7.49(t,1H),7.33(m,1H),7.23(m,1H).
窒素雰囲気下、4-(7-フェニル-5-(((トリフルオロメチル)スルホニル)オキシ)-7H-ベンゾ[c]カルバゾール-9-イル)ナフタレン-1-イル トリフルオロメタンスルホナート(6.0g)、2-ピリジルジンクブロミドの0.5mol/lTHF溶液(50ml)およびPd(PPh3)4(0.25g)の入ったフラスコを還流温度で3時間撹拌した。反応液を室温まで冷却し、エチレンジアミン四酢酸(EDTA)水溶液および酢酸エチルを加え分液した。溶媒を減圧留去し、得られた固体を活性アルミナカラムクロマトグラフィー(展開液:トルエン/酢酸エチル混合溶媒)にて精製し、次いでシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル混合溶媒)にて精製し、式(1-564)で表される化合物である7-フェニル-5-(ピリジン-2-イル)-9-(4-ピリジン-2-イル)ナフタレン-1-イル)-7H-ベンゾ[c]カルバゾール(0.4g)を得た。このとき、どちらのクロマトグラフィーも展開液中の酢酸エチルの比率を徐々に増加させて目的物を溶出させた。
1H-NMR(500MHz,CDCl3):δ=9.01(d,1H),8.80(m,3H),8.16(m,2H),8.09(d,1H),7.77-7.86(d,3H),7.72(s,1H),7.57-7.67(m,10H),7.43-7.53(m,4H),7.35(m,2H).
まず、7-フェニル-7H-ベンゾ[c]カルバゾール-5,9-ジイル ビス(トリフルオロメタンスルホナート(5.9g)、3-ピリジンボロン酸(1.4g)、炭酸ナトリウム(2.1g)、Pd(PPh3)4(0.23g)、トルエン(21ml)、エタノール(7ml)および水(7ml)の入ったフラスコを、窒素雰囲気下、還流温度で2時間攪拌した。反応液を室温まで冷却し、エチレンジアミン四酢酸(EDTA)水溶液および酢酸エチルを加え分液した。溶媒を減圧留去し、得られた固体をシリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル混合溶媒)で精製した。このとき、展開液中の酢酸エチルの比率を徐々に増加させて目的物を溶出させた。その後、溶媒を減圧留去し得られた固体をメタノールで洗浄し、次いでエタノールから再結晶し7-フェニル-9-(ピリジン-3-イル)-7H-ベンゾ[c]カルバゾール トリフルオロメタンスルホナート(2.5g)を得た。
1H-NMR(500MHz,CDCl3):δ=8.98(d,1H),8.79(m,1H),8.71-8.76(m,2H),8.69(m,1H),8.10(d,2H),7.93(d,1H),7.87(dt,1H)7.75-7.82(m,7H),7.63-7.69(m,4H),7.55(m,1H),7.49(m,2H),7.43(m,1H),7.23(m,1H).
窒素雰囲気下、4-(7-フェニル-5-(((トリフルオロメチル)スルホニル)オキシ)-7H-ベンゾ[c]カルバゾール-9-イル)ナフタレン-1-イル トリフルオロメタンスルホナート(3.0g)、3-ピリジンボロン酸(1.6g)リン酸三カリウム(3.6g)、Pd(PPh3)4(0.25g)、1,2-ジメトキシエタン(18ml)および水(3.6ml)の入ったフラスコを還流温度で12時間撹拌した。反応液を室温まで冷却し、エチレンジアミン四酢酸(EDTA)水溶液を加え、吸引濾過にて液中の固体を採取した。次いで活性アルミナカラムクロマトグラフィー(展開液:トルエン/酢酸エチル混合溶媒)にて精製し、式(1-599)で表される化合物である7-フェニル-5-(ピリジン-3-イル)-9-(4-(ピリジン-3-イル)ナフタレン-1-イル)-7H-ベンゾ[c]カルバゾール(1.0g)を得た。このとき、展開液中の酢酸エチルの比率を徐々に増加させて目的物を溶出させた。
1H-NMR(500MHz,CDCl3):δ=9.03(d,1H),8.80(m,3H),8.70(m,2H),8.10(m,1H),7.96(d,1H),7.89(m,3H),7.82(t,1H),7.58-7.67(m,7H),7.43-7.54(m,8H).
シュードクメン(1,2,4-トリメチルベンゼン)(50ml)に、7-フェニル-7H-ベンゾ[c]カルバゾール-5,9-ジボロン酸エステル(5.0g)および2-(3-ブロモフェニル)ピリジン(4.7g)を加えた溶液に、窒素雰囲気下、Pd(PPh3)4(3.6g)およびリン酸三カリウム(11.7g)を室温で攪拌しながら加えた。その後、還流温度で16時間攪拌した後、反応液を室温まで冷却し、エチレンジアミン四酢酸(EDTA)水溶液およびトルエンを加え分液した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開液:トルエン/酢酸エチル混合溶媒)にて精製した。このとき、展開液中の酢酸エチルの比率を徐々に増加させて目的物を溶出させた。さらに活性炭カラム(展開液:トルエン)にて着色成分を除去し、式(1-742)で表される化合物である7-フェニル-5,9-ビス(3-(ピリジン-2-イル)フェニル)-7H-ベンゾ[c]カルバゾール(0.5g)を得た。
1H-NMR(500MHz,CDCl3):δ=8.96(d,1H),8.69-8.77(m,3H),8.29(m,1H),8.12(m,1H),8.08(m,1H),8.02(m,1H),7.97(m,1H),7.71-7.81(m,7H),7.54-7.66(m,7H),7.50(m,1H),7.45(t,1H),7.25(m,2H).
1段目:2-ナフタレンボロン酸(1.9g)、7-フェニル-7H-ベンゾ[c]カルバゾール-5,9-ジイル ビス(トリフルオロメタンスルホナート)(5.9g)、酢酸カリウム(0.02g)、トリフェニルホスフィン(0.03g)、リン酸三カリウム(K3PO4)(8.5g)およびTHF/イソプロピルアルコール(IPA)溶液(容量比で3:1)(30ml)の入ったフラスコを窒素雰囲気下、還流温度で0.5時間攪拌した。反応液を室温まで冷却し、水および酢酸エチルを加え分液した後、溶媒を減圧留去した。得られた固体をメタノールで洗浄し、9-(ナフタレン-2-イル)-7-フェニル-7H-ベンゾ[c]カルバゾール-5-イル トリフルオロメタンスルホナート(5.4g)を得た。
1H-NMR(500MHz,CDCl3):δ=8.93(d,1H),8.71(d,1H),8.68(m,1H),8.06(d,2H),8.01(d,1H),7.95(s,1H),7.83-7.93(m,3H),7.70-7.80(m,7H),7.58-7.65(m,5H),7.55(s,1H),7.46-7.52(m,3H),7.41(t,1H),7.2(m,1H).
実施例1~3および比較例1、2に係る電界発光素子を作製し、それぞれ、定電流駆動試験における駆動開始電圧(V)、初期輝度の80%以上の輝度を保持する時間(h)の測定を行った。以下、実施例および比較例について詳細に説明する。
<化合物(1-10)を電子輸送層に用いた素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨して得られる26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(真空機工(株)製)の基板ホルダーに固定し、CuPcを入れたモリブデン製蒸着用ボート、NPDを入れたモリブデン製蒸着用ボート、化合物(A)を入れたモリブデン製蒸着用ボート、化合物(B)を入れたモリブデン製蒸着用ボート、式(1-10)で表される化合物を入れたモリブデン製蒸着用ボート、弗化リチウムを入れたモリブデン製蒸着用ボート、およびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
<化合物(1-4)を電子輸送層に用いた素子>
式(1-10)で表される化合物を式(1-4)で表される化合物に替えた以外は実施例1と同様にして有機EL素子を得た。ITO電極を陽極、弗化リチウム/アルミニウム電極を陰極として、初期輝度2000cd/m2を得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は7.75Vで、初期輝度の80%以上の輝度を保持する時間は393時間だった。
<化合物(1-744)を電子輸送層に用いた素子>
式(1-10)で表される化合物を式(1-744)で表される化合物に替えた以外は実施例1と同様にして有機EL素子を得た。ITO電極を陽極、弗化リチウム/アルミニウム電極を陰極として、初期輝度2000cd/m2を得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は5.93Vで、初期輝度の80%以上の輝度を保持する時間は213時間だった。
式(1-10)で表される化合物を化合物(C)に替えた以外は実施例1と同様にして有機EL素子を得た。ITO電極を陽極、弗化リチウム/アルミニウム電極を陰極として、初期輝度2000cd/m2を得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.78Vで、初期輝度の80%以上の輝度を保持する時間は39時間だった。
式(1-10)で表される化合物を化合物(D)に替えた以外は実施例1と同様にして有機EL素子を得た。ITO電極を陽極、弗化リチウム/アルミニウム電極を陰極として、初期輝度2000cd/m2を得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.74Vで、初期輝度の80%以上の輝度を保持する時間は24時間だった。
実施例4~13および比較例3、4に係る電界発光素子を作製し、それぞれ、定電流駆動試験における駆動開始電圧(V)、初期輝度の80%以上の輝度を保持する時間(h)の測定を行った。以下、実施例および比較例について詳細に説明する。
<化合物(1-10)を電子輸送層に用いた素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、NPDを入れたモリブデン製蒸着用ボート、化合物(E)を入れたモリブデン製蒸着用ボート、化合物(B)を入れたモリブデン製蒸着用ボート、式(1-10)で表される化合物を入れたモリブデン製蒸着用ボート、Liqを入れたモリブデン製蒸着用ボート、マグネシウムを入れたモリブデンボートおよび銀を入れたタングステン製蒸着用ボートを装着した。
<化合物(1-5)を電子輸送層に用いた素子>
化合物(1-10)を化合物(1-5)に替えた以外は実施例4に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/m2を得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.13Vで、初期輝度の80%以上の輝度を保持する時間は246時間だった。
<化合物(1-634)を電子輸送層に用いた素子>
化合物(1-10)を化合物(1-634)に替えた以外は実施例4に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/m2を得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は5.41Vで、初期輝度の80%以上の輝度を保持する時間は400時間だった。
<化合物(1-744)を電子輸送層に用いた素子>
化合物(1-10)を化合物(1-744)に替えた以外は実施例4に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/m2を得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.96Vで、初期輝度の80%以上の輝度を保持する時間は231時間だった。
<化合物(1-20)を電子輸送層に用いた素子>
化合物(1-10)を化合物(1-20)に替えた以外は実施例4に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/m2を得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.54Vで、初期輝度の80%以上の輝度を保持する時間は132時間だった。
<化合物(1-24)を電子輸送層に用いた素子>
化合物(1-10)を化合物(1-24)に替えた以外は実施例4に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/m2を得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は5.26Vで、初期輝度の80%以上の輝度を保持する時間は265時間だった。
<化合物(1-743)を電子輸送層に用いた素子>
化合物(1-10)を化合物(1-743)に替えた以外は実施例4に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/m2を得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.61Vで、初期輝度の80%以上の輝度を保持する時間は315時間だった。
<化合物(1-8710)を電子輸送層に用いた素子>
化合物(1-10)を化合物(1-8710)に替えた以外は実施例4に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/m2を得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.83Vで、初期輝度の80%以上の輝度を保持する時間は430時間だった。
<化合物(1-8711)を電子輸送層に用いた素子>
化合物(1-10)を化合物(1-8711)に替えた以外は実施例4に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/m2を得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は3.85Vで、初期輝度の80%以上の輝度を保持する時間は229時間だった。
<化合物(1-8712)を電子輸送層に用いた素子>
化合物(1-10)を化合物(1-8712)に替えた以外は実施例4に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/m2を得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.00Vで、初期輝度の80%以上の輝度を保持する時間は240時間だった。
化合物(1-10)を化合物(F)に替えた以外は実施例4に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/m2を得るための電流密度により、定電流駆動試験を実施した。その結果、駆動試験開始電圧は3.86Vで、初期輝度の80%以上の輝度を保持する時間は196時間であった。
化合物(1-10)を化合物(G)に替えた以外は実施例4に準じた方法で有機EL素子を得た。ITO電極を陽極、マグネシウム/銀電極を陰極として、初期輝度2000cd/m2を得るための電流密度により、定電流駆動試験を実施した。その結果、駆動試験開始電圧は3.87Vで、初期輝度の80%以上の輝度を保持する時間は120時間であった。
参考例1およびその比較例5に係る電界発光素子を作製し、それぞれ、定電流駆動試験における駆動開始電圧(V)、初期輝度の80%以上の輝度を保持する時間(h)の測定を行った。以下、参考例およびその比較例について詳細に説明する。
<化合物(1-335)を電子輸送層に用いた素子>
スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨して得られる26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(真空機工(株)製)の基板ホルダーに固定し、CuPcを入れたモリブデン製蒸着用ボート、NPDを入れたモリブデン製蒸着用ボート、化合物(A)を入れたモリブデン製蒸着用ボート、化合物(B)を入れたモリブデン製蒸着用ボート、式(1-335)で表される化合物を入れたモリブデン製蒸着用ボート、弗化リチウムを入れたモリブデン製蒸着用ボート、およびアルミニウムを入れたタングステン製蒸着用ボートを装着した。
式(1-335)で表される化合物を化合物(C)に替えた以外は参考例1と同様にして有機EL素子を得た。ITO電極を陽極、弗化リチウム/アルミニウム電極を陰極として、初期輝度2000cd/m2を得るための電流密度により、定電流駆動試験を実施した。駆動試験開始電圧は4.78Vで、初期値の80%以上の輝度を保持する時間は39時間だった。
101 基板
102 陽極
103 正孔注入層
104 正孔輸送層
105 発光層
106 電子輸送層
107 電子注入層
108 陰極
Claims (30)
- 下記式(1)で表されるベンゾ[c]カルバゾール化合物。
上記式(1)中、
Rは炭素数6~24のアリールまたは炭素数2~24のヘテロアリールであり、
AおよびA’は、それぞれ独立して、水素、上記式(A-1)で表される基、上記式(A-2)で表される基、上記式(A-3)で表される基、および上記式(A-4)で表される基からなる群から選択される1つであるが、AおよびA’の両方が水素になることはなく、
R、AおよびA’の構造中に含まれる環は、炭素数1~6のアルキル、シクロヘキシルまたはフェニルで置換されていてもよく、また、
式(1)で表される化合物を構成するベンゾカルバゾール骨格、これに置換するR、AおよびA’における任意の水素は重水素で置換されていてもよい。 - Rは下記式(R-1)~式(R-20)で表される基からなる群から選択される1つであり、
AおよびA’は、それぞれ独立して、水素、下記式(A-1-1)~(A-1-3)で表される基、下記式(A-2-1)~(A-2-18)で表される基、下記式(A-3-1)~(A-3-6)で表される基、および下記式(A-4-1)~(A-4-6)で表される基からなる群から選択される1つであるが、AおよびA’の両方が水素になることはなく、また、
式(1)で表される化合物を構成するベンゾカルバゾール骨格、これに置換するR、AおよびA’における任意の水素は重水素で置換されていてもよい、
請求項1に記載するベンゾ[c]カルバゾール化合物。
- Rは上記式(R-1)~式(R-14)で表される基からなる群から選択される1つであり、
AおよびA’は、それぞれ独立して、上記式(A-1-1)~(A-1-3)で表される基、上記式(A-2-1)~(A-2-18)で表される基、上記式(A-3-1)~(A-3-6)で表される基および上記式(A-4-1)~(A-4-6)で表される基からなる群から選択される1つである、
請求項1に記載するベンゾ[c]カルバゾール化合物。 - Rは上記式(R-1)~式(R-11)で表される基からなる群から選択される1つであり、
AおよびA’は、それぞれ独立して、上記式(A-1-1)~(A-1-3)で表される基、上記式(A-2-1)~(A-2-18)で表される基、上記式(A-3-1)~(A-3-6)で表される基および上記式(A-4-1)~(A-4-3)で表される基からなる群から選択される1つである、
請求項1に記載するベンゾ[c]カルバゾール化合物。 - Rは上記式(R-1)、式(R-10)または式(R-11)で表される基であり、
AおよびA’は、それぞれ独立して、上記式(A-1-1)~(A-1-3)で表される基、上記式(A-2-1)~(A-2-4)で表される基、上記式(A-2-7)~(A-2-9)で表される基、上記式(A-2-12)で表される基、上記式(A-2-15)で表される基、上記式(A-3-1)~(A-3-6)で表される基および上記式(A-4-1)~(A-4-3)で表される基からなる群から選択される1つである、
請求項1に記載するベンゾ[c]カルバゾール化合物。 - Rは上記式(R-1)または式(R-11)で表される基であり、
AおよびA’は、それぞれ独立して、上記式(A-1-1)~(A-1-3)で表される基、上記式(A-2-1)で表される基、上記式(A-2-2)で表される基、上記式(A-2-8)で表される基、上記式(A-2-12)で表される基、上記式(A-3-1)~(A-3-6)で表される基および上記式(A-4-1)~(A-4-3)で表される基からなる群から選択される1つである、
請求項1に記載するベンゾ[c]カルバゾール化合物。 - 請求項1~24のいずれかに記載する化合物を含有する、電子輸送材料。
- 陽極および陰極からなる一対の電極と、該一対の電極間に配置される発光層と、前記陰極と該発光層との間に配置され、請求項25に記載する電子輸送材料を含有する電子輸送層および/または電子注入層とを有する、有機電界発光素子。
- 前記電子輸送層および電子注入層の少なくとも1つは、さらに、キノリノール系金属錯体、ピリジン誘導体、ビピリジン誘導体、フェナントロリン誘導体、ボラン誘導体およびベンゾイミダゾール誘導体からなる群から選択される少なくとも1つを含有する、請求項26に記載する有機電界発光素子。
- 前記電子輸送層および電子注入層の少なくとも1つは、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、請求項27に記載する有機電界発光素子。
- 請求項26~28のいずれかに記載する有機電界発光素子を備えた表示装置。
- 請求項26~28のいずれかに記載する有機電界発光素子を備えた照明装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080054434.XA CN102639525B (zh) | 2009-12-03 | 2010-12-03 | 苯并[c]咔唑化合物、电子传输材料、有机电激发光元件、显示装置以及照明装置 |
KR1020127013687A KR101791122B1 (ko) | 2009-12-03 | 2010-12-03 | 피리딘을 포함하는 치환기를 가지는 벤조〔c〕카르바졸 화합물 및 유기 전계 발광 소자 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-275104 | 2009-12-03 | ||
JP2009275104 | 2009-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011068204A1 true WO2011068204A1 (ja) | 2011-06-09 |
Family
ID=44115050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/071693 WO2011068204A1 (ja) | 2009-12-03 | 2010-12-03 | ピリジンを含む置換基を有するベンゾ[c]カルバゾール化合物および有機電界発光素子 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5724336B2 (ja) |
KR (1) | KR101791122B1 (ja) |
CN (1) | CN102639525B (ja) |
TW (1) | TWI491602B (ja) |
WO (1) | WO2011068204A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013032297A1 (en) * | 2011-09-01 | 2013-03-07 | Rohm And Haas Electronic Materials Korea Ltd. | Benzocarbazole compounds and electroluminescent devices involving them |
JP2013089608A (ja) * | 2011-10-13 | 2013-05-13 | Konica Minolta Holdings Inc | 有機el素子 |
CN104004507A (zh) * | 2013-02-21 | 2014-08-27 | 海洋王照明科技股份有限公司 | 一种有机电致磷光主体材料及其制备方法和有机电致发光器件 |
CN104379572A (zh) * | 2012-06-28 | 2015-02-25 | 捷恩智株式会社 | 电子输送材料及使用其的有机电场发光元件 |
JP2015051966A (ja) * | 2013-08-07 | 2015-03-19 | Jnc株式会社 | 電子輸送材料およびこれを用いた有機電界発光素子 |
TWI668293B (zh) * | 2017-12-28 | 2019-08-11 | 大陸商廣東阿格蕾雅光電材料有限公司 | 一種電致發光材料及其在光電器件中的應用 |
US10553799B2 (en) | 2016-06-20 | 2020-02-04 | Samsung Display Co., Ltd. | Condensed cyclic compound and an organic light-emitting device including the same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011152466A1 (ja) * | 2010-06-02 | 2011-12-08 | Jnc株式会社 | 電子受容性窒素含有へテロアリールを含む置換基を有するカルバゾール化合物および有機電界発光素子 |
JP5673362B2 (ja) * | 2010-12-03 | 2015-02-18 | Jnc株式会社 | ピリジンを含む置換基を有するベンゾ[c]カルバゾール化合物および有機電界発光素子 |
JP5949354B2 (ja) * | 2011-09-15 | 2016-07-06 | Jnc株式会社 | 電子受容性窒素含有へテロアリールを含む置換基を有するカルバゾール化合物および有機電界発光素子 |
CN104073243A (zh) * | 2013-03-26 | 2014-10-01 | 海洋王照明科技股份有限公司 | 有机电致发光材料及其制备方法与有机电致发光器件 |
KR101638071B1 (ko) * | 2013-04-02 | 2016-07-08 | 에스에프씨 주식회사 | 유기발광 화합물 및 이를 포함하는 유기전계발광소자 |
CN104218159A (zh) * | 2013-05-30 | 2014-12-17 | 海洋王照明科技股份有限公司 | 一种有机电致发光器件及其制备方法 |
KR102173042B1 (ko) | 2013-08-22 | 2020-11-03 | 삼성디스플레이 주식회사 | 헤테로고리 화합물 및 이를 포함한 유기 발광 소자 |
KR101585303B1 (ko) * | 2013-12-27 | 2016-01-22 | 주식회사 두산 | 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자 |
KR102291492B1 (ko) * | 2015-01-16 | 2021-08-20 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002158093A (ja) * | 2000-09-07 | 2002-05-31 | Chisso Corp | ジピリジルチオフェン誘導体を含有する有機電界発光素子 |
JP2003146951A (ja) * | 2001-08-06 | 2003-05-21 | Mitsubishi Chemicals Corp | アントラセン系化合物、その製造方法および有機電界発光素子 |
WO2007086552A1 (ja) * | 2006-01-30 | 2007-08-02 | Chisso Corporation | 新規化合物およびこれを用いた有機電界発光素子 |
JP2008214244A (ja) * | 2007-03-02 | 2008-09-18 | Chisso Corp | 発光材料およびこれを用いた有機電界発光素子 |
JP2009023962A (ja) * | 2007-07-20 | 2009-02-05 | Chisso Corp | フルオレン化合物、該化合物を用いた発光素子用材料及び有機電界発光素子 |
WO2010114264A2 (en) * | 2009-03-31 | 2010-10-07 | Dow Advanced Display Materials,Ltd. | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
WO2010137678A1 (ja) * | 2009-05-29 | 2010-12-02 | チッソ株式会社 | 電子輸送材料およびこれを用いた有機電界発光素子 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101418840B1 (ko) * | 2005-09-05 | 2014-07-11 | 제이엔씨 주식회사 | 전자 수송 재료 및 이것을 이용한 유기 전계발광 소자 |
JP5262081B2 (ja) * | 2006-11-20 | 2013-08-14 | Jnc株式会社 | 電子輸送材料およびこれを用いた有機電界発光素子 |
JP2008156266A (ja) * | 2006-12-22 | 2008-07-10 | Chisso Corp | 電子輸送材料およびこれを用いた有機電界発光素子 |
JP5262192B2 (ja) * | 2007-03-07 | 2013-08-14 | Jnc株式会社 | 電子輸送材料およびこれを用いた有機電界発光素子 |
CN102372693B (zh) | 2010-08-20 | 2015-03-11 | 清华大学 | 一种咔唑类化合物及其应用 |
-
2010
- 2010-12-02 TW TW099141944A patent/TWI491602B/zh not_active IP Right Cessation
- 2010-12-03 KR KR1020127013687A patent/KR101791122B1/ko active IP Right Grant
- 2010-12-03 WO PCT/JP2010/071693 patent/WO2011068204A1/ja active Application Filing
- 2010-12-03 CN CN201080054434.XA patent/CN102639525B/zh active Active
- 2010-12-03 JP JP2010270349A patent/JP5724336B2/ja not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002158093A (ja) * | 2000-09-07 | 2002-05-31 | Chisso Corp | ジピリジルチオフェン誘導体を含有する有機電界発光素子 |
JP2003146951A (ja) * | 2001-08-06 | 2003-05-21 | Mitsubishi Chemicals Corp | アントラセン系化合物、その製造方法および有機電界発光素子 |
WO2007086552A1 (ja) * | 2006-01-30 | 2007-08-02 | Chisso Corporation | 新規化合物およびこれを用いた有機電界発光素子 |
JP2008214244A (ja) * | 2007-03-02 | 2008-09-18 | Chisso Corp | 発光材料およびこれを用いた有機電界発光素子 |
JP2009023962A (ja) * | 2007-07-20 | 2009-02-05 | Chisso Corp | フルオレン化合物、該化合物を用いた発光素子用材料及び有機電界発光素子 |
WO2010114264A2 (en) * | 2009-03-31 | 2010-10-07 | Dow Advanced Display Materials,Ltd. | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
WO2010137678A1 (ja) * | 2009-05-29 | 2010-12-02 | チッソ株式会社 | 電子輸送材料およびこれを用いた有機電界発光素子 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013032297A1 (en) * | 2011-09-01 | 2013-03-07 | Rohm And Haas Electronic Materials Korea Ltd. | Benzocarbazole compounds and electroluminescent devices involving them |
CN103889975A (zh) * | 2011-09-01 | 2014-06-25 | 罗门哈斯电子材料韩国有限公司 | 苯并咔唑化合物和包含它们的电致发光器件 |
JP2014531420A (ja) * | 2011-09-01 | 2014-11-27 | ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド | ベンゾカルバゾール化合物およびそれらを含むエレクトロルミネッセンスデバイス |
JP2013089608A (ja) * | 2011-10-13 | 2013-05-13 | Konica Minolta Holdings Inc | 有機el素子 |
CN104379572A (zh) * | 2012-06-28 | 2015-02-25 | 捷恩智株式会社 | 电子输送材料及使用其的有机电场发光元件 |
CN104379572B (zh) * | 2012-06-28 | 2016-09-21 | 捷恩智株式会社 | 苯并[a]咔唑化合物、电子输送材料及使用其的有机电场发光元件 |
CN104004507A (zh) * | 2013-02-21 | 2014-08-27 | 海洋王照明科技股份有限公司 | 一种有机电致磷光主体材料及其制备方法和有机电致发光器件 |
JP2015051966A (ja) * | 2013-08-07 | 2015-03-19 | Jnc株式会社 | 電子輸送材料およびこれを用いた有機電界発光素子 |
US10553799B2 (en) | 2016-06-20 | 2020-02-04 | Samsung Display Co., Ltd. | Condensed cyclic compound and an organic light-emitting device including the same |
TWI668293B (zh) * | 2017-12-28 | 2019-08-11 | 大陸商廣東阿格蕾雅光電材料有限公司 | 一種電致發光材料及其在光電器件中的應用 |
Also Published As
Publication number | Publication date |
---|---|
KR20120112424A (ko) | 2012-10-11 |
KR101791122B1 (ko) | 2017-10-27 |
CN102639525B (zh) | 2014-07-02 |
TWI491602B (zh) | 2015-07-11 |
JP5724336B2 (ja) | 2015-05-27 |
CN102639525A (zh) | 2012-08-15 |
TW201136913A (en) | 2011-11-01 |
JP2011136989A (ja) | 2011-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI808107B (zh) | 有機元件用材料、有機電場發光元件、顯示裝置及照明裝置 | |
JP5724336B2 (ja) | ピリジンを含む置換基を有するベンゾ[c]カルバゾール化合物および有機電界発光素子 | |
JP5353233B2 (ja) | ピリジルフェニル基を有するアントラセン誘導体化合物及び有機電界発光素子 | |
JP5799637B2 (ja) | アントラセン誘導体およびこれを用いた有機電界発光素子 | |
JP5556168B2 (ja) | ピリジルナフチル基を有するアントラセン誘導体及び有機電界発光素子 | |
JP5673362B2 (ja) | ピリジンを含む置換基を有するベンゾ[c]カルバゾール化合物および有機電界発光素子 | |
JP5509606B2 (ja) | ピリジル基を有するアントラセン誘導体化合物及び有機電界発光素子 | |
JP6094490B2 (ja) | アントラセン誘導体およびこれを用いた有機電界発光素子 | |
JP6221560B2 (ja) | 有機電界発光素子 | |
JP5783173B2 (ja) | 電子受容性窒素含有へテロアリールを含む置換基を有するカルバゾール化合物および有機電界発光素子 | |
JP5217476B2 (ja) | ベンゾフルオレン化合物、該化合物を用いた発光層用材料及び有機電界発光素子 | |
JP2012094823A (ja) | ピリジルフェニル置換アントラセン化合物および有機電界発光素子 | |
JP5807601B2 (ja) | アントラセン誘導体およびこれを用いた有機電界発光素子 | |
JP5402128B2 (ja) | ビピリジル基を有するアントラセンまたはナフタレン誘導体化合物および有機電界発光素子 | |
JP6349902B2 (ja) | アントラセン誘導体および有機el素子 | |
JP5949354B2 (ja) | 電子受容性窒素含有へテロアリールを含む置換基を有するカルバゾール化合物および有機電界発光素子 | |
JP5549270B2 (ja) | アントラセン誘導体およびこれを用いた有機電界発光素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080054434.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10834654 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127013687 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10834654 Country of ref document: EP Kind code of ref document: A1 |